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Abstract

As of early 2019, there are 13 stock exchanges in the U.S., across which over 1 trillion shares ($50
trillion) are traded annually. All 13 exchanges use the continuous limit order book market design, a design
that gives rise to latency arbitrage—arbitrage rents from symmetrically observed public information—and
the associated high-frequency trading arms race (Budish, Cramton and Shim, 2015). Will the market
adopt new market designs that address the negative aspects of high-frequency trading? This paper
builds a theoretical model of stock exchange competition to answer this question. Our model, shaped
by institutional details of the U.S. equities market, shows that under the status quo market design: (i)
trading behavior across the many distinct exchanges is as if there is just a single “synthesized” exchange;
(ii) competition among exchanges is fierce on the dimension of traditional trading fees; but (iii) exchanges
capture and maintain significant economic rents from the sale of speed technology—arms for the arms
race. Using a variety of data, we document seven stylized empirical facts that align with these predictions.
We then use the model to examine the private and social incentives for market design innovation. We
show that the market design adoption game among exchanges is a repeated prisoner’s dilemma. If an
exchange adopts a new market design that eliminates latency arbitrage, it would win share and earn
economic rents; perhaps surprisingly, the usual coordination problems associated with getting a new
market design off the ground are not central. However, imitation by other exchanges would result in an
equilibrium that resembles the status quo with competitive trading fees, but now without the rents from
the speed race. We conclude that although the social returns to adoption are large, the private returns
are much smaller for an entrant exchange and negative for an incumbent that currently derives rents
from the inefficiencies that the new design eliminates. Nevertheless, our analysis does not imply that
a market-wide market design mandate is necessary. Rather, it points to a more circumscribed policy

response that would tip the balance of incentives and encourage the “market to fix the market.”
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1 Introduction

“We must consider, for example, whether the increasingly expensive search for speed has passed
the point of diminishing returns. I am personally wary of prescriptive regulation that attempts
to identify an optimal trading speed, but I am receptive to more flexible, competitive solutions
that could be adopted by trading venues. These could include frequent batch auctions or other
mechanisms designed to minimize speed advantages. ... A key question is whether trading venues
have sufficient opportunity and flexibility to innovate successfully with initiatives that seek to
deemphasize speed as a key to trading success in order to further serve the interests of investors. If
not, we must reconsider the SEC rules and market practices that stand in the way.” (Securities
and Exchange Commission Chair Mary Jo White, June 2014)

As of early 2019 there are 13 stock exchanges in the U.S., across which over 1 trillion shares ($50 trillion)
are traded annually. All 13 exchanges use a market design called the continuous limit order book. A
recent paper of Budish, Cramton and Shim (2015) showed that this market design has an important design
flaw. The combination of (i) treating time as continuous, and (ii) processing requests to trade serially,
causes latency arbitrage—defined as arbitrage rents from symmetrically observed public information—to be
a built-in equilibrium feature of the market design. Latency arbitrage causes markets to be less liquid, leads
to a never-ending and socially-wasteful arms race for speed, and offends common economic intuitions about
what constitutes an efficient market. Budish, Cramton and Shim showed that the fix is conceptually pretty
simple, requiring just two modifications to the continuous limit order book: (i) treat time as a discrete
variable (analogously to prices, which come in discrete units); and (ii) in the event that multiple orders
arrive at the same discrete time, batch process them using a standard uniform-price auction. However,
despite the remarks of the SEC Chair above and encouragement from others,! the main exchanges have
not shown much interest in changing their market design. In the two instances where a startup (IEX) and
a small exchange (CHX) proposed market design ideas similarly motivated by concerns about aspects of
high-frequency trading, the proposals were met with fierce resistance from the large incumbent exchanges
and from many high-frequency trading firms.2

This begs the question: are private forces alone sufficient to foster the adoption of innovative and more

efficient market designs? Implicit in the quote at the top of the paper—delivered in a speech by then SEC

1See New York Attorney General Schneiderman (2014); Bloomberg Editorial Board (2014), which expressed views of both
Bloomberg’s editors and Goldman Sachs; and current Federal Reserve Chair (then Governor) Powell (2015), who in the context
of the U.S. Treasury market remarked “Ideas such as these make me wonder whether it might collectively be possible to come
to a compromise in which more trading is done directly on the public market, if at the same time the public market rules were
adjusted to emphasize greater liquidity provision, and particularly more stable liquidity provision, over speed.”

2Most well known is IEX, the subject of Michael Lewis’s bestseller Flash Boys (Lewis, 2014). Our sense is that the resistance
to IEX—an unprecedented 477 SEC comment letters were filed regarding its exchange application, including one in which
the New York Stock Exchange compared IEX to the fraudulent non-fat yogurt shop on Seinfeld (NYSE, 2015b)—reflected a
genuine mixture of incumbents’ desire to preserve the status quo and legitimate concerns about the details of IEX’s market
design. Most centrally, IEX’s market design only protects against latency arbitrage for non-displayed pegged orders; it does
not protect against latency arbitrage for conventional displayed limit orders. Its displayed (“lit”) market is identical to a
standard continuous limit order book, just 350 microseconds further away from market participants than would be the case
from geography alone, due to the famous “speed bump”. The other recent example is the Chicago Stock Exchange (CHX). CHX
proposed to adopt an “asymmetric” speed bump for its exchange—in which liquidity taking orders are delayed but liquidity
providing orders are not delayed—which would have protected against latency arbitrage in the displayed market, unlike IEX’s
symmetric speed bump. But it, too, met with fierce resistance from the larger exchanges and several high-frequency trading
firms—for example, Citadel wrote that it “unfairly structurally and systematically discriminates against market participants
that are primarily liquidity takers”—and was ultimately blocked by the SEC (see U.S. Securities and Exchange Commission,
2017, 2018a for the comment files on CHX’s two versions of the proposal). CHX was then acquired by NYSE (Michaels and
Osipovich, 2018). Please see Budish (2016b) for further details on IEX’s market design, Budish (2016a) for further details on
CHX’s proposed market design, and see Baldauf and Mollner (2018) and Section VIII.C-D of BCS for theoretical analyses of
speed bumps.



Chair Mary Jo White—is the view that private and social incentives for market design innovation are aligned:
if there is a market design innovation that is efficiency enhancing, then private market forces will naturally
evolve towards realizing the efficiency if allowed to do so (Griliches, 1957). However, as is well known, there
are numerous economic settings where private and social incentives for innovation diverge (Arrow, 1962;
Nordhaus, 1969; Hirshleifer, 1971). The question of whether or not sufficient innovation incentives exist
for stock exchanges is timely and of significant importance. If they do, then it follows that “prescriptive
regulation” should not mandate a specific market design; rather, regulators should ensure that regulation
does not “stand in the way” of “competitive solutions.” If not, intervention may be warranted—all the more
so if the potential economic savings are substantial.

In this paper, we argue that existing exchanges do not have sufficient incentives to adopt new market
designs precisely because they derive rents from the inefficiencies that these alternative designs seek to elim-
inate. That is, even though there are multiple exchanges that appear to compete fiercely with one another
for trading volume, they—alongside high-frequency trading firms and speed-technology providers—capture
and maintain a significant share of the economic rents at stake in the speed race. We emphasize that our
story is mot one of liquidity externalities, multiple equilibria due to coordination failure, chicken-and-egg,
etc., as is central in the literature on network effects and platform competition (e.g., Farrell and Saloner
(1985); Katz and Shapiro (1986); Rochet and Tirole (2003); Farrell and Klemperer (2007)) and past market
microstructure literature on financial exchange competition (cf. surveys by Madhavan (2000) and Cantillon
and Yin (2011)). Rather, our story in the end is ultimately a more traditional economic one of incumbents
protecting rents and missing incentives for innovation.

Central to our argument is a novel theoretical model of the stock exchange industry, tailored to the
institutional details that shape modern electronic trading, and built to understand the nature of exchange
competition and the associated incentives for innovation. There are four types of players in our model, all
strategic: exchanges, trading firms, investors, and informed traders. Initially, mirroring the status quo of
the current market, we assume that all exchanges employ the continuous limit order book market design.
Exchanges are undifferentiated, and strategically set two prices: per-share trading fees, and fees for “speed
technology” that enables trading firms to receive information about and respond more quickly to trading
opportunities on a given exchange. In practice, speed technology includes co-location (the right to locate
one’s own servers right next to the exchange’s servers) and proprietary data feeds (which enable trading
firms to receive updates from the exchange faster than from non-proprietary data feeds). Trading firms
choose the set of exchanges to buy speed technology from. They also choose whether and how to provide
liquidity by choosing the exchange(s) on which to offer liquidity, the quantity to offer on each exchange,
and a bid-ask spread on each exchange. The bid-ask spread trades off the benefits of providing liquidity
to investors (thereby collecting the spread) versus the cost of either being adversely selected against by an
informed trader (as in Glosten and Milgrom (1985)) or being on the losing end of a latency arbitrage race
with other trading firms—i.e., being “sniped” (as in Budish, Cramton and Shim (2015)).

Our analysis of the status quo delivers three main results. First, although in equilibrium the market
can be fragmented with trading activity split across several exchanges, several aspects of trading activity
behave as if there is just a single “synthesized” exchange: in equilibrium, all liquidity is at the same prices
and bid-ask spreads regardless of the exchange on which it is offered, and aggregate depth and volume are
invariant to how trading activity is allocated across exchanges. This behavior is brought about by two key
sets of regulations in the U.S.: Unlisted Trading Privileges (UTP) and Regulation National Market System



(Reg NMS).? UTP essentially implies that stocks are perfectly fungible across exchanges: i.e., a stock that
is technically listed on exchange X can be bought on any exchange Y and then sold on any exchange Z. Reg
NMS ensures that searching among exchanges, and then transacting across (“accessing”) them, are both
frictionless. This frictionless search and access allows market participants to costlessly “stitch together” the
order books across the various exchanges, and yields investor demand that is perfectly responsive to price
differences across exchanges. This behavior also leads to our second result: due to the same frictionless
search and access, investor demand is infinitely elastic with respect to trading fees as well; hence, fierce
Bertrand-style competition yields (competitive) zero trading fees on all exchanges.

As intuition for the first two results, consider a hypothetical world with buyers and sellers of a single
good, and multiple platforms on which transactions can occur. A regulation corresponding to UTP would
ensure that this good is perfectly homogeneous—e.g., no small differences between the types of drivers on
Uber versus Lyft—and can be bought or sold on any platform. A regulation corresponding to Reg NMS
ensures that searching for the best price across platforms and then potentially engaging in a transaction are
literally frictionless—e.g., not 10 extra seconds to check a second ride-sharing app or 10 minutes to drive to
a store, but no time at all. Given this, it is intuitive to see why: (i) aggregate economic activity will not
depend on how sellers allocate their goods across platforms (as buyers will find sellers, regardless of where
they are); and (ii) platform transaction fees will be Bertrand-competed down to the competitive level. There
is a fundamental economic difference between an “almost” commodity and “cheap” search, and an identical
commodity and zero-cost search (cf. Diamond (1971)).

Our third result is that exchanges can both capture and maintain substantial rents from the sale of speed
technology. This may appear surprising as exchanges are modeled as undifferentiated and search and access
is frictionless; as we have mentioned, these same features lead to competitive trading fees. There are two
reasons why exchanges earn supra-competitive rents for speed technology in equilibrium. First, even though
stocks are fungible across exchanges, latency-sensitive trading opportunities are not: if there is a sniping
opportunity that involves a stale quote on Exchange X, only trading firms that have purchased Exchange X
speed technology will be able to effectively compete in the sniping race. As long as firms multi-home and
purchase speed technology from all exchanges (which they do in equilibrium), exchanges can charge positive
fees for speed technology without incentives to undercut each other. Second, in contrast to basic models of
add-on pricing whereby profits from add-on goods are dissipated by firms selling the primary good below cost
(cf. Ellison (2005); Gabaix and Laibson (2006)), exchange rents earned from the sale of speed technology
are not dissipated via further competition on trading fees. The reason is that trading fees are already at
zero, and cannot become negative without creating a “money-pump” wherein trading firms execute infinite
volume to extract the negative fee.

We also prove that although exchanges are modeled as price setters who post take-it-or-leave-it offers
to trading firms for speed technology, exchanges nevertheless cannot extract all of the industry rents from
latency arbitrage.* The reason is that trading firms are able to influence where volume is transacted, and

this allows them to discipline exchanges that attempt to take too much of the pie.?

3These regulations are described in detail in Section 2.

4Taking our bound literally, and using realistic parameters for the numbers of fast trading firms and exchanges, our model
suggests that exchanges in aggregate can extract at most about 20% of the total latency arbitrage prize. Please see Section
3.2.4 for discussion.

5A particularly extreme version of this move was announced very recently in January 2019 as several large high-frequency
trading firms and other market participants announced that they were exploring starting a new exchange, called MEMX,
out of concern about rising co-location and proprietary data fees (Osipovich, 2019). The financial columnist Matt Levine
wrote: “While the last new stock exchange to launch in the U.S., the Investors Exchange or IEX, was self-consciously about
protecting long-term fundamental investors from the ravages of high-frequency trading, MEMX seems to be self-consciously



Although our model is highly stylized and abstracts from several real-world-complications (which include
agency frictions, tick-sizes, asymmetric trading fees, and strategic trading over time), we establish that our
parsimonious model nonetheless does reasonably well in matching several empirical moments found in the
data. By using a combination of TAQ data and exchange-company financial filings (e.g., 10-K’s, S-1’s,
merger proxies, fee filings), we document seven stylized facts about modern-era stock exchange competition
that are consistent with the predictions of our model. Our first series of facts relates to our prediction that
the market operates as if trading activity occurred on a single synthesized exchange; these facts include a
close one-for-one relationship observed between trading volume and displayed depth across exchanges, and
displayed depth constituting most major exchanges at the best price at the same time for reasonably highly
traded stocks. Next, we document that trading fees across major exchanges are economically very small.
Trading fees are quite complicated (cf. Chao, Yao and Ye (2018)), but using a variety of data sources to cut
through this complexity, we compute that the average fee for regular-hours trading, across the three largest
stock exchange families, is around $0.0001 per share per side—or about 0.0001% per side for a $100 stock.
This implies that across approximately 1 trillion shares traded during regular hours each year, exchanges
earn approximately $200 million in trading fees. To put this in perspective, StubHub, the largest secondary-
market venue for concert and sports tickets, has revenues exceeding $1 billion; that is, StubHub’s revenue is
over five times that for all U.S. regular-hours equities trading, despite the secondary market for event tickets
being a tiny fraction of the secondary market for U.S. equities. Last, we document that exchanges earn
significant revenues from the sale of co-location services and proprietary data feeds. For the BATS exchange
family, for which the data is the cleanest, revenue from co-location and data is about 69% of total revenue.
In aggregate across the three major exchange families (BATS, Nasdaq, NYSE), we document significant
growth in ESST fees during the Reg NMS era (post 2007), with 2018 speed technology revenues estimated
to be on the order of $1 billion.

Having established that our model does a reasonable job of describing and organizing the data, we next
use it to address our overarching question: will the market adopt new market designs, such as frequent batch
auctions, that address the negative aspects of high-frequency trading? How do exchanges’ private innovation
incentives relate to social incentives? Our model suggests that exchanges are unlikely to embrace such
innovation with open arms. However, it is not because a new market design that eliminates latency arbitrage
would fail to be utilized by market participants—indeed, if introduced, it would gain significant market
share—but rather because such innovation would destroy the rents that incumbent exchanges currently
earn. To conduct this analysis, we extend our theoretical model to allow for exchanges to operate one of two
market designs: either the continuous-time limit order book (Continuous), or discrete-time frequent batch
auctions (Discrete). Importantly, in the context of competition with the Continuous market, we consider
frequent batch auctions with a very short batch interval: long enough to effectively batch process if multiple
trading firms react to the same public signal at the same time, but otherwise essentially as short as possible.’

We show that if only one exchange employs Discrete while all others employ Continuous, the Discrete
exchange will capture a large share of trading volume and large economic rents. Intuitively, eliminating

latency arbitrage eliminates a tax on liquidity, and the fact that market participants can frictionlessly access

about protecting high-frequency traders from the ravages of stock-exchange fees” (Levine, 2019).

6In practice, given advances in speed technology over the last several years, 1 millisecond would likely be more than sufficient
to effectively batch process; some industry participants have argued to us that as little as 50 microseconds (i.e., 0.000050 seconds)
might suffice. A batch interval of 1 millisecond or less would also allow the frequent batch auction exchange to operate within
the framework of Reg NMS, which is significant. See Section 2.2 for additional discussion of Reg NMS. See Section 5 for the full
details of how we model frequent batch auctions, including the important details regarding information policy which, following
Budish, Cramton and Shim (2015), is analogous to information policy in the continuous market but with the same information
(about trades, cancels, the state of the order book, etc.) disseminated in discrete time, at the end of each interval.



and search across exchanges ensures that if there are two markets operating in parallel, one with a tax and
one without, the one without the tax will take off. That is, the standard coordination problems associated
with getting a new market off the ground do not apply here, and the Discrete exchange is able to earn trading
fees commensurate with the tax that it eliminates.” However, this frictionless world is also a double-edged
sword: although it rewards a first-mover, it also implies that any subsequent adoption of Discrete by other
exchanges—which our model suggests is likely—leads to the same Bertrand competition on trading fees as
before, but now without the industry rents from the speed race. Thus, we establish that the market design
adoption game among incumbent exchanges is essentially a repeated prisoner’s dilemma: while any one
exchange has incentive to unilaterally “deviate” and adopt Discrete, all incumbents prefer the Continuous
status quo, in which they share in latency arbitrage rents, to a world in which all exchanges are Discrete, and
these rents are gone. Similar arguments imply that a de novo entrant exchange using Discrete would have
difficulty recouping any substantial fixed costs of entry if imitation by other exchanges is likely and rapid.
Thus, we conclude that private incentives to adopt a new market design that eliminates latency arbitrage
are dramatically lower than social incentives, and potentially even negative.

Finally, we use these insights to inform potential policy responses to help the market fix itself. Our
analysis suggests that to get a de novo exchange to enter with a new market design or an incumbent to
switch, what may be required is not necessarily a mandate but rather a “push.” Such pushes might include:
(i) reducing the entry and adoption costs of launching a new stock exchange, for example, by lowering
the risk of failed entry by clarifying which types of market designs would be admissible under Reg NMS,
or potentially subsidizing the fixed costs of entry; and (ii) a modest regulatory exclusivity period for the
innovator, during which competing exchanges would not be able to imitate the design. Operating in a similar
manner to other forms of intellectual property protection such as FDA exclusivity periods for non-patented
drugs, an SEC exclusivity period might induce a first-mover exchange to invest the fixed costs associated

with developing, implementing and gaining regulatory approval for a new market design.

Our paper makes several contributions to the literature. First is our theoretical industrial organization
(I0) model of the stock exchange industry, described by some as the single most iconic market in global cap-
italism (e.g., 60 Minutes (2014)). We depart from previous work examining competing financial exchanges
in both our focus—the incentives for market participants to adopt innovative market designs—and in our
approach, which explicitly allows for market participants to transact the same security across multiple ez-
changes. This approach, motivated and necessitated by the regulatory environment surrounding modern
electronic stock trading, differs from models that assume that agents may only “single-home” and trade on a
single exchange (e.g., Mendelson (1987); Pagano (1989); Santos and Scheinkman (2001); Ellison and Fuden-
berg (2003); Pagnotta and Philippon (2018)) or a single exchange at a time (Hendershott and Mendelson,
2000), or assume contracts are specific to, and can only be traded on, a single exchange (as in Cantillon and
Yin (2008)). In our setting, stocks are fungible across exchanges and market participants can frictionlessly
multi-home across exchanges. This also leads to underlying “economics of the status quo” that are fundamen-
tally different from those that would emerge under standard platform or two-sided competition frameworks
where, typically, platforms earn rents from platform-specific network effects by charging supra-competitive
access and transaction fees (cf. Caillaud and Jullien (2003); Rochet and Tirole (2003); Armstrong (2006)).

"In our model, with continuous prices, the unique equilibrium is for Discrete to win 100% market share as long as the sniping
tax is strictly positive. In a richer model, with tick-size constraints (i.e., a restriction that prices must be in increments of $0.01),
if the sniping cost per share is smaller than the tick size—which seems empirically to be the case—then there also may exist
equilibria without complete tipping in which Discrete’s market share depends on the ratio of sniping costs per share to the tick
size. Please see Section 5.1.2 for further discussion.



Here, since exchanges are modeled as undifferentiated and exchange-specific network effects are nullified due
to frictionless search and access, trading fees are competitive—=zero in our model, and approximately zero in
the data. A related insight of our model that may be of interest to the platforms literature is that, while the
market may appear to be fragmented across multiple exchanges, the market behaves as if there were a single
“synthesized” exchange. The market microstructure literature has in the past been puzzled by fragmentation
(cf. Madhavan (2000) and what he terms the “Network Externality Puzzle”). Here, we provide a theoretical
rationale for why fragmentation per se may not necessarily lead to trading inefficiencies (see O’Hara and Ye
(2011) for related empirical evidence).

There are also two technical features of our theoretical analysis worth highlighting. First, in our analysis
we develop and motivate an equilibrium solution concept which we refer to as an order-book equilibrium
to address equilibrium existence issues. This solution concept is closely related to alternative solution
concepts employed in the insurance market literature (e.g., Wilson (1977); Riley (1979)), and may prove
useful analyzing other markets with adverse selection. Second, we generate a strictly interior split of latency
arbitrage rents between exchanges and trading firms without relying on an explicit bargaining model; we
show that this arises as a result of exchanges being able to post prices for speed technology (which they do in
reality), and trading firms being able to steer trading volume via the provision of liquidity (which they can
in reality). Though we acknowledge that these particular contributions (and our modeling exercise overall)
may be highly tailored for a specific market, we believe that this specificity is justified by the importance of
the industry.

Our paper’s second contribution is the set of seven stylized facts that, to our knowledge, has not been
documented in this form elsewhere. In particular, the facts on trading fees and on speed technology fees
may be of direct use for current policy debates. The SEC recently announced a pilot study on transaction
fees, focusing on the controversial practice of “maker-taker” fee-and-rebate pricing models (U.S. Securities
and Exchange Commission, 2018b). While our results do not speak to the agency concerns at the heart
of the controversy (cf. Battalio, Corwin and Jennings (2016)), our results do show that, once one cuts
through the complexity of modern fee schedules, the average fees are economically small. With respect to
speed technology fees, in October 2018 for the first time in recent history the SEC rejected proposed data
fee increases by NYSE and Nasdaq (Clayton, 2018). In a speech around that time Commissioner Robert
J. Jackson Jr. called for “greater transparency about how exchanges make their money...and a clear and
uniform approach to disclosing revenues across exchanges and over time.” He described that he and his staff
“tried and failed to use public disclosures to meaningfully examine exchanges’ businesses. . . [and] attempted
to look into the revenues that exchanges generate from selling market data and connectivity services. We
expected that such numbers would be available...but found...it nearly impossible” (Jackson Jr., 2018).
Our estimate of total exchange speed-technology revenues—which, as the reader will see, triangulates from
numerous data sources in lieu of obvious, transparent numbers from exchange filings—is surely not perfect,
but it provides a magnitude that market policy makers currently lack.

Last is our analysis of the question “will the market fix the market?” More precisely, the intellectual
contribution is in using the model to fill in the cells of the adoption game payoff matrix; once we understand
that the innovation game constitutes a prisoner’s dilemma (as opposed to, e.g., a coordination game), the
rest of the analysis and discussion is straightforward. We use these insights to identity a modest policy
response, well short of the “prescriptive regulation” that SEC Chair White expressed wariness of. We view
this particular contribution as in the spirit of economic engineering (Roth, 2002), working with the real-world

constraints of the specific market design setting, rather than assuming the ability to design institutions from



scratch.

Roadmap. The remainder of this paper is organized as follows. In Section 2, we describe the key institu-
tional features of the stock market that shape our theoretical model of exchange competition. We introduce
and analyze the model of the status quo in Section 3. Section 4 provides our seven stylized empirical facts. In
Section 5, we use our theoretical model to examine competition among alternative market designs. Section

6 proposes potential policy responses, and Section 7 concludes.

2 Institutional Background

Readers of this paper—especially researchers who are less familiar with financial market microstructure—may
have in mind, when thinking of stock exchanges and how they compete, the old New York Stock Exchange
floor. As recently as the 1990s, if a stock was listed on the New York Stock Exchange, the large majority of
its trading volume (65% in 1992) transacted on the New York Stock Exchange floor. Similarly, if a stock was
listed on Nasdaq,® a large majority of its volume transacted on the Nasdaq exchange (86% in 1993).% In this
earlier era, stock exchanges enjoyed valuable network effects and supra-competitive fees. The seminal model
of Pagano (1989)—in which traders single-home, and there are liquidity externalities that can cause traders
to agglomerate on an exchange with supra-competitive fees—was a reasonable benchmark for thinking about
the industrial organization of the industry (see also Ellison and Fudenberg, 2003).

This model, however, is less applicable for the modern era of stock trading.! In our data, from 2015,
there are 12 exchanges, all stocks trade essentially everywhere, and market shares are both stable and interior
(i.e., no tipping). There are 5 exchanges with greater than 10% market share each (83% in total), and the
next 3 exchanges together have another 15% share. Please see our discussion of Stylized Fact #3 in Section
4.1 for further details. Trading fees, while quite complex and in many ways opaque (cf. Chao, Yao and Ye
(2018)), are ultimately quite small, as we will document rigorously as Stylized Fact #4 in Section 4.2.

There are two key sets of regulations that together shape the industrial organization of modern electronic
stock trading. The first set, related to Unlisted Trading Privileges (UTP), has its roots in the 1934 Exchange
Act and in its modern incarnation enables all stocks to trade on all exchanges, essentially independently of
where the stock is technically listed. The second set, Regulation National Market System (Reg NMS), was
implemented in 2007 and requires that information about trading opportunities (i.e., quotes) be automatically
disseminated across the whole market (including both other exchanges and entities such as brokers), and
also requires, roughly, that the whole market pay attention to such information and direct trades to the most
attractive prices across the whole system. As we will see in our formal model in Section 3, this effectively
nullifies any exchange-specific network effects.

In this institutional background section we describe each of these sets of regulations; our goal is to provide
a level of detail that is sufficient to justify our modeling choices.

We note that while our discussion focuses on the United States, there are economically similar regulations

for stock exchanges in Canada and Europe.!' Regulations for futures exchanges, on the other hand, are quite

8Technically, stocks could not be “listed” on Nasdaq until it became an exchange in 2006, but the 1975 Exchange Act
Amendments enabled stocks to trade over-the-counter via Nasdaq achieving something economically similar.

9For the NYSE market share claim, see the SEC study “Market 2000”, Exhibit 18 (U.S. Securities and Exchange Commission,
1994). For the Nasdaq market share claim, see the SEC Market 2000 study, Exhibit 12.

10For surveys of modern electronic trading, focusing on a broader set of issues than stock exchanges per se, good starting
points are Jones (2013), Fox, Glosten and Rauterberg (2015, 2019) and Menkveld (2016).

H1n Canada’s version of the Order Protection Rule (which goes by the same name), the key difference is that the rule applies



different from those for stock exchanges, both in the U.S. and abroad. In particular, there is no analogue of
UTP in futures markets because each contract is proprietary to a particular exchange. This has a significant
effect on the industrial organization of futures markets as distinct from stock markets, as we will discuss
briefly under Stylized Fact #6 in Section 4.3 (see especially Figure 4.5). Similarly, there are differences
between the regulation of stock exchanges and the regulation of financial exchanges for other financial
instruments like government bonds, corporate bonds, foreign currency, etc.; in particular, the information
dissemination provisions of Reg NMS are often economically different in these asset classes. Again, our focus
will be on U.S. stock exchanges, though we think there is much interesting future research to do on the
industrial organization of financial exchanges for other kinds of assets, under other regulatory regimes, and
so forth.

2.1 Unlisted Trading Privileges (UTP)

Section 12(f) of the 1934 Exchange Act (15 U.S.C. 78a, 1934), passed by Congress, directed the Securities
and Exchange Commission to “make a study of trading in unlisted securities upon exchanges and to report
the results of its study and its recommendations to Congress.” Since that time, the right of one exchange
to facilitate trading in securities that are listed on other exchanges has undergone several evolutions. In its
current form, passed by Congress in the Unlisted Trading Privileges Act of 1994 (H.R. 4535, U.S. Congress,
1994) and clarified by the SEC in a Final Rule effective November 2000 (U.S. Securities and Exchange
Commission, 2000), one exchange may extend unlisted trading privileges (UTP) to a security listed on
another exchange immediately upon the security’s initial public offering on the listing exchange, without any
formal application or approval process through the SEC. Prior to 1994, exchanges had to formally apply to the
SEC for the right to extend UTP to a particular security; such approval was “virtually automatic” following
a delay of about 30-45 days (Hasbrouck, Sofianos and Sosebee, 1993). Between the passage of the UTP Act
of 1994 and the Final Rule in 2000, extension of UTP was automatic but only after an initially two-day, and
then one-day, delay period after the security first began trading on its listing exchange (U.S. Securities and
Exchange Commission, 2000). For further historical discussion of UTP, please see the background section of
the 2000 Final Rule document, and also Amihud and Mendelson (1996).

For the purposes of our theoretical model, we will incorporate UTP in its current form by assuming that
a security is perfectly fungible across exchanges: i.e., regardless of where a security is listed, was last traded,

etc., it can be bought or sold on any exchange, and its value is the same regardless of where it is traded.

2.2 Regulation National Market System (Reg NMS)

Regulation National Market System (“Reg NMS”, U.S. Securities and Exchange Commission, 2005) passed
in June 2005 and implemented beginning in October 2007, is a long and complex piece of regulation, with
routes tracing to the Securities Exchange Act Amendments of 1975 and the SEC’s “Order Handling Rules”

promulgated in 1996.!2 For the purpose of the present paper, however, there are two core features to

to the full depth of the order book, not just the first level (Canadian Securities Administrators, 2009). In Europe, instead of
the (prescriptive) order protection rule there are (principles-based) best execution regulations (Petrella, 2010).

I2The goal of the National Market System is described by the SEC as follows: “The NMS is premised on promoting fair
competition among individual markets, while at the same time assuring that all of these markets are linked together, through
facilities and rules, in a unified system that promotes interaction among the orders of buyers and sellers in a particular
NMS stock. The NMS thereby incorporates two distinct types of competition—competition among individual markets and
competition among individual orders—that together contribute to efficient markets.” U.S. Securities and Exchange Commission
(2005, pg 12)



highlight.!?

The first is the Order Protection Rule, or Rule 611. The Order Protection Rule prohibits an exchange
from executing a trade at a price that is inferior to that of a “protected quote” on another exchange.
A quote on a particular exchange is “protected” if it is (i) at that exchange’s current best bid or offer;
and (ii) “immediately and automatically accessible” by other exchanges. Reg NMS does not provide a
precise definition of “immediately and automatically accessible,” but the phrase certainly included automated
electronic continuous limit order book markets and certainly excluded the NYSE floor system with human
brokers.

A June 2016 rules clarification issued by the SEC indicated that exchanges can use market designs that
impose delays on the processing of orders and still qualify as “immediate and automatic” so long as (i) the
delay is of a de minimis level of 1 millisecond or less, and (ii) the purpose of the delay is consistent with the
efficiency and fairness goals of the 1934 Exchange Act (U.S. Securities and Exchange Commission, 2016b).
This rules clarification suggests that quotes in a frequent batch auction exchange would be protected under
Rule 611 so long as the batch interval was no longer than the de minimis threshold of 1 millisecond; however,
this specific market design has not yet been put before the SEC for explicit approval.'®

An additional detail about the Order Protection Rule that bears emphasis is that, in practice, sophisti-
cated market participants can take on responsibility for compliance with the Order Protection Rule them-
selves, absolving exchanges of the responsibility. They do so using what are known as intermarket sweep
orders, or ISOs. If an exchange receives an order that is not marked as ISO, then it is the exchange’s re-
sponsibility to ensure that it handles the order in a manner compliant with the Order Protection Rule (e.g.,
it cannot execute a trade that trades through a protected quote elsewhere). If an exchange receives an order
that is marked as ISO, then the exchange may presume that the sender of the order has ensured compliance
with the Order Protection Rule (e.g., by also sending orders to other exchanges to attempt to trade with any
relevant protected quotes) and the exchange need not check quotes elsewhere before processing the order.'¢

The second key provision to highlight is the Access Rule, or Rule 610. Intuitively, for an exchange to be
able to comply with the Order Protection Rule it must be able to efficiently obtain the necessary information
about quotes on other exchanges, and, if necessary, be able to efficiently route orders to trade against quotes
on other exchanges. Similarly, a broker-dealer seeking to comply with the Order Protection Rule using ISOs

must be able to efficiently obtain information about quotes from all exchanges, and efficiently trade against

13For an overview of Reg NMS, a good source is the introductory section of the SEC’s final ruling itself (U.S. Securities and
Exchange Commission, 2005). For an overview of the National Market System prior to Reg NMS, good sources are O’Hara and
Macey (1997) and the SEC’s “Market 2000” study (U.S. Securities and Exchange Commission, 1994).

14 A central issue in the debate over IEX’s exchange application was whether IEX’s quotes, given that its market design
included a “speed bump”, would count as immediately and automatically accessible under Reg NMS. See U.S. Securities and
Exchange Commission (2016a) for the (unprecedented number of) public comments on IEX’s exchange application. See also
footnote 2 for additional details regarding IEX’s market design.

15To date, the one market design that has been approved by the SEC that imposes a de minimis delay is that of IEX; the SEC
issued its rules interpretation of “immediate and automatic” simultaneously with its approval of IEX’s exchange application,
with both issued on June 17, 2016. See U.S. Securities and Exchange Commission (2016b) and the related materials referenced
therein. Subsequent to IEX’s approval, the Chicago Stock Exchange (CHX) applied for approval of an asymmetric delay market
design, in which marketable limit orders are slightly delayed, to give liquidity providing quotes a small head start against snipers
in the event of a sniping race. This market design has not been approved. See U.S. Securities and Exchange Commission (2017,
2018a) for the history and public comments regarding CHX’s two versions of the proposal, the latter of which the SEC officially
“stayed” on Oct 24, 2017 and CHX officially withdrew on July 25, 2018. The main substantive argument against the CHX
proposal expressed in public comment letters was that the asymmetry of the delay is inconsistent with the fairness provisions
of the Exchange Act.

L6For further details on intermarket sweep orders see the text of Reg NMS (U.S. Securities and Exchange Commission, 2005).
Formally, the relevant aspects of the regulation are Rule 600(b)(30) for the definition of ISOs, Rule 611(b)(5) for the exchange’s
exemption from ensuring compliance with the Order Protection Rule for ISOs, and Rule 611(c) for this compliance obligation
instead residing in the sender of the ISO.



quotes on all exchanges. As the SEC writes (pg. 26), “...protecting the best displayed prices against trade-
throughs would be futile if broker-dealers and trading centers were unable to access those prices fairly and
efficiently.”

The Access Rule has three sets of provisions that together are aimed at ensuring such efficient access—
or what we will sometimes call “search and access,” to highlight that economically the Access Rule (and
related rules that affect information provision, such as Rule 602 on the Dissemination of Quotations in NMS
Securities) enables market participants to both search available quotes and then “access” them, i.e., trade
against them. First, Rule 610(a) prevents exchanges from charging discriminatory per-share trading fees
based on whether the trader in question does or does not have a direct relationship with the exchange.!”
Note that latency sensitive market participants will choose to have direct relationships with exchanges
(including subscriptions to proprietary data feeds and paying for the right to co-locate servers near the
exchanges’ servers) rather than accessing an exchange’s quotes indirectly; as our model will highlight, the
price for such latency-sensitive access may be supra-competitive. Second, Rule 610(c) limits the trading fee
that any exchange can charge to 0.3 pennies, which, importantly, is less than the minimum tick size of 1
penny. This ensures that if one exchange has a strictly better displayed price than another exchange, the
price is economically better after accounting for fees. As the SEC writes (pg. 27), “The adopted rule thereby
assures order routers that displayed prices are, within a limited range, true prices.” Last, Rule 610(d) has
provisions that together ensure that prices across markets do not become “locked” or “crossed”—specifically,
each exchange is required to monitor data from all other exchanges and to ensure that it does not display
a quote that creates a market that is locked (i.e., bid on one exchange equal to ask on another exchange)
or crossed (i.e., bid on one exchange strictly greater than an ask on another exchange). Together, then,
rules 610(c) and 610(d) ensure that there is a well-defined “national best bid and offer” (NBBO) across all
exchanges (at least ignoring the complexities that arise due to latency, cf. Section 4. of Budish (2016b)), and
rule 610(d) ensures that the marginal cost of accessing a quote at the best bid or best offer is the exchange’s

per-share trading fee.

To summarize, any time any market participant submits an order, it is required under Rule 611 that
either the market participant themself (if using ISOs) or the exchange they submit their order to checks
quotes on all exchanges. Rule 610 then ensures that this mandatory search is feasible, and that the only
costs of accessing a particular quote on a particular exchange are the exchange’s per-share trading fees, which
are not allowed to be discriminatory. For our theoretical model, therefore, we capture these key provisions
of Reg NMS by assuming what we will call frictionless search and access, on an order-by-order basis. That
is, there is zero marginal cost of search across all exchanges, and there are zero additional marginal costs
(beyond per-share trading fees) of accessing liquidity on a particular exchange or exchanges. The choice of
zero (as opposed to epsilon) is appropriate both because the marginal costs in practice really are negligible,
and because compliance with Rule 611 is mandatory, and zero captures that it is cheaper to comply with

the rule than not to.

17The prohibition against discriminatory trading fees enables what Reg NMS describes as “private linkages” among exchanges,
which, roughly, are services that provide data about and access to quotes from all exchanges. The text of Reg NMS describes
(pg. 166) that “many different private firms have entered the business of linking with a wide range of trading centers and then
offering their customers access to those trading centers through the private firms’ linkages. Competitive forces determine the
types and costs of these private linkages.” Given our focus on the economics of stock exchanges our model will abstract from
the competition among linkage providers (e.g., broker-dealers) to offer access to end investors; as we discuss in the conclusion,
this seems a fruitful avenue for future research.
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3 Theory of the Status Quo

We now develop a simple model of stock exchange competition to better understand the status quo of the
market. The model is a necessary building block for our motivating question about market design innovation,
analyzed later in Section 5. When presenting our model, we first consider trading on a single non-strategic
exchange that operates a continuous limit order book. We then generalize the analysis to consider multiple
exchanges that compete with one another in an environment shaped by the key institutional details reviewed
in Section 2. We restrict all exchanges to employ the continuous limit order book market design in this
section; later when examining the question of market design innovation in Section 5, we allow exchanges to

be strategic with respect to their market design choice.

3.1 A Single Non-Strategic Continuous Limit Order Book Exchange

Our baseline model of trading on a single exchange adapts the framework introduced in Budish, Cramton
and Shim (2015) (hereafter, BCS), and departs from it in two important ways.

Our first departure is to introduce a stylized version of informed trading in the spirit of Copeland and
Galai (1983) and Glosten and Milgrom (1985). The purpose of this modification is to parsimoniously provide
a rationale for positive equilibrium bid-ask spreads that is independent of latency arbitrage considerations.

Second, rather than working with a continuous-time model in which certain events—representing the
arrival of investors, or jumps in the fundamental value of a security—occur according to exogenous Poisson
processes, we work with an infinitely repeated two-period trading game in which, in each play of the trading
game, either 0 or 1 exogenous events occur. We view each trading game as lasting a sufficiently short
amount of time—e.g., 1 millisecond or potentially even shorter—that the 0 or 1 exogenous events assumption
reasonably approximates reality.'® This modeling approach will retain the economic interpretability of the
continuous-time Poisson model while making some of our assumptions regarding speed and latency more
transparent, especially in the multi-exchange case.

One technical contribution of this paper is the development of an alternative equilibrium solution concept
that we refer to as an order-book equilibrium. This solution concept, in a manner analogous to the alternative
equilibrium notions of Wilson (1977) and Riley (1979) used to restore existence in models of insurance (see
also Rothschild and Stiglitz (1976)), restricts the set of deviations that an equilibrium in our environment
must be robust to, and circumvents existence issues that would otherwise arise. As we discuss further below,
our approach can be viewed as complementary to others—which include adopting alternative assumptions,
such as perfectly competitive liquidity provision (Glosten and Milgrom, 1985) or “immediate” responses to

deviant actions (BCS)—used to generate equilibrium predictions in trading markets.

3.1.1 Setup

We first consider a single exchange that uses the continuous limit order book market design. There is a
security, =, that trades on this exchange and a signal, y, which is perfectly correlated to the fundamental
value of x. The signal y evolves as a compound jump process, occurring with probability Ajym, per trading
game and with jumps drawn from a symmetric distribution with bounded support and mean zero. What

will matter economically is the absolute value of jump-sizes, denoted by random variable J, which is drawn

8Even for the highest activity symbol in all of US equity markets, SPY, on its highest-volume day of 2018 (Feb 6th), 94.7%
of milliseconds have neither any trade nor change in the national best bid or offer (price or quantity). For the median volume
symbol in the S&P 500 index on its median volume trading day (TSN on July 12th), 99.9% of milliseconds have neither any
trade nor change in the national best bid or offer.
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from what we refer to as the jump-size distribution. We assume that x can always be costlessly liquidated
at its fundamental value, can be traded in continuous units (which will facilitate extending our analysis to
multiple exchanges), and that prices are continuous so that x can be traded at any price.'®

Initially we assume that the single exchange is non-strategic and does not charge any trading fees (so that
x can be costlessly traded). There are then three types of players (who we refer to as market participants)
whose actions we focus on: Investors, Informed Traders, and Trading Firms. All players are risk-neutral,
and there is no discounting.

An Investor arrives stochastically with probability A;,.est in each trading game, and has an inelastic
need to buy or sell one unit of x, with buying or selling equally likely. An investor can trade a single time
in the period he arrives using marketable limit orders (i.e., an investor is restricted to being a “taker”—and
not a “maker”—of liquidity), and then exits the game.?? Formally, if an investor arrives to market needing
to buy one unit of 2, buys a unit at price p, and the fundamental value is y, then her payoff is v + (y — p),
where v is a large positive constant that represents her inelastic need to trade. If she needs to sell a unit and
does so at p when the fundamental value is y, her payoff is v + (p — y).?! Note that what we call investors
could also be termed “noise traders” since they are essentially mechanical.

An Informed Trader with private information about the fundamental value of = also arrives stochastically
to the market. In BCS, all jumps in y were public information. In our current model, we assume that jumps
in y can be either public information, seen by all players at the same time, or private information, seen only
by a single informed trader. Specifically, in each trading game, the probability that there is a jump in y that
is public information is A,ypiic, and the probability that there is a jump in y seen by an informed trader is
Aprivate- Both public and private jumps have the same jump size distribution, with positive and negative
changes being equally likely. If an informed trader observes a jump in y, he can trade on that information in
the current trading game; regardless of the informed trader’s actions, at the conclusion of the trading game
the informed trader exits and any privately observed information becomes public. The informed trader’s
payofl, if he buys a unit of = at price p and the (new) fundamental value is y, is y — p; similarly, his payoff
if he sells a unit of = at price p is p — .22

Finally, Trading Firms, abbreviated as TFs and present throughout all iterations of the trading game,
have no intrinsic demand to buy or sell x; rather they seek to buy x at prices lower than y and vice versa. If
they buy (or sell) a unit of x at price p, and the fundamental value is y at the end of the trading game, their
payoff is y —p (or p—y). Their objective is to maximize per-trading game profits. We assume that there are
N > 2 “fast” trading firms that possess a general-purpose speed technology that enables their orders to be
processed ahead of those without such technology. There is also a continuum of “slow” trading firms that
do not possess such technology. We model speed as a tie-breaker (cf. Baldauf and Mollner (2018)), meaning
that if two firms submit messages to the exchange in the same time period of our trading game, and one is
fast while the other is not, the message of the one that is fast will get serially processed first; if both firms
are fast or both are slow, the processing order is uniformly random. In this Section, there will be no role in

equilibrium for trading firms who do not possess speed technology; hence, we will use TFs to refer to the NV

19We discuss the role of tick-sizes in Section 3.2.5.

20 Alternatively, we could model investors as preferring to transact sooner rather than later all else equal (e.g., they possess
a small cost of delay per unit time). Since the bid-ask spread will be stationary in equilibrium, and y is a martingale, this
modeling convention would also lead investors to trade immediately in the period they arrive.

211f an investor transacts strictly less than one unit, she receives a proportional benefit of v; if an investor transacts strictly
more than one unit, she receives v only for the first unit.

220ur assumption that informed traders act immediately if profitable to do so is in the spirit of Copeland and Galai (1983)
and Glosten and Milgrom (1985); we abstract away from more sophisticated informed trading activity (e.g., trading slowly over
time, as in Kyle (1985) and a large literature thereafter).

12



fast trading firms unless explicitly noted otherwise.

The following objects are primitives of our single-exchange game: (i) the arrival rates of investors (Ainpest ),
and of publicly (Apupiic) and privately (Aprivate) Observed jumps in y; (ii) the jump-size distribution (for
random variable J); and (iii) the number of fast TFs (N).

3.1.2 Timing

At the beginning of each trading game, there is a publicly observed state, which consists of a pair (y,w)
that represents the fundamental value of the security (y), and the currently outstanding bids and asks in
the exchange’s limit order book (w); w is also referred to as the state of the order book. If it is the first play
of the trading game, the initial fundamental value is yg, and the order book is initially empty. Otherwise,
the state is determined at the conclusion of the previous trading game and w contains all limit orders that
remain outstanding.

Each trading game has two “periods” that happen sequentially:

1. Period 1: Trading firms simultaneously send orders to the exchange after observing the state (y,w)
at the beginning of the trading game. Each TF ¢’s order is a set of messages denoted by o; € O,
where O represents the set of all potential combinations of messages and may contain standard limit
orders, cancellations of existing limit orders, and immediate-or-cancel orders. Immediate-or-cancel
orders (abbreviated I0Cs) behave similarly to standard limit orders, but with proxy instructions to
cancel the order immediately if it is not executed (or to cancel whatever portion is not immediately
executed). Limit orders and IOCs take the form (g;,p;), where such an order states that the TF is
willing to buy (if ¢; > 0) or sell (if ¢; < 0) up to |¢;| units at price p;. All orders are then processed by
the exchange. If multiple market participants send orders at the same time, the messages are serially
processed by the exchange in a random sequence, with speed serving as a tie-breaker: if multiple
fast TFs send orders at the same time, the sequence in which they are serially processed is uniformly
random; if other market participants (including slow trading firms and investors) send orders at the
same time, they are processed after those of fast TFs, also in a random sequence. Orders submitted
by TFs may affect the state of the order book, w.

2. Period 2: After period-1 orders have been processed by the exchange and incorporated into the state

of the order book w, nature moves and selects one of four possibilities:

(a) With probability Ajppest: an investor arrives, equally likely to need to buy or sell one unit of x.
The investor has a single opportunity to send IOCs to the exchange. The investor’s activity may

affect w; y is unchanged.

(b) With probability Aprivate: an informed trader privately observes a jump in y. The informed trader
has a single opportunity to send IOCs to the exchange. The informed trader’s activity may affect

w; the jump in y then is publicly observed.

(c) With probability Apypiic: there is a publicly observable jump in y. All TFs have a single opportu-

nity to send I0Cs and cancellation messages to the exchange, potentially affecting w.??

23In period 2 of each trading game, agents are only permitted to send marketable orders (IOCs) and cancellation messages
to the exchange; all non-marketable orders that provide liquidity are restricted to be sent in period 1. This restriction does not
affect the equilibrium outcome of our game: as investors and informed traders exist only for at most one trading game, they
will never wish to employ non-marketable orders; and TFs are allowed to send messages again immediately in period 1 of the
following trading game before any additional exogenous events occur.
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(d) With probability 1—Ainvest — Aprivate — Apubtic > 0: there is no event; y and w are both unchanged.

The state (y,w) at the end of the trading game remains the state for the beginning of the next trading game.

3.1.3 Equilibrium of the Single Exchange Trading Game

In our infinitely repeated trading game with a single exchange, we restrict attention to pure Markov strategies:
market participants are only able to condition their pure strategies on the publicly observable state (y,w),
and not on the history of play in previous trading games. This implies that in period 1, when sending orders
to the exchange, all TFs condition their actions only on the state at the beginning of the trading game
(including possibly their own outstanding orders in w); in period 2, all market participants condition their
actions only on the updated state, which accounts for actions taken by all market participants in period 1
and by nature.

We proceed by first analyzing each trading game in isolation of others, and ignore the possibility that
actions in one trading game may affect continuation payoffs in subsequent games. We then check and show
that repeated play of the equilibrium that we construct for a single trading game remains an equilibrium for
the infinitely repeated trading game when such interactions are accounted for.

Regardless of which outcome nature chooses in period 2, market participants’ optimal strategies in period

2 are straightforward to characterize:

e Upon arrival, an investor and informed trader have unique optimal strategies: an investor trades against
all available liquidity, up to one unit, at the best price(s) possible, and, additionally, trades against
any remaining profitable orders based on the publicly observed y (i.e., those willing to buy at more or
sell at less than y); and an informed trader immediately trades against any profitable orders based on
his privately observed y. Note that after the informed trader has traded and any private information

is publicly revealed, there no longer exist profitable trading opportunities.

o If there is a publicly observed jump in y, there are two cases to consider. First, if y jumps to a value
at which it is not profitable to trade given the state of the order book (i.e., y increases to a price lower
than the best ask or decreases to a price higher than the best bid), then no trades will occur. Any
TF providing liquidity that wishes to replace an order will be indifferent between cancelling that order
immediately and waiting until the beginning of the following trading game to do so. Second, if y jumps
to a value at which it is profitable to trade given the outstanding bids and asks in the exchange’s order
book (i.e., y increases to a price higher than the best ask or decreases to a price lower than the best
bid), there will be a “sniping race” as described in BCS: those TFs that are providing such liquidity
at unprofitable prices will send cancellation messages to the exchange to try to cancel these “stale”
quotes, while at the same time all other TFs will send IOCs to the exchange to try to “snipe” these
stale quotes. Note that firms may simultaneously try to cancel their own quotes and snipe others’
quotes. If there are N TFs that are all equally fast, the probability that any one liquidity provider is
sniped in response to public information is (N — 1)/N, since unless his request to cancel is first (with
probability 1/N) he will get sniped. In equilibrium, whether a quote is sniped or cancelled will be

randomly determined, and the winner of the “speed race” will be one of the fast TFs.

Thus, as market participants have unique optimal strategies in period 2 (conditional on a stochastic decision

by nature), the analysis of each trading game simplifies to understanding TF behavior in period 1.
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As noted above, we initially assume that period-1 behavior in each trading game can be analyzed inde-
pendently of other trading games. In the equilibria that we construct, at the beginning of period 1, there
will be a set of TFs choosing to provide liquidity via non-marketable limit orders. As investors are equally
likely to arrive needing to buy or sell one unit of  and the distribution of jumps in y is symmetric about
zero, it is convenient to focus on equilibria in which any TF wishing to provide liquidity does so via two
limit orders: for a given quantity ¢ and fundamental value y, a TF will submit an order to buy x at y — s/2,
and an order to sell z at y + s/2 for some bid-ask spread s > 0.24

To understand how the bid-ask spread is determined in equilibrium, consider a trading firm offering to
either buy or sell 1 unit of  at a spread of s (i.e., a bid of y — s/2 and an ask of y + s/2) when there is no
additional liquidity offered in the order book. In traditional models of adverse selection (Copeland and Galai,
1983; Glosten and Milgrom, 1985), the benefit of such liquidity provision is earning the bid-ask spread if an
investor arrives and trades, which in a single play of our trading game yields benefit equal to Aipyest * 5 per-
unit in expectation; and the cost of liquidity provision is the cost of being adversely selected if the informed
trader sees private information and trades, which in a single play of our trading game equals A,pivate - L(5)
per-unit, where L(s) = Pr(J > 3) - E(J — 5|J > 3) is the expected adverse selection loss to a liquidity
provider upon arrival of a privately observed jump in y. However, the continuous limit order book market
design imposes an additional cost of liquidity provision, namely sniping: with probability Apusiic - %, the
liquidity provider is sniped, and the loss if sniped is also L(s) per-unit. For a TF to be indifferent between
providing 1 unit of liquidity at some bid-ask spread and sniping a rival trading firm offering that same
amount of liquidity at the same spread (succeeding with probability %), the spread s at which

continuous

liquidity is offered must satisfy:

*

S, 7 N
)\invest : % = ()\public + Aprivate) : L(SZOntinuous)' (31)

Such a bid-ask spread equalizes liquidity providers’ expected benefits to the expected costs from both tra-
ditional adverse selection from private information as well as sniping from symmetrically observed public

information. Here, the cost of getting sniped on the right-hand-side of (3.1), Apustic - L(s reflects

continuous)
both the % probability that a liquidity provider loses the race to respond to public information, as well
as a % factor that captures a liquidity provider’s opportunity cost of not sniping.?® Equation 3.1 has a
unique solution since the left-hand side is strictly increasing and the right-hand size is strictly decreasing in
S ontinuouss and the left-hand side is less than the right-hand side when the spread is 0.

Solution Concept. Given our restriction to Markov strategies, a natural solution concept for our trading
game is pure-strategy Markov-perfect equilibrium (MPE). However, a pure-strategy MPE does not exist.
To see why, consider a potential equilibrium in which, following period 1 and heading into period 2, exactly
one unit of liquidity is offered, for instance at spread s, +inuous 8 defined in (3.1). This cannot be an MPE

because any TF that is providing liquidity strictly prefers to deviate and widen their spread: this strictly

24Because there are no profitable trading opportunities at the beginning of any trading game in equilibrium (given market
participants’ optimal period-2 strategies), optimal period-1 messages sent by TFs will (without loss) consist only of new liquidity
providing (non-marketable) limit orders, or cancellations of existing liquidity. With regards to liquidity providing orders, such
a pair of orders could also be supplied by two different TFs; this distinction will not matter for our analysis, as equilibrium
payoffs for all TFs will be equivalent.

25If public and private information had different jump distributions, denoted Jpublic and Jprivate, the RHS of (3.1) would
be Apublic : Pr(qublic > %) . E(qublic - %‘qublic > %) + /\private : Pr(Jprivate > %) . E(Jprivate - %‘Jprivate > %) Since
assuming that public and private information have the same jump distribution simplifies the expression considerably without
loss of economic meaning, we adopt that assumption, even though in practice the two distributions could of course be different.
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increases the TF’s profits if an investor arrives, and strictly reduces the TF’s expected adverse selection and
latency arbitrage costs. If instead strictly greater than one unit of liquidity is provided, then any liquidity
that would not be filled by an investor with certainty (either because there is at least one unit of liquidity
that is more attractively priced, or because it is tied and would only get filled with some probability less than
one) has a strictly profitable deviation as well, either to be withdrawn or to be offered at a slightly narrower
price (jumping the queue if tied). Last, if there is strictly less than one unit of liquidity provided, there is a
strictly profitable deviation to add the missing amount at a high spread, in case an investor arrives. Hence,
there is no MPE.

This non-existence result arises in our environment because of adverse selection. In a standard model of
undifferentiated Bertrand competition among multiple firms without adverse selection, an equilibrium exists
with marginal-cost pricing as there are no concerns that offering a product for sale at such a price generates
economic losses. In a sense, excess “liquidity” provision does not incur risk, and serves to constrain the price
that any given firm can charge. In contrast, in our environment the expected cost of providing liquidity
depends on the actions of rivals. Hence, TFs are not willing to provide excess liquidity in the order book
to constrain others’ spreads—doing so exposes them to adverse selection and sniping risk without the full
benefit of being filled by an uninformed investor if one arrived. Thus, because there is no excess liquidity in
the order book, the TFs that are providing the non-excess liquidity have a profitable deviation to increase
their spreads.

To address this issue while still maintaining the tractability of our discrete time model, we introduce an
alternative equilibrium solution concept that modifies MPE. Our new solution concept, which we refer to
as an order book equilibrium, attempts to capture the spirit of “competitive” liquidity provision, as assumed
in Glosten and Milgrom (1985), by allowing for TFs to react to deviations in certain ways. In particular,
if a liquidity-providing TF deviates—for example by widening its spread—our concept allows other TFs to
provide additional liquidity at a better price if they would wish to do so; thus, even if excess liquidity is not
provided in equilibrium, the presence of other potential liquidity providers will discipline equilibrium price
levels. More subtly, our concept also handles a profitable deviation we call “have your cake and eat it too,”
in which one TF adds liquidity at a slightly lower spread to both earn revenues from liquidity provision and
earn rents from sniping the liquidity it just undercut. It does so by allowing any TF whose quotes were
undercut by the deviation to withdraw if it would like to do so (e.g., if its liquidity would no longer be filled
by an investor), for the purpose of evaluating the profitability of the deviation.?°

We provide a formal definition of our order book equilibrium concept in Appendix A.1 and an informal
one here. An order book equilibrium is a set of orders 0o* = {o}} submitted by TFs in period 1 of each
trading game that conditions only on the current state (y,w), and satisfies two conditions. First, we require
that there are no safe profitable price improvements. We say that a strictly profitable unilateral deviation
by some TF is a profitable price improvement if it provides any quantity of liquidity at a weakly better price
than before, and some quantity of liquidity at a strictly better price. (All profit considerations here hold
fixed the strategies of all other firms and take expectations over outcomes and optimal play in period 2.) For

example, any TF adjusting its orders to provide the same amount of liquidity at a narrower spread represents

26The non-existence issues that arise in our setting are abstracted away from in other models of securities trading that we
build upon. For example, Glosten and Milgrom (1985) assumes that trading firms (specialists) provide liquidity at the compet-
itive spread, and “do not specify why the specialist should be competitive”; allowing TFs to provide additional liquidity and
“undercut” if equilibrium spreads widen captures this competitive notion. Additionally, BCS obtain their results in continuous
time, assuming that any deviations—e.g., widening spreads or undercutting—would be met by “immediate” responses; allowing
TFs to react to deviations formalizes this idea, in a manner similar to Wilson (1977) and Riley (1979) (see footnote 27 for
further discussion).
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a price improvement; and any deviation that only adds liquidity (at some finite price) also represents a price
improvement. We say that a profitable price improvement is safe if it remains strictly profitable even if
some other TF were able to withdraw liquidity in response to the deviation. Second, we require that there
are no other strictly profitable unilateral deviations—including those that involve the widening of existing
spreads—that remain strictly profitable even if a rival TF is able to withdraw liquidity or engage in a safe
profitable price improvement in response. This requirement generates a constraint on the equilibrium level
of spreads even without the presence of excess liquidity; however, it still allows a liquidity provider to widen
its spread as long as in doing so, it doesn’t induce another TF to provide liquidity at a strictly better price.
In addition to being inspired by competitive liquidity provision, our solution concept embodies the idea
that each exchange’s limit order book settles into a “rest point” in any given trading game, whereby no TF
wishes to adjust liquidity provision between any changes in a security’s fundamental value or the arrivals
of investors and informed traders. The first condition of our equilibrium concept implies that no TF would
wish to replace liquidity offered by a rival at a strictly narrower spread; and the second ensures that no TF
can profitably widen the spread on any offered liquidity without inducing a rival to wish to replace it.
Similar restrictions on the set of allowable deviations have been employed by alternative solution concepts
developed to address equilibrium existence issues in insurance markets. Our particular concept is closest in
spirit to and borrows inspiration from the E2 equilibrium in Wilson (1977) and the reactive equilibrium in
Riley (1979) (see also discussion in Engers and Fernandez (1987), Handel, Hendel and Whinston (2015)).27
Our relation to this literature is not accidental: both financial and insurance markets are characterized by
adverse selection, and in both settings firms that are “undercut” by a rival (who offers a better price, or
who offers a product that attracts less adversely selected consumers) may wish to withdraw from the market

rather than face an adversely selected set of trading partners.

Equilibrium. We now are in a position to summarize equilibrium behavior in our single-exchange trading

game:

Proposition 3.1. Any order book equilibrium given state (y,w) with a single continuous limit order book
exchange has a single unit of liquidity provided at bid-ask spread S, iinuous (defined in (3.1)) around y
following period 1. In period 2: an investor, upon arrival, immediately purchases or sells one unit of security
x at the best price; an informed trader, upon arrival, trades immediately against any profitable orders; and
if a publicly observable jump in y occurs, a sniping race occurs whereby all fast trading firms attempt to
trade against existing quotes if profitable, and all trading firms providing liquidity will attempt to cancel their

orders that are no longer profitable to offer. Such an equilibrium exists.

(All proofs in appendix.) As in BCS, in any equilibrium, the N fast trading firms endogenously sort

themselves into either liquidity provision and latency arbitrage roles in equilibrium; at the equilibrium

*
continuous’

are liquidity providers—earn rents by splitting the surplus generated by latency arbitrage activities. We
Note

spread s TFs are indifferent between these roles. This implies that all TFs—including those that

refer to this surplus as the total “sniping prize,” defined as I’ inuous = Apublic © L(Stontinuous)-

2"Both Wilson (1977) and Riley (1979) examine equilibria among firms providing insurance policies, and introduce solution
concepts that admit dynamic responses to deviations. A set of policies comprises an E2 equilibrium (Wilson, 1977) if there are
no strictly profitable unilateral deviations that remain so even if policies, rendered unprofitable by the deviation, are withdrawn.
A set of policies comprises a reactive equilibrium (Riley, 1979) if there are no unilaterally profitable deviations that remain
profitable even if a rival reacted by offering additional policies, and such a reaction would not generate losses for the rival even
if additional policies were offered. To counter profitable deviations, our order book equilibrium solution concept allows for two
types of reactions: the withdrawal of unprofitable liquidity (similar to Wilson), and the addition of liquidity that must remain
profitable even if liquidity could then be withdrawn (similar to Riley).
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*
continuous

that, although the equilibrium bid-ask spread s reflects both the cost of sniping and the cost

of traditional adverse selection (Apupiic + Aprivate) - L(s the sniping prize depends only on the

sontinuous )
magnitude of sniping opportunities Apupiic © L(Skontinuous)-

Before continuing, it is helpful to briefly discuss why our order book solution concept helps restore
equilibrium existence. Consider a candidate equilibrium where a single unit of liquidity is provided by TF

*
continuous

of 9 and an ask of 11 when y = 10 (thus, s = 2). Notice that TF ¢ has a unilaterally profitable

continuous

deviation of widening its spread to say s’ = 4 (i.e., bid 8, ask 12). However, there is now a “safe profitable

i at spread s following period 1. Say, in this example, this implies TF ¢ submits a bid at a price

price improvement” by some other TF k that renders this deviation unprofitable: TF k could choose to
provide a unit of liquidity at bid 8 4+ ¢, ask 12 — ¢ for sufficiently small € > 0; this reaction remains profitable
for k£ even if ¢ were to cancel its orders, and thus is “safe.” Alternatively, consider the unilaterally profitable
deviation by TF k to undercut TF i’s equilibrium order by adding a unit of liquidity at bid 9 + ¢, ask
11 —&: in doing so, TF k attempts to “have his cake and eat it too” (as discussed above), and earn revenues
from liquidity provision at a strictly narrower spread while also sniping TF ¢’s existing orders. However,

TF 4 can cancel its own orders in response to TF k’s price improvement and render it unprofitable (since k

*
continuous

improvement is thus not safe. Hence, these types of deviations that otherwise would have challenged the

would prefer to snipe i’s liquidity at s than provide liquidity at a narrower spread); TF k’s price
existence of an MPE no longer do so for an order book equilibrium.

Last, we note that repeated play of any order book equilibrium strategies that condition only on the
state (y,w) comprises an equilibrium of the infinitely repeated trading game. This need not have been true,
since orders resting in the order book in one period have priority that carries over to subsequent periods,
potentially generating a queueing motive. However, this concern is not an issue here as TFs are indifferent

between liquidity provision and sniping in each trading game.?®

3.2 Modeling the Status Quo: Multiple Competing Exchanges

The previous single-exchange analysis accomplished three main goals. The first was to adapt the BCS model
of trading to discrete time with a stylized version of informed trading. The second was to introduce our
order book equilibrium concept. The third was to characterize equilibrium behavior in our trading game.
We now extend our analysis to multiple exchanges where the same security = can be traded on multiple
exchanges. The key extension here is allowing exchanges to be strategic and compete for rents by charging
fees to market participants. We show that there exist equilibria in which the trading game outcomes of

the single-exchange case—i.e., a single unit of depth is provided (and transacted by investors) at spread

*
continuous

capture a share of the sniping prize without dissipating rents through competition with one another; in turn,

S —is replicated across multiple exchanges. Critically, we also show that exchanges are able to

this implies that they have incentives to maintain the existing status quo.

3.2.1 Setup and Market Participants

Assume now that there is a set M of exchanges indexed by j, where the number of exchanges M = |[M| > 2.

Exchanges are exogenously present in the market and undifferentiated from one another.?? All exchanges use

28 As discussed in BCS, if prices are restricted to lie on a discrete grid of points (e.g., on the penny), liquidity provision will
be strictly preferred to latency arbitrage in the equilibrium that we construct. In such a setting, the benefits from liquidity
provision across multiple trading games must be accounted for, and analyzing individual trading games in isolation is no longer
appropriate.

29We discuss entry incentives for exchanges later in Section 5.
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the continuous limit order book market design. As in the single-exchange analysis there is a single security,
x, only now that security can be bought or sold on any of the M exchanges, i.e., the asset is completely
fungible across exchanges. This fungibility assumption captures the economics of Unlisted Trading Privileges
regulation, as discussed in detail in Section 2. We continue to assume that shares are perfectly divisible; this
allows for a market participant to split his desired order, regardless of size, across multiple exchanges. It is
substantively important for the analysis, and also realistic, that participants can split orders across multiple
exchanges.

Exchanges operate as strategic players alongside Investors, Informed Traders, and Trading Firms.

Exchanges. Prior to play of the multi-exchange variant of our infinitely repeated trading game (described
in detail below), we assume that each exchange j simultaneously sets two prices: a per-share trading fee
denoted by f;, and an exchange-specific speed technology fee denoted by F;. The trading fee f; is assessed
per share traded and is paid symmetrically by both sides of any executed trade.?® The exchange-specific
speed technology (abbreviated ESST) fee F; represents the price of co-location (the right to locate one’s
servers next to the exchange’s servers), access to fast exchange-specific proprietary data feeds, and connec-
tivity /bandwidth fees.?! It is modeled as a rental cost per trading game charged to TFs, capturing that in

practice exchanges typically assess these fees on a rental basis.

Investors, Informed Traders, and Trading Firms. As before, there are N TFs exogenously in the
market endowed with a general-purpose speed technology (enabling their messages to arrive at any exchange
faster than those sent by other market participants). After exchanges determine their fees, we assume that
each TF chooses which exchanges to purchase ESST from, and then the infinitely repeated trading game
occurs. In each trading game, we assume that the TFs with highest order priority on a given exchange are
those with both general-purpose speed technology and ESST on that exchange; next are those TFs with just
the general-purpose speed technology; and last are market participants with neither. As above, we will use
speed as a tie-breaker among market participants who act at the same time in any trading game.

In each iteration of our trading game, as before, we assume that an investor arrives to the market in each
iteration of our trading game with probability A;,vest, and has an inelastic need to buy or sell a unit of x; an
investor trades in the period he arrives using IOCs, and then exits the game. Similarly, an informed trader
with private information about y arrives each trading game with probability Aprivate, and trades immediately
using IOCs if profitable. Finally, with probability Apyupiic, a publicly observed jump in y occurs (which, as
we discuss, leads to a multi-exchange variant of a sniping race among TFs), where the jump-size distribution
remains the same as before.

The primitives of our game are the same as in the single exchange case, with the addition of the number

of exchanges (M).

Reg NMS. We capture the key provisions of Reg NMS (Rules 610 and 611, see Section 2 for discussion) by
assuming that all market participants face, on an order-by-order basis, what we call frictionless search and
access. More specifically, frictionless search means that trading firms, investors, and informed traders (upon

arrival to the market) observe the current state of the order book on all exchanges at zero cost prior to taking

30We discuss asymmetric fee schedules, potentially including fees and rebates, below in Section 3.2.5.

31In practice the dividing line between exchange-specific technology and general-purpose technology is not sharp — for example,
latency sensitive code might be adapted to a particular exchange’s data protocol, and some communications links are specific
to a particular exchange’s data center. The important thing to capture is that each exchange controls some but not all of the
technology that is necessary to be fastest on their own exchange.
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any action. Frictionless access means that the marginal cost of sending any message to any exchange is zero;
equivalently, the only per-order cost of transacting on any particular exchange is the per-share trading fee,
even if an order is split across multiple exchanges.

Additionally, we assume that investors and informed traders, upon arrival to the market, can costlessly
synchronize their orders across exchanges such that they can execute trades across multiple exchanges before
other market participants can react. That is, an investor or informed trader can send trades to exchanges j
and j’ such that their arrival times are sufficiently synchronized that it is not possible for a TF to observe
the activity on exchange j and respond on exchange j’, before the investor or informed trader’s own order
reaches j’.32 Our impression, both from discussions with industry practitioners and our understanding of
the relevant engineering details, is that while the ability to synchronize orders in this manner was pretty
variable in the early days of Reg NMS, it is now widespread and commodified.?3

We believe that these assumptions are consistent with the technology and sophistication of modern
trading, and capture the essential economics of Regulation National Market System. We emphasize that, in
practice, investors and informed traders need not do the multi-exchange search and access themselves, but
rather may rely on their broker-dealer’s routing algorithms or an exchange’s routing logic to perform this
function on their behalf. We also note that our way of modeling speed and latency, with speed essentially
playing the role of a tiebreaker, circumvents much of the complexity (and associated controversy) of Reg

NMS in practice; this is an interesting and important debate but not central to the present paper.3*

ESST Fair-Access Assumption. Last, we require that each exchange sell ESST to at least 2 trading
firms, or not sell ESST at all. If only a single TF purchases ESST from a given exchange j (which we
will show occurs only off-path in equilibrium), the TF is not allowed to use the speed technology on that
exchange, gets their money back, and both the TF and the exchange incur a strictly positive non-compliance
cost. We believe that this modest requirement—which in essence prevents an exchange from auctioning off
exclusive access to ESST—is consistent with the statutory requirement, under the Exchange Act, that fees
are “fair and reasonable and not unreasonably discriminatory” (Clayton, 2018). For this reason, we also

assume that the number of TFs endowed with general-purpose speed technology is at least N > 3.3°

3.2.2 Timing

We now present the timing of our multiple-exchange game. There are three stages to this game, where the
first two stages are played once. In Stage One, exchanges simultaneously set (or “post”) trading and ESST
fees; these are fixed for the entirety of our game. In Stage Two, trading firms simultaneously decide which

exchanges to purchase ESST from. Finally, in Stage Three, a multi-exchange version of the trading game

32For example, an investor can send trades to both Nasdaq and BATS with their arrival times sufficiently synchronized that
it is not possible for a high-frequency trading firm to observe the trade on their co-located server at Nasdaq, and transmit
information about the trade to their co-located server at BATS fast enough that they can react on BATS before the investor’s
own order reached BATS in the first place (or vice versa switching BATS and Nasdaq). Mathematically, we capture this by
assuming that an investor, upon arrival, or an informed trader, upon observing private information, has a chance to send
messages to all exchanges before other market participants have an opportunity to respond.

33The geographical configuration of different exchanges’ server farms in New Jersey places a lower bound on how quickly
a high-frequency trading firm can react on exchange j’ to an action on exchange j, on the order of 100-200 microseconds.
Synchronization thus requires the ability to send messages to different exchanges such that they arrive within about 100
microseconds of each other, which we understand to be technologically straightforward and commodified now, but not in the
early days of Reg NMS. Difficulty with such synchronization was at the heart of the narrative in Michael Lewis’s book Flash
Boys (Lewis, 2014), and is modeled carefully in Baldauf and Mollner (2018).

34Regarding the policy debate over Reg NMS, useful starting points are Tyc (2014) and Part ITT of Budish (2016b).

35With only two TFs, any TF would be able to unilaterally deny usage of ESST on any exchange to the other TF by not
purchasing it.
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described in the previous subsection is repeated infinitely often. Parts of the timing from the trading game
stage will mirror that described in the single-exchange case, but are presented here for completeness.

Formally,

1. Stage One (Exchange Price Setting): All M exchanges simultaneously post per-share trading fees
f=(f1,..., fm) and per-trading game ESST rental fees F = (F1y,..., F).

2. Stage Two (Speed Technology Adoption): All N TFs with general speed technology simultaneously
decide which exchanges to purchase ESST from.

3. Stage Three (Multi-Exchange Trading Game): The following trading game, consisting of two periods,
is repeated infinitely often. At the beginning of each trading game, the state is publicly observed and

given by (y,w), where w = (wy,...,wps) represents the state of all exchanges’ order books.

(a) Period 1: Given publicly observed state (y,w), each TF ¢ may simultaneously send orders to all
exchanges. An order for TF i sent to exchange j is a set of messages denoted by 0;; € O, where
O is the set of all potential combinations of messages and, as before, may include standard limit
orders, cancellations, and IOCs. Limit orders and IOCs sent to an exchange take the form (g;, p;),
where such an order states that the firm is willing to buy (if ¢; > 0) or sell (if ¢; < 0) up to |g|
units at price p;. All messages are serially processed by each exchange, with speed serving as a
tie-breaker. Orders submitted by TFs to each exchange may affect the state of that exchange’s

order book, w;.
(b) Period 2: Nature moves and selects one of four possibilities:

i. With probability Aj,uest: an investor arrives, equally likely to need to buy or sell one unit
of . The investor has a single opportunity to send IOCs to all exchanges. The investor’s
activity may affect w; y is unchanged.

ii. With probability Aprivate: an informed trader privately observes a jump in y. The informed
trader has a single opportunity to send IOCs to all exchanges. The informed trader’s activity

may affect w; the jump in y is then publicly observed.

iii. With probability Apusiic: there is a publicly observable jump in y. All TFs have a single
opportunity to send IOCs and cancellation messages to all exchanges, potentially affecting w.

iv. With probability 1 — Ainvest — Aprivate — Apubiic = 0: there is no event; y and w are both

unchanged.

3.2.3 Equilibrium of the Multiple-Exchange Game

We adopt the following solution concept for our game:

Stages 1 and 2 (Exchange Price Setting and Speed Technology Adoption). In the first two stages of our
game (which are played once), we rely on subgame perfect Nash equilibrium among exchanges and trading
firms, given anticipated behavior in Stage 3.

Stage 3 (Multi-Exchange Trading Game). As before, we assume that all market participants employ
pure-Markov strategies in each trading game, and cannot condition their actions on the entire history of
play. Rather, strategies are allowed only to condition on: trading and ESST fees; the number of TFs that
have purchased ESST from each exchange (determined by TF adoption decisions in Stage 2); and on the

trading game’s current state, (y,w). For the Stage 3 multi-exchange trading game, we rely on our order
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book equilibrium solution concept (Definition A.1). With regards to period 2 of the multi-exchange trading
game, if there are multiple exchanges offering liquidity to an investor at the same best price and trading fee,
an investor will be indifferent over how he splits his order across those exchanges. We assume that investors
break ties when indifferent over transacting on different exchanges by using what we refer to as (constant)
routing table strategies: i.e., investors choose a vector of fixed weights v = (v1,...,7vn) such that if there
are multiple exchanges A offering depth at the same (best) price net of trading fees, an investor submits
Yj/ > e Yk fraction of its demand (subject to availability) to each exchange j € A. It is without loss to
assume that these weights sum to 1.3 Thus, as with the single exchange model, it will be the case that
investors, informed traders, and TFs (given the state) have essentially unique optimal period-2 strategies:
investors purchase up to one unit across exchanges at the best price possible, but may break ties using some
(potentially arbitrary) routing table strategy; informed traders trade wherever it is profitable to do so; and
TFs, if a large enough publicly observed jump occurs, engage in a sniping race where they attempt to snipe

stale quotes while liquidity providers attempt to cancel their existing orders.

Existence. We now state our main theoretical result.

Proposition 3.2. For any vector of market shares o* = (oF,...,0% : Zj o; = 1), and for any vector
of exchange-specific speed technology (ESST) fees F* = (FY,..., Fy;) such that the sum of ESST fees for

exchanges with positive market shares, > F7, is lower than the upper bound given by (3.2) below, there

j:or>0
exists an equilibrium of the multz’ple-emch;nfqe game where:

(Stage 1): Each exchange j charges F; for ESST, and charges zero trading fees (f; =0);

(Stage 2): All N trading firms purchase ESST from every exchange j where o; >0;

(Stage 3): The following occurs in every iteration of the trading game given state (y,w). At the end
of period 1, o3 amount of liquidity is provided on each exchange j at spread s}, inuous (defined in (3.1))
around y. In period 2: an investor, upon arrival, immediately purchases or sells one unit of x at the best
price, transacting o of volume on each exchange j; an informed trader, upon arrival, trades immediately
against any profitable orders on all exchanges; and if a publicly observable jump in y occurs, a sniping race
occurs whereby all trading firms attempt to trade against existing quotes if profitable, and all trading firms

providing liquidity will attempt to cancel their orders that are no longer profitable to offer.

The bound on ESST fees is:

II* .. ) —_ .
>y < Lo a0 ), a2
j:a;‘>0 !

lone—wol f

where Ty is a constant discussed below and defined in Appendiz A.2.2, equation (A.3).

This equilibrium has the following key properties. First, all exchanges charge zero trading fees. Second,
exchanges may charge positive ESST fees; these fees are bounded by (3.2) which we will discuss in detail
shortly. Third, all TFs purchase ESST from all exchanges with positive market shares. Last, in the multi-

exchange version of our trading game, in each period exactly one unit of liquidity is provided at spread

*

Scontinuous

across all exchanges according to some vector of market shares. That is, liquidity provision is

36Note that this allows investors to (essentially) employ lexicographic preferences over exchanges when submitting orders:
e.g., if there are three exchanges with depth available at the best price, allowing v = (1 — ¢ — €2, 52) for € > 0 sufficiently
small approximates an investor consuming depth from exchange 1 before moving to exchange 2, and then consuming depth
from exchange 2 before moving to exchange 3. If 7; = 0 for all j € A, we assume that an investor splits his demand uniformly
among exchanges contained in A.
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economically the same as in the single-exchange case, but spread out across the M exchanges according to
the vector o*. Investors and informed traders also act essentially identically as in the single-exchange trading
game, but, again, coordinated across the Mexchanges. Intuitively, they use frictionless search to synthesize
a single exchange from the M parallel exchanges, and then act economically the same way as before. In the
event of a sniping race, the sniping race plays out in parallel across all M exchanges, with all N TFs racing
on all M exchanges. In sum, the trading game outcome is economically the same as the single non-strategic
exchange case analyzed in Section (3.1), but the difference is that now the exchanges and TFs split the rents
generated from the latency arbitrage activity in this trading game.

The proof of our result is constructive. We first examine behavior in the multi-exchange version of our
trading game (Stage 3). We show that if all N trading firms purchase ESST from every exchange and all

exchanges set zero trading fees, then any order book equilibrium of the multi-exchange trading game involves

* .
continuous*

a single unit of liquidity being provided at spread s i.e., the outcome is the same as the single

exchange trading game—TFs engage in both liquidity provision and sniping, and split the sniping prize

*
continuous

(Lemma A.1). How the activity is split across exchanges, however, is not pinned down: indeed, for any

—with the only difference being that trading activity now may be split across multiple exchanges

arbitrary split of market shares o* = (o7,...,0%,) such that ) ;07 =1, there is an equilibrium in which,
on exchange j, exactly o depth is provided and o7 volume is transacted upon an investor’s arrival in each
trading game.

Next, we examine behavior in Stage 2, and prove that if each exchange j charges F} for ESST fees
and zero for trading fees, it is an equilibrium for all TFs to purchase ESST from all exchanges as long as
condition (3.2) is satisfied. If all TFs purchase ESST from all exchanges, in any order book equilibrium
of the subsequent trading game, each TF obtains (in expectation, gross of ESST fees) their share of the

*

Fontinuous/ N We next examine what we refer to as a lone-wolf deviation for any TF i at

sniping prize, II

Stage 2 given equilibrium strategies: to purchase ESST from a single exchange charging the lowest ESST

*

fee, and subsequently provide a single unit of liquidity at a spread that is strictly narrower than s ,.imuous

in each subsequent trading game (which we prove to be an equilibrium of the Stage 3 subgame; Lemma

A.2). In doing so, TF i is guaranteed to earn in expectation an amount wﬁ\‘;"e_w‘)lf , where Wﬁ\?ne—wolf c
N—1 Dontinuous eontinuous ; lone—wolf . .. . . .
(7 X o , o ) per trading game and my is explicitly derived in Appendix A.2.2

equation (A.3). Condition (3.2) ensures that such a lone-wolf deviation would be unprofitable for all TFs, as
each TF would earn more in expectation by purchasing ESST from all exchanges and earning IT% ... /N
per-trading game than purchasing ESST from only a single exchange and earning Wﬁ{?"efwozf . It is worth
emphasizing that if there were only a single exchange, TFs could not leverage such a lone-wolf deviation
to play exchanges off against each other, and an exchange would be able to extract the entire amount
I ) tinuous Via ESST fees.

Finally, we show that in Stage 1, there is an equilibrium in which exchanges all charge zero trading fees,
and levy any arbitrary vector of ESST fees that satisfy condition (3.2). We construct equilibrium strategies
in which TFs only purchase ESST from exchanges with zero trading fees (which ensure that no exchange

profitably can deviate and charge positive trading fees) and ESST fees no greater than F*.

We next discuss the main features of the equilibria described in Proposition 3.2. Later, in Section 4,
we show that the key features of these equilibria—in particular, that there is a linear relationship between
volume and depth, that exchanges earn significant profits from ESST fees, and that trading fees are close to

zero—are consistent with patterns that we observe in the data.
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3.2.4 Features of the Status Quo

Exchange Market Shares. Regulatory features of stock exchanges—in particular, Reg NMS and UTP,
modeled here as frictionless search and access—support an environment where market participants can
“stitch” together and synthesize multiple exchanges into what is essentially a single “synthesized” exchange.
As a result, even though exchanges are not differentiated—all active exchanges have the same trading fee,
and all market participants face the same costs of trading on any exchange—and there are no congestion
or negative externalities (as in Ellison Fudenberg (2003)), there is a continuum of equilibria that differ only
with respect to the market shares of each exchange: indeed, as proven in Proposition 3.2, there exists an
equilibrium that supports any arbitrary vector of market shares. It is important for trading frictions to
be zero—and not just close to zero—for this result. If instead investors incurred an arbitrarily small but
strictly positive cost of splitting their orders across multiple exchanges relative to submitting orders to a
single exchange, then any equilibrium of our trading game must be one in which all trading volume occurs
on a single exchange.

In a sense, the specific location of liquidity and trading activity is unimportant for equilibrium outcomes;
in any given trading game, all that matters is the aggregate quantity (one unit) of liquidity provided,

at which it is offered. Thus, our model is not designed to predict equilibrium

*
and spread (Scontinuous)

exchange market shares. Nevertheless, the model does provide an interpretation for how they might arise.
In our equilibrium construction, investors break ties when indifferent across exchanges using routing table
strategies. Such strategies, in turn, coordinate where TFs provide liquidity. This implies at least two things.
First, if in reality investors (or broker-dealers acting on their behalf) and TFs prefer there to be multiple
active exchanges—for example, to mitigate additional market power that any single exchange family can
wield in some manner outside of our model—they may jointly wish to spread their trading activity across
exchanges via interior “routing tables” and fragmented liquidity provision. Second, although routing table
strategies are not restricted to be stationary, one may expect that they may be relatively stable over time if
they represent real world algorithms, practices, or protocols that are costly to adjust. Thus, one may expect

realized market shares across exchanges for a given security to also be relatively stable across time.3”

Competitive Trading Fees. In the equilibrium described in Proposition 3.2, trading fees are competitive
and equal to zero on all exchanges. Since exchanges are undifferentiated, and investors face no search costs
or frictions when splitting their orders across multiple exchanges, liquidity can always be provided more
cheaply on exchanges with lower trading fees. Hence any exchange j, given that all other exchanges set
zero trading fees, cannot levy positive trading fees and attract positive trading volume. This is true even
if investors broke ties in j’s favor (all else equal), and even if j charged lower ESST fees. In a supporting
Lemma for Proposition 3.2, we prove that in any equilibrium of a Stage 3 subgame where trading fees are
zero for some exchanges and strictly positive elsewhere (and where all TFs purchase ESST from the same
set of exchanges), no trading volume occurs on any exchange with positive trading fees (see Lemma A.1 in
Appendix A.2).

37Clearly, our assumption that all investors trade a single unit of the security and can arbitrarily split such orders across
exchanges is a modeling convention that abstracts away from many realistic details. An alternative interpretation of these
routing table strategies is the probability that a broker-dealer sends any order to a given exchange when indifferent. Under this
interpretation, market shares may be highly variable across small time intervals representing individual trades (high-frequency
data), but these shares are more likely to be stable across longer intervals (e.g., minutes, hours or days). See a related discussion
of the depth-volume empirics in Section 4.1.
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The Division of Latency Arbitrage Rents. In our model, exchanges may appear to lack an obvious
source of market power: they are symmetric and undifferentiated, search is frictionless, and market par-
ticipants can costlessly participate on any exchange. Since “add-on” rents in competitive pricing models
are often dissipated in competition to sell the pre-add-on good (cf. Ellison (2005); Gabaix and Laibson
(2006)), one might expect that exchanges would compete away any rents earned from the sale of ESST (an
“add-on” service that is only valuable if an exchange has positive trading volume) by charging lower trading
fees in exchange for transaction volume. However, this is not the case here. In the equilibria constructed
in Proposition 3.2, exchanges are able to earn and maintain positive profits due to what we refer to as a
binding money-pump constraint. Trading fees are zero across all exchanges. Any dissipation of ESST rents
via trading fees in order to attract trading volume would require such fees to be negative, which in turn
would create an incentive for market participants to execute an unlimited number of trades—i.e., a “money-
pump.”3® This constraint is critical: if market participants perceived transactions to be sufficiently costly
(e.g., due to clearing or other transaction costs) so that a money-pump would never exist even if trading
fees were negative, then exchanges would not be able to earn positive rents in any equilibria where TFs,
whenever profitable to do so, only purchase ESST from exchanges with the lowest trading fees.?®

We now turn to the determination of ESST fees. First, though exchanges are able to “post prices” and
make take-it-or-leave-it offers to TFs, they cannot capture all latency arbitrage rents: each TF maintains
some degree of bargaining leverage with any given exchange through its ability to steer trading volume via
liquidity provision on rival exchanges (referred to above as a “lone-wolf deviation”). This gives rise to the
upper bound on ESST fees given by (3.2), a condition that holds more generally across a range of equilibria
(as we discuss below). However, Proposition 3.2 also establishes that there are equilibria where (3.2) does not
bind, and exchanges charge lower ESST fees (including zero in total). To sustain these equilibra, TFs employ
strategies that require them to coordinate with one another and not purchase ESST from any exchange that
raises its ESST fee above some (arbitrary) threshold. Such coordination might not be reasonable to assume:
for example, when (3.2) is not binding, there also exist subgame equilibria (beginning in Stage 2) where all
TFs continue to purchase from an exchange that slightly raises its ESST fee. Motivated by this observation,
we believe a reasonable refinement to be one that rules out equilibria where an exchange could increase its
ESST fee while still having all TFs purchase from it (i.e., all TFs purchasing ESST from the exchange with
increased fees still comprises an equilibrium). Indeed, the only equilibria where TFs purchase ESST from
all exchanges that also satisfy this additional requirement are those in which condition (3.2) is binding. The

following proposition summarizes these results:

Proposition 3.3. In any equilibrium in which all trading firms purchase exchange-specific speed technology
(ESST) from all exchanges and trading fees are zero for all exchanges, ESST fees F* must satisfy (3.2).
Furthermore, among these equilibria, if there does not exist (i) a vector of ESST fees F' such that Fj’ > Fr
for all exchanges j and F] > F}* for at least one exchange k, and (ii) a subgame equilibrium beginning in

Stage 2 where all trading firms purchase ESST from all exchanges at fees F', then (3.2) must be binding.

With this additional refinement, our theory delivers a rather striking prediction: there is a strictly

38 Although exchanges theoretically could dissipate rents via fixed payments to investors or broker-dealers for trading volume,
such payments are not observed nor, to our understanding, legal.

39T0 see why, consider the setting with two exchanges, A and B , and a candidate equilibrium where exchange A charges fees
f4 and F73 > 0. If A earns positive rents (implying that TFs purchase ESST from A, and trading fees, even if negative, do not
completely offset ESST fees), B could undercut A with trading fees f; = f} — ¢ and levy higher ESST fees; such a deviation
would induce all TFs to only purchase ESST from B (as it can be shown that any exchange that does not have the lowest
trading fees cannot sustain positive trading volume in equilibrium), which would be strictly profitable for some F, > F};, and
sufficiently small € > 0.
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interior division of latency arbitrage rents between TFs and exchanges pinned down by (3.2). On the one
hand, exchanges are able to extract a share of latency arbitrage rents as price-setters for ESST, and do not
dissipate these rents via competition due to the money-pump constraint. On the other hand, TFs are able
to maintain a significant portion of the rents generated from latency arbitrage activity, even as price takers,
because they are able to affect equilibrium trading volume: TFs choose where to provide liquidity (which,
in the equilibria constructed, has a linear relationship to realized trading volume), and can discipline any
exchange demanding higher ESST by only purchasing ESST from rival exchanges and providing liquidity
there.40

The proportion of the latency arbitrage rents that TFs maintain is economically meaningful:

Proposition 3.4. In any equilibrium in which all N trading firms purchase exchange-specific speed tech-
nology (ESST) from all exchanges and ESST fees satisfy condition (3.2), exchanges’ total rents from ESST
fees, N x ZjeM F, are strictly less than ﬁﬂ*

continuous*
Recall that any given TF, under the equilibria that we construct, expects to earn (gross ESST fees)

*
continuous

(3.2) (i.e., each TF pays ﬁﬂzommwus in total), each TF maintains a substantial share of these rents

/N. Even if it pays the maximum amount to exchanges for ESST that is consistent with condition

that increases in the number of exchanges. In our empirical setting, there are 3 major exchange families; if
there are 7 major trading firms (so that M = 3 and N = 7), the proposition implies that exchanges in total
are able to at most extract only 3/14 of all latency arbitrage rents, with the remainder accruing to TFs.
(This does not mean that exchanges and TFs keep all of these rents as economic profits; as discussed below,
these rents may be dissipated further to other market participants or in the form of fixed costs.)

We emphasize that while this particular interior division of latency arbitrage rents is specific to our
model, what will ultimately matter for the question posed by our paper—will alternative market designs
that eliminate latency arbitrage be adopted by market participants?—is simply that exchanges are able to
capture and maintain some positive share of rents generated from latency arbitrage activity in the status quo.
Other potential modeling frameworks for understanding the division of rents between TFs and exchanges
include non-cooperative bargaining games among exchanges and TFs, as well as cooperative solution concepts
for rent-splitting such as the Shapley value.*! A strength of our approach is that it highlights that even if
exchanges can post prices—which, in most bargaining models, is akin to maximum bargaining power—they
cannot extract all of the surplus. This is because TFs have power to re-direct trading volume if exchanges
charge “too much” for ESST. Yet, we by no means think this is the only useful way to model this rent-division
game, nor would we want readers of the paper to take the specific formula given by (3.2) or the specific

off-path “lone wolf” threats too literally.

Sources of Inefficiency. Asin BCS, in our model trading firms providing liquidity incorporate the cost of
being sniped into the bid-ask spread they charge, leading to higher costs of liquidity provision. Though out-
side our model (as we have assumed that investor demand is inelastic), this nevertheless induces a potential
inefficiency from foregone trades due to a wider spread and potentially thinner market. Furthermore, compe-

tition for latency arbitrage rents (split among TFs and exchanges in our model via ESST fees) likely leads to

40Tn contrast, consider an alternative model in which each exchange j is able to process no more than o; units of volume in
any period, where Z ~0; = 1: in such a model, each exchange has essentially a monopoly over its share of trading volume,
and TFs cannot restrict ESST fees by providing additional liquidity elsewhere. In this alternative model, it is straightforward
to show that exchanges would be able to extract all latency arbitrage rents.

41Roth and Wilson (2018) discuss the complementary role non-cooperative and cooperative game theory can play in applied
market design research. Potential non-cooperative bargaining games include the “Nash-in-Nash” solution for bilateral oligopoly
in industrial organization settings (cf. Collard-Wexler, Gowrisankaran and Lee (2019)).

26



substantial investments by TFs (e.g., the latency-sensitive part of their human capital costs and technology
costs), exchanges (e.g., the cost of co-location facilities, latency-sensitive matching engines), speed technology
providers (e.g., building FPGA chips, microwave links, latency-sensitive switches, etc.), and broker-dealers
(e.g., human capital devoted to building sophisticated routing algorithms). Such expenditures may also be
exacerbated due to excess entry and standard business stealing effects (Mankiw and Whinston, 1986) and
have opportunity costs (e.g., forgone innovation in other industries due to excess financial sector employ-
ment). Importantly, these costs would not be incurred under alternative market designs that eliminated the

high-frequency trading arms race.

3.2.5 Asymmetric Trading Fees & Tick Size Constraints

We have abstracted away from more sophisticated trading fee structures, and assumed that exchanges charge
a common per-share per-side trading fee to all market participants. In reality exchanges often charge different
fees for “making” liquidity as opposed to “taking” liquidity.*> However, this is without loss of generality in
our model: as prices are continuous and security x can be traded at any price, and as investor demand is
symmetric (equally likely to wish to buy or sell) and inelastic to prices and spreads, only the net trading
fee—fees minus rebates—matters for determining equilibrium behavior. This stands in contrast to other
two-sided market environments where participants cannot “unwind” the division of fees via side payments
(cf. Rochet and Tirole (2006)); here, equilibrium spreads adjust to reflect underlying net trading fees.

If, instead, prices were discrete due to positive tick-sizes—the minimum price movement of any security—
asymmetric fee structures could be used by exchanges to “fill in the ticks” and provide a reason for exchange
fragmentation (cf. Chao, Yao and Ye (2018)). Nevertheless, as we discuss further in the next section, the
main five active exchanges employ essentially the same fee structure (a take fee close to the regulatory limit,
and a positive make rebate) with a net trading fee close to zero (consistent with the intuition from our model
that exchanges essentially Bertrand compete on trading fees). We thus believe that asymmetric trading fees

alone cannot rationalize observed interior market shares among these major exchanges.

4 Empirical Validation

In this section we use a combination of exchange-labeled trades-and-quotes data, exchange fee filings, ex-
change financial filings, and other data to assess our theoretical model of the status quo. The goal is not
to determine whether the model is “correct”—mno model isl—nor, by the same token, is it to “falsify” the
model—all models are false! Rather, the goal is to document a series of stylized facts which, together, suggest
that our model of the status quo is sensible and does a reasonable job of organizing the data.

Section 4.1 will present evidence that relates to the equilibrium characterization of the trading game
(i.e., Stage 3). Section 4.2 will present evidence that relates to the equilibrium characterization of exchange
trading fees (i.e., f). Section 4.3 will present evidence that relates to the equilibrium characterization of
exchange-specific speed technology fees (i.e., F). Section 4.4 will provide discussion of the stylized facts
taken in total, with reference both to our model of the status quo and to other potential models of financial

exchange competition.

425ome exchanges employ what is often called the maker-taker fee structure, where a provider of liquidity is paid a rebate
while a taker of liquidity is charged a positive trading fee; other exchanges employ a taker-maker fee structure where the reverse
is true.
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4.1 Evidence on the Stage 3 Trading Game

Data. We use the Daily NYSE Trade and Quote (“TAQ”) dataset accessed via Wharton Research Data
Services. The data contain every trade and every top-of-book quote update for every exchange, for all
publicly-listed stocks and exchange traded funds in the U.S., timestamped to the millisecond. The key
advantage of this data, for our purposes, is that it is comprehensive across all exchanges and labels every
trade and quote update by exchange. Two disadvantages of this dataset are (i) it only provides top-of-book
information, that is, it does not record non-trade activity (adds or cancels) away from the best bid or best
offer on a particular exchange; and (ii) the timestamps, while millisecond granularity, are less accurate than
the timestamps provided in direct-feed data purchased directly from exchanges. Unfortunately, direct-feed
data are not available for academic research from at least one major exchange family. Since our analysis
does not rely on ultra-precise time stamps (unlike, e.g., a study of latency arbitrage per se), and since
comprehensiveness across exchanges is critical for our purposes, TAQ data was the obvious choice.

For the results presented in this section, we make the following sample restrictions:

e Time Period. We use data from all trading days in 2015. 2015 was the most-recently available full year
of data when we began presenting early versions of this research publicly. 2015 is also the best year in

terms of data availability for the analysis of ESST revenues, as will be described in Section 4.3.

o Exchanges. In 2015, the top 5 exchanges by market share all used the “maker-taker” pricing model,
in which takers of liquidity (i.e., the submitter of a limit order that trades against a resting bid or
offer) are charged a fee, providers of liquidity (i.e., the resting bid or offer) are paid a rebate, and
the exchange fee (i.e., f in our notation) is the net of the taker fee minus the maker rebate. These 5
exchanges together constituted 83% of total trading volume in 2015. The next 3 exchanges by market
share all used the “taker-maker” (or “inverted”) pricing model, in which the taker gets the rebate and
the maker pays the fee (cf. Chao, Yao and Ye, 2018). These 3 exchanges together constituted 15%
of total trading volume in 2015. The remaining 4 exchanges active during 2015, sometimes called the
“regional” exchanges, together had about 2% market share, and, anecdotally, industry participants
regard them as vestiges of an earlier era of stock exchange competition. Our main analyses report
results for both the “Top 8” and the “Top 5”.

e Symbols. In 2015, there were 9174 stocks or exchange traded funds that traded at least once; however,
most stocks and ETFs trade relatively infrequently.*? For our main results, we focus on the 100 highest-
volume stocks or ETFs that also satisfy a set of data-cleaning filters: trading continuously throughout
the year under the same ticker symbol, having a share price of at least $1, not having a stock split, not
having an exchange listing change, and having at least $10 million average daily trading volume. These
100 symbols together constitute about one-third of daily volume. We have also conducted robustness
tests in which we look at all symbols that satisfy these filters with at least 1 million shares of average

daily trading volume.

Stylized Fact #1: Many Exchanges Simultaneously at the Best Bid and Best Offer. One feature
of our Stage 3 equilibrium is that all exchanges that have liquidity posted for a given stock do so at the same
equilibrium bid and ask. We explore this as follows. For each symbol ¢, exchange j, millisecond k, and date

t, we compute the exchange’s best bid and best offer (ask), denoted BBx; and BO,jk;. In case there are

43When clear from the context, we will sometimes use the phrase “stocks” to mean both stocks and ETFs. We will also use
the phrase “symbol”.
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Figure 4.1: Multiple Exchanges at the Same Best Price

Panel A: Top 8 Exchanges (Main “Maker-Takers” and “Taker-Makers”)
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Panel B: Top 5 Exchanges (Main “Maker-Takers")
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Notes: The data is from NYSE TAQ. Percent of time indicates the percent of symbol-side-milliseconds (e.g. SPY-Bid-
10:00:00.001) for which the number of exchanges at the best price was equal to N. Panel A considers Top 8 exchanges,
Panel B considers Top 5 exchanges; for discussion of Top 8 and Top 5 see the text. An exchange was at the best price
for a symbol-side-millisecond if the best displayed quote on that exchange was equal to the best displayed quote on any
of the eight exchanges, all measured at the end of the millisecond. Sample is 100 highest volume symbols that satisfy
data-cleaning filters (see text for description) on all dates in 2015. The Top 5 panel omits the 0 bar for the rare case
where none of the Top 5 exchanges are at the NBBO as defined by the Top 8; this occurs 0.02% of the time among NYSE
listed symbols and 0.06% of the time among non-NYSE listed symbols.

multiple quote updates in the symbol-exchange-millisecond, we use the last one. We then compute, for each

symbol-millisecond-date, the number of exchanges at the overall best bid and best offer, i.e., we compute:

bid _ ffer _ — i
Nt = Z{BBU’M = nax BBijike}  and N = Z{Boijkt = iy BOijrkt}-
J J
As one might expect, the distributions of N3¢ and N Oﬁ " are virtually identical, so we combine the data
into a single distribution and present it as Flgure 4.1. We present the results separately for NYSE-listed

symbols and non-NYSE listed symbols; the reason for this difference is that non-NYSE listed symbols do not
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trade on NYSE (but do trade everywhere else), whereas NYSE listed symbols trade everywhere.** Hence,
for NYSE listed symbols the maximum number of exchanges out of the Top 8 that could be at the best bid
or offer is 8, whereas for non-NYSE listed symbols (typically, listed on Nasdaq) the maximum is 7. Panel
A presents results for the Top 8 exchanges, i.e., all exchanges with meaningful market share (dropping the
regionals), and Panel B presents the results for the Top 5 exchanges, i.e., the main “maker-taker” exchanges.

As can be seen, the modal answer to the question “how many exchanges are at the best price?” is “all
of them.” Of the top 8, in about 50% of milliseconds all exchanges are at the best bid (similarly, best offer),
and it is rare that only one or a few exchanges are at the best price. If we look at just the top 5 maker-taker
exchanges, and ask what proportion of those exchanges are at the best price, in about 85% of milliseconds
the answer is “all of them.”

We conclude:

Stylized Fact 1. At any given moment in time, for highly traded stocks and ETFs, the modal number of
exchanges at the best bid and best offer is “all of them” Of the Top 8 exchanges, in about 50% of milliseconds
all exchanges are at the best bid (similarly, best offer). Of the Top 5, in about 85% of milliseconds all
exchanges are at the best bid (offer). It is rare (about 1% of milliseconds for NYSE-listed symbols and 3%
for non-NYSE) for there to be just one exchange at the best bid or best offer.

Stylized Fact #2: Linear Depth-Volume Relationship. A second feature of our Stage 3 equilibrium
is that “volume follows depth”—more precisely, while our analysis is silent as to what determines exchange
j’s share of displayed liquidity, it does state that whatever is exchange j’s share of displayed liquidity will
also be exchange j’s share of routed volume. In the notation of Section 3, both are equal to o7.

We explore this as follows. For each symbol i, exchange j, and date ¢, we compute the exchange’s “depth
share” and “volume share” for regular trading in that symbol on that date. Volume share is calculated

straightforwardly as
Volume;

VolumeShare;ji = =———————,
> Volume;j

with Volume;;; the number of shares in symbol ¢ traded on exchange j on date ¢. Depth share we calculate

by first computing depth for symbol i — exchange j at each millisecond k within the day, defined as

qzb_]lzik . ]_{_BB””C = maX; ¢ BBij’kt} -+ ngzr . 1{BOZth: = mil’lj/EJ BOij’k:t}
2 5

Depthijtk =
where qu?fk and qfﬁir denote the quantity at exchange j’s best bid and offer for symbol ¢ at millisecond k,
and the indicator function requires that j’s best bid or offer equals the national best at that millisecond. We

then compute the average depth during the day and the depth share, respectively, as:

Depthijt

1
Depthijt = Ti ZDGpthUtk and DepthShareijt = W,
it k ' ij't

with T;; denoting the number of milliseconds for symbol 7 on date ¢ between the symbol’s first quote at or
after 9:30 on that date and 16:00 (13:00 on half-days), dropping any milliseconds where the NBBO is locked
or crossed. Figure 4.2 presents a scatterplot of VolumeShare;;; against DepthShare;;:, wherein each dot
in the figure represents a symbol-exchange-date tuple. Since both depth- and volume-shares turn out to be

relatively stable over time and across symbols (cf. Stylized Fact #3), we color code by exchange and label

44NYSE recently (April 2018) changed this practice and began allowing non-NYSE listed stocks and ETFs to trade on NYSE.
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Figure 4.2: 2015 Daily Volume Share vs. Depth Share

Panel A: Top 8 Exchanges (Main “Maker-Takers" and “Taker-Makers”)
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Notes: The data is from NYSE TAQ. Panel A considers Top 8 exchanges, Panel B considers Top 5 exchanges; for

discussion of Top 8 and Top 5 see the text. Observations are symbol-date-exchange shares, with shares calculated among

the Top 8. For details of share calculations see the text. Sample is 100 highest volume symbols that satisfy data-cleaning

filters (see text for description) on all dates in 2015.

each exchange’s cluster of dots. Panel A presents results for the top 8 exchanges, and Panel B presents

results for the top 5 exchanges.
As can be seen in the figure, the depth-volume data mostly clusters along the 45 degree line, as predicted,
with the exception, at the bottom left of Panel A, of the taker-maker exchanges. The reason for this is that

the taker-maker exchanges pay a rebate to the taker of liquidity, so, while depth on taker-maker exchanges
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is relatively rare, when there is depth on taker-maker exchanges it is more economically attractive, after
accounting for fees, than depth at the same pre-fee price on the larger maker-taker exchanges. For this
reason, the taker-maker exchanges have volume shares that are larger than their depth shares, i.e., their
slope on Panel A is steeper than 45 degrees.*> If we focus on just the maker-taker exchanges (Panel B), all 5
of which have essentially similar fee structures (cf. Table 4.1 and Stylized Fact #4 below), the relationship
between volume and depth more cleanly tracks the 45 degree line. The slope of a regression of volume on
depth is 0.991 (s.e. 0.020), and the R? of the relationship is 0.865.

In robustness tests, we found that this linear depth-volume relationship obtains at higher frequencies
than a day, such as 5 minutes (albeit with more noise), but that at high-enough frequencies the relationship
does not appear to be meaningful. The issue is that at the level of an individual trade, exchange market
shares are often 0% or 100%. Whereas in our model, there is always exactly “1” unit of liquidity supplied
across all exchanges, and investors always demand exactly “1” unit of liquidity, and achieve this by splitting
their order perfectly across exchanges, leading to volume-shares that correspond to depth-shares even at the
level of the individual trade.

We conclude:

Stylized Fact 2. Among the top 5 exchanges, all of which use the same maker-taker fee structure,
there is a linear relationship between depth-share and volume-share at the daily level. The coefficient of the
regression line is 0.99 (statistically indistinguishable from 1) and the R? is 0.87. The relationship does not
obtain for the taker-maker exchanges; they have comparatively little depth share, but what depth they do have
gets disproportionately high volume share. The depth-volume relationship for the top 5 does obtain at higher

frequencies than a day (e.g., 5 minutes), but breaks down at high-enough frequency (e.g., 1 second).

Stylized Fact #3: Exchange Market Shares are Interior and Relatively Stable, Both Aggregate
and Within-Symbol. As discussed in Section 3.2.4, if investors (or broker-dealers acting on their behalf)
use what we called stationary routing table strategies, then exchange market shares will be stable over time.
To be clear, stable market shares are not a prediction of our model—in principle, investors and TFs could
coordinate on arbitrarily chaotic market shares—but since stationary routing table strategies seem both
natural in the model and plausible as a description of reality, we think it makes sense to empirically explore
the stability of exchange market shares. We do this first at the aggregate level and then at the individual
stock level.

Figure 4.3 presents exchange market shares since the start of the Reg NMS era in July 2007 (Panel A)
and since Jan 1, 2011 (Panel B), since BATS and Direct Edge entered, with two exchanges each, in the
period from late 2008 to mid 2010. These exchange market shares are based on volume from all traded
stocks and ETFs, though we note that the figure looks similar if we focus on the top 100 as we have done
for other analyses. As can be seen in Panel B, aggregate exchange market shares have been relatively stable
since 2011. In this 2011-2015 period, if we regress s;;, the market share of exchange j on date ¢, on a set of
exchange fixed effects but nothing else, the R? is 0.967. The coefficient of variation of daily volume shares
for the top 5 (maker-taker) exchanges, for this 2011-2015 period, ranges from .08 to .14. Exchange market

shares are certainly not exactly constant over time, but the evidence suggests that they are relatively stable.

4511 case this is not clear, imagine there is depth on both a taker-maker exchange and a maker-taker exchange at the national
best offer price, say $12.34. Then the net-of-fee price on the taker-maker exchange is about $12.338 while the net-of-fee price
on the maker-taker exchange is about $12.343 — a difference of about half a penny. So the depth on the taker-maker exchange
will get consumed before the depth on the maker-taker exchange, leading to a steeper volume-against-depth relationship on the
taker-maker than the maker-taker.
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October 2007 through Dec 2015 and Panel B covers January 2011 to Dec 2015.

4.4 explores how market shares vary across stocks. For each stock in the top 100, we compute its
average market share per exchange over all dates in 2015. We then present this data as a box plot. Each box
represents the 25th-75th percentile range for stock market shares on that exchange, with the solid horizontal
line in the middle of the box representing the median. The lines above and below the box represent the full
range, with dots for outliers. As can be seen, while there is of course variation across symbols, most of the
variation in the data is driven by the exchange. If we regress s;;; (for the top 8), the market-share of symbol
i on exchange j on date t, on a set of exchange fixed effects, and control for whether or not the symbol is
listed on NYSE but nothing else, the R? is 0.74.

One other point to emphasize from these analyses is that both exchange and exchange-symbol market
shares are consistently interior. This is not a market with tipping, where some exchanges control all or

substantially all of trading for some stocks or ETFs. Among all symbols in our sample, the single highest

market share is about 40%.
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Figure 4.4: 2015 Exchange Market Shares: Per Stock
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Notes: The data is from NYSE TAQ. Observations are symbol-exchange averages of symbol-exchange-date market shares
in 2015. In a given box, the middle line is the median and the edges of the box are the 25th and 75th percentiles.
The lines on top of and below the box (whiskers) go out to the interquartile range multiplied by +/-1.5. The dots are

symbol-exchange outliers that fall outside of that range.

We conclude:

Stylized Fact 3. Market shares are interior and relatively stable, at both the aggregate level and the
individual-symbol level. While there is of course some variance over time and in the cross section, simple
exchange fixed effects explain about 97% of the aggregate-level variation and about 74% of the individual-

symbol-level variation.

4.2 Evidence on Exchange Trading Fees (i.e., f)

Data Sources. We use three types of data sources for our analysis of trading fees. First, we use exchange
fee schedules. Typically, current exchange fee schedules are posted on exchanges’ websites, while changes to
exchange fee schedules are filed with the SEC and accessible via the SEC’s website. Since the fee schedules
can be so complicated, it can be difficult to build out the full fee schedule from the fee-change filings posted
permanently on the SEC website; therefore we use fee schedules accessed directly from exchange websites
via the Internet Archive. All fee schedules are from 2015 for consistency with the other analyses; the specific
months range from Feb to Sept depending on the Internet Archive’s coverage.

Second, we use exchange company financial filings, specifically the BATS April 2016 S-1 filing, Nasdaq’s
fiscal year 2015 10-K report, Intercontinental Exchange’s (NYSE’s parent) fiscal year 2015 10-K report,
and NYSE’s fiscal year 2012 10-K filing (2012 was its last full fiscal year as a stand-alone company). It is
important to clarify that exchange companies each control several exchanges, and while the fee filings are
at the exchange level, most of the financial data in the annual report is at the exchange company level. For
example, the exchange company BATS, Inc., controls four exchanges, two maker-taker exchanges (BZX and
EDGX) and two taker-maker exchanges (BYX and EDGA).

Third, we use a variety of other institutional data sources to obtain estimates for aspects of our com-
putation: we use a UBS ATS fee schedule for an estimate of off-exchange trading fees, we use a NYSE
document called Order Type Usage for an estimate of opening/closing auction fees, and BATS documents

for an estimate of routing fees and prevalence.
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Stylized Fact #4: Average Trading Fees are Economically Small. Our theoretical model says
that exchange trading fees, i.e., f in the model, will be perfectly competitive and bounded below by a
money-pump constraint. In practice, however, there is no single number to look up that represents “f”
for a given exchange. For example, for BATS’s maker-taker exchange (Bats BZX), takers of liquidity pay
a fee of $0.0030, while makers of liquidity earn a rebate of between $0.0020 — $0.0032, depending on how
much volume they trade on Bats BZX. BATS’s net fee per-trade per-side therefore ranges from -$0.0001
to +$0.0005, or “-1 to +5 mills”, in the industry jargon (1 mill = $0.0001); this can be thought of as the
observed range for what our model calls “f”. In addition to these fees for standard trading, there are also
dozens of other fees for orders that are routed to other exchanges, executed in the opening or closing auctions
on Bats BZX or elsewhere, etc. Both NYSE and Nasdaq have fee schedules that differ, at least slightly, based
on whether the stock being traded is listed on NYSE or Nasdaq.

Table 4.1 presents the observed range for “f” for the top 8 exchanges. As can be seen, most of the
exchanges have minimum fees that are actually slightly negative. On many of the exchanges the requirement
to pay this negative fee is a pure volume threshold—these are the exchanges where the row marked “Regular”
in the program column has a negative minimum fee per share per-side—whereas on some of the exchanges,
the fee only gets negative for traders who participate in special programs, like the NYSE’s Supplemental
Liquidity Provider or Designated Market Maker programs. The maximum observed fee per side is always
strictly positive and is typically about 5 mills, though it is noticeably lower for the two BATS taker-maker
exchanges (BYZ and EDGA) and higher (8 mills) for the Nasdaq taker-maker exchange.

To try to get a more precise estimate for f, we can use the major exchange families’ annual financial
filings. The advantage of this exercise is that we can estimate the average “f”, not just the potential range.
The disadvantages are (i) that we have to conduct this analysis at the level of the exchange family, not
the individual exchange (as in Table 4.1), and (ii) we have to make some assumptions about fees from
non-regular trading (e.g., auction trading, routed volume, etc.) to get to an estimate for per-share per-side
regular-hours f. These disadvantages in mind, the results are presented as Table 4.2. As can be seen, our
estimate of the average “f” across the 3 major exchange families, is about $0.0001 per-share per-side, or 1
mill. While not zero, this figure is arguably economically small. Across the approximately 1 trillion shares
traded during regular hours each year, this adds up to about $200M per year. As a point of comparison,
the operating expenses for BATS’ U.S. equities business alone were $110M in 2015—and BATS is generally
viewed as more cost-effectively run than Nasdaq or NYSE. NYSE’s operating expenses for its U.S. equities
and options business in 2012, its last full-year of operation before the ICE acquisition, were $718M.%6 In
other words, regular-hours trading revenues do not nearly cover exchange operating expenses. As another
point of comparison, the annual revenue for StubHub, the largest secondary-market venue for concert and
sports tickets, exceeds $1 billion; that is, StubHub’s revenue is over 5 times that for all U.S. regular-hours
stock trading, despite the secondary market for event tickets being a tiny fraction of the secondary market
for U.S. equities.*”

We conclude:

Stylized Fact 4. Ezchange trading fees are economically small. While there is mo single number for

46Source: 2012 NYSE 10-K, page 45, Operating Expenses for the “Cash Trading and Listings” business segment. Nasdaq
does not break out its operating expenses by business unit.

4TWhereas a trade of a $100 share of stock yields an average total fee of about $0.0002 to the exchange, the trade of a $100
concert ticket yields an average total fee of about $22 to StubHub, a difference of 100,000 times. (Other secondary market
ticket venues’ fees are similar in percentage terms). As a result, even though StubHub’s annual dollar volume is about $4.5
billion—less than 1/10,000th the dollar volume of U.S. regular hours equity trading—StubHub’s annual revenue of just over $1
billion is about 5 times that for U.S. regular hours equity trading. Source for StubHub numbers: eBay fiscal year 2017 10-K,
pages 39-40.
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Table 4.2: Estimate of average trading fees (“f”)
(3 major exchange families)

Exchange Group f
BATS $0.000089
NASDAQ $0.000105
NYSE $0.000128

Notes: Please see the spreadsheet in our web appendix for the full details of these calculations.

what our model calls f, the observed range of reqular hours trading fees (Table 4.1) is, on a per-share per-
side basis, -$0.00015 to +$0.00075 for regular trading on the top 5 maker-taker exchanges. If we include
the taker-maker exchanges as well, the observed range for reqular trading is -$0.00015 to +$0.00080. The
average per-share per-side fee paid, for reqular hours on-exchange trading, is about +$0.0001. For a $100
share of stock, the fee in percentage terms is 0.0001%.

Stylized Fact #5: Money-Pump Constraint Binds. Exchanges have incentive to cut their trading
fees even below the perfectly competitive (i.e., zero profit) level in order to win market share and increase
revenues from data and colocation. In the language of our model, exchanges are in principle willing to lose
money on f in order to make more money from F. However, trading fees f are bounded below by a money-
pump constraint. In the model, if f < 0 there is a money pump: trading firms would engage in infinite
volume in order to extract infinite dollars from the exchange with f < 0. In practice, the money-pump
boundary is slightly below zero, because of SEC Section 31 fees and, for firms that are FINRA members,
FINRA fees. At the time of our data, the SEC Section 31 fee was $21.80 per $1M traded and the FINRA
Trading Activity fee was $0.000119 per share traded; both fees are assessed on sales but not purchases, i.e.,
they are assessed on just one side of each transaction. Because the SEC fee is assessed based on the dollar
volume, the sum of SEC + FINRA fees on a per-share basis increases with the nominal share price. For a
$5 stock, the total of the two fees is 2.28 mills to the seller.*® For a $100 stock, the total of the two fees is
22.99 mills to the seller.

For the purpose of calculating the money-pump boundary, we should look at the SEC + FINRA fees
on a per-share per-side basis, because an exploiter of a money pump would need to both buy and sell.
For a $5 stock, this would be 1.14 mills. This may help explain why exchange trading fees, as exhibited
in Table 4.1, are able to go slightly negative without creating a money pump problem. Note as well that
purposefully exploiting a money-pump with self-trading (e.g., for a very low priced stock) would likely run
afoul of securities laws.

Stylized Fact 5. Exchange trading fees for high-volume traders are often slightly negative on a per-share
per-side basis. For J of the 8 exchanges exhibited in Table 4.1 (Nasdaq, BATS BZX, EDGX, BATS BYX),
the fee is negative for the highest reqular volume tier, with the lowest observed fee being -$0.00015 per share
per side. For another 8 of the 8 exchanges exhibited in Table 4.1 (NYSE, NYSE Arca, Nasdaq BX), the fee
is negative for traders with high-enough volume who satisfy additional requirements; the lowest observed such
fee is -80.00040 per share per side. These negative fees are consistent with exchanges being willing to lose

money on trading fees (f) to make money on exchange-specific speed technology fees (F'). However, trading

481.09 mills (5 x 0.218 mills) of SEC fees + 1.19 mills of FINRA fees.
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fees do not get negative enough to create a money pump once we account for SEC + FINRA fees, with the

possible exception of very-low priced stocks.

4.3 Evidence on Exchange-Specific Speed Technology Revenue (i.e., F)

Data Sources. Our evidence on the magnitude of exchange-specific speed technology revenues comes
primarily from exchange company financial filings (10-K’s, S-1’s and merger proxies). We describe the
specific documents used as we go. We use a Consolidated Tape Association fee filing to get an estimate for

the aggregate tape revenues, which we subtract for our main estimate of ESST revenues.

Stylized Fact #6: Exchanges Earn Significant Revenues from Data and Co-Location / Con-
nectivity (i.e., ESST). Our model shows that exchanges can earn supra-competitive rents from ESST
in equilibrium. The intuition is that exchanges have market power over speed technology that is specific to
their exchange, e.g., only Nasdaq can sell the right to co-locate one’s own servers next to Nasdaq’s servers.
Notably, our model does not pin down the exact level of ESST, but does indicate that, in aggregate across
exchanges and trading firms, ESST revenue can’t be too large of a fraction of the total sniping prize (see
Proposition 3.4).

We use exchange company financial filings to estimate ESST revenues in 2015. We focus on 2015 both
for consistency with the analysis above and because, given BATS’s acquisition of Direct Edge in 2014 and
acquisition by CBOE in 2016, fiscal year 2015 is the first and last full year in which BATS’s U.S. Equities
business, inclusive of the Direct Edge acquisition, reports its accounts at the granularity we seek. At the
bottom of this section we discuss the available evidence regarding growth of ESST since 2015.

For BATS, our exercise is relatively straightforward. BATS’s April 2016 S-1 filing (i.e., IPO prospectus)
reports its U.S. Equities business as a separate reporting segment, and within this reporting segment it
separately breaks out its market data business and its co-location and connectivity business. In 2015, its
market data revenues were $114.1M and its co-location/connectivity revenues were $64.3M, for a total of

49 were $81.0M and its operating expenses were $110.2M.

$178.4M. For context, its net transactions revenues
This means that revenue from market data and co-location/connectivity were more than twice the revenues
from trading fees, and, moreover, the BATS U.S. Equities business is profitable with market data and co-
location/connectivity revenues (profits before tax of $149.2M) but loss-making without (loss of $29.2M).
A pie-chart of BATS’ 2015 U.S. Equities revenue breakdown is given as Figure 4.5. For comparison, we
also include the analogous pie-chart for the Chicago Mercantile Exchange, a large futures exchange that,
because futures contracts are proprietary to the exchange (unlike equities which are fungible), is able to earn
significant revenues from trading fees. For CME, fully 84% of all revenues come from trading and clearing
fees, and CME would be significantly profitable on the basis of this revenue stream alone.?°

For both Nasdaq and NYSE our exercise is less straightforward because neither firm breaks out its U.S.
equities business as its own reporting segment. For NYSE a further complication is its Nov 2013 acquisition
by Intercontinental Exchange (ICE). Our approach for Nasdaq utilizes market data and connectivity revenue
figures for its global securities business, information on the proportion of global revenue that comes from

the U.S., and information about the proportion of U.S. revenue that comes from equities as opposed to

49Net transactions revenues are computed as Transaction Fees ($938.8M) less Liquidity Payments (i.e., rebates, $814.1M)
less Routing and Clearing Fees ($43.7M).

50CME’s 2015 trading and clearing revenue was $2,784M and operating expenses were $1,338M, for trading/clearing revenue
less operating expenses of $1,446M. Market data revenue was $399.4M, Access & Communication Fees was $86.1, and Other
was $57.4M.
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Figure 4.5: Revenue Breakdown for BATS and CME in 2015

BATS U.S. Equities CME Group

AccessOther
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83.7%

Market Data
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Notes: BATS U.S. equities data from BATS Inc. 2016 S-1 filing, page 86. CME data from CME Group Inc. fiscal year 2015 10-K
filing, page 37 .

options. Our approach for NYSE utilizes information about NYSE’s market data and connectivity revenue
contained in ICE’s 2014 10-K filing (i.e., the first fiscal year after the acquisition closed) plus additional
information from ICE’s 2015 filing. We provide a detailed description of our calculations for Nasdaq and
NYSE in Appendix B. Our approach yields a range for Nasdaq’s U.S. Equities revenue of $222.4M-$267.3M
for Market Data, $121.0M-$139.0M for Co-Location/Connectivity, and $343.3M-$406.4M combined. For
NYSE, we obtain a range of $218.9-$241.5M for U.S. equities market data, $251.6-$281.5M for U.S. equities
co-lo/connectivity, and $470.5-$523.0M combined.

Across all three major exchange families, then, our 2015 U.S. equities estimate is $555.4-$623.0M for
market data, $436.8-$484.8M for co-location/connectivity, and $992.2-1107.8M total. These market data
revenue figures include revenue from proprietary data feeds as well as from market-wide “Tape Plans”,
sometimes known as “consortium” data products or the “SIP” feed. Proprietary data feeds are utilized by
latency-sensitive market participants, whereas the market-wide consortium data feeds are not as fast, and
therefore should likely be deducted from our estimate of overall ESST revenues. The Consolidated Tape
Authority reports that in the 12 month period through March 2014, total tape revenues across all U.S.
equities exchanges were $315M.5! If we subtract this $315M from the total we have proprietary market-data
revenue of $238.4-306.0M, and total ESST revenue of $675.2-790.8M. Table 4.3 summarizes.

For context, note that our estimate for ESST revenue is several times larger than the revenue from regular-
hours trading fees. If we take the lone-wolf bound from the theory seriously, and use N = 3 exchange families

and M = 7 large high-frequency traders,>? our estimated range for ESST revenues yields a lower bound on

51The prices for consolidated feed data are set by a consortium, and then the revenues are allocated to exchanges based on a
formula that relates to their volume share and NBBO depth share. Whereas proprietary data revenues appear to have grown
dramatically in the past decade or so, tape revenue growth appears to be much flatter. For example, Nasdaq’s revenue from
proprietary data increased more than 100% from 2006-2012 (the last year they reported it separately), whereas its tape revenues
declined by about 10% during this same period. For this reason, we are comfortable using the March 2014 tape revenue number
as part of our 2015 ESST revenue analysis.

52The CEO of one of the largest high-frequency traders in the U.S. described in a conversation with two of the authors that
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Table 4.3: Estimated Market Data and Co-Location Revenues for U.S. Equities Market in 2015
(Millions of Dollars)

BATS NASDAQ NYSE Total
Market Data Revenue 114.1 222.4 — 267.3 218.9 — 241.5 555.4 — 623.0
Co-Location/Connectivity Revenue 64.3 121.0 - 139.0  251.6 — 281.5  436.8 — 484.8
Market Data + Co-Location Revenue 178.4  343.3 — 406.4 470.5 - 523.0  992.2 - 1107.8
CTA/UTP Tape Revenue 317.0
Market Data + Co-Lo Revenue net of Tape Revenue 675.2 — 790.8

Notes: BATS data is from its April 2016 S-1 filing, which contains data up through the end of 2015. Nasdaq data is from its 2015
10-K filing. NYSE data uses both ICE’s 2014 and 2015 10-K filings, because the 2014 filing had more granular information on the
contribution of the NYSE business to ICE’s overall business, following its acquisition in Nov 2013. BATS directly reports a U.S. equities
revenue breakdown including market data and co-location/connectivity revenue. For Nasdaq and NYSE some assumptions are needed
to estimate U.S. equities revenue from the market data and co-location/connectivity revenue items they report; therefore we report a
range of estimates. For full details please consult the text and Appendix C. The CTA/UTP tape revenue number is obtained from a
CTA fee-change filing to the SEC, in which they report the total CTA/UTP market data revenue (allocated to exchanges) annualized
through March of 2014. Refer to SEC Release No. 34-73278 (U.S. Securities and Exchange Commission, 2014).

the total size of the latency-arbitrage pie of between $3.1-$3.7B in 2015.

2015 is the last year in which BATS reports segment data for its U.S. equities business, and as described,
2014 is the last year for which granular NYSE data is available. We can get a rough sense of growth since 2015
by looking at growth in overall market data and co-location/connectivity revenue for BATS and Nasdaq. For
BATS, growth from 2015-2017 was 8.5% per year for market data revenues and 11.7% for co-lo/connectivity.
For Nasdaq, growth from 2015-2017 was 6.7% for market data and 10.3% for co-lo/connectivity. If we use
9% as a rough midpoint of this range, this implies 2018 ESST revenues are about 30% higher than 2015, for
a range of $874M-1024M in 2018.

Stylized Fact 6. Ezchanges earn significant revenue from exchange-specific speed technology. While the
data reported in exchange parent company financial filings are not perfect, sensible assumptions applied to
that data suggest that in 2015 total ESST revenue was between $675-790M. This is several times larger than
reqular-hours trading revenues. For the BATS exchange, for which the data is cleanest, the U.S. Equities
business is profitable inclusive of market data and co-location/connectivity (profits before tax of $149M) but
loss-making without market data and co-location/connectivity (loss of $29M). Growth in ESST revenue since
2015 puts the upper bound of our estimate at about $1bn for 2018.

Stylized Fact #7: Exchange Revenue from Data and Co-Location / Connectivity has Grown
Significantly in the Reg NMS Era. While exchanges do not directly report U.S. Equities ESST rev-
enue (as evident from all of the work involved in Stylized Fact #6), we can get a sense of magnitudes for
U.S. Equities ESST revenue growth over time by looking at the revenue growth for the financial reporting
categories that contain U.S. equities ESST. We do this for Nasdaq and BATS (see Figure 4.6), starting in
2006—2006 was both the first year of BATS’s operation and the first year the word “co-location” appears
in a Nasdaq annual financial filing (it has appeared every year since).??

For Nasdaq Co-location and Connectivity, this category was called “Access Service Revenues” from 2006-

there are 7 high-frequency trading firms in the “lead lap” of the speed race in the U.S. market.
53NYSE’s financial reporting segments changed too frequently during the post Reg NMS period for the exercise to be useful.
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Figure 4.6: Exchange Market Data and Co-Location Revenue 2006 - 2017
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Notes: BATS data come from the 2012 S-1 filing (years 2007-2011), the 2016 S-1 filing (years 2012-2015), the CBOE/BATS Merger
Proxy (Cboe Holdings, Inc. and BATS Global Markets, Inc., 2016) for 2016 and the CBOE 2017 10-K. Nasdaq data come from 2006-
2017 10-K filings. For the specific reporting categories used in the figure please see the descriptions in the text. For Nasdaq Market
Data, 2006-2012 represents the sum of U.S. Tape Plans revenue and U.S. Market Data Products revenue; 2013 is U.S. Market Data
Products revenue which starting in 2013 includes both Tape Plans revenue and proprietary data products; and 2014-2017 is global
“Data Products” revenue multiplied by a factor of 0.72 which is the 2013 ratio of U.S. Data revenue to Global Data revenue. For
BATS’s 2017 Co-location and Connectivity, we use the sum of BATS’s contribution to CBOE Access Fees plus BATS’s contribution to
CBOE “Exchange Services and Other fees” (see pg. 68), each annualized by multiplying by a factor of 12/10 since BATS contributed to
CBOE revenues for 10 months that year (March-Dec). For BATS’s 2017 Market Data, we use BATS’s contribution to CBOE “Market

Data Fees” multiplied by an annualization factor of 12/10.

2012, “Access and Broker Services Revenues” from 2013-2015, and “Trade Management Services Revenues”
for 2016-2017. Nasdaq’s segment reporting practices underwent some modest changes in years 2013-2014
versus the years before and after, so we view the periods 2006-2012 and 2015-2017 as yielding reliable apples-
to-apples growth rates. The growth rate in the period 2006-2012 was 26.7%, and in 2015-2017 it has been
10.3%. Revenues look flat in the period 2012-2015, but it is hard to be conclusive since there were some
modest segment reporting changes.

For Nasdaq Data, in 2006-2012 they separately broke out revenue from U.S. Tape Plans from revenue for
U.S. market data products — notably, in 2006, Tape revenue was nearly double Proprietary revenue ($129M
Tape vs. $69.6M Proprietary) whereas by 2012 Proprietary revenue was about 30% higher than Tape ($150M
Proprietary vs. $117M Tape). Starting in 2013 Nasdaq reported only combined data revenue and made some
other segment reporting changes. Starting in 2014, they reported only global data products. We use the
2013 U.S. to Global ratio of 72% on the 2014-2017 numbers to get an apples-to-apples growth rate. Revenue
growth in 2006-2012 was 5.1% annually (though Proprietary data products revenue grew by 13.7% annually,
versus modest reduction in Tape revenue). Revenue growth in 2013-2017 has been 6.4% annually.

For BATS Co-location and connectivity, the 2012 S-1 filing® reports that they began charging for co-

54BATS initially filed to go public in 2012 but then pulled the offering.
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location/connectivity in Q4 2009. Initially the revenue was reported in a segment called “Other Revenues,”®®

and starting in 2012 the segment “Port Fees and Other,” and then in 2016, as part of CBOE, “Connectivity
Fees and Other.” From 2010, the first full year in which BATS earned these revenues, through 2013, the
last full year before the Direct Edge acquisition, revenue growth was 64.0% per year. Revenue then doubled
again from 2013 to 2015, but likely in large part due to the Direct Edge acquisition, and then grew 11.7%
per year from 2015 to 2017.

For BATS Data, these revenues are consistently reported as “Market Data Fees” throughout the 2006-
2017 period; the only difficulty in interpreting the time series is the Direct Edge acquisition which contributed
to a doubling of data revenues from 2013 to 2015. In the period 2006-2013, growth was dramatic from 2006
to 2008, and then modest from 2008 to 2013. Since 2015, growth has been about 8.5% per year.

Focusing especially on the co-location / connectivity business, the data are suggestive of the exchanges
“discovering a new pot of gold” in the period from 2006 through 2012/2013 or so—that is, discovering that
they could charge significant money for something they used to not charge for—and then growth leveling off
in the years since. Nasdaq’s access services revenues increased nearly four-fold during the 2006-2012 period,
and BATS’s increased four-fold from 2010-2013.

Stylized Fact 7. Exchanges’ revenues from exchange-specific speed technology appear to have grown
significantly in the Reg NMS era. Particularly dramatic is the growth in co-location / connectivity revenues
in the period from 2006 to 2012/2018 or so. Nasdaq’s co-lo revenue quadrupled in this period, and BATS’s
quadrupled from 2010-2013. Since 2015, data revenues have grown about 7.5% per year (average of Nasdaq

and BATS’s growth rates) and co-location/connectivity revenues have grown about 11% per year.

4.4 Discussion

While our model is of course stylized and abstracts from many important issues such as agency frictions,
tick-size frictions, fee complexity, strategic trading over time, etc., it does a reasonably good job empirically.
In particular, Stylized Facts #1-#3 are broadly consistent with our equilibrium characterization of the
trading game, Stylized Facts #4-#5 are consistent with the equilibrium prediction that trading fees are
economically small and bound by the money-pump constraint, and Stylized Facts #6-#7 are consistent
with the equilibrium prediction that exchanges earn significant economic rents from exchange-specific speed
technology. The fit is not perfect of course, but overall we hope the reader comes away from the empirical
evidence believing that the model is credible. Specifically, that the model is sufficiently credible to consider,
in the following section, what it implies for our motivating question of whether the market will fix the market.

We also highlight that other potential models of exchange competition are at odds with important aspects
of the data and regulatory environment. Alternative modeling frameworks that examine financial exchange
competition under the assumption that market participants “single-home,” such as Pagano (1989), Ellison
and Fudenberg (2003), and Pagnotta and Philippon (2018), are at odds with the requirement under Reg
NMS that market participants consider quotes on all exchanges, and often (e.g., Pagano, 1989), though not
always (e.g., Ellison and Fudenberg, 2003), suggest that there will be important agglomeration effects and
market tipping, in contrast to Stylized Facts #1-#3. Similarly, the model of Cantillon and Yin (2008),
in which participants may multi-home but the financial instruments (in their case, futures contracts) are
specific to a single exchange—i.e., assets are not fungible across exchanges—generates liquidity externalities
and market-tipping that is at odds with Stylized Facts #1-#3. The fact that trading fees are close to

55Described as “Other revenues consist of port fees, which represent fees paid for connectivity to our markets, and, more
recently, additional value-added products revenues [likely, co-location].”
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zero (Stylized Facts #4-#5) is at odds with exchanges offering significantly differentiated products at the
trade-by-trade level.

5 Will the Market Fix the Market?

In Section 3, we introduced a theoretical model of competition among multiple continuous limit order book
exchanges (the status quo) and proved that there exist equilibria with the following key features: all ex-
changes maintain positive market shares (i.e., interior as opposed to tipping), exchange trading fees are
competitive, and exchanges obtain economic rents via supra-competitive fees for exchange-specific speed
technology (ESST), which trading firms need to purchase to participate in speed-sensitive trading. In Sec-
tion 4, we established that this model does a reasonable job of organizing the data. In this section we now
use the model to examine the private and social incentives for market design innovation.

For our discussion, we focus on a particular alternative to the continuous limit order book design: discrete-
time frequent batch auctions (FBAs).%% As proposed and examined in BCS, an exchange using FBAs differs
from one using the continuous limit order book in the way that it processes and prioritizes orders. Just as
in the continuous limit order book market, (i) orders consist of a price, side, and quantity, (ii) orders can
be submitted, modified or canceled at any moment in time, and (iii) orders remain outstanding until either
executed or canceled. However, unlike the continuous market, orders are processed in discrete-time “batches”:
specifically, at the end of each pre-specified time interval (e.g., one millisecond), the FBA exchange conducts
a uniform price double auction among all new orders that have arrived during that interval and those that
remain in the order book from previous intervals. In the case that there are multiple orders at the same price,
priority in the FBA is price-then-time, like in the continuous market, but treating time as discrete: that is,
orders that are outstanding from earlier intervals have higher priority than orders at the same price that
arrive at later intervals, but orders that arrive within the same interval have the same priority, with random
tie-breaking if necessary. Information policy is also the discrete-time analogue of the continuous limit order
book: the same information is disseminated as in the continuous market (e.g., new orders, cancels, trades,
etc.) but with this information disseminated in discrete time, at the conclusion of each interval.

BCS analyze equilibrium behavior on a single FBA exchange in isolation, and show that by processing
orders in batches—as opposed to serially—FBAs eliminate latency arbitrage, and in so doing enhance lig-
uidity provision and stop the latency arms race. Intuitively, in the event of symmetric public information,

discrete-time batch auctions transform competition on speed into competition on price.

Our Approach. Despite the theoretical benefits of FBAs, it is not obvious that an FBA-exchange com-
peting head-to-head with continuous limit order book exchanges would necessarily gain traction and obtain
significant trading volume. Nor is it clear that any exchange has an incentive to incur the cost and effort of

adopting a new market design.

56 Our subsequent analysis is not specific to FBAs, per se. Rather, our results regarding incentives for market design innovation
apply for any design that eliminates latency arbitrage rents. One such alternative is a market design in which the exchange
processes cancellation orders immediately upon receipt, but processes aggressive orders with some delay. This approach,
sometimes called “asymmetric delay” or “asymmetric speed bump”, also reduces the ability of trading firms to engage in
latency arbitrage activity, though it has some weaknesses relative to FBAs. See BCS for further discussion and see Baldauf
and Mollner (2018) for a detailed analysis. It is also worth noting that the asymmetry in how orders are processed is seen
by some regulators and market participants as “unfair”; see the comments regarding the Chicago Stock Exchange’s proposed
asymmetric speed bump (U.S. Securities and Exchange Commission, 2017, 2018a), which appear to have persuaded the SEC
in that it did not approve either of two versions of CHX’s proposal.
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To inform these issues, we employ the following approach. First, we build on the theoretical model of
exchange competition and trading behavior developed in Section 3 to examine competition among multiple
exchanges that each use one of two potential market designs: either a continuous-time limit order book
(which we refer to as “Continuous”), or FBAs (“Discrete”). BCS, in their original analysis, only examined
trading behavior on either a single Continuous exchange or on a single Discrete exchange. Here, we examine
outcomes when one or more Continuous exchanges compete with a single Discrete exchange, and when
multiple Discrete exchanges compete with one another. Combined with earlier results derived when multiple
Continuous exchanges compete with one another (Section 3), this exercise “fills out” the cells of a matrix
corresponding to the payoffs that exchanges obtain under different combinations of market designs. We then
use this matrix, alongside parameters that capture the costs of adopting or imitating an alternative market
design, to examine the incentives for a new or existing exchange to adopt Discrete.

Our key result is that private incentives to adopt a market design that eliminates latency arbitrage are
dramatically lower than social incentives, and potentially even negative. We establish this claim without
explicitly taking a stand on the nature or timing of adoption and entry decisions. If one exchange is the
first to adopt Discrete while all its rivals employ Continuous, that exchange will capture a large share of
trading volume and large economic rents. Intuitively, the innovator gets compensated for eliminating the
latency arbitrage tax. However, any subsequent adoption by other exchanges of Discrete—which we argue is
likely and potentially quite rapid—leads to the dissipation of industry rents, potentially rendering the initial
adoption of Discrete unprofitable. Existing incumbent exchanges have even weaker incentives to adopt, since
the source of their status-quo rents is precisely the inefficiencies that FBAs and alternative designs seek to
eliminate. Formally, the market design adoption game among incumbent exchanges constitutes a repeated
prisoners’ dilemma. While any one exchange has incentive to unilaterally “deviate” and adopt Discrete, all
incumbents prefer the Continuous status quo, in which they share in latency arbitrage rents, to a world in

which all exchanges are Discrete, and these rents are gone.

5.1 Competing Market Designs

To analyze exchange competition with potentially different market designs, we maintain the following timing
conventions and assumptions from our multiple competing exchange model introduced in Section 3.2: given
the market designs that each exchange operates, in Stage 1, exchanges post trading fees and (if relevant, in a
manner made more explicit below) ESST fees; next in Stage 2, the N “fast” trading firms (TFs) with access
to general-purpose speed technology choose which exchanges (if any) to purchase ESST from; and finally, in

Stage 3, a repeated multi-exchange version of the trading game occurs.

5.1.1 Modeling Frequent Batch Auctions

In the Stage 3 trading game, at the end of each period, the frequent batch auction exchange (“Discrete”) first
processes all cancellation orders received in that period (reflecting that in an FBA orders can be canceled at
any moment during the batch interval), and then aggregates all outstanding orders to buy and sell—both new
orders submitted in that period and orders that remain outstanding from previous periods—into demand
and supply curves, respectively. If demand and supply cross, then trades are executed at the market-clearing
price;®” in the event that it is necessary to break ties on either side of the market, priority is based first

on price, then discrete time (i.e., orders that have been present in the book for strictly more intervals have

57In case there is an interval of market-clearing prices the midpoint of this interval is utilized; this case is not relevant for our
analysis.
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higher priority if at the same price), with any remaining ties broken randomly. All orders that are not
canceled or executed in that period remain in the order book for the next period, and, as such, are part of
the publicly observable state. The Continuous exchange is modeled as in Section 3; the key difference versus
Discrete, as emphasized, is that if multiple messages are received in the same period, they are processed
serially (in a random order with speed as a tie-breaker).

We make the following assumptions about the FBA batch interval and the way that Discrete and Con-
tinuous operate in parallel. First, we assume that the batch interval is sufficiently short so that investors
do not care per se about waiting the small amount of additional time it takes to trade on Discrete rather
than Continuous (i.e., they care about the price they pay, but not per se about delay), while long enough to
enable “genuine” batch processing in the event that there is public news and multiple TFs respond. That
is, if multiple TFs with essentially the same technology respond at essentially the same time to the same
piece of public news, their responses can be processed by the exchange in the same batch interval. How
long of a batch interval is long enough to meaningfully batch process is an engineering question as opposed
to an economic one, but to give a sense of magnitudes, some industry participants have suggested to us
that as little as 50 microseconds may suffice (i.e., 0.000050 seconds), and our sense from aggregating many
similar conversations is that 0.5-1.0 milliseconds (i.e., 0.0005-0.0010 seconds) would be comfortably more
than sufficient to meaningfully batch process. Second, and relatedly, we assume that an informed trader
can profitably trade on both Discrete and Continuous before their information is revealed or inferable, and
similarly that an investor can trade on both Discrete and Continuous before TFs can respond. This can be
interpreted as allowing the informed trader and the investor to “synchronize” their orders across exchanges,
as is now commonplace through broker-dealer routing algorithms.?® Third, we assume that Discrete does
not sell ESST; practically, we have in mind that a Discrete exchange would allow market participants to
co-locate their servers, but would not be able to charge prices commensurate with their role, on Continuous
exchanges, in extracting sniping rents.?®

Last, we restrict attention to order book equilibria (as defined in Section 3) that are also robust to
profitable deviations by the continuum of “slow” trading firms. This restriction has no effect on our previous
results: with only Continuous exchanges, slow trading firms did not play any role in equilibrium.’® However,
on Discrete, slow trading firms can provide liquidity without being sniped, so this assumption captures the
idea that such firms may now act as a competitive fringe of liquidity providers on Discrete. Note, practically,
that what we mean by a “slow” trading firm is best interpreted as a sophisticated algorithmic trading firm

not at the very cutting edge of speed (i.e., “fast” by non-high-frequency trading standards).

5.1.2 A Discrete and a Continuous Exchange

We first examine a single Discrete exchange competing against a single Continuous exchange. (The case

of a single Discrete exchange competing against multiple Continuous exchanges will be economically equiv-

58For this synchronization to be technologically feasible requires that the batch interval is long relative to the randomness
in order transmission times. Again, this is an engineering quantity as opposed to an economic one, but our sense is that the
randomness is comfortably less than 100 microseconds (0.0001 seconds) for sophisticated market participants. Note as well that
end investors need not be able to do this synchronization themselves, rather they would do so through their broker-dealer.

59For example, as of a few years ago Nasdaq offered four different levels of co-location services, with the most expensive
version about 2 microseconds (0.000002 seconds) faster than the least expensive version, and about 10 times the price (IEX,
2015). An FBA exchange might be able to sell something akin to the cheapest version, but would not be able to extract rents
from latency arbitrage by selling an ever-so-slightly faster connection.

60Following the arrival of a publicly observed jump, no slow firm would ever win the sniping race, and any slow trading firm
providing liquidity would be sniped for certain (as opposed to with probability (N — 1)/N in the case for fast TFs). Hence,
slow trading firms would not be able to profitably provide liquidity at or below the equilibrium spread given by (3.1).
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61 Recall that if there was only a single Continuous exchange in operation charging zero trading

alent).
fees (see Section 3.1), a single unit of liquidity would be provided in equilibrium each trading game by fast
trading firms at a spread %, ;:nuous given by (3.1): )\“west%;“m = (Apublic + Aprivate) - L(Skontinuous)- 11
contrast, if there was only a single Discrete exchange also charging zero trading fees, arguments developed
in BCS imply that a single unit of liquidity would be provided in any equilibrium at a spread given by

* * : .
Sdiscrete < Scontinuous’ which solves:

)‘investSdiSi;em = Aprivate * L(SZiscrete) . (5-1)
Why? Liquidity providers need only worry about adverse selection costs (Aprivate - L(S;screre)) When setting
their spreads—Discrete eliminates the ability for trading firms to engage in stale quote sniping. This is for
two reasons. First, any cancellations by liquidity providers—as long as they are received in the same batch
period—are processed immediately whereas liquidity taking orders (and other new orders) are processed in
batch at the end of the interval. Second, even if an outstanding liquidity providing order that is mis-priced
following the arrival of public news is not cancelled, Discrete protects the liquidity provider from incurring
losses: the price that is ultimately paid will, in equilibrium, be bid up or down to a price that reflects the
new public information due to competition among all trading firms in the uniform price auction.

Now consider the multi-exchange trading game between Continuous and Discrete. Suppose initially that
trading fees on both exchanges were zero, and all TFs purchased ESST from the Continuous exchange. A
reasonable prior might be that there exist multiple equilibrium outcomes: for example, there might be an
equilibrium where all liquidity is provided and taken from Continuous, and another where all liquidity is

provided and taken from Discrete. However, this is not the case:

Proposition 5.1. Consider any Stage 3 trading game with a single Continuous and single Discrete exchange,
where all trading firms have purchased exchange-specific speed technology from Continuous, and trading fees
on both exchanges are zero. Then in any equilibrium of the trading game given state (y,w), exactly one unit
of liquidity is provided on Discrete at bid-ask spread s}, .,..;. around y following Period 1, and no liquidity

is provided elsewhere. Such an equilibrium exists.

To understand why liquidity cannot be offered on Continuous in equilibrium, first note that a liquidity
provider must charge at least the “zero-variable profit spread” on Continuous, denoted S.ontinuous and
given by the solution to )\mvestw — (%/\pubm + Mprivate) * L(Scontinuous) = 0.9 This spread is
strictly greater than s}, ...... As a result, since investor demand is infinitely elastic with respect to the
bid-ask spread, if any liquidity provider on Continuous were (weakly) profitably offering liquidity at some
spread $ > Scontinuous, that provider could be (strictly) profitably undercut on Discrete at a strictly smaller
spread " € (83, oretes 8)- Furthermore, any liquidity cannot be offered at any spread other than sb,. ..., in
equilibrium on Discrete: any greater, and it could be profitably undercut by another TF; any lower, and the
liquidity provider would be losing money and be better off withdrawing. We show that these arguments also
imply that no liquidity can be offered on Continuous in any Stage 3 trading game even if Discrete were to
charge a strictly positive (but small enough) trading fee f > 0.%3

Given these results, we establish the following:

61 As discussed in Section 3.2, our theoretical analysis has shown that frictionless search and access enable multiple Continuous
exchanges to operate as if they were a single synthesized exchange. It will become clear from the equilibrium that it makes no
difference whether there is a single Continuous exchange or multiple Continuous exchanges that operate as a single synthesized
exchange.

62This spread is smaller than S ontinuous Siven by (3.1) since it does not account for the opportunity cost of not sniping.

63Let 3giserete(f) (defined formally in the Appendix in (A.6)) denote the zero-variable-profit spread for a liquidity provider
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Proposition 5.2. In any equilibrium among a single Continuous exchange and single Discrete exchange, (i)
Discrete charges strictly positive trading fees; (ii) in every iteration of the trading game given state (y,w),
ezxactly one unit of liquidity is provided on Discrete around y following Period 1, and no liquidity is provided
elsewhere; (#i) Continuous earns zero profits; and (i) Discrete earns expected per-trading-game profits that

N—177% — .
exceed =117 vinuous- Such an equilibrium exists.

When a single Discrete exchange competes against Continuous, it completely “tips” the market. Fur-
N—1
N
via trading fees. In essence, Discrete is compensated for the elimination of the tax that latency arbitrage

*

proportion of the speed-race pie, II7, . 1inuouss

thermore, Discrete earns economic profits that exceed
imposes on trading; as long as Discrete charges a fee that is less than this tax, it tips the market.

Caveat: Tick-Sizes and Sniping Costs. In our model, with continuous prices (i.e., no tick-size con-
straints), a single Discrete exchange will be able to completely tip the market away from Continuous ex-
changes and capture all trading volume. However, due to tick-size constraints (also discussed in Section
3.2.5), we do not think complete tipping is a realistic prediction. Specifically, in the empirically likely case

that the elimination of latency arbitrage results in a per-share savings of less than the penny tick size (i.e.,

*

Fontinuous — Stiserete] < $0.01),5% then there may exist equilibria whereby positive volume remains on Con-

|s
tinuous exchanges, because, intuitively, liquidity sometimes will not be able to be profitably provided on
Discrete at a strictly better tick than on Continuous.®® This suggests that a relevant consideration for the
extent to which Discrete can “win” against Continuous is the size of sniping costs per share relative to the

tick-size.%6

5.1.3 Multiple Discrete Exchanges

Now we consider the case of multiple Discrete exchanges. With at least two Discrete exchanges (and po-
tentially another Continuous exchange), the resulting equilibrium has similar features to the one derived in

Proposition 3.2 with multiple Continuous exchanges:

Proposition 5.3. In any equilibrium with at least two Discrete exchanges, (i) at least one Discrete exchange
charges zero trading fees; (ii) in every iteration of the trading game given state (y,w), exactly one unit of
liquidity is provided in aggregate across only Discrete exchanges with zero trading fees at bid-ask spread
S serote 0TOUNA Y following Period 1; and (ii1) all exchanges and trading firms earn zero economic profits.

Such an equilibrium exists.

As before, because features of the regulatory environment (particularly Reg NMS and UTP) imply that

costs of searching and splitting orders across exchanges are zero, in equilibrium multiple Discrete exchanges

on Discrete when Discrete charges trading fee f, so that s%. ., = Sdiscrete(0). The proof of Proposition 5.1 establishes that
if Sgiscrete (f)/2+ f < Scontinuous/2 (so that an investor would prefer trading on Discrete at spread Sg;screte(f) and paying a
trading fee f to trading on Continuous at spread Scontinuous), any profitable provision of liquidity on Continuous could always
be profitably undercut by liquidity provision on Discrete, and hence cannot occur in equilibrium.

64For instance, in BCS, the annual latency arbitrage profits in SPY from ES-SPY arbitrage were about $75M per year, against
annual trading volume of just over 30B shares in the time period of the BCS data, for profits per share of about $0.0024.

65Similar to observed behavior among maker-taker and taker-market exchanges (cf. Chao, Yao and Ye (2018)), we conjecture
that with positive tick-sizes, there may be an alternative equilibrium with a single Discrete and multiple Continuous exchanges
whereby volume can fluctuate across trading games between exchanges depending on the true value of the security, y, and its
proximity to the nearest tick. A formal analysis is outside the scope of this paper.

66 A similar concern arises if investor demand is not infinitely elastic with respect to prices and trading fees. While of course,
in practice, demand is not likely to be infinitely elastic, the fact that observed trading fees are about $0.0001 per share per side
and sniping costs are likely an order of magnitude larger (see footnote 64) suggests that this potential issue is less empirically
relevant than the tick-size friction.
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also operate as a single synthesized exchange: a single unit of liquidity is always provided in each trading
game, and equilibria differ from one another only in exchange market shares. Importantly, no trading volume
occurs on any Continuous exchange, and competition among multiple Discrete exchanges operating the same
market design leads to zero trading fees in equilibrium. However, there is a key difference. As opposed to
the case with multiple Continuous exchanges, there is no longer latency arbitrage and the associated rents

for exchanges.

Caveat: Additional Revenue Sources Beyond f and F. In reality, exchanges earn revenues from
sources beyond what we have modeled, i.e., beyond trading fees f and exchange-specific speed technology
fees F'. One important source of such revenue is non-latency sensitive data revenues, sometimes called “Tape”
or “SIP” revenues, as discussed in the previous section. A second source of such revenue is exchange listing
fees. Hence, trading game profits need not be strictly zero when multiple exchanges employ Discrete.

For simplicity, we model these ancillary revenues as being a constant amount R > 0 per trading game,
of which each exchange j earns a proportion equal to its market share. That is, if exchange j has market
share o, it earns ancillary revenues of o;R. A more realistic model of ancillary revenues would have some
ancillary revenues that depend strictly on market share (e.g., Tape revenues) and some ancillary revenues
that depend on both market share and additional exchange-specific factors. For example, listing revenues
are large for NYSE and Nasdaq yet negligible for BATS, and might be small for an entrant even if that
entrant wins significant market share. The main point that is economically important for the discussion
of adoption incentives below is just that incumbent exchanges, all else equal, prefer larger market share to

smaller market share even when trading fee revenues and ESST revenues are both zero.

5.2 Adoption Incentives

Per-Trading-Game Payoffs. Summarizing our results so far, Figure 5.1 presents the per-trading-game
payofls for two exchanges employing potentially different market designs. In cell (C,C)—when both exchanges
employ Continuous, representing what we refer to as the status quo—each exchange j earns strictly positive
economic profits from ESST fees (as well as its share of ancillary revenues, omitted from the Figure for
clarity). In cell (D,D)—when both exchanges employ discrete—each exchange obtains only its fraction of
ancillary revenues. Importantly, Discrete exchanges do not earn any ESST fees.

In cell (C,D) or (D,C)—where exchanges employ different designs—the Continuous exchange earns zero
while the Discrete exchange earns positive rents. In particular, Discrete’s trading fee revenues, denoted II7,
represent a substantial share of sniping rents generated under the status quo (by Proposition 5.2) and must
exceed what any individual exchange would be able to earn from ESST under the status quo (combining
Proposition 3.4 and Proposition 5.2). That is, IT? > NF} for all exchanges j € M.

Note that Figure 5.1 also represents normal-form game payoffs in a standard prisoner’s dilemma: C
and D represent the analogous “cooperate” and “defect” actions, D is a strictly dominant strategy for each

exchange, and each exchange prefers payoffs under (C,C) to payoffs under (D,D).

Adoption Costs and Delay. The per-trading-game payoffs in Figure 5.1 are not sufficient to analyze
adoption incentives on their own. In particular, there may be fixed costs related to being the first adopter of
a new market design. Such costs arise from myriad sources, and include those related to: winning regulatory
approval from the SEC, hiring additional engineers and support staff to implement and support the new

design, the costs of explaining and marketing the new design to market participants, and so forth. We denote
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Figure 5.1: Per-trading game payoffs for two exchanges, each employing either the continuous-time limit
order book (Continuous, or C) or discrete-time frequent batch auctions (Discrete, or D). For clarity, the
diagram does not include the share of ancillary revenues R. These payoffs constitute a prisoner’s dilemma
because I1” > N F7 for all j, and ancillary revenues are strictly positive for exchanges with positive market
share. See the text for discussion.

these costs by caqopt- In addition, if the first Discrete exchange is a new de novo exchange, we assume that
the entrant also has to pay a cost centry associated with setting up a new exchange company, being granted a
new exchange license by the SEC (in addition to regulatory approval for the new rules), etc. These adoption
and entry costs can be substantial. IEX is estimated to have raised just over $100M of venture capital in
advance of its approval as a stock exchange in June 2016 (Crunchbase, 2018); this figure would combine what
we call cagopt and cepiry. The Chicago Stock Exchange was purchased by NYSE for, reportedly, $70M, and
many industry observers speculated that the sole reason NYSE bought CHX was to acquire its exchange
license;%7 that is, costs that are part of what we call Centry-

We also assume that after any exchange adopts Discrete, existing incumbent exchanges may be able to
imitate Discrete by incurring costs cCimitate- Such imitation costs are likely to be much lower than initial
adoption costs (Cimitate < Cadopt) fOr several reasons, including that the SEC would have already approved
the market design, thereby establishing precedent; and the first adopter would have already incurred the
costs of educating market participants on the new market design.

However, critically, imitation is not likely to be immediate. Rather than explicitly model a formal dynamic
entry or adoption game, we instead allow any incumbent exchange to imitate the adoption of Discrete after
some fixed amount of time. Formally, we make the following assumptions. First, we assume exchanges’
per-trading game discount factor is equal to § < 1, and interpret centry, Cadopt, a0d Cimitate as per-trading
game costs paid in perpetuity: e.g., if the fixed cost of entry is $100M, then (3., 8")centry = $100M.
Second, after T iterations of the trading game (starting from the time Discrete entered), all incumbent
exchanges can adopt Discrete by paying the imitation costs cjmitate. Last, we assume that such imitation
is profitable—that is, for at least one incumbent exchange j, imitation costs c¢jmitate are less than its share

of ancillary revenues; we believe that this is reasonable because imitation costs seem likely to be quite low

67The Wall Street Journal reported, of the merger, “Analysts say CHX’s most valuable asset is its license to run a national
securities exchange. Applying for a new exchange license from the SEC can take years.” (Michaels and Osipovich, 2018) At an
industry conference attended by one of the authors around that time, numerous industry participants referred to CHX’s value
to NYSE as coming entirely from its “medallion,” i.e., its license to run a stock exchange.
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relative to incumbents’ share of $315 million of annual tape revenue.

Adoption Incentives: A New Entrant Exchange. We first examine the adoption incentives for a de
novo entrant exchange given the status quo where all incumbent exchanges employ Continuous.

Consider what would happen if a de novo entrant incurred entry and adoption costs to start a new
Discrete exchange. In our model, all trading activity would then shift to the Discrete exchange, and Discrete
earns revenues equal to II” + R per-trading game (cell (D,C) of Figure 5.1) as long as all other exchanges
remain with Continuous. However, given that (at least) one incumbent exchange would imitate Discrete
when able to do so, after T periods Discrete would only earn its share of ancillary revenues. Hence, an
entrant exchange would find entry profitable only if its expected revenues from entry (i.e., T periods of being
the only Discrete exchange, followed by being one of multiple Discrete exchanges) exceeds its entry and

adoption costs, or:
p(HD + R) + (1 - P) (UentrantR) andopt + Cent’rya (52)

where p = (Z?:o 61 /(3012 6") represents the share of net present value represented by the first T iterations
out of an infinitely repeated series of trading games, and oeprant denotes the anticipated market share of
the entrant following adoption of Discrete by other incumbent exchanges. Profitable entry thus depends not
only on whether the profitability of a standalone Discrete exchange, II” + R, is large relative to adoption
and entry costs, but also on the term p which captures how quickly the entrant is imitated. As one anecdote
that relates to the speed of imitation, consider that NYSE filed to imitate IEX’s speed bump within around
7 months of its initial approval (under its NYSE American exchange license) and received SEC approval

within about 1 year of IEX’s initial approval.

Adoption Incentives: An Incumbent Exchange. We next ask whether any incumbent exchange,
when all exchanges are operating as Continuous, would wish to adopt Discrete. Clearly exchanges prefer
the outcome (C,C) to (D,D) because of ESST fees. Yet, if adoption costs of Discrete are sufficiently low
and as long as rival exchanges cannot imitate without substantial delay, an incumbent exchange may find it

worthwhile to adopt. The relevant condition for exchange j is:

(TP + R) + (1= )(0R) = Cadopt + (NF} +0,R) . (5.3)
—_————

opportunity cost (status-quo rents)

The left-hand-side of (5.3) is essentially the same as that for the entrant, (5.2); the only difference is that
the incumbent’s anticipated market share when there are multiple discrete exchanges, denoted o;-, may differ
from the entrant’s, gentrant. The right-hand-side differs in that it does not include entry costs, centry, but
instead includes the forgone status-quo profits from remaining a Continuous exchange, NF} + o;R (where
o, represents the incumbent’s market share in the status quo). Since an incumbent’s ESST profits, N F o
are likely to be significantly larger than cenwy,% incumbents with existing profits to protect are even less

likely than de novo entrants to adopt.

68The relevant comparison is the net present value of status-quo ESST rents against the one-off cost of entry. Even if the
one-off cost of entry is $100M, which is substantial, the net present value of status-quo ESST rents, for the large incumbent
exchanges, is likely to be at least an order of magnitude higher based on the evidence presented in Section 4.3.
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That incumbent exchanges continue to operate Continuous is thus consistent with them maintaining the
“cooperative” (C,C) outcome of the prisoners’ dilemma in Figure 5.1. Does this sound reasonable? Consider
the following quote from the Chief Economist of Nasdaq at a publicly recorded academic event in November

2013 when asked about adopting frequent batch auctions:

“Technologically, we could do it. The big issue, one of the big issues for us, when I talked about
cost, the cost we would bear, would be getting [the SEC] to approve it, which would take a lot
of time and effort, and if we got it approved, it would immediately be copied by everybody else.
...50 we would have essentially no first-mover advantage if we put it in there, we would have no

incentive to go through the lift of creating [the new market design].”?

(Emphasis added). The quote suggests that industry participants believe that adoption costs of a new market
design are substantial, and—more importantly—if a new design turns out to be successful, it would be swiftly
imitated without any benefit to the first-mover. However, the quote does not mention the additional wedge
between Nasdaq’s (private) incentive to adopt a new design and social preferences that we have highlighted
in Figure 5.1: by adopting a new market design that eliminates latency arbitrage (and by being copied
by others), an incumbent exchange would lose its economic rents from the sale of exchange-specific speed

technology.

6 Policy Responses

Our analysis delivers the robust conclusion that private incentives to adopt a new market design that
eliminates latency arbitrage are far smaller than the social incentives to do so. Our analysis also suggests the
possibility that these private incentives are negative, and identifies the key tradeoffs a de novo entrant and an
incumbent face when considering whether to adopt. For a de novo entrant (cf. equation (5.2)), the benefits
of innovating are increasing in the size of latency arbitrage rents (and hence the fees they can charge) and
imitation delay (i.e., the innovator’s period of exclusivity), while the costs are entry and adoption costs. For
an incumbent (cf. equation (5.3)), the key difference is that latency arbitrage rents appear as both a benefit
of innovation and a cost, since, in the new equilibrium after other exchanges imitate, they no longer are
able to capture a slice of the latency-arbitrage pie via supra-competitive prices for exchange-specific speed
technology.

Informed by these insights, we propose two sets of potential regulatory responses that can tilt the market

towards a more socially desirable outcome—and help the market to fix itself.

Policy Response 1: Reduce or subsidize entry and adoption costs. The costs of starting a new stock
exchange are substantial, and the risk of a new stock exchange design not getting approved are substantial.
As evidence of the significant costs of entry, consider that IEX has had to raise about $100M to date of
venture capital, and that the Chicago Stock Exchange was purchased for a reported $70M, when the main
asset of CHX was thought to be its “medallion,” i.e., its stock exchange license. As evidence of the significant
risk of a new stock exchange design not getting approved, again consider IEX and CHX. IEX went through
a protracted fight over its exchange design, and ultimately had to make concessions such that, for the main

69The event was a Workshop of The Program in the Law and Economics of Capital Markets at Columbia which fea-
tured a presentation of BCS and an open discussion among the Program’s Fellows. The video was available for 5 years
at https://capital-markets.law.columbia.edu/content /fellow-workshops. A copy of the video is available via the internet
wayback machine at https://web.archive.org/web/20170418174002/https://www.law.columbia.edu/capital-markets/previous-
workshops/2013 (accessed on Jan 8, 2019).
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part of its market (in industry parlance, the “lit” exchange part as opposed to the “dark” alternative trading
system part), its market design was essentially a standard continuous limit order book (Budish, 2016). CHX,
too, went through a protracted fight over its proposed exchange design (which incorporated an asymmetric
speed bump as modeled in Baldauf and Mollner, 2018), was essentially rejected by the SEC, and then instead
sold its exchange to NYSE. Both of these considerations raise the risk-adjusted cost of entering as a new
exchange with a new market design (i.e., Centry + Cadopt). Examining equation (5.2), it is immediate that, if
policy could lower these costs, it would increase the incentives for a de novo entrant to innovate.

One specific way the Securities and Exchange Commission could lower the risk-adjusted costs of entering
as a new exchange with a new market design would be to proactively clarify what kinds of exchange designs
are and are not allowed within the boundaries of Reg NMS (cf. Budish, 2016¢). With respect to frequent
batch auctions specifically, it remains somewhat ambiguous whether quotes in an FBA with a <lms batch
interval would be considered “immediately and automatically accessible” under the June 2016 SEC rules
guidance. Such proactive clarification would certainly reduce risk, and would likely also reduce costs per se
(e.g., legal costs).

In principle, if the social returns to a new market design are large but the private returns are negative,
this would also justify a direct entry subsidy. The subsidy would need to be large enough to get inequality
(5.2) to obtain. The maximum necessary subsidy would be centry + Cadopt, in the case of p = 0 (immediate

imitation) and Geptrant = 0 (entrant will gain no share once incumbents imitate).

Policy Response 2: Modest exclusivity period. Examining equations (5.2) and (5.3), a key parameter
that determines whether the innovator has sufficient incentive is p. The parameter p captures the speed with
which the innovator is imitated. The quote by the Nasdaq executive, “it would be immediately copied by
everyone else,” is consistent with p being small in practice. The speed with which TEX’s speed bump was
imitated (within 7 months by NYSE American) also speaks to p being small in practice.

Our impression is that the reasons p might be small in practice are that the “hard” parts of starting an
exchange with a novel market design (even for one that has already been invented) are getting regulatory
approval and educating the market as to how the novel exchange design works, whereas the actual program-
ming and implementing of an exchange with a novel design is relatively cheap and fast. Therefore, once a
first-mover has done the hard work of getting regulatory approval and educating the market, a second-mover
can rapidly and cheaply imitate if they would like.

This economic issue—that a potential innovator would not have incentives to invest if their innovation
will be quickly imitated—is of course a familiar one. In many other contexts, the problem is solved by
patents or other legal forms of market exclusivity. Such policies explicitly trade off the static inefficiency of
monopoly for the dynamic efficiency of eliciting useful innovations.

Here, patents do not seem to be a viable way to create market exclusivity, for at least two reasons. First,
the specific market design of FBA is in the public domain. Second, even if FBA were patented, to be effective
the intellectual property protection would have to cover all possible market designs that eliminate latency
arbitrage. As evidence of the difficulty of this, consider that the Chicago Mercantile Exchange filed for a
patent (Hosman et al., 2017) in Jan 2016 for a market design idea that a close reader will recognize as, in

essence, a form of batch auction, without using the word “auction” a single time.”

70Here is an excerpt of the text from the abstract of the CME patent application (emphasis added): “The disclosed embodi-
ments may mitigate such [latency] disparities by bujffering or otherwise grouping temporally prozimate competing transactions
together upon receipt, e.g. into a group, collection, set, bucket, etc., and subsequently arbitrating among those grouped com-
peting transactions, in a manner other than solely based on the order in which the competing transactions in the group were
received, to determine the order in which those competing transactions will be processed, thereby equalizing priority of transac-
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A potential alternative way to create market exclusivity would be to have the SEC grant a modest
period of exclusivity to the innovator, during which time other exchanges would not be allowed to imitate
the design (either identically or with designs judged by the SEC to be essentially similar). This idea is
somewhat analogous to a practice of the Food and Drug Administration, wherein it grants a period of
market exclusivity for certain kinds of drugs that, for various reasons, are not patentable (see 21 CFR §
314.108 (2018) and Food and Drug Administration (2015)). The purpose of the FDA policy is to induce
drug companies to go through the effort and expense of the FDA clinical trials necessary to bring a new
drug to market. Analogously, the purpose of the SEC exclusivity period would be to induce an exchange
company to go through the effort and expense of the SEC approval process, and the other costs associated

with developing and implementing a new market design.

7 Concluding Remarks

In the quotation at the beginning of this paper, the SEC Chair asked “whether trading venues have sufficient
opportunity and flexibility to innovate successfully with initiatives that seek to deemphasize speed as a key
to trading success...” We have put forth a theoretical model of stock exchange competition that clarifies
why, even if given sufficient opportunity and flexibility to do so, trading venues may not wish to innovate: in
the current status quo, they—alongside high-frequency trading firms and speed technology providers—profit
from the speed race generated by the existing market design, and stand to lose if it is eliminated. Our
story is not about new markets failing to gain traction if introduced (as may be the case in other settings
with stronger network externalities and potential for coordination failure), but rather one of incumbents
protecting rents. The modest proposals put forth in the last section are designed with this perspective
in mind. Rather than mandate a particular market design, these proposals—borrowing simple economic
insights from the innovation literature—attempt to alter the incentives for private innovation in a way that
better align them with social preferences.

A standalone contribution of this paper, separable from our motivating question about market design
innovation, is the development of an IO of modern electronic stock exchanges. We emphasize that while
our model is already reasonably complicated, there is much left out that would be valuable to incorporate
in future research. We discussed in the main text the importance of tick-size constraints and discussed
asymmetric trading fees, a topic currently the subject of an SEC pilot test. It would also be valuable
to incorporate investors with richer trading needs and information structures—e.g., institutional investors
wishing to trade large quantities over a period of time, who need to trade off speed, price impact, and the
risk of being detected—and the role of the broker-dealers who compete to serve them, and as such play a
central role in directing trading volume. Last, we modeled the exchanges themselves as undifferentiated, but
that leaves no room for them to compete on dimensions such as reliability, order types, latency, etc. Such
extensions, in addition to being of interest per se, may also shed light on the determination of equilibrium
exchange market shares, which the current analysis is silent on (though it does yield an understanding of
why such market shares may be relatively stable over time). We also hope that the model, given its novel
focus on the source of exchange profits, will prove a useful starting point for future research related to the
entry, merger, and investment incentives of stock exchanges, and can be a useful input into the recent and

ongoing policy debate about rising stock exchange market data fees (Clayton, 2018; Jackson Jr., 2018).

tions received from participants having varying abilities to rapidly submit transactions or otherwise capitalize on transactional
opportunities” (Hosman et al., 2017).
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A Definition and Proofs

A.1 Order Book Equilibrium (OBE)

In the following definition and proofs, we denote by o0;; the order sent by TF 4 to exchange j, where an order is a
set of messages that may include standard limit orders, cancellations, and IOCs. Denote by 0; = {05 }jem the set of
orders sent by TF i to all exchanges. Limit orders and IOCs sent to an exchange take the form (g, p;), which states
that the TF is willing to buy (if ¢; > 0) or sell (if ¢g; < 0) up to |g;| units at price p;. We say that o,; provides liquidity
if it contains any limit order that offers to buy (or sell) some positive quantity at a price less than (or greater than)
y. As noted in the main text, because we have assumed that investors are equally likely to arrive needing to buy or
sell one unit of the security and the distribution of jumps in y is symmetric about zero, it is convenient to focus on
the provision of liquidity via combinations of two limit orders: i.e., for a given quantity | and fundamental value y, a
limit order to buy the security at y — s/2, and a limit order to sell at y + s/2 for some (bid-ask) spread s > 0. We
say o0;; provides [ units of liquidity at spread s if it contains such a combination of limit orders.

There are two sets of relationships between orders that we refer to in this Appendix. We say that o) (weakly)
withdraws liquidity in o; if any limit order providing liquidity (at a given price and quantity on a particular exchange)
contained in oj is also contained in 0;. We denote this relation among orders by o; C 0;. We say that o] is a (strict)
price improvement over o; if, for any [ € (0, 1] and any exchange j € M, transacting ! units on exchange j is weakly
cheaper under o}; than under o;;, and there exists some quantity ! € (0,1] and exchange j for which it is strictly
cheaper to transact under 0§j than under o;;. (If strictly less than ! units of liquidity is provided at any finite price
under o0;;, then the cost of transacting ! units under o;; is assumed to be infinite.) Note that if o; involves the
provision of no liquidity, then any o} offering positive liquidity at any (finite) price on any exchange represents a price
improvement.

Let Em;(0s:,0-;) represent TF i’s expected profits from a trading game given its orders submitted to all exchanges
and those submitted by all other trading firms, denoted o—_; = {ok; }r=i,jer; let 0_;, denote orders for all TFs other
than TF ¢ and TF k. Expectations condition on the state (y,w) at the beginning of Period 1 of each trading game,
and are taken over the potentially random sequence in which orders are processed by exchanges in Period 1, and
actions by nature and other market participants in Period 2.7

In the following definition, we allow TFs to potentially withdraw liquidity “in response to” Period-1 deviations.
In these circumstances, we assume that TFs are able to observe and condition withdrawals on the interim state of
all exchanges’ order books—i.e., the set of outstanding bids and asks, and their respective queue priority, on each
exchange following the processing of Period-1 orders but prior to the start of Period 2.72 When the distinction is
important for the purposes of computing expected profits, we explicitly condition withdrawals on the interim state,
denoted @. Although queue priority does not play a role in “on-the-equilibrium-path” behavior for the equilibria
constructed in Propositions 3.1 and 3.2, it is important for evaluating the potential profitability of “off-path” trading

game deviations and responses.
We now provide the formal definition of our order book equilibrium concept:

Definition A.1. An order book equilibrium (abbreviated OBE) of our trading game is a set of orders o* = {o;}
submitted by trading firms in Period 1 given state (y,w) that satisfies the following two conditions:

(i) No safe profitable price improvements. No TF i has a strictly profitable price improvement that is safe, defined
as remaining strictly profitable even if some other TF withdraws liquidity in response to TF ¢’s deviation. Formally, for

any TF 1, if o] is a price improvement over o] and is strictly profitable meaning that Em;(o;, 0* ;) > Em; (0,0 ;), then

71Given our modeling assumptions, we assume that each continuous limit order book exchange serially processes messages
sent in the same period from TFs with the same speed technology in a random sequence, with the queue priority of liquidity
on an exchange’s limit order book determined first by price and then by the time it is added (i.e., processed).

72For example, consider a single continuous limit order book exchange and two TFs with the same general and exchange-
specific speed technology, and say both TFs submit orders in Period 1 to provide a single unit of liquidity at the same price and
bid-ask spread. The exchange’s interim state reflects which order was processed first by the exchange and hence which TF’s
liquidity has higher priority to be filled first upon the arrival of an investor in Period 2.
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there is some other TF k # i and strictly profitable withdrawal of liquidity o}, (-) C oj—which potentially conditions
on the interim state @ arising from the processing of Period-1 orders (0}, 0*;)—that renders TF i’s deviation no
longer strictly profitable (i.e., Em; (0}, (0}, (©),0%,;)) < Emi(0},0%;)).

(ii) No robust deviations. No TF ¢ has any other strictly profitable deviation (i.e., not a price improvement)
that is robust, defined as remaining strictly profitable if, in response to TF i’s deviation, some other TF either: (a)
withdraws liquidity; or (b) engages in a safe profitable price improvement (as defined in (i)). Formally, for any TF
i, if Em;(0},0%;) > Em;(o},0";) for some deviation o] that is not a price improvement over o}, then there is some
TF k and strictly profitable reaction o}, that renders TF i’s deviation no longer strictly profitable, and either: (a)
0}, withdraws liquidity from o} (allowing the withdrawal to condition on the interim state @, as in (i)); or (b) o}, is
a safe profitable price improvement, and hence is a profitable price improvement that remains strictly profitable for

TF k even if any other TF, including TF i, engages in a strictly profitable withdrawal of liquidity in response.

A.2 Proofs for Section 3

A.2.1 Proof of Proposition 3.1 (Equilibrium of the Single-Exchange Trading Game)

FExistence. We first prove that there exists an OBE of the single exchange trading game with N > 2 fast TFs, where a
single unit of liquidity is provided at spread S}, inuous- As discussed in the main text, Period 2 behavior is governed
by uniquely optimal strategies for all market participants. Consider the following set of TF orders in Period 1 given
state (y,w). Some TF ¢ submits an order such that he provides exactly one unit of liquidity at spread s}o,tinuous
around y; if he has liquidity outstanding from the previous trading game, he maintains, adjusts or withdraws it as
necessary so that he provides exactly one unit at spread s},,1inuous around y. All other TFs k # i do not provide
any liquidity (and withdraw any existing liquidity, if present).

To show that these orders comprise an OBE, first consider deviations by TF i. Note that it is not profitable for
TF ¢ to adjust the amount of liquidity that it provides: withdrawing any amount of liquidity is unprofitable, since it
earns strictly positive profits on its one unit provided at spread s}o,iinuous; @and offering additional liquidity beyond
the initial one unit is unprofitable, as doing so only incurs additional adverse selection and sniping costs without any
additional benefits. TF 4 also does not wish to reduce the spread on any amount of liquidity, as this strictly reduces
its profits. Last, although there is a strictly profitable deviation by TF 4 to increase its spread to s’ > 8%, tinuous
for I < 1 units of liquidity that it provides, such a deviation is not robust. To see why, consider as a reaction the
profitable price improvement by some TF k # i to provide [ units at spread s},,iinuous, and an additional 1 — [
units as a stub quote (i.e., liquidity provided at a spread outside the support of J). This reaction renders TF i’s
deviation unprofitable; furthermore, the reaction is safe since k would prefer to offer such liquidity even if TF i were
to withdraw any of its liquidity: providing [ units of liquidity at s}ontinuous 1S strictly preferable to sniping the same
amount of liquidity at s’ > 8}y, inuous, and the stub quote ensures that k prefers to engage in its reaction even if TF
i were to withdraw any of its liquidity.

Next, consider potential deviations for other TFs (who do not provide any liquidity in equilibrium):

1. No TF k # ¢ would wish to add any amount of liquidity at a strictly greater spread than s}, inuous, 88 this

incurs only adverse selection and sniping costs without any benefits of being traded against by an investor.

2. Consider any strictly profitable deviation by TF k # ¢ that involves “undercutting” TF i by offering [ < 1
additional units of liquidity at spread s’ = s}, niinuous — €; this deviation is strictly profitable for sufficiently
small € > 0 since TF k earns revenues from both liquidity provision (earning priority over i at a cost of just
¢) and from sniping TF 4’s liquidity. But this deviation does not remain strictly profitable if TF i withdraws [
units of its own liquidity offered at spread sjoniinuous: Py (3.1), liquidity provision and stale quote sniping are
equally profitable at s%,,tinuous; hence TF k would have preferred to snipe at s}, inuous than provide liquidity

at a strictly narrower spread, s’ < i ntinuous-

3. Consider the deviation by TF k # i to provide [ additional units of liquidity at Sioniinuous- Due to the random

sequence in which messages are processed by the exchange, TF k’s liquidity will be filled by an investor only
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if it is added to the order book before TF i’s liquidity; since this occurs with positive probability and since
liquidity provision at Sionsinuous iS strictly profitable when only one unit of liquidity is provided (by (3.1), it
earns the same profits in expectation as sniping stale quotes at $ypniinuous), this deviation is strictly profitable
for sufficiently small I > 0. Consider then the reaction by TF 4 to withdraw [ units of its liquidity at $Zontinuous
only if it has lower queue priority than TF k (recall that withdrawals following a price improvement can
condition on the interim state realized after the processing of Period-1 orders; cf. Section A.1). This reaction
renders the deviation by TF k not strictly profitable: when k£ has higher queue priority, only 1 unit of depth is
offered and k is indifferent between liquidity provision and sniping at S, tinuous; and when k has worse queue
priority, it only bears the sniping and adverse selection costs without the benefits of being filled by an investor

upon arrival.

Hence, there are no robust deviations or safe profitable price improvements for any TF. Thus, these orders comprise

an OBE of the single exchange trading game.

Uniqueness. We next show that in any OBE, exactly a single unit of liquidity is provided at spread s},niinuous
at the end of Period 1. (All references to liquidity provision are with respect to liquidity provided at a spread within
the support of J; any liquidity offered outside this support has no economic role in equilibrium.) First, consider a
candidate equilibrium where there are [ > 1 units of liquidity offered at the end of Period 1. Consider any amount
of liquidity offered at the worst price. If such liquidity would never be filled by an investor in Period 2—which can
occur if there is at least one unit of liquidity offered at a strictly better price—then any TF offering such liquidity
would have a strictly profitable deviation to withdraw this liquidity (which remains profitable even if others could
respond with a price improvement), as such liquidity only bears adverse selection and sniping costs without liquidity
provision benefits; thus, this cannot be an OBE. Hence, if there is greater than one unit of liquidity offered in total, all
liquidity offered at the worst price must be in expectation filled by an investor in Period 2 with some probability that
is strictly positive, but less than 1 (as ! > 1). However, in this case, any TF offering liquidity at the worst price has a
profitable price improvement to reduce the spread on its liquidity by some small amount € > 0, thereby ensuring that
its liquidity would be filled by an investor with certainty in Period 2; furthermore, this deviation remains profitable
even if other TFs withdrew liquidity, and hence is safe. Thus there cannot be [ > 1 units of liquidity offered at the
end of Period 1 in any OBE. Next, consider a candidate equilibrium where there are [ < 1 units of liquidity offered
at the end of Period 1. Consider the strictly profitable unilateral deviation by any TF to offer 1 — [ additional units
of liquidity at spread Sioniinuous- Lhis is a safe profitable price improvement, as reactions that withdraw offered
liquidity do not render this deviation weakly unprofitable. This cannot be an OBE; contradiction. Thus, exactly a
single unit of liquidity must be offered at the end of Period 1 in any OBE.

Now consider a candidate equilibrium where exactly one unit of liquidity is offered at the end of Period 1, but I < 1
units are offered at a spread s < Siontinuous PY Some TF 4. Consider the strictly profitable unilateral deviation by TF
1 to increase its spread to s}, ,1inuous ON its offered liquidity. As above, there is no safe profitable price improvement
that renders the deviation weakly unprofitable, as any TF considering a price improvement that undercuts TF 14
would instead prefer to snipe TF ¢’s liquidity at s),,1inuous @ Opposed to providing liquidity at a narrower spread.
This cannot be an OBE; contradiction. Next, consider a candidate equilibrium where exactly one unit of liquidity
is offered at the end of Period 1, but { < 1 units are offered at a spread s > s}, tinuous Py some TF ¢ . There
is a safe profitable price improvement by TF k # ¢ to undercut and provide [ units at spread Sioniinuous, S there
are no withdrawals of liquidity that render the deviation weakly unprofitable (since k prefers to provide liquidity at
Stontinuous b0 sniping liquidity provided at s > s} ,tinuous)- Lhis cannot be an OBE; contradiction.

Thus, any OBE has a single unit of liquidity provided at bid-ask spread s},,tinuous following Period 1.

A.2.2 Supporting Lemmas for Proposition 3.2

The proof of Proposition 3.2 relies on the following two supporting lemmas.

63



Lemma A.1. Consider any Stage 3 trading game where all N TFs have purchased ESST on all exchanges contained
in non-empty set J C M, and no TF has purchased ESST on any exchange m ¢ J. Further assume that trading

fees are zero for all exchanges j € J and weakly positive for all exchanges m ¢ J. Then:

1. Existence: for any vector of market shares o* = (o7, ...,0%,) such that > i=land o, =0ifm ¢ J,

0

JjET 7J
there exists an OBE in which TFs in aggregate provide o} units of liquidity on each exchange j at spread
Stontinuous i Period 1.

2. Uniqueness: any OBE of the trading game has exactly one unit of liquidity provided in aggregate at spread
Stontinuous 1N period 1, where liquidity is provided across exchanges according to some vector of market shares

o* = (of,...,0%) such that Z]EMJ]*- =1and o;, =0 if f,, > 0.

(We do not require the uniqueness portion of Lemma A.1 for our main results, but state and prove it here for

completeness.)

Proof. Condition on state (y,w) at the beginning of this trading game.

Ezistence. Consider any vector of exchange market shares o* = (o7, ...,0},) such that Zjej oj =land oy, =0
if m ¢ J. Consider the following candidate strategies. In period 1, a single TF ¢ submits orders to each exchange
J € J to provide exactly o} units of liquidity at spread s7,,tinuous around y (maintaining, adjusting or withdrawing
any outstanding liquidity from the previous trading game as necessary). All other TFs k # ¢ do not provide any
liquidity (and withdraw any existing liquidity, if present). In period 2: investors trade at least one unit, prioritizing
across exchanges based on the lowest value of s;/2 + f; (where for each exchange j, s; is the lowest spread at which
liquidity is offered and f; is the trading fee), breaking ties according to routing table strategies given by v = o*,
and then trading against any remaining profitable orders; informed traders trade against any profitable orders; and
if there is a publicly observable jump in y, TF i sends messages to cancel all liquidity providing orders, and all other
TFs attempt to trade against any profitable orders. As discussed in the main text, Period-2 strategies are essentially
unique, and there are no strictly profitable Period-2 deviations. Consider now strictly profitable Period-1 deviations.
The arguments here are analogous to those used above in the proof of Proposition 3.1. If TF i increases its spread on
any exchange, there is a safe profitable price improvement by some TF k # ¢ to provide liquidity at spread s}, tinuouss
rendering the deviation not strictly profitable. If some TF k # ¢ adds additional liquidity on any exchange, TF 14
can withdraw any amount of liquidity whenever profitable to do so (i.e., any liquidity with low enough queue priority
to not be filled by an investor in Period 2), rendering the deviation not strictly profitable. Thus, these strategies
comprise an OBE. Note that in this equilibrium, in each trading game each TF earns (gross ESST fees) expected
profits of o5 X IT7,,1inuous/IN on exchange j from either liquidity provision or sniping activity; this implies that each
TF earns in aggregate 117, inuous/IN per-trading game across all exchanges—the same amount that each TF would
earn in equilibrium if there was only a single exchange.

Uniqueness. Consider any OBE where I = (I7,...,l},;) units of liquidity are provided across exchanges at the
end of Period 1, investors use routing table strategies given by v* = (77, ...,7x), and market shares are given by
o* = (o},...,0x), where o; volume is transacted on each exchange j in the event that investors arrive. In any
equilibrium, we show that exactly a single unit of liquidity is provided in aggregate among all exchanges with zero
trading fees (i.e., ZjeM I; = 1and [, = 0if fi, > 0) at spread s7,ntinuous around y following Period 1; and
transaction volume upon the arrival of an investor coincides with liquidity provision for all exchanges (i.e., o = [}
for all j € M). We prove this by ruling out the following cases. First, any amount of liquidity { > 0 cannot be
provided at spread s’ # Siontinuous ON Some exchange j € J by any TF i, as the same arguments used in the proof of
Proposition 3.1 establish that there would then exist either a safe profitable price improvement or a robust deviation
for some other TF. Second, in Period 1, exactly one unit of liquidity must be provided: if less than one unit is
provided, then any TF would have a safe profitable price improvement to add some small amount of liquidity at
spread Sy ntinuous O Some exchange j € J; if more than one unit is provided, then the same arguments used in

the proof of Proposition 3.1 establish that some TF offering liquidity at the worst price has a robust deviation to
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either withdraw such liquidity, or reduce the spread by some positive amount € > 0 to guarantee that it would be
transacted against by an investor in Period 2. Third, positive liquidity cannot be provided on any exchange m where
fm > 0. Assume not, and some amount of liquidity { > 0 is provided on exchange m at spread s’ by some TF i in
equilibrium. For this to be an equilibrium, it cannot be that s'/2+ fm > Siontinuous/2, as otherwise there would be a
safe profitable price improvement by another TF k to provide the same amount of liquidity [ on any exchange j € J
at spread Siontinuous (Since both an investor would strictly prefer to transact on exchange j at spread Siontinuous
than on exchange m at s’, and TF k would strictly prefer to provide liquidity on exchange j at s}y, tinuous than snipe
liquidity on exchange m at s"). However, if 8'/2 + fim < Stontinuous/2, then TF i has a robust deviation to withdraw
all liquidity on m and offer the same amount of liquidity on any exchange j € J at spread s}ontinuous (and avoid
trading fees) since there is no safe profitable price improvement by any other TF (e.g., any TF k # ¢ prefers sniping
liquidity on j at Siontinuous than offering it on any other exchange at a lower spread). Thus, any equilibrium with

zero trading fees involves a single unit of liquidity provided across all exchanges with zero trading fees at spread

*
Scontinuous:*

Lemma A.2. (“Lone-Wolf Lemma”) Consider any Stage 3 trading game where: (i) trading fees on all exchanges
are zero; (ii) TF 1, referred to as the “lone-wolf,” has purchased exchange-specific speed technology (ESST) only on
exchanges contained in the set J C M; and (iii) all other TFs k # i have purchased ESST on all exchanges. There
ezists an OBE of this trading game where exactly one unit of liquidity is provided only on exchanges contained in J

by TF i at spread Sy in Period 1, where 3N solves:

SN N -2 )\publicL(gN)

Ainvest? - (ﬁApublic + )\private)L(gN) = N 5 (Al)

. . . l — l —
and TF i earns in ewpectation at least my"*~ " = N1
.

1 —wol _ m* 1 ] . . . . . L. .
e e (A x —centinuwous —continuous)  Fyrthermore, in any OBE in which only TF i provides liquidity in

ApublicL(8n) per-trading game gross of ESST fees, where

Period 1 of each trading game, a single unit is provided only on exchanges contained in J by TF i at spread Sn.

Proof. In this proof, all references to TF profits are in expectation for each trading game, gross ESST fees.
Preliminaries. Define the spread sy to be the minimum spread TF ¢ must charge on exchange j for one-unit of
liquidity so that ¢ breaks even in expectation when N — 1 other trading firms have also purchased ESST from j and
no liquidity is provided on any other exchange; i.e., sy is the solution to:
s N-1 _
)\invest% - (TApublic + )\private)L(SN) =0. (Az)
The difference between the definition of sy and the definition of s}, inuous i (3.1) is that sy does not incorporate
the opportunity cost of sniping, worth %)\pume(-). We first prove that sy < §n < Siontinuouss Where Sy is the
solution to (A.1). The first inequality follows from comparing (A.2) to (A.1), which can be re-written as )\imest%" —
(% — ¥=2)Apubiic + Aprivate)L(3n) = 0. It is straightforward to show that the coefficient on Apyeiic is greater in

N-1
(A.1) than in (A.2): § — =1 =1 — yz—p > 1 — x = "5 Hence, it follows that 5y > 5n. Similarly, it follows
that S8 < Siontinuous: 11 (3.1), which defines s . inuouss Apublic enters the equation with a coefficient of 1; however,

in (A.1), which defines §n, Apubiic enters with a coefficient strictly less than 1.

The rest of the proof proceeds in three parts. First, we establish that an equilibrium with the properties outlined
in the statement of the Lemma exists (Existence). Second, we establish that any equilibrium in which only TF i
provides liquidity in Period 1 of each trading game must have these properties (Uniqueness). Last, we prove that
T € (Megntinuous X (N = 1)/N* Meontinuous/N) (Profit Bound).

Ezistence. We prove that there is an OBE of the Stage 3 trading game in which TF ¢ provides one unit of liquidity
at spread §n across exchanges according to any arbitrary vector of shares o* = (07,...,00) s.t. Z]‘ej o; =1 and
oj =0if j ¢ J, and no additional liquidity is provided by any other TF. Consider equilibrium strategies where TF

¢ submits an order to provide one unit of liquidity at spread §y across exchanges in J according to o™, and other
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TFs only snipe (i.e., no orders are submitted by TFs k # ¢ in Period 1 of each trading game); and investors route
across exchanges using routing table strategies v* = o*. The right-hand-side of (A.1) represents the gross expected
payoffs that any TF k # i expects to obtain by sniping TF i across all exchanges; the left-hand-side represents the
gross expected payoffs that any TF k would anticipate if TF k were instead the sole liquidity provider on some other
exchange m ¢ J at spread Sny. Hence, no TF k # ¢ has a strictly profitable deviation—for example, by undercutting
¢ or providing additional liquidity at a spread weakly smaller than §y on any exchange—that remains profitable if
TF ¢ reacts by withdrawing any liquidity that is no longer profitable to offer. By similar arguments used to establish
our single exchange results, there is also no robust deviation for TF 4: if TF ¢ widened its spread on any amount
of liquidity, the deviation would be rendered unprofitable by another TF k’s safe reaction to provide that amount
of liquidity on some exchange m ¢ J at spread §ny (which, by (A.1), is more profitable for TF k than sniping TF
i at any spread strictly greater than §x); and TF ¢ reducing its spread or adjusting the amount of liquidity that it
provides would strictly reduce profits. Thus, these strategies comprise an OBE.

Uniqueness. We prove that in any OBE in which only TF i provides liquidity in Period 1 of each trading game,
a single unit of liquidity is provided by TF ¢ across only exchanges contained in J at spread §y. First, note that TF
i must offer exactly one unit of liquidity in aggregate: otherwise, TF ¢ would find it profitable to withdraw liquidity
(if it offered strictly greater than one unit of liquidity) or have a safe profitable price improvement to add liquidity
at spread §n on some exchange in J (if it offered strictly less than one unit of liquidity). Second, note that such
liquidity must be offered only on exchanges in J. Assume not, and some positive amount of liquidity 1, > 0 was
offered by TF i on some exchange m ¢ J. Any such liquidity on exchange m must be offered by TF ¢ at a spread
Srontinuous: 1 it were offered at a greater spread, there would be a safe profitable price improvement by some other
TF k # i to undercut TF ¢ and offer this amount of liquidity on exchange m at spread s},,tinuous; if it were offered
at a lower spread, then TF ¢ would find it profitable to withdraw such liquidity, since without ESST on exchange
m, a TF who provides liquidity at S}o.,tinuous €arns zero expected profits—i.e., the revenue from investor arrivals is
exactly offset by the costs of adverse selection and sniping. However, if TF ¢ offered positive liquidity on exchange
m at spread S}, ,tinuous, it would then have a robust deviation to withdraw that liquidity and offer instead the same
amount of liquidity on some exchange in J at spread §y (as discussed above when establishing Existence, no TF
k # i would find offering liquidity at any spread less than Sy on any exchange strictly preferable to sniping TF #’s
liquidity on an exchange in J at spread $x). Hence, TF ¢ must offer a single unit of liquidity only across exchanges
in J. Last, TF ¢ must offer a single unit of liquidity at spread §y. If any amount of liquidity were offered at a lower
spread, TF ¢ would have a robust deviation to increase its spread to §y; and if any amount of liquidity were offered
at a strictly greater spread, there would be a safe profitable price improvement by some TF k # ¢ to provide the
same amount of liquidity on some exchange m ¢ J at spread Sn.

Profit Bound. Define

one—wo g N - 1 -
7T§\] i = Ainvest?N - (T)\public + Apm’vate)L(sN) (A3)

to be the expected profits per trading game (gross ESST fees) that a lone-wolf liquidity provider (TF i) makes
providing a single unit of liquidity at spread §y across exchanges contained in 7 when there are IV total trading firms
(including him) that also have purchased ESST on exchanges contained in J, and TF i is the sole liquidity provider.
We now prove bounds on 7ig™*~"° . First, the upper-bound 7"~ < TI%,, 1inuous/N = Ny D

N-1 < since & 5 .
(5= Apublic + Aprivate) L(Stontinuous) follows since 38 < S%ontinuous a0d L(5N) > L(8zontinuous)- Next, consider the

lower-bound 7"~ > N L ptinuous- In the described equilibrium, TF i earns rlem ol wwhile the other N —1

TFs that snipe him earn W}Oﬂ*lone*wow = %)\

publicL(gN) = )\investhN - (%)\public + Aprivate)L(gN) (Wthh follows
from the definition of 55 provided in (A.1)). At this spread, the other N — 1 TFs prefer sniping at §ny to providing
at a strictly narrower spread on another exchange m ¢ J, and hence do not want to undercut TF 4. From these two

expressions, we can compute the difference in profits between the other N — 1 TFs and TF 1:

non—lone—wo one—wo N - 1 N - 2 - ]_ -
TN l lf ﬂ—é\f Lf — (T — ﬁ))\publicL(SN) = m/\publicL(sN) (A4)
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which is strictly positive for any N > 2: i.e., the lone-wolf liquidity provider at spread § makes less than what
the other TFs earn by sniping (recall that Sn < Siontinuouss a1d at Seontinuous LEFS are indifferent between liquidity
provision and sniping). Next, note that the profits that ¢ and the N —1 TFs that snipe 7 earn must by definition equal

total sniping rents at the lone-wolf spread 3y: i.e., Wﬁf,me_w‘ﬂf + (N — I)W]T\Ljon_lone_w(’lf = ApubticL(8n). Substituting

in for 7" using (A.4) yields:
T (N = D 4 s e L) = A L)
(<) ghomeTwoll %)\publicL(gN)
(<) ghomemwoll %H:ontinuous

where the last inequality follows since II7,, tinuous = ApublicL(Spontinuous) 30d SN < Shontinuous iMmplies that L(5nx) >

L(s:ontinuous ) .

A.2.3 Proof of Proposition 3.2 (Equilibrium Existence for the Multiple-Exchange Game)

For any vector of ESST fees F* that satisfies (3.2) and market shares o* such that ZjeM oj = 1, consider the

following candidate equilibrium strategies:
 In Stage 1, each exchange j charges F for ESST and sets trading fees f; = 0;
+ In Stage 2, all TFs buy ESST from exchange j only if (i) its ESST fee F; < F}, (ii) f; = minges fr, and (iii)
oj > 0;
e In Stage 3,

1. If all TFs purchase ESST from the same set of exchanges J C M where f; = 0 for all j € J, then in
Period 1 of each trading game, some TF ¢ submits orders to provide o /(> ", e o) amount of liquidity
on each exchange j € J at spread Si,niinuous around y (maintaining, adjusting or withdrawing any
outstanding liquidity from the previous trading game as necessary), all other TFs submit no orders to

any exchange, and no liquidity is provided elsewhere (this occurs on the candidate equilibrium path).

2. If one TF 4 purchases ESST from a non-empty strict subset of exchanges J' C M, and all other TFs
k # i purchase ESST from a strictly greater set of exchanges J (so that J' C J C M) where f; = 0 for
all j € J, then in Period 1 of each trading game, TF i is the “lone-wolf” liquidity provider and submits
messages to provide one unit of liquidity on some exchange j € J' at spread 3y (defined in (A.1)) around

y, all other TFs submit no orders to any exchange, and no liquidity is provided elsewhere.

3. If one TF i purchases ESST from a set of exchanges I C M and all other TFs k # ¢ purchase ESST from
a strict subset of exchanges J C M, where f; = 0 for all j € J and K ¢ 7, then in Period 1 of each

trading game:

(a) If J C K (so that TF ¢ purchases from a strictly greater set of exchanges than all other TFs),
strategies are as in Case 1. above and liquidity is provided only on exchanges in J;

(b) If 7N K = 0 (so that TF ¢ purchases from no exchanges contained in J), strategies are analogous
to Case 1. above: some TF k # ¢ which has purchased ESST on exchanges in J submits orders to
provide O’;/(Zkej o) amount of liquidity on each exchange j € J at spread S)ontinuous around y
and all other TFs submit no orders to any exchange;

(c) Otherwise (which occurs if K contains a non-empty strict subset of exchanges in J and at least one
exchange outside of J), strategies are as in Case 2. above where TF i is the lone-wolf liquidity

provider, and provides one unit of liquidity at spread &y on some exchange contained in J' = J NK.

e In Stage 3, in Period 2 of each trading game, investors upon arrival trade one unit, prioritizing based on spreads

and trading fees and breaking ties according to routing table strategies v* = o* (with uniform tie-breaking
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across all exchanges where 7, = 0), and trade against any remaining profitable orders given y; informed traders
upon arrival trade against any profitable orders given y; and upon the arrival of a publicly observed jump in
y, the sole liquidity providing TF attempts to cancel its liquidity providing orders while all other TFs engage

in stale-quote sniping and attempt to trade against any profitable orders.

Note that these strategies dictate play in all subgames that are reachable via any sequence of unilateral deviations
in Stages 1 and 2.

To show that these strategies comprise an equilibrium, we now consider potential sequences of unilateral deviations
by all market participants. First, consider Stage 1 deviations involving exchanges and their choice of ESST fees and
trading fees. Given equilibrium strategies, any exchange j would strictly reduce profits by lowering its ESST fee (as
outcomes would otherwise remain the same); exchanges also would earn negative profits by reducing trading fees
(as it would create a “money pump,” as discussed in the main text). Furthermore, if any exchange increased its
ESST fee, the exchange would earn zero profits as no TF would purchase ESST from it, and liquidity would only be
provided on other exchanges (which is an OBE outcome of the multi-exchange trading game; see Lemma A.1); and
if any exchange increased is trading fee, it also would earn zero profits for the same reasons. Hence, exchanges have
no strictly profitable unilateral deviations.

Next, we turn to Stage 2 strategies for TFs. By following candidate strategies in Stage 2 given exchanges did not

N
deviations for any TF involve the purchase of ESST from a strict subset of exchanges (as purchasing ESST from no

deviate in Stage 1, all TFs earn —II%, . invous — Z]. F} which, by (3.2), is positive. Potentially profitable unilateral

exchanges yield no profits, and being the only TF to purchase ESST from an exchange yields no benefit due to our
fair-access assumption). In subgames following such deviations, prescribed strategies comprise the unique OBE of
the subsequent “lone-wolf” Stage 3 trading game given no orders are submitted by other TFs (Lemma A.2), and the
deviating TF earns in expectation Wﬁ\(,me_“’(’lf per trading game (gross trading fees). Condition (3.2) ensures that this
deviation is not profitable for any TF. Similar arguments establish that there are no strictly profitable deviations for
TFs in Stage 2 given at most one exchange engaged in any deviation in Stage 1.

Finally, given equilibrium play in Stages 1 and 2, Lemma A.1 establishes that Stage 3 strategies comprise an

OBE.

A.2.4 Proof of Proposition 3.3

We first prove that condition (3.2) must hold in any equilibrium where all TFs purchase ESST from all exchanges and
trading fees are zero for all exchanges. Consider any equilibrium in which all TFs purchase ESST from all exchanges
and trading fees are zero for all exchanges. Assume by contradiction that (3.2) does not hold. Then one of the two
following cases must be true.

(i) w <3 wios >0 Fk- This implies that TFs earn negative expected profits from equilibrium strategies;
as a result, any TF has a profitable deviation of not purchasing speed technology from any exchange. Contradiction.

(i) whomem vl — min; Fy > W - Zk:d; >0 Fk- Consider a deviation by TF 4 to purchase ESST only
from an exchange with the lowest ESST fee. By Lemma A.2, such a deviation earns TF i at least expected profits
wé\‘;"efw"lf — min; Fj, which is higher than what it would earn via equilibrium strategies. Contradiction.

We next establish that if condition (3.2) is satisfied but not binding in some equilibrium where all TFs purchase
ESST from all exchanges, then some exchange j can increase its ESST fee to Fj = F; + ¢ for sufficiently small € > 0,
and there would still exist a subgame equilibrium beginning in Stage 2 where all TFs still purchase ESST from all
exchanges (hence proving the second part of the Proposition). This follows because, for sufficiently small e > 0,
condition (3.2) would still hold for the vector of ESST fees F' = (F;, F*,).

A.2.5 Proof of Proposition 3.4

Consider any vector of ESST fees F' = (Fy__ F},) that maximizes Zje/vt F; among all vectors of ESST fees that

satisfy condition (3.2). In such a vector, ESST fees must be equal across exchanges, and there must be a constant
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F such that F} = F for all j € M: if not, then the lowest ESST fee, min;Fj, can be increased by some amount

e > 0 without violating condition (3.2) (as there would be at least one exchange with strictly higher fees), and F’

would then not be a maximizer over the sum of ESST fees. Hence, any vector of ESST fees that maximizes the

sum over all ESST fees and satisfies condition (3.2) is unique and involves each exchange charging the same amount

F. This implies that each trading firm pays at most M x F < (I%niinuous/N) — (Wé\‘;"e_w‘)lf — F) in ESST fees

across all exchanges if condition (3.2) holds. Since "¢~/ > %;QDHZO””MOM by Lemma A.2, it follows that
M

F< ml’[:omm”ous and M x N x F < ml’[:ommuous, where M x N x F' is an upper bound on the total

amount of ESST earned by all exchanges if condition (3.2) holds.

A.3 Proofs For Section 5

Preliminaries: Equilibrium Spreads on Discrete. For this section, we assume that the jump size distri-
bution is absolutely continuous.
Denote by Sgiscrete(f) the zero-variable profit spread for a liquidity provider on Discrete given Discrete charges a

trading fee f > 0; such a spread solves:

gdisc‘rete (f)

)\invest( 2

— f) — )\privateL(Edisc'retE (f)7 f) - 0 9 (A5)

where L(s, f) = E(J — 5 + f|J > 5 4+ f)Pr(J > 5 + f) represents the expected loss to a liquidity provider providing
liquidity at spread s on an exchange with trading fee f in the event of being adversely traded against. The first
term on the left-hand-side of A.5 represents the revenues a liquidity provider earns when a investor arrives (i.e., half
the spread less the trading fee), and the second term is the expected loss from informed trading. A unique solution
Sdiscrete(f) exists for any f > 0 (and is strictly positive) by the same arguments used to establish the existence and
uniqueness of Siontinuous 11 the main text.

Define fJ;serete t0 be the trading fee so that an investor is indifferent between trading on Discrete at spread
Sdiscrete(fiiserete) With trading fee fJ; crete, and trading on Continuous at the zero-variable profit spread Scontinuous
with no trading fee. As the following lemma establishes, fg;screte €xists and is unique.

Lemma A.3. There erists a unique solution fj;screte t0:

gcontinuous
. A.6
2 (A.6)

*
+ fdisc’rete = 2

Furthermore, if f < (>)fiisorcte, then gdiscr;te(f) +F<(>) gcontgnuous-

Proof. Let H(s, f) = Minvest(5 — f) — AprivateL(s, ). Define s(f) to be the solution to H(s(f), f) = 0 (hence,
Sdiscrete(f) = s(f)); by the implicit function theorem, the function s(f) exists and is continuously differentiable with
s'(f) = —(0H/0f)/(0H/0s) = )37‘1:::';Z\i’;‘r”:zf{is(sf}), where L¢() and Ls(-) represent partial derivatives of L(-).

We next establish that %m(f) + f is strictly increasing in f: differentiating this expression with respect to f

implies that a sufficient condition for it to be strictly increasing in f is s'(f) > —2. Substituting in for s’(f) and
re-arranging terms yields s'(f) > —2 < Ainvest/Aprivate > (Ls(s, f) — Lf(s, f)/2). This inequality always holds
since the left-hand-side is strictly positive, and the right-hand-side is weakly negative.”® Since %‘”Cm + f is thus
strictly increasing and continuous in f, and since it is less than Scontinuous/2 for f = 0 but greater than Scontinuous/2

when f = Scontinuous/2, there exists a unique solution to (A.6). The rest of the statement directly follows. O

"Let Gjump denote the jump size distribution and gjymyp its associated density. To establish that (Ls(s, f) — L¢(s, f)/2) <0,
note that

oo

L(s, f)=E(J =24+ flJ> 24+ f)Pr(J > 2 4+ f) = / [t — 2 + flgjump(t)dt .
2 2 2 siy 2
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A.3.1 Proof of Proposition 5.1

We prove that a more general version of Proposition 5.1 holds when Discrete charges a weakly positive trading fee:
i.e., in any equilibrium of any Stage 3 trading game given state (y,w) with a single Continuous and single Discrete
exchange where all TFs have purchased ESST from Continuous and trading fees are zero on Continuous and equal
to f € [0, fliserete) ON Discrete, exactly one unit of liquidity is provided on Discrete at bid-ask spread Sgiscrete(f)
around y following Period 1, and no liquidity is provided elsewhere. Such an equilibrium exists. (It is straightforward
to use the same arguments below to establish that the Proposition statement holds even if there exist other Discrete
exchanges with trading fees that are strictly greater than f).

Ezistence. Consider the following Stage 3 strategies given state (y,w). In period 1, a single TF ¢ submits an
order to Discrete to provide one unit of liquidity at spread Sgiscrete(f) around y; if he has liquidity outstanding from
the previous trading game, he maintains, adjusts or withdraws it as necessary so that he provides exactly one unit at
spread Sgiscrete(f) around y. All other TFs k # ¢ do not provide any liquidity (and withdraw any existing liquidity if
present). In period 2: an investor trades at least one unit of liquidity, prioritizing orders across exchanges based on
the lowest value of s;/2 + f; and breaking ties in any arbitrary fashion, and then also trades against any remaining
profitable orders; informed traders trade against any profitable orders; and if there is a publicly observable jump
in y, TF ¢ sends messages to cancel all liquidity providing orders, and all other TFs attempt to trade against any
profitable orders (but are unable to do so in equilibrium). Using similar arguments used in the proof of Lemma A.1,
it is straightforward to show that there are no safe profitable price improvements or robust deviations in Period 1,
or profitable deviations in Period 2, and hence these strategies comprise an OBE for the Stage 3 trading game. In
particular, in Period 1, any increase by TF ¢ in its spread on Discrete to Sgiscrete(f) + € for any € > 0 and any
amount of liquidity is not a robust deviation, as it is rendered unprofitable by a safe profitable price improvement
from another TF to provide the same amount of liquidity at spread Sgiscrete(f) + £/2 on Discrete.

Uniqueness. We now establish that in any Stage 3 OBE, exactly one unit of liquidity is provided on Discrete
following Period 1 at spread Sgiscrete(f), and no liquidity is provided elsewhere. By the same arguments in Lemma
A.1, we establish that exactly one unit of liquidity must be provided in any trading game equilibrium. Now consider
a candidate equilibrium where some positive amount of liquidity is provided on Continuous: such liquidity cannot be
provided at spread strictly less than Scontinuous (the zero-variable profit spread), else the liquidity provider would be
better off withdrawing its order; at any spread weakly greater than Scontinuous, there is a strictly profitable deviation
by any slow TF to provide the same amount of liquidity on Discrete at some spread s’ € (Sdiscrete(f), Scontinuous),
implying these strategies cannot be an equilibrium. Last, consider next a candidate equilibrium where any amount
of liquidity on Discrete is provided at some spread § # Sgiscrete(f): if provided at a smaller spread, such liquidity is
better off being withdrawn (as it is less than the zero-variable profit spread on Discrete given informed trading); and
if provided at a greater spread, there is a strictly profitable deviation by any slow TF to provide the same amount of

liquidity at any spread s’ € (Saiscrete(f), 5)-

A.3.2 Proof of Proposition 5.2

Ezistence. First, we establish that if Discrete charged any trading fee f' > fJ;screre and Continuous had zero trading
fees, then in any Stage 3 equilibrium, no liquidity can be provided on Discrete. To see why, assume instead that there

is positive liquidity provided on Discrete in some equilibrium. The lowest spread at which liquidity could be profitably

Hence,
LS(S,f) — ,/ gj%p(t)dtf[(§+f)7§+f]x gjump(';/2+f) :7(17Gjum;7(5/2+f)) *fngump(ngf),
5+f
oo s s s s s
L60) = [ 0= [+ 0= 5+ 1% Gl )= (0= Gl + ) =27 X a5 4,
S+f

and (Ls(s, f) — Ly (s, f)/2) = —=(1 = Gjump(s/2 + f)), which is weakly negative since Gjump(z) < 1 for all z.
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offered on Discrete is the zero-variable profit spread Saiscrete( f’). At this spread, the total price considered by an
investor contemplating trading on Discrete is Sagiscrete(f')/2 + f' > Scontinuous/2 (by Lemma A.3 and the definition
of fiiserete)- This implies that there exists a safe profitable price improvement for some fast TF on Continuous
to provide liquidity on Continuous at spread s’ € (Scontinuous, Sdiscrete(f') + 2f'), as such liquidity at spread s’ on
Continuous would be preferred by investors than that on Discrete; contradiction.

Now consider the following equilibrium strategies. In stage 3, market participants use strategies described in the
Proof of Proposition 5.1, with the modification that investors break ties in favor of Discrete.”* In Stage 2, all fast
TFs do not purchase ESST from Continuous. In Stage 1, Discrete charges positive trading fees fJ; crete; Continuous
charges zero trading fees and zero ESST fees. In Stage 1, Continuous has no strictly profitable deviations: any attempt
to charge positive trading or ESST fees does not affect profits; negative fees result in strictly negative profits. Discrete
also has no strictly profitable deviations: by Proposition 5.1, reducing trading fees yields lower profits for Discrete as
it does not affect Stage 3 trading game behavior; and any higher trading fees results in all trading activity in Stage 3
occurring on Continuous and zero profits (as established above). There are no strictly profitable Stage 2 deviations
by any TF (as purchasing ESST does not affect profits), and similar arguments used in the Existence portion of the
proof for Proposition 5.1 establish that these strategies comprise an OBE of the Stage 3 trading game.

Uniqueness. We establish that in any equilibrium, (i) Discrete charges trading fees equal to fJ; crere; (i) in every
iteration of the trading game, exactly one unit of liquidity is offered on Discrete at spread Saiscrete(fiiserete) and
no liquidity is provided elsewhere; and (iii) Continuous exchanges earn zero profits. For claim (i), first consider a
candidate equilibrium where Discrete charges trading fee f < f7;screte- Since %ﬂem +f< w, then by
continuity of Sgiserete(+), there exists f' = f + ¢ for sufficiently small € > 0 such that g“““’fe“m +f < g’”’"“%
and would yield Discrete strictly higher profits as it would still capture all trading volume but obtain higher trading
revenues; contradiction. Thus, Discrete cannot charge any trading fee f < fl;icrete- Next, consider a candidate
equilibrium where Discrete charges trading fee f > fiiscrete- In this equilibrium, either Discrete has zero trading
volume in Stage 3, or positive trading volume. In the case that Discrete has zero trading volume, since there exists
some strictly positive f' < fi; crete Such that gd’%"“’(m +f < w and yields positive trading volume on
Discrete in any Stage 3 equilibrium (by Proposition 5.1), there is a profitable deviation for Discrete to charge f’
instead; contradiction. In the case that Discrete has positive trading volume (which results if Continuous charges
a sufficiently high trading fee), then using similar arguments as in Lemma A.3 and above, there is some positive
trading fee f' > 0 that Continuous could charge such that %"”Sm +f < %‘”em + f, where Scontinuous (f)
is the analogous zero-variable profit spread on Continuous given Continuous charges trading fees f’, that results in all
trading volume occurring on Continuous in any Stage 3 OBE and higher profits for Continuous; contradiction. Thus,
Discrete cannot charge any trading fee f > fiscrete- Hence, Discrete must charge trading fees equal to f7iscrete-
For claim (ii), any equilibria in which strictly less than or strictly greater than one unit of liquidity is provided in
aggregate across all exchanges can be ruled out using similar arguments as in Lemma A.1. Now consider a candidate
equilibrium in which exactly one unit of liquidity is offered in aggregate, but strictly positive liquidity is offered on
Continuous. Then Discrete has a profitable deviation in Stage 1 by instead charging a trading fee f' = fJ;serete — €
for sufficiently small € > 0, guaranteeing that all volume transacts on Discrete in Stage 3 and increasing profits for
Discrete; contradiction. Claim (iii) directly follows from (i) and (ii).

Profit Bound for Discrete. We now establish that when Discrete charges trading fees equal to fJ;;crete and one
unit of liquidity is provided in each trading game on Discrete at spread Saiscrete(fiiserete) and no liquidity is provided
elsewhere, Discrete earns (in expectation) at least %H* per trading game. Recall that Scontinuous i given by the
solution to Ainvest W —(Aprivatet+ %)\public)L(Ewmmwus) = 0. Using (A.6), this expression can be rewritten
st Ainyest (2izereteUliscrere) 4 pr N e - LSaiscrete(Firerete) + 2Fiiserete) — e Mpubiie L(Scontinuons) =

Sdiscrete Fdiserete) _
2

0. Subtracting from this the definition of the zero-profit spread on Discrete (given by Ainvest(

741f trading fees are restricted to be in discrete units (e.g., in units of $0.0001), then there also exist equilibria in which
investors always break ties in favor of Continuous: in such equilibria, Discrete charges the greatest trading fee f such that

g‘“s";t‘i(f ) 4 < gco””;“"“s , and liquidity is only offered on Discrete in each trading game.
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f;iscrete) - )\PrivateL(gdiSC"‘Ete(f;isc'rete) + 2f;i5c7“ete) = 0) yieldS:

* N —
)\invest(zfdisc’retE) = T

where the left-hand side of the equation represents the Discrete exchange’s expected revenues from trading fees

)\publieL(Econtinuous) y

faiserete Obtained from only investors (and not from informed traders), and thus is strictly less than Discrete’s total
expected revenues per-trading game (which includes trading revenues from both investors and informed traders). The
right-hand side of the equation represents (N —1)/N share of the total “sniping prize” at a spread of Scontinuous; since
Scontinuous < Seontinuous a0d L(+) is decreasing in the spread, the right-hand side is strictly greater than (N —1)/N

share of 11}, tinuous, and the result follows.

A.3.3 Proof of Proposition 5.3

Existence. Consider the following strategies. In Stage 3, market participants use strategies described in the Proof
of Proposition 5.1, where investors break ties in favor of one particular Discrete exchange labeled j for convenience,
and one unit of liquidity is provided by a single TF i on the Discrete exchange with the lowest trading fees, and
solely on exchange j in the case of equal trading fees. In Stage 2, no fast TFs purchase ESST from Continuous. In
Stage 1, all Discrete exchanges charge zero trading fees; Continuous charges zero trading fees and zero ESST fees.
In Stage 1, Continuous has no profitable deviations: any attempt to charge positive trading or ESST fees does not
affect profits; negative fees result in strictly negative profits. Any Discrete exchange also has no strictly profitable
deviations: lowering trading fees to be negative incurs losses, and increasing trading fees results in no trading volume
and revenues given equilibrium strategies. Finally, there are no strictly profitable Stage 2 deviations by any TF (as
purchasing ESST does not affect profits), and arguments similar to those used in Proposition 5.1 establishes that
Stage 3 strategies comprise an OBE.

Uniqueness. We establish that in any equilibrium, (i) at least one Discrete exchange charges zero trading fees;
(ii) in every iteration of the trading game, exactly one unit of liquidity is offered only on Discrete exchanges with zero
trading fees at spread Sgiscrete(0); and (iii) all exchanges and trading firms earn zero profits. For claim (i), consider
an equilibrium where all Discrete exchanges charge strictly positive trading fees, and the minimum trading fee is
f > 0. For some Discrete exchange, there exists a profitable Stage 1 deviation to charge a slightly lower trading fee
f' = f — ¢ for some € > 0 as this would guarantee that all subsequent trading volume would occur on that exchange
(the same arguments used in Proposition 5.1 straightforwardly establish that all Stage 3 trading game equilibria
involve all trading volume occurring on the Discrete exchange with the lowest trading fees). Contradiction. Claim

(ii) follows directly from the arguments used in Proposition 5.1. Claim (iii) directly follows from claims (i) and (ii).

B Details for NASDAQ and NYSE Data and Co-Location Rev-
enue Estimates

In this appendix we provide details for our calculations of market data and co-location/connectivity revenues for
NASDAQ and NYSE, as indicated in the text of Stylized Fact #6.

NASDAQ’s fiscal year 2015 10-K reports market data and co-location/connectivity revenue only at the global
level — $399M and $239M, respectively.”® To get from global to the US, for market data, we utilize information in
its 2013 10-K filing that breaks out its market data business geographically: US is 72% of the total in 2013, and we
assume this ratio holds in 2015. For co-location/connectivity, we use NASDAQ’s overall 2015 US:global revenue ratio,
of 71%. Last, we need to separate out NASDAQ’s US Equities business from its US Options business. We take two

approaches. First, we assume that NASDAQ’s market data and co-location revenue from US Equities vs. US Options

75The $239M for global co-location/connectivity also contains revenues from a small Nordic region Broker Services business,
which when last reported separately was $19M; we subtract out this $19M from NASDAQ’s global “Access and Broker Services”
business in the analysis that follows.
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is proportional to its trading volume in US Equities vs. US Options. Second, we assume that NASDAQ’s US Options
business generates the same market data and co-location revenue revenue as BATS’s US Options business, scaled
up for NASDAQ’s larger US Options volume than BATS. The first approach assumes that every 1 option traded
on NASDAQ generates the same market data and co-location revenue as 100 shares of stock; the second approach
assumes that 1 option traded on NASDAQ generates the same market data and co-location/connectivity revenue as 1
option traded on BATS. These two approaches yield a range for NASDAQ’s US Equities revenue of $222.4M-$267.3M
for Market Data, $121.0M-$139.0M for Co-Location/Connectivity, and $343.3M-$406.4M combined.

NYSE was acquired by ICE, a large futures exchange conglomerate, in Nov 2013. ICE’s 2014 10-K filing therefore
gives significant detail on the contribution of the NYSE business to the overall ICE business, for 2014, the first full year
of integration (and also for the Nov-Dec 2013 period). The filing reports that NYSE’s US businesses (not including
Euronext, which ICE divested) contributed $430M to its data services business in 2014; this includes both market
data and co-location/connectivity, for both US equities and US options. The filing also reports that $202M of this
was for co-location/connectivity, implying $228M for market data. ICE’s 2015 10-K filing reports that it reclassified
an additional $60M of revenue, for 2014, from its “other” category to its data services business, and that this revenue
corresponds to “NYSE connectivity fees and colocation service revenues”.’® Therefore the adjusted 2014 totals are
$262M for co-location/connectivity and $228M for market data. Comparison of ICE’s 2014 and 2015 10-K filings
suggest a growth rate of its overall data services business from 2014 to 2015, of which the NYSE business was by
far the largest component, of 12.3%.7" For comparison, BATS’s US equities growth rate for the 2014 to 2015 period
was 19.2% for co-location/connectivity and 12.4% for market data,”® which suggests that the 12.3% growth rate
computed from ICE data is reasonable for NYSE. We use this growth rate to obtain estimates for 2015 for NYSE’s
overall US business, and then utilize the same two methods described above for NASDAQ to obtain estimates for
NYSE’s US Equities business. This yields a range of $218.9-$241.5M for US equities market data, $251.6-$281.5M
for US equities co-lo/connectivity, and $470.5-$523.0M combined.

761t is hard to know but we guess that this adjustment reflects post-merger alignment of accounting practices between NYSE
and ICE, that in principle should have been reflected in the 2014 10-K but that was not completed until the 2015 10-K.

7TThis growth figure accounts for several other ICE acquisitions in this time period. 2014 ICE data services revenue was
$691M but includes just 12 weeks of the SuperDerivatives business, which contributed $12M in those 12 weeks; therefore 2014
revenue pro forma for the SuperDerivatives business was $731M. 2015 data services revenue was $871M but includes $50M of
revenues from 2015 acquisitions of Interactive Data and Trayport; therefore a like-for-like 2015 revenue number is $821M, or
12.3% more than the adjusted 2014 figure.

T8BATS’s 2014 numbers include just 11 months of Direct Edge revenue versus 12 months in 2015. If we conservatively assume
that the Direct Edge business is 50% of BATS’s overall business, then we can take the unadjusted 2014-to-2015 growth rates,
of 23.7% for colo/connectivity and 16.9% for market data, and reduce them by 50% - 1—11 ~4.5 percentage points, to obtain 2014
to 2015 growth rates that are apples-to-apples.
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