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Abstract

We move beyond Is Machine Learning Useful for Macroeconomic Forecasting? by adding
the how. The current forecasting literature has focused on matching specific variables and
horizons with a particularly successful algorithm. To the contrary, we study a wide range
of horizons and variables and learn about the usefulness of the underlying features driv-
ing ML gains over standard macroeconometric methods. We distinguish 4 so-called fea-
tures (nonlinearities, regularization, cross-validation and alternative loss function) and
study their behavior in both the data-rich and data-poor environments. To do so, we
carefully design a series of experiments that easily allow to identify the treatment effects
of interest. The simple evaluation framework is a fixed-effects regression that can be un-
derstood as an extension of the Diebold and Mariano (1995) test. The regression setup
prompt us to use a novel visualization technique for forecasting results that conveys
all the relevant information in a digestible format. We conclude that (i) more data and
non-linearities are very useful for real variables at long horizons, (ii) the standard factor
model remains the best regularization, (iii) cross-validations are not all made equal (but
K-fold is as good as BIC) and (iv) one should stick with the standard L2 loss.
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1 Introduction

The intersection of Machine Learning (ML) with econometrics has become an important
research landscape in economics. ML has gained prominence due to the availability of large
data sets, especially in microeconomic applications, Athey (2018). However, as pointed by
Mullainathan and Spiess (2017), applying ML to economics requires finding relevant tasks.
Despite the growing interest in ML, little progress has been made in understanding the
properties of ML models and procedures when they are applied to predict macroeconomic
outcomes.1 Nevertheless, that very understanding is an interesting econometric research
endeavor per se. It is more appealing to applied econometricians to upgrade a standard
framework with a subset of specific insights rather than to drop everything altogether for
an off-the-shelf ML model.

A growing number studies have applied recent machine learning models in macroeco-
nomic forecasting.2 However, those studies share many shortcomings. Some focus on one
particular ML model and on a limited subset of forecasting horizons. Other evaluate the per-
formance for only one or two dependent variables and for a limited time span. The papers
on comparison of ML methods are not very extensive and do only a forecasting horse race
without providing insights on why some models perform better.3 As a result, little progress
has been made to understand the properties of ML methods when applied to macroeco-
nomic forecasting. That is, so to say, the black box remains closed. The objective of this
paper is to bring an understanding of each method properties that goes beyond the corona-
tion of a single winner for a specific forecasting target. We believe this will be much more
useful for subsequent model building in macroeconometrics.

Precisely, we aim to answer the following question. What are the key features of ML
modeling that improve the macroeconomic prediction? In particular, no clear attempt has
been made at understanding why one algorithm might work and another one not. We ad-
dress this question by designing an experiment to identify important characteristics of ma-
chine learning and big data techniques. The exercise consists of an extensive pseudo-out-
of-sample forecasting horse race between many models that differ with respect to the four

1Only the unsupervised statistical learning techniques such as principal component and factor analysis
have been extensively used and examined since the pioneer work of Stock and Watson (2002a). Kotchoni et al.
(2017) do a substantial comparison of more than 30 various forecasting models, including those based on factor
analysis, regularized regressions and model averaging. Giannone et al. (2017) study the relevance of sparse
modelling (Lasso regression) in various economic prediction problems.

2Nakamura (2005) is an early attempt to apply neural networks to improve on prediction of inflation, while
Smalter and Cook (2017) use deep learning to forecast the unemployment. Diebold and Shin (2018) propose a
Lasso-based forecasts combination technique. Sermpinis et al. (2014) use support vector regressions to forecast
inflation and unemployment. Döpke et al. (2015) and Ng (2014) aim to predict recessions with random forests
and boosting techniques. Few papers contribute by comparing some of the ML techniques in forecasting horse
races, see Ahmed et al. (2010), Ulke et al. (2016) and Chen et al. (2019).

3An exception is Smeekes and Wijler (2018) who compare performance of sparse and dense models in
presence of non-stationary data.
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main features: nonlinearity, regularization, hyperparameter selection and loss function. To
control for big data aspect, we consider data-poor and data-rich models, and administer
those patients one particular ML treatment or combinations of them. Monthly forecast errors
are constructed for five important macroeconomic variables, five forecasting horizons and
for almost 40 years. Then, we provide a straightforward framework to back out which of
them are actual game-changers for macroeconomic forecasting.

The main results can be summarized as follows. First, non-linearities either improve
drastically or decrease substantially the forecasting accuracy. The benefits are significant
for industrial production, unemployment rate and term spread, and increase with horizons,
especially if combined with factor models. Nonlinearity is harmful in case of inflation and
housing starts. Second, in big data framework, alternative regularization methods (Lasso,
Ridge, Elastic-net) do not improve over the factor model, suggesting that the factor repre-
sentation of the macroeconomy is quite accurate as a mean of dimensionality reduction.

Third, the hyperparameter selection by K-fold cross-validation does better on average
that any other criterion, strictly followed by the standard BIC. This suggests that ignoring in-
formation criteria when opting for more complicated ML models is not harmful. This is also
quite convenient: K-fold is the built-in CV option in most standard ML packages. Fourth,
replacing the standard in-sample quadratic loss function by the ε̄-insensitive loss function
in Support Vector Regressions is not useful, except in very rare cases. Fifth, the marginal
effects of big data are positive and significant for real activity series and term spread, and
improve with horizons.

The state of economy is another important ingredient as it interacts with few features
above. Improvements over standard autoregressions are usually magnified if the target
falls into an NBER recession period, and the access to data-rich predictor set is particularly
helpful, even for inflation. Moreover, the pseudo-out-of-sample cross-validation failure is
mainly attributable to its underperformance during recessions.

These results give a clear recommendation for practitioners. For most variables and hori-
zons, start by reducing the dimensionality with principal components and then augment the
standard diffusion indices model by a ML non-linear function approximator of choice. Of
course, that recommendation is conditional on being able to keep overfitting in check. To
that end, if cross-validation must be applied to hyperparameter selection, the best practice
is the standard K-fold.

In the remainder of this papers we first present the general prediction problem with ma-
chine learning and big data in Section 2. The Section 3 describes the four important features
of machine learning methods. The Section 4 presents the empirical setup, the Section 5 dis-
cuss the main results and Section 6 concludes. Appendices A, B, C, D and E contain, respec-
tively: tables with overall performance; robustness of treatment analysis; additional figures;
description of cross-validation techniques and technical details on forecasting models.
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2 Making predictions with machine learning and big data

To fix ideas, consider the following general prediction setup from Hastie et al. (2017)

min
g∈G
{L̂(yt+h, g(Zt)) + pen(g; τ)}, t = 1, . . . , T (1)

where yt+h is the variable to be predicted h periods ahead (target) and Zt is the NZ-dimensional
vector of predictors made of Ht, the set of all the inputs available at time t. Note that the
time subscripts are not necessary so this formulation can represent any prediction problem.
This setup has four main features:

1. G is the space of possible functions g that combine the data to form the prediction. In
particular, the interest is how much non-linearities can we allow for? A function g can
be parametric or nonparametric.

2. pen() is the penalty on the function g. This is quite general and can accommodate,
among others, the Ridge penalty of the standard by-block lag length selection by in-
formation criteria.

3. τ is the set of hyperparameters of the penalty above. This could be λ in a LASSO
regression or the number of lags to be included in an AR model.

4. L̂ the loss function that defines the optimal forecast. Some models, like the SVR, feature
an in-sample loss function different from the standard l2 norm.

Most of (Supervised) machine learning consists of a combination of those ingredients.
This formulation may appear too abstract, but the simple predictive regression model can
be obtained as a special case. Suppose a quadratic loss function L̂, implying that the optimal
forecast is the conditional expectation E(yt+h|Zt). Let the function g be parametric and lin-
ear: yt+h = Ztβ+ error. If the number of coefficients in β is not too big, the penalty is usually
ignored and (1) reduces to the textbook predictive regression inducing E(yt+h|Zt) = Ztβ as
the optimal prediction.

2.1 Predictive Modeling

We consider the direct predictive modeling in which the target is projected on the informa-
tion set, and the forecast is made directly using the most recent observables. This is opposed
to iterative approach where the model recursion is used to simulate the future path of the
variable.4 Also, the direct approach is the only one that is feasible for all ML models.

4Marcellino et al. (2006) conclude that the direct approach provides slightly better results but does not
dominate uniformly across time and series.
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We now define the forecast objective. Let Yt denote a variable of interest. If ln Yt is a
stationary, we will consider forecasting its average over the period [t + 1, t + h] given by:

y(h)t+h = (1/h)
h

∑
k=1

yt+k, (2)

where yt ≡ lnYt if Yt is strictly positive. Most of the time, we are confronted with I(1) series
in macroeconomics. For such series, our goal will be to forecast the average annualized
growth rate over the period [t + 1, t + h], as in Stock and Watson (2002b) and McCracken
and Ng (2016). We shall therefore define y(h)t+h as:

y(h)t+h = (1/h)ln(Yt+h/Yt). (3)

In cases where ln Yt is better described by an I(2) process, we define y(h)t+h as:

y(h)t+h = (1/h)ln(Yt+h/Yt+h−1)− ln(Yt/Yt−1). (4)

In order to avoid a cumbersome notation, we use yt+h instead of y(h)t+h in what follows, but
the target is always the average (growth) over the period [t + 1, t + h].

2.2 Data-poor versus data-rich environments

Large time series panels are now widely constructed and used for macroeconomic analysis.
The most popular is FRED-MD monthly panel of US variables constructed by McCracken
and Ng (2016). Fortin-Gagnon et al. (2018) have recently proposed similar data for Canada,
while Boh et al. (2017) has constructed a large macro panel for Euro zone. Unfortunately,
the performance of standard econometric models tends to deteriorate as the dimensionality
of the data increases, which is the well-known curse of dimensionality. Stock and Wat-
son (2002a) first proposed to solve the problem by replacing the large-dimensional infor-
mation set by its principal components. See Kotchoni et al. (2017) for the review of many
dimension-reduction, regularization and model averaging predictive techniques. Another
way to approach the dimensionality problem is to use Bayesian methods (Kilian and Lütke-
pohl (2017)). All the shrinkage schemes presented later in this paper can be seen as a specific
prior. Indeed, some of our Ridge regressions will look very much like a direct version of a
Bayesian VAR with a Litterman (1979) prior.5

Traditionally, as all these series may not be relevant for a given forecasting exercise, one
will have to preselect the most important candidate predictors according to economic the-

5Giannone et al. (2015) have shown that a more elaborate hierarchical prior can lead the BVAR to perform
as well as a factor model
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ories, the relevant empirical literature and own heuristic arguments. Even though the ma-
chine learning models do not require big data, they are useful to discard irrelevant predictors
based on statistical learning, but also to digest a large amount of information to improve the
prediction. Therefore, in addition to treatment effects in terms of characteristics of forecast-
ing models, we will also compare the predictive performance of small versus large data sets.
The data-poor, defined as H−t , will only contain a finite number of lagged values of the de-
pendent variable, while the data-rich panel, defined as H+

t will also include a large number
of exogenous predictors. Formally, we have

H−t ≡ {yt−j}
py
j=0 and H+

t ≡
[
{yt−j}

py
j=0, {Xt−j}

p f
j=0

]
. (5)

The analysis we propose can thus be summarized in the following way. We will consider
two standard models for forecasting.

1. The H−t model is the autoregressive direct (AR) model, which is specified as:

yt+h = c + ρ(L)yt + et+h, t = 1, . . . , T, (6)

where h ≥ 1 is the forecasting horizon. The only hyperparameter in this model is py,
the order of the lag polynomial ρ(L).

2. The H+
t workhorse model is the autoregression augmented with diffusion indices

(ARDI) from Stock and Watson (2002b):

yt+h = c + ρ(L)yt + β(L)Ft + et+h, t = 1, . . . , T (7)

Xt = ΛFt + ut (8)

where Ft are K consecutive static factors, and ρ(L) and β(L) are lag polynomials of
orders py and p f respectively. The feasible procedure requires an estimate of Ft that is
usually obtained by principal components analysis (PCA).

Then, we will take these models as two different types of “patients” and will administer
them one particular ML treatment or combinations of them. That is, we will upgrade (hope-
fully) these models with one or many features of ML and evaluate the gains/losses in both
environments.

Beyond the fact that the ARDI is a very popular macro forecasting model, there are addi-
tional good reasons to consider it as one benchmark for our investigation. While we discuss
four features of ML in this paper, it is obvious that the big two are shrinkage (or dimension
reduction) and non-linearities. Both goes in completely different directions. The first deals
with data sets that have a low observations to regressors ratio while the latter is especially
useful when that same ratio is high. Most nonlinearities are created with basis expansions
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which are just artificially generated additional regressors made of the original data. That
is quite useful in a data-poor environments but is impracticable in data-rich environments
where the goal is exactly the opposite, that is, to decrease the effective number of regressors.

Hence, the only way to afford non-linear models with wide macro datasets is to compress
the data beforehand and then use the compressed predictors as inputs. Each compression
scheme has an intuitive economic justification of its own. Choosing only a handful of series
can be justified by some DSGE model that has a reduced-form VAR representation. Com-
pressing the data according to a factor model adheres to the view that are only a few key
drivers of the macroeconomy and those are not observed. We choose the latter option as its
forecasting record is stellar. Hence, our non-linear models implicitly postulate that a sparse
set of latent variables impact the target variable in a flexible way. To take PCs of data to feed
them afterward in a NL model is also a standard thing to do from a ML perspective.

2.3 Evaluation

The objective of this paper is to disentangle important characteristics of the ML prediction
algorithms when forecasting macroeconomic variables. To do so, we design an experiment
that consists of a pseudo-out-of-sample forecasting horse race between many models that
differ with respect to the four main features above: nonlinearity, regularization, hyperpa-
rameter selection and loss function. To create variation around those treatments, we will
generate forecasts errors from different models associated to each feature.

To test this paper’s hypothesis, suppose the following model for forecasting errors

e2
t,h,v,m = αm + ψt,v,h + vt,h,v,m (9a)

αm = αF + ηm (9b)

where e2
t,h,v,m are squared prediction errors of model m for variable v and horizon h at time t.

ψt,v,h is a fixed effect term that demean the dependent variable by “forecasting target”, that
is a combination of t, v and h. αF is a vector of αG , αpen(), ατ and αL̂ terms associated to each
feature. We re-arrange equation (9) to obtain

e2
t,h,v,m = αF + ψt,v,h + ut,h,v,m. (10)

H0 is now α f = 0 ∀ f ∈ F = [G, pen(), τ, L̂]. In other words, the null is that there is
no predictive accuracy gain with respect to a base model that does not have this particular
feature.6 Very interestingly, by interacting αF with other fixed effects or even variables, we

6Note that if we are considering two models that differ in one feature and run this regression for a specific
(h, v) pair, the t-test on the sole coefficients amounts to a Diebold and Mariano (1995) test – conditional on
having the proper standard errors.
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can test many hypothesis about the heterogeneity of the “ML treatment effect". Finally, to get
interpretable coefficients, we use a linear combination of e2

t,h,v,m by (h, v) pair that makes the
final regressand (h, v, m)−specific average a pseudo-out-of-sample R2.7 Hence, we define

R2
t,h,v,m ≡ 1− e2

t,h,v,m
1
T ∑T

t=1(yv,t+h−ȳv,h)2 and run

R2
t,h,v,m = α̇F + ψ̇t,v,h + u̇t,h,v,m. (11)

On top of providing coefficients α̇F interpretable as marginal improvements in OOS-R2’s,
the approach has the advantage of standardizing ex-ante the regressand and thus removing
an obvious source of (v, h)-driven heteroscedasticity. Also, a positive αF now means (more
intuitively) an improvement rather than the other way around.

While the generality of (10) and (11) is appealing, when investigating the heterogeneity
of specific partial effects, it will be much more convenient to run specific regressions for the
multiple hypothesis we wish to test. That is, to evaluate a feature f , we run

∀m ∈ M f : R2
t,h,v,m = α̇ f + φ̇t,v,h + u̇t,h,v,m (12)

whereM f is defined as the set of models that differs only by the feature under study f .

3 Four features of ML

In this section we detail the forecasting approaches to create variations for each characteristic
of machine learning prediction problem defined in (1).

3.1 Feature 1: selecting the function g

Certainly an important feature of machine learning is the whole available apparatus of non-
linear function estimators. We choose to focus on applying the Kernel trick and Random
Forests to our two baseline models to see if the non-linearities they generate will lead to
significant improvements.

3.1.1 Kernel Ridge Regression

Since all models considered in this paper can easily be written in the dual form, we can
use the kernel trick (KT) in both data-rich and data-poor environments. It is worth noting
that Kernel Ridge Regression (KRR) has several implementation advantages. First, it has a
closed-form solution that rules out convergence problems associated with models trained

7Precisely: 1
T ∑T

t=1 1− e2
t,h,v,m

1
T ∑T

t=1(yv,t+h−ȳv,h)2 = R2
h,v,m
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with gradient descent. Second, it is fast to implement given that it implies inverting a TxT
matrix at each step (given tuning parameters) and T is never quite large in macro. Since
we are doing an extensive POOS exercise for a long period of time, these qualities are very
helpful.

We will first review briefly how the KT is implemented in our two benchmark models.
Suppose we have a Ridge regression direct forecast with generic regressors Zt

min
β

T

∑
t=1

(yt+h − Ztβ)
2 + λ

K

∑
k=1

β2
k.

The solution to that problem is β̂ = (Z′Z + λIk)
−1Z′y. By the representer theorem of Smola

and Schölkopf (2004), β can also be obtained by solving the dual of the convex optimization
problem above. The dual solution for β is β̂ = Z′(ZZ′ + λIT)

−1y. This equivalence allows
to rewrite the conditional expectation in the following way:

Ê(yt+h|Zt) = Zt β̂ =
t

∑
i=1

α̂i〈Zi, Zt〉

where α̂ = (ZZ′ + λIT)
−1y is the solution to the dual Ridge Regression problem. For now,

this is just another way of getting exactly the same fitted values.
Let’s now introduce a general non-linear model. Suppose we approximate it with basis

functions φ()

yt+h = g(Zt) + εt+h = φ(Zt)
′γ + εt+h.

The so-called Kernel trick is the fact that there exist a reproducing kernel K() such that

Ê(yt+h|Zt) =
t

∑
i=1

α̂i〈φ(Zi), φ(Zt)〉 =
t

∑
i=1

α̂iK(Zi, Zt).

This means we do not need to specify the numerous basis functions, a well-chosen Kernel
implicitly replicates them. For the record, this paper will be using the standard radial basis
function kernel

Kσ(x, x′) = exp
(
−‖x− x′‖2

2σ2

)
where σ is a tuning parameter to be chosen by cross-validation.

Hence, by using the corresponding Zt, we can easily make our data-rich or data-poor
model non-linear. For instance, in the case of the factor model, we can apply it to the regres-
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sion equation to implicitly estimate

yt+h = c + g(Zt) + εt+h, (13)

Zt =
[
{yt−0}

py
j=0, {Ft−j}

p f
j=0

]
, (14)

Xt = ΛFt + ut. (15)

In terms of implementation, this means extracting factor via PCA and then get

Ê(yt+h|Zt) = Kσ(Zt, Z)(Kσ(Z, Z) + λIT)
−1y. (16)

The final set of tuning parameters for such a model is τ = {λ, σ, py, p f , n f }.

3.1.2 Random forests

Another way to introduce non-linearity in the estimation of the predictive equation is to use
regression trees instead of OLS. Recall the ARDI model:

yt+h = c + ρ(L)yt + β(L)Ft + εt+h,

Xt = ΛFt + ut,

where yt and Ft, and their lags, constitute the informational set Zt. This form is clearly
linear but one could tweak the model by replacing it by a regression tree. The idea is to split
sequentially the space of Zt into several regions and model the response by the mean of yt+h

in each region. The process continues according to some stopping rule. As a result, the tree
regression forecast has the following form:

f̂ (Z) =
M

∑
m=1

cmI(Z∈Rm), (17)

where M is the number of terminal nodes, cm are node means and R1, ..., RM represent a
partition of feature space. In the diffusion indices setup, the regression tree would estimate
a non-linear relationship linking factors and their lags to yt+h. Once the tree structure is
known, this procedure can be related to a linear regression with dummy variables and their
interactions.

Instead of just using one single tree, which is known to be subject to overfitting, we use
Random forests which consist of a certain number of trees using a subsample of observations
but also a random subset of regressors for each tree.8 The hyperparameter to be cross-

8Only using a subsample of observations would be a procedure called Bagging. Also selecting randomly
regressors has the effect of decorrelating the trees and hence improving the out-of-sample forecasting accuracy.

10



validated is the number of trees. The forecasts of the estimated regression trees are then
averaged together to make one single prediction of the targeted variable.

3.2 Feature 2: selecting the regularization

In this section we will only consider models where dimension reduction is needed, which
are the models with H+

t – that is, more information than just the past values of yt. The
traditional shrinkage method used in macroeconomic forecasting is the ARDI model that
consists of extracting principal components of Xt and to use them as data in an ARDL model.
Obviously, this is only one out of many ways to compress the information contained in
Xt to run a well-behaved regression of yt+h on it. De Mol et al. (2008) compares Lasso,
Ridge and ARDI and finds that forecasts are very much alike. This section can be seen
as extending the scope of their study by consider a wider range of models in a updated
forecasting experiment that includes the Great Recession (theirs end in 2003).

In order to create identifying variations for pen() treatment, we need to generate mul-
tiple different shrinkage schemes. Some will also blend in selection, some will not. The
alternative shrinkage methods consider in this section will all be specific special cases of a
standard Elastic Net (EN) problem:

min
β

T

∑
t=1

(yt+h − Ztβ)
2 + λ

K

∑
k=1

(
α|βk|+ (1− α)β2

k

)
(18)

where Zt = B(Ht) is some transformation of the original predictive set Xt. α ∈ [0, 1] can
either be fixed or found via cross-validation (CV) while λ > 0 always needs to be obtained
by CV. By using different B operators, we can generate shrinkage schemes. Also, by setting
α to either 1 or 0 we generate LASSO and Ridge Regression respectively. Choosing α by CV
also generate an intermediary regularization scheme of its own. All these possibilities are
reasonable alternatives to the traditional factor hard-thresholding procedure that is ARDI.

Each type of shrinkage in this section will be defined by the tuple S = {α, B()}. To begin
with the most straightforward dimension, for a given B, we will evaluate the results for
α ∈ {0, α̂CV , 1}. For instance, if B is the identity mapping, we get in turns the LASSO, Elastic
Net and Ridge shrinkage.

Let us now turn to detail different resulting pen() when we vary B() for a fixed α. Three
alternatives will be considered.

1. (Fat Regression): First, we will consider the case B1() = I() as mentioned above. That
is, we use the entirety of the untransformed high-dimensional data set. The results of
Giannone et al. (2017) point in the direction that specifications with a higher α should
do better, that is, sparse models do worse than models where every regressor is kept
but shrunk to zero.
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2. (Big ARDI) Second, we will consider the case where B2() corresponds to first rotating
Xt ∈ IRN so that we get N uncorrelated Ft. Note here that contrary to the standard
ARDI model, we do not throw out factors according to some information criteria or a
scree test: we keep them all. Hence, Ft has exactly the same span as Xt. If we were to
run OLS (without any form of shrinkage), using φ(L)Ft versus ψ(L)Xt would not make
any difference in term of fitted values. However, when shrinkage comes in, a similar
pen() applied to a rotated regressor space implicitly generates a new penalty. Compar-
ing LASSO and Ridge in this setup will allow to verify whether sparsity emerges in a
rotated space. That is, this could be interpreted as looking whether the ’economy’ has
a sparse DGP, but in a different regressor space that the original one. This correspond
to the dense view of the economy, which is that observables are only driven by a few
key fundamental economic shocks.

3. (Principal Component Regression) A third possibility is to rotate H+
t rather than Xt

and still keep all the factors. H+
t includes all the relevant pre-selected lags. If we

were to just drop the Ft using some hard-thresholding rule, this would correspond to
Principal Component Regression (PCR). Note that B3() = B2() only when no lags are
included. Here, the Ft have a different interpretation since they are extracted from
multiple t’s data whereas the standard factor model used in econometrics typically
extract principal components out of Xt in a completely contemporaneous fashion.

To wrap up, this means the tuple S has a total of 9 elements. Since we will be considering
both POOS-CV and K-fold CV for each of these models, this leads to a total of 18 models.

Finally, to see clearly through all of this, we can describe where the benchmark ARDI
model stands in this setup. Since it uses a hard thresholding rule that is based on the eigen-
values ordering, it cannot be a special case of the Elastic Net problem. While it is clearly
using B2, we would need to set λ = 0 and select Ft a priori with a hard-thresholding rule.
The closest approximation in this EN setup would be to set α = 1 and fix the value of λ

to match the number of consecutive factors selected by an information criteria directly in
the predictive regression (20) or using an analytically calculated value based on Bai and Ng
(2002). However, this would still not impose the ordering of eigenvalues: the Lasso could
happen to select a Ft associated to a small eigenvalue and yet drop one Ft associated with a
bigger one.

3.3 Feature 3: Choosing hyperparameters τ

The conventional wisdom in macroeconomic forecasting is to either use AIC or BIC and
compare results. It is well known that BIC selects more parsimonious models than AIC.
A relatively new kid on the block is cross-validation, which is widely used in the field of
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machine learning. The prime reason for the popularity of CV is that it can be applied to
any model, which includes those for which the derivation of an information criterion is
impossible. An another appeal of the method is its logical simplicity. However, as AIC and
BIC, it relies on particular assumptions in order to be well-behaved.

It is not quite obvious that CV should work better only because it is “out of sample” while
AIC and BIC are ”in sample”. All model selection methods are actually approximations to
the OOS prediction error that relies on different assumptions that are sometime motivated
by different theoretical goals. Also, it is well known that asymptotically, these methods have
quite similar behavior.9 For instance, one can show that Leave-one-out CV (a special case
of k-fold) is asymptotically equivalent to Takeuchi Information criterion (TIC), Claeskens
and Hjort (2008). AIC is a special case of TIC where we need to assume in addition that
all models being considered are at least correctly specified. Thus, under the latter assump-
tion, Leave-one-out CV is asymptotically equivalent to AIC. Hence, it is impossible a priori
to think of one model selection technique being the most appropriate for macroeconomic
forecasting.

For samples of small to medium size encountered in macro, the question of which one
is optimal in the forecasting sense is inevitably an empirical one. For instance, Granger and
Jeon (2004) compared AIC and BIC in a generic forecasting exercise. In this paper, we will
compare AIC, BIC and two types of CV for our two baseline models. The two types of
CV are relatively standard. We will first use POOS CV and then k-fold CV. The first one
will always behave correctly in the context of time series data, but may be quite inefficient
by only using the end of the training set. The latter is known to be valid only if residuals
autocorrelation is absent from the models as shown in Bergmeir et al. (2018). If it were not
to be the case, then we should expect k-fold to under-perform. The specific details of the
implementation of both CVs is discussed in appendix D.

The contributions of this section are twofold. First, it will shed light on which model
selection method is most appropriate for typical macroeconomic data and models. Second,
we will explore how much of the gains/losses of using ML can be attributed to widespread
use of CV. Since most non-linear ML models cannot be easily tuned by anything else than
CV, it is hard for the researcher to disentangle between gains coming from the ML method
itself or just the way it is tuned.10 Hence, it is worth asking the question whether some gains
from ML are simply coming from selecting hyperparameters in a different fashion using a
method which assumptions are more fit with the data at hand. To investigate that, a natural
first step is to look at our benchmark macro models, AR and ARDI, and see if using CV to

9Hansen and Timmermann (2015) show equivalence between test statistics for OOS forecasting perfor-
mance and in-sample Wald statistics.

10Zou et al. (2007) show that the number of remaining parameters in the LASSO is an unbiased estimator
of the degrees of freedom and derive LASSO-BIC and LASSO-AIC criteria. Considering these as well would
provide additional evidence on the empirical debate of CV vs IC.
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select hyperparameters gives different selected models and forecasting performances.

3.4 Feature 4: Selecting the loss function

With the exception of the support vector regression (SVR), all of our estimators for the pre-
dictive function g ∈ G use a quadratic loss function. The objective of this section is to evalu-
ate the importance of a ε̄-insensitive loss function for macroeconomic predictions. However,
this is not so easily done since the SVR is different from an ARDI model in multiple aspects.
Namely, it

• uses a different in-sample loss function;

• (usually) uses a kernel trick in order to obtain non-linearities and

• has different tuning parameters.

Hence, we must provide a strategy to isolate the effect of the first item. That is, if the
standard RBF kernel SVR works well, we want to know whether is the effect of the kernel
or that of the loss-function. First, while the SVR is almost always used in combination with
a kernel trick similar to what described in the previous sections, we will also obtain results
for a linear SVR. That isolates the effect of the kernel. Second, we considered the Kernel
Ridge Regression earlier. The latter only differs from the Kernel-SVR by the use of different
in-sample loss functions. That identifies the effect of the loss function. To sum up, in order to
isolate the “treatment effect” of a different in-sample loss function, we will obtain forecasts
from

1. the linear SVR with H−t ;

2. the linear SVR with H+
t ;

3. the RBF Kernel SVR with H−t and

4. the RBF Kernel SVR with H+
t .

What follows is a bird’s eye overview of the underlying mechanics of the SVR. As it was
the case for the Kernel Ridge regression, the SVR estimator approximates the function g ∈ G
with basis functions. That is, the DGP is still yt+h = α + γ′φ(Zt) + εt+h. We opted to use
the ν-SVR variant which implicitly defines the size 2ε̄ of the insensitivity tube of the loss
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function. The hyperparameter ν is selected by cross validation. This estimator is defined by:

min
γ

1
2

γ′γ + C

[
T

∑
j=1

(ξ j + ξ∗j ) + Tνε̄

]

s.t.


yt+h − γ′φ(Zt)− c ≤ ε̄ + ξt

γ′φ(Zt) + c− yt+h ≤ ε̄ + ξ∗t

ξt, ξ∗t ≥ 0.

Where ξt, ξ∗t are slack variables, φ() is the basis function of the feature space implicitly de-
fined by the kernel used, T is the size of the sample used for estimation and C is an hy-
perparameter. In case of the RBF Kernel, an additional hyperparameter, σ, has to be cross-
validated. Associating Lagrange multipliers λj, λ∗j to the first two types of constraints, we
can derive the dual problem (Smola and Schölkopf (2004)) out of which we would find the
optimal weights γ = ∑T

j=1(λj − λ∗j )φ(Zj) and the forecasted values

Ê(yt+h|Zt) = ĉ +
T

∑
j=1

(λj − λ∗j )φ(Zj)φ(Zj) = ĉ +
T

∑
j=1

(λj − λ∗j )K(Zj, Zt). (19)

Let us now turn to the resulting loss function of such a problem. Along the in-sample
forecasted values, there is an upper bound Ê(yt+h|Zt) + ε̄ and lower bound Ê(yt+h|Zt) −
ε̄. Inside of these bounds, the loss function is null. Let et+h := Ê(yt+h|Zt) − yt be the
forecasting error and define a loss function using a penalty function Pε̄ as L̂ε̄({et+h}T

t=1) :=
1
T ∑T

t=1 Pε̄(et+h). For the ν-SVR, the penalty is given by:

Pε̄(εt+h|t) :=

0 i f |et+h| ≤ ε̄

|et+h| − ε̄ otherwise
.

For other estimators, the penalty function is quadratic P(et+h) := e2
t+h. Hence, the rate

of the penalty increases with the size of the forecasting error, whereas it is constant and only
applies to excess errors in the case of the ν-SVR. Note that this insensitivity has a nontrivial
consequence for the forecasting values. The Karush-Kuhn-Tucker conditions imply that only
support vectors, i.e. points lying inside the insensitivity tube, will have nonzero Lagrange
multipliers and contribute to the weight vector. In other words, all points whose errors are
too big are effectively ignored at the optimum. Smola and Schölkopf (2004) call this the
sparsity of the SVR. The empirical usefulness of this property for macro data is a question
we will be answering in the coming sections.

To sum up, the Table 1 shows a list of all forecasting models and highlights their relation-
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ship with each of four features discussed above. The computational details on every model
in this list are available in Appendix E.

Table 1: List of all forecasting models

Models Feature 1: selecting Feature 2: selecting Feature 3: optimizing Feature 4: selecting
the function g the regularization hyperparameters τ the loss function

Data-poor models
AR,BIC Linear BIC Quadratic
AR,AIC Linear AIC Quadratic
AR,POOS-CV Linear POOS CV Quadratic
AR,K-fold Linear K-fold CV Quadratic
RRAR,POOS-CV Linear Ridge POOS CV Quadratic
RRAR,K-fold Lineal Ridge K-fold CV Quadratic
RFAR,POOS-CV Nonlinear POOS CV Quadratic
RFAR,K-fold Nonlinear K-fold CV Quadratic
KRRAR,POOS-CV Nonlinear Ridge POOS CV Quadratic
KRRAR,K-fold Nonlinear Ridge K-fold CV Quadratic
SVR-AR,Lin,POOS-CV Linear POOS CV ε̄-insensitive
SVR-AR,Lin,K-fold Linear K-fold CV ε̄-insensitive
SVR-AR,RBF,POOS-CV Nonlinear POOS CV ε̄-insensitive
SVR-AR,RBF,K-fold Nonlinear K-fold CV ε̄-insensitive

Data-rich models
ARDI,BIC Linear PCA BIC Quadratic
ARDI,AIC Linear PCA AIC Quadratic
ARDI,POOS-CV Linear PCA POOS CV Quadratic
ARDI,K-fold Linear PCA K-fold CV Quadratic
RRARDI,POOS-CV Linear Ridge-PCA POOS CV Quadratic
RRARDI,K-fold Linear Ridge-PCA K-fold CV Quadratic
RFARDI,POOS-CV Nonlinear PCA POOS CV Quadratic
RFARDI,K-fold Nonlinear PCA K-fold CV Quadratic
KRRARDI,POOS-CV Nonlinear Ridge-PCR POOS CV Quadratic
KRRARDI,K-fold Nonlinear Ridge-PCR K-fold CV Quadratic
(B1, α = α̂),POOS-CV Linear EN POOS CV Quadratic
(B1, α = α̂),K-fold Linear EN K-fold CV Quadratic
(B1, α = 1),POOS-CV Linear Lasso POOS CV Quadratic
(B1, α = 1),K-fold Linear Lasso K-fold CV Quadratic
(B1, α = 0),POOS-CV Linear Ridge POOS CV Quadratic
(B1, α = 0),K-fold Linear Ridge K-fold CV Quadratic
(B2, α = α̂),POOS-CV Linear EN-PCA POOS CV Quadratic
(B2, α = α̂),K-fold Linear EN-PCA K-fold CV Quadratic
(B2, α = 1),POOS-CV Linear Lasso-PCA POOS CV Quadratic
(B2, α = 1),K-fold Linear Lasso-PCA K-fold CV Quadratic
(B2, α = 0),POOS-CV Linear Ridge-PCA POOS CV Quadratic
(B2, α = 0),K-fold Linear Ridge-PCA K-fold CV Quadratic
(B3, α = α̂),POOS-CV Linear EN-PCR POOS CV Quadratic
(B3, α = α̂),K-fold Linear EN-PCR K-fold CV Quadratic
(B3, α = 1),POOS-CV Linear Lasso-PCR POOS CV Quadratic
(B3, α = 1),K-fold Linear Lasso-PCR K-fold CV Quadratic
(B3, α = 0),POOS-CV Linear Ridge-PCR POOS CV Quadratic
(B3, α = 0),K-fold Linear Ridge-PCR K-fold CV Quadratic
SVR-ARDI,Lin,POOS-CV Linear PCA POOS CV ε̄-insensitive
SVR-ARDI,Lin,K-fold Linear PCA K-fold CV ε̄-insensitive
SVR-ARDI,RBF,POOS-CV Nonlinear PCA POOS CV ε̄-insensitive
SVR-ARDI,RBF,K-fold Nonlinear PCA K-fold CV ε̄-insensitive

Note: PCA stands for Principal Component Analysis, EN for Elastic Net regularizer, PCR for Principal Component Regression.
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4 Empirical setup

This section presents the data and the design of the pseudo-of-sample experiment used to
generate the treatment effects above.

4.1 Data

We use historical data to evaluate and compare the performance of all the forecasting mod-
els described previously. The dataset is FRED-MD, publicly available at the Federal Reserve
of St-Louis’s web site. It contains 134 monthly US macroeconomic and financial indicators
observed from 1960M01 to 2017M12. Many macroeconomic and financial indicators are usu-
ally very persistent or not stationary. We follow Stock and Watson (2002b) and McCracken
and Ng (2016) in the choice of transformations in order to achieve stationarity. The details
on the dataset and the series transformation are all in McCracken and Ng (2016).

4.2 Variables of Interest

We focus on predicting five macroeconomic variables: Industrial Production (INDPRO), Un-
employment rate (UNRATE), Consumer Price Index (INF), difference between 10-year Trea-
sury Constant Maturity rate and Federal funds rate (SPREAD) and housing starts (HOUST).
These are standard candidates in the forecasting literature and are representative macroeco-
nomic indicators of the US economy. In particular, we treat INDPRO as an I(1) variable so
we forecast the average growth rate over h periods as in equation (3). We follow the litera-
ture and treat the price index as I(2), so the target is the average change in inflation defined
by equation (4). The unemployment rate is considered I(1) and we target the average first-
difference as in (3) but without logs. The spread and housing starts are modeled as I(0) and
the targets are constructed as in (2).

4.3 Pseudo-Out-of-Sample Experiment Design

The pseudo-out-of-sample period is 1980M01 - 2017M12. The forecasting horizons consid-
ered are 1, 3, 9, 12 and 24 months. Hence, there are 456 evaluation periods for each horizon.
All models are estimated recursively with an expanding window.

Hyperparameter fine tuning is done with in-sample criterion (AIC and BIC) and using
two types of cross validation (POOS CV and k-fold). The in-sample model selection is stan-
dard, we only fix the upper bounds for the set of HPs. In contrast, the CV can be very
computationally extensive in a long time series evaluation period as in this paper. Ideally,
one would re-optimize every model, for every target variable and for each forecasting hori-
zon, for every out-of-sample period. As we have 456 evaluation observations, five variables,
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five horizons and many models, this is extremely demanding especially for the POOS CV
where the CV in the validation set mimics the out-of-sample prediction in the test sample.
Therefore, for POOS CV case, the POOS period consists of last five years in the validation
set. In case of k-fold CV, we set k = 5. We re-optimize hyperparameters every two years.
This is reasonable since as it is the case with parameters, we do not expect hyperparameters
to change drastically with the addition of a few data points.

Appendix D describes both cross-validation techniques in details, while the information
on upper / lower bounds and grid search for hyperaparameters for every model is available
in Appendix E.

4.4 Forecast Evaluation Metrics

Following a standard practice in the forecasting literature, we evaluate the quality of our
point forecasts using the root Mean Square Prediction Error (MSPE). The standard Diebold-
Mariano (DM) test procedure is used to compare the predictive accuracy of each model
against the reference (ARDI,BIC) model.

We also implement the Model Confidence Set (MCS) introduced in Hansen et al. (2011).
The MCS allows us to select the subset of best models at a given confidence level. It is con-
structed by first finding the best forecasting model, and then selecting the subset of models
that are not significantly different from the best model at a desired confidence level. We con-
struct each MCS based on the quadratic loss function and 4000 bootstrap replications. As
expected, we find that the (1− α) MCS contains more models when α is smaller. Following
Hansen et al. (2011), we present the empirical results for 75% confidence interval.

These evaluation metrics are standard outputs in a forecasting horse race. They allow to
verify the overall predictive performance and to classify models according to DM and MCS
tests. Regression analysis from section 2.3 will be used to distinguish the marginal treatment
effect of each ML ingredient that we try to evaluate here.

5 Results

We present the results in several ways. First, for each variable, we show standard tables con-
taining the relative root MSPEs (to AR,BIC model) with DM and MCS outputs, for the whole
pseudo-out-of-sample and NBER recession periods. Second, we evaluate the marginal effect
of important features of ML using regressions described in section 2.3.
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5.1 Overall Predictive Performance

Tables 3 - 7, in Appendix A, summarize the overall predictive performance in terms of root
MSPE relative to the reference model AR,BIC. The analysis is done for the full out-of-sample
as well as for NBER recessions taken separately (i.e., when the target belongs to a recession
episode). This address two questions: is ML already useful for macroeconomic forecasting
and when?11

In case of industrial production, Table 3 shows that the SVR-ARDI with linear kernel
and K-fold cross-validation is the best at h = 1. Big ARDI version with Lasso penalty and
K-fold CV minimizes the MSE 3-month ahead, while the kernel ridge AR with K-fold is best
for h = 9. At longer horizons, the ridge ARDI is the best option with an improvement of
more than 10%. During recessions, the ARDI with CV is the best for all horizons except the
one-year ahead where the minimum MSE is obtained with RRARDI,K-fold. Ameliorations
with respect to AR,BIC are much larger during economic downturns, and the MCS selects
less models.

Results for the unemployment rate, table 4, highlight the performance of nonlinear mod-
els: Kernel ridge and Random forests. Improvements with respect to the AR,BIC model are
bigger for both full OOS and recessions. MCSs are narrower than in case of INDPRO. Simi-
lar pattern is observed during NBER recessions. Table 5 summarizes results for the Spread.
Nonlinear models are generally the best, combined with H+

t predictors’ set. Occasionally,
autoregressive models with the kernel ridge or SVR specifications produce minimum MSE.

In case of inflation, table 6 shows that simple autoregressive models are the best for the
full out-of-sample, except for h = 1. It changes during recessions where ARDI models im-
prove upon autoregressions for horizons of 9, 12 and 24. This finding is similar to Kotchoni
et al. (2017) who document that ARMA(1,1) is in general the best forecasting model for in-
flation change. Finally, housing starts are best predicted with data-poor models, except for
short horizons and few cases during recessions. Nonlinearity seems to help only for 2-year
ahead forecasting during economic downturns.

Overall, using data-rich models and nonlinear g functions seems to be a game changer
for predicting real activity series and term spread, which is itself usually a predictor of the
business cycle (Estrella and Mishkin (1998)). SVR specifications are occasionally among the
best models as well as the shrinkage methods from section 3.2. When predicting inflation
change and housing starts, autoregressive models are generally preferred, but are domi-
nated by data-rich models during recessions. These findings suggest that machine learning
treatments and data-rich models can ameliorate predictions of important macroeconomic
variables. In addition, their marginal contribution depends on the state of the economy.

11 The knowledge of the models that have performed best historically during recessions is of interest for
practitioners. If the probability of recession is high enough at a given period, our results can provide an ex-
ante guidance on which model is likely to perform best in such circumstances.
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5.2 Disentangling ML Treatment Effects

The results in the previous section does not allow easily to disentangle the marginal effects
of important features of machine learning as presented in section 3, which is the most im-
portant goal of this paper. Before we employ the evaluation strategy depicted in section 2.3,
we first use a Random forest as an exploration tool. Since creating the relevant dummies
and interaction terms to fully describe the environment is a hard task in presence of many
treatment effects, a regression tree well suited to reveal the potential of ML features in ex-
plaining the results from our experiment. We report the importance of each features in what
is a potentially a very non-linear model.12 For instance, the tree could automatically create
interactions such as I(NL = 1) ∗ I(h ≤ 12), that is, some condition on non-linearities and
horizon forecast.

Figure 1 plots the relative importance of machine learning features in our macroeconomic
forecasting experiment. The space of possible interaction is constructed with dummies for
horizon, variable, recession periods, loss function and H+

t , and categorical variables non-
linearity, shrinkage and hyperameters’ tuning that follow the classification as in Table 1.
As expected, target variables, forecasting horizons, the state of economy and data richness
are important elements. Nonlinearity is relevant, which confirms our overall analysis from
the previous section. More interestingly, interactions with shrinkage and cross-validation
emerge as very important ingredients for macroeconomic forecasting, something that we
might have underestimated from tables containing relative MSE. Loss function appears as
the least important feature.

Despite its richness in terms of interactions among determinants, the Random forest
analysis does not provide the sign of the importance of each feature not it measures their

12The importance of each ML ingredient is obtain with feature permutation. The following process describes
the estimation of out-of-bag predictor importance values by permutation. Suppose a random forest of B trees
and p is the number of features.

1. For tree b, b = 1, ..., B:

(a) Identify out-of-bag observations and indices of features that were split to grow tree b, sb ⊆ 1, ..., p.

(b) Estimate the out-of-bag error u2
t,h,v,m,b.

(c) For each feature xj, j ∈ sb:

i. Randomly permute the observations of xj.

ii. Estimate the model squared errors, u2
t,h,v,m,b,j, using the out-of-bag observations containing

the permuted values of xj.

iii. Take the difference dbj = u2
t,h,v,m,b,j − u2

t,h,v,m,b.

2. For each predictor variable in the training data, compute the mean, d̄j, and standard deviation, σj, of
these differences over all trees, j = 1, ..., p.

3. The out-of-bag predictor importance by permutation for xj is d̄j/σj

20



Hor
.

Var
.

Rec
.

NL
SH CV LF X

Predictors

0

1

2

3

4

5

6

7

8

P
re

di
ct

or
 im

po
rt

an
ce

 e
st

im
at

es

Figure 1: This figure presents predictive importance estimates. Random forest is trained to predict R2
t,h,v,m

defined in (11) and use out-of-bags observations to assess the performance of the model and compute features’
importance. NL, SH, CV and LF stand for nonlinearity, shrinkage, cross-validation and loss function features
respectively. A dummy for H+

t models, X, is included as well.

marginal contributions. To do so, and armed with insights from the Random forest analysis,
we turn now to regression analysis described in section 2.3, .

Figure 2 shows the distribution of α̇
(h,v)
F from equation (11) done by (h, v) subsets. Hence,

here we allow for heterogeneous treatment effects according to 25 different targets. This fig-
ure highlights by itself the main findings of this paper. First, non-linearities either improve
drastically forecasting accuracy or decrease it substantially. There is no middle ground,
as shown by the area around the 0 line being quite uncrowded. The marginal benefits of
data-rich models seems roughly to increase with horizons for every variables except infla-
tion. The effects are positive and significant for INDPRO, UNRATE and SPREAD at the last
three horizons. Second, standard alternative methods of dimensionality reduction do not
improve on average over the standard factor model. Third, the average effect of CV is 0.
However, as we will see in section 5.2.3, the averaging in this case hides some interesting
and relevant differences between K-fold and POOS CVs, that the Random forest analysis in
Figure 1 has picked up. Fourth, on average, dropping the standard in-sample squared-loss
function for what the SVR proposes is not useful, except in very rare cases. Fifth and lastly,
the marginal benefits of data-rich models (X) increase with horizons for INDPRO, UNRATE
and SPREAD. For INF and HOUST, benefits are on average non-statistically different from
zero. Note that this is almost exactly like the picture we described for NL. Indeed, visually, it
seems like the results for X are a compressed-range version of NL that was translated to the
right. Seeing NL models as data augmentation via some basis expansions, we can conclude
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Figure 2: This figure plots the distribution of α̇
(h,v)
F from equation (11) done by (h, v) subsets. That is, we

are looking at the average partial effect on the pseudo-OOS R2 from augmenting the model with ML features,
keeping everything else fixed. X is making the switch from data-poor to data-rich. Finally, variables are
INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1
to h = 24 as we are going down. As an example, we clearly see that the partial effect of X on the R2 of INF
increases drastically with the forecasted horizon h. SEs are HAC. These are the 95% confidence bands.

that for INDPRO, UNRATE and SPREAD at longer horizons, we either need to augment the
AR(p) model with more regressors either created from the lags of the dependent variable
itself or coming from additional data. The possibility of joining these two forces to create a
“data-filthy-rich” model is studied in section 5.2.1.

It turns out these findings are somewhat robust as graphs included in the appendix sec-
tion B show. ML treatment effects plots of very similar shapes are obtained for data-poor
models only (Figure 12), data-rich models only (Figure 13), recessions periods (Figure 14)
and the last 20 years of the forecasting exercise (Figure 15).

Finally, Figure 3 aggregates by h and v in order to clarify whether variable or horizon
heterogeneity matters most. Two facts detailed earlier and now are quite easy to see. For
both X and NL, the average marginal effect increase in h. Now, the effect sign (or it being
statistically different from 0) is truly variable-dependent: the first three variables are those
that benefit the most from both additional information and non-linearities. This grouping
should not come as a surprise since the 3 variables all represent real activity.

In what follows we break down averages and run specific regressions as in (12) to study
how homogeneous are the α̇F’s reported above.
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Figure 3: This figure plots the distribution of α̇
(v)
F and α̇

(h)
F from equation (11) done by h and v subsets. That

is, we are looking at the average partial effect on the pseudo-OOS R2 from augmenting the model with ML
features, keeping everything else fixed. X is making the switch from data-poor to data-rich. However, in this
graph, v−specific heterogeneity and h−specific heterogeneity have been integrated out in turns. SEs are HAC.
These are the 95% confidence bands.

5.2.1 Non-linearities

Figure 4 suggests that non-linearities can be very helpful at forecasting both UNRATE and
SPREAD in the data rich-environment. The marginal effects of Random Forests and KRR
are almost never statistically different for data-rich models, suggesting that the common
NL feature is the driving force. However, this is not the case for data-poor models where
only KRR shows R2 improvements for UNRATE and SPREAD, except for INDPRO where
both non-linear features has similar positive effects. Nonlinearity is harmful for predicting
inflation change and housing, irrespective of data size.

Figure 5 suggest that non-linearities are more useful for longer horizons in data rich
environment while they can be harmful in short-horizons. Note again that both non-linear
models follow the same pattern for data-rich models with Random Forest always being
better (but never statistically different from KRR). For data-poor models, it is KRR that has
a (statistically significant) growing advantage as h increases.

Seeing NL models as data augmentation via some basis expansions, we can join the two
facts together to conclude that the need for a complex and “data-filthy-rich” model arise for
INDPRO, UNRATE and SPREAD at longer horizons.
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Figure 4: This compares the two NL models averaged over all horizons. The unit of the x-axis are improve-
ments in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.

Figure 5: This compares the two NL models averaged over all variables. The unit of the x-axis are improve-
ments in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.
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Figure 6: This compares models of section 3.2 averaged over all variables and horizons. The unit of the x-axis
are improvements in OOS R2 over the basis model. The base models are ARDIs specified with POOS-CV and
KF-CV respectively. SEs are HAC. These are the 95% confidence bands.

5.2.2 Alternative Dimension Reduction

Figure 6 shows that the ARDI reduces dimensionality in a way that certainly works well
with economic data: all competing schemes do at most as good on average. It is overall
safe to say that on average, all shrinkage schemes give similar or lower performance. No
clear superiority for the Bayesian versions of some of these models was also documented in
De Mol et al. (2008). This suggests that the factor model view of the macroeconomy is quite
accurate in the sense that when we use as a mean of dimensionality reduction, it extracts the
most relevant information to forecast the relevant time series. This is good news. The ARDI
is the simplest model to run and results from the preceding section tells us that adding non-
linearities to an ARDI can be quite helpful. For instance, B1 models where we basically keep
all regressors do approximately as well as the ARDI when used with CV-POOS. However, it
is very hard to consider non-linearities in this high-dimensional setup. Since the ARDI does
a similar (or better) job of dimensionality reduction, it is both convenient for subsequent
modeling steps and does not loose relevant information.

Obviously, the deceiving average behavior of alternative (standard) shrinkage methods
does not mean there cannot be interesting (h, v) cases where using a different dimensionality
reduction has significant benefits as discussed in section 5.1 and Smeekes and Wijler (2018).
Furthermore, LASSO and Ridge can still be useful to tackle specific time series econometrics
problems (other than dimensionality reduction), as shown with time-varying parameters in
Goulet Coulombe (2019).
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Figure 6 indicates that the RRARDI-KF performs quite well with respect to ARDI-KF.
Figure 7, in next section, shows that the former ends up considering many more total re-
gressors than the latter – but less than RRARDI-POOS. However, the interesting question
is whether RRARDI-KF is better on average than any ARDIs considered in this paper. The
answers turns out to be a strong yes in Figure 16, in Appendix C. Does that superiority still
holds when breaking things down by h and v? Figure 17 procures another strong yes.

5.2.3 Hyperparameter Optimization

Figure 7 shows how many total regressors are kept by different model selection methods.
As expected, BIC is almost always the lower envelope of each of these graphs and is the
only true guardian of parsimony in our setup. AIC also selects relatively sparse models. It
is also quite visually clear that both cross-validations favors larger models. Most likely as a
results of expanding window setup, we see a common upward trends for all model selection
methods. Finally, CV-POOS has quite a distinctive behavior. It is more volatile and seems to
select bigger models in similar times for all series (around 1990 and after 2005). While K-fold
also selects models of considerable size, it does so in a more slowly growing fashion. This
is not surprising given the fact that K-fold samples from all available data to build the CV
criterion: adding new data points only gradually change the average. CV-POOS is a short
rolling window approach that offers flexibility against structural hyperparameters change
at the cost of greater variance and vulnerability of rapid change of regimes in the data.

Following intuition, the Ridge regression ARDI models are most often richer than their
non-penalized counterparts. When combined with CV-KF, we get the best ARDI (on aver-
age), as seen in Figure 16. For instance, we see in Figure 17 that the RR-ARDI-KF performs
quite well for INDPRO. Figure 7 informs us that it is because that specific factor model has
constantly more lags and factors (up to 120) than any other version of the ARDI model con-
sidered in this paper.

We know that different model selection methods lead to quite different models, but what
about their predictions? Table 2 tells many interesting tales. The models included in the
regressions are the standard linear ARs and ARDIs (that is, excluding the Ridge versions)
that have all been tuned using BIC, AIC, CV-POOS and CV-KF. First, we see that overall,
only CV-POOS is distinctively worse. We see that this is attributable mostly to recessions
in both data-poor and data-rich environments – with 6.91% and 8.25% losses in OOS-R2

respectively. However, CV-POOS is still doing significantly worse by 2.7% for data-rich
models even in expansion periods. For data-poor models, AIC and CV-KF have very similar
behavior, being slightly worse than BIC in expansions and significantly better in recessions.
Finally, for data rich models, CV-KF does better than any other criterion on average and that
difference is 3.87% and statistically significant in recessions. This suggest that this particular
form of ML treatment effect is useful.
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Figure 7: This shows the total number of regressors for the linear ARDI models. Results averaged across
horizons.
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Another conclusion is that, for that class of models, we can safely opt for either BIC or
CV-KF. Assuming some degree of external validity beyond that model class, we can be re-
assured that the quasi-necessity of leaving ICs behind when opting for more complicated
ML models is not harmful.

Table 2: CV comparaison

(1) (2) (3) (4) (5)
All Data-rich Data-poor Data-rich Data-poor

CV-KF -0.00927 0.706 -0.725 0.230 -1.092∗

(0.586) (0.569) (0.443) (0.608) (0.472)
CV-POOS -2.272∗∗∗ -3.382∗∗∗ -1.161∗∗ -2.704∗∗∗ -0.312

(0.586) (0.569) (0.443) (0.608) (0.472)
AIC -0.819 -0.867 -0.771 -0.925 -1.258∗

(0.676) (0.657) (0.511) (0.702) (0.546)
CV-KF * Recessions 3.877∗ 2.988∗

(1.734) (1.348)
CV-POOS * Recessions -5.525∗∗ -6.914∗∗∗

(1.734) (1.348)
AIC * Recessions 0.470 3.970∗

(2.002) (1.557)
Observations 136800 68400 68400 68400 68400
Standard errors in parentheses. Units are percentage of OOS-R2.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We will now consider models that are usually always tuned by CV and compare the
performance of the two CVs by horizon and variables.

Since we are now pooling multiple models, including all the alternative shrinkage mod-
els, if a clear pattern only attributable to a certain CV existed, it would most likely appear
in Figure 8. What we see are two things. First, CV-KF is at least as good as CV-POOS on
average for every variables and horizons, irrespective of the informational content of the re-
gression. When there is statistically significant difference – which happens quite often – it is
always in favor of CV-KF. These effects are magnified when we concentrate on the data-rich
environment.

Figure 9’s message has the virtue of clarity. CV-POOS’s failure is mostly attributable to
its poor record in recessions periods for the first three variables at any horizon. Note that this
is the same subset of variables that benefits from adding in more data (X) and on-linearities
as discussed in 5.2.1.

Intuitively, by using only recent data, CV-POOS will be more robust to gradual structural
change but will perhaps have an Achilles heel in regime switching behavior. If optimal
hyperparameters are state-dependent, then a switch from expansion to recession at time t
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Figure 8: This compares the two CVs procedure averaged over all the models that use them. The unit of the
x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.

Figure 9: This compares the two CVs procedure averaged over all the models that use them. The unit of the
x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.
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can be quite harmful. K-fold, by taking the average over the whole sample, is less immune
to such problems. Since results in 5.1 point in the direction that smaller models are better
in expansions and bigger models in recessions, the behavior of CV and how it picks the
effective complexity of the model can have an important effect on overall predictive ability.
This is exactly what we see in Figure 9: CV-POOS is having a hard time in recessions with
respect to K-fold.13

5.2.4 Loss Function

In this section, we investigate whether replacing the l2 norm as an in-sample loss function
for the SVR machinery helps in forecasting. We again use as baseline models ARs and ARDIs
trained by the same corresponding CVs. The very nature of this ML feature is that the model
is less sensible to extreme residuals, thanks to the ε-insensitivity tube. We first compare
linear models in Figure 10. Clearly, changing the loss function is mostly very harmful and
that is mostly due to recessions period. However, in expansion, the linear SVR is better on
average than a standard ARDI for UNRATE and SPREAD, but these small gains are clearly
offset (on average) by the huge recession losses.

The SVR (or the better-known SVM) is usually used in its non-linear form. We hereby
compare KRR and SVR-NL to study whether the loss function effect could reverse when a
non-linear model is considered. Comparing these models makes sense since they both use
the same kernel trick (with a RBF kernel). Hence, like linear models of Figure 10, models
in Figure 11 only differ by the use of a different loss function L̂. It turns out conclusions
are exactly the same as for linear models with the negative effects being slightly larger. Fur-
thermore, Figures 18 and 19 confirm that these findings are found in both the data-rich and
the data-poor environments. Hence, these results confirms that L̂ is not the most salient fea-
ture of ML, at least for macroeconomic forecasting. If researchers are interested in using its
associated kernel trick to bring in non-linearities, they should rather use the lesser-known
KRR.

13Of course, CV-POOS has hyper-hyperparameters of its own as described in detail in the appendix D and
these can change moderately the outcome. For instance, considering an expanding test window in the cross-
validation recursive scheme could reduce greatly its volatility. However, the setup of the CV-POOS used in
this paper corresponds to what is standard in the literature.
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Figure 10: This graph display the marginal (un)improvments by variables and horizons to opt for the SVR
in-sample loss function in both the data-poor and data-rich environments. The unit of the x-axis are improve-
ments in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.

Figure 11: This graph display the marginal (un)improvments by variables and horizons to opt for the SVR
in-sample loss function in both recession and expansion periods. The unit of the x-axis are improvements in
OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.
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6 Conclusion

In this papers we have studied important underlying features driving machine learning
techniques in the context of macroeconomic forecasting. We have considered many machine
learning methods in a substantive POOS setup over almost 40 years for 5 key variables and 5
different horizons. We have classified these models by “features” of machine learning: non-
linearities, regularization, cross-validation and alternative loss function. The four aspects
of ML are nonlinearities, regularization, cross-validation and alternative loss function. The
data-rich and data-poor environments were considered. In order to recover their marginal
effects on forecasting performance, we designed a series of experiments that easily allow to
identify the treatment effects of interest.

The first result point in the direction that non-linearities are the true game-changer for the
data rich environment, especially when predicting real activity series and at long horizons.
This gives a stark recommendation for practitioners. It recommends for most variables and
horizons what is in the end a partially non-linear factor model – that is, factors are still
obtained by PCA. The best of ML (at least of what considered here) can be obtained by
simply generating the data for a standard ARDI model and then feed it into a ML non-
linear function of choice. The second result is that the standard factor model remains the
best regularization. Third, if cross-validation has to be applied to select models’ features,
the best practice is the standard K-fold. Finally, one should stick with the standard L2 loss
function.
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A Detailed overall predictive performance

Table 3: Industrial Production: Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1 1.000 1 1.000 1 1 1 1 1 1
AR,AIC 0.991* 1.000 0,999 1.000 1 0.987* 1 1 1 1
AR,POOS-CV 0,998 1.044** 0,988 0.998 1.030* 1.012* 1.086*** 0.989* 1,001 1.076**
AR,K-fold 0.991* 1.000 0,998 1.000 1.034* 0.987* 1 1 1 1.077**
RRAR,POOS-CV 1,043 1.112* 1.028* 1.026** 0.973** 1.176** 1.229** 1.040* 1,005 0.950***
RRAR,K-fold 0.985* 1.019** 0,998 1.005* 1.033** 1,022 1.049*** 1.009** 1.006** 1.061**
RFAR,POOS-CV 0,999 1.031 0.977 0.951 0,992 1,023 1,043 0.914** 0.883** 1,002
RFAR,K-fold 1,004 1.020 0.939* 0.933** 0.988 1,031 1,012 0.871*** 0.892*** 0.962**
KRR-AR,POOS-CV 1,032 1.017 0.901* 0,995 0.949 1.122* 1,019 0.791*** 0.890*** 0.887***
KRR,AR,K-fold 1,017 1.056 0.903* 0.959 0.934* 1.147* 1,136 0.799*** 0.861*** 0.887**
SVR-AR,Lin,POOS-CV 0,993 1.046*** 1.043** 1.062*** 0.970** 1.026* 1.094*** 1.066*** 1.067*** 0.943***
SVR-AR,Lin,K-fold 0.977** 1.017 1.050** 1.068*** 0.976** 1,001 1.047** 1.068*** 1.074*** 0.964***
SVR-AR,RBF,POOS-CV 1,055 1.134** 1,042 1.042* 0,987 1.162** 1.224** 0.945** 0.955** 0.937***
SVR-AR,RBF,K-fold 1,053 1.145** 1,004 0.971 0.945*** 1.253*** 1.308*** 0.913*** 0.911*** 0.949**
Data-rich (H+

t ) models
ARDI,BIC 0.946* 0.991 1,037 1,004 0.968 0.801*** 0.807*** 0.887** 0.833*** 0.784***
ARDI,AIC 0.959* 0.968 1,017 0.998 0.943 0.840*** 0.803*** 0.844** 0.798** 0.768***
ARDI,POOS-CV 0.934** 1.042 0,999 1.020 0.925 0.807*** 0.704*** 0.767*** 0.829** 0.706***
ARDI,K-fold 0.940* 0.977 1,013 0.982 0.941 0.787*** 0.812*** 0.841** 0.808** 0.730***
RRARDI,POOS-CV 0.966* 1.087 0,984 0.947 0.882** 0.925** 0.900* 0.878*** 0.761*** 0.728***
RRARDI,K-fold 0.934*** 0.940 0.931 0.911 0.919* 0.863*** 0.766*** 0.816*** 0.760*** 0.718***
RFARDI,POOS-CV 0.957** 1.034 0.951 0.940 0.903** 0.874*** 0.847** 0.845*** 0.799*** 0.834***
RFARDI,K-fold 0.961** 1.024 0.944 0.928* 0.901** 0.902*** 0.841** 0.844*** 0.813*** 0.758***
KRR-ARDI,POOS-CV 1,005 1.067 0,959 0.912** 0,974 1,099 1,126 0.858*** 0.810*** 0.912*
KRR,ARDI,K-fold 0.973 0.988 0.910* 0.929* 0.945 1,017 0,97 0.823*** 0.858*** 0.808***
(B1, α = α̂),POOS-CV 0,993 1.122* 1,072 0.969 0.940 1,066 1,152 0,99 0.890** 0.873**
(B1, α = α̂),K-fold 0.921*** 0.972 0,973 0.961 0,991 0.871*** 0.847*** 0.922* 0.822*** 0.778***
(B1, α = 1),POOS-CV 0,997 1.108* 1.071* 1.003 0.929* 1,055 1,165 1 0,949 0.828***
(B1, α = 1),K-fold 0.961** 1.024 1,039 1,015 0.975 0,964 0,946 0,964 0.911** 0.802***
(B1, α = 0),POOS-CV 1,003 0.963 0.969 0.996 0,982 1,067 0.791*** 0.851*** 0,962 0,916
(B1, α = 0),K-fold 0.934*** 0.918** 0.938 0.930 0.932 0.871*** 0.793*** 0.838*** 0.788*** 0.771***
(B2, α = α̂),POOS-CV 1,041 1.099 1.078* 1,061 0,985 1.189** 1.177* 1,015 0,963 0.923*
(B2, α = α̂),K-fold 0.963** 0.975 0,971 0.992 0,97 0,994 0.932* 0.928** 0.876*** 0.821***
(B2, α = 1),POOS-CV 1,026 1.096 1,075 1.103* 0.922** 1.136* 1,157 1,005 0,991 0.897**
(B2, α = 1),K-fold 0.943*** 0.916** 0.948 0.954 0,975 0.899*** 0.811*** 0.875*** 0.825*** 0.830***
(B2, α = 0),POOS-CV 1,013 1.099** 1.102* 1.107* 0.969 1.091* 1.116* 1,026 0,942 0.870**
(B2, α = 0),K-fold 0,981 1.010 1,017 1,029 1 0,971 1,008 0,943 0.871** 0.825***
(B3, α = α̂),POOS-CV 1,038 1.106* 1,042 1.002 0.933* 1.128** 1,16 1,014 0.928* 0.852***
(B3, α = α̂),K-fold 0.945*** 1.003 1,082 1,038 0.932 0.922** 0,977 0.878** 0.823*** 0.784***
(B3, α = 1),POOS-CV 1.077* 1.121* 1,034 1,033 0,974 1.175** 1,131 0,996 0.917** 0.901**
(B3, α = 1),K-fold 0.950** 0.978 1,074 1.088* 1,031 0.929** 0.883** 0.841*** 0.846** 0.833**
(B3, α = 0),POOS-CV 1,037 1.183*** 1.148** 1.127* 1,008 1.166** 1.246** 1.129* 1,028 0.862***
(B3, α = 0),K-fold 1.305** 1.517** 1.079** 1,008 1.110*** 1,238 1.438** 1,003 0,96 1
SVR-ARDI,Lin,POOS-CV 0.945** 1.008 1,081 0.967 0.948 0.907* 0.815*** 0.869** 0.799*** 0.737***
SVR-ARDI,Lin,K-fold 0.911*** 0.920* 1,015 0.987 0,984 0.821*** 0.761*** 0.866** 0.805*** 0.743***
SVR-ARDI,RBF,POOS-CV 1,045 1.140** 0,995 0.979 0.962 1.158* 1.226** 0,952 0.907*** 0.894***
SVR-ARDI,RBF,K-fold 1.072* 1.132*** 0.948 0.956 0.918*** 1.290*** 1.205*** 0.824*** 0.843*** 0.861***

Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set are in bold, the minimum

values are underlined, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 4: Unemployment rate: Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1 1 1 1 1 1 1 1 1 1
AR,AIC 0,991 0,984 0,988 0.993*** 1 0,958 0.960** 0.984* 1 1
AR,POOS-CV 0,989 1.042* 0,996 0,996 0,98 0,977 1.103* 0.981** 0,998 1,024
AR,K-fold 0,987 0,984 0.990* 0.994*** 0.974** 0.982* 0.960** 1 1,001 1
RRAR,POOS-CV 1,005 1.050* 1,008 0,99 0.979* 1.083** 1.151** 1,006 1,006 0,997
RRAR,K-fold 0.984* 0.982* 0,994 0,996 0,993 0,983 0,984 0,992 1,001 1,029
RFAR,POOS-CV 0,999 1,011 0,987 1,002 1 1.107** 1,046 0.921** 0,962 0,997
RFAR,K-fold 0,982 0,986 0,977 0,987 1,003 0,966 0,971 0.911*** 0.947** 0.946**
KRR-AR,POOS-CV 0.982 1,012 0.892** 0.837*** 0.821*** 1,093 1,151 0.858*** 0.747*** 0.841***
KRR,AR,K-fold 0.925*** 0.862*** 0.842*** 0.828*** 0.803*** 0.828*** 0.804*** 0.772*** 0.736*** 0.846***
SVR-AR,Lin,POOS-CV 1,037 1,068 1 0,987 0,97 1.237** 1.231*** 1.064*** 1.093*** 1.165***
SVR-AR,Lin,K-fold 0,985 0.975* 0,992 0,991 0,991 0,988 1,008 1.064*** 1.092*** 1.205***
SVR-AR,RBF,POOS-CV 1.044* 1.087** 1.088*** 1.036* 1.048*** 1.208** 1.177** 1.120*** 1.082*** 1.119***
SVR-AR,RBF,K-fold 1.034** 1.114** 1.064** 1.052** 1,011 1.136*** 1.248*** 1.065*** 1.074*** 1.075***
Data-rich (H+

t ) models
ARDI,BIC 0.937** 0.893** 0,938 0,939 0.875*** 0.690*** 0.715*** 0.798*** 0.782*** 0.783***
ARDI,AIC 0.933** 0.878*** 0,928 0,953 0.893** 0.720*** 0.719*** 0.798*** 0.799*** 0.787***
ARDI,POOS-CV 0.930*** 0.918* 0,931 0,937 0.869*** 0.731*** 0.675*** 0.821** 0.785*** 0.768***
ARDI,K-fold 0.947* 0.893** 0,97 0,964 0.928* 0.677*** 0.665*** 0.805*** 0.807*** 0.772***
RRARDI,POOS-CV 0.918*** 0,937 0,97 0,955 0.861*** 0.709*** 0.756*** 0.890** 0.832*** 0.754***
RRARDI,K-fold 0.940** 0.876** 0.901* 0.911* 0.897** 0.744*** 0.676*** 0.788*** 0.819*** 0.745***
RFARDI,POOS-CV 0.925*** 0.919** 0.870*** 0.879** 0.782*** 0.708*** 0.739*** 0.715*** 0.736*** 0.785***
RFARDI,K-fold 0.947** 0.902*** 0.857*** 0.846*** 0.776*** 0.763*** 0.751*** 0.761*** 0.725*** 0.696***
KRR-ARDI,POOS-CV 0,993 0.990 0.883** 0.835*** 0.779*** 1,066 1,092 0.800*** 0.734*** 0.766***
KRR,ARDI,K-fold 0.940*** 0.882*** 0.841*** 0.810*** 0.802*** 0,938 0.889* 0.791*** 0.739*** 0.841***
(B1, α = α̂),POOS-CV 0.910*** 0.936** 0,945 0,975 0.929** 0.771** 0.834** 0.879** 0.841*** 0.853***
(B1, α = α̂),K-fold 0.920*** 0.871*** 0.913* 0,933 0,967 0.813* 0.738*** 0.839*** 0.736*** 0.712***
(B1, α = 1),POOS-CV 0.928*** 0,975 1.092* 1,041 0.906*** 0.861** 0.886** 0,986 0.906* 0.837***
(B1, α = 1),K-fold 0.912*** 0.888*** 0,994 0,984 0.924** 0.798*** 0.745*** 0,906 0.834*** 0.766***
(B1, α = 0),POOS-CV 0.922*** 0,947 0,982 0,961 0.934* 0.802** 0.809*** 0.893* 0,897 0.843**
(B1, α = 0),K-fold 0.921*** 0.876*** 0.893** 0.911** 0.929* 0.824** 0.788** 0.820*** 0.771*** 0.731***
(B2, α = α̂),POOS-CV 0.950** 0.922** 0,971 1,002 0.856*** 0,898 0.856** 0.902* 0.857*** 0.831***
(B2, α = α̂),K-fold 0.930*** 0.867*** 0.898** 0.917** 0.892*** 0.827*** 0.773*** 0.869*** 0.831*** 0.750***
(B2, α = 1),POOS-CV 0.944*** 0.900*** 0,952 0,996 0.892*** 0.787*** 0.770*** 0.889** 0.869** 0,978
(B2, α = 1),K-fold 0.937*** 0.914*** 0.849*** 0.915** 0.872*** 0.736*** 0.791*** 0.837*** 0.873** 0.842***
(B2, α = 0),POOS-CV 0.979 1,001 1,031 1,011 0.946* 1,085 1,061 0,947 0.826*** 0.835**
(B2, α = 0),K-fold 0.957** 0.939** 0,988 1,004 0,951 0,991 1,006 0,97 0.875** 0.763***
(B3, α = α̂),POOS-CV 0,975 0,974 0,984 0.922* 0.882*** 0,999 0,969 0.916** 0.893** 0.834**
(B3, α = α̂),K-fold 0.955*** 0.872*** 0,945 0,94 0.897** 0.882*** 0.772*** 0.840*** 0.835*** 0.829**
(B3, α = 1),POOS-CV 0.912*** 0,953 0,981 0,949 0.910** 0.793** 0.843*** 0.895** 0.923* 0,919
(B3, α = 1),K-fold 0.937*** 0.923*** 0,954 0,939 0.917* 0.811*** 0.821*** 0.852*** 0.823*** 0.838**
(B3, α = 0),POOS-CV 1.197** 1.144*** 1.318** 1.233** 1 1.470** 1.269*** 1.288** 1,123 0.787***
(B3, α = 0),K-fold 1.219* 1,039 1.108** 1.236** 1.082* 1,417 1,077 1,095 1,232 0,971
SVR-ARDI,Lin,POOS-CV 0.919*** 0.921* 0.906* 0,947 0.911** 0.748*** 0.734*** 0.861** 0.794*** 0.835***
SVR-ARDI,Lin,K-fold 0.939*** 0.864*** 0.877** 0.858*** 0.888*** 0.777*** 0.726*** 0.777*** 0.750*** 0.791***
SVR-ARDI,RBF,POOS-CV 1,035 1.133** 1,018 0.945** 0.926*** 1.182** 1.278*** 1,017 0.885*** 0.931*
SVR-ARDI,RBF,K-fold 1,032 1,032 0,954 0.921** 0.870*** 1,102 1,058 0.894*** 0.864*** 0.874**

Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set are in bold, the minimum

values are underlined, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 5: Term spread: Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1 1.000 1.000 1.000 1.000 1 1 1 1 1
AR,AIC 1.002* 0.998 1.053* 1.034** 1.041** 1,002 1,001 1,034 0,993 0.972
AR,POOS-CV 1,002 1.140* 1.005 0.988 1.035* 1 1,017 0.873** 0.872** 0.973
AR,K-fold 1.054* 1.065* 0.998 1.000 1.034* 1,041 1 0,907 1 0,983
RRAR,POOS-CV 1.012** 1.145* 1.011 1.016* 1,016 1,011 1,015 0.966** 0.987* 0.930**
RRAR,K-fold 1.046* 0.997 1,043 0.972 1,021 1,025 0,997 0,995 0.820** 0.954*
RFAR,POOS-CV 1,006 0.899 1.110** 0,996 1.086** 0,908 0,839 1,042 0.713** 1.048*
RFAR,K-fold 0,986 0.929 1.124*** 1,014 1.083** 0.892 0,793 1,006 0.754* 1.053*
KRR-AR,POOS-CV 1.203* 0.876 0.978 0.868** 0.887*** 0.894 0.703* 0.776*** 0.658** 0.945
KRR,AR,K-fold 1.203* 0.867* 0.936* 0.871** 0.894*** 0.879 0,708 0.791*** 0.665** 0.954
SVR-AR,Lin,POOS-CV 0,999 0.973 0.995 1,025 0.964* 0,975 0,806 0,989 0.922* 0.998
SVR-AR,Lin,K-fold 0,995 0.916 0.990 0.984 0.955** 0.966 0,706 0,998 0,972 0.949**
SVR-AR,RBF,POOS-CV 1,019 0.853* 1,055 0.928 0.953 0.786 0,739 0,888 0.688** 0.885***
SVR-AR,RBF,K-fold 1.005 0.879 1.161*** 0,998 1,052 0.786 0.668 0,957 0.732* 0.990
Data-rich (H+

t ) models
ARDI,BIC 0.953 0,971 0.979 0.930 0.892*** 0,921 0,9 0.790*** 0.633*** 1,049
ARDI,AIC 0.970 0.956 1.019 0.944 0.917** 0.929 0,867 0.814*** 0.647*** 1,076
ARDI,POOS-CV 0.934 1,039 1,063 1,036 1.000 0.900 0,939 0,973 0,868 1,105
ARDI,K-fold 0.963 0.936 0.980 0.934 0.955 0.892 0,897 0.788*** 0.647*** 1,114
RRARDI,POOS-CV 0,972 1,022 1.095* 1,003 1,025 0,948 0,925 0,998 0.827* 1.183*
RRARDI,K-fold 0,97 0,99 0.983 0.955 0.962 0,934 0,967 0.777*** 0.682** 1,102
RFARDI,POOS-CV 1,002 0.832* 0.956 0.856** 0.919** 0.817 0.684 0.790*** 0.626*** 0.965
RFARDI,K-fold 1,061 0.872* 1,014 0.887* 0.950 0.863 0,736 0.856* 0.652** 0.961
KRR-ARDI,POOS-CV 1.311*** 0.908 1.018 0.852** 0.907*** 0.904 0.663* 0.716*** 0.603*** 0.931
KRR,ARDI,K-fold 1.376** 0.947 0.968 0.846** 0.877*** 0.862 0.686 0.766*** 0.575*** 0.930*
(B1, α = α̂),POOS-CV 1,043 0,988 1.164*** 1.085* 0.924** 0,979 0,907 1,075 0,951 1,026
(B1, α = α̂),K-fold 0,995 0,981 1.087* 1,028 0.939 0,94 0,929 0,91 0.789** 1,003
(B1, α = 1),POOS-CV 1,068 0.954 1.185** 1,074 0.991 0.915 0,86 1.399* 0.807* 1.104**
(B1, α = 1),K-fold 1,041 0.937 0.961 0.982 0.943** 0,937 0,854 0.789*** 0.664** 1,01
(B1, α = 0),POOS-CV 1.426** 1.138* 1.215*** 1,052 0.967 1.473* 1,018 1.283* 0.808* 1,07
(B1, α = 0),K-fold 1.359* 1,041 1,038 0.980 0.905** 1,404 1,044 0.869* 0.737** 0.978
(B2, α = α̂),POOS-CV 0,987 0,979 1.149*** 1,01 1,008 0.879 0,874 0,97 0.731** 1,09
(B2, α = α̂),K-fold 0,979 0.959 1.006 0.965 0.937** 0.872 0,885 0.819** 0.666** 0.912**
(B2, α = 1),POOS-CV 1.121* 1,086 1.008 1 0.965 1,002 1,078 0.840*** 0.766** 0.955
(B2, α = 1),K-fold 1,006 0.916 0.983 0.918 0.901*** 0.880 0,815 0.811*** 0.648** 1,024
(B2, α = 0),POOS-CV 1.136** 1,018 1.150*** 1,045 1.010 0,971 0,908 1,086 0,838 0.958
(B2, α = 0),K-fold 1.146** 0.952 1,042 0.961 0.954 0,946 0,879 0.887* 0.789* 0.900**
(B3, α = α̂),POOS-CV 1.183* 1.145** 1.157*** 1,034 0.949 0,923 1,012 0.826*** 0.623*** 0,993
(B3, α = α̂),K-fold 1.176* 1,074 1.167*** 1,048 0.929* 0,956 1,023 0.812** 0.754** 0.975
(B3, α = 1),POOS-CV 1.305*** 1.302*** 1.140*** 0,981 0.948 1,042 1,071 0.855** 0.656*** 1,009
(B3, α = 1),K-fold 1.222* 1,086 1.093** 1,039 0.972 1,004 0,889 0,913 0.736** 0.976
(B3, α = 0),POOS-CV 1.775*** 1.335*** 1.208*** 1.362* 0.990 1.379** 0,977 1,093 1,244 0,968
(B3, α = 0),K-fold 1.644*** 1.189** 1.153*** 1,019 0.997 1.565*** 0,795 0,907 0.737** 0.980
SVR-ARDI,Lin,POOS-CV 0.927 0.988 1.024 0.941 0.962 0.888 0,953 0.856** 0.729** 1.114*
SVR-ARDI,Lin,K-fold 0.975 0.924 1.007 0.928 0.899*** 0.944 0,851 0.842*** 0.681** 1,03
SVR-ARDI,RBF,POOS-CV 1.733*** 1,031 1,061 0.935 0.900*** 1.377** 0,799 0.761*** 0.651** 0.931
SVR-ARDI,RBF,K-fold 1.692*** 1.002 1,034 0.933 0.948* 1.377** 0,802 0.795** 0.648** 0.976

Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set are in bold, the minimum

values are underlined, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 6: CPI Inflation: Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1.000 1.000 1.000 1 1 1 1.000 1 1 1
AR,AIC 0.965*** 1.000 1.000 0.969** 0.968** 0,998 0.998 1 0,998 0,972
AR,POOS-CV 0.977 0.997 0.977 0.957** 0.943*** 0,978 0.992 1 0,979 0,977
AR,K-fold 0.966*** 0.986 0.974* 0.967** 0.970** 0,998 0.975** 1 1,007 0,992
RRAR,POOS-CV 0.962*** 1.003 0.978 0.976 0.946*** 0.963** 0.990 0,998 0,977 0,971
RRAR,K-fold 1.020* 1.015 1.182* 0.981 0,986 0,999 1.008 1,077 0,999 1.002*
RFAR,POOS-CV 1.012 1.165** 1.285*** 1.279*** 1.274*** 0,931 1,147 1,08 1.089** 1.256***
RFAR,K-fold 1,021 1.188*** 1.269*** 1.285*** 1.310*** 0,959 1.159* 1,042 1.125** 1.266**
KRR-AR,POOS-CV 0.993 1.144** 1.288*** 1.330** 1.263** 0.884* 1,143 0,944 1,053 1.279**
KRR,AR,K-fold 1.004 1.116* 1.226** 1.234** 1,163 0.893* 1,14 0,911 0,952 0,93
SVR-AR,Lin,POOS-CV 1.010 1.191*** 1.376*** 1.365*** 1.337*** 0.902* 1,13 1.148* 1.146** 1.222**
SVR-AR,Lin,K-fold 1.003 1.201*** 1.354*** 1.355*** 1.321*** 0.901* 1.139* 1.123* 1.149** 1.220**
SVR-AR,RBF,POOS-CV 1.053* 1.260*** 1.539*** 1.515*** 1.471*** 0,905 1.191* 1,122 1.166** 1.337***
SVR-AR,RBF,K-fold 1,039 1.253*** 1.462*** 1.488*** 1.416*** 0,906 1.185* 1.119* 1.222** 1.263*
Data-rich (H+

t ) models
ARDI,BIC 0.958 1.005 1.022 1.006 1,004 0,928 0.938 0.745** 0.688** 0.568**
ARDI,AIC 0.975 1.014 1.033 1,04 1,033 0,958 0.923 0.740** 0.661** 0.474**
ARDI,POOS-CV 0.979 1.113 1.005 1,041 1,014 0,963 1,041 0.789** 0.711*** 0.530**
ARDI,K-fold 0.945 1.015 1.008 1,045 1,009 0,906 0.927 0.753** 0.662** 0.456**
RRARDI,POOS-CV 0.975 1.099 0.984 1,075 1,058 0,937 1,034 0.789** 0.688*** 0.504**
RRARDI,K-fold 0.943* 1.012 1.046 0.935 1,044 0.894** 0.913 0.767* 0.658*** 0.465**
RFARDI,POOS-CV 1.025 1.165** 1.254*** 1.261*** 1.179** 0,936 1,143 0,982 0,948 0,985
RFARDI,K-fold 1.024 1.178** 1.267*** 1.274*** 1.214** 0,955 1,176 0,976 0,95 1,014
KRR-ARDI,POOS-CV 0.978 1.149** 1.300*** 1.233** 1.161* 0.902* 1,131 0,996 0,968 0,917
KRR,ARDI,K-fold 1.004 1.137** 1.271*** 1.244** 1,157 0.904* 1,117 0,984 0.882* 0,954
(B1, α = α̂),POOS-CV 0.954* 1.062* 1.112** 1.087* 1,086 0.873* 1,053 0,924 0.824** 0,804
(B1, α = α̂),K-fold 0.937** 1.047 1.136** 1,062 1,125 0.863* 1,074 0,986 0.877* 0,812
(B1, α = 1),POOS-CV 0.977 1.136* 1.185*** 1.096* 1.217** 0.880* 1,213 1,04 0,921 0,873
(B1, α = 1),K-fold 0.978 1.138* 1.154** 1.091* 1,093 0,915 1,222 1,075 0,96 0.592*
(B1, α = 0),POOS-CV 0.977 1.052 1.612* 1.250*** 1.266** 0.904 1.005 2,139 1,067 0,786
(B1, α = 0),K-fold 0.948 1,315 1.109** 1.359** 1,412 0.839* 1,57 0,961 1,355 0,76
(B2, α = α̂),POOS-CV 0.970 1.051* 1.089* 1.104* 1.122* 0.891* 1,027 0,885 0,89 0,844
(B2, α = α̂),K-fold 0.977 1.039 1.086* 1,079 1.112* 0,904 1,033 0,891 0,901 0,871
(B2, α = 1),POOS-CV 0.997 1.075** 1.106* 1.115* 1.151* 0,913 1,066 0,902 0,923 0,888
(B2, α = 1),K-fold 0.973 1.053* 1.137** 1,099 1.191** 0,919 1,022 0,886 0,921 0,958
(B2, α = 0),POOS-CV 1.001 1.104** 1.136*** 1.186*** 1.327*** 0,935 1,093 0,988 1,071 0,889
(B2, α = 0),K-fold 0.993 1.085** 1.144*** 1.132** 1.216*** 0,923 1,076 0,965 1,045 0,896
(B3, α = α̂),POOS-CV 0.973 1.128*** 1.211*** 1.274** 1.225*** 0.819** 1,09 1,023 1.095* 0,918
(B3, α = α̂),K-fold 0.976 1.098*** 1.231*** 1.211*** 1.125** 0.837** 1,061 1,108 1,013 0,864
(B3, α = 1),POOS-CV 0.999 1.117*** 1.219*** 1.313*** 1.232*** 0.830** 1,076 1,08 0,976 0,876
(B3, α = 1),K-fold 0.990 1.134*** 1.260*** 1.241*** 1.176*** 0.853* 1,054 1.132* 1,069 0,862
(B3, α = 0),POOS-CV 1.085 1.400** 1.330*** 1.468*** 1.267*** 0.900 1,056 1.173** 1.490** 0,831
(B3, α = 0),K-fold 0.976 1.276** 1.328*** 1.392*** 1.244*** 0.864* 1,064 1.348** 1.439*** 0,858
SVR-ARDI,Lin,POOS-CV 1,019 1.134** 1.200*** 1.326** 1.189* 0,969 1,055 1 0,974 0,735
SVR-ARDI,Lin,K-fold 0.964 1.108** 1.191** 1.200** 1,167 0.865** 1,084 1,018 0.769** 0,689
SVR-ARDI,RBF,POOS-CV 1,04 1.263*** 1.534*** 1.515*** 1.461*** 0,906 1,153 1.119* 1.195** 1.243*
SVR-ARDI,RBF,K-fold 1,037 1.253*** 1.522*** 1.500*** 1.433*** 0,907 1,155 1.124* 1.187* 1.252*

Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set are in bold, the minimum

values are underlined, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 7: Housing starts: Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1 1.000 1.000 1.000 1.000 1 1.000 1 1 1
AR,AIC 0.995 0.987 1.048* 1.008 1.041* 0.956*** 0.976* 1,007 0,97 0.955
AR,POOS-CV 1.010* 1.002 1.064** 1.011 1.049*** 0.989* 1.011* 1.025** 0,991 0,981
AR,K-fold 0.992 0.986 1.029 0.997 1.031 0.957*** 0.973** 0,999 0,954 0.925**
RRAR,POOS-CV 1.028** 1.022 0.983 0.905* 0.954 0,987 1.018 0.943 0.912* 1,05
RRAR,K-fold 0.990 0.986* 1.035 0.992 1.024 0.935*** 0.974** 1,013 0,965 0.924**
RFAR,POOS-CV 1.231** 1.267** 1.260** 1.271** 1.086** 1.463* 1.588** 1,058 1,01 0.941*
RFAR,K-fold 1.179* 1.255** 1.314** 1.264** 1.058* 1.452* 1.586** 1.073* 0,973 0.883**
KRR-AR,POOS-CV 2.008*** 1.811*** 1.567*** 1.384*** 0.980** 2.141*** 1.927*** 1.088* 0,944 0.981*
KRR,AR,K-fold 1.293** 1.325* 1.430** 1.165** 1.001 1.684** 1.778** 1.107** 0,937 0.974**
SVR-AR,Lin,POOS-CV 1.220** 1.411** 1.307** 1.284*** 1.040 1.286* 1.600* 1.056* 1.108** 1.114*
SVR-AR,Lin,K-fold 1.219** 1.501** 1.313*** 1.240*** 1.011 1.449* 1.573* 1,037 1,05 1,024
SVR-AR,RBF,POOS-CV 1.281*** 1.315** 1.336** 1.251*** 1.014 1.517** 1.627** 1.092* 1 0,962
SVR-AR,RBF,K-fold 1.155*** 1.443*** 1.421*** 1.338*** 1.080*** 1.265** 1.624* 1.088* 1,043 1,011
Data-rich (H+

t ) models
ARDI,BIC 0.951** 0.958 1.034 1.026 1.045 0.929 1.104* 0,96 0.862** 1,064
ARDI,AIC 0.979 0.975 1.018 1.034 1.078** 0.958 1.151** 0.936 0.905* 1,036
ARDI,POOS-CV 0,996 0.981 1.077* 1.040 1.091** 0,962 1.133* 0,968 0,915 0,987
ARDI,K-fold 0.979 0.989 1.028 1.037 1.075*** 0,977 1.154** 0,953 0.885* 1,041
RRARDI,POOS-CV 1,004 1.044 1.042 1.012 1.004 0.939* 1.216** 0.942* 0.907 1.096*
RRARDI,K-fold 0.970 0.981 1.043 1.034 0.964 0.932 1.136** 0.915** 0.867** 1,01
RFARDI,POOS-CV 1.224* 1.238* 1.174** 1.141* 1.004 1.608* 1.602** 1,019 0,926 0,969
RFARDI,K-fold 1,131 1.216* 1.209** 1.128** 0.973 1.401* 1.615** 1,046 0.929* 0.940
KRR-ARDI,POOS-CV 1.346*** 1.456** 1.348** 1.242** 1.002 1.562** 1.887** 1,028 0,98 0.963***
KRR,ARDI,K-fold 1.466*** 1.410** 1.474** 1.300** 1.022 1.856*** 1.907** 1.106** 0,981 1
(B1, α = α̂),POOS-CV 1.102** 1.110 1.158** 1.126** 1.032 1.197** 1.387*** 1,029 0,947 1,001
(B1, α = α̂),K-fold 1.057* 1.050 1.135** 1.110** 1.009 1.124* 1.281*** 0,987 0.929** 0.980
(B1, α = 1),POOS-CV 0.960 1.038 1.274*** 1.158*** 0.989 0.940 1.317** 1,017 0.901** 1,009
(B1, α = 1),K-fold 0.950* 1.022 1.203*** 1.163** 0.981 0.945 1.285** 0,971 0.890** 1,019
(B1, α = 0),POOS-CV 1.191*** 1.214** 1.136** 1.203** 1.055* 1.227* 1.594*** 0,975 0.914* 0,99
(B1, α = 0),K-fold 1.091* 1.155 1.104* 1.085 1.044 1,198 1.536** 0.946 0.863** 0,982
(B2, α = α̂),POOS-CV 1,053 1.092 1.040 1.054 1.018 1.170* 1.368*** 0,969 0,936 0.958*
(B2, α = α̂),K-fold 1.058* 1.020 1.064 1.033 1.057** 1.183** 1.253** 0,989 0.909* 0,999
(B2, α = 1),POOS-CV 1,015 1.009 1.079 1.101** 1.024 1,036 1.234** 0,962 0.904** 0.909**
(B2, α = 1),K-fold 0,991 0.994 1.019 1.009 1.013 0,981 1.226** 0.931 0.841*** 1,005
(B2, α = 0),POOS-CV 1.224*** 1.293** 1.202*** 1.168** 1.002 1.378** 1.639** 1,007 0.887*** 0.897**
(B2, α = 0),K-fold 1.147*** 1.175 1.070 1.006 0.995 1.261*** 1.589** 0,973 0.884*** 0,955
(B3, α = α̂),POOS-CV 1.380*** 1.283** 1.223** 1.147** 1.046 1.531*** 1.566*** 1.089* 0,978 0.943*
(B3, α = α̂),K-fold 1.420*** 1.248*** 1.186** 1.176** 1.049 1.370*** 1.436*** 1,027 0,972 0,993
(B3, α = 1),POOS-CV 1.132** 1.033 1.181** 1.145** 1.036 1.175* 1.179* 0.933* 0.906** 0.926*
(B3, α = 1),K-fold 1.085** 1.061 1.169** 1.159** 1.081 1,013 1.257** 0,954 0,923 0,998
(B3, α = 0),POOS-CV 1.595*** 1.468*** 1.352*** 1.204** 1.041** 1.588*** 1.622*** 0.956 0.908* 1,013
(B3, α = 0),K-fold 1.505*** 1.367*** 1.375*** 1.252** 0.984 1.634*** 1.490*** 1.104* 1,037 0,952
SVR-ARDI,Lin,POOS-CV 1.231*** 1.207** 1.179** 1.152** 1.134*** 1.333** 1.386*** 1,087 1,026 1,023
SVR-ARDI,Lin,K-fold 1.208*** 1.442** 1.107* 1,101 1.074** 1,097 1.222** 0.925* 0.846** 1,007
SVR-ARDI,RBF,POOS-CV 1.621*** 1.778*** 1.425*** 1.263** 0.985 1.745*** 1.956** 1,077 0,919 1
SVR-ARDI,RBF,K-fold 1.675*** 1.802*** 1.467*** 1.267** 1.023 1.808*** 1.993** 1,079 0.924* 0,989

Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set are in bold, the minimum

values are underlined, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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B Robustness of Treatment Effects Graphs

Figure 12: This figure plots the distribution of α̇
(h,v)
F from equation 11 done by (h, v) subsets. The subsample

under consideration here is data-poor models. The unit of the x-axis are improvements in OOS R2 over the
basis model. Variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the
horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC. These are the 95% confidence
bands.
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Figure 13: This figure plots the distribution of α̇
(h,v)
F from equation 11 done by (h, v) subsets. The subsample

under consideration here is data-rich models. The unit of the x-axis are improvements in OOS R2 over the
basis model. Variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the
horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC. These are the 95% confidence
bands.

Figure 14: This figure plots the distribution of α̇
(h,v)
F from equation 11 done by (h, v) subsets. The subsample

under consideration here are recessions. The unit of the x-axis are improvements in OOS R2 over the basis
model. Variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the horizon
increases from h = 1 to h = 24 as we are going down. SEs are HAC. These are the 95% confidence bands.
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Figure 15: This figure plots the distribution of α̇
(h,v)
F from equation 11 done by (h, v) subsets. The subsample

under consideration here are the last 20 years. The unit of the x-axis are improvements in OOS R2 over the
basis model. Variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the
horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC. These are the 95% confidence
bands.
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C Additional Graphs

Figure 16: This graph displays the marginal improvements of different ARDIs with respect to the baseline
ARDI-BIC. The unit of the x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These are
the 95% confidence bands.
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Figure 17: This graph displays the marginal improvements of different ARDIs with respect to the baseline
ARDI-BIC by variables and horizons. The unit of the x-axis are improvements in OOS R2 over the basis model.
SEs are HAC. These are the 95% confidence bands.

Figure 18: This graph display the marginal (un)improvments by variables and horizons to opt for the SVR
in-sample loss function in comparing the data-poor and data-rich environments for linear models. The unit
of the x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence
bands.
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Figure 19: This graph display the marginal (un)improvments by variables and horizons to opt for the SVR in-
sample loss function in comparing the data-poor and data-rich environments for non-linear models. The unit
of the x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These are the 95% confidence
bands.
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D Detailed Implementation of Cross-validations

All of our models involve some kind of hyperparameter selection prior to estimation. To
curb the overfitting problem, we use two distinct methods that we refer to loosely as cross-
validation methods. To make it feasible, we optimize hyperparameters every 24 months
as the expanding window grows our in-sample set. The resulting optimization points are
the same across all models, variables and horizons considered. In all other periods, hy-
perparameter values are frozen to the previous values and models are estimated using the
expanded in-sample set to generate forecasts.

POOS K folds

Figure 20: Illustration of cross-validation methods

Notes: Figures are drawn for 3 months forecasting horizon and depict the splits performed in the in-sample

set. The pseudo-out-of-sample observation to be forecasted here is shown in black.

The first cross-validation method we consider mimics in-sample the pseudo-out-of-sample
comparison we perform across model. For each set of hyperparameters considered, we keep
the last 60 months as a comparison window. Models are estimated every 12 months, but
the training set is gradually expanded to keep the forecasting horizon intact. This exer-
cice is thus repeated 5 times. Figure 20 shows a toy example with smaller jumps, a smaller
comparison window and a forecasting horizon of 3 months, hence the gaps. Once hyper-
parameters have been selected, the model is estimated using the whole in-sample set and
used to make a forecast in the pseudo-out-of-sample window we use to compare all models
(the black dot in the figure). This approach is a compromise between two methods used
to evaluate time series models detailed in Tashman (2000), rolling-origin recalibration and
rolling-origin updating.14 For a simulation study of various cross-validation methods in a

14In both cases, the last observation (the origin of the forecast) of the training set is rolled forward. However,
in the first case, hyperparameters are recalibrated and, in the second, only the information set is updated.
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time series context, including the rolling-origin recalibration method, the reader is referred
to Bergmeir and Benítez (2012). We stress again that the compromise is made to bring down
computation time.

The second cross-validation method, K-fold cross-validation, is based on a re-sampling
scheme (Bergmeir et al. (2018)). We chose to use 5 folds, meaning the in-sample set is ran-
domly split into five disjoint subsets, each accounting on average for 20 % of the in-sample
observations. For each one of the 5 subsets and each set of hyperparameters considered,
4 subsets are used for estimation and the remaining corresponding observations of the in-
sample set used as a test subset to generate forecasting errors. This is illustrated in figure 20
where each subsets is illustrated by red dots on different arrows.

Note that the average mean squared error in the test subset is used as the performance
metric for both cross-validation methods to perform hyperparameter selection.

E Forecasting models in detail

E.1 Data-poor (H−t ) models

In this section we describe forecasting models that contain only lagged values of the depen-
dent variable, and hence use a small amount of predictors, H−t .

Autoregressive Direct (AR) The first univariate model is the so-called autoregressive direct
(AR) model, which is specified as:

y(h)t+h = c + ρ(L)yt + et+h, t = 1, . . . , T,

where h ≥ 1 is the forecasting horizon. The only hyperparameter in this model is py, the
order of the lag polynomial ρ(L). The optimal p is selected in four ways: (i) Bayesian Infor-
mation Criterion (AR,BIC); (ii) Akaike Information Criterion (AR,AIC); (iii) Pseudo-out-of-
sample cross validation (AR,POOS-CV); and (iv) K-fold cross validation (AR,K-fold). The
lag order is selected from the following subset py ∈ {1, 3, 6, 12}. Hence, this model enters
the following categories: linear g function, no regularization, in-sample and cross-validation
selection of hyperparameters and quadratic loss function.

Ridge Regression AR (RRAR) The second specification is a penalized version of the pre-
vious AR model that allows potentially more lagged predictors by using Ridge regression.
The model is written as in (E.1), and the parameters are estimated using Ridge penalty. The
Ridge hyperparameter is selected with two cross validation strategy, which gives two mod-
els: RRAR,POOS-CV and RRAR,K-fold. The lag order is selected from the following subset
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py ∈ {1, 3, 6, 12} and for each of these value we choose the Ridge hyperparameter. This
model creates variation on following axes: linear g, Ridge regularization, cross-validation
for tuning parameters and quadratic loss function.

Random Forests AR (RFAR) A popular way to introduce nonlinearities in the predictive
function g is to use a tree method that splits the predictors space in a collection of dummy
variables and their interactions. Since a standard tree regression is prompt to the overfitt, we
use instead the random forest approach described in Section 3.1.2. As in the literature we set
the number of predictors in each tree to one third of all the predictors and the observations
in each set are sampled with replacement to get as many observations in the trees as in the
full sample. The number of lags of yt, is chosen from the subset py ∈ {1, 3, 6, 12} with cross-
validation while the number of trees is selected internally with out-of-bag observations. This
model generates nonlinear approximation of the optimal forecast, without regularization,
using both CV techniques with the quadratic loss function: RFAR,K-fold and RFAR,POOS-
CV.

Kernel Ridge Regression AR (KRRAR) This specification adds a nonlinear approxima-
tion of the function g by using the Kernel trick as in Section 3.1.1. The model is written as in
(13) and (14) but with the autoregressive part only

yt+h = c + g(Zt) + εt+h,

Zt =
[
{yt−0}

py
j=0

]
,

and the forecast is obtained using the equation (16). The hyperparameters of Ridge and
radial basis function kernel are selected by two cross-validation procedure, which gives two
forecasting specifications: KRRAR,POOS-CV and KRRAR,K-fold. Zt consist of yt and its
py lags, py ∈ {1, 3, 6, 12}. This model is representative of a nonlinear g function, Ridge
regularization, cross-validation to select τ and quadratic L̂.

Support Vector Regression AR (SVR-AR) We use the SVR model to create variation among
the loss function dimension. In the data-poor version the predictors set Zt contains yt and a
number of lags chosen from py ∈ {1, 3, 6, 12}. The hyperparameters are selected with both
cross-validation techniques, and we consider two kernels to approximate basis functions,
linear and RBF. Hence, there are four versions: SVR-AR,Lin,POOS-CV, SVR-AR,Lin,K-fold,
SVR-AR,RBF,POOS-CV and SVR-AR,RBF,K-fold. The forecasts are generated from equation
(19).
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E.2 Data-rich (H+
t ) models

We now describe forecasting models that use a large dataset of predictors, including the
autoregressive components, H+

t .

Diffusion Indices (ARDI) The reference model in the case of large predictor set is the
autoregression augmented with diffusion indices from Stock and Watson (2002b):

y(h)t+h = c + ρ(L)yt + β(L)Ft + et+h, t = 1, . . . , T (20)

Xt = ΛFt + ut (21)

where Ft are K consecutive static factors, and ρ(L) and β(L) are lag polynomials of orders py

and p f respectively. The feasible procedure requires an estimate of Ft that is usually done
by PCA.15 The optimal values of hyperparamters p, K and m are selected in four ways: (i)
Bayesian Information Criterion (ARDI,BIC); (ii) Akaike Information Criterion (ARDI,AIC);
(iii) Pseudo-out-of-sample cross validation (ARDI,POOS-CV); and (iv) K-fold cross vali-
dation (ARDI,K-fold). These are selected from following subsets: py ∈ {1, 3, 6, 12}, K ∈
{3, 6, 10}, p f ∈ {1, 3, 6, 12}. Hence, this model enters the following categories: linear g func-
tion, PCA regularization, in-sample and cross-validation selection of hyperparameters and
quadratic loss function.

Ridge Regression Diffusion Indices (RRARDI) As for the small data case, we explore
how a regularization affects the predictive performance of the reference model ARDI above.
The predictive regression is written as in (20) and py, p f and K are selected from the same
subsets of values as for the ARDI case above. The parameters are estimated using Ridge
penalty. All the hyperparameters are selected with two cross validation strategies, giv-
ing two models: RRARDI,POOS-CV and RRARDI,K-fold. This model creates variation on
following axes: linear g, Ridge regularization, cross-validation for tuning parameters and
quadratic loss function.

Random Forest Diffusion Indices (RFARDI) We also explore how nonlinearities affect
the predictive performance of the ARDI model. The model is as in (20) but a Random Forest
of regression trees are used. and only cross-validate the number of trees with K-fold. The
ARDI hyperparameters are chosen from the grid as in the linear case, together with the
number of trees. Both POOS and K-fold CV are used to generate two forecasting models:
RFARDI,POOS-CV and RFARDI,K-fold. This model generates nonlinear treatment, with
PCA regularization, using both CV techniques with the quadratic loss function.

15See Stock and Watson (2002a) for technical details on the estimation of Ft as well as their asymptotic
properties.
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Kernel Ridge Regression Diffusion Indices (KRRARDI) As for the autoregressive case,
we can use the Kernel trick to generate nonlinear predictive functions g. The model is
represented by equations (13) - (15) and the forecast is obtained using the equation (16).
The hyperparameters of Ridge and radial basis function kernel, as well as py, K and p f

are selected by two cross-validation procedures, which gives two forecasting specifications:
KRRARDI,POOS-CV and KRRARDI,K-fold. We use the same grid as in ARDI case for dis-
crete hyperparameters. This model is representative of a nonlinear g function, Ridge regu-
larization with PCA, cross-validation to select τ and quadratic L̂.

Support Vector Regression ARDI (SVR-ARDI) We use four versions of the SVR model:
(i) SVR-ARDI,Lin,POOS-CV; (ii) SVR-ARDI,Lin,K-fold; (iii) SVR-ARDI,RBF,POOS-CV; and
(iv) SVR-ARDI,RBF,K-fold. The SVR hyperparameters are selected with cross validation
while the ARDI hyperparameters are chosen using a grid that search in the same subsets
as the ARDI model. The forecasts are generated from equation (19). This model creates
variations in all categories: nonlinear g, PCA regularization, two sets of cross validation and
ε̄-insensitive loss function.

E.2.1 Generating shrinkage schemes

The rest of the forecasting models relies on using different B operators to generate variations
across shrinkage schemes, as depicted in section 3.2.

B1: taking all observables H+
t When B is identity mapping, we consider Zt = H+

t in the
Elastic Net problem (18), where H+

t is defined by (5). The following lag structures for yt

and Xt are considered, py ∈ {1, 3, 6, 12} p f ∈ {1, 3, 6, 12}, and the exact number is cross-
validated. The hyperparameter λ is always selected by two cross validation procedures,
while we consider three cases for α: α̂, α = 1 and α = 0, which correspond to EN, Ridge and
Lasso specifications respectively. In case of EN, α is also cross-validated. This gives six com-
binations: (B1, α = α̂),POOS-CV; (B1, α = α̂),K-fold; (B1, α = 1),POOS-CV; (B1, α = 1),K-fold;
(B1, α = 0),POOS-CV and (B1, α = 0),K-fold. They create variations within regularization
and hyperparameters’ optimization.

B2: taking all principal components of Xt Here B2() rotates Xt into N factors, Ft, estimated
by principal components, which then constitute Zt to be used in (18). Same lag structures
and hyperparameters’ optimization from the B1 case are used to generate the following six
specifications: (B2, α = α̂),POOS-CV; (B2, α = α̂),K-fold; (B2, α = 1),POOS-CV; (B2, α = 1),K-
fold; (B2, α = 0),POOS-CV and (B2, α = 0),K-fold.
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B3: taking all principal components of H+
t Finally, B3() rotates H+

t by taking all principal
components, where H+

t lag structure is to be selected as in the B1 case. Same variations and
hyperparameters’ selection are used to generate the following six specifications: (B3, α =

α̂),POOS-CV; (B3, α = α̂),K-fold; (B3, α = 1),POOS-CV; (B3, α = 1),K-fold; (B3, α = 0),POOS-
CV and (B3, α = 0),K-fold.
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