Growing Apart: Tradable Services and the Fragmentation of the U.S. Economy*

Fabian Eckert
Yale University

Job Market Paper
[Most recent version here]

January 1, 2019

Abstract

Between 1980 and 2010, the college wage premium in U.S. labor markets with larger initial shares of high-skill service employment grew substantially faster than the nationwide average. I show that this trend can be explained within the context of a model of interregional trade, where a reduction in communication costs magnifies regional specialization in high-skill services, raising the skill premium in service-exporting regions and reducing it in service-importing regions. Quantitatively, I show that the decline in communication costs I infer from sectoral trade imbalances can explain a substantial part of the differential skill premium growth across U.S. labor markets in the data. These regional changes aggregate to account for 30 percent of the rise in the overall U.S. college wage premium between 1980 and 2010.

*Contact: fabian.eckert@yale.edu. I am very grateful to my advisors for guidance and support throughout the years: Costas Arkolakis, Samuel Kortum, Giuseppe Moscarini, and Michael Peters. I have also learned and benefitted a lot from conversations with Tatjana Kleineberg, Yukun Liu, Peter Schott, Conor Walsh, and Fabrizio Zilibotti. For early readings I thank Lorenzo Caliendo, Paul Goldsmith-Pinkham, Brian Greaney, Phil Haile, Xiangliang Li, Maximilian Krahé, Monica Morlacco, Yusuke Narita, and Lucas Zavala. For help with data or the sharing of code I thank David Autor, Nathaniel Baum-Snow, David Dorn, Nicole Fortin, Xavier Giroud, Adam Harris, Joachim Hubmer, Jed Kolko, and Nicolas Sheard. I also thank Simon Alder, Treb Allen, Adrien Auclert, Bill Brainard, Rafael Dix-Carneiro, Ilse Lindenlaub, Giovanni Maggi, Guillermo Noguera, and Aleh Tsyvinski for comments that improved the paper. All errors my own.

1 Introduction

Over the last 40 years, the U.S. labor market has experienced a sustained increase in the return to skill. The social and economic inequality accompanying this development has divided U.S. society. A voluminous literature has primarily focussed on two canonical explanations for this aggregate trend: increased exposure to international trade and skill-biased technological change. However, the aggregate increase in the college wage premium of about 30% since 1980 masks substantial and systematic variation in its growth across U.S. labor markets: The larger the local employment share in high-skill services in 1980, the faster the premium grew over the subsequent 30 years.

What explains the uneven growth of the college wage premium across U.S. labor markets since 1980? To answer this question, I build on the observation that technological progress has drastically increased labor markets’ interconnectedness — a development some commentators have dubbed the death of distance. With this in mind, I argue that declining trade frictions for high-skill, information-intensive services, enabled a small number of local labor markets to provide such services to firms throughout the U.S. economy. This ongoing process of specialization raises high-skill labor demand in exporting regions, and low-skill labor demand in importing regions. These effects combine to drive up the college wage premium in locations initially specialized in such services and to lower it in others, relative to the aggregate trend.

Consider, for example, the case of Michael Byrd. Byrd founded Bake Crafters, a frozen baked goods company, in Chattanooga, TN, in 1991. In the early 2000s, Byrd started outsourcing his day-to-day customer relationship management to Salesforce, a fast-growing company in San Francisco. A few years later he contracted Xero, a software firm in Denver, to do his accounting. It is likely that communication between Byrd and these service providers occurred via phone calls, email, and occasional in-person meetings. In 2017, Mr. Byrd opened a new distribution center in Lebanon, PA. The company hence raised labor demand for relationship managers and software engineers in San Francisco and Denver (2016 median income: $55k) and low-skill warehouse workers in Lebanon, PA (2016 median income: $27k). All else equal, Bake Crafters helped raise the college wage premium in Denver and San Francisco and decrease it in Lebanon.

Throughout the paper, I formalize the notion of high-skill services as business services, a fast-growing class of skill-intensive services mainly used as intermediate inputs that have been

1 See the book with the same title by Cairncross (1997) and a similar one by Friedman (2005). Leamer (2007) offers an enlightening review of Friedman (2005) and a discussion of the death of distance hypothesis.

recognized by the literature.3 Examples include corporate management, legal services, accounting services, software development, management consulting, and corporate banking. I refer to the friction inhibiting trade in business services as \textit{communication cost}, to differentiate it from trade costs for physical goods.4

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Skill Premium Growth Across Commuting Zones 1980-2010}
\end{figure}

Figure 1 shows college wage premium growth across local labor markets ordered by the fraction of business services in the local payroll in 1980. As Figure 1 shows, the college premium has risen faster the larger the initial regional payroll share of business services in 1980.

The primary goal of this study is to assess whether changes in communication costs can

3More formally, business services in this paper correspond to the following 2-digit NAICS industries: 51, 52, 53, 54, 55, and 56. Except for waste management and remediation services and which I classify as “local services”. See Melvin (1989), Markusen (1989), Fort et al. (2018), and Fort (2017) for recent papers that discuss business/producer services as distinct from consumer services.

4Instead of shipping physical output, business service industries communicate information and problem solutions in person or via communication tools, such as computers and cell phones. The recent ICT revolution has been all about the rapid progress in developing such communication tools.
explain the slope of the dotted blue line in Figure 1. A secondary objective is to determine whether changes in communication costs constitute a skill-biased or a skill-neutral form of technological progress, i.e., to gauge their contribution to the change in the aggregate college wage premium since 1980, the level of the horizontal red line in Figure 1.

I begin by documenting two salient features of the business services sector that interact with changes in communication costs to generate differences in the return to skill across labor markets. First, across U.S. labor markets in 1980, the share of business services employment at the 90th relative to the 10th percentile was 1.9 compared to about 1.4 for the goods-producing sectors. These numbers hint at marked underlying comparative advantage differences. Second, the business service sector is significantly more skill-intensive than the goods-producing sectors: its share of employees with college degrees is more than 2.5 times that of the goods sector, in every decade between 1980 and 2010. A third fact helps to amplify the effect: business services serve as an essential intermediate input into the rest of the economy, with 40% of its output used in goods-production alone.

To illustrate the mechanism, I introduce a simple model of interregional service trade with two regions and two sectors. In its setup, I make assumptions that take the three highlighted empirical properties of business services to their stylized extremes. Out of two regions (city and hinterland), the city has an exogenous comparative advantage in business service production. The business services sector employs high-skill workers and the goods sector low-skill workers. As communication costs fall, the city increases its business services exports, driving out local business service activity in the hinterland. In response, the hinterland increasingly specializes in goods production. Given the differential skill-intensity of the two sectors, these effects combine to raise the skill premium in the city and depress it in the hinterland. If business services are an intermediate input into goods production, the goods sector in the hinterland profits from a decline in input costs. In the city, the same industry suffers from rising input costs, amplifying the effect.

There are two challenges in assessing the quantitative importance of this mechanism. The first is to infer business service trade flows in the absence of directly observed service shipments between labor markets. The second is to construct a modeling framework that is flexible enough to be calibrated to match data moments on each of the large number of U.S. local labor markets in 1980 to understand how their distinctive characteristics interact with changes in the trading environment. Models that belong to the recent Quantitative Spatial Economics literature (see Redding and Rossi-Hansberg (2017) for a review) lend themselves to both ends. I embed the simple mechanism into a quantitative model of interregional trade that combines recent contributions to this literature. In the model, workers with id-

5In this paper, the goods-producing sector comprises all non-service sectors in the economy, i.e., all NAICS industries with 1-digit codes below 5.
iosyncratic skills choose their region, sector, and occupation of employment. Additionally, the model features the full set of input-output linkages between sectors.

First, I use the structure of the model to infer business service trade flows across regions by building on an old idea: While in a world without trade, all labor markets have to be self-sufficient, the possibility of trade opens up sectoral deficits and surpluses across regions, reflecting specialization. Drawing on this basic insight, I propose a method that infers service trade flows across regions from local surpluses and deficits and that builds on seminal work by Gervais and Jensen (2013). The technique relies on two steps. First, I use regional payroll data and information from the input-output tables to construct sectoral deficits and surpluses across regions. Second, I parameterize trade frictions within each sector as a function of distance. I then use the structure of the model to study how sectoral surpluses and deficits change systematically with distance over time, to measure changes in trade frictions between 1980 and 2010. The key identification assumption is that for each origin-region, productivity is independent of the destination of a shipment, while trade costs are independent of the origin and destination region, conditional on the same distance. The estimates suggest that on average delivering a business service input to another labor market has become 60% cheaper between 1980 and 2010.

Ultimately, the effect of a decline in communication costs on skill prices depends on the interplay of regional comparative advantages, sectoral skill-intensity differences, and the ability of workers to relocate across sectors, occupations, and regions in response. A strength of the quantitative model is its close connection to the data: all parameters on regions’ and workers’ comparative advantage appear as structural residuals in the model that can be inferred directly from the data by inverting a large set of observable moments. I calibrate the model to match wages by region and education group and to match regional employment by sector, occupation, and education group for 741 commuting zones in the United States as well as the aggregate input-output table in 1980.

I use the calibrated model to conduct an exercise aimed at isolating the effect of the decline in communication costs on the spatial distribution of skill prices between 1980 and 2010. In particular, I hold technologies and other parameters fixed at their 1980 levels while setting the distance elasticity of service trade, a single parameter, to its estimated 2010 value. As predicted by the simple model the skill premium rises faster in commuting zones with high initial shares of business service employment. The reverse is true for labor markets with larger shares in goods production in 1980. A simple regression of college wage premium growth on the log payroll share in business services in 1980 run in data and model output reveals that the commuting cost decline can explain about 50% of the positive relationship.

6When I apply the same technique to the goods sector, I find that the distance elasticity is roughly constant and of a similar magnitude as existing estimates, in the literature.
I then use the auxiliary predictions of the model on differential wage growth rates across sectors and occupations in the different commuting zones to validate the mechanism further. There are aggregate gains from service market integration. I find that these gains accrue disproportionately to high-skill workers, raising the aggregate college wage premium substantially. The mechanism can explain 30% of the increase in the unconditional aggregate college wage premium between 1980 and 2010. Increased business services production has large demand spillovers in exporting regions, raising their overall wage level markedly. Since many of these regions are large metropolitan areas that host a majority of high-skill workers, these regional gains raise the average economy-wide wage level of high-skill workers more than that of low-skill workers.

Related Literature Several papers provide evidence that changes in the return to skill have been spatially unbalanced. Berry and Glaeser (2005), Moretti (2012), Ganong and Shoag (2017), and Giannone (2017) focus on the “end of spatial wage convergence,” driven by the fast growth of high-skill workers’ wages in a handful of large cities after 1980. Baum-Snow and Pavan (2013) show that the skill premium grew faster in larger metropolitan areas. None of these papers highlights that the extent to which different regions can take advantage of a decline in communication costs appears as an intuitive explanation for these patterns since business services concentrate overwhelmingly in large urban areas. As part of the nascent literature on domestic trade in services, Atalay et al. (2014) combine restricted-use Census data sets to conclude that, among U.S. establishments, flows of intangibles are likely orders of magnitude more important than flows of physical goods. Fort (2017) exploits a restricted-use survey on U.S. manufacturers’ sourcing decisions to provide evidence suggestive of large domestic service trade volumes. Giroud (2013) provides direct causal evidence that reductions in communication costs (flight time decreases) increase investments from headquarters in plants located elsewhere in the U.S. Jensen and Kletzer (2005) and Jensen and Kletzer (2010) infer the tradability of service industries from measures of spatial concentration. I build on Gervais and Jensen (2013), who use a multi-sector Armington model to infer sectoral distance elasticities for 1000 sectors in the 2007 Economic Census. Contrary to this paper, they construct a direct proxy for local productivity instead of using additional assumptions on gross trade volumes. Further, they focus on a single

7 Agglomeration spillovers as in Davis and Dingel (2018) and Duranton and Puga (2004) can explain why cities have a static comparative advantage in high-skill activities, (such as business services) but do not highlight mechanisms for faster skill premium growth in large cities over the last decades.

8 The NAICS industry classification treats independent headquarters of vertically integrated companies as a Business service industry ("Management of Companies" (NAICS 55111)).

9 An early contribution to the literature on international service trade is Griffiths (1975). Other important papers are Deardorff (2001), Hoekman (2006), Francois and Hoekman (2010), and Mattoo et al. (2007).
cross-section while changes in the distance elasticity are the focus of the present paper.10

Another set of papers highlights the importance of communication costs in changing the spatial organization of production (see Michaels et al. (2018) and Duranton and Puga (2005)). None of these papers estimates a structural model to quantitatively assess the impact of changes in communication costs on local skill prices.11

The present paper extends studies of market integration across U.S. regions to the service sector. Krugman (1991) made an early theoretical contribution. More recently, Donaldson and Hornbeck (2016) documented how the construction of the railroad system facilitated regional agricultural specialization. I argue that declines in business services trade frictions ushered in a similar period of service market integration and focused on its distributional consequences instead of its aggregate gains.

This project also contributes to the literature on skill-biased technological change (see Katz and Murphy (1992) and Krusell et al. (2000)) by highlighting a specific micro-channel through which recent technological change raises the aggregate skill premium.

Technically, I combine elements from various papers inspired by Eaton and Kortum (2002): an input-output structure of production and worker relocation across regions as in Caliendo et al. (2015) and Burstein et al. (2017) and occupation and sector choices as in Lee (2015). I also follow these papers in using hat algebra (see also Dekle et al. (2007) and Costinot et al. (2012)) to compute counterfactuals.12

The paper is structured as follows. Section 2 introduces three properties of the business services sector that are important for the mechanism. Section 3 discusses the theory. Sections 4 and 5 explain the calibration and discuss model exercises. Section 6 concludes.

2 Business Services: Facts

In this section, I introduce three empirical facts on the business services sector that will be central to my analysis. To construct them, I draw on the Public-Use 5\% Samples of the U.S. Decennial Census Files and the U.S. input-output tables published by the Bureau of

10This approach also connects to an early literature on the “regionalization” of Input-Output tables (see Isard (1953), Moses (1955), Leontief and Strout (1963) and Polenske (1970)).

11Strauss-Kahn and Vives (2009) and Aarland et al. (2007) document the increasing spatial concentration of corporate headquarters, suggestive of managerial services shipments back to operating plants.

12Burstein and Vogel (2017) and Parro (2013) are recent papers that link international trade and rising inequality. Burstein et al. (2015) use similar techniques to study aggregate between-group inequality in the United States.
Economic Analysis (BEA), both for various years.13

The business services sector in the United States has grown from a mere 5% share of employment in 1950 to an 18% share in 2010. Such growth makes it one of the fastest growing sub-sector of the service economy along with consumer services. Many occupations that have seen large wage gains in recent years are particularly important in the business services sector, e.g., managers, lawyers, and data scientists. For the mechanism in this paper, three properties of the business services sector are of particular import.

\textbf{Fact 1.} Business Services payroll shares differ widely across local labor markets

I compute the distribution of sectoral payroll shares for 741 local labor markets in the United States (see Appendix H for details). Table 8 in the Appendix shows the ratio of the business services payroll shares at the 90th and 10th percentile of the distribution across labor markets. For business services, this ratio is 1.9 in 1980 compared to 1.4 for both the goods and local services sector. Through the lens of a simple Ricardian model, such variation in local specialization is indicative of underlying comparative advantage differences across regions.14

\textbf{Fact 2.} Business Services are more skill-intensive than the goods sector

In 1980, only 12\% of all goods sector workers had a college degree, whereas 32\% of business services workers did. In 2010 these number had risen to 22\% and 56\%, respectively (see Table 10 in Appendix A). The differential skill intensity of the two sectors implies that sectoral shocks will affect skill group wage averages differently.

\textbf{Fact 3.} The Goods sector is an important destination for business services

About 40\% of overall business services output served as an intermediate input into the goods sector in 1980 (see Appendix A). In contrast, only 1\% of goods sector output travelled to the business services sector as an intermediate input in the same year. This sectoral linkage implies that changing trade frictions in the business services sector directly affect input prices in the goods-producing sector.

13I discuss the construction of the underlying sample in detail in Section 4.1 below. In Appendix H.1, I present a full list of sectors subsumed under the label “business services”, “goods”, and “local services” for the remainder of the paper.

14Many papers have elaborated on the reasons behind the concentration of the business services industry in large commuting zones. The quantitative model introduced below has three mechanisms to generate this concentration: (1) technological advantages of regions for business service production, (2) differences in local skill supplies, and (3) “geography” which can make a close neighbor the preferred supplier. For the present analysis, I do not need to distinguish these factors explicitly.
The central hypothesis advanced in this paper is that the interplay of three forces can explain the systematic variation in the growth rate of the college wage premium across U.S. regions: business services comparative advantage differences across regions (Fact 1); the skill-intensity of the business services sector relative to other tradable sectors in the economy (Fact 2); changes in communication costs. The fact that business services primarily serve as intermediate inputs into goods production (Fact 3) amplifies the mechanism.

The next section introduces a model to formalize the link between these three facts and the impact of a decline in communication costs on returns to skill across regions.

3 A Theory of Trade Across Labor Markets

I introduce a general environment and then show two ways of closing it that serve different purposes. The first is a simple way aimed at illustrating the nexus between communication cost declines and the evolution of regional skill premia in a parsimonious setting. The second way is richer and aimed at evaluating the mechanism’s quantitative importance. It also serves to infer trade flows in the absence of data on interregional trade in services.

3.1 General Environment

I propose a static theory of trade between a set of locations. There are \(r = \{1, ..., R\} \) regions, \(s = \{1, ..., S\} \) sectors of production, and \(k = \{1, ..., K\} \) worker types. Regions differ in their sector specific productivity, which I denote by \(A_{rs} \). Sectors differ in their use of intermediate inputs from other sectors in the economy and their labor requirements. Worker types differ in the efficiency units of labor they can supply to the different sectors. Throughout, I denote the mass of type \(k \) workers in region \(r \) by \(L_{rk} \). In general, workers can move across regions and the overall mass of type \(k \) workers in the economy is fixed.

Consumer Preferences Workers have Cobb-Douglas preferences over outputs from all \(S \) sectors in the economy. They allocate a fraction \(\alpha_s \) of their overall consumption expenditure to the sector \(s \) commodity. I denote the demand for the sector \(s \) commodity of the representative household in region \(r \) by \(C_r^s \). I stack sectoral demands within a region into a vector, \(C_r \), and write the utility function as follows:

\[
U(C_r) = \prod_s (C_r^s)^{\alpha_s} \quad \text{where} \quad \sum_s \alpha_s = 1. \tag{1}
\]

When taking the model to the data, I will aggregate industries to three sectors \(s \): goods, business services, and local services.
Production with Intermediate Inputs I denote by H^s_r the total efficiency units of labor demanded by sector s in region r. I allow for the full set of input-output linkages and denote the input demand of sector s in region r for sector s' products by $Q^{ss'}_r$. Output in sectors s in region r, Y^s_r, is produced using a Cobb-Douglas technology,

$$Y^s_r = A_{rs}(H^s_r)^{\gamma_s}(\prod_{s'}(Q^{ss'}_r)^{\gamma^s_{s'}})^{1-\gamma_s} \text{ where } \sum_{s'} \gamma^s_{s'} = 1,$$

where γ_s and $\gamma^s_{s'}(1-\gamma_s)$ denote the shares of factor payments going to labor and the intermediate input from sector s', respectively.

Costly Interregional Trade Sectoral outputs are traded across regions subject to a sector-specific trade cost. I assume that trade costs take the usual “iceberg” form: To receive one unit of the sector s output from region r, consumers in region r' need to order $\kappa^s_{rr'} > 1$ units, since $1/\kappa^s_{rr'}$ units “melt” on their way.\(^{15}\) Without loss of generality, I normalize the cost of shipments within each region-sector to 1, i.e., $\kappa^s_{rr'} = 1 \forall r$.\(^{16}\) As a result, $\kappa^s_{rr'}$, formally denotes the relative cost of shipping sectors s output to region r' instead of region r itself.

3.2 A Simple Model of Service Integration and Skill Premium Growth

In this section, I consider a special case of the general environment that takes the three empirical properties of the business service sector from Section 2 to their stylized extremes. I use this setup to illustrate how these properties interact with declining communication costs to produce uneven growth of the college wage premium across regions.\(^{17}\)

For simplicity, I consider a setup with two regions, two sectors, and two skill groups, i.e., $R = S = K = 2$. I refer to region 1 as city ($r = 1$) and region 2 as hinterland ($r = 2$), sector 1 as business services ($s = b$) and sector 2 as goods ($s = g$), and type 1 workers as high-skill ($k = h$) and type 2 workers as low-skill ($k = l$).

Setup The city is defined by a technological advantage in business service production which I index by $A \equiv A_{1b} > 1$. For simplicity, I set all other productivity terms to 1, i.e., $A_{1g} = A_{2b} = A_{2g} = 1$. To reflect the skill-intensity of the service sector relative to the goods sector, I assume that business service firms only demand high-skill and goods sector firms demand only low-skill labor. I also simplify the input-output structure: both sectors use

\(^{15}\)An implicit assumption is that trade costs are proportional to the value of the shipment.

\(^{16}\)Sectoral trade costs within a region are not separately identified from region-sector specific productivity terms.

\(^{17}\)The simple model cannot speak to aggregate changes in the college wage premium.
labor and the goods sector additionally relies on business services as an intermediate input. Given these assumptions the sectoral production functions in equation 2 simplify:

\[Y^b_1 = AH^b_1, \quad Y^b_2 = H^b_2, \quad Y^g_1 = (H^g_1)^\gamma (Q^{gb}_1)^{1-\gamma}, \quad \text{and} \quad Y^g_2 = (H^g_2)^\gamma (Q^{gb}_2)^{1-\gamma}. \]

I assume sectoral outputs are homogeneous across regions. Goods trade is free, i.e., \(k^g_{rr} = 1 \) \(\forall r, r' \), while service trade is costly, i.e., \(k^b_{rr} > 1 \forall r \neq r' \). For simplicity, I denote communication costs by \(k^\kappa \kappa \). Changes in the communication cost term \(\kappa \) are the central comparative static of this section.

Consumers only demand goods; the utility function in equation 1 simplifies to \(U = C^g_r \) accordingly. Workers inelastically supply one unit of labor to their sector of employment at a wage rate \(w^g \). Since the mapping between sectors and skill groups is one-to-one, \(w^b \) is the high-skill wage, and \(w^g \) the low-skill wage in this economy.

For analytical clarity, I abstract from factor endowment differences by assuming the ratio of high- to low-skill workers is equal across regions, i.e., \(\mu \equiv L^h_r/L^l_r \) \(\forall r \) and workers cannot change their location. If the city had a larger share of high-skill workers than the hinterland, this would add to its productive advantage in business services production.

Interregional Trade and the Law of One Price

Markets are perfectly competitive and firms price at marginal cost. Since trade in goods is free, the nationwide goods price, \(p^g \), serves as a convenient numeraire:

\[p^g_1 = (w^g_1)^\gamma (w^b_1)^{1-\gamma} A^{\gamma-1} = p^g_2 = (w^g_2)^\gamma (w^b_2)^{1-\gamma} \equiv p^g = 1, \quad (3) \]

where I suppressed a composite constant.18

Since regional sectoral outputs are homogeneous there is no intra-industry trade. Instead, in a trade equilibrium, the city exports services, and imports goods, while the hinterland does the opposite, in line with regional comparative advantages.19 Whenever trade occurs, optimal sourcing behavior of firms in the hinterland ensures that the following no-arbitrage relationship holds for service prices:

\[p^b_1 \kappa = p^b_2 \Rightarrow \frac{w^b_1}{A} \kappa = w^b_2. \quad (4) \]

Trade takes place and equation 4 holds as long as \(\kappa < \kappa \equiv A^\gamma.20 \) I denote by \(\pi^s_r \) the share of spending on sector \(s \) in region \(r \) directed towards domestic firms, i.e., the home share. Since regions either export or import within a sector depending on their comparative advantage, \(\pi^b_{11} = \pi^g_{22} = 1 \) regardless of the value of \(\kappa \).

18 Goods prices are multiplied by \(\bar{g} = g^{-\gamma} (1 - \gamma)^{\gamma-1} \) in both regions.
19 Since workers cannot move across regions nor sectors, both regions always produce positive quantities in both sectors.
20 \(\kappa \) solves the service price no-arbitrage equation in 4 evaluated at the wages that prevail in the autarky.
Equilibrium Allocations An equilibrium consists of region-sector specific wages \(\{ w^s \} \) and home shares \(\{ p_{rr} \} \) that solve four market clearing equations and two no-arbitrage equations. As a result of the Cobb-Douglas assumption on technologies, a constant fraction of payments in each sector goes to workers and intermediate inputs respectively. The service market clearing equations can then be expressed in terms of sectoral payrolls, factor shares, and home shares alone:

\[
\begin{align*}
\frac{w^{b} L_{1h}}{\gamma} &= \frac{1 - \gamma}{\gamma} w^{s} L_{1l} + (1 - \pi_{22}^{b}) \frac{1 - \gamma}{\gamma} w^{s} L_{2l} \quad \text{Local Demand} \\
\frac{w^{b} L_{2h}}{\gamma} &= \pi_{22}^{b} \frac{1 - \gamma}{\gamma} w^{s} L_{2l} \quad \text{Exports}
\end{align*}
\]

In equilibrium, total service sector payroll in each region has to equal the service demand generated by the goods sector. While the city’s service producers export services to the hinterland, service producers in the hinterland rely on local demand only.

The goods market clearing equations mirror the business services market clearing equations, but reflect that for goods, the hinterland is an exporter and the city an importer:

\[
\begin{align*}
\frac{w^{s} L_{1l}}{\gamma} &= \pi_{11}^{s} \left[w^{s} L_{1l} + w^{b} L_{1h} \right] \quad \text{Local Demand} \\
\frac{w^{s} L_{2l}}{\gamma} &= \left[w^{s} L_{2l} + w^{b} L_{2h} \right] + (1 - \pi_{11}^{s}) \left[w^{s} L_{1l} + w^{b} L_{1h} \right] \quad \text{Exports}
\end{align*}
\]

The left hand side of these equations shows total value of spending on the goods sector and the right hand side highlights its composition.

Together with the no-arbitrage equations 3 and 4, equations 5 and 6 can be solved for all equilibrium allocations.

Service Trade and Regional Skill Premia Before considering the intermediate case of \(\kappa \in (1, \bar{\kappa}) \), two special cases can provide useful intuition. First, in autarky \((\kappa > \bar{\kappa}) \) the skilled wage premium across regions is identical:

\[
\frac{w^{b}}{w^{s}} = \frac{w^{b}}{w^{s}} = \frac{1 - \gamma}{\gamma} \mu^{-1}.
\]

In the free trade equilibrium \((\kappa = 1) \) however, the skill premia across regions differ by the factor \(A \):

\[
\frac{w^{b}}{A^{1 - \gamma} \bar{\kappa}} = \frac{w^{b}}{A^{1 - \gamma} \bar{\kappa}} = 1 \Rightarrow \bar{\kappa} = A^{-\gamma}.
\]

This cutoff is intuitive: when service trade costs become low relative to productivity differences, service trade occurs.
Comparing equation 7 and equation 8 is insightful. In autarky, despite the city’s technological advantage in service production, skill premia are equal across regions. In a world without service trade, high-skill workers depend on local low-skill workers to generate demand for their services. As a result of this mutual dependence, all productive advantages within a location are shared. Relative to the autarky equilibrium, in the free trade equilibrium the skill premium in the city is higher and the skill premium in the hinterland is lower. The difference in the skill premia across regions is given by $A > 1$. Relative local factor prices now reflect a location’s skill-type specific comparative advantage. Low-skill workers in the city are no longer the essential source of demand for the local service sector and their relative wages decline accordingly.

Rearranging the equilibrium system, I arrive at expressions for the skill premia in city and hinterland for all $\kappa \in (1, \bar{\kappa})$:

\[
\frac{w^b_1}{w^s_1} = \frac{1 - \gamma}{\gamma} \left[\mu^{-1} + \frac{L_2}{L_1h} (1 - \pi^b_{22}) \kappa^{\frac{1}{1-\gamma}} \right] \quad \text{and} \quad \frac{w^b_2}{w^s_2} = \frac{1 - \gamma}{\gamma} \mu^{-1} \pi^b_{22}.
\] (9)

Equations 9 directly relate regional skill premia to communication costs, κ. The endogenous variable π^b_{22} summarizes the effect of changes in the trading environment on the skill premium in the hinterland, while κ additionally features directly into the expression for the skill premium in the city. Equations 9 show that as regions specialize in accordance with their comparative advantage (i.e., π^b_{22} falls below 1), the skill premium in the city rises, while it falls in the hinterland.

Conveniently, the model also yields an intuitive expression for the business services home share of the hinterland that shows directly how changes in communication costs enable regional specialization:

\[
\pi^b_{22} = \mu \left(\kappa^{1-\gamma} \frac{L_1 + L_2}{L_1h + L_2h} \right) \] (10)

21In Appendix F, I explain the connection of my mechanism with the Stolper-Samuelson theorem in international trade (see Stolper and Samuelson (1941)).

22Notice that if $A = 1$, the skill premium in the free trade equilibrium collapses back to the one in the autarky case, since there would be no incentive to trade.

23Equations 7 and 8 highlight another point: as long as κ is large enough a rise in A will not lead to an increase in the skill premium within a location. The ability to spatially decouple high- and low-skill work is what allows high-skill workers to appropriate the gains from local skill-biased productivity growth. Even though given Cobb-Douglas technologies sectoral productivity differences are factor neutral in autarky, once trade occurs they do appear in relative skill prices within a region.
Equation 10 shows that there are two direct effects of a decline in service trade costs on π_{22}^b. First a competition effect captured by the numerator: high-skill workers from the hinterland increasingly compete with high-skill workers in the more productive city. The more high-skill workers are in the city, and the more significant the city’s productive advantage, the more declines in κ shift service demand from the hinterland to the city. Second a demand effect captured by the denominator: high local service prices shrink the goods sector in the city, decreasing local demand for services, and pushing the city’s service workers to rely more on the hinterland’s demand. The strength of this effect depends on the importance of the city for overall business services demand (L_{11}) and the strength of the input linkage (γ). This channel is muted if business services are not used in goods production, i.e., $\gamma \to 1$.

Figure 2: Service Trade Costs, Regional Specialization, and the Skill Premium

The left panel in Figure 2 shows the behavior of the home shares as a function of service trade costs. As communication costs fall, regional specialization increases, and both regions import in the sectors in which they do not have a comparative advantage: goods for the city, business services for the hinterland. Since each region is endowed with a mass of workers in each sector even for $\kappa = 1$, $\pi^b_i > 0$, as regions always produce some output in each sector themselves. The right panel shows the ratio of the skilled wage premia across regions as a function of communication costs. For $k \geq \bar{k}$ the skill premium is constant across regions and unaffected by small movements in k. As $k \to 1$, the skill premium rises in the city (region 1) and falls in the hinterland (region 2) so that their ratio rises.

Note: The left panel shows the home shares for the sector in which the respective region does not have a comparative advantage plotted as a function of communication costs. For values of κ above \bar{k} these home shares are 1 as both regions are autarkic. As $\kappa \to 1$ specialization occurs and the regions import in the sectors in which they do not have a comparative advantage: goods for the city, business services for the hinterland. Since each region is endowed with a mass of workers in each sector even for $\kappa = 1$, $\pi^b_i > 0$, as regions always produce some output in each sector themselves. The right panel shows the ratio of the skilled wage premia across regions as a function of communication costs. For $k \geq \bar{k}$ the skill premium is constant across regions and unaffected by small movements in k. As $k \to 1$, the skill premium rises in the city (region 1) and falls in the hinterland (region 2) so that their ratio rises.

In the Appendix, I also show that there is an analytical expression for the relationship between the two trade shares in equilibrium:

$$\pi^g_{11} = \left[\gamma + \pi^b_{22} A \bar{k}^{-\frac{1}{\gamma}} (1 - \gamma) \right]^{-1}. $$

So that for $\bar{k} = A^\gamma$ and $\pi^b_{22} = 1$ so that $\pi^g_{11} = 1$ follows directly.
creasingly rely on imported goods in the sectors in which they do not have a comparative advantage. The right panel of Figure 2 shows the concurrent evolution of the ratio of regional skill premia. As specialization occurs, the skill premium rises in the city and declines in the hinterland, i.e., the skill premia are growing apart across regions.

If the regions are of equal population size, the ratio of skill premia takes a particularly intuitive form:

\[
\frac{w^b_1 / w^g_1}{w^b_2 / w^g_2} = 1 + \frac{(1 - \pi^b_{22})\kappa \gamma - 1}{\pi^b_{22}}
\]

In autarky, \(\pi^b_{22} = 1\) and the ratio of skill premia is 1, since they are identical across regions. As \(\kappa \to 1\), \(\pi^b_{22}\) falls below 1 and the ratio starts to increase until it reaches \(A > 1\) in the limit. If there were no comparative advantage differences across regions (i.e., \(A = 1\)), the ratio would hence be equal to 1 for all values of \(\kappa\). As \(\gamma \to 1\) the ratio increases more slowly with \(\kappa\) reflecting the amplifying role of the input linkage between the business services and the goods sector.

The remainder of the paper investigates whether this mechanism can quantitatively explain the uneven growth of the college wage premium across U.S. labor markets between 1980 and 2010.

3.3 Quantitative Theory

I embed the simple model into a richer quantitative framework to speak to data on 741 U.S. labor markets.\(^{25}\) The expanded model accomplishes three objectives. First, it is flexible enough to be calibrated to moments informative about the underlying regional fundamentals that drove results in the simple model. Second, it allows for rich patterns of worker reallocation in response to a communication cost shock. Third, it serves as a measurement device for changes in sectoral trade frictions across regions, in the absence of data on trade flows. In the quantitative exercise below, structures (land) and capital are additional factors of production.\(^{26}\) In Appendix E.5, I show how to incorporate them into the framework.

\(^{25}\)This framework falls into the class of models in the “Quantitative Spatial Economics” (QSE) literature summarized by Redding and Rossi-Hansberg (2017).

\(^{26}\)I combine several contributions in the QSE literature. The model features many local labor markets and occupation choices as in Burstein et al. (2017). Sectors are linked via an arbitrary set of input-output relationships and there is trade in both intermediate inputs and final goods, as in Caliendo and Parro (2015) and Caliendo et al. (2017). The Roy model component where workers choose sectors and occupations in line with their productive advantage is inspired by Lee (2015).
Differences from Simple Model The general environment is as introduced in Section 3.1. There are three main additions. Regions produce region-specific sectoral varieties. Firms and consumers in all regions consume CES bundles that combine regions’ distinct varieties, which introduces a love-of-variety motif for trade. Workers within each skill group make non-degenerate sector-occupation choices to maximize their labor income. Additionally, workers choose their preferred region of employment.

Preferences Agents’ preferences over sectoral bundles are as in equation 1 in Section 3.1. I denote by c_{rr}' the demand of consumers in region r for the sector s variety from region r' and assume consumers aggregate regional varieties in a CES fashion,

\[C_r^s = \left[\sum_{r'} a_r^s (c_{rr}'^{\frac{\sigma_s}{\sigma_s-1}}) \right]^{\frac{1}{\sigma_s-1}}, \quad \sigma_s > 1, \]

where a_r^s is an origin-sector specific preference weight. The parameter σ_s controls the substitutability of the region-specific varieties in sector s. As long as $\sigma_s < \infty$ consumers demand sector s varieties from all regions, including their own. The composition of the CES bundle of final consumption, C_r^s, differs across regions in the presence of trade frictions.

I let p_{rs} be the factory-gate price of the region r sector s variety, and P_{rs} the price of the region r sector s CES bundle. Utility maximization yields a CES price index that is an average of regional factory gate prices weighted by bilateral trade frictions:

\[P_r^{s} = \left[\sum_{r'} (p_{rr}'^{\frac{\kappa_{rr}^s}{\sigma_s}}) \right]^{\frac{1}{1-\sigma_s}}. \]

I denote the fraction of region r spending on sector s that is directed towards varieties produced in region r' by π_{rr}'. These trade shares, derived from utility maximization, take the familiar form (see eg. Anderson (1979)):

\[\pi_{rr}' = (p_{rr}'^{\frac{\sigma_s}{1-\sigma_s}} \kappa_{rr}^s)^{1-\sigma_s} (P_r^{s})^{\sigma_s-1}. \]

Equation 11 generalizes the expression for trade shares from the simple model to an environment where two-way trade occurs for love-of-variety reasons. Note that while individual regional varieties are tradable sectoral CES aggregates are not.

Intermediate Inputs and Sectoral Human Capital The production technology in each region-sector takes the form introduced in equation 2 above. Equation 2 had two components: a bundle of intermediate inputs and a human capital aggregate (value added).
To describe the composition of the intermediate input bundle, I denote by $q^{ss'}_{rr'}$ the demand of region r sector s firms for the region r' sector s' variety. Firms aggregate region-sector varieties with a constant elasticity of substitution σ_s into a sectoral input bundle $Q^{ss'}_{rr}$,

$$Q^{ss'}_{rr} = \left[\sum_{r'} b^{ss'}_{rr'} (q^{ss'}_{rr'})^{\frac{\sigma_{s'}}{\sigma_s} - 1} \right]^{\frac{1}{\sigma_s - 1}}, \quad \sigma_s > 1,$$

where $b^{ss'}_{rr'}$ is an origin-sector specific CES weight. The elasticity of substitution is the same as for consumers.\footnote{This assumption is strong, but commonly made in quantitative models with input-output linkages (see Caliendo and Parro (2015) and Caliendo et al. (2017)). Beyond its convenience, a reason for the assumption is the absence of detailed data on interregional trade in inputs versus final consumption goods. This makes it difficult to measure differences between firms’ and consumers’ willingness/ability to substitute among regional varieties.} As a result, consumers and firms agree on how to allocate a unit of sectoral expenditure across regional varieties, so that equation 11 also summarizes optimal sourcing decisions for firms.

The value added term in the sectoral production function, H^s_r, consists of the contributions of efficiency units of labor hired in various different occupation o. In particular, H^s_r is a CES aggregator over the O occupational inputs offered in the economy:

$$H^s_r = \left[\sum_o \mu_{rso} (h^{so}_{rr})^{\frac{\mu_{s}}{1 + \mu_{s}}} \right]^{\frac{1}{1 + \mu_{s}}}$$

where i parameterizes the ease with which the firm substitutes between human capital in the different occupational categories, h^{so}_{rr}. μ_{rso} is a region, sector, and occupation specific weight reflecting that even within a sector production processes can differ in their occupational requirements across regions.

Aggregating Location, Sector, and Occupation Choices Workers obtain two idiosyncratic shocks, revealed one after the other, that drive their location and employment decisions. They first learn their idiosyncratic tastes for locations and choose a location to maximize their expected utility. Once in a location, agents learn their sector-occupation specific productivity and choose their sector-occupation pair to maximize their income. I start by describing the second choice and then the first, to facilitate exposition.

Agents within a region differ in the number of efficiency units of labor they can supply to the different sectors and occupations. I denote the efficiency units an individual worker i could supply to sector s and occupation o if she chose to work there by e^i_{so}. w^{so}_{rr} is the wage rate per efficiency unit of labor offered in a given region-sector-occupation pair (r, s, o). Worker
i’s labor income, y^i_r, results from the solution of her sector-occupation choice problem:

$$y^i_r = \max_{s, o} \{w^so_r \times e^i_{so}\}. \tag{12}$$

Note that within a given occupation efficiency units of labor supplied by different workers are perfect substitutes.

I denote the expected income of agent i of type k in destination r before making his location choice by $E_k(y^i_r)$. The average indirect utility of a type k agent from moving to location r is then given by:

$$V^i_{rk} = \varrho \times \frac{E_k(y^i_r)}{\prod_s (p^s_r)^a_s},$$

where ϱ is a composite constant and the denominator is the local consumer price index. Before choosing their location, individuals receive a multiplicative, idiosyncratic preference shock for each region. Individual i’s counterfactual level of welfare in region r given her shock η^i_r is given by:

$$\bar{V}^i_{rk} = \varrho \times \frac{E_k(y^i_r)}{\prod_s (p^s_r)^a_s} \times \eta^i_r = V^i_{rk} \times \eta^i_r.$$

Individual i’s location choice, r^i, then solves the following problem:

$$r^i = \operatorname{argmax}_r \{\bar{V}^i_{rk}\}.$$

To aggregate individual choices of the mass of heterogeneous agents, I assume that individual heterogeneity is extreme-value distributed. For the sector-occupation choices, I assume that the distribution of individual efficiency units, e^i_{so}, across individuals i within each skill group k is drawn i.i.d. from the following Fréchet distribution:

$$F^k_{so} (e) = \exp(-T^k_{so} e^{-\rho_k}),$$

where T^k_{so} denotes the mean productivity of type k workers in region r, sector s, and occupation o. While T^k_{so} parameterizes between-group productivity differences, ρ_k determines within-group variations in productivity. This formulation allows for between-group heterogeneity to remain non-parametric, while imposing a parametric assumption on within-group heterogeneity for aggregation purposes.

The particular convenience of the Fréchet assumption is that it yields closed-form expressions for several endogenous objects of interest. For instance, the fraction of type k workers in region r, who choose to work in occupation o in sector s, ϕ^{so}_{rk}, is given by:

$$\phi^{so}_{rk} = \frac{T^k_{so} (w^so_r)^{\rho_k}}{\sum_{s'} \sum_{o'} T^k_{so'} (w^{so'}_r)^{\rho_k}}.$$

\[17\]
In a similar way, the average income of a type \(k \) workers in region \(r \) can be expressed in terms of the sector-occupation specific wage rate per efficiency unit, \(w_{r}^{so} \):

\[
\begin{align*}
w_{rk} = (\sum_{s}(w_{r}^{so})^{pk}T_{rsok})^{1/\rho_{k}}
\end{align*}
\]

Appendix E presents all derivations for the results involving the Fréchet distribution.

Note that given the parametric assumption on individual productivities, \(E_{k}(y_{i}^{r}) = w_{rk} \). To aggregate location decisions of individual workers, I assume that the elements of the idiosyncratic location preference vector, \(\{\eta_{k}^{r}\} \), are drawn iid from a type specific Fréchet distribution:

\[
F_{k}(\eta) = \exp(-G_{rk}\eta^{-z}),
\]

where \(G_{rk} \) is the location- and type-specific mean. \(G_{rk} \) can be interpreted as a region \(r \) type \(k \) specific amenity term. The distributional assumption yields an analytical expression for the number of type \(k \) workers that chooses to reside in region \(r \), \(L_{rk} \):

\[
L_{rk} = L_{k} \times \frac{G_{rk}(V_{rk})^{z}}{\sum_{r'} G_{rk}(V_{rk})^{z}},
\]

where \(L_{k} \) denotes the economy-wide stock of type \(k \) workers, which I model as given.

Local Sectoral Sales and Expenditure

To infer trade flows across regions, I require measures of local sectoral demand and supply. The quantitative model provides intuitive equations for these objects in terms of parameters and observable data moments. I denote total regional revenue in sector \(s \) by \(R_{sr}^{s} \) and total regional expenditure on sector \(s \) by \(E_{sr}^{s} \). As a result of the Cobb-Douglas assumption, gross output in a region-sector pair is a function of sectoral payments and the value added share alone,

\[
R_{sr}^{s} = \gamma_{s}^{-1} \sum_{o,k} w_{rk} L_{rk} \phi_{rk}^{so},
\]

where the overall sector \(s \) payroll is the sum of the payrolls earned by the different skill groups.

Using this, I can write total expenditure on the sector \(s \) bundle in region \(r \), combining final and intermediate input demand:

\[
E_{sr}^{s} = \alpha_{s} \sum_{k} L_{rk} w_{rk} + \sum_{k} R_{sr}^{k}(1 - \gamma_{k}) \gamma_{k}^{s}.
\]

Note that since \(\phi_{rk}^{so} \) and \(w_{rk} \) can be expressed as simple functions of \(w_{r}^{so} \), \(E_{sr}^{s} \), and \(R_{sr}^{s} \) are functions of \(w_{r}^{so} \) only, too.\(^{28}\)

\(^{28}\)In Appendix E.3, I show how to use equilibrium conditions to rewrite equation 14 as an eigensystem that is useful in solving the model numerically.
General Equilibrium The equilibrium is a vector of region-sector-occupation specific skill prices \(\{ w_{rs} \} \) and local labor supply by skill type \(\{ L_{rk} \} \), such that

1. Output markets clear:

\[
R^s_r = \sum_{r'} E^s_{r'} \pi^s_{rr'} \tag{15}
\]

2. Occupation-specific labor markets clear:

\[
\mu_{rso} \left(\frac{w^s_{rs}}{w^s_r} \right)^{1 - i} \gamma_s R^s_r = \sum_k w_{rk} L_{rk} \phi^s_{rk} \tag{16}
\]

3. Workers make utility maximizing location choices:

\[
L_{rk} = L_k \times \frac{G_{rk}(V_{rk})^\gamma_r}{\sum_{r'} G_{r'k}(V_{r'k})^\gamma_r} \tag{17}
\]

i.e., total expenditure in region \(r \) across all sectors is equivalent to the total export revenue of region \(r \) across all sectors.

There can be sector-specific deficits within a region. Equation 17 merely imposes balanced trade across all sectors within a region. This is important since I rely on sectoral trade imbalances to infer sectoral trade frictions as discussed in the next section.

In Appendix E.5, I discuss how to include structures and capital as additional factors of production. I assume that land markets clear within each location, introducing an additional form of congestion that raises local prices in response to increased economic activity. Capital markets in turn clear nationally. Workers hold a share in a national real estate and capital portfolio that is proportional to their income. All counterfactuals allow for these additional margins of adjustment, and I consider them part of the baseline model setup.

Returning to the Simple Model The quantitative framework nests the simple model in Section 3.2. To see this, restrict the quantitative framework to two regions \((r = 1, 2) \), two sectors \((s = g, b) \), and two skill groups \((k = h, l) \) and set \(\gamma_b = 1 \) and \(\gamma_g^h \neq 1, \gamma_g^b \neq 0 \). Then take three limits: the limit of sectoral trade elasticities, i.e., \(\sigma_s \to \infty \) for all sectors, so that varieties are homogeneous across space; the limit of within group heterogeneity so that all agents within a group are equal, \(\rho_k \to 0 \); the limit of relative sectoral productivity within each skill group, i.e., \(T_{rhlb} / T_{rlg} \to \infty \) and \(T_{rlg} / T_{rlb} \to \infty \) for all \(r \), so that high-skill workers always find it income-maximizing to work in business service and low skill workers find it profitable to work in the goods-producing sector.
4 Quantitative Framework: Calibration

In this section, I discuss the quantification of my theory. I take the model to U.S. Public Use Census data, for four decades: 1980, 1990, 2000, and 2010. Before 1980 some necessary data inputs are available in less detail, and so I restrict the quantitative exploration to the decades from 1980 to 2010.

The first subsection discusses data sources and data construction. The second subsection explains in detail how I construct interregional trade flows and calibrate the elasticity of bilateral trade volume to distance for different years and sectors. The remaining sections describe the calibration of the other parameters.

4.1 Data Sources

I use two primary data sources: the U.S. Decennial Census and the Input-Output (IO) Tables for the United States.

Decennial Census I use the 5% public use sample of the Decennial Census files for 1980-2000 and public use sample American Community survey for 2010, both obtained from IPUMS (see King et al. (2010)). The empirical analysis distinguishes individuals along four dimension: sectors, occupations, education, and local labor market. I focus on employed individuals between 16 and 65 years of age for which industry codes, occupation codes, location codes, education codes, income and hours measures are available for a given year. I measure labor supply as annual hours worked, so that \(L_{rk} \) denotes the number of hours worked by type \(k \) agents in commuting zone \(r \) in a given year. I provide further sample selection and data construction details in Appendix H.3.

Input-Output Tables I draw on the use tables of the United States in producer value published annually by the Bureau of Economic Analysis (BEA). The use tables contain information about the value of intermediate inputs and value added used to produce one unit of gross output of a given industry. In addition to this information, I extract vectors of final consumption, exports, and import by industry. I make adjustments to final domestic consumption to ensure that gross output by commodity and industry coincide, since my framework abstracts from different industries producing overlapping sets of commodities. Appendix H.2 offers a more detailed discussion.

29The BEA recomputed the older use tables using the North American Industry Classification System (NAICS). I use these updated tables.
4.2 Data Construction

The quantitative model has four dimensions of heterogeneity. In the data, I map them to three sectors, four occupations and five skill group, across 741 local markets in the United States. I now discuss these groups in turn.

Commuting Zones A consistent analysis over time requires a fixed geographical definition of what constitutes a region. Tolbert and Sizer (1996) construct 741 commuting zones by clustering counties based on their 1990 inter-county commuting flows. I use these commuting zones since they provide a constant geography, cover the entire U.S. territory, and provide sufficient spatial detail.30

Sectors I group industries into goods (e.g., manufacturing and wholesale trade), business services (e.g., Management of Companies, Legal Services, and Computer systems design) and local services (e.g., Hospitals, Nursing and Accommodation, Restaurants). Appendix H.1.1 offers a complete list.31 I index these sectors by \(s = g, b, ls \), respectively.

I map all data sources to the North American Industry Classification System (NAICS) for 2012. More formally, the goods sector comprises all NAICS-1 to NAICS-4 industries, Business Services are all NAICS-5 sector industries, and local services are NAICS-6 to NAICS-8. I treat all three sectors as tradable and infer the degree of their tradability from the calibrated model as discussed below. Results confirm that the NAICS-6 to NAICS-8 sectors are the least tradable of the three coarse sectoral groups.32

30 Autor and Dorn (2013) provide a useful crosswalk from Census county groups (1980) and Public Use Micro-data Areas (PUMAs) to the Tolbert and Sizer (1996) commuting zones. They also provide an adjustment to sample weights in cases where Census spatial units are split into several commuting zones. Autor and Dorn (2013) is the first study to use this definition of local labor markets in the economics literature. Eckert and Peters (2018) and Burstein et al. (2017) are more recent studies that use the same delineations.

31 The input-output tables of the United States show international trade in all sectors, and since my calibration strategy relies on matching the aggregate input-output relationships exactly, all sectors are allowed to be tradable. What I refer to as non-tradable services are local services like restaurants, education, hospitals, janitors and the like whose trade volumes are likely less affected by recent technological change than the information-intensive business services.

32 It may seem counterintuitive that local services, e.g., restaurant meals, are tradable. However, the input-output tables record positive trade flows for them. For example, visitors from other countries or other commuting zones consume restaurant meals in New York (in person travel constitutes an important form of service trade). In Appendix A.1, I state the four forms of service trade defined in the General Agreement on Tariffs and Trade (GATT) by the WTO (Uruguay Round of Negotiations).
Education Types I group individuals into five groups based on their educational attainment: less than high school, high school, some college, college, five or more years of college. Recall that the quantitative model involved a parametric assumption on within skill group heterogeneity. Choosing a large number of skill groups then allows for more realistic patterns of adjustment, since the model allows for between-group heterogeneity to remain non-parametric.

Occupations There are approximately 320 occupational groups in the Decennial Census Files. I organize these occupations into groups that exhibit qualities that are important in the current setting. Many occupations in the business services sector require specialized skills and are highly tradable, i.e., they can often serve their function from a distance. As an example consider a manager in a headquarter who can use telephone and internet to instruct workers. Many occupations in the local service sector instead require personal contact between worker and customer, e.g., a bank teller (and so are ”non-tradable”). Another distinction within non-tradable occupations is their skill content. The occupations of physicians and janitors differ substantially in their educational requirements.

To capture these qualitative differences, I categorize occupations into four broad categories based on their skill intensity and their tradability. The measure of skill-intensity, I use a measure of “abstract task intensity” constructed in Autor et al. (2003) from the Dictionary of Occupational Titles, published by the U.S. Department of Labor in 1977. To measure tradability, I use the offshorability measure employed in Autor and Dorn (2013).\(^{33}\)

In the 1980 Decennial Census data, I compute aggregate annual labor supply by occupation. I then order all occupations ranked by their “abstract task intensity” and split them to form two groups each accounting for 50% of annual labor supply and ranked by their “abstract task intensity”. I repeat this exercise with the tradability measure. Then I group occupations above the median in terms of abstractness and tradability together and call them “abstract-tradable” (AT). Similarly, I create three more groups called “non-abstract tradable” (NAT), “abstract non-tradable” (ANT) and “non-abstract non-tradable” (NANT). As an example, managerial professions are in AT, assembly line workers and phone operators in NAT, doctors, and teachers in ANT and cooks in NANT. I then hold these groups fixed for all remaining decades. Appendix H.1.2 lists example occupations for each of these four groups and Appendix H.5 provides further detail on their construction.

\(^{33}\)Fortin et al. (2011) construct the ingredients for a measure of offshorability of occupations, which I interpret as measuring tradability, from O*NET data. Autor and Dorn (2013) use a simple average of two of the Fortin et al. (2011) measures – “face-to-face contact” and “on-site job” – to measure offshorability, and I adopt their index. Burstein et al. (2017) is another paper that uses an offshorability measure as an index for tradability. They employ the offshorability measure constructed in Blinder and Krueger (2013).
Summary For each decade, I add up annual hours within each commuting zone, sector, occupation, and skill group to obtain a measure of labor supply. The model structure imposes that workers of the same skill earn, on average, the same wage within every sector and occupation within a region. Dividing total income by total hours within each region-education bin yields a measure of the average hourly wage by skill group within each location, \(w_{rk} \).

From the IO tables, I derive vectors of final domestic consumption, imports, exports and gross output by sector for all four years of my analysis.

4.3 Inferring Service Trade Flows

Information on interregional trade flows within the United States is very sparse. Research on intranational trade in goods has drawn on a single nationally-representative source: the Commodity Flow Survey (CFS) conducted by the U.S. Census Bureau.\(^{34}\) However, the CFS is limited in a crucial dimension: it does not contain information on services. This calls for a calibration strategy of service trade frictions, that does not rely on detailed, repeated cross-sections of sectoral trade flows. In this section, I propose a methodology that builds on work by Gervais and Jensen (2013) to infer service trade flows between U.S. commuting zones. The technique relies on three ingredients: detailed regional data on sectoral payrolls and hours worked, the aggregate input-output tables, and the market clearing equilibrium condition of the quantitative model (see equation 15).

Constructing Local Sectoral Output and Expenditure I use the structure of the quantitative model in Section 3.3 to construct measures of local sectoral output and expenditure. I introduce the rest of the world (ROW) into the analysis as a 742nd region for reasons made explicit below. I refer to this region as the ROW region throughout. Recall the expressions for regional sales,

\[
R^s_r = \gamma^s (-1) \sum_k w_{rk} L_{rk} \phi^s_{rk},
\]

and expenditure,

\[
E^s_r = a_s \sum_k L_{rk} w_{rk} (1 + \omega_r) + \sum_{s'} R^s_{r} (1 - \gamma^s_{s'}) \gamma^s_{s'}. \tag{19}
\]

Here, \(\omega_r \) is an exogenous subsidy to U.S. consumer paid for by ROW workers. Introducing such exogenous transfers is a simple way to rationalize the large U.S. trade deficit implicit in the input-output data.\(^{35}\) I obtain the technical coefficients, \(\gamma^s \) and \(\gamma^k_s \), and the utility

\(^{34}\)Prominent studies that use the CFS data include Hillberry and Hummels (2008), Allen and Arkolakis (2014), Duranton et al. (2014), and Dingel (2016).

\(^{35}\)The U.S. trade balance is negative for every decade covered by the study. I match this by imposing a transfer from ROW to U.S. regions, from which every consumer benefits in proportion to their wage, i.e.,
Figure 3: Geographic Concentration of Sectoral Supply relative to Demand

<table>
<thead>
<tr>
<th>Year</th>
<th>p90(R_s^r)/p10(R_s^r)</th>
<th>p90(E_s^r)/p10(E_s^r)</th>
<th>p90(R_g^r)/p10(R_g^r)</th>
<th>p90(E_g^r)/p10(E_g^r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1.25</td>
<td>1.31</td>
<td>1.01</td>
<td>.96</td>
</tr>
<tr>
<td>1990</td>
<td>1.39</td>
<td>1.41</td>
<td>1.03</td>
<td>.94</td>
</tr>
<tr>
<td>2000</td>
<td>1.39</td>
<td>1.47</td>
<td>1.03</td>
<td>.99</td>
</tr>
<tr>
<td>2010</td>
<td>1.65</td>
<td>1.50</td>
<td>.84</td>
<td>.88</td>
</tr>
</tbody>
</table>

Notes: To compute the numbers in this Table, I construct measures of total sectoral sales, R_s, and expenditure, E_s, for the business services sector for 741 local labor markets in the United States for 1980, 1990, 2000, and 2010. The first data source is the U.S. Decennial Census for 1990, 2000, 2010, and the American Community Survey for 2010. The second data source are the input-output use tables in producer prices obtained from the Bureau of Economic Analysis. The Table reports the ratio of the value of R_s^r for the commuting zone at the 90th percentile of the distribution of R_s^r across all commuting zones divided by the value of the commuting zone at the 10th percentile, divided by the same ratio computed for the E_s^r measure. It also reports the same ratio with the values at the 10th percentile replaced by those at the 50th percentile. Columns four and five replicate the same computations for the good sector.

Columns 2 and 3 of Figure 3 suggest that the supply of business services is getting more geographically concentrated relative to demand for these services. The raw data fact underlying this result is that business services employment is getting more geographically concentrated in a handful of labor markets. At the same time, business sectors throughout the economy demand business services, with the goods producing sector being the most important destination for business service output. Figure 3 suggests that increasingly production of business services takes places in fewer locations, while firms in labor markets throughout the economy rely on these services.

These changes and the increased trade of business services to reach their point of consumption suggest that shipping such services has become easier. However, an important confounding factor are changes in region-specific features that make business services exporting regions more productive. Such changes could also explain increased geographic concentration.

$\omega_r = \omega > 0 \ \forall r \neq \text{ROW}$ and $\omega_{\text{ROW}} < 0$. To rationalize it through the lens of the model, I assume there is a subsidy ω that is distributed to U.S. consumers in proportion to their labor income and financed by a tax on ROW workers, denoted ω_{ROW}. In Appendix G.5, I discuss the details of inferring $\omega, \omega_{\text{ROW}}$ for every decade so as to match the U.S. trade deficit in the IO tables for the United States for the respective year.
tion of business services production even for constant communication costs.

The market clearing equilibrium condition of the quantitative model highlights the competing roles of region-specific shifters and bilateral trade frictions in determining the two vectors \(\{ R^s_r, E^s_r \} \):

\[
R^s_r = \sum_{p'}^s E^s_{rp'} \frac{(p^s_{p'})^{1-\sigma_s} (K^s_{rp'})^{1-\sigma_s}}{\sum_{p''}^s (p^s_{p''})^{1-\sigma_s} (K^s_{r'p''})^{1-\sigma_s}} \equiv \sum_{p'}^s E^s_{rp'} \frac{\lambda^s_r K^s_{rp'}}{\sum_{p''}^s \lambda^s_r K^s_{r'p''}}
\]

The geographic distribution of \(\{ R^s_r \} \) relative to \(\{ E^s_r \} \) is moderated by the vector of region fixed effects \(\{ \lambda^s_r \} \) and a matrix of sector and route specific trade frictions \(K^s_{r'p'} \).

The following Lemma is useful in understanding the relationship between the observed distribution of \(\{ R^s_r, E^s_r \} \) across regions and the other objects in equation 20 (see Appendix G.1 for the proof).

Lemma. Consider a mapping of the form:

\[
A_i = \sum_{j=1,...,N} B_j \frac{\lambda_i K_{ij}}{\sum_k \lambda_i K_{kj}} \quad \forall i = 1, ..., N.
\]

For any strictly positive vectors \(\{ A_i \} \gg 0 \) and \(\{ B_i \} \gg 0 \), such that \(\sum_i A_i = \sum_i B_i \), and any strictly positive matrix \(K \gg 0 \) there exists a unique (to scale), strictly positive vector \(\{ \lambda_i \} \gg 0 \).

Note that to use the Lemma in practice, I require \(\sum_r R^s_r = \sum_r E^s_r \). As a result of the U.S. trade deficit with the ROW, the equality does not hold across U.S. commuting zones alone. It does, however, hold for the U.S. regions and the ROW region together.

Lemma 4.3 implies that for any matrix of sector specific trade frictions, \(\{ K^s_{r'p'} \} \), there exists a unique, to-scale vector of region fixed effects, \(\{ \lambda^s_r \} \), rationalizing the two vectors \(\{ R^s_r, E^s_r \} \). This clarifies that in order to separately measure changes in region fixed effects and trade frictions additional moments are required.

To reduce the number of moments needed, I parameterize the entries of the trade cost matrix \(\{ K^s_{r'p'} \} \) as a power function of the distance between regions’ centroids, \(d_{r'p'} \),

\[
K^s_{r'p'} \equiv d_{r'p'}^{(1-\sigma_s)\delta^s} \equiv d_{r'p'}^{\delta^s}.
\]

I refer to \(\delta^s \) as the sector specific distance elasticity of trade.\(^{36}\) This reduces the quantification of the trade cost matrix to the calibration of a single composite parameter, \(\delta^s \).

\(^{36}\)Papers in the literature on international trade in services such as Ceglowski (2006), Freund and Weinhold (2002), and Eaton and Kortum (2018) have demonstrated that, similar to goods, service trade flows are a decreasing function of distance. However, to the best of my knowledge nothing was known about service trade flows across regions within a country. There exists data on business services trade flows between the 13 Canadian provinces. In Appendix B, I show that business services flows across these provinces are declining with distance and yield distance elasticities of magnitude comparable to studies such as Eaton and Kortum (2018).

Other papers that parameterize interregional trade flows in the U.S. as a function of distance are Allen and Donaldson (2018), Ahlfeldt et al. (2015), and Monte et al. (2015).

25
The moment I use to identify δ^s is the economy-wide export of business services. To see why this moment is informative, subtract the shipment to region r itself from equation 20 above:

$$EX^s_r = \sum_{r' \neq r} E^s_{r'} \frac{\lambda^s_{d^s \delta^s}}{\sum_{r'} \lambda^s_{d^s \delta^s}}.$$ \hspace{1cm} (22)

This shows that the observed vector $\{E^s_r\}$, together with $\{\lambda^s_r\}$ and δ^s imply gross exports for each region r. The Lemma above showed that there exists a vector of $\{\lambda^s_r\}$ for any δ^s. However, every δ^s implies a different level of exports for each region and hence total gross exports of all U.S. regions. Since gross flows across regions in the United States are not observed, I construct total regional exports in the data as the combination of all net export implied by $\{R^s_r, E^s_r\}$ and the exports sent from U.S. regions to the rest of the world, which are observed in the input-output tables. I denote the sum of these two components as EX^s_{DATA}.

Summing equation 22 across all regions in the United States yields a model implied measure of total gross exports.\footnote{Gervais and Jensen (2013) use the 2007 cross-section of the Economic Census to infer industry-specific distance elasticities. They proxy directly for the vector of fixed effects $\{\lambda^s_r\}$ using sales per worker over payroll per worker in each region-sector. Such a procedure has the disadvantage of not matching E^s_r and R^s_r exactly and requires data that distinguishes sales and payroll by sector-region, which is not widely available.} I show in Appendix that equation 22 is strictly increasing in δ^s for a given vector $\{\lambda^s_r\}$, so that there exists a value of δ^s that minimizes the following criterion function at each iteration:

$$\Omega(\delta^s) = | \log \frac{E^{s}_{DATA}}{\sum_r E^{s}_{MODEL}} | .$$

For each sector and year I find $\delta^s = \arg\min_{\delta^s} \Omega(\delta^s)$. I describe the algorithm in more detail in Appendix G.3. There I also explain how to use observed international imports and exports from the IO tables to calibrate λ^s_{ROW} to match imports and exports (i.e., the only bilateral set of flows I observe in the data) exactly. I also show that this implies values for E^s_{ROW} and R^s_{ROW}.

Table 1 presents the results. The results suggest that business services trade frictions have declined over the years. Intuitively, the increasing geographic concentration of business service production relative to business service consumption documented in Table 3 implies increased trade flows across regions. The model imposes a structure on these interregional flows. In particular, the fixed effect (λ^s_r) of any origin-region is independent of the destination of a shipment and trade costs depend on the destination in a way common to the whole country, given the same distance. The result reflects that the model rationalizes the changing geography of $\{R^s_r, E^s_r\}$ via a decrease in trade frictions, given the assumption on structure of trade costs, and hence trade flows.

Table 1 shows that trade frictions for goods appear stable between 1980 and 2010.\footnote{The former finding is in line with the finding in Allen and Arkolakis (2018), who show that the distance}
Table 1: Calibrated Distance Elasticities, δ^s

<table>
<thead>
<tr>
<th>Year</th>
<th>Goods Sector</th>
<th>Business Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>-1.6</td>
<td>-2.1</td>
</tr>
<tr>
<td>1990</td>
<td>-1.6</td>
<td>-1.8</td>
</tr>
<tr>
<td>2000</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>2010</td>
<td>-1.6</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

Notes: The Table shows estimates of sectoral elasticities of trade costs with respect to distance, δ^s: $K_{rr'} = d_{rr'}^{\delta^s}$. Here $d_{rr'}$ is the distance in miles between the centroids of commuting zones r and r' based on the demarkation in Tolbert and Sizer (1996). The data underlying the estimates is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Additionally, data from the input-output use tables in producer prices published by the Bureau of Economic Analysis is used.

reflects that supply of goods did not become significantly more concentrated relative to demand as suggested by Table 3 above. The fact that trade frictions for goods appear constant, justifies the use of a distance elasticity, δ^g, obtained from running a gravity equation in the CFS data. In particular, since goods trade frictions are not the focus of this paper, I use the estimates from Monte et al. (2015) who find $\delta^g = -1.29$ using the 2012 CFS data. How large is the decline in business services trade frictions? I assume throughout the paper that σ_s is constant so that changes in δ^s reflect changes in $\bar{\delta}^s$. Suppose for example $\sigma_b = 4$ then the change in business service trade frictions between 1980 and 2010 is given by:

$$\frac{K_{rr',2010}^b}{K_{rr',1980}^b} = (d_{rr'})^{-0.2}$$

For a distance of a 1000 miles, this corresponds to a 75% decrease in trade frictions, while for the average route between two commuting zones it corresponds to a 60% decrease. For comparison, in a similar framework Lee (2015) estimates that the accession of China into the WTO lowered bilateral trade frictions between the U.S. and China by 26%.

The distance elasticities for the business services sector are the central output of this section. The counterfactual exercise of the paper consists in analyzing the effect of moving δ^b from coefficient in a gravity equation for goods trade among U.S. states is unchanged between 2007 and 2012 (using Commodity Flow Survey (CFS) Data). They find $\delta^g = -1$. Monte et al. (2015) estimate the same elasticity using CFS Data for 123 CFS regions within the United States and find $\delta^g = -1.29$.

39Note that I normalized trade friction within each region to 1 in each decade. Changes in within-region trade frictions are not separately identified from regional productivity changes. As a result, what I really measure are changes in the cost of shipping services out of a region relative to shipping them within.
its value in 1980 to its value in 2010 on relative skill prices across local labor markets while holding all other parameters fixed at their 1980 levels. The other outputs of these section are a set of trade share matrices \(\{ \pi^s_{rr'} \} \) and vectors of regional output and demand \(\{ E^s_r, R^s_r \} \) for every decade between 1980 and 2010.\(^{40}\)

Validation of Method The absence of any data on trade flows of business services within the United States does not allow me to validate the above method to measure changes in trade frictions. However, data exists on trade flows in business services across the 13 provinces of Canada for the years between 1997 and 2016. I use these data to provide supportive evidence for the above methodology its assumptions.

An important assumption in the above method was that gross exports are net exports plus international exports, i.e., that the ratio of gross to net flows across regions within in the U.S. is 1 and stable. In the left panel of Figure 11 in Appendix B.1, I show the gross-to-net ratio for business service trade within Canada between 1997 and 2016. The ratio increases from 1.03 in 1997 to about 1.4 in 2015. This makes a gross-to-net ratio of about 1 appear as a reasonable assumption for 1980. However, the above analysis holds the gross-to-net ratio constant throughout the years. If I allowed it to increase instead this would imply larger declines in business service trade frictions. In the right panel of Figure 11 in Appendix B.1, I also show that the gross-to-net ratio of business services trade flows between the U.S. and the rest of the world has also been steadily increasing since 1960.\(^{41}\)

The observed trade flows in Canada also allow me to directly estimate business service trade frictions by regressing log trade flows between regions on origin and destination fixed effects and the log bilateral distance. Figure 14 in Appendix B.4 shows the estimates of \(\delta^b \) over time. While the confidence intervals around the estimates are large due to the limited size of the sample (13 \(\times \) 13 – 13), a declining trend is clearly discernible. Computing the average decline of trade frictions for \(\sigma_b = 4 \) suggests that between 1997-2015 business services trade costs declined by about 25% on an average route between Canada’s provinces. This makes the above finding of an average decline of 60% between 1980-2010 appear to be of a reasonable magnitude.

An important part of above methodology is that the calibrated distance elasticities, together

\(^{40}\)The procedure outlined above also relates to an older literature on the “regionalization” of input-output tables with noteworthy contributions by Isard (1953), Moses (1955), Leontief and Strout (1963) and Polenske (1970).

\(^{41}\)In Figure 12 in Appendix B.2, I also show that the fraction of business services output that is traded across provinces increases in Canada and the fraction of business services output the U.S. trades with the rest of the world is also increasing. I find that net trade flows of business services grow slower than business services output in the United States. Hence as long as the fraction of output that is traded is not declining, the gross-to-net trade ratio across U.S. regions has to be increasing.
with the local fixed effects \(\{ \lambda^b_r \} \) and local sales and expenditure \(\{ R^b_r, E^b_r \} \) imply a full set of business services trade flows. To test the ability of the gravity framework to predict these trade flows, I conduct an experiment in the Canadian data for the year 2000. I compute \(\{ R^b_r, E^b_r \} \) for each one of the 13 provinces and then discard the trade flow data. I use only the gross-to-net ratio in 2000, the \(\{ R^b_r, E^b_r \} \), and above methodology to calibrate \(\delta^b \) and \(\{ \lambda^b_r \} \). Using \(\delta^b \) and \(\{ \lambda^b_r \} \), I predict the full set of bilateral trade flows. Figure 15 in Appendix B.5 plots the so inferred trade flows against the actually observed trade flows. The R-squared is 83% suggesting a large explanatory power. This is in line with the well-known empirical success of the gravity framework.

In Appendix C, I offer a direct look at costs of data transmission and communication equipment as well as adoption rates of communication devices such as cell phones. The crucial technological breakthrough in communication technology that accelerated all future developments is the development of low-loss optical fibers that played an essential role after 1975 (see Agrawal (2016) for a history of optic fiber communication). Price declines are generally exponential after 1975 and communication technology spread rapidly throughout the economy after 1975 buoyed by these price declines. A notable feature is that there was an important distance component in the communication costs within the United States. Telephone and cell phone calls and data transmission via dedicated cables all had pricing that dependent on distance over which a connection was established.

Robustness First, I consider an alternative specification of the trade cost matrix. One feature of phone calls or emails is that the physical distance between sender and receiver is almost always irrelevant for the cost of communication. However, there is a fixed cost of moving from in-person communication to communication mediated by an electronic device. I hence propose an alternative parameterization of trade costs, where shipping business services to any other commuting zone incurs the same fixed cost. I then estimate this fixed cost over time and find it, too, is declining. Second, I use an alternative calibration of the change of business service trade frictions. I calibrate the 1980 trade flows for business services as described above. However, I infer the 2010 distance elasticity by postulating that the total trade volume is 50 percent of all business service output in 2010. This trade volume implies a decline in the distance elasticity relative to 1980. In Appendix I, I discuss more details on these robustness exercises and replicate all main results for these alternative specifications.

4.4 Other Parameters

This section discusses the calibration of the remaining parameters.
Factor Shares and \(\rho_k \) I obtain the Cobb-Douglas coefficients in the production function and the utility function directly from the input-output table of the respective year as listed in Table 2. I conduct all counterfactuals relative to the 1980 cross-section, holding factor shares and utility function parameters fixed at their 1980 values.

Calibrating the factors shares for the rest of the world is more involved since I do not observe ROW input-output coefficients in the U.S. input-output table. I infer these coefficients to be consistent with ROW sectoral sales, expenditures, and the U.S. trade deficit. I provide details in Appendix G.5.

Table 2: Technical Coefficients over Time

<table>
<thead>
<tr>
<th>Sector (s)</th>
<th>(\gamma_s^g)</th>
<th>(\gamma_s^b)</th>
<th>(\gamma_s^{ls})</th>
<th>(\gamma)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods (g)</td>
<td>0.82</td>
<td>0.12</td>
<td>0.06</td>
<td>0.42</td>
<td>0.52</td>
</tr>
<tr>
<td>Business Services (b)</td>
<td>0.22</td>
<td>0.57</td>
<td>0.21</td>
<td>0.68</td>
<td>0.06</td>
</tr>
<tr>
<td>Local Services (ls)</td>
<td>0.64</td>
<td>0.15</td>
<td>0.21</td>
<td>0.71</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Notes: The Table shows factor shares for three aggregate sectors obtained from the input-output Use tables in producer prices published by the Bureau of Economic Analysis. The shares computed as the fractions of sectoral payments directed towards the various purposes.

I show in Appendix G.4 that individual log income within each skill group, location and sector is Gumbel distributed. A convenient implication is that the variance of log income within a region-sector-occupation-type bin is only a function of \(\rho_k \). Drawing on this insight I calibrated \(\rho_k \) to match the average variance of log income within these bins in the data. The results from this procedure are listed in Table 3. The estimates imply that more educated workers are more similar in their human capital holdings than the least educated group.\(^{42}\)

\(^{42}\)\(\rho_k \) is an important parameter since it regulates the type specific response to changes in efficiency wages. Given the formula for labor supply of type \(k \) to sector \(s \) it is easy to see the role of \(\rho_k \)

\[
\phi_{r_k}^{\text{so}} = \frac{T_{r_s k}(w_r^s)^{\rho_k}}{\sum_{\rho} T_{r_s k}(w_r^s)^{\rho_k}} \Rightarrow \frac{d \log \phi_{r_k}^{\text{so}}}{d \log w_r^{\text{so}}} = \rho_k (1 - \phi_{r_k}^{\text{so}}) > 0
\]

\(\phi_{r_k}^{\text{so}} \) is a summary statistic for the mean productivity of individuals of type \(k \) in sector \(s \). Intuitively, if \(\phi_{r_k}^{\text{so}} \) is a large fraction of \(k \) types will already have sorted into \(s \) reducing the scope for more to follow if \(w_r^{\text{so}} \) increases. A higher \(\rho_k \) implies that the labor supply response is larger, since individuals are more similar in terms of productivity meaning a larger mass of agents are indifferent between sector-occupation pairs and will move given small movements in the skill price.
Table 3: Estimates of ρ_k

<table>
<thead>
<tr>
<th>Skill Type (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_k</td>
<td>1.14</td>
<td>1.46</td>
<td>1.41</td>
<td>1.47</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Notes: The Table presents estimates of the elasticity of labor supply to wages per efficiency unit in a given region, sector, and occupation for the $K = 5$ different education types considered in the baseline calibration of the model. The parameters are estimated in the micro-data of the 5% sample of the U.S. Decennial Census (1980-2000) and the American Community Survey (2010).

Regional Fundamentals I refer to parameters indexed by region r as “regional fundamentals”. The regional fundamentals in the quantitative framework are: $\{T_{rsok}, A_{rs}, G_{rk}, a_r^s, b_r^s\}$. Conveniently, I do not need to calibrate these regional fundamentals explicitly to conduct counterfactual exercises. In Appendix E.4, I show how to rewrite the equilibrium system in changes as in Dekle et al. (2007) or Costinot and Rodríguez-Clare (2014). The “in-changes” technique allows me to replace all expressions involving regional fundamentals with regional data moments informative about them. I provide more details when describing the model exercises and in Appendix E.4.

Parameters from the Literature Goos et al. (2014) estimate the elasticity of substitution between different occupations to be $i = 0.9$. The estimate implies that occupations are complements in the production. I use their estimate in my baseline exercise. In Appendix I, I offer a robustness check and instead follow Burstein et al. (2017) in setting $i = 1.93$, which makes occupations substitutes. The alternative value for i does not affect results substantially.

Gervais and Jensen (2013) estimate the elasticity of substitution between regional varieties from an Armington model with trade across metropolitan areas. This implies $\sigma_g = 5.5, \sigma_b = 5$ and $\sigma_{ls} = 6$. The number for traded goods is also in line with estimates from Caliendo and Parro (2015) using international trade between the United States and other countries. Appendix I considers a set of robustness exercises involving different value of σ_s, results do not change appreciably.

α is the elasticity of local labor supply to local real wages. I assume this elasticity to be identical across skill groups and set it to $\alpha = 1.5$, which is roughly in the middle of the range of values used in the literature on geographic mobility as reviewed in Fajgelbaum et al. (2018).

4.5 Summary of Calibration

Table 4 provides an overview of the baseline calibration of the model.
Table 4: Overview of Parameterization of Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Strategy</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta^s)</td>
<td>(-1.5)--(-2.1)</td>
<td>Distance Elasticity for Service Sectors</td>
<td>Estimated</td>
<td>IO Tables, Local Data, Armington Structure</td>
</tr>
<tr>
<td>(\delta^g)</td>
<td>-1.23</td>
<td>Distance Elasticity of Goods Trade Costs</td>
<td>Literature</td>
<td>Monte et al. (2018)</td>
</tr>
<tr>
<td>(\rho_k)</td>
<td>1.14-1.47</td>
<td>Labor Supply Elasticity</td>
<td>Estimated</td>
<td>Within Group Variance of Earnings</td>
</tr>
<tr>
<td>(\alpha_s)</td>
<td>0.52, 0.6, 0.42</td>
<td>Cobb-Douglas Coefficients in Utility Function</td>
<td>Calibrated</td>
<td>IO Table</td>
</tr>
<tr>
<td>(\gamma_{rs}, \gamma_{sk})</td>
<td>...</td>
<td>Factor Shares in Production</td>
<td>Calibrated</td>
<td>IO Tables</td>
</tr>
<tr>
<td>(\iota)</td>
<td>0.9</td>
<td>Elastitcity of Substitution between Occupations</td>
<td>Literature</td>
<td>Goos et al. (2014)</td>
</tr>
<tr>
<td>(\sigma_s)</td>
<td>5.5, 5, 6</td>
<td>Elastitcity of Substitution between Regional Varieties</td>
<td>Literature</td>
<td>Gervais and Jensen (2013)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>1.5</td>
<td>Spatial Labor Supply Elasticity</td>
<td>Literature</td>
<td>Faigelbaum et al. (2018)</td>
</tr>
</tbody>
</table>

Notes: The Table summarizes the parameterization of the model used for all baseline counterfactual exercises shown in the body of the paper.

5 Quantitative Framework: Counterfactual Exercises

In this section, I use the theoretical framework introduced above to isolate the effect of a decrease in communication costs on the U.S. economy in 1980. In particular, I calibrate the model to the 1980 data and change a single parameter: I move the distance elasticity of business services trade frictions from its 1980 to its (lower) 2010 value, i.e., I set \(\delta^b = \delta^b_{2010} \).

5.1 The Quantitative Model in Changes

I solve for the counterfactual equilibrium in changes (see Costinot and Rodriguez-Clare (2014) and Dekle et al. (2007) for a discussion). For a given variable or parameter \(x \), \(\hat{x} \) denotes \(x' / x \) where \(x' \) is the value of the variable or parameter in the \(\delta^b = \delta^b_{2010} \) equilibrium, while \(x \) is its value in the \(\delta^b = \delta^b_{1980} \) equilibrium. Rewriting the model in changes is useful since it implies that instead of calibrating regional fundamentals (\(\{ T_{rsok}, A_{rs}, G_{rk}, a^s_r, b^r \} \)), I can instead use data moments informative about these objects in 1980 to compute the counterfactual equilibrium.
As an example consider equation 11 from above expressed both in levels and changes:

\[\pi_{Sr}^s = \frac{(p^s_r)_{1-\alpha_s}(\kappa_{Sr}^s)_{1-\alpha_s}}{\sum_{r'}(p^s_{r'})_{1-\alpha_s}(\kappa_{Sr'}^s)_{1-\alpha_s}} \Rightarrow \hat{\pi}_{Sr}^s = \frac{\hat{p}_{1-\alpha_s}^s(\hat{\kappa}_{Sr}^s)_{1-\alpha_s}}{\sum_{r'}\hat{p}_{1-\alpha_s}^s(\hat{\kappa}_{Sr'}^s)_{1-\alpha_s}\pi_{Sr'}^s} \] \hfill (23)

All endogenous variables in Equation 23 are now expressed in changes, \(\hat{\pi}_{Sr}^s \) and \((\hat{\rho}_r^s)_{1-\alpha_s}\), and I solve for them instead of their counterparts in levels. For \(s = b \) I insert

\[\hat{k}_{Sr}^b = d_{2010}^{b_{1980}} \]

while for all other sectors, I keep trade costs at their 1980 level, i.e., \(\hat{k}_{Sr}^s = 1 \). Finally, the \(\pi_{Sr'p}^s \) in the denominator is a data object. It is the fraction of sector \(s \) expenditure in region \(r' \) spent on the region \(r'' \) in 1980, a result of above imputation procedure. Equation 23 is a good example of the different objects that appear in the equilibrium system written in changes: region specific parameters that change (e.g., \(\hat{k}_{Sr}^b \neq 1 \)), others that do not (e.g., \(\hat{k}_{Sr}^s = 1 \)), endogenous variables in changes (e.g., \((\hat{\rho}_r^s)_{1-\alpha_s}\)), and data objects in 1980 that include information about regional fundamentals (e.g., \(\pi_{Sr'p}^s \)). I show the full model rewritten in changes in Appendix E.4.

5.2 The Distributional Impact of Communication Cost Changes

In this section, I explore whether the Growing Apart channel highlighted by the simple model is quantitatively important in explaining Figure 1. I first discuss the degree to which the mechanism can explain the slope of the line and then discuss the nationwide effect on the skill premium in the next subsection.

Figure 4 replicates Figure 1 from the introduction, with the average nationwide skill premium growth subtracted out. The blue line depicts the data, while the orange line shows the model generated college wage premium growth. I compute the college wage premium identically in both model and data. Both lines are based on the same cross-section of 1980 wages and employment counts, but the orange line then draws on the wage rate and employment counts predicted by the model for 2010, while the blue line relies on the 2010 cross-section in the data. Each dot or diamond denotes the average college wage premium growth within a decile of national employment.

The measured decline in communication costs, indeed induces systematic regional growth in the college wage premium that is in line with that observed in the data. The growing apart mechanism is active and can explain a significant part of the systematic relationship between initial specialization in business services and the subsequent growth in the local college premium.

33
The reason the model predicts similar growth for the first four deciles of employment in commuting zones with the lowest business service payroll shares in 1980 is that these commuting zones do not differ much in the size of their local business services sector in 1980. As a result the model infers similar comparative advantages for these commuting zones vis-a-vis the rest of the economy and predicts a similar impact of declining communication costs on local labor demand.

The grey lines denote 95% confidence intervals around the means taken within deciles of national employment across commuting zones ordered by their 1980 business services payroll share. The fact that this interval is much tighter for means to the left relative to the right of the graph reflects that commuting zones with small business services payrolls in 1980 also are less populous on average, so that there are more of them in a decile of national employment. The intervals are tighter in the model than in the data, reflecting that the models’ mechanism interacts directly with the local business services share in 1980, while there may be additional forces at work in the data.

Figure 4: The Growing Apart Effect, 1980-2010

Note: The blue line replicates Figure 1 from the introduction except with the nationwide average growth of the college wage premium subtracted out. Grey lines show 95% confidence intervals. The green line is compute analogously using the 1980 data and the wages and employment counts implied by the model for 2010.

In Appendix I, I show that this finding is robust to using different elasticities of substitution between regional varieties (σ_z) and between occupations (ι). I also, show that a specification for communication costs that does not depend on distance but instead a simple fixed
costs of shipping services beyond the home region that is calibrated to the same data on regional net balances, generates a very similar graph. Lastly, I show that a larger decline in business service trade costs would bring the model generated data yet more in line with the actual data. In Appendix A.5, I additionally decompose the response of the economy to the change in communication costs into different margins of adjustment. I switch off spatial reallocation altogether and also show results where spatial reallocation occurs but prices for structures and capital do not adjust.

To understand the driving forces behind this result I draw on additional predictions about sector- and occupation-specific wage growth.

Figure 5: Business Services versus Goods Sector Wage Growth, 1980-2010

Note: The blue line replicates the Figure 1 from the introduction with two differences. First, I aggregate wages to the sector level and compute relative wage growth within the business services relative to the goods sector. Second, subtract out the nationwide average growth of the wage ratio. Grey lines show 95% confidence intervals. The green line is compute analogously using 1980 data and model implied wages and employment counts for 2010.

Sectors Figure 5 shows Figure 4 with the y-axis depicting the wage growth differential between the business services sector and the goods sector instead of growth in the college wage premium. In line with the anticipated regional specialization, business services sector wages rise faster than goods sector wages in regions that initially specialized in business

43In the Appendix, I assume that in 2010 50% of total business services sales in the United States are traded across commuting zones. This assumption implies a value of δ_{2010}^b that is substantially lower than the one estimated above.
services production. The growth differential is smaller across sectors than it is across education groups, reflecting that in model and data workers of all education types are found in all sectors. However, as Table 10 in the Appendix shows the college share in the business services sector is around 2.5 times that of the goods sector. Sectoral wage changes as shown in Figure 5 hence translate into relatively higher wage gains for college educated workers in business service specialized regions, and relatively higher gains for less educated workers in goods producing regions.

Occupations A more subtle implication of the decrease in communication costs is its impact on occupational returns. Figure 6a shows how workers of different skill sort across the four occupation groups in 1980. Instead, Figure 6b depicts occupational employment shares across the three sectors present in the calibrated model.

Figure 6: Occupational Employment Across Skill Groups and Sectors

(a) Occ. Empl. Shares by Skill Group, 1980

(b) Occ. Empl. Shares by Sector, 1980

Note: All Data from 5% Publics Use Samples of U.S. Decennial Census Files for 1980 (obtained via IPUMS, see King et al. (2010)). I compute total hourly labor supply within each education group and within each sector, I then compute the fraction of this labor that is supplied to one of four occupation categories: AT: Abstract-Tradable, ANT: Abstract-Non-Tradable, NAT: Non-Abstract-Tradable, NANT: Non-Abstract-Non-Tradable Occupations.

Changes in communication costs enable regional *sectoral* specialization which changes sectoral wages across regions as shown in Figure 5. Occupations link changes in sectoral returns to changes in the return to skill via the intensity of the different occupational inputs used by sectors and the sorting of workers into occupations in line with their abilities. Recall that in Section 4.2 above, I grouped the 320 occupations in the U.S. census files into four occupational groups based on their attachment to a particular location (“tradability”) and their cognitive requirements (“abstractness”).
The left panel of Figure 7 shows the relative wage growth of the two occupational groups that are above the median in terms of their abstractness, but one is above the median, the other below in terms of tradability. Managers, architects, and lawyers are examples of occupations in the first group, while dentists, psychologists, and secondary school teachers are professions in the abstract-non-tradable bin. The model replicates the data well. The decline in communication costs entails substantial wage growth for tradable-abstract relative to non-tradable abstract occupations. Figure 6, explains the model’s success in predicting occupation group specific wage growth profiles across commuting zones. The business services sector relies heavily on abstract-tradable workers. The reason these workers benefit from a decline in communication cost is precisely that their “output”, e.g. strategic direction, is not tied to a particular location the way a teacher is tied to the class present in his classroom. Instead, strategic advice by managers in Denver can decisively affect production processes in locations throughout the United States. A decline in communication costs then has an effect on these occupations that is reminiscent of the “Superstar Effect” discussed by Rosen (1981): it allows workers specialized in these occupations to extend the spatial reach of their output vastly.

![Figure 7: Communication Costs and Relative Occupational Wage Growth](image)

(a) AT vs ANT Occupations
(b) NAT vs NANT Occupations

Note: AT: Abstract-Tradable, ANT: Abstract-Non-Tradable, NAT: Non-Abstract-Tradable, NANT: Non-Abstract-Non-Tradable Occupations. These two Figures show relative annualized hourly wage premium growth for two different occupation at a time across commuting zones between 1980 and 2010 in the data and the model. The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computes as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (occupation 1 to occupation 2) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages.

The right panel of Figure 7 shows the wage growth difference between non-abstract tradable and non-abstract-non-tradable professions. The growth difference for these two occupations
is much less pronounced than those for the abstract occupations. As Figure 6b shows the sorting of these two occupational groups across sectors is much less striking than it was for the abstract occupational groups. The reason is that the task intensity measured use to construct these groupings in Section 4.2 do not do well in distinguishing tradable and non-tradable non-abstract occupations well. Barkeepers, for example, are classified as tradable when in reality their services are very much tied to a particular gastronomical venue limiting the spatial reach of their activity. With a more precise occupational grouping, I would have expected non-abstract tradable occupations to see faster labor demand growth vis-a-vis non-abstract, non-tradable occupations in regions not specialized in business services production.

5.3 Communication Costs and the Aggregate College Wage Premium

In this section, I consider the aggregate implications of the decline in communication costs. The first column of Table 5 groups workers with some college, college and more than college education together and compares their relative wage growth to that of the two remaining education groups. In the data, the unconditional college wage premium increased by about 27% between 1980 and 2010. The full model can explain more than 30 percent of this increase. To understand this result, notice that there are aggregate gains from service market integration. These gains accrue disproportionally to labor markets that export business services to the rest of the economy. In these regions all sectors experience wage gains, and the overall wage level of these location increases markedly relative to other locations. Since these locations, often large cities, host a majority of high-skill workers, this implies that average nominal wages of high-skill workers grow markedly relative to average wages of low-skill workers who live disproportionately in regions that do no experience such large average wage gains. This is in line with the empirical evidence in Hsieh and Moretti (2018), who report that the average wage levels of cities such as New York, San Francisco, and San Jose have seemingly decoupled from that of other labor markets in recent decades.

The inclusion of structures and capital is important in generating this result. As Table 5 reveals, without structures (and capital) the model explains about 17 percent of the increase in the data. The large local expansion generated by increasing business service exports also generates substantial demand spillovers so that demand for structures increase in all sectors. Since structures are in limited supply, this raises local prices considerably. In spatial equilibrium, the nominal wage increase necessary to attract high-skill workers into these commuting zones to work in the business services sector despite these local price increases, raises the nominal wage level substantially in these locations. Restricted housing supply is hence a potent amplifying force for the effect of communication cost declines on the mea-
sured aggregate college wage premium.

Table 5: Changes in the Aggregate College Wage and Welfare Premium

<table>
<thead>
<tr>
<th></th>
<th>Δ% Wage Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>27.6%</td>
</tr>
<tr>
<td>Model without Spatial Reallocation</td>
<td>5.7%</td>
</tr>
<tr>
<td>Model without Structures</td>
<td>4.3%</td>
</tr>
<tr>
<td>Full Model</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Note: The model implies commuting zone level changes in the average wage for each type of worker. For each commuting zone, I use the hourly labor supply from the original (1980) equilibrium by skill group to compute the average wage growth across all commuting zones of workers with at least some college and high-school or less. The Table present the log ratio of these growth rates.

5.4 Growing Apart in Real Wages

In this section, I turn to the predictions of the model for real wage growth of workers of different education levels across commuting zones. In the data, real wages are hard to measure. Accordingly, I view the following results as more speculative. Figure 8 shows average welfare growth for workers of all education groups in the model across commuting zones with different initial business services payroll shares. Figure 8 is constructed by computing the average real wage growth in each commuting zone of workers of different education types between 1980 and 2010. I then weight these growth rates using the 1980 education group specific employment counts for each commuting zones to construct averages within deciles of employment, ordered by the 1980 business services payroll share of the respective commuting zone. Each dot in Figure 8 signifies the average real wage growth within a decile. The unequal spacing of the points reflects that deciles differ to varying degrees in the average business services payroll share of the commuting zones that go into their construction.

As can be seen, the most educated workers (college and college plus) experience the fastest real wage growth in regions specialized in business services. These regions are also, on average, populous regions. Likewise, the communication cost shock introduces real wage growth for low skill workers in regions that specialized in goods production in 1980. Since utility maximizing agents choose their location to maximize their real wage, Figure 8 suggests that communication cost declines “pull” high- and low-skill workers in different “directions” in space: while high-skill workers see more substantial welfare gains in, on average, large commuting zones, low-skill workers are increasingly better off in small places.44

44Note that through the lens of a model with a homothetic utility function, Figure 1 in the introduction
Note: The model implies commuting zone level changes in the real wage (welfare) for each type of worker. For each commuting zone, I use the hourly labor supply from the original (1980) equilibrium by skill group to compute the average real wage growth across within each commuting zones of workers by education group. I then order all commuting zones by their 1980 business services payroll share and compute average welfare increases by education group for each decile of national employment. Each symbol in the Figure represents such an average. Real Wage Growth rates are computed for the time period between 1980 to 2010.

Interestingly, workers with post-graduate degrees (see Figure 6 above) see substantially faster wage growth than college-educated workers in locations not very specialized in business services in 1980. The reason is that the local services sector includes high-skill services, which employs many workers with post-graduate degrees, in particular doctors. This compositional reason explains why the wages of these workers grow faster than college worker wages in regions with a low business services payroll shares in 1980, which, on average, are also small regions: in these commuting zones increased goods-production generates demand spillovers into the local sectors.

An interesting feature of Figure 8 is that it shows the plight of mid-sized labor markets without a clear competitive advantage: in these regions, all workers experience hardly any real wage growth. These regions are not specialized enough in business services to compete with the large, very specialized local labor markets. At the same time, the local goods sectors benefit less from cheaper business services imports since they have a non-negligible local presence of business service providers. These changes in real wages suggestion incentives already is informative about differential welfare growth for high- and low skill workers within a commuting zone, since the price index in the denominator cancels out when taking the wage ratio.
for spatial sorting, whereby more high-skill types sort into larger metropolitan areas and less skilled types into smaller regions.

Table 6: Changes in the Aggregate College Welfare

<table>
<thead>
<tr>
<th></th>
<th>Δ% Welfare Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Spatial</td>
<td>43.1%</td>
</tr>
<tr>
<td>Reallocation</td>
<td></td>
</tr>
<tr>
<td>No Land</td>
<td>46.2%</td>
</tr>
<tr>
<td>Full</td>
<td>82.7%</td>
</tr>
</tbody>
</table>

Note: The model implies commuting zone level changes in the real wage (welfare) for each type of worker. I use the hourly labor supply from the original (1980) equilibrium by skill group to compute the average real wage growth across all commuting zones of workers with at least some college and high-school or less. The Table present the log ratio of these growth rates.

Overall, high skill workers experience faster real wage growth than low skill workers across all regions making them the chief benefactors of the communication cost decline. Not surprisingly Table 6 then reveals that the college welfare premium has increased substantially faster than the college wage premium alone would suggest. Part of the reason why real wages for high- relative to low-skill workers increase faster than their nominal equivalents is that the share of business services in the final consumption bundle is almost insignificant (see Table 2). As Figure 10 in the Appendix shows, the increase in local prices of business services in business service intensive regions does not lead to a substantial increase in the local consumer price index (CPI). At the same time, the local goods sector becomes less competitive, hence exports less, putting further downward pressure on local goods sector prices. Furthermore, imported goods become cheaper since goods producers in other regions have cheaper access to business services. The fate of goods-producing regions is different: there, all else equal, goods prices rise due to increased exports, even though they decrease overall through access to much cheaper business services (see Figure 10). These effects combine to explain the more substantial increase of college welfare premium as compared to the college wage premium.

6 Conclusion

The rise in income inequality since the 1980s has had a marked impact on the political, social, and economic cohesion of the United States. Geography plays an essential role in these developments. Increasingly, high-skill, well-educated workers concentrate in a handful of large labor markets plugged into the global marketplace. At the same time, many parts of the United States seem increasingly decoupled from the fast-moving, skill-hungry global economy.
Why is it no longer the case that high- and low-skill workers experience equally shared wage and welfare gains in the same locations? In this study, I applied an understanding of one of the critical features of recent technological progress to suggest an answer to this question. I argue that the recent technological advances have fundamentally altered the spatial linkages that connect U.S. local labor markets. These changes have enabled a spatial fragmentation of high- and low-skill activities that is unprecedented in human history. Today lawyers in New York, in a single day, can advise clients throughout the country in video calls as if they were locally present. At the same time, firms can use the internet to find and interact with the foremost experts to whatever problem they confront without ever meeting face-to-face.

In the present paper, I argued that a distinctive feature of this development is that it generates labor demand for low- and high-skill workers in different localities. As a result, the skill premium rises in some labor markets and declines in others, with the aggregate effect determined by the ease with which workers relocate across occupations, sectors, and regions. I presented a method to quantify how much easier it has become to trade services across space since the 1980s by drawing on data on regional trade imbalances and a structural model of interregional trade. The estimated change is substantial and explains a large part of the unequal growth of the skill premium across U.S. commuting zones between 1980 and 2010. It also generates a substantial increase in the aggregate college wage gap and an even more substantial increase in the college welfare premium. These results suggest that the ongoing spatial reorganization of the production structure of the United States plays an important role in understanding the rise in inequality.
References

Griffiths, B. (1975): “Invisible Boarders to Invisible Trade,”.

A Additional Figures and Regressions

A.1 Modes of Service Trade

The members of the World Trade Organization (WTO) signed a General Agreement on Trade and Services (GATS) as part of its Uruguay round of negotiations. As part of this agreement, WTO members agreed on a now widely accepted definition of what constitutes trade in services. Table 7 lists the four modes of service trade defined in the GATS.

Table 7: Modes of Service Trade as defined by the WTO

<table>
<thead>
<tr>
<th>Mode</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-border supply</td>
<td>Service delivered within the territory of the Member, from the territory of another Member</td>
</tr>
<tr>
<td>Consumption abroad</td>
<td>Service delivered outside the territory of the Member, in the territory of another Member, to a service consumer of the Member</td>
</tr>
<tr>
<td>Commercial presence</td>
<td>Service delivered within the territory of the Member, through the commercial presence of the supplier</td>
</tr>
<tr>
<td>Presence of a natural person</td>
<td>Service delivered within the territory of the Member, with supplier present as a natural person</td>
</tr>
</tbody>
</table>

Note: The Table shows the four modes of service trade as defined in the General Agreement on Service Trade (GATS) by the World Trade Organization that entered into force in 1995 as a result of the Uruguay round of negotiations.

A.2 Concentration Measures of Sectoral Production

Table 8 shows two measures of concentration of sectoral production. For 741 local labor markets in the United States (see Tolbert and Sizer (1996)) I subdivide the local economies into three sectors and construct the share of each in the total local payroll. The sectors are goods-producing sectors, business services sectors, and local services (see H.1.1 for more detail on the grouping). Then I compute the payroll shares at three percentile of the distribution of payroll shares across regions: 10th, 50th, and 90th percentile. Table 8 present rations of the sectoral payroll share at the 90th relative to the 10th percentile and relative to the median of the distribution across commuting zones. As can be seen business services employment became substantially more concentrated.
Table 8: Concentration Measures of Sectoral Production

<table>
<thead>
<tr>
<th>Year</th>
<th>p90/p10</th>
<th>p90/p50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goods Sectors</td>
<td>Business Services</td>
</tr>
<tr>
<td>1980</td>
<td>1.41</td>
<td>1.90</td>
</tr>
<tr>
<td>1990</td>
<td>1.45</td>
<td>1.94</td>
</tr>
<tr>
<td>2000</td>
<td>1.46</td>
<td>2.20</td>
</tr>
<tr>
<td>2010</td>
<td>1.51</td>
<td>2.27</td>
</tr>
</tbody>
</table>

Note: All Data from 5% Publics Use Samples of U.S. Decennial Census Files from 1980 to 2000, and from the American Community Survey for 2010 (obtained via IPUMS, see King et al. (2010)). Using the PUMA identifiers in the data I construct the 741 commuting zones from Tolbert and Sizer (1996). Then I compute the share of total local hours worked in a commuting zone in a given year that are worked in one of three aggregate sectors: goods, business services, and local services. I then consider the distribution of these employment shares across region for each year and sector separately and compute the employment share of the commuting zone at the 10th, 50th, and 90th percentile. Using these statistics, I compute the p90/p50 and p90/p10 ratios as shown.

A.3 Uses of Business Services in the Economy

Table 9 shows a collapsed version of the Input-Output tables from the Bureau of Economic Activity for the year 1980.

Table 9: The Use of Business Services in the Economy, 1980

<table>
<thead>
<tr>
<th>Percentage of Output used as Percentage of Output used as Intermediate Inputs</th>
<th>Final Use</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods Sectors</td>
<td>Business Services</td>
<td>Local Services</td>
</tr>
<tr>
<td>Goods Sectors</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>Business Services</td>
<td>39</td>
<td>18</td>
</tr>
<tr>
<td>Local Services</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The Table is based on data from the input-output use tables in producer prices for 1980 published by the Bureau of Economic Analysis.
A.4 The College Share in the Business Services and Goods Sectors

Table 10 shows the college share of employment (measured in hours) for the business services and goods-producing sector as defined in Appendix H.1. Table 10 is based on data from the 5% Public Use Decennial Census Files from 1950-2000 and the 5% Public Use Sample from the American Community Survey (see King et al. (2010)).

Table 10: College Share of Employment in Goods and Business Service Sector

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods</td>
<td>.12</td>
<td>.16</td>
<td>.19</td>
<td>.22</td>
</tr>
<tr>
<td>Business Services</td>
<td>.32</td>
<td>.41</td>
<td>.49</td>
<td>.56</td>
</tr>
</tbody>
</table>

Note: All Data from 5% Publics Use Samples of U.S. Decennial Census Files from 1980 to 2000, and from the American Community Survey for 2010 (obtained via IPUMS, see King et al. (2010)). I compute total annual hours worked in each sector for all workers with at least some college and the total hours supplied to a given sector. The Table shows the share of hours supplied to a given sector in a given year that is attributed to college educated workers.

A.5 Decomposition of Growing Apart Effect Into Margins of Adjustment

Figure 9 shows the impact of different model margins of adjustment in generating the differential growth in the skill premium. The blue line shows results for a version of the model in which workers cannot migrate across regions. The red line shows results for the specification of the model in which workers can relocate across space, but without structures as an input in production - so that the presence of regional varieties is the only force of congestion. Lastly, the green line shows the performance of the full model in which workers reallocate across regions, sectors, and occupations and both structures and capital are inputs into production. As can be seen the possibility of spatial reallocation alone dampens the effect. This is intuitive: high skill workers with a strong comparative advantage in business services move into business service specialized regions and hence high skill wage growth there is reigned in. Likewise, low-skill workers relocate to goods-producing regions. Adding structures, i.e., a congestion force, into the model amplifies the effect. As high-skill workers crowd into business services specialized regions to work in business services, local goods prices increase faster, as the local factor - structures - gets more expensive. In spatial equilibrium, this entails higher nominal wages for high-skill workers in business service exporting regions as a compensating differential fort the high cost of living. Adding a form of agglomeration forces, whereby local business services productivity depends on the fraction of high-skill workers, is likely to further amplify the effect.
Figure 9: Decomposing the Margins of Adjustment

Note: This Figure shows annualized college wage premium growth across commuting zones between 1980 and 2010 in the data (light blue) and the various specifications of the model (other colors). The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computes as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (college to high-school) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages. In this Figure, the model implied college premium growth is shown for the following three specifications of the model: (1) the model without spatial relocation of workers, structures, and capital (blue); (2) the model with spatial relocation but without structures, and capital; (3) the full model with spatial relocation and structures and capital in value added.

A.6 Sectoral Price Indices Across Regions

Figure 10 shows changes sectoral price index changes induces by the communication cost decline.
Figure 10: Sectoral Price Indices Changes Across Commuting Zones, 1980-2010

Notes: This Figure shows model implied changes in sectoral CES price indices between 1980 and 2010 across commuting zones in the United States. Growth Rates are over 30 years. It also shows changes in the resulting consumer price index, which are computed as the following function of sectoral price index changes, \hat{P}_{rs}:

$$\hat{P}_{CPI,r} = \prod_s \hat{P}_{as}$$

where a_s is the share of sector s in final consumption. $\hat{x} = \hat{x}'/x$ where \hat{x}' is the value of the variable in the “counterfactual” equilibrium and x the value of the variable in the “initial” equilibrium.

B Business Service Trade Flows: Supporting Evidence

There exists no data on business service trade flows across states, counties, or labor markets in the United States. However, such data does exist for the 13 provinces within Canada between 1997-2015 (see Généreux and Langen (2002) for a detailed data description).

B.1 Gross Flows increase faster than net flows

I compute the ratio of gross-to-net trade flows in business services across Canadian provinces. The left panel of Figure 11 plots

$$gn_t = \frac{\sum_r (|EXP_{r,t}| + |IMP_{r,t}|)}{\sum_r (|EXP_{r,t} - IMP_{r,t}|)}$$

for business services trade across Canadian provinces for various years. The right panel of the same Figure plots the ratio for business services trade of the United States with the rest of the world.
Figure 11: Gross-to-Net Trade Flows

(a) Across Regions in Canada

(b) United States with Rest of World

Notes: The left panel shows the gross to net ratio of business services trade flows within Canada computed as follows:

\[gn_t = \frac{\sum_r (| \text{EXP}_{r,t} | + | \text{IMP}_{r,t} |)}{\sum_r (| \text{EXP}_{r,t} - \text{IMP}_{r,t} |)}, \]

where \(\text{EXP}_{r,t} \) denotes exports of business services from region \(r \) to other regions within Canada, and \(\text{IMP}_{r,t} \) denotes imports into \(r \) from regions within Canada. The data is obtained from Statistics Canada and as described in Généreux and Langen (2002). The right panel shows the same ratio but computed for the United States and the rest of the world based on data from the Input-Output use tables obtained from the Bureau of Economic Analysis.

B.2 The fraction of output that is traded increases

First I compute the fraction of total business services output in a given year that is trade across provinces within Canada. As show in the left panel of 12 this fraction has increased substantially between 1997 and 2015. The right panel shows the fraction of business services output of the United States that is exported to the rest of the world between 1962 and 2016.
Figure 12: Fraction of Business Services Output that is Traded

(a) Across Regions in Canada

(b) United States with Rest of World

Notes: The left panel shows the ratio of business services output traded across provinces within Canada relative to the total output of business services within the given year. The data is obtained from Statistics Canada and as described in Généreux and Langen (2002). The right panel shows the same ratio but computed for the exports of the United States to the rest of the world based on data from the Input-Output use tables obtained from the Bureau of Economic Analysis.

B.3 Business service trade flows decline with distance

Papers in the literature on international trade in services such as Ceglowski (2006), Freund and Weinhold (2002), and Eaton and Kortum (2018) have demonstrated that, similar to goods, service trade flows are a decreasing function of distance. However, to the best of my knowledge nothing was known about service trade flows across regions within a country. Equations 15 and 11 imply that trade flows from region \(r \) to \(r' \), denoted by \(X_{rr'} \), can be expressed as follows:

\[
\log X_{rr'} = \log E^s_r + (1 - \sigma_s) \log p^s_r + (1 - \sigma_s) \log \kappa^s_{rr} + (\sigma_s - 1) \log P^s_r
\]

But this suggests the following estimating regression:

\[
\log X^s_{rr'} = \alpha^s_r + \beta^s_{rr'} + (1 - \sigma_s) \log \kappa^s_{rr'},
\]

where \(\alpha_r \) and \(\beta_{rr'} \) are origin and destination fixed effects and the origin and destination specific \(\kappa^s_{rr} \) acts as a structural residual. In Figure 13, I plot the residual term \((1 - \sigma_s) \log \kappa^s_{rr'}\) against the log distance between origin and destination. In 1997 the R-squared of this regression is .59 in 1997 and .36 in 2015. Figure 13 shows that business service trade flows are a function distance with coefficients that are similar to those founds for goods. Figure 13
Notes: To construct the Figure I run the following regression for business services trade flows between provinces in Canada for 1997 and 2015:

$$\log X_{rr'} = \alpha_r + \beta_{rr'} + \epsilon_{rr'},$$

where the first two terms on the right hand side are origin and destination fixed effects. The data is obtained from Statistics Canada and as described in Généreux and Langen (2002). The Figure then plots $\hat{\epsilon}_{rr'}$ against log distance and also shows an unweighted linear fit.

also suggests that the relationship of flows with distance has become weaker over time, i.e., that distance constitutes less of a barrier to business services trade than it used to.

B.4 Business Service Trade Frictions Decline over time

Here I run the following regression:

$$\log X_{rr'}^s = \kappa_r^s + \beta_{rr'}^s + (1 - \sigma_s) \delta^s \log d_{rr'} + \epsilon_{rr'},$$

where I parameterized trade frictions between r and r', as a function of distance, $\kappa_{rr'}^s = d_{rr'}^{\delta^s}$, and normalize the distance between a region and itself to 1. As a result, $\kappa_{rr'}^s$ measures the cost of selling sector s output to region r' relative to selling it within its region of production r. In Figure 14, I plot the estimated $\kappa_{rr'}^s$ averaged across all bilateral differences. As can be seen trade frictions declined by about 50% over the period of available data.
Figure 14: Distance Elasticities and implied Trade Costs over Time

(a) Estimated Distance Elasticities

(b) Estimated Average Trade Costs

Notes: To construct the Figure I run the following regression for business services trade flows between provinces in Canada for 1997 and 2015:

\[
\log X_{st} = a_s + b_t + (1 - \sigma_s)\delta \log d_{st} + e_{st},
\]

where the first two terms on the right hand side are origin and destination fixed effects. The data is obtained from Statistics Canada and as described in Généreux and Langen (2002). The left panel then shows \((1 - \sigma_s)\delta\) plotted over time (blue line). The grey lines indicate 95\% confidence intervals around the estimates. The right panel of the Figure shows the average value of \(k_{t'} = d_{t'}\) taken across all bilateral distances for each year. Here \(\delta\) is obtained from \((1 - \sigma_s)\delta\) by assuming \(\sigma_s = 4\).
B.5 Predicting Business Services Trade Flows

C Micro-evidence on Communication Cost Declines

In this Section, I provide direct indicators of reduction in costs of data transmission, the cost of communication equipment, and adoption rates of communication technologies.

Figure 16 shows the cost of a 1.5 Mbps private data transmission line from New York City to Pittsburgh taken from Odlyzko (2000). Such lines allow corporate customers to have a dedicated line with guaranteed transmission speed between two locations. What is striking is not only the steep cost declines of about 75% between 1985 and 1995 alone, but that these reduction come from the distance-dependent component. More generally, historic accounts of the prices of data transmission over the last four decades reveal that distance was always costly and only in recent years have providers switched to pricing models that are distance invariant within the United States (see Odlyzko (2000) for an excellent overview).

Figure 16: Tariffed prices for 1.5 Mbps private line from New York City to Pittsburgh

Table 12, adapted from Byrne and Corrado (2017), shows that around 1980 prices for all data transmission equipment, such as cell phones, computers, fax machines, but also optic fiber cables and modems have started declining at rates of on average -10% per annum. Interestingly, before 1980 prices for this equipment actually increased, as many of these technologies
Figure 15: Predicted Trade Flows versus Actual Trade Flows across Canadian Provinces

Notes: To construct this Figure consider the following market clearing equation:

\[R_s^r = \sum_r E_s^r \frac{\lambda_s d_s^r}{\sum_r \lambda_s d_s^r}. \]

I use the data on business services trade flows between Canadian provinces. The data is obtained from Statistics Canada and as described in Généreux and Langen (2002). \(R_s^r \) is obtained by summing exports across destinations and \(E_s^r \) by summing imports across origins. I then use \(\{R_s^r, E_s^r\} \), the above market clearing equation for all regions \(r \), and the gross-to-net ratio for the particular year to solve for the \(\{\lambda_s^r\} \) and \(\delta^r \) so as to minimize the distance of the gross-to-net ratio implied by the market clearing equation and the one observed in the data.

Then I use the following equation to predict trade flows between \(r \) and \(r' \):

\[X_{rr'}^s = E_{rr'}^s \frac{\lambda_{ss} d_{rr'}^s}{\sum_{r''} \lambda_{ss} d_{rr'}^s}. \]

by using the inferred \(\lambda_{rr'}^s, \delta^r \) and the construct the \(\{R_{rr'}^s, E_{rr'}^s\} \). The Figure then plots \(X_{rr'}^s \) against the bilateral trade flow observed in the data for that year.
had not yet reached critical scale.

Table 11: Adoption and Usage of Communication Technologies

<table>
<thead>
<tr>
<th>Year</th>
<th>Fixed Line Phones per 100 persons</th>
<th>Mobile Phones per 100 persons</th>
<th>Internet Hosts</th>
<th>Traffic on Internet Backbones (TB/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>27.27</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>29.99</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>33.66</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>37.30</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>41.40</td>
<td>0.00</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>48.60</td>
<td>0.14</td>
<td>1961</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>54.50</td>
<td>2.11</td>
<td>313,000</td>
<td>1.0</td>
</tr>
<tr>
<td>1995</td>
<td>60.70</td>
<td>12.80</td>
<td>9,472,000</td>
<td>1,500</td>
</tr>
<tr>
<td>2000</td>
<td>70.00</td>
<td>39.80</td>
<td>29,670,000</td>
<td>20,000-35,000</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td>80,000-140,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 11 combines data from Odlyzko (2000) and Tang (2006). It shows adoption and usage rates for various communication technologies. The number of fixed phones lines per 100 people doubled between 1975 and 2000 from only .35 to .7. Mobile phone went from 0 per 100 people in 1980, to 14 in 1985, and 40 in 2000. Internet hosts grew from 0 in 1975 to 200 in 1980 and grew exponentially from there to reach 30 million in 1998. Traffic on the U.S.’s internet backbone exhibits similarly explosive growth over this period.
Table 12: Communication Equipment Price Changes (Average Annual Percent Change)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom Equipment (P)</td>
<td>-5.7</td>
<td>-10.0</td>
<td>-1.1</td>
<td>-9</td>
<td>-13.7</td>
<td>-12.7</td>
<td>-11.1</td>
</tr>
<tr>
<td>Telecom Equipment (S)</td>
<td>-5.6</td>
<td>-10.0</td>
<td>-1.1</td>
<td>-9</td>
<td>-13.7</td>
<td>-12.7</td>
<td>-11.1</td>
</tr>
<tr>
<td>Wireline (P)</td>
<td>-5.6</td>
<td>-10.0</td>
<td>-9.8</td>
<td>-7.4</td>
<td>-12.2</td>
<td>-13.3</td>
<td>-8.4</td>
</tr>
<tr>
<td>Wireline (S)</td>
<td>-5.6</td>
<td>-10.0</td>
<td>-9.8</td>
<td>-7.4</td>
<td>-12.2</td>
<td>-13.3</td>
<td>-8.4</td>
</tr>
<tr>
<td>Switching (P)</td>
<td>-6.2</td>
<td>-10.2</td>
<td>-9.7</td>
<td>-6.8</td>
<td>-13.4</td>
<td>-12.7</td>
<td>-8.4</td>
</tr>
<tr>
<td>Switching (S)</td>
<td>-6.2</td>
<td>-10.2</td>
<td>-9.7</td>
<td>-6.8</td>
<td>-13.4</td>
<td>-12.7</td>
<td>-8.4</td>
</tr>
<tr>
<td>Transmission (P)</td>
<td>-4.6</td>
<td>-9.4</td>
<td>-7.6</td>
<td>-4.0</td>
<td>-6.9</td>
<td>-13.8</td>
<td>-9.0</td>
</tr>
<tr>
<td>Transmission (S)</td>
<td>-4.6</td>
<td>-9.4</td>
<td>-7.6</td>
<td>-4.0</td>
<td>-6.9</td>
<td>-13.8</td>
<td>-9.0</td>
</tr>
<tr>
<td>Fibre</td>
<td>-10.3</td>
<td>-10.3</td>
<td>-13.4</td>
<td>-8.6</td>
<td>-12.3</td>
<td>-11.2</td>
<td>-8.8</td>
</tr>
<tr>
<td>Local Loop</td>
<td>-10.3</td>
<td>-10.3</td>
<td>-13.4</td>
<td>-8.6</td>
<td>-12.3</td>
<td>-11.2</td>
<td>-8.8</td>
</tr>
<tr>
<td>Other Line</td>
<td>-7.2</td>
<td>-7.2</td>
<td>-12.3</td>
<td>-8.5</td>
<td>-12.2</td>
<td>-11.2</td>
<td>-8.8</td>
</tr>
<tr>
<td>Terminals (P)</td>
<td>-6.3</td>
<td>-3.2</td>
<td>-14.3</td>
<td>-14.1</td>
<td>-17.0</td>
<td>-18.4</td>
<td>-6.0</td>
</tr>
<tr>
<td>Terminals (S)</td>
<td>-6.3</td>
<td>-3.2</td>
<td>-14.3</td>
<td>-14.1</td>
<td>-17.0</td>
<td>-18.4</td>
<td>-6.0</td>
</tr>
<tr>
<td>Telephones</td>
<td>-6.0</td>
<td>-4.3</td>
<td>-14.0</td>
<td>-10.6</td>
<td>-20.2</td>
<td>-16.1</td>
<td>-11.7</td>
</tr>
<tr>
<td>Fax</td>
<td>-4.5</td>
<td>-4.3</td>
<td>-11.6</td>
<td>-12.9</td>
<td>-14.6</td>
<td>-6.4</td>
<td>-11.0</td>
</tr>
<tr>
<td>Modem</td>
<td>-14.6</td>
<td>-11.9</td>
<td>-17.8</td>
<td>-17.0</td>
<td>-19.3</td>
<td>-25.1</td>
<td>-8.1</td>
</tr>
<tr>
<td>Messaging</td>
<td>-3.5</td>
<td>-4.3</td>
<td>-10.2</td>
<td>-9.2</td>
<td>-14.6</td>
<td>-14.2</td>
<td>-1.7</td>
</tr>
<tr>
<td>Wireless (P)</td>
<td>-6.4</td>
<td>1.3</td>
<td>-12.6</td>
<td>-11.1</td>
<td>-15.9</td>
<td>-12.4</td>
<td>-12.1</td>
</tr>
<tr>
<td>Wireless (S)</td>
<td>-6.4</td>
<td>1.3</td>
<td>-12.6</td>
<td>-11.1</td>
<td>-15.9</td>
<td>-12.4</td>
<td>-12.1</td>
</tr>
<tr>
<td>Cell Systems (P)</td>
<td>-17.8</td>
<td>-17.7</td>
<td>-18.8</td>
<td>-16.2</td>
<td>-18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Systems (S)</td>
<td>-16.2</td>
<td>-17.0</td>
<td>-18.9</td>
<td>-16.7</td>
<td>-14.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Phone</td>
<td>-17.6</td>
<td>-17.8</td>
<td>-19.3</td>
<td>-18.9</td>
<td>-13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellites</td>
<td>-14.4</td>
<td>-14.8</td>
<td>-14.7</td>
<td>-19.0</td>
<td>-14.6</td>
<td>-8.8</td>
<td>-10.4</td>
</tr>
</tbody>
</table>

Notes: This Table contains data from Byrne and Corrado (2017). It shows average annual percentage changes of price indices for various pieces of communication equipment.

D Derivations of the Simple Model

In this section, I derive how to derive the expressions for equilibrium objects shown in Section 3.

Autarky Equilibrium Consider the equilibrium as stated in the main part of the paper. An equilibrium in the simple model consists of a vector of region-sector specific wages \(\{ w^s \} \) and a vector of trade shares \(\{ \pi^s \} \) that solve the following four market clearing equations and two non-arbitrage equations.

Business services market clearing in each region:

\[
\begin{align*}
 w^b_1 L_{1h} &= \frac{1 - \gamma}{\gamma} w^s_1 L_{1l} + (1 - \pi^b_{22}) \frac{1 - \gamma}{\gamma} w^s_2 L_{2l} \quad \text{and} \quad w^b_2 L_{1h} = \pi^b_{22} \frac{1 - \gamma}{\gamma} w^s_2 L_{1l}
\end{align*}
\]

Goods market clearing in each region:

\[
\begin{align*}
 w^s_1 L_{1l} &= \pi^s_{11} \gamma \left[w^s_1 L_{1l} + w^b_1 L_{1h} \right] \quad \text{and} \quad w^s_2 L_{2l} = \gamma \left[w^s_2 L_{2l} + w^b_2 L_{2h} \right] + (1 - \pi^s_{11}) \gamma \left[w^s_1 L_{1l} + w^b_1 L_{1h} \right]
\end{align*}
\]
No-arbitrage equations for sectoral prices:

\[(p_1^b - p_2^b)(1 - \pi_{22}^b) = \left(\frac{w_1^b}{A_{1b}} - w_2^b\right)(1 - \pi_{22}^b) = 0\]

(24)

and:

\[(p_1^g - p_2^g)(1 - \pi_{11}^g) = ((w_1^g)\gamma (w_1^b)^{1-\gamma} A_{1b}^{\gamma-1} - (w_2^g)\gamma (w_1^b)^{1-\gamma})(1 - \pi_{11}^g) = 0\]

Since trade in goods is costless, it is convenient to choose the nationwide price of the good as numeraire,

\[p_1^g = p_2^g = p^g = 1.\]

Autarky Equilibrium In autarky, homes shares are one, \(\pi_{11}^g = \pi_{22}^b = 1\), and the system reduces to the following four equations:

Business services market clearing in each region:

\[w_1^b L_1 h = \frac{1 - \gamma}{\gamma} w_1^g L_{1l} \quad \text{and} \quad w_2^b L_1 h = \frac{1 - \gamma}{\gamma} w_2^g L_{1l}\]

Goods market clearing in each region:

\[w_1^g L_{1l} = \gamma \left[w_1^g L_{1l} + w_1^b L_1 h\right] \quad \text{and} \quad w_2^g L_{2l} = \gamma \left[w_2^g L_{2l} + w_2^b L_{2h}\right]\]

Along with the normalization of the goods price,

\[p_1^g = p_2^g = p^g = 1.\]

From the normalization of the goods price I obtain the following:

\[w_1^g = (w_1^b)^{\gamma-1} A_{1b}^{1-\gamma} \quad \text{and} \quad w_2^g = (w_2^b)^{\gamma-1}\]

Plugging this into the respective service market clearing equations produces:

\[w_1^b = \mu^{-\gamma} A_{1b}^{1-\gamma} \left(\frac{1 - \gamma}{\gamma}\right)^{\gamma} \quad w_1^g = \mu^{-\gamma} A_{1b}^{1-\gamma} \left(\frac{\gamma}{1 - \gamma}\right)^{1-\gamma}\]

\[w_2^b = \mu^{-\gamma} \left(\frac{1 - \gamma}{\gamma}\right)^{\gamma} \quad w_1^g = \mu^{-\gamma} \left(\frac{\gamma}{1 - \gamma}\right)^{1-\gamma}\]

But then taking ratios yields the result in the body of the paper:

\[\frac{w_1^b}{w_1^g} = (\frac{1 - \gamma}{\gamma})^\mu^{-1}.\]

Also relative wages across region in autarky are given by:

\[\frac{w_1^g}{w_2^g} = A_{1b}^{1-\gamma}.\]
The Cutoff Condition Service trade occurs when goods-producing firms in the hinterland find it profitable to purchase service from the city at autarky wage levels. This occurs if and only if:

$$p^b_1 k \leq p^b_2$$

At autarky prices this inequality has to hold with equality at the cutoff value for service trade costs, \(\bar{k}\):

$$\frac{w^b_1}{A_{1b}} = \frac{\mu^{-\gamma} A_{1b}^{1-\gamma} (1-\gamma) \gamma}{\mu^{-\gamma} \bar{k}} = \mu^{-\gamma} \frac{1}{\gamma}$$

Solving this equation for \(\bar{k}\) yields \(\bar{k} = A_{1b}^\gamma\).

Service Trade Equilibrium For all \(\kappa < \bar{k}\), trade shares are no longer one, \(\pi^g_{11}, \pi^g_{22} \neq 1\). The equilibrium system can then be written:

Business services market clearing in each region:

$$w^b_1 L_{1h} = \frac{1-\gamma}{\gamma} w^g_1 L_{1l} + (1 - \pi^b_{22}) \frac{1-\gamma}{\gamma} w^g_2 L_{2l} \quad \text{and} \quad w^b_2 L_{1h} = \pi^b_{22} \frac{1-\gamma}{\gamma} w^b_2 L_{1l}$$

Goods market clearing in each region 1,

$$w^g_1 L_{1l} = \pi^g_{11} \gamma \left[w^g_1 L_{1l} + w^b_1 L_{1h} \right],$$

and region 2,

$$w^g_2 L_{2l} = \gamma \left[w^g_2 L_{2l} + w^b_2 L_{2h} \right] + (1 - \pi^g_{11}) \gamma \left[w^g_1 L_{1l} + w^b_1 L_{1h} \right].$$

No-arbitrage equations for sectoral prices:

$$\frac{w^b_1}{A_{1b}} = w^b_2 \quad \text{and} \quad \frac{w^g_1}{A_{1b}} = \frac{1-\gamma}{\gamma} w^g_{1b} A_{1b} A_{1b}$$

(25)

Since trade in goods is costless, it is convenient to choose the nationwide price of the good as numeraire,

$$p^g_{1s} = p^g_{2s} = p^g = 1.$$

From the normalization of the goods price I obtain again:

$$w^g_{1s} = (w^g_{1})^{\frac{\gamma-1}{\gamma}} A_{1b}^{\frac{1-\gamma}{\gamma}} \quad \text{and} \quad w^g_{2s} = (w^g_{2})^{\frac{\gamma-1}{\gamma}}$$

(26)

Substituting out \(\pi^b\) from the two business services market clearing equations yields another equation just in wages:

$$w^b_1 L_{1h} + w^b_2 L_{1h} = \frac{1-\gamma}{\gamma} \left[w^g_1 L_{1l} + w^g_2 L_{2l} \right]$$

(27)
Equations 26 and 27 together with the non-arbitrage equation for business services prices, \(\frac{w^b_1}{\kappa} = w^b_2 \), are four equations in four unknowns that can be solved for the region-sector wage vector:

\[
 w^b_1 = A_{1b} \kappa^{-1} w^b_2 \quad w^b_1 = (w^b_2)^{-1} \kappa^{1-\gamma} \quad w^b_2 = \left[\frac{1 - \gamma}{\gamma} \right] \gamma \left[\frac{L_{11} \kappa^{1-\gamma} + L_{21}}{L_{1h} A_{b} \kappa^{-1} + L_{2h}} \right] \gamma \quad w^b_2 = (w^b_2)^{1-\gamma}.
\]

(28)

The skill premium in region 1,

\[
 \frac{w^b_1}{w^b_1} = A_{1b} (w^b_2)^{1-\gamma} = \left[\frac{1 - \gamma}{\gamma} \right] \gamma \left[\frac{L_{11} \kappa^{1-\gamma} + L_{21}}{L_{1h} A_{b} \kappa^{-1} + L_{2h}} \right] A_{1b},
\]

and the skill premium in region 2,

\[
 \frac{w^b_2}{w^b_2} = (w^b_2)^{1-\gamma} = \left[\frac{1 - \gamma}{\gamma} \right] \gamma \left[\frac{L_{11} \kappa^{1-\gamma} + L_{21}}{L_{1h} A_{b} \kappa^{-1} + L_{2h}} \right].
\]

I can use the business service market clearing equation in the hinterland to solve for the domestic trade share \(\pi^b \)

\[
 \pi^b_{22} = \frac{\gamma w^b_2 L_{1h}}{1 - \gamma w^b_2 L_{11}} = \frac{\gamma L_{1h} A_{b} \kappa^{-1} + L_{21}}{1 - \gamma L_{11} A_{b} \kappa^{-1} + L_{2h}} = \mu \frac{L_{11} \kappa^{1-\gamma} + L_{21}}{L_{1h} A_{b} \kappa^{-1} + L_{2h}}
\]

In a similar fashion, I can find an expression for the city’s domestic trade share in goods:

\[
 \pi^g_{11} = \frac{1}{\gamma w^g_1 L_{11} + w^g_2 L_{1h}} = \frac{1}{\gamma A_{1h}} = \frac{1}{\gamma} \frac{1}{\gamma + \mu A_{1h} \kappa^{-\frac{1}{\gamma}} (w^g_2)^{1-\gamma}} = \frac{1}{\gamma + \mu A_{1h} \kappa^{-\frac{1}{\gamma}} (w^g_2)^{1-\gamma}}
\]

The expressions for wages in the hinterland in equations 28 can be re-written using this expression for \(\pi^b \):

\[
 w^b_2 = \left[\frac{1 - \gamma}{\gamma} \right] \gamma L_{1h}^{-\gamma} (L_{11} \pi^b_{22})^{1-\gamma} \equiv \gamma_b (\mu^{-1} \pi^b_{22})^{1-\gamma}
\]

\[
 w^g_2 = \left[\frac{1 - \gamma}{\gamma} \right] L_{1h}^{-\gamma} \left[L_{11} \pi^b_{22} \right]^{1-\gamma} \equiv \gamma_g \left[\mu^{-1} \pi^b_{22} \right]^{1-\gamma} = (p^b_2)^{1-\gamma}
\]

From business services market clearing in the city I can express wages in the city as a function of \(\pi^b \) and \(\kappa \) alone:

\[
 w^b_1 L_{1h} = \frac{1 - \gamma}{\gamma} (w^b_2)^{1-\gamma} \kappa^{1-\gamma} L_{11} + (1 - \pi^b_{22}) \frac{1 - \gamma}{\gamma} \frac{1}{(w^b_2)^{1-\gamma} L_{21}}
\]

63
But then:

\[w^b_1 = L_{1h}^{-\gamma} A^{1-\gamma}_1 \left(\frac{1-\gamma}{\gamma} \right) \gamma \left[L_{1L} + (1 - \pi^b_{22}) \kappa^{-\gamma} L_{2l} \right]^{\gamma} \equiv \gamma_b A^{1-\gamma}_1 \left[\mu^{-1} + (1 - \pi^b_{22}) \kappa^{-\gamma} \frac{L_{2l}}{L_{1h}} \right]^{\gamma} \]

Using the expression in Equations 28 for the goods wage in the city:

\[w^g_1 = A^{1-\gamma}_1 \gamma_g \left[\mu^{-1} + (1 - \pi^b_{22}) \kappa^{-\gamma} \frac{L_{2l}}{L_{1h}} \right]^{\gamma} \equiv A^{1-\gamma}_1 \gamma_g \left[\mu^{-1} + (1 - \pi^b_{22}) \kappa^{-\gamma} \frac{L_{2l}}{L_{1h}} \right]^{\gamma} = (p^b_1)^{\frac{1-\gamma}{\gamma}} \]

Consider again the no-arbitrage equations in the service trade equilibrium. Rearranging the one for business services yields:

\[\frac{w^b_1}{w^b_2} = A_{1b} \kappa^{-1} \propto \kappa^{-1} \]

Rearranging the one in the goods sector yields:

\[\frac{w^g_1}{w^g_2} = \left(\frac{w^b_1}{w^b_2} \right)^{\frac{1-\gamma}{\gamma}} A^{1-\gamma}_1 \kappa^{-1} = (A_{1b} \kappa^{-1})^{\frac{1-\gamma}{\gamma}} A^{1-\gamma}_1 \kappa^{-1} = \kappa^{\frac{1-\gamma}{\gamma}} \propto \kappa^{\frac{1-\gamma}{\gamma}} \]

E Derivations of the Quantitative Model

This section contains all derivations for the quantitative model omitted in the main part of the paper. It also presents an extension to include land prices and capital in the computations and other materials pertaining to the quantitative model.

E.1 Notation Rules

Throughout the paper, I follow a simple set of rules on how to index exogenous parameters, regional fundamentals, and endogenous variables.

- All Location-specific parameters are indexed with subscripts in the order \(r, s, o, k \), but not separated by a comma.

- If several different regions appear in one equation they are differentiated as follows: \(r, r', r'' \). Similarly for \(s, o, k \).

- Trade shares and trade costs are an exception with two subscripts in that order denoting origin and destination region \((r'r') \) and a superscript denoting the sector.
Endogenous variables are indexed with regions and skill groups in subscript (the two immutable indices), and sectors and occupation variables in superscript (the two choice indices).

Fundamental parameters not indexed by region are always indexed by subscripts, and by an additional superscript if there are two indices, e.g. $\gamma_{s'}^s$.

Where attributes of individual workers appear they are indexed by superscript i.

E.2 Aggregation Results

In the baseline model individuals draw sector-occupation specific productivities from the following Fréchet distribution:

$$F(\epsilon) = \exp(-T_{rso}e^{-\rho_k})$$

Income of individual i is given by

$$y^i = \max_{s,o}\{w^i_{r} \times \epsilon^i_{rso}\}$$

First compute

$$P(y^i = \max_{s,o}\{w^i_{r} \epsilon^i_{rso}\}) = \int_0^\infty -T_{rso} \rho_k k^{-\rho_k-1}(w^i_{r})^\rho_k \exp(-k^{-\rho_k} \sum_{s'} \sum_{o'} T_{rso'}k(w^i_{r'})^\rho_k)dk$$

$$= \int_0^\infty -T_{rso} \rho_k k^{-\rho_k-1}(w^i_{r})^\rho_k \exp(-k^{-\rho_k} \sum_{s'} \sum_{o'} T_{rso'}(w^i_{r'})^\rho_k)dk$$

$$= \frac{T_{rso}(w^i_{r})^\rho_k}{\sum_{s'} \sum_{o'} T_{rso'}(w^i_{r'})^\rho_k} = \phi^i_{r_k}$$

I compute the probability density of income, conditional on choosing a particular $s - o$ combination being chosen:

$$P(y < k \mid y^i = \max_{s,o}\{w^i_{r} \epsilon^i_{rso}\}) = \frac{1}{P(y^i = \max_{s,o}\{w^i_{r} \epsilon^i_{rso}\})} \int_0^k -T_{rso} \rho_k k^{-\rho_k-1}(w^i_{r})^\rho_k \exp(-k^{-\rho_k} \sum_s \sum_o w^i_{r} T_{rso}dk)$$

$$P(y < k \mid y^i = \max_{s,o}\{w^i_{r} \epsilon^i_{rso}\}) = \frac{\sum_s \sum_o (w^i_{r})^\rho_k T_{rso}}{(w^i_{r})^\rho_k T_{rso}} \int_0^k -T_{rso} \rho_k k^{-\rho_k-1}(w^i_{r})^\rho_k \exp(-k^{-\rho_k} \sum_s \sum_o (w^i_{r})^\rho_k T_{rso}dk)$$
This is a again a Fréchet Distribution. But then the average wage of a type k worker in commuting zone r is given by the mean of this distribution:

$$
\bar{y} = \Gamma(1 - \frac{1}{\rho}) \times \left(\sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok}\right)^{\frac{1}{\rho_k}}
$$

where $\Gamma(.)$ denotes the Gamma function.

Next I derive the expected effective labor supply by a type k worker conditional on choosing a sector occupation pair:

$$
P(\epsilon < k \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\}) = P(\epsilon < \frac{k}{\bar{w}^s_o} \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\})
$$

$$
P(\epsilon < k \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\}) = P(y < \bar{k} \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\})
$$

$$
P(\epsilon < k \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\})
= \int_0^{\bar{k}} -\rho_k k^{-\rho_k-1} \sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok} \exp\left(- \frac{k}{\left(\sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok}\right)^{\frac{1}{\rho_k}}} \right) dk
$$

$$
P(\epsilon < k \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\})
= \int_0^{\bar{k}} -\rho_k k^{-\rho_k-1} (w^s_o)^{-\rho_k-1} \sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok} \exp\left(- \frac{\bar{k}}{\left(\sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok}\right)^{\frac{1}{\rho_k}}} \right) w^s_o dk
$$

$$
P(\epsilon < k \mid y^i = \max_{s,o} \{w^s_o \epsilon^i_{rsok}\})
= \int_0^{\bar{k}} -\rho_k k^{-\rho_k-1} (w^s_o)^{-\rho_k-1} \sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok} \exp\left(- \frac{k}{\left((w^s_o)^{-1} \sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok}\right)^{\frac{1}{\rho_k}}} \right) dk
$$

This is again a Fréchet distribution. so the mean human capital supplied by a worker condition on choosing the sector-occupation combination $s-o$ is:

$$
\bar{e} = \Gamma(1 - \frac{1}{\rho_k}) \times \left((w^s_o)^{-1} \sum_s \sum_o (w^s_o)^{\rho_k} T_{rsok}\right)^{\frac{1}{\rho_k}}
$$
But then average income of a type k worker in sector s, occupation o is:

$$w_{rk} = w_r^{so} e = \left(\sum_s \sum_o (w_r^{so})^{\rho_k} T_{rsok} \right)^{\frac{1}{\rho_k}}$$

Total efficiency labor supply to region r, sector s, occupation o:

$$h_r^{so} = \sum_k L_{rk} \phi_{rk}^{so} (1 - \frac{1}{\rho_k}) \times \left((w_r^{so})^{-1} \left(\sum_s \sum_o (w_r^{so})^{\rho_k} T_{rsok} \right)^{\frac{1}{\rho_k}} \right)$$

I can then also derive the occupational market clearing condition from the main part of the paper:

$$h_r^{so} w_r^{so} = \mu_{rso} \left(\frac{w_r^{so}}{w_r} \right)^{1-i} \gamma_s R^s_r$$

$$\sum_k L_{rk} \phi_{rk}^{so} w_{rk} = \mu_{rso} \left(\frac{w_r^{so}}{w_r} \right)^{1-i} \gamma_s R^s_r$$

Lastly, I derive the labor supply expressions. The expected indirect utility of individual i in skill group k if she moved to location r is given by:

$$\tilde{V}_{rk} = q \times \frac{w_{rk}}{\prod_s (P^s)_{rk}} \times \eta^i_r = V_{rk} \times \eta^i_r$$

But then:

$$P(\tilde{V}_{rk} = \max \{ \tilde{V}_{rk}' \}) = \int_0^\infty -G_{rk} x_k k^{-x_k-1} V_{rk}^{x_k} \exp(-k^{-x_k} \sum_{r'} G_{r'k}(V_{r'k})^{x_k}) dk$$

$$= G_{rk} V_{rk}^{x_k} \int_0^\infty -k^{-x_k-1} \frac{\sum_{r'} G_{r'k}(V_{r'k})^{x_k}}{\sum_{r'} G_{r'k}(V_{r'k})^{x_k}} \exp(-k^{-x_k} \sum_{r'} G_{r'k}(V_{r'k})^{x_k}) dk$$

$$= \frac{G_{rk} V_{rk}^{x_k}}{\sum_{r'} G_{r'k}(V_{r'k})^{x_k}} = \frac{L_{rk}}{L_k}$$

which completes the derivations of the results involving the Fréchet distribution in Section 3.3.

E.3 A Useful Eigensystem

I introduce a feature of the model that is convenient in computing its equilibria numerically. Using the goods market clearing equation 15, I can rewrite equation 14 as follows:

$$E^s_r = \alpha_s \sum_{s'} \sum_{r'} E'^s_{s'} \pi_{rr'} \gamma^s_{s'} + \sum_{s'} \left(\sum_{s'^{'}=s^{''}} \left(\sum_{r'^{''}=r''} \left(\sum_{r'} \left(\sum_{s'^{''}} \left(\sum_{r'^{''}} E'^s_{s'^{''}} \pi_{rr'^{''}} \gamma^s_{s'^{''}} \right) \right) \right) \right) \right) (1 - \gamma^s_{s'}) \gamma^s_{s'}$$

$$= \sum_{s'} \sum_{r'} E'^s_{s'} \pi_{rr'} [\alpha_s \gamma^s_{s'} + (1 - \gamma^s_{s'}) \gamma^s_{s'}]$$

(29)
Equation 29 is an eigensystem. The eigenvector corresponding to the eigenvalue 1, is equal to a scaled version of the vector \(\{E^s_r\}_{rs}\), denote \(\{\lambda E^s_r\}_{rs}\). A normalization of GDP to 1 then pins down \(\lambda\):

\[
GDP = \sum_r \sum_s \sum_{r'} \lambda E^s_{rr'} \pi^s_{rr'} \gamma_s \Rightarrow \lambda = \left[\sum_r \sum_s \sum_{r'} E^s_{rr'} \pi^s_{rr'} \gamma_s \right]^{-1}
\]

I rely heavily on this result when solving the model numerically.

E.4 Baseline Model in Changes

The baseline model can be written as a set of equations expressed in differences. Here \(\hat{x} = \frac{x'}{x}\) where \(x\) denotes the endogenous variable in the original equilibrium and \(x'\) its value in the counterfactual equilibrium. This approach allows me to replace many parameters with objects taken directly from the data. I only allow the service sector trade cost parameter to change. For all other parameters indexed by a region I set \(\hat{x} = 1\), i.e., assume they remain unchanged. I now list the model equations re-written in changes in the order that they are used in the algorithm to compute counterfactual. In this algorithm I started with a guess for the vector \(\hat{w}^{s0}_r\) and then compute all objects below in order starting with 30 and finally updating the guess using equation 31.

1. Labor supply by type \(k\) to occupation \(o\) in sector \(s\) can be written:

\[
\hat{f}^{s0}_{rk} = \frac{(\hat{w}^{s0}_r)^{\theta_k}}{\sum_o' \sum_o' (\hat{w}^{s0}_o)^{\theta_k} \phi^{s0}_{rk}}
\]

2. Type-level average wage:

\[
\hat{w}_{rk} = \left[\sum_{s} \sum_{o} (\hat{w}^{s0}_r)^{\theta_k} \phi^{s0}_{rk} \right]^{\frac{1}{\theta_k}}
\]

3. Cost per unit of value added:

\[
\hat{w}_{rs} = \left[\sum_{o} (\hat{w}^{s0}_r)^{1-\gamma} X^{s0}_{r} \right]^{\frac{1}{1-\gamma}}
\]

with \(X^{s0}_{r} = \frac{(\mu^{s0}_r)(w^{s0}_r)^{1-\gamma}}{\sum_o (\mu^{s0}_r)(w^{s0}_o)^{1-\gamma}} = \sum_k w_{rk} L_{rk}\phi^{s0}_{rk} = \sum_k w_{rk} L_{rk} \phi^{s0}_{rk} \).

4. Industry commuting zone level price index:

\[
\hat{p}^s_r = \left(\sum_{r'} (p^s_{rr'} \pi^s_{rr'})^{1-\sigma_s} \pi^s_{rr'} \right)^{\frac{1}{1-\sigma_s}}
\]
5. Local factory gate prices:

\[\hat{p}_r^s = (\hat{w}_r^s)^{\gamma_s} \times \left(\prod_{s'} \hat{p}_{r'}^{s'}^{\gamma_{s'}} \right)^{1-\gamma_s} \]

6. Expenditure shares on goods from elsewhere:

\[\hat{p}_{rr'}^s = \frac{(\hat{p}_{rr'}^s)^{1-\gamma_s}}{\sum_k (\hat{p}_{rr'}^k)^{1-\gamma_k} \pi_{rr'}^k} \]

7. Occupation market clearing:

\[\left(\frac{\hat{w}_r^s}{\hat{w}_r^s} \right)^{1-i} \hat{R}_r^s = \sum_k \hat{w}_{rk} \hat{L}_{rk} \hat{\phi}_{rk} x_{rk}^o \]

where \(x_{rk}^o = \frac{w_{rk} L_{rk} \phi_{rk}^o}{\sum_k w_{rk} L_{rk} \phi_{rk}^k} \) is the payroll share of type \(k \) in location \(r \) in occupation \(o \). I also use:

\[\hat{R}_r^s = \sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^s \sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^s = \sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^s x_{rr'}^s \]

where I defined \(x_{rr'}^s \equiv \frac{\sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^s}{\sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^s} \). Also notice that I can write

\[\hat{E}_{r'}^s = \sum_{s'} \hat{E}_{r'}^{s'} \hat{\pi}_{rr'}^{s'} Z_{rr'}^{s'} \]

this is the “useful” eigensystem introduced in the main text with \(\hat{E} \) a scaled version of the eigenvector corresponding to the eigenvalue 1. Also note that I defined:

\[Z_{rr'}^{s'} = \frac{E_{r'}^{s'} \pi_{rr'}^{s'} \left[\alpha_s (1 + \omega) \gamma_{s'} + (1 - \gamma_{s'}) \gamma_{s'} \right]}{\sum_{s'} \sum_{r'} E_{r'}^{s'} \pi_{rr'}^{s'} \left[\alpha_s (1 + \omega) \gamma_{s'} + (1 - \gamma_{s'}) \gamma_{s'} \right]} \]

The normalization of US GDP to 1000 pins down the scaling factor for the eigenvalue:

\[\sum_{r \neq \text{ROW}} \sum_s \hat{R}_r^s \gamma_s = 1000 \]

Substituting in the market clearing equation and writing the system in changes yields:

\[\sum_{r \neq \text{ROW}} \sum_s \left[\sum_{r'} \lambda E_{r'}^s \pi_{rr'}^s \gamma_s \right] \gamma_s = 1 \Rightarrow \lambda = \left[\sum_{r \neq \text{ROW}} \sum_s \sum_{r'} \hat{E}_{r'}^s \hat{\pi}_{rr'}^{s'} z_{rr'}^{s'} \right]^{-1} \]

where I have defined:

\[z_{rr'}^{s'} = \frac{E_{r'}^{s'} \pi_{rr'}^{s'} \gamma_s}{\sum_{r \neq \text{ROW}} \sum_s \sum_{r'} E_{r'}^{s'} \pi_{rr'}^{s'} \gamma_s} \]

69
8. And a spatial equilibrium condition for each worker type k

$$
\hat{L}_{rk} = \left(\frac{\hat{w}_{rk}}{\prod_r (\hat{p}_{rs})^x} \right)^{x_k} \sum_r \left(\frac{\hat{w}_{rk}}{\prod_r (\hat{p}_{rs})^x} \right)^{x_k} \hat{L}_{rk}
$$

(32)

in the code I need to additionally make ensure that $\hat{L}_{ROW,k} = 1$ always, since ROW workers cannot move. Importantly enforcing the adding up constraint is also necessary:

$$
\sum_r L_{rk} = L_k \Rightarrow \sum_r \hat{L}_{rk} \frac{L_{rk}}{\sum_r L_{rk}} = 1
$$

E.5 The Model in Changes with Migration, Capital, and Structures

In the baseline model the value added share in production was γ_s and it was composed entirely of labor. In this section, I decompose the value added bundle into three components: a share β_s spent on labor, a share δ_s spent on structure and $1 - \beta_s - \delta_s$ spent on capital. I need to adjust the data construction and amend the equilibrium system in changes as follows. I use capital and structures shares in value added from Hubmer (2018), who obtains them directly from more disaggregated IO tables for the U.S.. The value I used are listed in Table 13.

Table 13: Structures and Capital Shares in Value Added

<table>
<thead>
<tr>
<th>Sector (s)</th>
<th>Year</th>
<th>δ_s</th>
<th>β_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods</td>
<td>1980</td>
<td>0.12</td>
<td>0.69</td>
</tr>
<tr>
<td>Business Services</td>
<td>1980</td>
<td>0.19</td>
<td>0.63</td>
</tr>
<tr>
<td>Local Services</td>
<td>1980</td>
<td>0.39</td>
<td>0.55</td>
</tr>
<tr>
<td>Goods</td>
<td>2010</td>
<td>0.14</td>
<td>0.50</td>
</tr>
<tr>
<td>Business Services</td>
<td>2010</td>
<td>0.24</td>
<td>0.57</td>
</tr>
<tr>
<td>Local Services</td>
<td>2010</td>
<td>0.31</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Notes: The Table shows the shares of structures (δ_s) and labor (β_s) in value sectoral value added for three aggregate sectors in every decade from 1980 and 2010. The shares are drawn from Hubmer (2018) and based on the extended input-output tables of the Bureau of Economic Analysis for the respective decade. The 1980 numbers are in fact from 1982 and the 2010 numbers from 2007, since the extended input output files are only published every five years.

I abstract from structures in final use. Each commuting zone has a fixed endowment of structures, H_r, units of which are rented out at rental rate r_r.

70
The land market clearing equation in region \(r \) is given by:

\[
\sum_s \gamma_s \delta_s R_s^r = H_r r_r
\]

I can express total sectoral sales in terms of the local payroll,

\[
R_s^r = \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s \beta_s \gamma_s}{\beta_s \gamma_s},
\]

and plug the resulting expression into the land market clearing equation:

\[
\sum_s \gamma_s \delta_s \sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s = H_r r_r
\]

This equation can easily be rewritten in changes, in terms of endogenous objects in changes and data already constructed:

\[
\sum_s \delta_s \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s}{\sum_s \beta_s \gamma_s} = \dot{r}_r
\]

Capital markets are assumed to clear on the national level. There is a fixed national capital stock \(K \) units of which are rented out at rate \(R \).

The rest of the world region does not use capital nor structures in production. Capital market clearing across U.S. regions is then given by:

\[
\sum_{r \neq \text{ROW}} \sum_s \gamma_s (1 - \delta_s - \beta_s) R_s^r = K \times R
\]

where \(R \) is the rental rate of capital, which is endogenous. \(K \) is the exogenous stock of capital. Expressing the same equation in terms of local payrolls (which are observable):

\[
\sum_{r \neq \text{ROW}} \sum_s \gamma_s (1 - \delta_s - \beta_s) \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s \beta_s \gamma_s}{\beta_s \gamma_s} = K \times R
\]

Expressing this equation in changes:

\[
\sum_{r \neq \text{ROW}} \sum_s \frac{(1 - \delta_s - \beta_s)}{\beta_s} \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s}{\beta_s \gamma_s} \frac{\sum_{r \neq \text{ROW}} \sum_s \frac{L_{rk} w_{rk} \phi_{rk}^s}{\beta_s \gamma_s}}{\sum_{r \neq \text{ROW}} \sum_s \frac{(1 - \delta_s - \beta_s)}{\beta_s} \sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^s} = \dot{R}
\]

I assume that all land holdings and the entire capital stock is held in a national portfolio in which every citizen holds a share proportional to his or her income. I then just need to solve for the factor \(\zeta \) by which everyone’s income gets scaled up as a result of the capital returns earned on this portfolio.
Total rental and capital income in the economy is:

\[
\Theta = \sum_r \sum_s \gamma_s (1 - \delta_s - \beta_s) R_s^r + \sum_r \sum_s \gamma_s \delta_s R_s^r
\]

\[
= \sum_r \sum_s \gamma_s (1 - \delta_s - \beta_s) \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^{so}}{\beta_s \gamma_s} + \sum_r \sum_s \delta_s \frac{\sum_o \sum_k L_{rk} w_{rk} \phi_{rk}^{so}}{\beta_s}.
\]

which can be expressed more concisely as:

\[
\Theta = \sum_r \sum_s \sum_o \sum_k \left[\gamma_s (1 - \delta_s - \beta_s) + \gamma_s \delta_s \right] \frac{L_{rk} w_{rk} \phi_{rk}^{so}}{\gamma_s \beta_s}.
\]

But then the factor of proportionality by which every citizen’s pre subsidy wage income gets scaled up as a result of her shares in the national portfolio is given by:

\[
\zeta = \frac{\Theta}{\sum_r \sum_o \sum_k w_{rk} L_{rk}}
\]

Also I can compute the changes in the value of the national portfolio,

\[
\hat{\Theta} = \sum_r \sum_s \sum_o \sum_k \left[\gamma_s (1 - \delta_s - \beta_s) + \gamma_s \delta_s \right] \frac{L_{rk} w_{rk} \phi_{rk}^{so}}{\gamma_s \beta_s}.
\]

and use it to construct changes in the factor of proportionality:

\[
\hat{\zeta} = \frac{\hat{\Theta}}{\sum_r \sum_o \sum_k \hat{w}_{rk} L_{rk} \frac{w_{rk} L_{rk}}{\sum_r \sum_o \sum_k w_{rk} L_{rk}}}
\]

The adjustment for the deficit is now slightly changed. In particular the subsidy now adjusts across counterfactuals. Each consumer in the economy gets his income scaled up (down) as an exogenous transfer to match the nationwide deficit:

\[
\omega \sum_r \sum_k L_{rk} w_{rk} (1 + \hat{\zeta}) = D \Rightarrow \omega = \frac{D}{\sum_r \sum_k L_{rk} w_{rk} (1 + \hat{\zeta})}
\]

Changes in the subsidy are then given by:

\[
\hat{\omega} = \left[\frac{(1 + \hat{\zeta}')}{(1 + \hat{\zeta})} \frac{\sum_r \sum_k \hat{w}_{rk} \hat{L}_{rk} \frac{w_{rk} L_{rk}}{\sum_r \sum_o \sum_k w_{rk} L_{rk}}} \right]^{-1}
\]

As before the tax collected from ROW citizens adjusts. The equation that pins down the ROW tax share of income is:

\[
\omega_{ROW} \sum_s \gamma_s R_s^{\text{ROW}} = D \Rightarrow \omega_{ROW} = \frac{D}{\sum_k w_{ROWk} L_{ROWk}}.
\]
Rewriting this equation in changes:

\[\dot{\omega}_{ROW} = \frac{1}{\sum_k \dot{\omega}_{ROWk} \sum_k w_{ROWk} L_{ROWk}} \]

The system written in changes is again very similar to the baseline with migration case studied in Section E.4. Here I just highlight equations that are added or changed as a result of introducing capital and structures into the model.

With endogenous location choices for some or all types I rewrite the new system of equations in changes:

1. Local factory gate prices now include payments to all factors used in production:

\[\hat{p}_f^s = \hat{w}_{rs}^g \beta_s \times \hat{\gamma}_s \delta_s \times \hat{R}_s (1 - \beta_s - \delta_s) \times \left(\prod_{s'} \hat{p}_f^{s'} \gamma_{s'}^{1 - \gamma_{s'}} \right) \]

2. The occupation market clearing equation itself has not changed, but the objects that enter it:

\[\tilde{R}_s = \sum r \hat{w}_{rk} \hat{L}_{rk} \hat{\phi}_{rk} X_{rk}^o \]

where \(X_{rk}^o = \frac{w_{rk} L_{rk} \phi_{rk}^o}{\sum_k w_{rk} L_{rk} \phi_{rk}^o} \) is the payroll share of type \(k \) in location \(r \) in occupation \(o \). I also use:

\[\hat{R}_s = \sum_{r'} \tilde{E}_s \hat{\pi}_{rr'} \sum_{r'} \frac{E_s^s \pi_{rr'}^s}{\tilde{E}_s \hat{\pi}_{rr'} \sum_{s'} E_{s'}^s \pi_{rr'}^{s'}} = \sum_{r'} \tilde{E}_s \hat{\pi}_{rr'} \lambda_{rr'} \]

where the expression for \(\hat{E}_r^s \) has changed due to the endogenous subsidy and national asset portfolio return:

\[\hat{E}_r^s = \sum_{s'} \sum_{r'} E_{s'}^s \pi_{rr'}^{s'} \left[\alpha_{s'} \gamma_{s'} \delta_{s'} (1 + \omega') (1 + \zeta') + (1 - \gamma_{s'}) \right] \]

\[\times \sum_{s'} E_{s'}^s \pi_{rr'}^{s'} \left[\alpha_{s'} \gamma_{s'} \delta_{s'} (1 + \omega) (1 + \zeta) + (1 - \gamma_{s'}) \right] \]

note how this equation cannot fully be expressed in changes and features the new national asset portfolio share, \(\zeta' \), and the new subsidy, \(\omega' \). Instead of GDP I now normalize total labor value added to 1000:

\[\sum_{r \neq ROW} \sum_s R_s^s \gamma_s \delta_s = 1000 \]

\[\sum_{r \neq ROW} \sum_s \left[\sum_{r'} \lambda E_s^s \pi_{rr'}^{s'} \right] \gamma_s = 1 \Rightarrow \lambda = \left[\sum_{r \neq ROW} \sum_s \sum_{r'} \tilde{E}_s \hat{\pi}_{rr'} z_{rr'}^s \right]^{-1} \]

where I defined

\[z_{rr'}^s = \frac{E_{r'}^s \pi_{rr'}^s \gamma_s \delta_s}{\sum_{r \neq ROW} \sum_s \sum_{r'} E_{r'}^s \pi_{rr'}^s \gamma_s \delta_s} \]

73
Growing Apart and the Stolper-Samuelson Theorem

In this section, I show how declining trade frictions lead to differential skill premium growth across regions in a very general setting and highlight the connection of this result to the Stolper-Samuelson theorem. Many of the results in this section are standard in the international trade literature and Feenstra (2015) is a good reference for them.

Contrary to the main part of the paper, to simplify the exposition, I here assume here that both business services and goods are used in final consumption and produced using different types of labor only.

Consider a single region that produces (business) services and goods (indexed by \(s = b, g \)), with the following production functions:

\[
y_s = f_s(H_s, L_s),
\]

where \(y_s \) is the output produced using high- and low-skill labor (\(H_s \) and \(L_s \) respectively).

The production function, \(f_s \), is assumed to be increasing, concave, and homogeneous of degree 1 in the inputs. Both types of labor are fully mobile between sectors. These assumptions are sufficient to define the production possibility frontier (PPF), i.e., the set of sector \(s \) and \(g \) output combination the economy can produce given its labor endowments.

To know where the economy produces, I need to add an assumption on market structure. I assume perfect competition in product and input markets. For now, suppose prices are given exogenously and denote the ratio of sectoral prices by \(p = \frac{p^b}{p^g} \). The economy produces where the relative price of services to goods is equal to the slope of the PPF,

\[
p = -\frac{\partial y_g}{\partial y_b}.
\]

Figure 17a shows the PPF and the optimal output composition in point \(A \). If the relative price of business services increases, the composition of local output responds and more business services are produced at point \(B \).

To state the equilibrium conditions of this partial equilibrium setup, it is convenient to work with the unit cost function that are the dual to the production functions,

\[
c_s(w^H, w^L) = \min_{H_s, L_s \geq 0} \left[w^H H_s + w^L L_s \mid f_s(H_s, L_s) \geq 1 \right].
\]

Given the assumption of constant returns to scale, average and marginal costs coincide. The unit cost functions turn out to be nondecreasing and concave. I express the solution to the minimization problem as follows:

\[
c_s(w^H, w^L) = a_{sH}(w^H, w^L)w^H + a_{sL}(w^H, w^L)w^L \equiv a_{sH}w^H + a_{sL}w^L
\]
where a_{sH}, a_{sL} are the optimal labor requirements to produce a unit of output in sector s, which are naturally an endogenous function of relative skill prices.

The equilibrium consists of two zero-profit equations,

$$p_s = c_s(w^H, w^L) \forall s,$$

and two labor market clearing equations,

$$a_{sH}y_s + a_{s'H}y_{s'} = H \quad \text{and} \quad a_{sL}y_s + a_{s'L}y_{s'} = L,$$

where H and L are the total supply of high and low-skill worker, respectively. These four equations are solved for four unknowns, $w^s, y_s \forall s$. There are unique solutions for them as long as both goods are produced, and factor intensity reversals do not occur, which I assume throughout.45

Figure 17: Changes in Output Prices, Output Quantities, and Factor prices

Notes: The left Figure shows the production possibility frontier, which gives all combinations of service and goods output the economy can produce while using its entire endowment of high- and low-skill workers. The right hand side shows the zero profit conditions for each sector. These lines give the combinations of factor prices for which the marginal cost of an extra unit of output is equal to the market price paid for such a unit. Points A and C then identity factor price combinations that constitute an equilibrium.

Change in Product Prices: Stolper-Samuelson Theorem

45This assumption is standard in the literature on the Heckscher Ohlin model and also made throughout in Feenstra (2015).
The Stolper-Samuelson Theorem makes predictions about relative factor prices in response to exogenous changes in relative prices of output.

Totally differentiating the zero profit conditions for each sector and rearranging yields:

$$\hat{p}_s = \theta_{sL}\hat{w}^L + \theta_{sH}\hat{w}^H \forall s$$

where $\theta_{sL} = w^L a_{sL}/c_s$ and $\theta_{sH} = w^H a_{sH}/c_s$ are endogenous cost shares that sum to 1 across skill types within each sector.

Suppose now that business services are skill-intensive and that the relative price of business services increases, i.e. $\hat{p} = \hat{p}^b - \hat{p}^g > 0$. But then the following holds, which is a version of what is known as the Stolper-Samuelson Theorem in the international trade literature:

$$\hat{w}^H > \hat{p}^b > \hat{p}^g > \hat{w}^L$$

Jones (1965) called this the magnification effect since the changes in factor prices are larger than the exogenous changes in prices that causes them. Note that this also implies that real wages increase for high-skill workers and decrease for low-skill workers.

Figure 17b visualizes the magnification effect. For simplicity, I assume that only the service price rises. The economy moves from point A to point C. Point B would correspond to the same output price increase with a constant skill premium. However, the magnification effect means the skill premium rises in the economy, as high-skill wages increase more than low-skill wages in response to the price change.

Intuitively, in a two region setting with identical homothetic preferences across regions, changes in communication costs raise the relative price of business services in the region with a comparative advantage in their production and decrease it in the other. If business services are more skill intensive than goods this raises the skill premium in the region with a comparative advantage in service production and depresses it in the other.

G Calibration Details

G.1 A useful Lemma

Lemma. For any strictly positive vectors $\{A_i\} \gg 0$ and $\{B_i\} \gg 0$, such that $\sum_i A_i = \sum_i B_i$, and any strictly positive matrix $K \gg 0$ there exists a unique (to scale), strictly positive vector $\{\lambda_i\} \gg 0$.

Proof. Define $\sum_k \lambda_k K_{kj}$ as μ_j, then rewrite the above equation as two equations:
\[\lambda_i^{-1} = \sum_{j=1,\ldots,N} \mu_j^{-1} R_i^{-1} E_{ij} K_{ij} \quad \text{and} \quad \mu_j = \sum_k \lambda_k K_{kj} \]

The result is then a direct corollary of results in Allen et al. (2015).

G.2 Monotonicity of local Exports as a function of \(\delta^s \)

Consider the expression for local exports in region \(r \), sectors \(s \), given in equation 22:

\[EX^s_r = \sum_{r' \neq r} E^s_{rr'} \frac{\lambda_r^s K_{rr'}^s}{\sum_{r''} \lambda_r^s K_{r'r''}^s} \]

An alternative way to write total exports in region \(r \), sectors \(s \), is to subtract shipments to itself from total local output in sector \(s \):

\[EX^s_r = R^s_r - E^s_{rr} = R^s_r - E^s_r \frac{\lambda_r^s}{\sum_{r'} \lambda_r^s K_{r'r}^s} \]

But then

\[\frac{d \log EX^s_r}{d \log \delta^s} = E^s_{rr} \frac{\sum_{r'} \lambda_r^s K_{r'r}^s \log d_{rr'}}{\sum_{r'} \lambda_r^s K_{r'r}^s} > 0 \]

So that for a given vector \(\{\lambda_r^s\} \), increasing \(\delta^s \) strictly reduces gross exports in all regions and hence overall exports. By implication, for any \(\{\lambda_r^s\} \), there is a unique \(\delta^s \) to update \(K^s \).

G.3 Details on Trade Frictions Estimation

Here I describe how I estimate \(\delta^s \) in a given decade and sector.

Step 1: Choose a distance between ROW and U.S. regions.\(^{46}\) I assume this distance is twice the maximum distance in the continental U.S. Guess a value for \(\delta^s \) and construct the matrix \(K^s \) of dimension \(N + 1 \times N + 1 \). Guess a vector \(\{\lambda_r^s\} \) of dimension \(N + 1 \) that sums to 1.

\(^{46}\)To implement this strategy an assumption is needed on the distance between U.S. regions and ROW. I set this distance equal to the largest distance in the continental U.S. (about 3000 miles). In practice this parameter turns out to have no bearing on the magnitude of the estimated distance elasticity since more than 80% of the trade volume occurs within the United States. It does affect the implied ROW output \(R_{ROW,s} \). Intuitively, given observed bilateral flows between the U.S. and ROW, if the distance between the two is large, the model imputes that ROW must be very productive given the size of its shipments to the US, relative to what commuting zones ship among one another. This implies that it is possible to calibrate this distance so as to match the U.S. to ROW GDP ratio.

This number is easy to obtain in practice: U.S. GDP relative to world GDP is between 30-40%. This allows to construct ratio of U.S. to ROW GDP which can be used as calibration target. Intuitively, if ROW is further away, to match the observed imports and exports of the U.S. to and from ROW, ROW needs more productive and hence richer. So as we increase the average distance the ratio of U.S. to ROW GDP increases.
Step 2: I now adjust the vector \(\{ \lambda^s \} \) entry for ROW, so as to match observed exports from all U.S. regions to ROW. Using the market clearing equation to solve for \(\lambda^s_{ROW} \) in terms of observed ROW exports:

\[
EXP^s_{ROW} = \sum_{r \neq ROW} E^s_r \frac{\lambda^s_{ROW} K^s_{r,ROW}}{\sum_{r'} \lambda^s_{r'} K^s_{r',r}} \Rightarrow \lambda^s_{ROW} = \frac{EXP^s_{ROW}}{\sum_{r \neq ROW} E^s_r \frac{K^s_{r,ROW}}{\sum_{r'} \lambda^s_{r'} K^s_{r',r} r}} \tag{34}
\]

Note that I do not need ROW expenditure, \(E^s_{ROW} \), to infer \(\lambda^s_{ROW} \). The current \(\{ \lambda^s \} \) vector with the \(n + 1 \)th entry replaced by \(\lambda^s_{ROW} \) would produce exports of ROW that match the data. However, the normalization for the \(\{ \lambda^s \} \) no longer holds, so I normalize the \(\{ \lambda^s \} \) vector to sum to 1 and go back to equation 34. I iterate on this expression until I found the vector \(\{ \lambda^s \} \) that solve equation 34 and sums to 1.

Next I use U.S. exports to ROW (i.e., ROW imports) to impute expenditure in ROW:

\[
IMP^s_{ROW} = \sum_{r \neq ROW} E^s_r \frac{\lambda^s_{r,ROW} K^s_{r,ROW}}{\sum_{r'} \lambda^s_{r'} K^s_{r',r}} \Rightarrow E^s_{ROW} = \frac{IMP^s_{ROW}}{\sum_{r \neq ROW} E^s_r \frac{\lambda^s_{r,ROW} K^s_{r,ROW}}{\sum_{r'} \lambda^s_{r'} K^s_{r',r} r}}
\]

This I can simply calculate - no need for iteration here. But then I can also calculate ROW total sales in sector \(s \) by using market clearing:

\[
R^s_{ROW} = \sum_r E^s_r \frac{\lambda^s_{ROW} K^s_{r,ROW}}{\sum_{r'} \lambda^s_{r'} K^s_{r',r}}
\]

Lastly, I then update \(\lambda \) to be such market clearing holds for all regions using the following mapping.

\[
R^s_r = \sum_{r'} E^s_{r'} \frac{\lambda^s_{r'} K^s_{r',r}}{\sum_{r''} \lambda^s_{r''} K^s_{r'',r'}} \Rightarrow \lambda^s_r = \frac{R^s_r}{\sum_{r'} E^s_{r'} \frac{K^s_{r',r}}{\sum_{r''} \lambda^s_{r''} K^s_{r'',r'}}}
\]

I then ensure the normalization holds and then again adjust \(\lambda^s_{ROW} \) so that foreign imports are exactly met etc. I then use the converged vector \(\{ \lambda^s \} \) and the measures for ROW expenditure to compute gross exports by sector for every commuting zone in the United States:

\[
EXP^s_{r,Model} = \sum_{r' \neq r} E^s_{r'} \frac{\lambda^s_{r'} K^s_{r',r}}{\sum_{r''} \lambda^s_{r''} K^s_{r'',r'}}
\]

Step 3: I now use the measure for gross exports on the region-sector level to evaluate the following criterion function:

\[
\Omega(\delta^s) = | \log(\frac{\sum_{r \neq ROW} EXP^s_{r,Model}}{EXP^s_{DATA}}) |
\]

Step 4: For each sector and decade, I repeat steps 1 to 3 for a large number of values of \(\delta^s \) to identify the value that minimizes equation 35.
Figure 18 below shows the criterion function, $\Omega(\delta^s)$, evaluated over a grid of δ^s points for the four decades in my sample.

Figure 18: Criterion Functions for Sectoral Trade Elasticities

(a) Value of Criterion: Goods Trade

(b) Value of Criterion: Business Services

Notes: The two graphs show the criterion function, $\Omega(\delta^s) = |\log \left(\frac{\sum_{r \neq \text{ROW}} \text{EXP}^r_{\text{Model}}}{\text{EXP}^r_{\text{DATA}}} \right)|$, graphed over a grid of values for δ^s. For each value of δ^s, I compute implied interregional trade flows and total regional gross exports and then compute the criterion using the total gross exports implied by regional trade imbalances and the international trade inferred from the input-output tables of the respective year. The Figure shows that for each year and sector there is a unique value δ^s minimizing the criterion function.

G.4 Calibrating ρ_k

I follow the strategy outlined in Eckert and Peters (2018) for calibrating ρ_k. Note that in the model earnings of an individual i in region r who chose to work in sector s and occupation o are:

$$y^i = w^{s0}_r \times \epsilon^i_s$$

Since ϵ^i_s is Fréchet distributed with shape parameter ρ_k, realized income is distributed according to a Fréchet distribution, too:

$$F(y) = \exp(-y^{-\rho_k}(\sum_s (w^{s0}_r)^{\rho_k}T_{rsok}))$$

But then it is easy to show that log realized income follows a Gumbel distribution:

$$P(\log y < k) = P(y < \exp(k)) = \exp(-\exp(-\rho_k(k - \frac{1}{\rho_k} \log(\sum_s \sum_o (w^{s0}_r)^{\rho_k}T_{rsok}))))$$
The variance of log income is given by:

$$\text{var}(\log y) = \frac{\pi^2}{6} \left(\frac{1}{\rho_k} \right)^2$$

So that the variance of log income conditional on r, s, k, ϕ is just a function of ρ_k. This provides an intuitive way of estimating ρ_k. I estimate the following regression in the micro data underlying the estimation data set:

$$\log w^i = \delta_{r,s,\phi} + u^i_{rs}$$

separately for each k. u^i_{rs} denotes an unexplained residual. Then I compute:

$$\hat{\rho}_k = \sqrt{\frac{\pi^2}{6} \frac{1}{\text{var}(u^i_{rs})}}$$

The results from this procedure are listed in Table 3. These estimates imply that more educated workers are more similar in their human capital holdings than the least educated group.

G.5 Calibrating Factor Shares

Recall that the imputation procedure for trade flows implies a $E_{ROW,s}$ and a $R_{ROW,s}$ for every sector and decade. I can then write the following six equations for the ROW:

$$E^s_{ROW} = \alpha^s (w_{ROW} L_{ROW} \times (1 - \omega)) + \sum_k R^k_{ROW} (1 - \gamma^s_k) \gamma^s_k \quad \forall s$$

$$R^s_{ROW} = \gamma^s L_{ROW} \mu^s_{ROW} w_{ROW} L_{ROW} \quad \forall s$$

I assume that the average wage in foreign is the same for all skill types and equal to 1. I also assume that the employment share in all three sectors is equal to 1/3. I then need to calibrate L_{ROW} and $\alpha^s, \gamma^s, \gamma^k_s$. I choose values for these 12 parameters so as to ensure that the above six equations hold. In practice changing these parameters has no impact on my outcomes of interest which is the wage distribution within the United States.

I treat the trade deficit of ROW with the United States as an exogenous constant denoted D_t. I then solve for a subsidy in the United States that is funded through a tax in ROW so as to rationalize D_t. I assume taxes and subsidies are proportional to labor income and the same for all types. Denoting the subsidy in the United States by ω and the tax in ROW ω_{ROW} I need to solve the following two equations:

$$\omega \sum_r \sum_s L^s_r w^s_r = D \Rightarrow \omega = \frac{D}{\sum_r \sum_s L^s_r w^s_r}$$
\[\omega_{\text{ROW}} \sum_s \gamma_s R^s_{\text{ROW}} = D \Rightarrow \omega_{\text{ROW}} = \frac{D}{\sum_s \gamma_s R^s_{\text{ROW}}} \]

Given that I normalize GDP \(\sum_r \sum_k L_{rk} w_{rk} = 1000 \), \(\omega = D/1000 \) is fixed and remains constant across counterfactuals. \(\omega_{\text{ROW}} \) is endogenous and allowed to adjust across counterfactuals as \(R^s_{\text{ROW}} \) changes.

H Data Appendix

H.1 Definition of Sectors and Occupations

H.1.1 Sectoral Groupings

The three sectors used in the calibration of the model consist of the following sub-industries in the 2010 IO tables (BEA Naics codes in brackets):

- **Goods Sector**: Farms (111CA), Forestry, fishing, and related activities (113FF), Mining (21), Utilities (22), Construction (23), Manufacturing (31G), Wholesale trade (42), Retail trade (44RT), Transportation and warehousing (48TW)

- **Business Services Sector**: Information (51), Finance, insurance, real estate, rental, and leasing (FIRE), Professional and business services (PROF); except Real Estate and Waste management and remediation services

- **Local Services Sector**: Real Estate (531), Waste management and remediation services (562), Educational services, health care, and social assistance (6), Arts, entertainment, recreation, accommodation, and food services (7), Other services, except government (81), Government (G)

H.1.2 Occupational Groupings

There are approximately 320 occupations in each decennial census file used in this paper. A complete list of the 320 occupations is available from the author on request. Here I list some examples of occupations falling into each of the four groups used in the paper:

- **Abstract-Tradable**: Managers and specialists in marketing, advertising, and public relations; Legislators; Operations and systems researchers and analysts; Purchasing managers, agents and buyers, n.e.c.; Financial managers; Lawyers; Architects; Computer software developers; Statisticians; Human resources and labor relations managers;
H.2 Collapsing the IO Tables: Creating the IO Data Used

In my calibration procedure I match the input-output tables of every year exactly. To enable the model to be calibrated in this way I collapse the IO tables to just three sectors and make some minor adjustments.

I add the rows for government and scrap value into the intermediate input industry “Other Services”, which is later collapsed to the “Local Services” sector in my calibration. Similarly, I add all government production columns to the “Other Services” column. The USE tables I use are by construction Industry times Commodity tables, where the number of industries is equal to the number of commodities, but a given industry can produce more than one commodity. This implies that gross output by sector is not equal to gross output by commodity. In my model commodities and sectors coincide and hence I need to make an adjustment. I adjust final consumption within each sector (net of imports and exports) such that gross output by commodity (last column of the table) is brought in line with gross output by industry (last row of the table). The changes to final consumption are not large and can be thought of as adjustments to inventories in that year. After this adjustments the last row of the IO table and the last column coincide.

H.3 Constructing Labor Supply And Wages

For the work with the Census data files, I follow the sample selection procedure in Autor and Dorn (2013) with some minor modifications.

The sample of workers considers individuals who were between 16 and 64 who were employed in the year of the census. I drop workers with missing occupation codes, education codes, industry codes or county-group/PUMA identifier. I calibrate the model to sectoral
hours worked in each commuting zone and hence rely on a measure for usual hours worked per year. As in Autor and Dorn (2013) I impute hours worked per week or missing weeks by taking averages within occupation-education groups for which the respective variable is not missing and then replacing the missing value with this average. I then multiply total weeks worked, usual hours worked per week and the sample weight together and collapse the data by commuting zone, sector, occupation and skill group used in this paper.

To construct the hourly wage measure I again consider individuals who were between 16 and 64 who were employed in the year of the census. I drop workers with missing occupation codes, education codes, industry codes or county-group/PUMA identifier. In addition, I also drop all individuals with missing income, with imputed income, or with farm or business income. I also drop workers who are self-employed and who have missing values for hours or weeks worked. I also restrict my sample to individuals who work at least 35 hours a week and 40 weeks per year. I inflate all wages to the year 2004 using the Personal Consumption Expenditure Index obtained from the FRED database at the St. Louis Fed. Lastly, I multiply top coded yearly earnings by 1.5 times the top coded value and assign the average earnings at the 1st percentile of the earnings distribution to workers earning less than that. I then divide total yearly earnings by total hours worked per year within each commuting zone, sector, occupation and skill group bin used in this paper to obtain a measure for yearly hourly wages.

H.4 Constructing Industry Groups

For industries I proceed as follows. First I construct a crosswalk between the ind1990 variable, which is consistently available in the Census data, and the Naics 2012 coding system. I construct weights using the 2000 cross-section employment counts for cases where one ind1990 code maps into the several NAICS 2012 codes. Next I concord the NAICS2012 codes with the modified NAICS codes used in the BEA IO tables in each year. Lastly, I concord the two waves of BEA IO tables, aggregating the more recent table to the 65 industries used in the earlier table. Then I group industries into goods, business services, and local services according to the classification in Section H.1.1.

H.5 Constructing Occupational Groups

I take the hourly labor supply data set that results from the procedure described in Section H.3. The dataset contains total hours supplied within each commuting zone, sector, occupation and skill group bin used in this paper to obtain a measure for yearly hourly wages. I merge several crosswalks and additional data onto these files.
First, I use the occupation codes in the Census data ("occ") to merge in the occ1990dd codes introduced in Dorn (2009). This allows me to merge in two measures of task intensity of occupations used in Autor and Dorn (2013): offshorability and abstractness.

Fortin et al. (2011) derive the ingredients for the measure of offshorability of occupations, which I interpret as tradability, from O*NET data. Autor and Dorn (2013) use a simple average of two aggregate variables: “face-to-face contact” and “on-site job” and I adopt their measure. Fortin et al. (2011) define “face-to-face contact” as the average value of the O*NET variables “face-to-face discussions,” “establishing and maintaining interpersonal relationships,” “assisting and caring for others,” “performing for or working directly with the public,” and “coaching and developing others.” “on-site job” is the average of the O*Net variables “inspecting equipment, structures, or material,” “handling and moving objects,” “operating vehicles, mechanized devices, or equipment,” and the mean of “repairing and maintaining mechanical equipment” and “repairing and maintaining electronic equipment.”

In the 1980 cross-section, I then sum up total labor supply by occ1990dd (there are about 320 such occupations). I order all occupations by their “abstractness score” and then find the cutoff occupation such that approximately half of the hours supplied in the U.S. in 1980 are in occupations that are less abstract than the cutoff occupation. I do the same for the offshorability measure, which I interpret as a measure of tradability. Then I create four occupation categories: Abstract-Tradable, which contains occupations with an abstractness and tradability score above the median, and Abstract-Non-Tradable, Non-Abstract-Tradable, and Non-Abstract-Non-Tradable similarly defined. These are the four occupation categories used in this paper.

H.6 Adjusting hourly labor supply to match value added shares

The Census data, in combination with the structure of the model implies a level of value added for each sector. The IO tables also give a level of value added for each sector. The IO data is almost certainly more accurate. Consequently, I adjust the Census data to be in line with the IO data on the coarse sector level. I do so without distorting relative average wage levels of occupations, sectors and commuting zones by changing the labor supply (in hours) instead. I make these adjustments in the aggregate and then reallocate hours in proportion
to region-sector hours in the data across regions and sectors. Table 14 shows the value added shares by sector in the IO tables and the payroll shares by sector in the Census data.

Consider a given year. From the IO tables I obtain a value added share for each of the three coarse sectors, \(\mu_{VA,s}^{IO} \).

The data consists of hourly wages by commuting zone, detailed industry, occupation and education type. I denote the hourly supply within these bins by \(L_{r,s,o,k} \) and the corresponding hourly wage by \(w_{r,s,o,k} \). If I scale GDP in the data, the sectoral value added share is simply:

\[
\mu_{VA,s}^{Census} = \sum_{r,s,o,k} L_{r,s,o,k} w_{r,s,o,k}
\]

But then

\[
\mu_{VA,s}^{IO} = \sum_{i,o,k} \frac{\mu_{VA,s}^{IO}}{\mu_{VA,s}^{Census}} L_{i,s,o,k} \bar{w}_{i,s,o,k}
\]

So that all I have to do is scale the labor supply count in sector \(s \) by the adjustment factor \(\frac{\mu_{VA,s}^{IO}}{\mu_{VA,s}^{Census}} \). In the case with structures and capital the adjustment is similar.\(^{47}\)

Table 14: Value Added Shares in IO-Tables and Payroll Shares in Census Files

<table>
<thead>
<tr>
<th>Sector (s)</th>
<th>Year</th>
<th>Census Files</th>
<th>IO-Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods</td>
<td>1980</td>
<td>.55</td>
<td>.50</td>
</tr>
<tr>
<td>Business Services</td>
<td>1980</td>
<td>.14</td>
<td>.15</td>
</tr>
<tr>
<td>Local Services</td>
<td>1980</td>
<td>.32</td>
<td>.36</td>
</tr>
<tr>
<td>Goods</td>
<td>2010</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>Business Services</td>
<td>2010</td>
<td>.20</td>
<td>.21</td>
</tr>
<tr>
<td>Local Services</td>
<td>2010</td>
<td>.45</td>
<td>.43</td>
</tr>
</tbody>
</table>

Notes: The Table presents the aggregate sectoral value added shares implied by the 5% Sample of the U.S. Decennial Census Files (1980) and the American Community Survey (2010) and the same quantities obtained from the Input-Output use tables in Producer Prices from the Bureau of Economic Analysis for 1980 and 2010.

I Robustness

In this section, I discuss a number of robustness checks on the results in Section 5.

\(^{47}\)In fact, reassuringly, when including capital and structures the payroll share in the Census and the labor share in value added are even more similar than they when structures and capital are disregarded.
Table 15: Estimates Transformed Distance Elasticities, δ^s

<table>
<thead>
<tr>
<th>Year</th>
<th>Business Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>-17.21</td>
</tr>
<tr>
<td>1990</td>
<td>-15.63</td>
</tr>
<tr>
<td>2000</td>
<td>-14.58</td>
</tr>
<tr>
<td>2010</td>
<td>-13.26</td>
</tr>
</tbody>
</table>

Notes: The Table present estimates of δ^s in the following specification for business services trade costs: $K^s_{rr'} \equiv 2^{\delta^s} > 1 \forall r \neq r'$. In this specification there are only fixed costs to business services trade and costs do not vary with distance.

I.1 The Functional Form of Business Service Trade Cost

In the body of the text, I parameterized business services trade costs as a function of distance. This was motivated by a literature on international services trade which finds that flows do decline with distance in a way similar to goods (see e.g. Eaton and Kortum (2018)). The absence of data on trade flows for (Business) Services within the United States makes it impossible to assess whether this assumption is supported in the data (some small-sample surveys suggest it is, e.g. Macpherson (2008)). While our intuition for the flow-distance relationship in goods trade is firmly rooted in the fact that transporting goods over longer distances is more costly and hence less done, the rise of digital forms of transmitting information suggests that this could be different for business services. This suggests another formulation of business services trade costs as a fixed cost, that is equal regardless of which commuting zone a service is shipped to:

$$K^s_{rr'} \equiv \kappa_{rr'}^{(c_s-1)\delta^s} \equiv \kappa^{\delta^s} > 1 \forall r \neq r'.$$

I can repeat the calibration exercise for business services trade costs from above by setting $\kappa = 2$, without loss of generality, and calibrating δ^s to match the same targets as in Section 4.3. The resulting “trade cost elasticities” are given by:

I now reproduce Figure 4 using this specification for business services trade costs, while leaving trade frictions for goods and local services as calibrated above.
Figure 19: The Growing Apart Effect, 1980-2010

Notes: This Figure show college wage premium growth across commuting zones between 1980 and 2010 in the data (blue line) and the model (orange). The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computed as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (college to high-school) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages. In this Figure, the model line shown is for the baseline calibration of the model but with the distance elasticity of business services estimated under the assumption of a fixed cost of service trade only.

I.2 Alternative Calibration of Sectoral Trade Costs

As indicated in the text, the assumption that there is no interindustry trade among regions in the United States is very strong. I relax this assumption here. For 1980, I calibrate the distance elasticity for the 1980 cross-section as before. This corresponds to ≈ 13 percent of gross business services output being trade across U.S. commuting zones in 1980. The estimate in the main body of the text corresponds to an increase to ≈ 15 percent by 2010. As discussed in the text, these numbers are lower bounds on the actual gross volume traded. Accordingly, here I calibrate δ_{2010}^{b} by assuming a much larger fraction of business service revenue is traded across U.S. regions in 2010: 50%. Figure 20 shows the resulting growth of the college wage premium across regions. As can be seen the model fit improves significantly. This suggests that if the decline in business services trade costs was yet more severe than estimated, the channel highlighted in this paper grows yet more potent to explain the fact in Figure 1 from the introduction.
Figure 20: College Wage Premium Growth Across Commuting Zones, 1980-2010

Notes: This Figure show college wage premium growth across commuting zones between 1980 and 2010 in the data (blue line) and the model (orange). The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computes as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (college to high-school) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages. In this Figure, the model line shown is for the baseline calibration of the model but with the distance elasticity of business services set to the value implied by a trade volume of 50% of total business service sales in the 2010 calibration of the model.

I.3 Alternative Elasticity of Substitution between Occupations

In the main body of the text I used $\iota = 0.9$, which is drawn from Goos et al. (2014), and makes occupations complements. Burstein et al. (2017), using an alternative estimating strategy, obtain the estimate $\iota = 1.93$ so that occupations are substitutes. Here, I reproduce the exercises from the main part of the paper using the Burstein et al. (2017) estimate.
Figure 21: College Wage Premium Growth Across Commuting Zones, 1980-2010

(a) \(i = 1.92 \)

Notes: This Figure show college wage premium growth across commuting zones between 1980 and 2010 in the data (blue line) and the model (orange). The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computed as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (college to high-school) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages. In this Figure, the model line shown is for the baseline calibration of the model but with the elasticity of substitution between different occupational inputs set to \(i = 1.92 \).

I.4 Alternative Elasticity of Substitution between Regional Varieties

In the main part of the paper, I relied on estimates for \(s_s \), drawn from two sources: Caliendo and Parro (2015) for goods and Gervais and Jensen (2013) for services. These estimates are quite similar across sectors, so that \(s_s \approx 6 \forall s \). In the present section I offer some robustness with regards to this estimate. I consider two alternatives: \(s_s = 3 \forall s \) and \(s_s = 9 \forall s \).
Figure 22: College Wage Premium Growth Across Commuting Zones, 1980-2010

Notes: These two Figures show college wage premium growth across commuting zones between 1980 and 2010 in the data (blue line) and the model (orange). The data is constructed from the 5% sample of the U.S. Decennial Census (1980-2000) and American Community Survey (2010). Wages are computed as unconditional average hourly labor income for workers with at least some college education and workers with only high school education or less. To compute the lines in the Figure, I compute the average growth rate of the wage ratio (college to high-school) within deciles of employment across commuting zones ordered by their business services payroll share in 1980. The Figure shows 95% Confidence Bands on these within-decile averages. In this Figure, the model line shown is for the baseline calibration of the model but with the trade elasticity σ set to 3 and 9 respectively, for all sectors.