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Abstract

This paper argues that a unified analysis of consumption and production is required to

understand the long-run behavior of the labor share of income in the United States. First, using

household data on the universe of consumer spending, I document that higher-income households

spend relatively more on labor-intensive goods and services as a share of their total consumption.

Interpreted as the result of non-homothetic preferences, this fact implies that economic growth

increases the labor share through an income effect. Second, using disaggregated good-level data

on factor shares and capital intensities, I estimate that capital and labor are gross substitutes.

Consequently, investment-specific technical change, manifesting itself in the form of a well-

documented decline in the relative price of equipment capital, reduces the labor share. Given the

estimated elasticities, I show that a parsimonious neoclassical model quantitatively matches the

observed low-frequency movement in the aggregate labor share since the 1950s, both its relative

stability until about 1980 and its decline thereafter. Until the early 1980s, the income effect,

working through non-homothetic preferences, offset capital-labor substitution. Subsequently,

accelerating investment-specific technical change, leading to increasing substitution of capital

for labor, began to dominate the income effect.
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1 Introduction

We are witnessing an era of rapid technological advances, manifesting itself in new, better, or

cheaper machines (stark examples are robots and artificial intelligence). As these new technologies

that are embodied in capital goods diffuse in the economy, fears about the future of labor

opportunities abound. Indeed, the share of labor in national income has been declining in the

U.S. as well as globally over the past few decades (Elsby, Hobijn and Sahin, 2013, Karabarbounis

and Neiman, 2014). These fears have re-emerged continually since the beginning of the Industrial

Revolution. Yet, labor has not become redundant. Kaldor (1961) famously mentioned the observed

stability of the labor share as one of the stylized facts of economic growth.

This paper studies the evolution of the U.S. labor share in the post-war era (Panel (a) of Figure

1).1 Throughout the entire period, we witnessed remarkable technological progress in the sectors

that produce equipment capital. Following the literature, I use the quality-adjusted real equipment

price (Panel (b) of Figure 1) as a measure of investment-specific technical change.2 Note that this

price decline accelerated substantially in the early 1980s. As machines become relatively cheaper,

they are substituted for labor. However, two obstacles seemingly derail the narrative that labor

shares are falling because of technological changes embodied in capital goods.

First, for labor shares to decline in response to falling capital costs, capital and labor have

to be gross substitutes in production, contrary to the prevailing consensus in the literature.3 My

first contribution is to show that, when adopting a disaggregated good-level perspective of the U.S.

economy and accounting for input-output linkages, capital and labor are indeed gross substitutes.

Key for this empirical result is my first new stylized fact: in the cross-section of goods, labor shares

are falling in proportion to the equipment-intensity of capital (Panel (c) of Figure 1).

Second, this narrative in isolation has difficulty accounting for the stability of the aggregate labor

share prior to the 1980s. My second contribution is to identify a countervailing force. The very

changes in technology that improve machines are also a source of economic growth. Rising levels of

real income lead to different spending patterns. Crucially, I document that richer households spend

relatively more on labor-intensive goods and services as a fraction of total expenditure (Panel (d)

of Figure 1). Thus, holding constant relative prices, economic growth increases the aggregate labor

share through an income effect.

My third contribution is to show that an otherwise parsimonious neoclassical model with

non-homothetic preferences quantitatively matches the observed low-frequency movement in the

1Because there is some ambiguity concerning the treatment of proprietors’ income, I report both the BLS’ headline
labor share measure and the narrower payroll share, and note that the totality of the evidence suggests that the labor
share was roughly stable until the early 1980s and declined subsequently, possibly accelerating later on. For all time
series in Figure 1, I added separate linear time trends for the pre-1982 and the post-1982 time period for illustrative
purposes only. In the model analysis, I relate to the raw annual time series.

2The series is constructed by DiCecio (2009), building on earlier work by Gordon (1990) and Cummins and Violante
(2002). Hulten (1992) and Greenwood, Hercowitz and Krusell (1997) are seminal references for investment-specific
technical change.

3Karabarbounis and Neiman (2014) is an important exception to this consensus. Across countries, they similarly
find that falling investment good prices correlate with falling labor shares, and conclude that investment-specific
technical change explains half of the global decline in the labor share.
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Figure 1: Two aggregate trends and two facts about the cross-section
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Data sources: (a) BLS; (b) DiCecio (2009); (c) BEA I-O Tables, BEA FAT, NBER-CES Manufacturing Database,
own computations; (d) CEX, BEA I-O Tables, own computations.

aggregate labor share, both its relative stability until about 1980 and its decline thereafter.

I first examine the question theoretically in a neoclassical general equilibrium framework. I

show that the response of the aggregate labor share to different forms of economic growth can be

decomposed into two additive components: The first is a substitution effect, operating both on

the production side via direct capital-labor substitution, as well as indirectly via a reallocation of

consumption in response to changing prices. This substitution effect is proportional to the bias

of growth towards capital, and depends on elasticities of substitution in production as well as in

consumer demand. The second component represents an income effect, and is proportional to the

overall rate of economic growth multiplied by the cross-sectional covariance between sectoral labor

shares and income elasticities. If this covariance is positive and the relevant aggregate substitution

elasticity above one, then the aggregate labor share is stable if growth exhibits a moderate capital
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bias, while it declines if the capital bias is strong.

Guided by the theoretical analysis, I estimate the key elasticities. First, using the Bureau of

Economic Analysis’ (BEA) Detailed Input-Output (I-O) Tables, I construct a panel dataset of

labor shares at the final good level, reflecting all upstream value added.4 The I-O Tables provide

a complete, fine-grained, picture of the U.S. economy, covering around four hundred industries

and as many goods. Linking this panel to the U.S. Consumer Expenditure Survey (CEX), which

contains household data on the universe of consumer spending, I document that richer households

spend more on labor-intensive goods as a fraction of total expenditure. This pattern holds over

the entire sample period (1980–2015), implying that the covariance between income elasticities

and labor shares is positive throughout. Interpreted in a framework with stable preferences, this

non-homotheticity implies that any form of economic growth increases the aggregate labor share

through an income effect.

Next, I turn to estimating the capital-labor elasticity of substitution in production, again

relying on the panel of good-level labor (and capital) shares derived from the BEA’s I-O Tables.

The estimation strategy is based on the assumption that the observed secular decline in the

quality-adjusted price of equipment and software capital reflects exogenous technical progress.

I document that the fall in labor shares, across goods, has been proportional to the equipment

intensity of capital. To construct the latter variable, I use data from the BEA’s Fixed Asset

Tables and the NBER-CES Manufacturing Industry Database, as well as data on public firms from

Compustat. Because in the cross-section of goods, falling labor shares correlate with falling capital

costs, the estimated capital-labor elasticity is significantly above one. In other words, capital and

labor are gross substitutes, implying that declining capital prices trigger falling labor shares, as

firms optimally shift expenditure towards the cheaper production factor. The estimated elasticity

represents the shift from labor to capital in response to a fall in the rental rate of capital, relative

to the wage rate, along the full value chain, including all upstream production.

Armed with these two sets of estimates, I analyze the evolution of the U.S. labor share since the

1950s through the lens of the model. For this exercise, I assume that the key consumer demand and

technology elasticities have been stable over time. The model quantitatively matches the observed

low-frequency movement in the aggregate labor share, both its relative stability until about 1980

and its decline thereafter. Up to the early 1980s, the substitution of capital for labor in production

was moderate, and, as it turns out, entirely offset by the positive income effect. Later on, as

investment-specific technical change accelerated, capital-labor substitution became the dominating

force.5 Factoring in the non-homotheticities in demand is crucial, as homothetic versions of the

model fail to rationalize the data.

An emergent strand of the literature argues that increasing market power has led to rising

markups and profits (Barkai, 2017).6 De Loecker and Eeckhout (2017) use Compustat data to

4Throughout this paper, I will use goods as a shorthand for goods and services.
5This acceleration of the fall in real equipment prices has also been noted by Fisher (2006).
6Barkai (2017) constructs the capital share as the product of the capital stock times the required rate of return,

and defines the profit share as the residual of labor and capital shares. This contrasts with the baseline approach in
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estimate a strong increase in markups over marginal costs since the 1980s, driven by an increase in

the ratio of variable profits to sales. Hall (2018) documents a (smaller) increase on the industry-

level using KLEMS data. If labor shares of equipment-intensive sectors declined not because of

capital-labor substitution but because of an increase in economic profits, then my estimate of the

capital-labor elasticity would be upward biased. However, both for Hall’s as well as for Compustat-

based markup estimates, I find that rising markups only weakly predict falling labor shares in

the cross-section, and that they are largely orthogonal to equipment-intensity. Therefore, and

importantly, my estimate of the capital-labor elasticity is virtually unaffected when controlling for

time-sector specific markups. I interpret this finding as support for the capital-labor substitution

channel instead of an increase in economic profits.7 Further assessing robustness, I investigate the

potential of good-factor-specific technical progress and good-specific substitution elasticities to bias

my estimate of the capital-labor elasticity. While I find that these may affect the precise value of

the estimate, I conclude that it is unlikely that the true elasticity is smaller than one.

The baseline model abstracts from several layers of complexity, which I did not find to be

crucial and which I therefore address separately. First, it does not feature increasing household

heterogeneity. In general, the distribution of consumer spending across households matters if

demand is non-homothetic. However, I find that while factoring in rising dispersion would slightly

increase the estimated aggregate income effect, its contribution is at least an order of magnitude

smaller than the one of rising mean income, which this paper focuses on.

Second, in the baseline model I assume that all value added is created domestically. While the

import ratio of the U.S. economy has increased substantially, I find no evidence for this channel to

affect the results in this paper. On the one hand, since import shares are relatively similar across

household income groups, this simplifying assumption does not affect the estimated income effect.

On the other hand, I find that the estimate of the capital-labor elasticity is not confounded by

differential import exposure. Moreover, the factor content of the basket of imported goods is in

fact very similar, both in terms of levels as well as in terms of changes, to the one of exports.

Finally, I address the extent to which the findings are consistent with aggregate investment data.

In the baseline exercise, I treat factor prices of capital as exogenous inputs to the model, and back

out the resulting capital stocks. This procedure implies a time series of nominal investment rates

that can be compared to the data. While in the data the ratio of private investment to the sum of

private investment and consumption has fluctuated without any apparent trend around its long-run

mean of 21%, the baseline model implies an increase to 26%. This discrepancy motivates studying

an alternative model version that treats the investment data as the truth. In that alternative

this paper, which defines the capital share as the residual of the labor share, implicitly assuming that either part of
the capital stock is unmeasured and / or the required rate of return is higher. See Karabarbounis and Neiman (2018)
for a discussion of the implications of alternative strategies of how to deal with what they label ”factorless income”.

7To rationalize this finding, I note that the evidence on rising market power is mixed. Rossi-Hansberg, Sarte and
Trachter (2018) document that while product-market concentration has increased on the national level, the opposite
is true on the local level. Moreover, the aggregate markup derived from Compustat firms has been shown to be quite
sensitive to the choice of aggregation weights (Edmond, Midrigan and Xu, 2018), to the definition of variable costs,
and to assumptions on the representativeness of public firms (Traina, 2018).
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model, the fall in the labor share is less dramatic, though still quite large at 3.7%, compared to

5.3% in the baseline. It is perhaps surprising that the capital share increases even if the nominal

investment rate (and capital-output ratio) are relatively stable over time. However, even with flat

nominal investment, investment-specific technical change leads to capital deepening in real terms.

Combined with an above-unitary capital-labor elasticity, the capital share increases.

The paper proceeds as follows. Section 2 relates to the literature. Section 3 contains the

modeling framework and analytically characterizes the forces that shape the evolution of the labor

share in a neoclassical model with non-homothetic preferences. Section 4 introduces consumption

micro data as well as disaggregated production data, provides descriptive evidence, and discusses

identification and estimation. Section 5 presents the main results. Section 6 discusses details and

context on estimating the capital-labor elasticity, and Section 7 other robustness and extensions.

Finally, Section 8 concludes. The appendix contains all proofs, as well as further empirical and

quantitative results.

2 Related literature

First and foremost, this paper contributes to the voluminous literature on the evolution of the

labor share in general, and its decline in the past few decades in particular. Elsby et al. (2013)

document the decline for the U.S., while Karabarbounis and Neiman (2014) show that it is a global

phenomenon. The exact magnitude of the decline is still debated due to measurement issues such

as the treatment of the labor portion of proprietor’s income (Gollin, 2002, Elsby et al., 2013),

intangible capital (Koh, Santaeullia-Llopis and Zheng, 2016), and housing (Rognlie, 2015). There

is, however, a consensus that the labor share has indeed been falling. Many explanations have been

put forward, including: increased openness to international trade (Elsby et al., 2013); an increase

in concentration that causes increasing profit rates (Barkai, 2017, Autor, Dorn, Katz, Patterson

and Reenen, 2017) and relatedly increasing markups (De Loecker and Eeckhout, 2017); automation

(Acemoglu and Restrepo, 2018, 2017), as well as more generally capital-labor substitution that is

triggered either by declining investment good prices (Karabarbounis and Neiman, 2014, Eden and

Gaggl, 2018) or by capital accumulation itself (Piketty, 2014).

Relative to the majority of studies in that literature, the focus on accounting for the behavior

of the labor share over the entire post-war period in the U.S. is novel. Karabarbounis and Neiman

(2018) is a closely related paper insofar as they also go beyond the period of declining labor shares

(post-1980) to argue that some of the proposed explanations are seemingly at odds with earlier

data. Conceptually, I contribute to the literature by highlighting the need to study production

and consumption in a joint framework to understand the long run—in particular, to rationalize

not only the recent decline, but also why the labor share used to be stable. Empirically, I

contribute by estimating the key elasticities in consumption and production using an array of

disaggregated production data and household consumption data. Quantitatively, I contribute by

showing that given these estimated elasticities, the neoclassical model matches the observed low-
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frequency movement in the aggregate U.S. labor share in the post-war era if (and only if) it is

extended to many sectors and non-homothetic demand.

Second, this paper also contributes to the literature on estimating the capital-labor elasticity. In

the interest of space, I refer to summaries of the previous literature in Chirinko (2008) and León-

Ledesma, McAdam and Willman (2010). Conceptually, I build on Karabarbounis and Neiman

(2014), who also focus on cross-sectional variation in investment good price trends. While their

estimate is based on cross-country variation in aggregate (or broad industry) factor share and

investment good price trends, I exploit differential exposure across goods, within the U.S., to the

secular decline in the real national equipment price—which I view as a more plausible source of

exogenous variation. Oberfield and Raval (2014) pursue a very different approach, aggregating the

plant-level elasticity of substitution between capital and labor to all value added created within

the manufacturing sector. In their framework, substitution to and across intermediate inputs

within the manufacturing sector is indirectly accounted for by demand reallocation, while they

miss the value added of manufacturing goods that is created in non-manufacturing industries. In

general, their approach relies on various aggregation steps, and demand elasticities, increasing

model uncertainty. In contrast, my approach allows for directly estimating the overall capital-labor

elasticity in production. Relative to that literature, the focus on good-level as opposed to industry-

level (or aggregate) factor shares is new. I clarify that my estimated elasticity reflects not only

capital-labor substitution within value added of an industry, but also incorporates outsourcing and

substitution across intermediate inputs, and note that ignoring the non-homotheticity in consumer

demand may bias estimates that are based on aggregate data. To my knowledge, the particular

identification strategy of using differential exposure across goods to the secular decline in equipment

prices is also novel. I also discuss the relation to that literature in more detail in Section 6.5.

Third, this paper relates to the literature on structural change. As in recent contributions

by Boppart (2014) and Comin, Lashkari and Mestieri (2015), I find that allowing for long-run

income effects is crucial in order to understand long-run sectoral reallocation. In contrast to

that literature’s focus on broad sectors, I consider a much more disaggregated economy, which

is necessary in order to capture the magnitude of the income effect in the aggregate labor share

evolution. As Comin et al. (2015), I consider a log-linear demand system. However, I find that

non-homothetic CES preferences (which give rise to such a demand system) are in general not

suitable for highly disaggregated data. They imply a joint restriction on substitution and income

elasticities, which does not hold in my data. Thus, I use a log-linear approximation to Engel curves

(as, e.g., used by Aguiar and Bils (2015)).

3 Theory

In this section I present the baseline model. The aim is to formalize how various types of economic

growth affect the aggregate labor share in a neoclassical environment. If growth is biased towards

a particular production factor, relative factor prices change. In turn, the optimal production input
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mix and factor shares change, depending on how substitutable inputs are. An example of such

biased growth is technical change that is specific to (equipment) capital goods. In an economy with

multiple sectors producing multiple final goods, biased growth generally affects the relative prices

of these final goods. In turn, depending on how price elastic consumer demand is, expenditure

shares change, which in turn affects aggregate factor shares. For example, the relative prices of

those final goods that are capital-intensive in production fall. If consumer demand is sufficiently

price elastic, expenditure shares of capital-intensive goods rise, which depresses the aggregate labor

share. Moreover, any form of economic growth increases real income. Unless consumer demand is

restricted to be homothetic, rising real income affects expenditure shares. For example, if necessities

tend to be capital-intensive and luxuries labor-intensive, then economic growth has a positive impact

on the aggregate labor share.

The baseline model is intentionally reduced to the elements that I found to be quantitatively

relevant. There is no explicit role for consumer heterogeneity. All markets are competitive; thus,

there are no pure profits. I focus on intra-temporal consumption decisions and do not model

the inter-temporal consumption-savings choice; i.e., I consider a static model repeatedly, and infer

capital stocks (and implicitly investment) from observed factor prices and profit maximization. The

economy is closed; there is no role for international trade. I discuss all these aspects in Sections 6

and 7.

3.1 Production

There are multiple sectors i ∈ I. In each of them, a representative firm produces a single final good

i. The firm uses the production inputs capital Kit and labor Lit to produce yit units of output

according to a constant-elasticity-of-substitution (CES) production technology:

yit = Ait

(
(1− αi)

1
η (ALitLit)

η−1
η + α

1
η

i (AKitKit)
η−1
η

) η
η−1

. (1)

The parameter αi controls factor share levels, and varies across sectors. η is the elasticity of

substitution between capital and labor, assumed to be constant across sectors. The technology

terms Ait, A
K
it , and ALit represent, respectively, the state of factor-neutral, capital-augmenting, and

labor-augmenting technology.8

The representative firm takes the factor prices of labor Wt and capital Rt as given, and

maximizes profits. The labor share of good i is defined as θLit ≡
WtLit

WtLit+RtKit
, and by profit

maximization equal to

θLit = (1− αi)
(
ALitp̃it
Wt

)η−1

, (2)

8Even though the model is static, I use time indices to indicate which objects are time-varying, because I will
consider this static model repeatedly over time.
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where p̃it is the TFP-neutral price of good i, a weighted average of factor prices in efficiency units:

p̃it = Aitpit =

(
(1− αi)

(
Wt

ALit

)1−η
+ αi

(
Rt

AKit

)1−η
) 1

1−η

. (3)

3.2 Consumer demand

Consumers are endowed with K̄t units of capital and L̄t units of labor. Consumer demand is

characterized by a (common) compensated substitution elasticity σt, and by good-specific income

elasticities γit. Expenditure shares ωit ≡ citpit
Et

are exogenously given for some base period t = τ .

They change over time according to:

d lnωit = (1− σt)d ln
pit
Pt

+ (γit − 1)d ln
Et
Pt
, (4)

where pit is the price of good i, and Et = WtL̄t + RtK̄t is total nominal expenditure. The price

deflator is defined as d lnPt ≡
∑

i∈I ωitd ln pit, and the budget constraint imposes
∑

i∈I ωiγit = 1.

Equation (4) can be interpreted either as an ad hoc specification of demand, or as a first-order

approximation to the demand system implied by some underlying primitive utility function.9

3.3 Equilibrium

All factor and goods markets are competitive. It is convenient to choose the wage rate as the

numeraire (Wt = 1). Then, solving for the (unique) equilibrium reduces to finding the rental rate

of capital Rt such that given these factor prices, and given the implied good prices, factor and good

markets clear.

Formally, an equilibrium consists of factor prices (Wt, Rt), good prices (pit)i∈I , consumer

demand (cit)i∈I and expenditure Et, final good output (yit)i∈I , and factor input choices (Lit,Kit),

such that

(i) consumer demand cit = ωitEt
pit

, where ωit is exogenously given for t = τ and evolves according

to (4);

(ii) given good prices (pit)i∈I and factor prices (Wt, Rt), final good output (yit)i∈I and factor

input choices (Lit,Kit) are consistent with profit maximization subject to (1);

(iii) all final good markets clear,

cit = yit ∀ i ∈ I; (5)

9See Appendix D for the case of non-homothetic CES preferences.
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(iv) and all factor input markets clear,

L̄t =
∑
i∈I

Lit, and K̄t =
∑
i∈I

Kit. (6)

3.4 Comparative statics

The aggregate labor share in this economy is denoted by θ̄Lt and given by

θ̄Lt ≡
WtL̄t

WtL̄t +RtK̄t
=
∑
i∈I

ωitθ
L
it. (7)

We are interested in general equilibrium changes in the aggregate labor share in response to

changes in the aggregate fundamentals of this economy. These are the growth rates of labor

(gLt ≡ d lnALt L̄t), capital (gKt ≡ d lnAKt K̄t), and TFP (gAt ≡ d lnAt). The growth rates of labor

and capital refer to efficiency units; i.e., to the sum of physical growth and improvements in factor-

augmenting technology. Regarding the latter, note that I only consider changes to the respective

common components here. Denote by gt ≡ d ln Et
Pt

the overall real growth rate, which can also be

expressed as gt = gAt + θ̄Lt g
L
t + (1− θ̄Lt )gKt (as in a one-sector model).

To begin with, I consider how good-level labor shares respond to changes in factor prices (in

partial equilibrium). Let r̂t ≡ d lnRt/A
K
t and ŵt ≡ d lnWt/A

L
t denote log changes in factor prices

per efficiency unit. The change in the labor share of sector i with respect to an (infinitesimal)

change in factor prices is then given by:10

dθLit = (η − 1)θLit(1− θLit)(r̂t − ŵt). (8)

The following proposition characterizes the response of the aggregate labor share to various

types of aggregate growth.

Proposition 1. The general equilibrium response of the aggregate labor share θ̄Lt with respect to

the growth rates of TFP (gAt ), labor (gLt ), and capital (gKt ) is given by

dθ̄Lt =
η̃t − 1

η̃t
θ̄Lt (1− θ̄Lt )(gLt − gKt ) +

gt
η̃t
Covt(γit, θ

L
it), (9)

where η̃t is a convex combination of η and σt, Covt(γit, θ
L
it) refers to the cross-sectional covariance

between income elasticities and sectoral labor shares (weighted by expenditure shares), and gt =

gAt + θ̄Lt g
L
t + (1− θ̄Lt )gKt .

10More generally, for any neoclassical production function, the substitution elasticity can be defined as ηit ≡
∂ ln(Lit/Kit)
∂ ln(Rt/Wt)

. Then

∂ ln θLit
∂ ln(Rt/Wt)

= (1−θLit)
1

θLit(1− θLit)
∂θLit

∂ ln(Rt/Wt)
= (1−θLit)

∂ ln(θLit/(1− θLit))
∂ ln(Rt/Wt)

= (1−θLit)
∂ ln(WtLit/RtKit)

∂ ln(Rt/Wt)
= (1−θLit)(ηit−1).

The specific production technology that is used in this section restricts ηit to be constant across sectors and time.
My preferred interpretation is that η represents the appropriate average capital-labor elasticity in the economy.
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Proof. See Appendix C.1.

It is perhaps helpful to re-write equation (9) in terms of relative factor prices as:

dθ̄Lt = (η̃t − 1)θ̄Lt (1− θ̄Lt )(r̂t − ŵt) + gtCovt(γit, θ
L
it). (10)

The first term in (10) resembles the partial equilibrium response of good-level labor shares in

(8) to changing factor prices, except that the capital-labor elasticity in production η is replaced

by η̃t. η̃t captures both the extent of direct substitution in the production process (towards the

cheaper production factor) as well as indirect substitution, or re-allocation of consumer demand,

towards sectors that use the relatively cheaper factor more heavily.11 In the data, the weight on η

averages 82%, with little time variation. Therefore, η̃ is close to η, and capital-labor substitution

depends primarily on technology, not on preferences. The second term in (10) represents consumer

demand reallocation towards high income elasticity goods in response to rising real income, holding

prices constant (i.e., in partial equilibrium).12

In what follows, I illustrate Proposition 1 by presenting three special cases that each isolate one

channel.

Example 1 (one-sector model): If there is just one sector, then trivially the composition of

consumer demand does not matter. I.e., the covariance term is equal to zero and η̃t = η. Then, as

is well known from the neoclassical growth model, factor shares are stable if and only if (i) either

η = 1 or (ii) all growth is labor-augmenting (then, gLt = gKt as capital is the elastic factor). If part

of growth is investment-specific, such that gLt < gKt , then the labor share increases if capital and

labor are gross complements (η < 1) and decreases if they are gross substitutes (η > 1).

Example 2 (price effects in consumer demand only): Assume that there are multiple

sectors, and that each sector uses either only labor or only capital. Then, η is irrelevant (more

precisely, it is not well-defined). Assume also that consumer demand is derived from homothetic

CES preferences with substitution parameter σ. Then, it is as if consumers’ preferences are defined

over labor and capital services directly. Formally, η̃t = σ, and again the covariance term equals

zero. The effects of various types of economic growth on the aggregate labor share are exactly as

in Example 1, with η replaced by σ.

Example 3 (income effects in consumer demand only): Assume that there are two sectors

i ∈ {n, l}, each operating a Cobb-Douglas production technology (η = 1). Sector n produces a

basic necessity and sector l a luxury good. Sectoral labor shares θLn and θLl may vary across sectors

(but are constant over time by virtue of the production technology). Consumer demand is such

that compensated price changes do not change expenditure shares (σt = 1), and income elasticities

are given by γnt < 1 < γlt (e.g., generalized Stone-Geary preferences could result in such a pattern

11Oberfield and Raval (2014) refer to η̃t as the aggregate capital-labor elasticity of substitution.
12Note that the impact of overall growth gt on the aggregate labor share is dampened (amplified) in general

equilibrium if η̃t > 1 (η̃t < 1). To understand this, consider the case of a positive covariance term: the partial
equilibrium shift of consumption towards labor-intensive goods in response to an increase in real income, parametrized
by gt, leads to an increase in the relative wage rate, which further increases the labor share if and only if η̃t < 1.
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of elasticities at a point in time). Note that since
∑

i=n,l ωit = 1, and also
∑

i=n,l ωitγit = 1 from

the budget constraint, we can solve for the income elasticity of necessities as a function of the

luxury good’s expenditure share and income elasticity: γnt = 1−ωltγlt
1−ωlt . Then the source of growth is

irrelevant for the evolution of aggregate factor shares. All that matters is the overall growth rate,

and how labor-intensive the luxury good is relative to the necessity:

dθ̄Lt = gtCovt(γit, θ
L
i ) = gtωlt (γlt − 1)

(
θLl − θLn

)
. (11)

3.5 Taking stock

We can use the content of Proposition 1 and the basic facts of Figure 1 for a preliminary analysis

of historical developments in the post-war U.S. economy. To begin with, observe that the basic

homothetic model cannot account for the data irrespective of how substitutable capital and labor

are. Since part of technical change has been investment-specific throughout the period, the model

predicts either an ever falling, or an ever increasing, or an ever constant labor share.13

On the other hand, the non-homothetic model is a promising in light of the positive relation

between household income and household labor shares. If sectoral labor shares and income

elasticities are positively correlated, then economic growth affects the aggregate labor share

positively. As the overall growth rate has been roughly comparable throughout (and the covariance

is roughly stable over time), the magnitude of this income effect has been comparable over time.

Thus, the non-homothetic model has the potential to explain the evolution of the aggregate labor

share if capital and labor are sufficiently substitutable, the factor price of capital declined relative

to the wage rate, and this decline accelerated starting in the 1980s—as suggested by the basic facts

of Figure 1.

Proposition 1 also sets the stage for the remainder of this paper. Labor shares (θLit, θ̄
L
t ) as well

as overall growth gt are directly observed. I proceed to estimate η, (γi)i∈I , and σ. As some of the

underlying micro data is not available for the full sample period in sufficient quality, I will assume

that the key elasticities have been stable over time. Finally, I will use model restrictions and further

assumptions to infer the (gLt − gKt ) term from observed time series of relative capital prices and

real output growth.14

4 Empirics

In this section I introduce the data sources, provide descriptive evidence, and discuss identification

as well as estimation of the structural parameters. The starting point are the BEA’s Input-Output

Tables, which contain the necessary information to construct a panel dataset of labor shares at

13If one were to allow for substantial time-variation in the capital-labor elasticity, then even the homothetic model
could fit the data. Specifically, the capital-labor elasticity must have been close to one prior to the 1980s, and
increasing subsequently.

14Note that (r̂t − ŵt) in equation (10) is not directly observed either, because the term refers to factor prices in
efficiency units.
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the level of individual goods. Next, I link these to consumption micro data from the Consumer

Expenditure Survey (CEX) in order to compute the labor content of consumption baskets in the

cross-section of households, and to estimate income elasticities. I then augment the labor share

panel with information on equipment capital intensities of individual goods, sourced from the

NBER-CES Manufacturing Industries Database, the BEA’s Fixed Asset Tables, and Compustat.

These equipment intensities, in combination with aggregate time series of relative capital prices,

are the crucial ingredient for estimating the capital-labor elasticity of substitution in production.

Finally, I discuss how I calibrate the remaining model parameters, given these estimated elasticities.

4.1 Input-Output Tables

Industries: The Bureau of Economic Analysis’ (BEA) Detailed Input-Output (I-O) Tables form

the basis of the empirical analysis. They are available every five years; I use the 1982, 1987, ...,

2007 editions.15 In a given year t, the Make Table specifies the (dollar) amount of good i ∈ It

produced by industry j ∈ Jt.16 The Use Table specifies the amount of production inputs used by

each industry, where inputs are both value added (labor, capital, production taxes and subsidies)

as well as intermediate inputs. The Use Tables allow for directly computing industry-level labor

shares θ̃Ljt as the ratio of labor compensation payments to total value added. A few details have to

be taken care of in doing so: taxes and subsidies are allocated to labor and capital proportionally,

and the portion of proprietors’ income that reflects labor compensation has to be imputed and

re-classified.17

Goods: In the remainder of this paper, good-level labor shares θLit are the object of interest.

My approach to the data is that consumer demand is defined over goods (e.g., a car) instead of over

value added by industry (e.g., value added in the car industry). For consistency, the production

functions then have to be specified by good as well, and not by industry. Herrendorf, Rogerson

and Valentinyi (2013) label this approach to the data as the final expenditure approach, in contrast

to the value added approach. Intuitively, θLit is a weighted average of industry-level labor shares,

where the weights are given by the fraction of total value added generated in producing good i that

is originating in each industry. For expositional simplicity, assume that each good i is produced

only by a single industry i, and each industry produces a single good. Let Nt = |It| denote the

number of goods (industries) in year t. Define βit ∈ (0, 1] as the ratio of value added to gross

output in industry i, and Γijt ∈ [0, 1] as the good j cost share in the intermediate input bundle

used for production of good i (i.e.,
∑

j∈It Γijt = 1). Then, the overall labor share of good i, θLit, can

15Previous editions are not suitable as value added is not broken down in labor compensation and other components.
The 2012 edition is not yet available (as of October 2018).

16In the language of the I-O Tables, goods and services are called commodities. I will refer to both goods and
services simply as goods.

17See Appendix A.1 for details.
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be found by solving the following linear system:

θLit = βitθ̃
L
it + (1− βit)

∑
j∈It

Γijtθ
L
jt, for i ∈ It. (12)

Define the Nt × Nt matrix Γt = [Γijt]i∈It,j∈It , let D(z) denote a matrix that has the entries

of the vector z on the diagonal and zeroes off the main diagonal, and let En denote the identity

matrix of size n. For all other objects defined earlier, zt denotes the vector (zit)i∈It .

The matrix version of (12) is

θLt = D(βt)θ̃
L
t +D(~1− βt)ΓtθLt , (13)

from which we can solve for the vector of final good labor shares,18

θLt =
[
ENt −D(~1− βt)Γt

]−1
D(βt)θ̃

L
t . (14)

As such, these good-level labor shares reflect the full value chain. I find that this is desirable

because, first, they are invariant to mere re-allocation of production tasks across industries without

changing the capital-labor mix within tasks: Consider, for example, a car company that outsources

certain auxiliary tasks (e.g., janitorial or accounting services) to specialized companies listed in some

services industries. For the sake of the argument, assume the car company is representative of the

car industry. If these auxiliary tasks are more labor-intensive than the core task of manufacturing

cars, which remains in-house, then the industry-level labor share will decline. The good-level labor

share will, however, remain constant (given that the capital-labor mix within these auxiliary tasks

stays unchanged). Second, and relatedly, changes in these good-level labor shares reflect not only

substitution between capital and labor within an industry, but also across intermediate inputs.

Continuing with the example of the representative car company, suppose it outsources an auxiliary

task that it used to perform with the company-wide average labor intensity. Suppose in addition

that this auxiliary task is performed with a lower labor intensity in some specialized auxiliary

industry. In this example, the industry-level labor share stays constant. However, the good-level

labor share does change. Hence, when mapping the model to the data, the capital-labor elasticity

η reflects not only capital-labor substitution within industries, but also across intermediate inputs.

In other words, capital-labor substitution along the full value chain.

Aggregate labor share: The economy-wide labor share θ̄Lt can be computed as a weighted

average of good-level labor shares. The appropriate weights are in general final demand weights

18The matrix A−1
t ≡

[
ENt −D(~1− βt)Γt

]−1

is the Leontief inverse. Formally, since At is an M -matrix, all entries

of A−1
t are non-negative. Moreover, it can be directly verified that the rows of A−1

t D(βt) sum to one, such that indeed
good-level labor shares are weighted averages of industry-level labor shares: The claim is that A−1

t D(βt)~1 = ~1. This
is true if and only if ~1 = D(βt)

−1At~1. Since the rows of Γt sum to one by assumption (i.e., Γt~1 = ~1), we have that

D(βt)
−1At~1 = D(βt)

−1
[
ENt −D(~1− βt)Γt

]
~1 = D(βt)

−1~1−D(βt)
−1D(~1− βt)~1 = D(βt)

−1
(
ENt −D(~1− βt)

)
~1 =

D(βt)
−1 (D(βt))~1 = ~1, which proves the claim.
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(ωFDit )i∈It , which can be readily computed from the Use Tables:

θ̄Lt =
∑
i∈It

ωFDit θLit. (15)

Moreover, the Use Tables also break down final demand into personal consumption expenditure

(PCE), various types of private fixed investment (PFI), government consumption and investment,

as well as net exports. Hence, one can, for example, also compute the labor share of aggregate

private consumption as

θ̄L,PCEt =
∑
i∈It

ωPCEit θLit. (16)

Industry classification: The I-O industry classifications are time-varying. I first compute θLit
for each i ∈ It and each t, and subsequently map these objects into a common set of goods i ∈ I.19

In sum, I end up with a panel dataset of good-level labor shares and expenditure shares, comprising

of 373 goods and 6 time periods, spanning the period 1982–2007.20

4.2 Consumer demand: Income elasticities

4.2.1 Data and descriptive statistics

I use consumption micro data from the U.S. Consumer Expenditure Survey (CEX), covering 1980-

2015. The CEX follows individual households for five consecutive quarters, recording nominal

amounts spent on various consumption categories. It comprises of two surveys with separate

samples: an interview survey, covering up to 95% of personal consumption expenditures, as well as

a diary survey. I mainly rely on the interview survey. Aggregating quarterly to annual expenditures

yields a repeated cross-section of annual household expenditures on up to 524 consumption

categories (UCCs). I drop households with missing income information, less than the full four

quarters of expenditure information, and if the household head is younger than 25 or older than 65

years. After sample selection, the data set consists of 91,894 households, about 2,500 per year. For

the few expenditure categories that are missing in the interview survey, I impute spending based

on information on income and expenditure in the diary survey.21

Next, I map CEX spending data into the I-O Tables’ industry classification system. The

mapping is based on a manual concordance assembled by Levinson and O’Brien (2015). The

final dataset contains for each year t and each household h: total expenditure Eht, expenditure

weights (ωiht)i∈I , as well as a vector of household characteristics Zht that includes income and other

demographic information. I use the reported after-tax household income variable, which includes

transfers. Aggregating across households yields aggregate CEX expenditure weights (ωCEXit )i∈I .

Conceptually, they correspond closely to the PCE-based expenditure weights.

19See Appendix A.1 for details.
20For the model simulation, I interpolate expenditure shares and labor shares linearly in between census years.
21See Appendix A.2 for further details on treatment of the CEX data.
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Given a household’s expenditure weights, its consumption-induced labor share is straightforward

to calculate as a simple weighted average of good-level labor shares:

θL,householdht =
∑
i∈I

ωihtθ
L
it. (17)

Figure 2: Consumer Expenditure Survey: Household labor shares
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Source: CEX (household consumption by category and income), BEA I-O Tables (labor shares). Income percentiles
are defined to be stable over time, so that households in a given income percentile bin, in any year, have the same
real income (as a consequence, e.g., there are fewer households in the top income percentile in the 1980s than in the
2010s).

Figure 2 displays averages of these labor shares by income percentile and decade. For each

time period, household-level labor shares are positively correlated with household income. I.e.,

richer households spend more on labor-intensive goods and services as a fraction of their total

expenditure. The magnitude is economically significant, as the gap between the 90th and 10th

percentile amounts to 6–8 percentage points (for comparison, this is similar in size to the decline

in the aggregate labor share). The fact that these labor shares declined over time, conditional on

income, reflects primarily technological changes (i.e., θLit decreased over time for most i ∈ I), and

to a small extent substitution towards capital-intensive goods in response to changing prices. The

income percentiles in Figure 2 are defined to be constant across years, so that the level of real

income on the horizontal axis is constant across years.22

22Figure 15, reported in the appendix, shows the same statistic with time-varying percentiles.
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4.2.2 Identification and estimation of income elasticities

The starting point is the expression for the change in the expenditure share (4) in time t, for good

i. To identify the income elasticity, I consider the expression in the cross-section of households h,

relative to some reference good i = 0:

ln

(
ωiht
ω0ht

)
= ζit + (1− σt) ln

(
pit
p0t

)
+ (γit − γ0t) ln

(
Eht
Pt

)
. (18)

Assuming that consumers are facing the same prices, conditional on time and location, prices are

absorbed by a good-year fixed effect ζ̃it. Adding a set of controls Zht (age, race, family composition,

region, urban/ rural) and an error term ξiht, I estimate

ln

(
ωiht
ω0ht

)
= ζ̃it + (γit − γ0t) lnEht + Γ′itZht + ξiht (19)

for all i ∈ I \ {0} and t separately in the cross-section of households.

A few comments are in order: First, a standard concern in estimating such a demand system

is that measurement error in expenditure on individual goods, as well as the presence of durable

goods, implies that total expenditure Eht is correlated with the residual. Therefore, I use current

after-tax income, education and occupation (proxies for permanent income) as instruments for

total expenditure. The coefficient estimates are generally larger (in absolute value) in the IV

specification compared to OLS. Second, the identifying assumptions are that conditional on the

observables Zht, unobserved cross-sectional heterogeneity in prices or preferences is orthogonal to

permanent income as proxied by the instruments mentioned above. Third, I estimate relative

income elasticities (γit − γ0t). The levels γit are easily recovered as their expenditure-weighted

average has to equal one (the budget constraint imposes this restriction).23

The estimated income elasticities are in fact quite stable over time. A pooled regression of

γit on the time-averages γ̄i yields an R2 of 0.955.24 Figure 3 plots time-averages of the estimated

income elasticities against labor shares. A complete (aggregated) tabulation is reported in Appendix

A.2.3. That appendix also reports the covariance between income elasticities and good-level labor

shares for varying degrees of disaggregation. The bottom line is that to capture the income effect

quantitatively, one needs to consider a sufficiently disaggregated version of the U.S. economy.

23When running this regression separately for each year, one could equivalently let lnωiht be the left-hand side
variable in regression (19): the regression coefficient on lnEht would then equal (γit − 1). However, when pooling
several years, specification (19) is theoretically more attractive since relative income elasticities can be exactly constant
over time, while for absolute income elasticities this is generally not the case (because expenditure shares change).

24Aguiar and Bils (2015) also use CEX data and a similar log-linear demand specification, with coarser consumption
categories, and find that income elasticities are very stable over time.
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Figure 3: Income elasticities and labor shares
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Source: CEX, I-O Tables. This figure displays income elasticities and labor shares, averaged over time. Income
elasticities are reported as 95% confidence intervals, corresponding to pooling regression (19) over all sample years.
The vertical line indicates the aggregate labor share. A few examples are highlighted.

4.3 Capital-labor elasticity of substitution

Using the FOC for labor (29) and dividing by the one for capital yields:

ln

(
θLit

1− θLit

)
= ln

(
1− αi
αi

)
+ (η − 1) (rit − wit) , (20)

where rit and wit are log factor prices in efficiency units. The fundamental problem in identifying

η is that credible exogenous variation in factor prices is difficult to obtain. My strategy is based

on the fact that the relative prices of equipment (including software) and structures capital have

evolved very differently over time, as shown in Figure 4. Relative to the price of a consumption

good index, the former declined secularly, while the latter remained comparatively flat. I assume

that the decline in equipment prices was due to exogenous technical progress. As a consequence, I

can treat the fall in capital costs rit that is due to falling equipment prices as exogenous. Crucially,

the extent to which this is the case, across goods, depends on how much equipment capital is used

in production, relative to structures capital.

4.3.1 Refining the production technology: Two types of capital

Formally, I extend the production technology by adding a second layer. The upper layer remains a

CES aggregator of labor Lit and capital Kit, as defined in (1). I redefine Kit to be a composite of
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Figure 4: Relative prices of equipment and structures capital
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equipment capital KE
it and structures capital KS

it :

Kit =

(
AEitK

E
it

αEi

)αEi (ASitKS
it

1− αEi

)1−αEi
, (21)

where Akit, for k = E,S, is capital type k augmenting technology. The representative firm in each

sector i chooses the three inputs Lit, K
E
it , and KS

it optimally, subject to (1) and (21).

This particular nesting of the three production factors allows for estimating the elasticity

between aggregate labor and aggregate capital. The choice of modeling equipment and structures as

Cobb-Douglas aggregate is based on data limitations (as discussed below, time-variation in the split

of capital income into equipment and structures is difficult to measure; cross-sectional variation

is comparatively unambiguous). Moreover, the substitutability between equipment and structures

does not affect the evolution of labor shares, at least not to a first order of approximation.

4.3.2 Data: Equipment capital intensities

The I-O Tables only allow for breaking down total value added into labor income and a residual,

which I define to be capital income. I split capital income into equipment (which includes software)

as well as structures capital income by using data on the nominal stock of equipment pEt K
E
jt as

well as the nominal stock of structures pSt K
S
jt, by industry j ∈ Jt.25 For the manufacturing sector,

the NBER-CES Manufacturing Industry Database (Becker, Gray and Marvakov, 2016) provides

25Throughout this paper, I consider a two-way split of capital income into private equipment & software, as well as
private structures. This partition corresponds to the one prior to the 14th comprehensive revision of NIPA in 2013,
which capitalized a larger set of intellectual property products, and classified them as a separate asset category that
also includes software.
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this data at the 6-digit industry level. For all other industries, I rely on data from the BEA’s

Fixed Assets Tables (FAT), which is available at a higher level of aggregation only (62 industries).

As an alternative, I use information on public companies from Compustat. Mapping stocks into

flows requires further an assumption on the required return on equipment, relative to the one for

structures. The required rate of return on a dollar of capital type k = E,S, the user cost per dollar

of capital, is given by

R̃kt = rt + δkt − (1− δkt )
E[pkt+1 − pkt ]

pkt
, (22)

where rt is a real interest rate, δkt is the depreciation rate of type k capital, and the last term refers

to expected price growth. I compute rt as a weighted average of the cost of debt and equity.26

To compute δkt by capital type and year, I divide current-cost depreciation by current-cost net

stock of capital (FAT Table 1.1 and 1.3). For the expected price growth term, I use a five-year

moving average of realized price growth. Note that pkt refers to the price of type k capital relative

to a consumption price index. Specifically, I use the FRED series PERICD for equipment, which

refers to the quality-adjusted price of equipment and software, relative to a consumption deflator.

For structures, I use the BEA’s nonresidential structures (B009RG3Q086SBEA) and residential

investment (B011RG3Q086SBEA) deflators, again relative to the same consumption deflator.

The equipment intensity κ̃jt of industry j is defined as the ratio of equipment costs to total

capital costs:

κ̃jt =
R̃Et p

E
t K

E
jt∑

k=E,S R̃
k
t p
k
tK

k
jt

. (23)

A naive strategy would assume that returns on equipment and structures are equal, and thus drop

out from equation (23). However, depreciation rates are much larger for equipment; moreover,

based on historical experience the expected price decline is also larger.

Given industry j’s labor share θ̃Ljt, I compute the equipment, respectively structures, factor

share as

θ̃Ejt = (1− θ̃Ljt)κ̃jt, (24)

θ̃Sjt = (1− θ̃Ljt)(1− κ̃jt). (25)

Analogously to the computation of good-level labor shares, I map these industry capital shares

into good-level equipment (θEit ) and structures factor shares (θSit); similarly, for equipment intensities

κit. Because of data limitations, equipment intensities and factor shares cannot always be computed

26Specifically, I compute the weights using Table S.5.a of the Integrated Macroeconomic Accounts; computing debt
as the sum of line 131 ’Debt Securities’ and line 135 ’Loans’, and using line 140 ’Equity and investment fund shares’
for equity. For the return on debt I use the AAA bond yield, for equity the 10-year U.S. treasury yield plus a 5%
risk premium. I subtract inflation in the form of a five-year moving average of the CPI from both.
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separately for every year.27 However, the time averages θ̄Ei and θ̄Si , respectively κ̄i, suffice for the

main empirical exercise. Moreover, using only time-averages for splitting up capital shares has the

advantage that estimates of the capital-labor elasticity will not depend on time trends in rt, which

are to some extent ambiguous, as is the choice of the relevant data object for rt.
28

4.3.3 Descriptive: Labor shares and equipment shares

Table 1: Exploring the decline in labor shares

(1) (2) (3) (4) (5)

t -0.021*** -0.014*** 0.006 0.003 0.002
(0.005) (0.005) (0.009) (0.009) (0.014)

t× 1i∈IM -0.024** -0.012
(0.010) (0.010)

t× θ̄Ei -0.160*** -0.122** -0.150***
(0.049) (0.053) (0.057)

t× θ̄Si 0.012
(0.017)

*** p<0.01, ** p<0.05, * p<0.1

Dependent variable: good-level labor shares. 2,172 observations: 362 goods, six time periods (1982,
1987, ..., 2007). Good fixed effects used in all specifications. Standard errors in parentheses (clustered
at good level). Unit of t is a decade. Observations are weighted by final demand shares. Labor shares
and weights based on I-O Tables (BEA). Equipment and structures intensity based on NBER-CES
Manufacturing Database, BEA FAT.

To understand the structural exercise that follows, it is instructive to explore the decline in

the aggregate labor share by analyzing time trends in the constructed panel of good-level labor

shares. Table 1 displays panel regressions of the good-level labor share θLit on good fixed effects and

linear time trends. Column 1 reports that the aggregate labor share declined by 2.1 percentage

points per decade, or 5.3 points over the period 1982–2007. Column 2 interacts the time trend with

a dummy for the manufacturing sector, showing that the decline was stronger for manufacturing

goods.29 Yet, there was still a substantial decline in non-manufacturing (agriculture and services).

Column 3 conveys the main point: the entire decline in the labor share has been proportional

to the (average) equipment share of goods.30 Column 4 shows that the stronger trend decline in

27In particular, Compustat provides the net equipment capital stock in addition to the total net capital stock only
for 1970-1992.

28The argument put forward by Karabarbounis and Neiman (2018), that using standard measures of the real
interest rate and the user cost formula to back out capital shares leads to unrealistically large swings, also applies to
the split between equipment and structures considered here.

29Interestingly, Kehrig and Vincent (2017) show that the decline in the labor share of manufacturing industries
is largely due to a reallocation of value added towards very productive plants, combined with falling labor shares
for these plants. At the same time, surprisingly, the labor share of the median plant increased. This finding is
not inconsistent with the capital-labor substitution channel on the good level emphasized in this paper. Instead, it
provides guidance for a possible micro-foundation at the firm level.

30Using instead the equipment intensity κ̄i produces the same result, regardless of whether the time-average or the
1982 value is used.
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manufacturing vanishes when controlling for equipment shares. Finally, column 5 suggests that the

structures share is orthogonal to the decline in labor shares.

To summarize, (i) the decline in the U.S. labor share over the previous decades has been

concentrated in the production of equipment-intensive goods, and (ii) the quality-adjusted price of

equipment capital has exhibited a secular downward trend.

4.3.4 Estimating the capital-labor elasticity of substitution

Let wit = ln
(
Wt

ALit

)
, rEit = ln

(
REt
AEit

)
, and rSit = ln

(
RSt
ASit

)
denote factor prices in log efficiency units; let

hats denote changes. First, note that the log price of the cost-minimizing good i capital aggregate,

rit, changes according to

r̂it = κitr̂
E
it + (1− κit)r̂Sit, (26)

where κit is the equipment intensity of capital. This is a direct application of Shephard’s Lemma

and does not require any assumptions on the substitutability between equipment and structures in

producing good i (neither its value nor whether it is constant). Data limitations require using the

average equipment intensity (i.e., κit = κ̄i), which is justified in the Cobb-Douglas case, but more

generally only valid as a first-order approximation to (26).

I consider two specifications. The first one considers the FOCs for capital and labor (20) in

changes. Let α̃i denote a good fixed effect, and plug in for the change in the cost of capital r̂it from

(26):

ln

(
θLit

1− θLit

)
= α̃i + (η − 1)

(
κ̄ir̂

E
it + (1− κ̄i)r̂Sit − ŵit

)
. (27)

In words, if say capital and labor are gross substitutes (η > 1), then the labor share of good i

declines if the rental rates of various types of capital fall relative to the wage rate. The sensitivity

to these relative rental rates depends on how much of each type of capital is used in production

of good i. At this point, it is helpful to orthogonalize (changes in log efficiency unit) factor prices

into common components (ŵt, r̂
E
t , r̂

S
t ) and good-specific factor-augmenting technology (âLit, â

E
it , â

S
it).

The latter are mean zero by construction. Then, the estimated equation in the first specification is

ln

(
θLit

1− θLit

)
= α̃i + λt + (η − 1)

(
κ̄ir̂

E
t + (1− κ̄i)r̂St

)
+ ξit︸︷︷︸

=(η−1)(κ̄i(âLit−âEit)+(1−κ̄i)(âLit−âSit))

, (28)

where I added a time fixed effect (λt). The time fixed effect absorbs the common component

of wage changes, as well as any other common trend that is outside of the baseline model (e.g.,

uniformly rising markups). I assume that the secular decline in the price of equipment capital was

due to exogenous technical progress. Consequently, I use κ̄ir̂
E
t as an instrument for the potentially

endogenous regressor
(
κ̄ir̂

E
t + (1− κ̄i)r̂St

)
. There are two potential issues: First, changes in good-
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specific factor-augmenting technology (the error term) might be correlated with average factor

shares. This, as well as other potential biases, deserve a separate treatment; I address those in

Section 6. Second, factor prices are in efficiency units, which are not directly observed in the data.

I assume that changes in capital costs are equal to changes in (quality-adjusted) capital prices, as

discussed in 4.3.2. Over the sample period 1982–2007, equipment prices declined at an annual rate

of 6.3%. If, say, this number understates the true decline in equipment capital costs, then I will

over-estimate the absolute value of (η − 1). However, such potential mis-measurement does not

affect how much of the aggregate labor share decline is explained by capital-labor substitution: it is

only the product of (η−1) and the decline in capital costs that matters in that regard. Furthermore,

for the estimate (η̂ − 1) to have the wrong sign, it would have to be the case that the relative cost

of equipment capital has increased over time. I find that the magnitude of observed price changes

makes this improbable.

Measured capital shares sometimes fluctuate close to zero, both because they are measured as

a residual, and because they contain profits, which are volatile. In order to be able to take the

logarithm, I bound labor shares symmetrically from above and below (θLit ∈ [0.05, 0.95]). In the

alternative specification, this is not necessary, as the dependent variable is ln θLit. The alternative

specification is based on the firm’s FOC for labor (2). Taking the logarithm,

ln θLit = ln(1− αi) + (η − 1) (ln(p̃it)− wit) , (29)

where p̃it is the TFP-neutral price of good i in t. Using Shephard’s Lemma, note that

d ln(p̃it) = θLitŵit + (1− θLit)r̂it = θLitŵit + (1− θLit)(κitr̂Eit + (1− κit)r̂Sit). (30)

Plugging this expression into (29), rearranging, and adding time fixed effects, the estimated

equation in the second specification is:

ln θLit = α̃i + λt + (η − 1)
(
θ̄Ei (r̂Et − ŵt) + θ̄Si (r̂St − ŵt)

)
+ ξit︸︷︷︸

=(η−1)(θ̄Ei (âLit−âEit)+θ̄Si (âLit+â
S
it))

. (31)

This equation is very similar to the first specification, except that the dependent variable is ln θLit
instead of ln

(
θLit

1−θLit

)
, and that the relative equipment factor price is interacted with the equipment

factor share, instead of the equipment intensity of capital (same for structures). Note that, contrary

to the first specification, (31) is based on a first-order approximation to the log labor share of good

i. Furthermore, ŵt is not absorbed in the time fixed effect. I use model generated wage growth

(in efficiency units, wages grow at an annual rate of 1.5%). The above argument on potential

mis-measurement of capital costs applies to wages as well: if they are mis-measured, (η̂ − 1) will

be biased, but this bias is inconsequential for predicted labor share changes.

Table 2 displays the estimates of (η−1). Equipment intensities for non-manufacturing industries

are taken from corresponding, more aggregated, industry groups in the BEA’s Fixed Asset Table
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Table 2: Baseline estimates of (η − 1)

Final Demand Personal Consumption Expenditure

Dependent Variable log θLit log
(

θLit
1−θLit

)
log θLit log

(
θLit

1−θLit

)
(1) (2) (3) (4)

OLS 0.333** 0.401*** 0.250* 0.316***
(0.134) (0.153) (0.128) (0.116)

IV (only equipment) 0.427*** 0.364** 0.328*** 0.280**
(0.133) (0.158) (0.127) (0.122)

N 2,172 2,172 1,407 1,407

*** p<0.01, ** p<0.05, * p<0.1

Each column reports both OLS and IV estimates of (η−1). Columns (1)-(2) weigh goods by final demand shares,
(3)-(4) by personal consumption expenditure (I-O Tables). The sample size is smaller in the latter, as some
goods are pure investment goods. Time and good fixed effects are used in all specifications; standard errors in
parentheses (clustered at good level). Columns (1) and (3) refer to equation (31), columns (2) and (4) to (28).
Equipment intensities for the manufacturing sector are taken from the NBER-CES manufacturing database; for
non-manufacturing they are based on the more aggregated BEA’s Fixed Asset Table 3.1 (current-cost net stock
of private equipment and software, respectively structures, by industry).

(FAT). (For manufacturing industries, the NBER-CES database provides estimates at the desired

detailed level.) The columns titled ’Final Demand’ use time-averaged final demand shares as

regression weights, the ones titled ’Personal Consumption Expenditure’ restrict the regression to

consumption goods with the associated weights. OLS estimates for η range from 1.25 to 1.40,

depending on specification and sample, and IV estimates from 1.28 to 1.43. As an alternative to

relying on more aggregated FAT data, I calculate equipment intensities based on balance sheets

of public companies reported in Compustat. The results in Table 3 are somewhat more volatile,

depending on sample and specification: OLS estimates range from 1.25 to 1.67, IV estimates from

1.37 to 1.61. All specifications result in statistically significant positive estimates, implying a

capital-labor elasticity above one. I use 1.35 as my preferred value for the model analysis to follow,

which corresponds to the mid-point of estimates.

4.4 Remaining model parameters

In the previous sections, I discussed how I estimate income elasticities and the capital-labor

elasticity of substitution. Both sets of estimates are based on cross-sectional variation. I turn

to calibrating the remaining model parameters, given these estimates. The initial model period

refers to the year 1982. I repeatedly solve for the static equilibrium over 1982–2007, calibrating

growth in factor stocks and technology to match time series of aggregate output and relative

factor prices. Intuitively, how much capital prices have been falling is informative for how much

of aggregate growth can be attributed to capital. Then, there is a growth residual, which has to

be attributed to labor and/ or TFP. Model-generated changes in good prices, driven by differential

factor shares and changes in relative factor prices, pin down the consumers’ elasticity of substitution

23



Table 3: Alternative estimates of (η − 1): Compustat

Final Demand Personal Consumption Expenditure

Dependent Variable log θLit log
(

θLit
1−θLit

)
log θLit log

(
θLit

1−θLit

)
(1) (2) (3) (4)

OLS 0.282** 0.615** 0.250** 0.672**
(0.121) (0.256) (0.114) (0.324)

IV (only equipment) 0.407*** 0.572** 0.368*** 0.609*
(0.132) (0.268) (0.125) (0.337)

N 2,172 2,172 1,407 1,407

*** p<0.01, ** p<0.05, * p<0.1

See notes for Table 2. The only difference is that for non-manufacturing industries, equipment intensities are
calculated based on Compustat firm-level data.

σ.31 Subsequently, assuming that elasticities have been stable (because the micro data is not

available for the earlier time period), the same analysis is extended to 1950–1982.

4.4.1 Base year 1982

In the base year τ = 1982, all expenditure shares and factor shares are matched by construction.

It is convenient to normalize the units of goods and factor inputs such that all prices, as well as

technology terms Aiτ and Afiτ , for f ∈ {L,E, S}, are equal to one. Then, I set the factor share

parameters αi and αEi such that they replicate factor shares (θLiτ , θ
E
iτ , θ

S
iτ ) for all goods. By setting

factor endowments (L̄τ , K̄
E
τ , K̄

S
τ ) to equal aggregate factor shares (θ̄Lτ , θ̄

E
τ , θ̄

S
τ ), all markets clear as

desired at normalized prices.

4.4.2 Sample period 1982–2007

The calibration targets three time series over the sample period 1982–2007: real per capita GDP, as

well as the relative prices of equipment capital and structures.32 The user cost of capital per dollar

of capital is assumed to be constant; i.e., growth in rental rates equals growth in the price of each

capital type. To match these two capital price time series, I pick the evolution of the capital stock

(K̄E
t , K̄

S
t )2007

t=1983, which should be interpreted as being in efficiency units. In terms of the model, this

is isomorphic to changing (the common component of) capital-augmenting technology. In terms

of the mapping to the data, this assumes that all capital-biased technical change is embodied in

capital, as measured by relative quality-adjusted prices; that there is no additional, disembodied

capital-biased technological progress.

The residual part of economic growth could be attributed to TFP (Ait) or labor-augmenting

technological progress (ALit). I impose that the respective good-specific terms are constant; i.e.,

31Alternatively, in Section 7.3 I utilize data on final good price changes.
32I use the Fisher chained-price index to compute real output changes in the model, consistent with the data.
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technology improvements are common to all goods (∆Ait = ∆At and ∆ALit = ∆ALt ). In the

benchmark calibration, I assume that all residual growth is labor-augmenting in the tradition of

the neoclassical growth model; i.e., ∆At = 0, and ∆ALt is chosen to match output growth (jointly

with capital growth). Alternatively, I consider tying ∆ALt to an index of human capital.33 I refer

to this as the human capital (HC) calibration. Since this index is constructed as years to schooling

times returns to education, and there can be other forms of labor-augmenting technological progress,

the HC calibration should be interpreted as a lower bound for the loading on ALt . I attribute the

remaining growth residual to TFP (∆At).

The only remaining parameter to estimate is the consumers’ substitution elasticity σ (discussed

in the following section). Capital stocks, technology terms, and σ are jointly calibrated to match

the data targets.

4.4.3 Consumers’ substitution elasticity σ

In the baseline, I use model-generated final good prices (pit) to estimate the elasticity of substitution

σ in consumer demand.34 Since technical progress is assumed to be uniform across goods, variation

in the evolution of relative prices is driven by variation in factor shares. In particular, equipment-

intensive goods become relatively cheaper over time.

To identify the substitution elasticity σt, I have to assume that demand shifters, as well as the

effect of controls, are time-invariant: ζit = ζi and Γit = Γi. Then,

∆ lnωCEXit = (1− σt)∆ ln

(
pit
Pt

)
+ (γit − 1) ∆ ln

(
Et
Pt

)
+ Γ′i (∆Zt) + ξit. (32)

Then, given prices and a choice of price index, I estimate σt by regressing the change in residual

aggregate expenditure shares, denoted by ω̂it, on the change in relative prices. ∆ω̂it is defined as

the change in aggregate expenditure shares net of income effects (and possibly changing aggregate

demographics in Zt):

∆ ln ω̂CEXit ≡ ∆ lnωCEXit − (γ̂it − 1) ∆ ln

(
Et
Pt

)
− Γ̂′i (∆Zt) = (1− σt)∆ ln

(
pit
Pt

)
+ ξit. (33)

One could get rid of the price index Pt on the RHS by subtracting, for all goods i, the

same equation for some reference good 0. Still, the price index is needed to construct residual

expenditure shares as it enters the income effect term. In the sample period 1982–2007, one can

use a chain-type index such as the Fisher price index, because demand weights are known for all

periods. However, for the earlier out-of-sample period 1950–1982, this is not possible (because only

current period demand weights are known). For consistency, I use Laspeyres’ index throughout:
Pt+1

Pt
=
∑

i∈I ωit
pit+1

pit
.

33Source: Penn World Tables 9.0 (Feenstra, Inklaar and Timmer, 2015), retrieved from FRED (series:
HCIYISUSA066NRUG).

34Alternatively, in Section 7.3 I use price data in a richer calibration.
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In practice, measurement error in prices creates attenuation bias when estimating σt. As the

model predictions for relative price changes are more reliable in the long run, I prefer using long

changes; i.e., changes between t and τ (where τ is either the initial or some interim time period):

∆t,τ ln ω̂it ≡
t∑

k=τ+1

∆ ln ω̂ik = (1− σt)∆t,τ ln

(
pit
Pt

)
+ ξit. (34)

When using long changes, the substitution elasticity σt is assumed to be constant within each

segment. Splitting the sample in three time periods, I cannot reject the null of a constant elasticity.35

Hence, I assume that σ is constant over time. The point estimate is σ̂ = 1.51 (standard error: 0.07).

4.4.4 Earlier time period: 1950–1981

The calibration of capital stocks and technology is completely analogous to the later period, as the

aggregate time series on output and capital prices extend back. I assume that the capital-labor

elasticity η and consumer demand parameters have been stable. In particular, I set relative income

elasticities (γi−γ0) to their respective time-averages over the later sample period. As noted earlier,

they are very stable over the sample period. Each year, I recover their level by imposing that their

expenditure-weighted average equals one, as required by the budget constraint.

5 Quantitative results

In this section I first report on the main result: the evolution of the aggregate labor share in the

model economy contrasted with the data. Subsequently, I use the model to decompose changes in

the labor share into technological and consumer demand components. Finally, I discuss the failure

of the neoclassical model in explaining the behavior of the labor share if preferences are restricted

to be homothetic.

5.1 Baseline non-homothetic model results

Figure 5 displays the evolution of the aggregate labor share in the data and in the model.36 Note

that by construction, all series agree in 1982. Let us first focus on the sample period 1982–2007:

The model performs well in replicating the overall fall in the labor share, irrespective of which

particular calibration strategy is used to attribute residual growth to labor-augmenting and factor-

neutral components. The fall in the quality-adjusted relative price of equipment capital was drastic

over that time period (Figure 1b), implying that growth was mostly investment-specific. Given

that I estimate capital and labor to be gross substitutes (η > 1), good-level labor shares decrease,

35See Appendix B.1 for details.
36The data series refers to the labor share constructed using the CEX demand weights as well as the good-level

labor shares from the I-O Tables for 1982–2007: θ̄Lt =
∑
i∈I ω

CEX
it θLit. Neither CEX expenditure data nor detailed

good-level labor shares are available prior to 1982. I use an aggregate time series from the BLS for the U.S. business
sector for the earlier time period, re-scaled such that it aligns with the CEX-based one in 1982.
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Figure 5: Aggregate labor share in baseline non-homothetic model
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Data sources: BLS, BEA I-O Tables, CEX. In the benchmark model, all residual growth (i.e., that is not accounted
for by investment-specific technical change) is labor-augmenting. In the human capital (HC) calibration, growth in
labor-augmenting technology is tied to an index of human capital, and the remaining residual is attributed to TFP.

and so does the aggregate labor share. Note that even though I used trends in good-level labor

shares over the same time period 1982–2007 to estimate η, the model does not fit the data trend

by construction: first, when estimating η I employed time fixed effects to control for economy-wide

factors outside of the model; second, changes in consumer demand impact the aggregate labor share

as well. For the 1950–1982 period, in the data the aggregate labor share fluctuates without any, or

perhaps a slight downward trend. The model does not feature the high-frequency fluctuations, but

exhibits a comparable trend behavior.

To understand the differences between the two model calibrations, it is helpful to consider the

time series of calibrated technology parameters and capital stocks. The upper two panels of Figure 6

display TFP and the labor-augmenting term ALt . The benchmark calibration attributes all residual

growth (i.e., that is not accounted for by capital-embodied technological progress) to ALt , whereas

the alternative only the part that is measured as improved human capital (HC). While there is

no cumulative difference from the early 1970s onwards, earlier on there is an unexplained growth

residual. Attributing it to labor as in the benchmark has a positive impact on labor shares (given

that η > 1), because it partly offsets the capital bias of growth. In either case the growth rate of

the labor-augmenting term has decreased considerably around 1980.

The lower two panels of Figure 6 display the evolution of capital stocks. These are displayed in

efficiency units; nominal amounts evolve very differently given drastic changes in relative prices.37

While the stock of structures grows at a rate slightly below the overall growth rate, equipment

grows at a much higher rate.

37I compare the model to data on nominal investment and capital stocks in Section 7.4.
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Figure 6: Calibrated parameters in baseline non-homothetic model
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5.2 Decomposing changes in the aggregate labor share

Why was the labor share stable until the early 1980s, and why did it subsequently decline? I

provide an answer to this question by using the model to decompose changes in the aggregate labor

share into the following three components: (i) capital-labor substitution in the production process,

(ii) an income effect operating through non-homothetic preferences, and (iii) a substitution effect

on the demand side. I use the benchmark model for this decomposition. To isolate the income

effect, I fix the consumers’ substitution elasticity σ as in the benchmark, set all income elasticity

parameters to one, and re-calibrate technology parameters and capital stocks so that aggregate

growth and relative capital prices are unchanged. The difference between this homothetic model

and the benchmark is interpreted as income effect. Next, I moreover set σ = 1 (i.e., demand is

characterized by a Cobb-Douglas utility function) and repeat the procedure. The difference between

the latter two alternatives is interpreted as substitution effect on the demand side. Finally, capital-

labor substitution in the production process is the residual, which is by construction equal to the

change in the labor share in the Cobb-Douglas specification.

Table 4 displays the results. Capital-labor substitution in production has been the dominant

force, decreasing the labor share by −11.6 percentage points in total. Driven by a steep decline in

the price of equipment capital, this force accelerated from the 1980s onwards. On the consumer
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Table 4: Decomposition of aggregate labor share changes

1950–1982 1982–2007 Total

Data 0.2 −6.8 −6.6

Model (benchmark) 0.4 −5.5 −5.0
Technology: K-L substitution −3.6 −8.0 −11.6
Preferences: Income effect 4.2 3.5 7.7
Preferences: Substitution effect −0.1 −1.0 −1.1

Data: BLS, BEA I-O Tables, CEX. See text for details on the model.

demand side, rising real income has had a strong positive effect on the labor share throughout (+7.7

points cumulatively), while substitution towards capital-intensive products has played only a minor

role (−1.1 points). Looking at the two subperiods, I find that until the early 1980s capital-labor

substitution in production was more than offset by the income effect, shifting consumer demand

towards labor-intensive goods in proportion to overall economic growth. Subsequently, the former

effect dominated.

5.3 Homothetic model results

What does the neoclassical model imply for the evolution of the aggregate labor share if demand is

restricted to be homothetic? To answer this question, I first re-estimate the benchmark model under

homothetic CES preferences. The estimated consumers’ substitution elasticity is lower: σ̂ = 0.76.

This is because labor is the factor that is becoming relatively more expensive over time. Thus, when

removing income effects, which in the aggregate shift consumption towards labor-intensive goods,

this shift is (misleadingly) attributed to substitution effects in the form of a lower estimate for σ.

The top left panel of Figure 7 compares the aggregate labor share in that alternative homothetic

model to the data, and to the baseline model that allows for non-homotheticities. Without income

effects, the decline of the labor share is even more striking. The model fails in particular in the

earlier time period, up to the 1980s.

It either model version, it is possible to perfectly match the data on capital prices, real output

growth, and the labor share, by treating TFP At and the labor-augmenting component ALt as free

parameters. While this procedure results in reasonable low-frequency movements for At and ALt

in the baseline model, this is not at all the case for the homothetic model. The top right panel

of Figure 7 displays linear time trends for TFP in both model versions. The homothetic model

requires TFP to fall by around one third over 1950–1982; expressed in annual rates, by more than

1.2% p.a. The intuition is that labor costs have to fall as much as capital costs, but the latter are

falling relative to the price of consumption. This is only possibly if TFP is declining. Of course,

this is just another way of quantifying the distance between the data and the homothetic model.

What if the estimates of η and/ or σ are wrong, is there some combination of (η, σ) that allows for

explaining the behavior of the aggregate labor share without technological regress under homothetic
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Figure 7: Non-homothetic vs. homothetic demand
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demand? The answer is no, as argued previously. The bottom panels of Figure 7 illustrate this

argument for the case of Cobb-Douglas preferences (σ = 1), with η = 1.35 as estimated, respectively

η = 0.7. Without technological regress, the model implies an ever declining (increasing) labor share

if η > 1 (η < 1).

6 Details and context on the capital-labor elasticity η

In this section, I first discuss potential biases that arise in estimating the crucial capital-labor

elasticity of substitution η. These are markups and profits, good-factor-specific technical progress,

and heterogeneous substitution elasticities. To facilitate the exposition, I analyze the estimating

equation (28) in long changes:

∆ ln

(
θLi

1− θLi

)
= constant+ (η − 1)κ̄i(r̂

E − r̂S) + ∆ξi. (35)

Subsequently, I put the estimate of η in context by relating it to elasticity parameters in an

industry-level framework with explicit input-output linkages, and by discussing the relation to

previous estimates in the literature.
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6.1 Markups and profits

So far, I assumed that markets are competitive, and thus calculated the capital share θKi as one

minus the labor share. Note that if there are instead pure profits, the observed labor share θLi does

no longer equal the true labor share of cost, but it is still a correct measure of the labor share of

income. There is no such distinction if markets are competitive. In this section, let θLi denote the

labor income share and θ̃Li the (unobserved) cost share. Let µi denote the markup over average

cost, so that (θLi + θKi )µi = 1 and θ̃Li = µiθ
L
i . The profit share πi is a function of the average

markup: πi = 1− 1/µi.

There is no need to take a stance on the underlying source of market power.38 The only

assumption I maintain is that factor input markets remain competitive. In other words, input

decisions are not distorted. Then, (35) still applies, albeit with the ratio of cost shares ∆ ln
(

µiθ
L
i

1−µiθLi

)
on the left-hand side—which we do not observe. Consider first-order approximations to this object

around the aggregate markup µ̄ and the aggregate labor share θ̄L:

∆ ln

(
µiθ

L
i

1− µiθLi

)
≈ (∆µi)θ̄

L + µ̄(∆θLi )

µ̄θ̄L
+

(∆µi)θ̄
L + µ̄(∆θLi )

1− µ̄θ̄L

=
(∆µi)θ̄

L + µ̄(∆θLi )

µ̄θ̄L(1− µ̄θ̄L)

=
µ̂i + θ̂Li
1− µ̄θ̄L

, (36)

where hats denote growth rates.

Thus, if we had data on markups (or cost shares), we could estimate the true elasticity η0 as

(η0 − 1) =
Cov

[
κ̄i(r̂

E − r̂S),
µ̂i+θ̂

L
i

1−µ̄θ̄L

]
V [κ̄i(r̂E − r̂S)]

=
1

(r̂E − r̂S)(1− µ̄θ̄L)

Cov
[
κ̄i, µ̂i + θ̂Li

]
V [κ̄i]

. (37)

Instead, in my previous analysis I implicitly set µ̄ = 1 and µ̂i = 0, and estimate

(η̂ − 1) =
1

(r̂E − r̂S)(1− θ̄L)

Cov
[
κ̄i, θ̂

L
i

]
V [κ̄i]

. (38)

Thus, the relative bias can be written as

(η̂ − 1)

(η0 − 1)
=

(1− µ̄θ̄L)

(1− θ̄L)

Cov
[
κ̄i, θ̂

L
i

]
Cov [κ̄i, µ̂i] + Cov

[
κ̄i, θ̂Li

] . (39)

The first term says that if there are pure profits in the economy (on aggregate), so that µ̄ > 1,

then the estimate has the correct sign but is biased towards one. For example, if µ̄ = 1.05, so that

38One simple example would be monopolistic competition within each sector, such that markups are a function of
the price elasticity of demand across varieties within a sector, which may vary across sectors and over time.
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the profit share equals π̄ = 1 − 1
1.05 ≈ 4.8%, then an estimated η̂ = 1.35 translates into a true

substitution elasticity η0 ≈ 1.39. The intuition is that the observed change in the labor income

share actually represents a more drastic change in the labor cost share. As the variation in capital

prices is fixed, the model requires a larger substitution elasticity to reconcile the data (i.e., the

deviation from the Cobb-Douglas benchmark of η = 1 must be larger).39

The second term says that if markups increased over time in equipment-intensive sectors, relative

to the rest of the economy, then (η̂− 1) could even have the wrong sign. For a number of available

cross-sectional markup estimates for the U.S. economy, I proceed to show that this is not the case.

First, I consider markup estimates from Hall (2018) for 60 KLEMS industries. Hall estimates

Lerner indices of market power, which are defined as marginal profit shares (the ratio of price less

marginal cost to the price). I map them into the the more disaggregated I-O industry classification

system.40 The Lerner indices are available in the form of linear time trends. Table 5 reports

descriptive regressions of labor share time trends on equipment shares, and/or this measure of time-

varying markup power (columns 3 and 4). By decade, labor shares fell on average by 2.3 percentage

points. While equipment shares account for all of that decline (as demonstrated previously), the

Lerner index is only marginally significant, both statistically as well as quantitatively.41

Table 5: Labor shares, equipment shares, and markup trends

(1) (2) (3) (4) (5) (6)

Avg. equipment share (θ̄Ei ) -0.167*** -0.164*** -0.155**
(0.061) (0.062) (0.061)

Hall’s Lerner index trend -0.049* -0.048
(0.027) (0.029)

Compustat markup trend -0.038** -0.035*
(0.019) (0.018)

Constant -0.023*** 0.007 -0.020*** 0.009 -0.021*** 0.007
(0.005) (0.013) (0.004) (0.012) (0.005) (0.012)

*** p < 0.01, ** p < 0.05, * p < 0.1

Dependent variable: good-level labor share trends ∆θLi . The regression is run in long changes (1982–2007 for labor
shares and Compustat markups, and 1988–2015 for the Lerner index obtained from Hall (2018)). 367 observations
(goods). Lerner index time trend estimates are available for 60 industries, at a higher level of aggregation. I map
them into the I-O classification. Compustat markups computed using sales and cost of goods sold (COGS). Robust
standard errors in parentheses. Observations weighted by final demand shares.

Second, I also compute markups for public firms, using Compustat data. In an influential

39To understand this, consider an extreme case where the labor share falls from 0.6 to 0.5 in the equipment-intensive
sector and stays constant at 0.6 elsewhere. Assume the true profit share equals 0.3, constant across sectors and over
time. Then the actual labor-capital cost share ratio in the equipment-intensive sector drops dramatically from 0.6

0.1
= 6

to 0.5
0.2

= 2.5 (and stays constant elsewhere), while I would mistakenly observe a less dramatic drop from 0.6
0.4

= 1.5 to
0.5
0.5

= 1.
40An additional detail is that I consider factor shares at the good level, whereas the Lerner indices are estimated

for industries. For the regression reported in Table 5, I map industry-level Lerner indices into good-level Lerner
indices, in analogy to the computation of labor shares. However, the regression results are very similar when using
unadjusted industry estimates instead.

41The same pattern holds for labor share trends within the KLEMS dataset, as I show in Table 13 in the Appendix.

32



paper, De Loecker and Eeckhout (2017) argue that for these firms, markups (and thus variable

profit rates) have increased substantially since 1980. I aggregate firm-level data to industry-

level, and subsequently good-level, variable profit rates, taking five-year averages around t =

1982, 1987, ..., 2007. Variable profit rates are defined as gross profits divided by sales, where gross

profits are sales minus cost of goods sold (COGS). As with Hall’s markup measure, on a descriptive

level the Compustat markup measure explains little of the cross-sectional labor share trend pattern

(columns 5 and 6 in Table 5). More formally, when controlling for Compustat markups, the

estimated capital-labor elasticity η̂ is virtually unchanged (Table 6, column 2). This finding

continues to hold when adding sales, general and administrative expenses (SG&A) to variable

costs (column 3) as proposed by Traina (2018).42

Table 6: Controlling for markups when estimating η

(1) (2) (3)

(η − 1) 0.400*** 0.391*** 0.400***
(0.123) (0.122) (0.124)

Compustat markup (COGS) -0.220
(0.205)

Compustat markup (COGS + SG&A) -0.065
(0.664)

*** p < 0.01, ** p < 0.05, * p < 0.1

Dependent variable: good-level labor shares ln θLit. The regressions are based on equation (31).
Columns (2) and (3) add measures of time-varying Compustat markups as controls, computed using
sales and either COGS (2) or COGS+SG&A (3). Time and good fixed effects are used in all
specifications; standard errors in parentheses (clustered at good level). 2,166 observations (361 goods,
6 time periods). Observations are weighted by final demand shares.

In sum, I conclude that rising markups are not causing an upward bias in my estimate of η.

The existence of pure profits, in general, would on the contrary generate a slight downward bias. If

profit trends were causing falling labor shares, and if profit trends were correlated with equipment

intensities, then my estimation strategy could fail. However, I find that this is not the case, based

on the above two independent markup measures.

Several clarifying remarks are in order. First, strictly speaking, my findings do not preclude

the possibility that uniformly rising markups contributed to the observed fall in the labor share

(in the regressions, such an effect would be subsumed by the time fixed effect). If markups did

indeed rise across the board and caused the labor share to fall, then the fall in the labor share

is over-explained, and there must be other driving forces outside of the model that increased the

labor share.

Second, the evidence on rising concentration and rising markups is mixed. While product-

42An implicit assumption in these regressions is that the output elasticity of the variable input may be time-varying
and sector-specific, but it is not sector-time specific. De Loecker and Eeckhout (2017) provide markup estimates for
various assumptions on the production technology; in particular, the headline measure allows for time-sector variation
in the output elasticity. They find that the increase in markups is not driven by changes in the output elasticity, but
by an increase in the variable profit rate, on which I focus here.
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market concentration has increased on the national level, the opposite is the case on the local level

(Rossi-Hansberg et al., 2018). The local level is presumably more relevant both for monopsony as

well as for monopoly power. Hall (2018) notes that because of substantial sampling variation, the

null hypothesis of no change in market power over time cannot be rejected (the p-value for the one-

tailed test is 0.11). As for the dramatically increasing aggregate markup reported by De Loecker

and Eeckhout (2017), this time-series is sensitive to the choice of aggregation weights (as noted by

them, see Figure B.4(b) in the appendix). Their headline measure is constructed as a sales-weighted

average. When weighting by cost, the increase post-1980 is muted and comparable to the pre-1980

variation. When relating to objects such as the aggregate labor share, the cost-weighted series is

the relevant one.43

Finally, depending on the precise definition of markups, in general it is possible that markups

are rising without an accompanying fall in the labor share. That would be the case if the wedge

between marginal cost and price increases, but this increase does not translate into rising economic

profits because it is entirely offset by rising overhead costs—indeed, overhead costs as measured by

SG&A in Compustat have increased.

6.2 Good-factor-specific technical progress

Here, I discuss potential biases arising when good-factor-specific technological progress terms are

correlated with the equipment capital intensity κ̄i, which enters the regressor. Formally, the residual

error term in (35) is equal to

∆ξi = (η − 1)
(
κ̄i(â

L
i − âEi ) + (1− κ̄i)(âLi − âSi )

)
. (40)

I focus on the equipment capital augmenting term âEi , and set âSi = âLi = 0. Moreover, to

simplify the exposition, I assume r̂S = ŵ = 0 for the purposes of this discussion. Then it can be

shown that

(η̂ − 1) = (η − 1)

(
1 + Corr

[
κ̄i, κ̄iâ

E
i

] σ [κ̄iâEi ]
σ [κ̄i] |r̂E |

)
, (41)

where Corr(x, y) denotes the the correlation coefficient between x and y, and σ(·) the standard

deviation. η̂ is an unbiased estimate of η if κ̄i is independent of âEi .44 In general, based on the

theory of directed technical change, one would expect that equipment-intensive sectors experienced

higher equipment-augmenting technical progress. This would suggest that the correlation term is

positive. If this is the case, (η̂ − 1) does have the correct sign, but is overestimated (given that

43To see this, consider the simplest setting. Define the aggregate markup as µ̄ ≡ s̄
c̄
, where s̄ is sales and c̄ is cost.

Let subscript f denote firm-level objects. Then µ̄ =
∑
f sf∑
f cf

=
∑
f

cf∑
f′ cf′

sf
cf

=
∑
f

cf∑
f′ cf′

µf ; i.e., cost-weights are

appropriate. The sales-weighted average increases if the dispersion of markups increases, which is the case in the
data. See Edmond et al. (2018) for a more formal argument about welfare, and in particular the striking difference
between sales- and cost-weighting reported in Figure 8.

44See Appendix B.2.2 for derivations.
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η̂ > 1). In terms of the magnitude of the bias, it is important to note that the price of equipment,

which is in the denominator of the bias term in (41), fell by more than a factor of four over the

sample period 1982–2007 (relative to a consumption good price index, even more so relative to

structures). Consequently, systematic differences in âEi need to be very large in order to affect η̂

quantitatively.

To assess the quantitative importance of this bias, I perform a Monte Carlo simulation. I assume

that equipment-augmenting technology is growing at a constant rate gEi , which is good-specific.

Table 7 reports the corresponding estimates for equation (31) when taking gEi into account. Each

cell refers to the median estimate, across simulation runs, for a given value of the annual standard

deviation of gEi and its correlation with the equipment intensity κ̄i. For example, σ(gEi ) = 0.01

translates into a standard deviation of 25 log points over 25 years, across goods. For this value

and a correlation of 0.5 between gEi and κ̄i, the corrected estimate of η is equal to 1.333, while I

estimated 1.364. In general, the corrected estimate is decreasing in the dispersion of growth rates.

As long as this correlation is positive (as suggested by the theory of directed technical change),

(η̂ − 1) has the correct sign, even if the dispersion of growth rates is very large.45

Table 7: Sensitivity of η̂ to equipment-augmenting, good-specific technical progress

σ(gEi ): 0.001 0.005 0.010 0.020 0.030 0.040 0.050
Corr(gEi , κ̄i):

-1.000 1.364 1.349 1.278 0.918 0.641 0.623 0.675
-0.500 1.364 1.350 1.315 1.144 1.033 0.966 0.946
-0.250 1.366 1.359 1.276 1.167 1.093 1.071 1.010
0.000 1.366 1.341 1.314 1.227 1.158 1.156 1.103
0.250 1.364 1.349 1.332 1.268 1.199 1.172 1.120
0.500 1.365 1.341 1.333 1.252 1.208 1.180 1.173
1.000 1.363 1.352 1.329 1.279 1.237 1.205 1.179

This table reports, for a given value of σ(gEi ) by column and Corr(gEi , κ̄i) by row, the median IV estimate of η̂ in
equation (31) across simulation runs. In each simulation run, gEi is drawn from a normal distribution with mean
zero, standard deviation σ(gEi ), and correlation Corr(gEi , κ̄i) with κ̄i. Then, the effective change in the log price
of equipment capital for good i is correctly computed as r̂Eit = r̂Et − (t − 1982)gEi (instead of r̂Eit = r̂Et as in the
baseline).

6.3 Heterogeneous substitution elasticities

The strategy for estimating η requires assuming that this elasticity is homogeneous across goods.

This is certainly restrictive. Thus, a relevant question is whether this approach produces

an unbiased estimate of the average elasticity η̄, where the average is taken over potentially

heterogenous good-level elasticities ηi for i ∈ I. Suppose the true model is as in (35), but with η

45To get a ballpark estimate of the size of this bias: the standard deviation of 5-factor TFP growth in 6-digit
manufacturing industries, as reported in the NBER-CES Manufacturing Industry Database, is equal to 0.205 over
the sample period 1982–2007 (which is equal to 0.0082 in terms of annual growth rates); the correlation with equipment
intensity equals 0.138. Using these two values decreases the IV estimate of η from 1.364 to 1.330.
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replaced by ηi. Then it can be shown that

(η̂ − 1) = (η̄ − 1) +
Cov

[
κ̄2
i , (ηi − 1)

]
− Cov [κ̄i, (ηi − 1)]E [κ̄i]

V [κ̄i]
. (42)

As long as ηi is independent of κ̄i, the second term in (42) is equal to zero, and η̂ is an unbiased

estimate of η̄.46 This orthogonality assumption could be violated if certain goods have a high

equipment intensity of capital (κ̄i) because capital and labor are very substitutable in production.

Note, however, that there is no mechanical correlation in this framework. A higher substitution

elasticity ηi leads to a faster falling labor share, but does not directly affect the share of equipment

capital income relative to total capital income (κ̄i). The latter, more precisely changes in the latter,

are regulated by the elasticity of substitution between equipment and structures.

6.4 Explicit input-output linkages

In this paper, I do not model input-output linkages explicitly, but instead specify the production

function at the final good level with only labor and (different types of) capital as inputs. Thus,

the resulting estimated overall elasticity η represents substitution between capital and labor along

the full value chain of a good. In the literature, the production function is often specified at

the industry level, meaning that the estimated elasticity reflects capital-labor substitution within

an industry only. It can be shown that the overall substitution elasticity η, which I estimate,

is a convex combination of the above mentioned within-industry substitution elasticity and two

other elasticities that regulate how substitutable intermediate inputs are.47 Hence, my estimate

η̂ = 1.35 is in general consistent with different estimates at the industry level. In particular, if

intermediate inputs are highly substitutable, then good-level elasticities are higher than industry-

level elasticities.48

6.5 Relation to the literature

The literature on estimating the capital-labor elasticity is voluminous. While there is a lot of

variation, most estimates are below one. I proceed to discuss the relation to a few key papers.

Karabarbounis and Neiman (2014) is closest to the present paper as their strategy is also based

on long-run, cross-sectional variation in the price of capital. While this paper zooms into the U.S.

economy and constructs the price of capital by detailed industry (and subsequently for each good)

as a cost-share weighted average of national capital prices, Karabarbounis and Neiman (2014)

analyze cross-country variation in capital prices and factor shares. Their preferred estimate is 1.25,

roughly in line with my findings.

46See Appendix B.2.3 for derivations.
47Appendix B.2.4 formally establishes this claim.
48E.g., see Peter and Ruane (2018), who estimate a long-run plant-level elasticity of substitution between

intermediate inputs of 4.3, using data on Indian manufacturing industries.
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Antràs (2004) is a prominent example of a paper that estimates the capital-labor elasticity based

on time-series data for the U.S. economy. Most specifications, including the preferred one, result

in a value significantly below one. The identifying assumption in the baseline specification is that

factor-augmenting technological change is constant over time (e.g., AKt = AK0 e
λKt). In imposing

this functional form assumption, one can control for the unobserved AKt and ALt variables by simply

adding a linear time trend to the FOCs for capital and labor (in logs). To deal with deviations from

that linear trend, which can bias the estimate, Antràs (2004) employs a generalized instrumental

variables strategy. Government wages, government capital stocks, and population size are used as

instruments for prices, respectively quantities (depending on the specification), of capital and labor

in the private sector. Since annual deviations from a linear time trend constitute the identifying

variation, his estimate can be interpreted as short-run (i.e., annual) capital-labor elasticity. In

contrast, my estimate is driven by differential exposure to secular trends in capital prices. Thus,

it should be thought of as a medium- to long-run elasticity. That capital and labor are more

substitutable over longer time periods is plausible.

In general, the findings in this paper pose a problem for estimates based on aggregate data.

The non-homotheticity in demand confounds the estimate of the capital-labor elasticity. Restating

Proposition 1 in slightly simplified form:

dθ̄L = (η̃ − 1)θ̄L(1− θ̄L)d ln(R/W ) + gCov(γi, θ
L
i ). (43)

Both over time and across countries, it is entirely possible that η̃ > 1, and even though the

researcher has perfect data on d ln(R/W ), she estimates η̃ < 1. For instance, she could observe

falling relative capital costs and increasing labor shares, concluding that η̃ < 1, while the truth is

that the positive income effect dominates the substitution effect. A naive approach to aggregate

data simulated from the benchmark model in this paper illustrates this: Using the time series for

the aggregate labor and capital shares over 1950–1982 and the true evolution of relative capital

costs, I estimate η̃ = 0.98. The intuition is that the aggregate labor share remained roughly stable,

while capital costs fell, which is only possible if the capital-labor elasticity is close to one (provided

that the non-homotheticity is ignored).

Oberfield and Raval (2014) estimate a capital-labor elasticity of 0.7 for value added within

the U.S. manufacturing sector, significantly below one. Their innovative approach departs from

the plant-level value added elasticity, which they subsequently aggregate to the manufacturing

sector by estimating auxiliary elasticities of substitution in demand. My estimate refers to a

different object because I consider the full U.S. economy, including all input-output linkages across

sectors. Thus, I consider in addition not only non-manufacturing goods and services, but also

the value added of manufacturing goods that is generated in non-manufacturing industries (e.g.,

janitors or accountants working for contractors in non-manufacturing industries). In addition, my

estimate may differ because it is based on differential exposure to equipment price trends across

goods, while Oberfield and Raval (2014) estimate the plant-level value added elasticity based on

residual wage variation across MSAs. They run the regression in levels in the cross-section. Since
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plants located in high-wage regions tend to have higher labor shares, this results in an estimate

below one. If residual wages are higher because of unobserved skills (or local factor-augmenting

productivity differences), the estimator is biased, and the true elasticity can possibly be larger

than one. Oberfield and Raval (2014) counter that argument by employing predicted wage changes

based on a region’s exposure, measured by regional employment shares, to national employment

trends in non-manufacturing industries as an instrument for residual wage levels. Using this Bartik-

type instrument results in basically the same estimate as OLS. As shown by Goldsmith-Pinkham,

Sorkin and Swift (2018), the Bartik instrument is numerically equivalent to using regional industry

shares as instruments. Thus, validity of this instrument requires that regional industry shares

are uncorrelated with unobserved skills and factor-augmenting technology terms (in levels, not in

changes). This is a strong assumption, as for example employment shares of high-skill industries

might be high precisely because the level of (unobserved) skills is high in a region. While my

estimation strategy is also based on a shift-share design, the panel structure allows me to control

for good fixed effects, so that this issue is mitigated.

In theory, abstracting from identification arguments and hypothetically extending it to the full

U.S. economy, the approach proposed by Oberfield and Raval (2014) results in a macro elasticity

that coincides with the object I defined as η̃ (i.e., the convex combination of the production elasticity

η and the consumers’ substitution elasticity σ). One advantage is that it allows for using local

variation in factor prices. On the other hand, in light of the increasing importance of intermediate

inputs, it is heavily dependent on correctly specifying demand. Using plant-level data, the primitive

elasticity reflects only capital-labor substitution within a plant, excluding the factor content of

intermediate inputs. Various aggregation steps are required to account for final and intermediate

input demand reallocation, increasing model uncertainty. In contrast, the upside of my approach

is that the estimated primitive elasticity already reflects capital-labor substitution along the full

value chain.

7 Model extensions and robustness

This section contains extensions of the baseline model and assesses the robustness of results along

a number of dimensions: rising consumer heterogeneity, international trade, final good prices, and

investment.

7.1 Increasing income and consumption inequality

The model abstracts from changes in consumer heterogeneity, focusing instead on mean income

growth. In this section, I argue that incorporating the rising inequality channel would strengthen

income effects, but only to a negligible extent.

Under non-homothetic demand, the distribution of income, or more precisely total consumption

expenditures, generally matters for the composition of aggregate demand. Moreover, consumption

inequality has increased over the past few decades. However, focusing on the application in this
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paper, that households’ consumption-induced labor shares are monotonically increasing in income

does not necessarily imply that more consumption inequality increases the aggregate labor share

(i.e., not even in partial equilibrium). Instead, whether this implication is true depends on the

relative extent of non-homotheticities in different parts of the consumption distribution. Intuitively,

more inequality makes the rich control a larger share of aggregate demand and in addition makes

them spend even more on luxuries as a share of their total consumption; however, at the same time

the poor will spend even less on luxuries as a share of their total expenditure. Indeed, if demand is

derived from generalized Stone-Geary preferences and all consumers are above the subsistence level,

then mean-preserving changes to the income distribution have no effect at all on aggregate demand,

as these opposing effects exactly cancel out. In agreement with the recent literature on structural

change, I find support for income effects that are not leveling off as quickly as Stone-Geary type

preferences would predict.49

Figure 8: Log-linearity of household labor shares
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Source: CEX, I-O Tables. Households grouped in percentile-year bins according to after-tax household income.
Consumption, income, and the labor share embodied in households’ consumption baskets are first demeaned within
each year; then, averages over all years (1980-2015) are reported. For the income graph on the left panel, the bottom
five percentiles are truncated, as they have very low income (all percentiles are reported for consumption).

Figure 8 plots households’ consumption induced labor shares against log income and log total

expenditure. The shape of these relations is close to linear, except for the top percentiles. Under

exact linearity, it is possible to derive an analytic expression for the partial equilibrium change in

the aggregate labor share in response to changes in a log-normal consumption distribution: Assume

that

θLh = c0 + c1 log(Eh), (44)

where θLh is the labor share of household h, Eh its total expenditure, and c0, c1 are positive scalars.

49See for example Buera and Kaboski (2009), Boppart (2014), and Comin et al. (2015).
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Let log(Eh) ∼ N(µ − σ2

2 , σ
2), so that E[Eh] = exp(µ). Then it can be shown (see Appendix C.2)

that

θ̄L ≡
E[Ehθ

L
h ]

E[Eh]
= c0 + c1

(
µ+

σ2

2

)
. (45)

Real personal consumption expenditures grew by 87% or 63 log points over the period 1982–

2007, per capita. Over the same time period, estimates for the increase in the variance of log

consumption range from 6 to 18 points.50 Using these numbers, factoring in rising inequality can

increase the strength of income effects by ∆σ2/2
∆µ = 5 − 14%. Since linearity seems to break down

at the very top according to Figure 8, I view these numbers as upper bounds. I conclude that

while this channel would strengthen income effects, it is small, especially relative to the uncertainty

concerning the extent of increasing inequality and the exact shape of the household expenditure–

labor share relation.

7.2 International trade

So far, I have abstracted from international trade and assumed that all production is domestic.

In this section I show that this simplification does not affect the main findings of this paper:

First, accounting for imported goods along the value chain does not change the relation between a

household’s income and the labor share of its consumption basket. Second, the pattern of factor

shares across imports and exports does not mechanically drive the evolution of the aggregate labor

share. Third, import exposure does not confound the estimate of the capital-labor elasticity.

The I-O Tables allow for decomposing a dollar of expenditure on good i in year t into payments

to domestic labor, payments to domestic capital, and payments to imports.51 Again, these

shares refer to all value added created along the full value chain; i.e., the import share accounts

both for imported final and intermediate goods. Given this decomposition of value added, it

is straightforward to compute a household’s consumption-induced import share as expenditure-

weighted average of good-level import shares. I do not find a strong relationship between household

income and household import shares (see Figure 16 in the appendix).52 Figure 9 reports two

trade-adjusted measures of a household’s labor share: the first one is computed as the ratio of a

household’s spending on domestic labor to its spending on domestic labor and domestic capital,

whereas the second one divides by total expenditure instead. While the second one obviously results

in a lower level, for both measures the cross-sectional difference is virtually the same as in the naive

baseline, which assumes that all goods are produced domestically.

Second, if the U.S. imported labor-intensive goods and exported capital-intensive goods, as

Heckscher-Ohlin trade theory would suggest, then increased openness to trade would decrease the

50See Attanasio and Pistaferri (2016) for an overview of the literature on inferring consumption inequality. The
consensus has shifted towards the higher end of estimates, see in particular Aguiar and Bils (2015).

51See Appendix A.3 for details.
52This finding is in agreement with Borusyak and Jaravel (2018), who in addition consider consumer packaged

goods and automobiles in greater detail.
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Figure 9: Household labor shares: Correcting for imports
.4

5
.5

.5
5

.6
H

ou
se

ho
ld

 L
ab

or
 S

ha
re

0 20 40 60 80 100
Household Income Percentile

Naive Trade adj. (share of dom. VA)
Trade adj. (share of exp.)

(a) Labor share

-.1
-.0

5
0

.0
5

.1
Lo

g 
H

ou
se

ho
ld

 L
ab

or
 S

ha
re

 (n
or

m
al

iz
ed

)

0 20 40 60 80 100
Household Income Percentile

Naive Trade adj. (share of dom. VA)
Trade adj. (share of exp.)

(b) Normalized log labor share

Source: CEX, I-O Tables. Households grouped in percentile-year bins according to after-tax household income.
Averages over all years (1980-2015) are reported. ’Naive’ refers to baseline labor share, which assumes all goods
are produced domestically. Trade adjustment factors in imports along the full value chain, such that a dollar of
household spending is decomposed into domestic labor payments, domestic capital payments, and imports. Adjusted
labor shares are reported as a share of domestic value added and as a share of expenditure.

U.S. labor share. This, however, is not the case. Instead, the factor shares of the baskets of

exports and imports are very similar (see Figure 13 in the appendix).53 Note that the latter is

a hypothetical concept that assumes imports are produced with U.S. technology.54 In that sense,

rising import penetration has not directly affected the evolution of the U.S. labor share.

Lastly, exposure to import competition could directly (by outsourcing of labor intensive tasks) or

indirectly (e.g., by weakening the bargaining position of domestic workers) decrease labor shares.

Potentially, this could lead to a biased estimate of the capital-labor elasticity η, if goods with

relatively faster falling capital prices (i.e., equipment-intensive goods) were primarily affected by

this channel. Indeed, not only have high-equipment share goods experienced faster falling labor

shares (column (1) in Table 8), they also experienced faster growing import shares (4), since they

tend to be more tradable. However, the cross-sectional relation between labor and import share

changes is rather weak (2), and the correlation between labor share changes and equipment shares

is largely unchanged when adding import share changes as a control (3).55 In that sense, increased

openness to trade did not create a spurious association between falling capital prices and falling

labor shares.

53See also Valentinyi and Herrendorf (2008). A stronger version of this finding is known as the Leontief paradox.
54Even though hypothetical, the concept is the right one in this context: For simplicity, say the U.S. used to

be in autarky, and now exports financial services to and imports apparel from China. Rising imports and exports
mechanically decrease the aggregate U.S. labor share if (and only if) apparel is produced with a higher labor share
than financial services within the U.S. Whether or not apparel is produced with a higher labor share in China is
irrelevant.

55Similarly, adding import shares as a control in the main panel regressions based on equations (28) and (31) does
not affect the estimated capital-labor elasticity η. See Table 12 in the appendix.
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Table 8: Labor shares, equipment shares, and import shares

Dependent variable: Labor share trend (∆θLi ) ∆θIi

Independent variable: (1) (2) (3) (4)

Average equipment share (θ̄Ei ) -0.165*** -0.161*** 0.228***
(0.049) (0.053) (0.053)

Import share trend (∆θIi ) -0.092 -0.019
(0.058) (0.053)

Constant 0.006 -0.018*** 0.006 -0.007
(0.009) (0.005) (0.009) (0.008)

*** p<0.01, ** p<0.05, * p<0.1

The regression is run in long changes (1982–2007). 369 observations (goods). Robust standard errors
in parentheses. Observations weighted by final demand shares.

7.3 Good prices

In the baseline model, TFP growth is common across goods: ∆Ait = ∆At. Thus, differential price

trends across consumption goods are entirely due to differences in factor shares. In the data there

is a lot more price variation.56 Introducing good-specific TFP growth allows the model to match

the price data perfectly.

However, the main results are hardly affected, as Table 9 reveals. To understand this, consider

first the case of Cobb-Douglas preferences to isolate K-L substitution on the production side. In this

case, heterogeneity in TFP growth does not change factor shares at all: Consumers’ expenditure

shares are fixed. If TFP increases in sector 1 (and decreases in some other sector), then the

consumed quantity of good 1 is going up, but spending is unchanged. Hence, factor payments

are unchanged. Therefore, factor shares are not affected, neither on the sectoral level nor in the

aggregate. Similarly, the income effect is not affected by good-specific TFP growth as long as

real income growth is equal. This leaves merely the substitution effect on the consumer side to

(potentially) change. As it turns out, the effect on this channel, which is small to begin with, is

minor. I conclude that the results are not sensitive to allowing for a richer pattern of price changes.

7.4 Investment

So far, I treated consumption as the sole component of aggregate demand. In this section I

incorporate investment spending for the following two purposes. First, investment is a sizable

fraction of aggregate demand, and differs from consumption with respect to its sectoral composition

and changes therein over time. Second, in the baseline approach I back out capital stocks from

profit-maximizing behavior of firms, given data and assumptions on the user cost of capital.

Introducing investment allows for constructing the capital stock as a result of past investment

56The data source are the BEA’s Industry Economic Accounts. In particular, I use annual chained-price indices
for gross output by industry on the summary level (71 industries). More detailed data is not available for the time
period considered.
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Table 9: Aggregate labor share changes: Sensitivity to alternative price data

1950–1982 1982–2007 Total

Data 0.2 −6.8 −6.6

Model (common TFP growth) 0.4 −5.5 −5.0
Technology: K-L substitution −3.6 −8.0 −11.6
Preferences: Income effect 4.2 3.5 7.7
Preferences: Substitution effect −0.1 −1.0 −1.1

Model (good-specific TFP growth) 0.1 −4.9 −4.8
Technology: K-L substitution −3.6 −8.0 −11.6
Preferences: Income effect 4.0 3.6 7.6
Preferences: Substitution effect −0.3 −0.5 −0.8

instead, and thus answering the following two related questions: How do the investment rates

implied by the baseline model compare to the data? If we assume that in the data investment rates

are measured correctly, how different are the model predictions?

7.4.1 Investment as a component of aggregate demand

Regarding the first objective, Figure 10 plots the change in the aggregate labor share for different

definitions of final demand. To reiterate, so far I have equated final demand with private

consumption. Thus, I have studied the share of labor in the total cost of producing all consumption

goods, which we can refer to as the consumption labor share. The aggregate labor share is falling

a bit faster, by about one percentage point, when accounting in addition for private investment

spending. Government purchases and net exports do not alter the aggregate trend.57 Over the

sample period 1982–2007, the investment labor share fell by 8.9 percentage points, while the one of

consumption fell by 4.9 points. Statistically, we can further decompose this difference into a within-

sector and a between-sector, or reallocation, component. As before, a sector does not correspond to

an industry, but to a final good (or service), reflecting value added at all stages of production. The

top right panel of Table 10 reveals that investment spending shifted towards labor-intensive goods

to a much smaller extent than consumption. Note that the reallocation component reflects both

substitution as well as income effects. For consumption, as shown income effects are strong and

positive. For investment, the notion of an income effect is unclear, as firms are making investment

decisions, not households. It is therefore not surprising that the reallocation component is smaller.

Moreover, relative to consumption, investment spending is also concentrated in sectors with faster

declining labor shares.58

As investment spending, relative to consumption, has been fairly flat without any apparent trend

(see Figure 14 in the Appendix), I do not model the optimal consumption-savings choice. Instead,

57See Figure 13 and the discussion in Appendix A.1 for further details.
58Note that while, relative to consumption, more of investment value added is created in manufacturing, that ratio

has been declining as well over time. By now, more than half of investment value added is created in services sectors.
See Herrendorf, Rogerson and Valentinyi (2018) on the implications for modeling structural change.
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Figure 10: Change in labor share for various definitions of final demand
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Source: BEA I-O Tables, own computations. Final demand components are personal consumption expenditures
(PCE), private fixed investment (PFI), government purchases (GP) and net exports (NX). Reflects all private sectors,
government sectors are excluded (GP refers to the government buying goods that are produced in the private sector).

I take nominal investment rates directly from the data. As for the composition, I model investment

into equipment & software (E), respectively structures (S), as homothetic CES aggregators:

Ikt = Akt

(∑
i∈I

(
ωki

) 1

σk (qkit)
σk−1

σk

) σk

σk−1

, k ∈ {E,S}, (46)

where qkit is the quantity of good i used for type k investment in period t. The I-O Tables allow for

a breakdown of total private fixed investment into the two types for the sample period 1982–2007,

for each final good i ∈ I. The level parameters ωki are chosen such that expenditure shares in

the model agree with the data in the base year 1982. I estimate σE , similarly to the substitution

elasticity σ in consumption, from variation in equipment investment shares in response to price

changes over time.59 As in Section 7.3, I utilize price data from the BEA Industry Accounts.60 For

structures, I impose σS = 1 (i.e., expenditure weights are constant over time), as the construction

sector accounts for more than 80% of structures investment spending throughout.

59Since all prices are normalized to one in the base year 1982 (implicitly, the units of goods are chosen appropriately),
ωki can be directly equated to the expenditure share of good i in total PFI of type k = E,S. For the substitution
elasticity, I find that σ̂E = 1.29 (standard error: 0.045).

60The BEA price data is not fully quality-adjusted, requiring to add an extra TFP term Akt . Without this extra
term, the model price of equipment, relative to consumption, would not decline as fast as in the targeted data series
(DiCecio, 2009).
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Table 10: Change in labor share: Aggregate consumption vs. investment

1950–1982 1982–2007

Between Within Total Between Within Total

Data
Total (PCE+PFI) 2.0 −7.9 −5.8

Consumption (PCE) 2.4 −7.3 −4.9
Investment (PFI) 0.9 −9.7 −8.8

Model
Total 3.6 −3.6 0.1 2.2 −7.6 −5.4

Consumption 4.3 −3.4 0.9 2.9 −7.1 −4.2
Investment 0.1 −4.2 −4.1 0.1 −9.2 −9.0

Source: BEA I-O Tables, own computations. Change in labor share in percentage points, computed on rolling
basis (sectoral classifications are time-varying in data). For final demand type f ∈ {Total, PCE,PFI}, between
component computed as

∑
t=2,...,T

∑
i∈It(ω

f
i,t−ω

f
i,t−1)θLi,t−1; within as residual:

∑
t=2,...,T

∑
i∈It ω

f
i,t(θ

L
i,t−θLi,t−1).

The bottom panels of Table 10 report the results of this exercise.61 Looking at the sample period

1982–2007, the model successfully captures the broad reallocation patterns for both consumption

and investment. The model also reflects that investment, relative to consumption, is more heavily

concentrated in sectors with faster falling labor shares. Specifically, the final goods that are used

for investment purposes are primarily manufacturing and construction goods, which are produced

with a relatively high equipment capital intensity. In the model, labor shares are falling faster in

those sectors because of the steep decline in the price of equipment capital (given that η > 1).

7.4.2 Consistency between investment and capital stocks

In the baseline approach followed in this paper, I essentially back out capital stocks from the

first-order conditions of profit maximizing firms, feeding in an exogenous factor price of capital:

pkt R̃
k
t = pi,t

Ai,t∂Fi(K
E
i,t,K

S
i,t, A

L
i,tLi,t)

∂Kk
i,t

, k ∈ {E,S}, (47)

where pkt is the relative price of type k capital and R̃kt the required return (per dollar of capital).

I take pkt from the data and assume R̃kt is constant over time, which is a conservative assumption

as applying the user cost formula (22) yields a declining required return post-1980s because of the

declining real interest rate.62 In this baseline approach, the constant R̃k is a normalization: By

virtue of the calibration, the model fits capital shares in the base year τ = 1982 perfectly.63 A

61Contrary to the baseline model, I am using the BEA’s aggregate (PCE) consumption shares here instead of
expenditure shares constructed from household micro data (CEX), in order to compare both consumption and
investment to aggregate data.

62Moreover, even when using moving averages of the realized real interest rate, this leads to unrealistically volatile
factor shares.

63The baseline model is not truly dynamic, but a repeated static model. Hence, it is possible to choose 1982 as the
base year even though the model analysis spans 1950-2007.
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higher R̃k, for k = E,S, decreases the imputed real as well as nominal capital-output ratios (and

increases the calibrated production function share parameter αi given that η > 1), but does not

affect growth rates of factor shares.

Given the standard law of motion of capital, the baseline model implies time series of nominal

investment rates that can be compared to the data.64 Let the stocks of equipment and structures

evolve according to

Kk
t+1 = (1− δkt )Kk

t + Ikt , k ∈ {E,S}, (48)

where all objects are in efficiency units (quality-adjusted). δkt is the physical depreciation rate,

which hardly changes over time, and which I therefore treat as constant.65 For these implied

investment rates, the choice of R̃k does matter. A higher R̃k, by decreasing capital-output ratios,

implies lower required investment rates. I choose R̃k (more precisely, given δk I choose the sum of

the interest rate and expected asset inflation term) such that investment rates in model and data

agree over 1950–1982. The subsequent period can then be used to meaningfully compare model-

implied investment rates to the data. Concretely, for any constant R̃k, the time series of model

factor shares yield (Kk
t )2007
t=1950, since

θ̄kt =
pkt R̃

kKk
t

Yt
, k ∈ {E,S}, (49)

where Yt is nominal output
∑

i∈I pityit divided by the consumption deflator (recall that pkt is the

asset price relative to consumption). In turn, the law of motion (48) implies real investment Ikt ,

which in turn can be translated into nominal investment rates ikt :

ikt =
pkt I

k
t

Yt
, k ∈ {E,S}. (50)

To sum up, the baseline approach followed in this paper implies time series of nominal investment

rates ikt through the equations (49), (48), (50); one for equipment and one for structures. Observe

that the ikt are, for each element, monotonically decreasing in R̃k. Thus, for k = E,S, there is a

unique R̃k,? such that ikt , averaged over 1950–1982, matches the data equivalent.66 Given this choice

of required return, the left panels of Figure 11 compare investment rates implied by the baseline

model to the data. The content of these graphs concerns the later period 1982–2007. While in the

data the overall investment rate stays roughly constant at on average 21%, in the baseline model

the implied investment rate increases to an average of 26%. The baseline model implies missing

64Note that in this section, the ’baseline model’ refers specifically to the one introduced in the previous Section
7.4.1, with consumption expenditure shares matching aggregate (PCE) data, and investment (PFI) as a component
of final demand. It makes more sense to compare this model to the data on investment rates than the main one
discussed in the earlier sections, which is reflecting CEX spending data and does not feature investment expenditures.

65See Cummins and Violante (2002) for a discussion of economic vs. physical depreciation rates, and corroborating
evidence for constancy of δEt . Based on BEA Fixed Asset Table depreciation data and removing obsolescence due to
the change in the relative price of the asset, I find δE = 0.098 and δS = 0.027.

66I use time-consistent aggregate BEA data for nominal investment and consumption shares.
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investment of on average 5.1% of output.67

An immediate follow-up question is: if we assume that the nominal investment data is true and

let the capital stock evolve accordingly, how different are capital stocks and factor shares in such

an alternative model? I refer to this as the I-Model, to contrast it to the baseline. In the I-Model,

nominal investment rates ikt and capital prices pkt are taken from the data. For capital market

clearing, rental rates of capital adjust; i.e., R̃kt is endogenous (and thus time-varying). I impose

that the I-Model replicates the baseline model equilibrium in the initial year 1950 (in particular,

R̃k1950 = R̃k,?). While other model parameters are borrowed from the baseline model, I re-calibrate

the time series of labor-augmenting technology ALt such that real consumption growth still matches

the data. By construction, the I-Model agrees with the baseline on average over 1950–1982, when

it predicts a stable aggregate labor share (because over that time period, investment rates in the

baseline agree with the data).

The right panels of Figure 11 compare nominal capital-output ratios in the baseline to the ones

generated by the I-Model. The difference can be interpreted as missing capital. Missing total capital

is in relative terms lower than missing investment, reflecting in particular the low depreciation rate

of structures (which include residential structures), albeit missing equipment capital climbs to 18%

of output.68

Figure 12 contrasts factor shares of the baseline model to the I-Model. Recall that by

construction, the trends over 1950–1982 agree. There are a number of interesting observations:

First, as investment is lower in the I-Model post-1982 (relative to the baseline), capital stocks

are lower, and consequently (given that η > 1) capital shares grow at a slower rate. However,

even though the nominal capital-output ratio is flat post-1982, capital shares nevertheless increase.

This is because the physical capital-output ratio still increases in response to investment-specific

technical change. The point is easier to understand through the more familiar equations of a one-

sector model with just one type of capital K. Let kt ≡ Kt
Yt

denote the physical capital-output ratio

and pKt the relative price of the investment good. Then the FOC of capital is

pKt R̃t = α
1
η k
− 1
η

t (51)

and the equilibrium capital share is

θKt ≡
R̃tp

K
t Kt

Yt
= α

1
η k

η−1
η

t = α
(
pKt R̃t

)1−η
. (52)

The law of motion of capital (48) can be re-written in terms of kt and the growth rate of physical

67The volatility of implied investment rates reflects the absence of adjustment costs. As this paper is not concerned
with cyclical fluctuations, I abstract from them.

68Note that there are periods, for example the 1960s, where the equipment investment rate goes up in the data,
while the equipment capital-output ratio decreases. This is because both objects are reported in nominal terms
(indeed, with investment-specific technical change, physical ratios are non-stationary). Equipment investment tends
to be high when its price is declining fast, leading to a decreasing nominal capital-output ratio.
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Figure 11: Investment rates and capital-output ratios
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, where private fixed investment (PFI) and personal consumption
expenditures (PCE) refer to nominal BEA aggregates. The trend lines are obtained from HP-filtering the data with
smoothing parameter 100. The I-Model exactly matches the investment data; the capital stock is then constructed
accordingly from its law of motion. The baseline model backs out capital stocks from profit-maximizing behavior of
firms, given observed capital prices; required investment rates are then computed given the same law of motion of
capital.
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Figure 12: Factor shares: Different treatment of investment data

1950 1960 1970 1980 1990 2000 2010

Year

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

S
h
a
re

 o
f 
in

c
o
m

e

Labor share

Baseline Model

I-Model

1950 1960 1970 1980 1990 2000 2010

Year

0.12

0.14

0.16

0.18

0.2

0.22

0.24

S
h
a
re

 o
f 
in

c
o
m

e

Capital shares

Struct. (Base Model)

Struct. (I-Model)

E&S (Base Model)

E&S (I-Model)

Baseline model includes investment spending as a component of aggregate demand, but does not impose consistency
between investment and capital. I-Model in addition imposes consistency between investment and capital stocks,
matching the aggregate BEA investment share.

capital, gKt+1 ≡
Kt+1

Kt
− 1, as

(gKt+1 + δ)kt =
it

pKt
. (53)

As pKt is decreasing at a higher rate post-1982, from (53) it is apparent that the growth rate

of physical capital increases given a roughly constant nominal investment rate. This increases kt,

and since η > 1, from (52) it follows that the capital share increases. The simple one-sector model

does of course not feature the counter-acting forces of non-homothetic demand; still, the intuition

applies. Quantitatively, the cumulative change in the labor share is −3.7% in the I-Model, as

opposed to −5.3% in the baseline.

Second, as the capital share increase is more modest in the I-Model and R̃k is constant in the

baseline, (52) illustrates why R̃kt has to increase over time in the I-Model for capital market clearing.

This requires an increasing wedge between observed real riskfree rates and the rate used by firms

when making investment decisions, reflecting the arguments in Caballero, Farhi and Gourinchas

(2017), and Karabarbounis and Neiman (2018).

To summarize, the fall in the labor share is somewhat smaller, though still sizable when

constructing the capital stock from observed investment data instead of imputing it based on

assumptions on the user cost of capital. Investment-specific technical change leads to capital

deepening in real terms even if nominal investment rates are constant. Since the capital-labor

elasticity is above one, capital deepening is also reflected in increasing capital shares.
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8 Concluding remarks

This paper reconciles the time series of the U.S. labor share in the post-war era. Based on a

neoclassical framework, I show that its evolution has been driven by two counteracting forces. On

the one hand, capital-labor substitution, driven by investment-specific technical change, has put

downward pressure on the labor share. On the other hand, an income effect arising from aggregate

economic growth has led to a shift of consumption towards more labor-intensive goods and services.

The method I follow in this paper is to first estimate the key elasticities using disaggregated

production data and consumption micro data, and then use a parsimonious model framework to

quantitatively account for the effects of falling equipment prices and aggregate economic growth on

factor shares. As observed in the data, abstracting from short-run fluctuations, the model generates

an aggregate labor share that is relatively stable until the early 1980s, and declining thereafter.

With constant substitution and income elasticities, the model identifies an accelerating bias of

technological progress towards equipment capital as the main culprit for the decline in the labor

share of national income.

Building on the results of this paper, there are several directions for future work. The first

concerns a better understanding of why labor-intensive goods and services tend to be luxuries.

One hypothesis is that new goods are more labor-intensive, and high-income households are early

adopters. Empirically, investigating this hypothesis requires going beyond the framework in this

paper with a fixed set of industries and goods, and to analyze product level data instead.69

Second, technological changes are exogenous in this paper. To inform policy, incorporating

endogenous and directed technical change might be important. In such a setting, the income

distribution can be allowed to feed back into the evolution of factor shares through endogenous

improvements in technology, in addition to the consumption channel studied in the present paper.

69Scanner data does provide the link between households and products; however, computing labor shares at the
detailed product level is challenging.
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A Data appendix

A.1 BEA Input-Output Tables

The BEA’s I-O Tables, available quinquennially 1982–2007, allow for a breakdown of aggregate

final demand into personal consumption expenditures (PCE), private fixed investment (PFI),

government consumption and investment (GP), as well as net exports (NX). Given final good labor

shares θLit, for i = 1, ..., It, t = 1982, ..., 2007, and final demand component expenditure weights ωfit
for f ∈ {PCE,PFI,GP,NX}, I compute the labor share of component f as θ̄L,ft =

∑
i∈It ω

f
itθ

L
it.

Figure 13 reports labor shares by year and final demand component. In particular, note that for

imports, this number corresponds to the (hypothetical) share of labor in producing the basket of

imported goods in the U.S., using the same technology that is currently used to produce domestic

output in these sectors.

Proprietors’ income and taxes: I follow Gollin (2002) and in particular Valentinyi and

Herrendorf (2008) in employing the economy-wide assumption for splitting the ambiguous part of

proprietors’ income into payments to labor and capital. I use the BEA’s GDP-by-Industry tables,

available at the 2-digit NAICS level. Specifically, industry value added is broken down in three

parts, as in the more detailed I-O Tables: compensation of employees (coe); production taxes and

subsidies (tx); and a residual called gross operating surplus (gos). In the GDP-by-Industry tables,

gos can be further decomposed into a part that is unambiguous capital income (corporate gross

operating surplus plus non-corporate consumption of fixed capital), and into ambiguous income

(non-corporate net operating surplus). Then, I compute propj , for each 2-digit industry j, defined

as the fraction of GOS that is ambiguous income. Subsequently, I map detailed I-O industries i

to 2-digit NAICS industries j using the official concordance, defining j(i). Finally, I reallocate a

portion

propj(i) × gosi ×
coei

coei + (1− propj(i))× gosi

from capital income gosi to labor income coei. I exclude taxes when calculating labor shares (i.e.,

labor shares are computed as coei
coei+gosi

after reallocating part of proprietors’ income).

Industry Classifications: I-O industry classifications are time-varying, based on SIC

industries up to 1992, and on NAICS industries after 1997. The changes from 1982–1992, as well as

1997–2007, are relatively minor. I manually create concordances for these years based on the I-O

Tables’ documentation. For the link between 1992 and 1997, I combine three official concordances:

I-O 1992 to SIC, SIC to NAICS, and NAICS to I-O 1997. All concordances are weighted by final

demand expenditure shares.
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Figure 13: Labor share (changes) for aggregate final demand components
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Figure 14: Nominal investment ratio
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A.2 CEX

A.2.1 Construction of CEX dataset

Sample selection: The sample is restricted to households with household heads aged 25-65, a

full-year of interview coverage (four quarterly interviews), and complete income responses. The

latter concept is defined by the BLS itself and captured by the variable RESPSTAT. The final

sample consists of 91,894 households and spans the time period 1980-2015.

Owner-occupied housing: In general, the CEX measures out-of-pocket expenditures. Hence,

while it reports the appropriate rent for renters, for home owners it reports cash expenditures

associated with owning a house (mortgage interest, property taxes, home insurance, maintenance

expenses, etc.). Fortunately, the rental equivalence of owning a house is recorded as well. I treat

this equivalent rent both as a component of consumption and of income. To avoid double counting,

out-of-pocket expenditures for home owners have to be subtracted. Since home owners’ rental

equivalence is not reported prior to 1982, I impute it based on later survey waves (1982-1990).

Specifically, I predict it by regressing the expenditure share of owner occupied housing on log

income, log total other expenditures, and demographic controls (reference person’s age, race, and

sex; household size; region; number of earners).

Income concept: I use after-tax household income as reported in the CEX (FINCATAX ) and

add the net rental equivalence for home owners to it (as explained above).

Diary survey items: I mainly rely on the CEX interview survey, which covers the majority

of household expenditures. The interview survey is missing expenses on housekeeping supplies,

personal care products, and nonprescription drugs, which amount to 5-15% of total expenditures

and which are reported in the diary survey. Consequently, I impute missing expenditures based on

diary survey data. Specifically, for each of these consumption categories, I regress annual household

expenditure as a fraction of household income on log income, demographic controls (see above),

and calendar year.

Treatment of zeros: For some goods with positive aggregate CEX expenditures in a given

year, there are households with zero recorded expenditure. This could be the case if either the

households forgot to record the item, or they simply did not spend anything on it. I impose a lower

bound on household expenditure shares equal to one tenth of a good’s aggregate CEX expenditure

share in that year in order to be able to take the logarithm and not have to drop these households.

A.2.2 Linking CEX and I-O Tables

The link from CEX data to the BEA’s Detailed I-O Tables is based on a manual concordance

by Levinson and O’Brien (2015). This concordance only covers the interview survey. I add diary

survey items manually, as well as a few interview survey items that are not part of their concordance

(rental equivalence of home owners, used car expenses).

Producer vs. purchaser prices: Expenditures in the CEX are denominated in purchaser

prices, whereas the I-O Tables are in producer prices. The difference between the former and
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the latter is a set of margins (wholesale, retail, and transportation). The I-O Tables contain

the necessary information to convert expenditures in purchaser prices to expenditures in producer

prices. In particular, the Use Table contains for each dollar of final demand expenditure on a good

i ∈ I: the fraction of that dollar that is recorded as revenue by the producer of good i, as well

as the fractions going to the wholesale sector, retail sector, and various transportation sectors. I

reallocate CEX spending according to this map, so that in the model consumer demand is specified

in producer prices (likewise, all production side data is already in producer prices).

Aggregate consumption in the CEX vs. PCE: A concern with the CEX data is that

its representativeness of aggregate consumption (PCE) has been declining over time (see Garner,

Janini, Passero, Paszkiewicz and Vendemia (2006)). First, my estimated income elasticities are

robust to measurement error as long as measurement error is of the form discussed in Aguiar and

Bils (2015); i.e., as long as measurement error is household-specific and / or good-specific, and

not household-good-specific. Second, these discrepancies beg the question of whether it is more

appropriate to use aggregate CEX expenditure weights ωCEXit or PCE-based weights ωPCEit for the

model analysis. On the one hand, PCE weights seem preferable because they are clearly more

reliable for aggregate trends. On the other hand, the estimated income elasticities of, e.g., health

or education expenditures strictly speaking only correspond to the fraction of these expenditures

that are out-of-pocket expenditures, as recorded in the CEX. I choose to use CEX weights for the

main results reported in Section 5, and as a robustness check PCE weights in Section 7.4.1 (where

I also include aggregate investment demand). I am comforted by the fact that the comparison

between model and data is similar in both cases.70

A.2.3 Additional CEX results

Figure 15 reports household-level labor shares by income percentile and decade. Contrary to Figure

2 (reported in the main text), income percentiles are time-varying, though the overall picture is

similar. Figure 16 displays household-level import shares, which exhibit a slight inverted U-shape

in household wealth.

Table 11 summarizes estimated income elasticities, expenditure shares, and labor shares. The

reported values are aggregated to the 2-digit I-O level, and averaged over time. Figure 17 displays

the cross-sectional covariance between labor shares and income elasticities, for varying levels of

disaggregation. Interestingly, when considering only a two-way split of consumption categories into

services and manufacturing, the covariance is close to zero. This is because the level difference

between the labor share of the manufacturing sector and the one of the services sector is minor (in

fact, the manufacturing labor share used to be higher than the one of services). The 1-digit level (9

goods) already captures almost two thirds of the covariance; the 2-digit (22 goods) level captures

more than 90% of the variation.

70Regarding the aggregate labor share trend, the main source of discrepancy is that the level of health expenditures
is lower in the CEX. The health sector has a relatively high (and increasing) labor share, and its expenditure share
is growing over time.
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Figure 15: Household labor shares (time-varying percentiles)
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Source: CEX (household consumption by category and income), BEA I-O Tables (labor shares). Income percentiles
are time-varying, so that households in a given income percentile bin typically have a higher level of real income in
later years.

Figure 16: Household import shares
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Source: CEX (household consumption by category and income), BEA I-O Tables (labor shares, import shares).
Income percentiles are time-varying, so that households in a given income percentile bin typically have a higher level
of real income in later years. Latest I-O Table is 2007; thus, data for 2010-15 reflects CEX spending data of that
year but import shares of 2007.
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Table 11: Expenditure shares, income elasticities, and labor shares, at the 2-digit I-O level

I-O Sector (2-digit) ωCEXi ωPCEi γi θLi θLi − θ̄L

11 Agriculture (nurseries, floriculture) 0.001 0.001 1.953 0.517 -0.072
21 Mining 0.002 0.000 1.076 0.297 -0.292
22 Utilities 0.051 0.031 0.747 0.436 -0.153
23 Construction 0.035 0.000 1.739 0.761 0.173
31 Manufacturing I (food, apparel...) 0.110 0.102 0.494 0.572 -0.017
32 Manufacturing II (wood, chemical...) 0.037 0.046 0.452 0.431 -0.158
33 Manufacturing III (cars, electronics...) 0.128 0.060 1.152 0.676 0.088
42 Wholesale trade 0.054 0.034 0.645 0.715 0.126
48 Transportation 0.024 0.026 1.421 0.745 0.156
49 Warehousing, couriers, postal service 0.002 0.001 -0.123 0.757 0.168
4A Retail trade 0.121 0.115 0.712 0.729 0.140
51 Information 0.042 0.033 0.980 0.505 -0.084
52 Finance and insurance 0.055 0.060 1.770 0.650 0.061
53 Rental and leasing 0.010 0.008 1.564 0.580 -0.009
54 Professional and technical services 0.009 0.016 1.370 0.727 0.139
56 Administrative and waste services 0.005 0.005 1.629 0.718 0.129
61 Educational services 0.019 0.025 1.480 0.795 0.207
62 Health care and social assistance 0.031 0.168 1.406 0.747 0.158
71 Arts, entertainment, and recreation 0.007 0.011 2.070 0.666 0.077
72 Accomodation and food services 0.061 0.060 1.797 0.715 0.127
81 Other services 0.060 0.051 1.425 0.732 0.143
oo Housing 0.135 0.148 0.451 0.179 -0.410

Source: CEX, I-O Tables. Housing consists of real estate (2002 I-O code 531000) and owner-occupied dwellings
(code S00800). Expenditure weights ω·i correspond to final good expenditures, not value added (thus, agriculture
has a tiny expenditure share). For various reasons, CEX and aggregate (PCE) expenditure shares differ: e.g.,
for health care and social assistance, the CEX share is much lower, because it captures only out-of-pocket
expenditures. The expenditure-weighted average income elasticity is 1; thus, luxuries are characterized by γi > 1.
All reported values are time-averages over 1982–2007.
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Figure 17: Cross-sectional covariance of income elasticities and labor shares
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Source: CEX, I-O Tables. This figure displays the (time average over the) cross-sectional covariance of income
elasticities and labor shares, for various levels of disaggregation, at the final good level. The rightmost bar corresponds
to the level of detail used in the benchmark (Detailed I-O Tables, 6-digit classification, 137 goods in I-O Tables with
active link to at least one CEX category). The second from the right corresponds to 5-digit I-O sectors (126 goods),
..., all the way to 1-digit sectors (9 goods) and manufacturing vs services (2 goods).
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A.3 Accounting for import intensity

The I-O Tables provide data on the use of each good (or service) by final demand category

(consumption, investment, government, etc.) and using industry. They also contain the total

value of imports, for each good. A naive approach to accounting for imports would just subtract

net imports from domestic final demand. This, however, is not just empirically wrong (since the

value of imported intermediate goods is substantial), but also infeasible: for many goods, the

resulting net domestic final demand would be negative as a result of this procedure. Because the

value of imported goods is not available by using industry, the assumption made by the BEA—

which I follow—is that each industry uses imports of a given good in the same proportion as the

imports-to-domestic supply ratio of that good. E.g., overall 20% of iron and steel mill products

were imported in 2002, and the assumption is that each industry that uses iron and steel mill

products as an input purchases 80% from domestic producers and 20% from abroad. Imposing this

assumption, one can solve for the domestic total requirements matrix, and subsequently for the

import share θIit ∈ [0, 1] of each good (in each year). For the details of these calculations, I refer to

Horowitz and Planting (2014).

Table 12 adds the (time-varying) import share θIit as a control in the regression that estimates

the capital-labor elasticity η. The results are largely unchanged.

Table 12: Controlling for import intensity

I. NBER-CES Manufacturing Database, BEA Fixed Asset Tables:

Dependent Var.: log θLit Dependent Var.: log
(

θLit
1−θLit

)
OLS IV OLS IV

(η − 1) 0.333** 0.333** 0.427*** 0.434*** 0.401*** 0.377** 0.364** 0.337**
(0.134) (0.137) (0.133) (0.138) (0.153) (0.153) (0.158) (0.159)

γIM−Share -0.002 0.022 -0.177 -0.200
(0.083) (0.082) (0.244) (0.244)

II.NBER-CES Manufacturing Database, Compustat:

Dependent Var.: log θLit Dependent Var.: log
(

θLit
1−θLit

)
OLS IV OLS IV

(η − 1) 0.282** 0.277** 0.407*** 0.401*** 0.615** 0.585** 0.572** 0.539*
(0.121) (0.119) (0.132) (0.132) (0.256) (0.265) (0.268) (0.276)

γIM−Share -0.049 -0.036 -0.205 -0.219
(0.078) (0.072) (0.257) (0.251)

*** p<0.01, ** p<0.05, * p<0.1

Source: NBER-CES Manufacturing Database, BEA FAT, Compustat, BEA I-O Tables. Time and good fixed effects
used for all specifications. N = 2, 172 (362 goods, 6 time periods). Standard errors (in parentheses) are clustered at
the good level. γIM−Share is the coefficient on the import share θIit, which is added as a control in this table. See
section 4.3.4 for a description of different specifications.
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B Additional results

B.1 Time-varying elasticity of substitution σt in consumer demand

In the main text, σt is restricted to be constant over time. I have considered splitting the sample

in three sub-periods. The results are displayed in Figure 18: the estimates are not precise enough

to allow for a time-varying σt.

Figure 18: Estimates of σt for different subperiods

B.2 Additional details on capital-labor elasticity η

B.2.1 Markups and profits

Here I report on the relationship between labor shares and market power within 60 KLEMS

industries over the period 1987–2015. As in the main text, I rely on the Lerner indices of market

power (marginal profit shares) provided by Hall (2018). Hall estimates both industry-specific

constants (LernerLeveli) as well as linear time trends by industry (LernerTrendi). I use labor

shares in value added, and divide Lerner indices by the ratio of industry value added to industry

sales. The latter transformation is conceptually appropriate, since labor shares are also measured

as a fraction of value added, but the results are comparable without applying this transformation.

Column (1) of Table 13, as a basic sanity check, confirms that on average (pooled over all years),

labor shares are lower in high market power industries. More relevant for this paper, Columns (2)-

(4) report on the evolution of labor shares across industries. Column (2) says that on average,

industry-level labor shares declined by 2.5 percentage points by decade (this number is very similar

to the 2.3 p.p. decline per decade that I computed for goods based on the I-O Tables). Column (3)

and (4) say that—across industries— there is a weak negative relation between labor share trends

and the level of market power as measured by the Lerner indices, while increases in market power

are not associated with falling labor shares (neither does the coefficient have the expected negative

sign). I conclude that the findings reported in the main text, that falling labor shares are difficult
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to rationalize by potentially increasing market power, continue to hold within the KLEMS dataset,

at the industry level.

Table 13: Labor shares and market power in KLEMS industries

(1) (2) (3) (4)

LernerLeveli -0.087**
(0.034)

t -0.025*** -0.022*** -0.026***
(0.005) (0.005) (0.004)

t× LernerLeveli -0.008*
(0.004)

t× LernerTrendi 0.096
(0.081)

Constant 0.685*** 0.687*** 0.687*** 0.687***
(0.045) (0.006) (0.006) (0.006)

Industry i fixed effects NO YES YES YES

*** p < 0.01, ** p < 0.05, * p < 0.1

Source: KLEMS, Hall (2018). The dependent variable is always the industry-level labor share θLit,
where i refers to one of 60 KLEMS industries. 29 time periods (1987–2015); 1, 740 observations. The
unit of t is a decade. Standard errors in parentheses (clustered at industry level). All regressions
weighted by industry value added.

B.2.2 Good-factor-specific technical progress

(η̂ − 1) =
Cov

[
κ̄ir̂

E , (η − 1)κ̄ir̂
E − (η − 1)κ̄iâ

E
i

]
V [κ̄ir̂E ]

= (η − 1)

(
1−

Cov
[
κ̄ir̂

E , κ̄iâ
E
i

]
V [κ̄ir̂E ]

)

= (η − 1)

(
1− Corr

[
κ̄ir̂

E , κ̄iâ
E
i

] σ [κ̄iâEi ]
σ [κ̄ir̂E ]

)

= (η − 1)

(
1 + Corr

[
κ̄i, κ̄iâ

E
i

] σ [κ̄iâEi ]
σ [κ̄i] |r̂E |

)
, (54)

where the last line follows since r̂E < 0. η̂ is an unbiased estimated of η, if κ̄i is independent of âEi ,

since then

Cov
[
κ̄i, κ̄iâ

E
i

]
= E

[
κ̄2
i â
E
i

]
− E [κ̄i]E

[
κ̄iâ

E
i

]
= E

[
κ̄2
i

]
E
[
âEi
]
− E [κ̄i]

2 E
[
âEi
]

= 0, (55)

using independence of κ̄i and âEi , and moreover that E
[
âEi
]

= 0 (by definition, good-factor-specific

technical progress is mean-zero).
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B.2.3 Heterogeneous substitution elasticities

Suppose the true model is as in (35), but with η replaced by ηi. Then

(η̂ − 1) =
Cov

[
κ̄i(r̂

E − r̂S), (ηi − 1)κ̄i(r̂
E − r̂S)

]
V [κ̄i(r̂E − r̂S)]

=
Cov [κ̄i, (ηi − 1)κ̄i]

V [κ̄i]
. (56)

The numerator in (56) can be re-written as

Cov [κ̄i, (ηi − 1)κ̄i] = E
[
κ̄2
i (ηi − 1)

]
− E [κ̄i(ηi − 1)]E [κ̄i]

= Cov
[
κ̄2
i , (ηi − 1)

]
+ E

[
κ̄2
i

]
E [(ηi − 1)]− (Cov [κ̄i, (ηi − 1)] + E [κ̄i]E [(ηi − 1)])E [κ̄i]

= Cov
[
κ̄2
i , (ηi − 1)

]
− Cov [κ̄i, (ηi − 1)]E [κ̄i] + (η̄ − 1)

(
E
[
κ̄2
i

]
− E [κ̄i]

2
)

=
(
Cov

[
κ̄2
i , (ηi − 1)

]
− Cov [κ̄i, (ηi − 1)]E [κ̄i]

)
+ (η̄ − 1)V [κ̄i] . (57)

Plugging (57) into (56) yields

(η̂ − 1) = (η̄ − 1) +
Cov

[
κ̄2
i , (ηi − 1)

]
− Cov [κ̄i, (ηi − 1)]E [κ̄i]

V [κ̄i]
. (58)

B.2.4 Relation to a framework with explicit input-output linkages

In this section, I show how the overall elasticity of substitution between capital and labor in final

goods production, η, relates to the one for value added within an industry. Recall that η represents

capital-labor substitution along the full value chain. To derive the relation between these two

elasticities, I explicitly specify the input-output structure. Assume that good i ∈ I = {1, 2, ..., n}
is produced in industry i combining a value added bundle vi with intermediate inputs xi according

to

yi =

(
(αyi )

1
ηy v

ηy−1

ηy

i + (1− αyi )
1
ηy x

ηy−1

ηy

i

) ηy
ηy−1

, where αyi ∈ (0, 1], ηy > 0 (59)

vi =

(
(αvi )

1
ηv k

ηv−1
ηv

i + (1− αvi )
1
ηv l

ηv−1
ηv

i

) ηv
ηv−1

, where αvi ∈ [0, 1], ηv > 0 (60)

xi =

∑
j∈I

(αxij)
1
ηx q

ηx−1
ηx

ij


ηx
ηx−1

, where αxij ≥ 0,
∑
j∈I

αxij = 1, ηx > 0. (61)

In this framework, the three primitive elasticities are (i) the capital-labor elasticity within

an industry’s value added bundle (ηv), (ii) the “outsourcing” elasticity ηy that regulates how

substitutable an industry’s value added bundle is with intermediate inputs from other industries,

(iii) and the intermediate input elasticity ηx that regulates how substitutable different intermediate

inputs are. The resulting overall elasticity of substitution at the final good level, η = (ηi)i∈I ∈ Rn,
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is again defined as ηi ≡ ∂ lnLi/Ki
∂ lnR/W , where Li and Ki refer to the inputs of labor and capital that

are used in producing the final good yi (not just in industry i, but in any industry). Note that in

this framework, η will not be constant in general (unlike in the baseline model used in this paper),

neither over time nor across goods.

Let pyi denote the price of good i, pvi the price of the value added bundle vi, and pxi the price

of the intermediate input bundle xi. Throughout, I assume cost minimization, so these prices refer

to optimal bundles. Let βi =
pvi vi
pyi yi

denote the value added cost share in production of good i, and

Γij =
pyj qi,j
pxi xi

the good j cost share in the intermediate input bundle used for production of good i.

Finally, let θL,vi = Wli
Wli+Rki

= Wli
pvi vi

denote the share of labor in value added of industry i. Then, the

overall labor share of good i, θLi , can be found by solving the following linear system:

θLi = βiθ
L,v
i + (1− βi)

∑
j∈I

Γijθ
L
j , i = 1, ..., n. (62)

Define the n-by-n matrix Γ = [Γij ]ij , let D(z) denote a matrix that has the entries of the vector z

on the diagonal and zeroes off the main diagonal, and let In denote the identity matrix of size n.

For all other objects defined earlier, z denotes the vector (zi)i∈I . Then the vector of overall final

good labor shares can be solved for as

θL =
[
In −D(~1− β)Γ

]−1
D(β)θL,v (63)

Note that the matrix inverse is the well known Leontief inverse, which takes into account the infinite

regress of industry A purchasing from industry B, which purchases from C, which purchases from

A... Denoting by θL,xi the labor share embodied in the intermediate input bundle xi, we have that

θL,x = ΓθL.

The following proposition relates η to the three underlying primitive elasticities ηv, ηy, ηx.

Proposition 2. The overall capital-labor elasticity of substitution in production of good i, η ∈ Rn,
is a convex combination of ηy, ηv and ηx. In particular:

η = M−1 (ηya+ ηvb+ ηxc) , (64)

where

M =
[
In −D(~1− β)Γ

]
D(θL)D(~1− θL) ∈ Rn×n

a = D(β)D(~1− β)D(θL,v − θL,x)(θL,v − θL,x) ∈ Rn

b = D(β)D(~1− θL,v)θL,v ∈ Rn

c = D(~1− β)Vx(θL) ∈ Rn, where Vx(θL) = ΓD(θL)θL −D(θL,x)θL,x
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Proof. First, note that the matrix version of (62) is

θL = D(β)θL,v +D(~1− β)θL,x = D(β)θL,v +D(~1− β)ΓθL, (65)

from which (63) follows immediately. Defining ηi ≡ d lnLi/Ki
d lnR/W as usual, we have that

dθLi
d lnR/W =

(1− θLi )θLi (ηi − 1) as before. Similarly,
dθL,vi

d lnR/W = (1− θL,vi )θL,vi (ηv − 1). Totally differentiate (62)

with respect to d lnR/W :

dθLi
d lnR/W

=
dβi

d lnR/W
(θL,vi −

∑
j∈I

Γijθ
L
j ) + βi

dθL,vi

d lnR/W

+ (1− βi)
∑
j∈I

dΓij
d lnR/W

θLj + (1− βi)
∑
j∈I

Γij
dθLj

d lnR/W
. (66)

To get expressions for dβi
d lnR/W and

dΓij
d lnR/W , first note that by Shephard’s Lemma

d ln pvi
d lnR/W =

(1− θL,vi ),
d ln pxi
d lnR/W = (1− θL,xi ) and

d ln pyi
d lnR/W = (1− θLi ). Then,

d lnβi
d lnR/W

= (ηy − 1)

(
d ln pyi

d lnR/W
− d ln pvi
d lnR/W

)
= (ηy − 1)

(
θL,vi − θLi

)
, (67)

d ln Γij
d lnR/W

= (ηx − 1)

(
d ln pxi

d lnR/W
−

d ln pyj
d lnR/W

)
= (ηx − 1)

(
θLj − θ

L,x
i

)
. (68)

Substituting in for all derivatives in (66):

(1− θLi )θLi (ηi − 1) = (ηy − 1)βi

(
θL,vi − θLi

)
(θL,vi −

∑
j∈I

Γijθ
L
j ) + βi(1− θL,vi )θL,vi (ηv − 1)

+ (1− βi)
∑
j∈I

(ηx − 1)Γij

(
θLj − θ

L,x
i

)
θLj + (1− βi)

∑
j∈I

Γij(1− θLj )θLj (ηj − 1). (69)

(69) needs to be re-written in matrix form. Again, we have a linear system of n equations in n

unknowns, namely the vector η:

D(~1− θL)D(θL)(η − 1) = (ηy − 1)D(β)D(θL,v − θL)(θL,v − θL,x) + (ηv − 1)D(β)D(~1− θL,v)θL,v

+ (ηx − 1)D(~1− β)
(
ΓD(θL)θL −D(θL,x)θL,x

)
+D(~1− β)ΓD(~1− θL)D(θL)(η − 1), (70)

which results in (64) when bringing the last term in (70) to the LHS and multiplying both sides by

M−1 (from the left). The simplified expression for a in the proposition follows since

βi

(
θL,vi − θLi

)
(θL,vi − θL,xi ) = βi

(
θL,vi − βiθL,vi − (1− βi)θL,xi

)
(θL,vi − θL,xi ) (71)

= βi(1− βi)(θL,vi − θL,xi )2. (72)

To proof the last claim, that η is indeed a convex combination of ηy, ηv and ηx, write out the
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ith element of a+ b+ c, using repeatedly that θLi = βiθ
L,v
i + (1− βi)θL,xi :

ai + bi + ci = βi(1− βi)((θL,vi )2 − 2θL,vi θL,xi + (θL,xi )2) + βiθ
L,v
i − βi(θL,vi )2

+ (1− βi)
∑
j

Γij(θ
L
j )2 − (1− βi)(θL,xi )2 (73)

= −β2
i (θL,vi )2 − 2βi(1− βi)θL,vi θL,xi − (1− βi)2(θL,xi )2

+ βiθ
L,v
i + (1− βi)

∑
j

Γijθ
L
j (θLj + 1− 1) (74)

= −
(
βiθ

L,v
i + (1− βi)θL,xi

)2
+ βiθ

L,v
i + (1− βi)θL,xi − (1− βi)

∑
j

Γijθ
L
j (1− θLj ) (75)

= −
(
θLi
)2

+ θLi − (1− βi)
∑
j

Γijθ
L
j (1− θLj ) (76)

= θLi (1− θLi )− (1− βi)
∑
j

Γijθ
L
j (1− θLj ), (77)

or in vector notation

a+ b+ c =
(
In −D(~1− β)Γ

)
D(θL)(~1− θL). (78)

Hence

M−1 (a+ b+ c) = D(~1− θL)−1D(θL)−1
[
In −D(~1− β)Γ

]−1 (
In −D(~1− β)Γ

)
D(θL)(~1− θL)

= ~1. (79)

Moreover, a, b and c are all non-negative.

Note that η is truly a convex combination of ηy, ηv, and ηx; i.e., M−1 (a+ b+ c) = ~1 is an

n-vector of ones, and the vectors a, b, and c are non-negative. Furthermore, note that besides

the elasticities, all objects in this proposition are readily observable, respectively can easily be

calculated, in an input-output table. The weight on ηy, for good i, is increasing in the difference

between the labor share of the value added bundle vi and of the intermediate input bundle xi.

Clearly, the value of ηy only matters if the labor shares of xi and vi are different. The weight on

ηv is proportional to the cost share of the value added bundle, βi. Finally, the weight on ηx is

proportional to the weight on the intermediate input bundle times the variance of good-level labor

shares weighted by the (equilibrium) intermediate input mix of good i. For ηx to affect η materially,

it must be the case that intermediate inputs are quantitatively important and that labor shares

of different intermediate inputs are sufficiently heterogeneous. Two polar cases are instructive:

Without intermediate inputs, θL = θL,v and β = ~1, thus a = c = ~0 and η = ηv. Of course, without

intermediate inputs, the overall elasticity of substitution in production of good i is equal to the one

for value added. To consider the other extreme, assume that industries use either only capital or

only labor as direct inputs, i.e., θL,vi ∈ {0, 1}. In that case, b = ~0, and η is a convex combination
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of the outsourcing ηy as well as the intermediate input elasticity, ηx. Clearly, in that case the

industry-level, value added, capital-labor elasticity ηv is irrelevant (it is not even well defined).

Table 14: Good-level (η) vs. industry-level (ηv) capital-labor elasticity

Dependent Variable: log θLit log
(

θLit
1−θLit

)
(1) (2)

(η − 1) 0.427*** 0.364**
(0.133) (0.158)

(ηv − 1) 0.278 0.168
(0.256) (0.335)

*** p<0.01, ** p<0.05, * p<0.1

All cells refer to IV estimates of (η−1), resp. (ηv−1), weighted by final demand shares (η), resp. industry value added
(ηv). Time and good fixed effects are used in all specifications; standard errors in parentheses (clustered at the good,
respectively industry level). Columns (1) refers to equation (31), column (2) to equation (28). Equipment intensities
for the manufacturing sector are taken from the NBER-CES manufacturing database; for non-manufacturing they
are based on BEA-FAT.

It is possible, even simpler, to estimate ηv solely based on industry value added data, without

taking into account the input-output structure. Table 14 compares the estimated industry-level

elasticity ηv to the previously estimated overall good-level elasticity η. The results suggest that

the overall elasticity η is indeed larger than the one for value added within an industry ηv. Such a

relationship is expected if intermediate inputs are highly substitutable. As a case in point, Peter

and Ruane (2018) estimate a plant-level elasticity of substitution between intermediate inputs of

4.3, using data on Indian manufacturing industries.71 Their estimate refers to a 6-8 year horizon,

comparable with this paper.

Irrespective of the relation between these two objects, if demand is specified in terms of final

good expenditures as in this paper, η is the relevant object for questions such as the evolution of

the aggregate labor share. In this case, estimating η is a more direct route, compared to estimating

all three underlying elasticities.

71In the notation of this section, their estimate refers to the parameter ηx.
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C Derivations and proofs

C.1 Proof of proposition 1

Proof. I drop time indices in this proof for clarity. Let the wage rate, in efficiency units, be the

numeraire: ŵ ≡ d ln W
AL

= 0. The market clearing condition for labor can be written as

WL̄ = E

(∑
i∈I

ωiθ
L
i

)
, (80)

total labor income equals total expenditure on labor. Take the logarithm and totally differentiate

(80):

d ln(WL̄) = d lnE + d ln

(∑
i∈I

ωiθ
L
i

)
(81)

⇒ gL = d lnE +

∑
i∈I ωiθ

L
i (d lnωi + d ln θLi )

θ̄L
. (82)

Observe that

d lnE = d ln(WL̄+RK̄) = θ̄LgL + (1− θ̄L)(gK + r̂). (83)

Furthermore, d ln pi = (1− θLi )r̂ − gA by Shephard’s Lemma. Hence,

d lnP ≡
∑
i∈I

ωid ln pi = (1− θ̄L)r̂ − gA. (84)

Thus, substituting in for d ln pi
P and d ln E

P in (4),

d lnωi = (1− σ)(θ̄L − θLi )r̂ + (γi − 1)g. (85)

Substituting for d lnE, d lnωi and d ln θLi in (82):

gL =θ̄LgL + (1− θ̄L)(gK + r̂)+∑
i∈I ωiθ

L
i

(
(1− σ)(θ̄L − θLi )r̂ + (γi − 1)g + (η − 1)(1− θLi )r̂

)
θ̄L

. (86)

Rearranging this equation, we can write it as

gL − gK = η̃r̂ + g
Cov(θLi , γi)

θ̄L(1− θ̄L)
, (87)
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where Cov(θLi , γi) =
∑

i∈I ωi(γiθ
L − θ̄L) and

η̃ =
σV[θLi ] + ηE[θLi (1− θLi )]

θ̄L(1− θ̄L)
. (88)

Note that η̃ is indeed a convex combination of σ and η, since V[θLi ] + E[θLi (1 − θLi )] =

E[(θLi )2] − (θ̄L)2 + θ̄L − E[(θLi )2] = θ̄L(1 − θ̄L). If the capital-labor mix is equal in all sectors,

then η̃ = η. On the other hand, if θLi ∈ {0, 1} ∀ i ∈ I (the polar opposite case of maximal

variability of θLi across sectors), then η̃ = σ. The change in the aggregate labor share is given by

d ln θ̄L = gL − d lnE = (1− θ̄L)(gL − gK − r̂). Substituting for r̂ from (87) yields

dθ̄L = θ̄Ld ln θ̄L = θ̄L(1− θ̄L)

(
gL − gK −

1

η̃

(
gL − gk − g

Cov(θLi , γi)

θ̄L(1− θ̄L)

))
, (89)

which proves (9).

C.2 Aggregation with log-linearity

Let θLh = c0 + c1 log(Eh) and yh = log(Eh) ∼ N(µ− σ2

2 , σ
2). Then

θ̄L ≡
E[Ehθ

L
h ]

E[Eh]
=

E[Eh(c0 + c1 log(Eh))]

E[Eh]
= c0 + c1

E[Eh log(Eh)]

E[Eh]
= c0 + c1

(
µ+

σ2

2

)
, (90)

where the last equality follows since E[Eh] = exp(µ) and

E[Eh log(Eh)] = E[exp(yh)yh] (91)

=

∫
exp(y)y

1√
2σ2π

exp

(
−
(
y − µ+ σ2/2

)2
2σ2

)
dy (92)

=

∫
y

1√
2σ2π

exp

(
y − y2 − 2µy + yσ2 − µσ2 + µ2 + σ4/4

2σ2

)
dy (93)

=

∫
y

1√
2σ2π

exp

(
−y

2 − 2y(µ+ σ2/2) + (µ+ σ2/2)2 − 2µσ2

2σ2

)
dy (94)

= exp(µ)

∫
y

1√
2σ2π

exp

(
−
(
y − (µ+ σ2/2)

)2
2σ2

)
dy (95)

= exp(µ)(µ+ σ2/2). (96)
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D Model with non-homothetic CES preferences

D.1 Preferences and demand system

In a static context, a consumer with nominal income E (= expenditure) maximizes an implicitly

defined consumption aggregator U by choosing a consumption bundle (ci)i∈I :

max U (97)

subject to 1 =
∑
i∈I

Ω
1
σ
i c

σ−1
σ

i U
εi−σ
σ (98)

and
∑
i∈I

pici ≤ E. (99)

The following parametric restrictions are imposed: σ > 0 and (σ − 1)(σ − εi) > 0 ∀ i ∈ I, the

latter ensuring that ∂U
∂ci

> 0 ∀ i. Note that if εi = 1 ∀ i, the consumer has standard homothetic

CES preferences.

Setting up the Lagrangian:

L = U − λ

(
1−

∑
i∈I

Ω
1
σ
i c

σ−1
σ

i U
εi−σ
σ

)
− µ

(∑
i∈I

pici − E

)
. (100)

The first-order condition with respect to ci yields:

λ
σ − 1

σ
Ω

1
σ
i c
−1
σ
i U

εi−σ
σ = µpi. (101)

Multiplying both sides by ci, summing over all i ∈ I, and substituting in for the constraints,

λ

µ

σ − 1

σ

∑
i∈I

Ω
1
σ
i c

σ−1
σ

i U
εi−σ
σ

︸ ︷︷ ︸
=1

=
∑
i∈I

pici︸ ︷︷ ︸
=E

, (102)

relates the Lagrange multipliers to E. Plugging this expression back into (101),

EΩ
1
σ
i c
−1
σ
i U

εi−σ
σ = pi ⇒ ci = ΩiU

εi−σEσp−σi , (103)

which expresses the optimal quantity of good i as a function of its price, total expenditure, and

utility. Plugging this expression for ci into the budget constraint yields the expenditure function

E = E((pi)i∈I , U):

E1−σ =
∑
i∈I

ΩiU
εi−σp1−σ

i . (104)

The map between utility and expenditure is smooth and strictly increasing as long as

(σ − 1)(σ − εi) > 0 ∀ i. It is, however, in general non-linear, unlike in the homothetic case.
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Using the explicit definition of expenditure E as a function of utility U and prices in (104), and

substituting in for E in (103) yields a closed-form solution of Hicksian demand ci((pj)j∈I , U):

ci = Ωip
−σ
i U εi−σ

∑
j∈I

ΩjU
εj−σp1−σ

j

 σ
1−σ

. (105)

There is no closed-form solution for Marshallian demand ci((pj)j∈I , E). Given ((pj)j∈I , E), one

can use (104) to solve for U and subsequently plug it in (103).

Denoting the expenditure share of good i by ωi ≡ pici
E = pici∑

j∈I pjcj
, we have that

ωi =
pici∑
j∈I pjcj

=
Ωip

1−σ
i U εi∑

j∈I Ωjp
1−σ
j U εj

, (106)

or in terms of relative expenditure shares:

ωi
ωj

=
pici
pjcj

=
Ωi

Ωj

(
pi
pj

)1−σ
U εi−εj . (107)

Substitution elasticities: The compensated substitution elasticity between any pair of goods

is constant and equal to σ. Formally, when fixing U in (107) it immediately follows that

∂ ln ci/cj
∂ ln pj/pi

= σ. (108)

Income elasticities: From (107) it immediately follows that

∂ ln ci/cj
∂ lnU

= εi − εj . (109)

Relative demand elasticities, with respect to changes in utility U , are constant. However, U is an

ordinal measure of utility. What are the implied income elasticities of Marshallian demand, i.e.,
∂ ln ci
∂ lnE |fixed prices, that we can estimate in the data? Differentiating the expenditure function (104)

with respect to E:

(1− σ)E−σ =

(∑
i∈I

(εi − σ)ΩiU
εi−σ−1p1−σ

i

)
∂U

∂E
(110)

⇒ (1− σ)E1−σ =

(∑
i∈I

(εi − σ)ΩiU
εi−σp1−σ

i

)
∂ lnU

∂ lnE
(111)

⇒ (1− σ) =


∑
i∈I

(εi − σ)
ΩiU

εi−σp1−σ
i∑

j∈I ΩjU εj−σp
1−σ
j︸ ︷︷ ︸

=ωi

 ∂ lnU

∂ lnE
(112)
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⇒ ∂ lnU

∂ lnE
=

1− σ
ε̄− σ

, where ε̄ ≡
∑
i∈I

ωiεi. (113)

Consequently, from (103)

γi ≡
∂ ln ci
∂ lnE

= σ + (εi − σ)
∂ lnU

∂ lnE
= σ + (1− σ)

εi − σ
ε̄− σ

. (114)

Note that since (σ − 1)(σ − εi) > 0 ∀ i, we have that εi−σ
ε̄−σ > 0. Thus, non-homothetic CES

preferences bound (Marshallian) income elasticities: if σ < 1, then γi > σ for all i, i.e., income

elasticities are bounded from below. Of course, from the budget constraint the expenditure-weighted

average income elasticity has to equal one (formally γ̄ ≡
∑

i∈I ωiγi = 1). Analoguesly, if σ > 1,

then γi < σ for all i. Thus, the closer σ is to one, the tighter the bound on income elasticities

imposed by these preferences. In the limit, as σ → 1, the implied demand system converges to

the one implied by Cobb-Douglas preferences, not only with respect to the implied substitution

elasticity, but also with respect to the implied income elasticities.

First-order approximation to Marshallian demand system: In section 3, I proposed

a simple ad hoc demand system in equation (4). Here, I show how this demand system can

be rationalized as first-order log-linear approximation to the one implied by non-homothetic CES

preferences. Note that—both in section 3 as well as here—d lnP ≡
∑

i∈I ωid ln pi is the empirically-

motivated definition of an expenditure-weighted price deflator, not the ideal price index implied

by non-homothetic CES preferences. Start from (107), log-linearize, and subsequently sum over all

j ∈ I, weighted by ωj :

d lnωi − d lnωj = (1− σ)(d ln pi − d ln pj) + (εi − εj)d lnU (115)

d lnωi −
∑
j∈I

ωjd lnωj︸ ︷︷ ︸
=0

= (1− σ)(d ln pi −
∑
j∈I

ωjd ln pj︸ ︷︷ ︸
=d lnP

) + (εi −
∑
j∈I

ωjεj︸ ︷︷ ︸
=ε̄

)d lnU (116)

d lnωi = (1− σ)d ln
pi
P

+ (εi − ε̄)d lnU. (117)

Then, totally differentiate the expenditure function (104):

(1− σ)E1−σd lnE =
∑
i∈I

ΩiU
εi−σp1−σ

i ((1− σ)d ln pi + (εi − σ)d lnU) (118)

⇒ (1− σ)d lnE =
∑
i∈I

ΩiU
εi−σp1−σ

i∑
j∈I ΩjU εj−σp

1−σ
j︸ ︷︷ ︸

=ωi

((1− σ)d ln pi + (εi − σ)d lnU) (119)

⇒ d lnE =
∑
i∈I

ωid ln pi +

∑
i∈I ωiεi − σ

1− σ
d lnU (120)

⇒ d lnU =
1− σ
ε̄− σ

d ln
E

P
. (121)
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Combining (117) and (121), we confirm that

d lnωi = (1− σ)d ln
pi
P

+ (εi − ε̄)
1− σ
ε̄− σ

d ln
E

P
(122)

⇒ d lnωi = (1− σ)d ln
pi
P

+ (γi − 1)d ln
E

P
, (123)

where γi is the Marshallian income elasticity as in (114).

D.2 Estimating income elasticities with non-homothetic CES preferences

The starting point is the expression for the expenditure share (107) in time t, for household h, and

good i, relative to the reference good 0. Taking logs yields

ln

(
ωiht
ω0ht

)
= ln

(
Ωi

Ω0

)
+ (1− σ) ln

(
pit
p0t

)
+ (εi − ε0) ln(Uht). (124)

The aim is to estimate the income elasticity parameters εi from cross-sectional variation in

household expenditure. However, utility Uht is not observed. The difficulty is that Uht is an only

implicitly defined (but strictly increasing) function of observed household expenditure Eht, which

depends also on the unknown demand parameters ((Ωi)i∈I , σ) in addition to prices.

Proceeding in two steps, I first estimate

ln

(
ωiht
ω0ht

)
= ζ̃it + βit ln(Eht) + Γ′itZht + ξiht (125)

separately for each i and t. That is, I simply replace Uht by Eht. Having estimated β̂it for good i

for every t, I define β̂i as the time-average.

In the second step, I map the reduced form relative income elasticity parameters βi into the

structural parameters εi.This second step requires knowing the substitution elasticity σ, which will

be solved for as a fixed point. Specifically, I employ a log-linear approximation of the inverse

expenditure function (indirect utility function for fixed prices) around average expenditure Ēt as

in (113):

ln(Uht) = ln(Ūt) +
1− σ
ε̄t − σ

(ln(Eht)− ln(Ēt)) +O((ln(Eht)− ln(Ēt))
2), (126)

where ε̄t =
∑

i ω̄itεi . Thus, locally around Ēt it holds that

βit =
∂ ln

(
ωiht
ω0ht

)
∂ ln(Eht)

=
∂ ln

(
ωiht
ω0ht

)
∂ ln(Uht)

∂ ln(Uht)

∂ ln(Eht)
= (εi − ε0)

1− σ
ε̄t − σ

. (127)

Hence,

εi = ε0 + βit
ε̄t − σ
1− σ

. (128)
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Plugging this into the definition of ε̄t yields

ε̄t =
∑
i

ω̄itεi =
∑
i

ω̄it(ε0 + βi
ε̄t − σ
1− σ

) = ε0 + β̄t
ε̄t − σ
1− σ

, (129)

where β̄t =
∑

i ω̄itβit is the average income elasticity relative to good 0. This is a linear equation

relating ε0 to ε̄t, which we can solve for

ε0 = ε̄t
1− σ − β̄t

1− σ
+

σβ̄t
1− σ

. (130)

Finally, plugging (130) into (128) we get an expression for the structural parameters εi as a

function of ε̄t, σ, and estimated reduced form parameters:

εi = −σβi − β̄t
1− σ

+ ε̄t

(
1 +

βi − β̄t
1− σ

)
. (131)

Given a value of σ, the εi are identified up to one degree of freedom, their level ε̄t.

It turns out that given (βi)i∈I and β̄t, there is a set Σ ⊂ R++ such that a solution consistent

with the parameter restrictions exists if and only if σ ∈ Σ. A solution here means an ε̄t that gives

rise to (ε)i∈I that satisfy the restriction that (σ − 1)(σ − εi) > 0 ∀i ∈ I. Furthermore, either

Σ = (0, σ) ∪ (σ̄,+∞) or Σ = (σ̄,+∞) for some σ ∈ (0, 1) and some σ̄ > 1.

To see this, note that at ε̄t = σ, it holds that εi = σ for all i. Also note that the εi are linear in

ε̄t. Since ε̄t is an average over the εi, for some i it must hold that εi is increasing in ε̄t. Since (σ−εi)
must have the same sign for all i, for all i it must hold that εi increases in ε̄t; i.e.,

(
1 + βi−β̄t

1−σ

)
> 0 ∀i.

If σ < 1, then this condition holds for all i if it holds for the smallest relative income elasticity βmin.

In turn, this defines σ = 1 + (βmin − β̄t) < 1. Else, if σ > 1, then the condition holds for all i if it

holds for the largest relative income elasticity βmax. In turn, this defines σ̄ = 1 + (βmax − β̄t) > 1.

This, of course, is another way of stating the earlier observation that non-homothetic CES

preferences do not allow for having both strong income effects and weak price effects.

D.3 Further approach

Given a guess for σ, it is convenient to normalize utility Uτ = 1 in the base period (τ = 1982).

Then the demand level parameters Ωi can be set to equal expenditure shares, i.e., Ωi = ω̄CEXiτ .72

72Note that model expenditure shares are given by ωiτ =
Ωip

1−σ
iτ U

εi
τ∑

j∈I Ωjp
1−σ
jτ U

εj
= Ωi∑

j∈I Ωj
= ω̄CEXiτ . The expenditure

function indeed evaluates to one, Eτ =
(∑

i∈I ΩiU
εi−σ
τ p1−σ

i

) 1
1−σ =

(∑
i∈I ω̄

CEX
iτ

) 1
1−σ = 1.
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D.4 Substitution elasticity

Under non-homothetic CES demand, solving the model yields a time series of utility Ut.

Rearranging the FOCs for demand:

ln

(
ω̄CEXit

ω̄CEX0t

)
− ln

(
Ωi

Ω0

)
− (εi − ε0) ln(Ut) = (1− σ) ln

(
pit
p0t

)
. (132)

All terms (including the utility function parameters) on the LHS are known. I estimate σ by

regressing relative prices on residual demand (pooling all goods and years).

As explained in Section D.1, these preferences impose a joint restriction on income and

substitution elasticities. It turns out that this restriction is binding. Thus, the preference system

is rejected. Specifically, the estimated income elasticities imply σ = −0.59 and σ̄ = 2.34; i.e.,

σ ≥ 2.34. When calibrating the model, the estimation routine is stuck at the corner σ̄: when

guessing σ = 2.34 and solving the model, regression (132) returns σ̂ < σ̄. This is not surprising

as the reduced form demand specification that is used in the main text returns σ̂ = 1.51. In

general, if one were to estimate income and substitution elasticity parameters jointly, the estimated

parameters would give rise to a combination of income and substitution elasticities that does not

match the data (i.e., not even locally).

D.5 Results

The results of the model with non-homothetic CES utility are displayed in Figures 19. The only

difference to the specification in the main text is that, since σ is constrained to be larger, substitution

towards capital-intensive goods is stronger. Therefore, the labor share decline is steeper: over the

full time period, the fall is overstated by 48.6%.

Figure 19: Non-homothetic CES preferences: Aggregate labor share
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