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Abstra
t

Information spillovers between �rms 
an redu
e the in
entive to invest in R&D if property

rights do not prevent �rms from free riding on 
ompetitors' innovations. Conversely, strong

property rights over innovations 
an impede 
umulative resear
h and lead to ine�
ient du-

pli
ation of e�ort. These e�e
ts are parti
ularly a
ute in natural resour
e exploration, where

dis
overies are spatially 
orrelated and property rights over neighboring regions are allo
ated

to 
ompeting �rms. I use data from o�shore oil exploration in the UK to quantify the ef-

fe
ts of information externalities on the speed and e�
ien
y of exploration by estimating a

dynami
 stru
tural model of the �rm's exploration problem. Firms drill exploration wells

to learn about the spatial distribution of oil and fa
e a trade-o� between drilling now and

delaying exploration to learn from other �rms' wells. I show that removing the in
entive to

free ride brings exploration forward by about 1 year and in
reases industry surplus by 31%.

Allowing perfe
t information �ow between �rms raises industry surplus by a further 38%.

Counterfa
tual poli
y simulations highlight the trade o� between dis
ouraging free riding and

en
ouraging 
umulative resear
h - stronger property rights over exploration well data in
rease

the rate of exploration, while weaker property rights in
rease the e�
ien
y and speed of learn-

ing but redu
e the rate of exploration. Spatial 
lustering of ea
h �rm's drilling li
enses both

redu
es the in
entive to free ride and in
reases the speed of learning.
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1 Introdu
tion

The in
entive for a �rm to invest in resear
h and development depends on the extent to whi
h it


an bene�t from the investments of its 
ompetitors. If the knowledge generated by R&D, su
h

as new te
hnologies, the results of experiments, or the dis
overy of mineral deposits, is publi
ly

observable, �rms may have an in
entive to free ride on their 
ompetitors' innovations, for example

by introdu
ing similar produ
ts or mining in lo
ations near their rivals' dis
overies. When ea
h �rm

would rather wait to observe the results of other �rms' resear
h than invest in R&D themselves, the

equilibrium rate of innovation 
an fall below the so
ially optimal level (Bolton and Harris, 1999).

On the other hand if information �ow between �rms is limited, for example by property rights on

existing innovations, the progress of resear
h may be slowed be
ause of ine�
ient dupli
ation and

the inability of resear
hers to build on ea
h other's dis
overies (Williams, 2013).

The growth of knowledge and the generation of new ideas are the most important drivers of

e
onomi
 growth (Romer, 1990; Jones, 2002), and ine�
ien
ies in the rate of innovation have

potentially signi�
ant e
onomi
 e�e
ts. Poli
y that de�nes property rights over innovations plays

an important role in 
ontrolling the e�e
ts of information externalities and balan
ing the trade

o� between dis
ouraging free riding and en
ouraging 
umulative resear
h. For example, patent

law assigns property rights over innovations so that �rms who pro�t from an innovation must


ompensate the inventor for their resear
h investment. Broader patents minimize the potential

for free riding but in
rease the 
ost of resear
h that builds on existing patents, and may therefore

dire
t resear
h investment away from so
ially e�
ient proje
ts (S
ot
hmer, 1991).

In this paper, I quantify the e�e
ts of information externalities on R&D in the 
ontext of oil

exploration. Several features of this industry make it an ideal setting for studying the general

problem of information spillovers and the design of optimal property rights regulation. When

an oil �rm drills an exploration well it generates knowledge about the presen
e or absen
e of

resour
es in a parti
ular lo
ation. Exploration wells 
an therefore be thought of as experiments

with observable out
omes lo
ated at points in a geographi
 spa
e. Sin
e oil deposits are spatially


orrelated, the result of exploration in one lo
ation generates information about the likelihood of

�nding oil in nearby, unexplored lo
ations. The spatial nature of resear
h in this industry means

that the extent to whi
h di�erent experiments are more or less 
losely related is well de�ned.

Resear
h is 
umulative in the sense that the �ndings from exploration wells dire
t the lo
ation of

future wells and the de
ision to develop �elds and extra
t oil.

Sin
e multiple �rms operate in the same region, the results of rival �rms' wells provide information

that 
an determine the path of a �rm's exploration. If �rms 
an see the results of ea
h other's

exploration a
tivity, then there is an in
entive to free ride and delay investment in exploration

until another �rm has made dis
overies that 
an dire
t subsequent drilling. However, if the results

of exploration are 
on�dential then �rms are likely to engage in wasteful exploration of regions that

2



are known by other �rms to be unprodu
tive.

1

I use data 
overing the history of o�shore drilling

in the UK between 1964 and 1990 to quantify these ine�
ien
ies and the extent to whi
h they 
an

be mitigated by 
ounterfa
tual property rights poli
ies. The magnitude of these e�e
ts depends

on the spatial 
orrelation of well out
omes, the extent to whi
h �rms 
an observe the results of

ea
h others' wells, and the spatial arrangement of drilling li
enses assigned to di�erent �rms.

I start by measuring the spatial 
orrelation of well out
omes. I �t a logisti
 Gaussian pro
ess

model to data on the lo
ations and out
omes of all exploration wells drilled before 1990. This

model allows binary out
omes - wells are either su

essful or unsu

essful - to be 
orrelated a
ross

spa
e. The estimated Gaussian pro
ess 
an be used as a Bayesian prior that embeds spatial

learning. When a su

essful or unsu

essful well is drilled, the implied posterior beliefs about

the probability of �nding oil are updated at all other lo
ations, with the per
eived probability

at nearby lo
ations updating more than at distant lo
ations. The updating rule 
orresponds

to a geostatisti
al te
hnique for interpolating over spa
e that is widely used in natural resour
e

exploration.

The estimated spatial 
orrelation indi
ates that the results of exploration wells should have a

signi�
ant e�e
t on beliefs about the probability of well su

ess at distan
es of up to 50 km. To test

whether �rm behavior is 
onsistent with this spatial 
orrelation, I regress �rm drilling de
isions on

past well results. I �nd that �rms' probability of exploration at a lo
ation is signi�
antly in
reasing

in the number of su

essful past wells and signi�
antly de
reasing in the number of unsu

essful

past wells. The response de
lines in distan
e in line with the measured spatial 
orrelation. Firms'

response to the results of their own past wells is 2 to 5 times as as large as their response to other

�rms' wells, suggesting imperfe
t information �ow between �rms.

Next, I measure how exploration probability varies with the spatial distribution of property rights.

Drilling li
enses are issued to �rms on 22x18 km blo
ks. I �nd that the monthly probability of

exploration on a blo
k in
reases by 0.8 per
entage points when the number of nearby blo
ks li
enses

to the same �rm is doubled and de
reases by 0.4 per
entage points when the number of nearby

blo
ks li
ensed to other �rms is doubled. These e�e
ts are statisti
ally and e
onomi
ally signi�
ant

and 
onsistent with the presen
e of a free riding in
entive - �rms are less likely to explore where

there is a greater potential to learn from other �rms' exploration.

Together, these des
riptive �ndings suggest that information spillovers over spa
e and between

�rms play an important role in �rms' exploration de
isions. To measure the e�e
t of these exter-

nalities on equilibrium exploration rates and industry surplus I in
orporate the model of spatial

beliefs into a stru
tural model of the �rm's exploration problem. Firms fa
e a dynami
 dis
rete

1

This trade-o� between free riding and ine�
ient exploration has been identi�ed as important for poli
y making

in the industry literature. For example, in their survey of UK oil and gas regulation, Rowland and Hann (1987, p.

13) note that �if it is not possible to ex
lude other 
ompanies from the results of an exploration well... 
ompanies

will wait for other 
ompanies' drilling results and exploration will be deferred,� but if �information is treated highly


on�dentially... an unregulated market would be likely to generate repetitious exploration a
tivity.�
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hoi
e problem in whi
h, ea
h period, they 
an 
hoose to drill exploration wells on the set of blo
ks

over whi
h they have property rights. At the end of ea
h period �rms observe the results of their

exploration wells, observe the results of other �rm's wells with some probability, α ∈ [0, 1], and

update their beliefs about the spatial distribution of oil.

The model's asymmetri
 information stru
ture 
ompli
ates the �rm's problem. Firms observe

di�erent sets of well out
omes, and in order to fore
ast other �rms' drilling behavior ea
h �rm needs

to form beliefs about the out
omes of unobserved wells and about other �rms' beliefs. To make

estimation of the model and 
omputation of equilibria feasible I adopt the simplifying assumption

that �rms believe blo
ks held by other �rms are explored at a �xed rate whi
h is equal to the true

average probability of exploration in equilibrium. This removes 
ertain strategi
 in
entives - for

example the in
entive to signal to other �rms through drilling - but leaves in ta
t the asymmetri


information stru
ture and the in
entives I am interested in measuring. In parti
ular, �rms fa
e a

trade o� between drilling now and delaying exploration to learn from the results of other �rms'

wells that depends on the spatial arrangement of drilling li
enses and the probability of observing

the results of other �rms' wells.

The estimated value of the spillover parameter, α, indi
ates that �rms observe the results of

other �rms' wells with 37% probability. The presen
e of substantial but imperfe
t information

spillovers means that equilibrium exploration behavior 
ould be a�e
ted by both free riding - sin
e

�rms observe ea
h other's well results and have an in
entive to delay exploration - and ine�
ient

exploration - sin
e spillovers are imperfe
t, ea
h �rm has less information on whi
h to base its

drilling de
isions than the set of all �rms 
ombined.

I perform 
ounterfa
tual simulations to quantify these two e�e
ts. First, I remove the in
entive for

�rms to free ride and simulate 
ounterfa
tual exploration and development behavior. I �nd that

exploration and development is brought forward in time by about one year, in
reasing the number

of exploration wells drilled between 1964 and 1990 by 7.4%. Removing free riding in
reases the

1964 present dis
ounted value of 1964-1990 industry surplus by 31%. Next, I allow for perfe
t

information sharing between �rms, holding �rms' in
entive to free ride �xed at the baseline level.

The number of exploration wells in
reases by 12.6% and the e�
ien
y of exploration in
reases

substantially - sin
e �rms 
an perfe
tly observe ea
h other's well results, 
umulative learning

is faster. The number of exploration wells per blo
k developed falls and exploration wells are

more 
on
entrated on produ
tive blo
ks. Industry surplus is 70% higher than the baseline in this

information sharing 
ounterfa
tual.

I next ask to what extent these ine�
ien
ies 
ould be mitigated through alternative property rights.

Under the 
urrent regulations in the UK, data from exploration wells is property of the �rm for

�ve years before being made publi
. Weakening property rights by shortening the 
on�dentiality

window will in
rease the �ow of information between �rms, and is likely to in
rease the e�
ien
y

of exploration but may also in
rease the in
entive to free ride. On the other hand, strengthening
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property rights by extending the 
on�dentiality window will de
rease the in
entive to free ride but

slow 
umulative learning and redu
e the e�
ien
y of exploration.

I simulate equilibrium behavior under di�erent 
on�dentiality window lengths and �nd that in-

dustry surplus is in
reased under both longer and shorter 
on�dentiality windows. When the


on�dentiality window is in
reased to 10 years, the in
rease in the exploration rate dominates the

redu
tion in exploration e�
ien
y and industry surplus in
reases by 11%. When the 
on�dentiality

window is redu
ed to 0, the in
reased the speed of learning and e�
ien
y of exploration over
omes

the free riding e�e
t, and industry surplus in
reases by 57%. Although a marginal in
rease in

window length would in
rease surplus, the free riding e�e
t is su�
iently small su
h that it is

optimal for well data to be released immediately.

Finally, I show how the spatial distribution of property rights a�e
ts exploration in
entives. When

ea
h �rm's drilling li
enses neighbor fewer other-�rm li
enses the in
entive for �rms to delay

exploration is redu
ed and the value to �rms of the information generated by their own wells

is greater. I 
onstru
t a 
ounterfa
tual spatial assignment of property rights that 
lusters ea
h

�rm's li
enses together, holding the total number of blo
ks assigned to ea
h �rm �xed. Under

the 
lustered assignment the number of exploration wells drilled in
reases by 8% and the number

of exploration wells per developed blo
k falls from 22.45 to 18.9. I do not 
laim that this is the

optimal arrangement of property rights, so these �gures represent a lower bound on the possible

e�e
t of spatial reorganization.

The results highlight the tension between dis
ouraging free riding and en
ouraging e�
ient 
umu-

lative resear
h in the design of property rights over innovations. In this setting, there are ranges of

the poli
y spa
e in whi
h strengthening property rights leads to a marginal improvement in surplus

and ranges where weakening property rights is optimal. This trade o� applies in other settings,

for example in de�ning the breadth of patents, regulations about the release of data from 
lini
al

trials, and the property rights 
onditions atta
hed to publi
 funding of resear
h. The quantitative

results on the spatial assignment of li
enses 
an be thought of as an example of de
entralized

resear
h where a prin
ipal (here, the government) assigns resear
h proje
ts to independent agents

(here, �rms). The results suggest that there are signi�
ant gains from assignments of proje
ts

that minimize the potential for information spillovers a
ross agents. This �nding 
ould be applied

to, for example, publi
ly funded resear
h e�orts that 
oordinate the a
tivity of many independent

s
ientists.

This paper 
ontributes to the large literature on �rms' in
entives to 
ondu
t R&D (Arrow, 1971;

Dasgupta and Stiglitz, 1980; Spen
e, 1984). In parti
ular, I build on re
ent papers that ask whether

and to what extent intelle
tual property rights hinder subsequent innovation (Murray and Stern,

2007; Williams, 2013; Murray et al., 2016). Both Williams (2013) and Murray et al. (2016) address

this issue in a similar spirit to this paper, by fo
using on spe
i�
 settings where the set of possible

resear
h proje
ts and 
umulative nature of resear
h is well de�ned, rather than looking at resear
h
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in general and using metri
s su
h as patent 
itations to measure 
umulative innovation (see for

example, Ja�e, Trajtenberg, and Henderson, 1993). I 
ontribute to this literature by quantifying

the trade o� between this e�e
t on 
umulative resear
h and the free riding in
entive that has

been dis
ussed in the theory literature (Hendri
ks and Koveno
k, 1989; Bolton and Farrell, 1990;

Bolton and Harris, 1999). This paper di�ers from mu
h of the innovation literature by using

a stru
tural model of the �rm's sequential resear
h (here, exploration) problem to quantify the

e�e
ts of information externalities and alternative property rights poli
ies.

The results in this paper also 
ontribute to an existing empiri
al literature on the e�e
t of infor-

mation externalities in oil exploration. Mu
h of this literature, summarized by Porter (1995) and

Haile, Hendri
ks, and Porter (2010), has fo
used on bidding in
entives in li
ense au
tions using

data from the Gulf of Mexi
o. Less attention has been given to the post-li
ensing exploration

in
entives indu
ed by di�erent property rights poli
ies. Notable ex
eptions in
lude Hendri
ks

and Porter (1996), who show that the probability of exploration on tra
ts in the Gulf of Mexi
o

in
reases sharply when �rms drilling li
enses are 
lose to expiry, and Lin (2009), who �nds no

eviden
e that �rms are more likely to drill exploration wells after neighboring tra
ts are explored.

The des
riptive results I present are 
losest to those of Levitt (2016), who shows how exploration

de
isions respond to past well out
omes using data from Alberta and �nds eviden
e of limited

information spillovers a
ross �rms operating within the same region. I show how these spillovers

vary with distan
e and the spatial distribution of drilling li
enses.

Existing papers on oil and gas exploration that estimate stru
tural models of the �rm's exploration

problem in
lude Levitt (2009), Lin (2013), Agerton (2018), and Ste
k (2018). The model I estimate

in this paper di�ers from existing work by in
orporating both Bayesian learning with spatially


orrelated beliefs and information leakage a
ross �rms. This allows me to simulate exploration

paths under 
ounterfa
tual poli
ies whi
h 
hange the dependen
e of ea
h �rm's beliefs on the

results of other �rms' exploration wells, for example under di�erent spatial assignments of blo
ks

to �rms. Ste
k (2018) uses a 
losely related dynami
 model of the �rm's de
ision of when to

drill in the presen
e of so
ial learning about the optimal inputs to hydrauli
 fra
turing. Ste
k's

�nding of a signi�
ant free riding e�e
t when there is un
ertainty about the optimal te
hnology is


omplementary to the �ndings of this paper, whi
h measures the free riding e�e
t in the presen
e

of un
ertainty about the lo
ation of oil deposits.

Other related papers in the e
onomi
s of oil and gas exploration in
lude Kellogg (2011), who pro-

vides eviden
e of learning about drilling te
hnology, showing that pairs of oil produ
tion 
ompanies

and drilling 
ontra
tors develop relationship-spe
i�
 knowledge, and Covert (2015), who investi-

gates �rm learning about the optimal drilling te
hnology at di�erent lo
ations in North Dakota's

Bakken Shale. Covert's methodology is parti
ularly 
lose to mine, as he also uses a Gaussian

pro
ess to model �rms' beliefs about the e�e
tiveness of di�erent drilling te
hnologies in di�erent

lo
ations. The results I present in Se
tion 4, whi
h show that �rms are more likely to drill explo-
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ration wells in lo
ations where the out
ome is more un
ertain, 
ontrast with the �ndings of Covert

(2015), who shows that oil �rms do not a
tively experiment with fra
king te
hnology when the

optimal 
hoi
e of inputs in un
ertain.

Finally, the pro
edure used to estimate the stru
tural model of the �rm's exploration problem

builds on the literature on estimation of dynami
 games using 
onditional 
hoi
e probability

methods, following Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994), and Ba-

jari, Benkard, and Levin (2007). In parti
ular, I extend these methods to a setting in whi
h the

e
onometri
ian is uninformed about ea
h agent's information set. The pro
edure I propose to deal

with this latent state variable is less generally appli
able but less 
omputationally intensive than

the Expe
tation-Maximization pro
edure proposed by Ar
idia
ono and Miller (2011).

The remainder of this paper pro
eeds as follows. Se
tion 2 provides an overview of the setting

and a summary of the data. Se
tion 3 presents a model of spatial beliefs about the lo
ation of

oil deposits. Se
tion 4 presents redu
ed form results that provide eviden
e of spatial learning,

information spillovers, and free riding. In Se
tion 5 I develop a dynami
 stru
tural model of

optimal exploration with information spillovers, and in Se
tion 6 I dis
uss estimation of the model.

Results and poli
y 
ounterfa
tuals are presented in Se
tions 7 and 8. Se
tion 9 
on
ludes.

2 UK Oil Exploration: Setting and Data

I use data 
overing the history of oil drilling in the UK Continental Shelf (UKCS) from 1964 to

1990. Oil exploration and produ
tion on the UKCS is 
arried out by private 
ompanies who hold

drilling li
enses issued by the government. The �rst su
h li
enses were issued in 1964, and the

�rst su

essful (oil yielding) well was drilled in 1969. Dis
overies of the large Forties and Brent oil

�elds followed in 1970 and 1971. Drilling a
tivity took o� after the oil pri
e sho
k of 1973, and by

the 1980s the North Sea was an important produ
er of oil and gas. I fo
us on the region of the

UKCS north of 55◦N and east of 2◦W , mapped in Figure 1, whi
h is bordered on the north and

east by the Norwegian and Faroese e
onomi
 zones. This region 
ontains the main oil produ
ing

areas of the North Sea and has few natural gas �elds, whi
h are mostly south of 55◦N .

2.1 Te
hnology

O�shore oil produ
tion 
an be divided into two phases of investment and two distin
t te
hnologies.

First, oil reservoirs must be lo
ated through the drilling of exploration wells. These wells are

typi
ally drilled from mobile rigs or drill ships and generate information about the geology under

the seabed at a parti
ular point, in
luding the presen
e or absen
e of oil in that lo
ation. It is

important to note that the results of a single exploration well provide limited information about
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the size of an oil deposit, and many exploration wells must be drilled to estimate the volume of a

reservoir. When a su�
iently large oil �eld has been lo
ated, the �eld is developed. This se
ond

phase of investment involves the 
onstru
tion of a produ
tion platform, a large stati
 fa
ility

typi
ally an
hored to the sea bed by stilts or 
on
rete 
olumns with the 
apa
ity to extra
t large

volumes of oil.

I observe the 
oordinates and operating �rm of every exploration well drilled and development

platform 
onstru
ted from 1964 to 1990. The left panel of Figure 1 maps exploration wells in the

relevant region. For ea
h exploration well, I observe a binary out
ome - whether or not it was

su

essful. In industry terms, a su

essful exploration well is one that en
ounters an �oil 
olumn�,

and an unsu

essful well is a �dry hole�. In reality, although exploration wells yield more 
omplex

geologi
al data, the su

ess rate of wells based on a binary wet/dry 
lassi�
ation is an important

statisti
 in determining whether to develop, 
ontinue exploring, or abandon a region. See for

example Ler
he and Ma
Kay (1995) and Bi
kel and Smith (2006) who present models of optimal

sequential exploration de
isions based on binary signals. I observe ea
h development platform's

monthly oil and gas produ
tion in m3
up to the year 2000.

2.2 Regulation

The UKCS is divided into blo
ks measuring 12x10 nauti
al miles (approx. 22x18 km). These blo
ks

are indi
ated by the grid squares on the maps in Figure 1. The UK government holds li
ensing

rounds at irregular intervals (on
e every 1 to 2 years), during whi
h li
enses that grant drilling

rights over blo
ks are issued to oil and gas 
ompanies. Unlike in many 
ountries, drilling rights are

not allo
ated by au
tions. Instead, the government announ
es a set of blo
ks that are available,

and �rms submit appli
ations whi
h 
onsist of a list of blo
ks, a portfolio of resear
h on the geology

and potential produ
tivity of the areas requested, a proposed drilling program, and eviden
e

of te
hni
al and �nan
ial 
apa
ity. Appli
ations for ea
h blo
k are evaluated by government

geos
ientists. Although a formal s
oring rubri
 allo
ates points for a large number of assessment


riteria in
luding �nan
ial 
ompeten
y, tra
k re
ord, use of new te
hnology, and the extent and

feasibility of the proposed drilling program, the assessment pro
ess allows government s
ientists

and evaluators to exer
ise dis
retion in determining the allo
ation of blo
ks to �rms. Although the

evaluation 
riteria have 
hanged over time, the dis
retionary system itself has remained relatively

un
hanged sin
e 1964.

2

Li
ense holders pay an annual per-blo
k fee, and are subje
t to 12.5% royalty payments on the

2

A few blo
ks were o�ered at au
tion in the early 1970s, but this experiment was determined to be unsu

essful.

A

ording to a regulatory manager at the Oil and Gas Authority (OGA), the result of the au
tions was that �the

Treasury got a whole bun
h of money but nobody drilled any wells.� By 
ontrast, the dis
retionary system has

�stood the test of time�. The belief among UK regulators is that au
tions divert money away from �rms' drilling

budgets.
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gross value of all oil extra
ted. Li
enses have an initial period of 4 or 6 years during whi
h �rms

are required to 
arry out a minimum work requirement. I refer to the end of this period as the

li
ense's work date. Minimum work requirements are typi
ally light, even in highly a
tive areas.

During the 1970s �3 exploration wells per... 7 blo
ks be
ame the norm� in the main �
ontested�

areas (Kemp, 2012a p. 58). Li
enses in less 
ontested �frontier� areas often did not require any

drilling, only seismi
 analysis.

Figure 1: Wells and Li
ense Blo
ks

Notes: Grid squares are li
ense blo
ks. The left panel plots the lo
ation of all exploration wells drilled from 1964

to 1990. The right panel re
ords li
ense holders for ea
h blo
k in January 1975. Note that if multiple �rms hold

li
enses on separate se
tions of a blo
k, only one of those �rms (
hosen at random) is represented on this map.

I observe the history of li
ense allo
ations for all blo
ks. In assigning blo
ks to �rms I make

two important simplifying assumptions. First, I fo
us only on the �operator� �rm for ea
h blo
k.

Li
enses are often issued to 
onsortia of �rms, ea
h of whi
h hold some share of equity on the blo
k.

The operator, typi
ally the largest equity holder, is given responsibility for day to day operations

and de
ision making. Non-operator equity holders are typi
ally smaller oil 
ompanies that do

not operate any blo
ks themselves, and are often banks or other �nan
ial institutions. Major oil


ompanies do enter joint ventures, with one of the 
ompanies a
ting as operator, but these are

typi
ally long lasting allian
es rather than blo
k by blo
k de
isions.

3

In the main analysis below,

I will be ignoring se
ondary equity holders and treating the operating �rm as the sole de
ision

3

For example, 97% of blo
ks operated by Shell between 1964 and 1990 were a
tually li
ensed to Shell and Esso

in a 50-50 split. Esso was at some point the operator of 16 unique blo
ks, 
ompared to more than 740 blo
ks that

were joint ventures with Shell. Only 8.6% of blo
k-months operated by one of the top 5 �rms (who together operate

more than 50% of all blo
k-months) have another top 5 �rms as a se
ondary equity holder. This falls to 2.8%

among the top 4 �rms.

9



maker, with all se
ondary equity holders being passive investors.

4

Se
ond, li
enses are sometimes

issued over parts of blo
ks, splitting the original blo
ks into smaller areas that 
an be held by

di�erent �rms. All of the analysis below will take pla
e at the blo
k level. Therefore, if two �rms

have drilling rights on the two halves of blo
k j, I will re
ord them both as having independent

drilling rights on blo
k j. In pra
ti
e, 88.2% of li
ensed blo
k-months have only one li
ense holder.

11.5% of blo
k-months have two li
ense holders and a negligible fra
tion have more than two.

Subje
t to these simpli�
ations, the right panel of Figure 1 maps the lo
ations of li
ensed blo
ks

operated by the 5 largest �rms in January 1975. There are 73 unique operators between 1964 and

1990, but 90% of blo
k-months are operated by one of the top 25 �rms, and over 50% are operated

by one of the top 5. Appendix Figure A1 illustrates the distribution of li
enses at the blo
k-month

level a
ross �rms.

A �nal set of regulations de�ne property rights over the information generated by wells. The

produ
tion of development platforms is reported to the government and published on a monthly

basis. Data from exploration wells, in
luding whether or not the well was su

essful, is property of

the �rm for the �rst �ve years after a well is drilled. After this 
on�dentiality period, well data is

reported to the government and made publi
ly available. In reality there is likely to be information

�ow between �rms during this 
on�dentiality period for a number of reasons: �rms 
an ex
hange

or sell well data, information 
an leak through shared employees, 
ontra
tors, or investors, and the

a
tivities asso
iated with a su

essful exploration well might be visibly di�erent than the a
tivities

asso
iated with an unsu

essful exploration well. The extent to whi
h information �ows between

�rms during this 
on�dentiality period is an obje
t of interest in the empiri
al analysis that follows.

2.3 Data

Table 1 
ontains summary statisti
s des
ribing the data. Observations are at the �rm-blo
k level.

That is, if a parti
ular blo
k is li
ensed multiple times to di�erent �rms, it appears in Table 1 as

many times as it is li
ensed. There are a total of 628 blo
ks ever li
ensed and 1470 �rm-blo
k

pairs between 1964 and 1990. I fo
us on two a
tions - the drilling of exploration wells and the

development of blo
ks. I 
onsider the development of a blo
k as a one o� de
ision to invest in a

development platform. I re
ord a blo
k as being developed on the drill date of the �rst development

well. In reality, this would 
ome several months after 
onstru
tion of the development platform

begins. I 
onsider development to be a terminal a
tion. On
e a blo
k is developed, I drop it from

the data.

4

Appendix Table A4 presents regressions of drilling probability on the distribution of surrounding li
enses that

suggest this is a reasonable assumption. The number of nearby li
enses operated by the same �rm as blo
k j has

a 
onsistent, statisti
ally signi�
ant positive e�e
t on the probability of exploration on blo
k j. The number of

nearby li
enses with the same se
ondary equity holders as blo
k j, on whi
h the operator of blo
k j is a se
ondary

equity holder, and on whi
h one of the se
ondary equity holders on blo
k j is the operator, all have no statisti
ally

signi�
ant e�e
t on drilling probability.
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Table 1: Summary Statisti
s: Blo
ks & Wells

Firm-Blo
ks All Explored Exp. &

Devel-

oped

Exp. &

Not

Dev.

Not

Exp.

N 1470 721 160 561 749

Share Explored .490 1.000 1.000 1.000 0.000

Share Developed .120 .222 1.000 0.000 .021

First Exp. After Work Date . .227 .280 .215 .

Own Share of Nearby Blo
ks:

Mean .199 .178 .181 .177 .219

SD .217 .199 .206 .197 .231

Exploration Wells per Blo
k 2.002 4.082 10.138 2.355 0.000

Share Su

essful .199 .199 .444 .129 .

Notes: Table re
ords statisti
s on all li
ense-blo
k pairs a
tive between 1964 and 1990. In parti
ular, if a blo
k

is li
ensed to multiple �rms it appears multiple times in this Table. Ea
h 
olumn re
ords statisti
s on subsets of

li
ense-blo
ks de�ned a

ording to whether they are ever explored or developed. Own share of nearby blo
ks is

de�ned as the share of li
ense-blo
ks that are at most third degree neighbors that are li
ensed to the same �rm.

The se
ond 
olumn of Table 1 re
ords statisti
s on the set of �rm-blo
ks that are ever explored - that

is, those �rm-blo
ks where at least one exploration well was drilled - and the third 
olumn re
ords

statisti
s for those �rm-blo
ks that are ever developed. 49% of �rm-blo
ks are ever explored,

and among these, 22% are developed. Note that the information generated by a single well is

insu�
ient to establish the size of an oil reservoir, and �rms must drill many exploration wells on

a blo
k before making the de
ision to develop. On average, over 10 exploration wells are drilled

before a blo
k is developed, and 2.3 exploration wells are drilled on blo
ks that are explored but

not developed. The bottom row of Table 1 re
ords the su

ess rate of exploration wells a
ross the

di�erent types of �rm-blo
k. 44% of exploration wells are su

essful on blo
ks that are eventually

developed, while only 13% of wells are su

essful on blo
ks that are never developed. The su

ess

rate of exploration wells on a blo
k is 
orrelated withe the size of any underlying oil reservoir.

Thus, if an initial exploration well yields oil, but subsequent wells do not, the blo
k is likely to

only hold small oil deposits and is unlikely to be developed. Figure 2 illustrates the distribution of

estimated reserves in log millions of barrels over all developed blo
ks.

5

The distribution is plotted

separately for four quartiles of the exploration su

ess rate. There is a positive, approximately

linear relationship between exploration su

ess rate prior to development and log estimated reserves

Note that the work requirement poli
y leaves signi�
ant s
ope for �rms to delay exploration. The

work requirement typi
ally demands at most one exploration well be drilled per blo
k, but it is


lear that many more than one exploration well must be drilled before a blo
k is developed. While

5

The methodology used to estimate reserves is outlined in Appendix C.
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Figure 2: Estimated Reserves
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Notes: Figure re
ords the distribution of estimated oil reserve volume, measured in log millions of barrels, a
ross

all developed blo
ks in the relevant area. The box plot markers re
ord the lower adja
ent value, 25th per
entile,

median, 75th per
entile, and upper adja
ent value. The distribution is plotted separately for four subsets of blo
ks

de�ned by the quartiles of the pre-development exploration well su

ess rate. A regression of log estimated reserves

on su

ess rate has a slope 
oe�
ient of 5.990 with a standard error of 0.964.

the work requirement poli
y is therefore likely to hasten the drilling of the �rst exploration well on

a blo
k, there are no requirements on the speed with whi
h the subsequent program of exploration

must take pla
e. The fourth row of Table 1 indi
ates that almost a quarter of blo
ks that are ever

explored are �rst explored after the work requirement date. These �ndings 
orroborate 
laims from

industry literature that indi
ate the terms of drilling li
enses issued in the UK are 
onsiderably

more generous than those issued, for example, in the Gulf of Mexi
o, and provide 
onsiderable

room for �rms to �sto
kpile� unexplored and undeveloped a
reage for many years (Gordon, 2015).

3 A Model of Spatially Correlated Beliefs

The e�e
t of information externalities on �rms' exploration de
isions depends on the spatial ar-

rangement of li
enses, the extent to whi
h �rms 
an observe the results of ea
h other's wells, and

on the 
orrelation of exploration results at di�erent lo
ations. In Appendix A I show that in a

simple two �rm, two blo
k model, spatial 
orrelation in well out
omes redu
es the equilibrium rate

of exploration below the so
ial optimum. The magnitude of this free riding e�e
t is determined by

the extent to whi
h well results are 
orrelated over spa
e. In parti
ular, the more 
orrelated are

out
omes on neighboring blo
ks, the lower the equilibrium rate of exploration.

In this se
tion, I measure this spatial 
orrelation by estimating a statisti
al model of the distribution

12



of oil that allows the results of exploration wells at di�erent lo
ations to be 
orrelated. By �tting

the model to data on the out
omes of all exploration wells drilled between 1964 and 1990, I obtain

an estimate of the extent to whi
h this 
ovarian
e of well out
omes de
lines with distan
e. I

interpret the estimated model as des
ribing the true spatial 
orrelation of oil deposits determined

by underlying geology.

I then show how this statisti
al model 
an be used as a Bayesian prior about the distribution of oil.

If �rms know the true parameter values, then the estimated model implies a Bayesian updating

rule for �rms with rational beliefs. In parti
ular, �rms' posterior beliefs about the probability

of exploration well su

ess at a given lo
ation are a fun
tion of past well out
omes at nearby

lo
ations. The true 
orrelation of well out
omes informs the extent to whi
h �rms should make

inferen
es over spa
e when updating their beliefs after observing well out
omes. This model of

spatial learning allows me to 
ompute �rms' posterior beliefs about the lo
ation of oil deposits

after observing di�erent sets of wells.

3.1 Statisti
al Model of the Distribution of Oil

I start by des
ribing a statisti
al model of the distribution of oil over spa
e. I model the probability

that an exploration well at a parti
ular lo
ation is su

essful as a 
ontinuous fun
tion over spa
e

drawn from a Gaussian pro
ess. This model assumes that the lo
ation of oil is distributed randomly

over spa
e but allows spatial 
orrelation - the out
omes of exploration wells 
lose to ea
h other

are highly 
orrelated and the degree of 
orrelation de
lines with distan
e. A draw from this

pro
ess is a 
ontinuous fun
tion that, depending on the parameters of the pro
ess, 
an have many

lo
al maxima 
orresponding to separate 
lusters of oil �elds (see Appendix Figure A2 for a one

dimensional example). As I dis
uss further below, Gaussian pro
esses are widely used in natural

resour
e exploration to model the spatial distribution of geologi
al features (see for example Hohn,

1999).

Formally, let ρ(X) : X → [0, 1] be a fun
tion that de�nes the probability of exploration well

su

ess at lo
ations X ∈ X. I model ρ(X) as being drawn from a logisti
 Gaussian pro
ess G(ρ)

over the spa
e X.

6

In parti
ular, for any lo
ation X ,

ρ(X) ≡ ρ(λ(X)) =
1

1 + exp(−λ(X))
, (1)

where λ(X) is a 
ontinuous fun
tion fromX to R. Equation 1 is a logisti
 fun
tion that �squashes�

6

If well su

ess rates were independent a
ross lo
ations j, a natural model would draw ρj ∈ [0, 1] from a beta

distribution. However, it is likely that well out
omes are 
orrelated a
ross spa
e. Indeed, the results presented

below in Figure 6 indi
ate that �rms' exploration de
isions on blo
k j respond to the results of exploration wells

on nearby blo
ks. There is no natural multivariate analogue of the beta distribution that allows me to spe
ify a


ovarian
e between ρj and ρk for j 6= k.
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λ(X) so that ρ(X) ∈ [0, 1].7

The fun
tion λ(X) is drawn from a Gaussian pro
ess with mean fun
tion µ(X) and 
ovarian
e

fun
tion κ(X,X ′). This means that for any �nite 
olle
tion of K lo
ations {1, ..., K}, the ve
tor

(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a


ovarian
e matrix with (j, k) element κ(Xj , Xk). The prior mean fun
tion µ : X → R is assumed

to be smooth and the 
ovarian
e fun
tion κ : X × X → R must be su
h that the resulting


ovarian
e matrix for any K lo
ations is symmetri
 and positive semi-de�nite. One 
ovarian
e

fun
tion that satis�es these assumptions is the square exponential 
ovarian
e fun
tion (Rasmussen

and Williams, 2006) given by

κ(X,X ′) = ω2exp

(

− |X −X ′|2

2ℓ2

)

. (2)

The parameter ω 
ontrols the varian
e of the pro
ess. In parti
ular, for any X , the marginal

distribution of λ(X) is given by λ(X) ∼ N(µ(X), ω). The parameter ℓ 
ontrols the 
ovarian
e

between λ(X) and λ(X ′) for X 6= X ′
. Noti
e that as the distan
e |X −X ′| between two lo
ations

in
reases, the 
ovarian
e falls at a rate proportional to ℓ. As |X −X ′| goes to 0, the 
orrelation

of λ(X) and λ(X ′) goes to 1, so draws from this pro
ess are 
ontinuous fun
tions.

I estimate the parameters, (µ(X), ω, ℓ), of the Gaussian pro
ess model using data on the binary

out
omes of all well exploration wells drilled between 1964 and 1990. Let s = (s1, s2, ..., sW ) be

a ve
tor of length W where W is the total number of exploration wells drilled by all �rms and

sw = 1 if well s was su

essful, and otherwise sw = 0. Let X = (X1, ..., XW ) be a matrix re
ording

the blo
k 
entroid 
oordinates of ea
h well. Then the likelihood of well out
omes s 
onditional on

well lo
ations X is given by:

8

L(s|X, µ, ω, ℓ) =

∫

(

W
∏

w=1

ρ(Xw)
1(sw=1)(1− ρ(Xw))

1(sw=0)

)

dG(ρ;µ, ω, ℓ) (3)

The integrand is the produ
t of Bernoulli likelihoods for ea
h well for a parti
ular draw of ρ, whi
h

en
odes su

ess probabilities at every lo
ation Xw. The integral is over draws of ρ with respe
t

to the distribution G(ρ), whi
h is a fun
tion of the parameters. Note that I assume a �at mean

fun
tion, µ(X) = µ(X ′) = µ.

7

If well su

ess rates were independent a
ross lo
ations, a natural model would draw ρ(X) ∈ [0, 1] from a beta

distribution. However, it is likely that well out
omes are 
orrelated a
ross spa
e. There is no natural multivariate

analogue of the beta distribution that allows me to spe
ify a 
ovarian
e between ρ(X) and ρ(X ′).
8

This is a partial likelihood in the sense of Cox (1975). In Appendix B I provide a 
ondition on the pro
ess that

determines well lo
ations X under whi
h this is a valid likelihood fun
tion. See also 
hapter 13.8 of Wooldridge

(2002). I use the hyperparameter estimation 
ode provided by Rasmussen and Williams (2006) to implement the

maximum likelihood estimation. The integral in equation 3 is approximated using Lapla
e's method. See se
tion

5.5 of Rasmussen and Williams (2006) for details.
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Table 2 re
ords maximum likelihood estimates. The �rst 
olumn re
ords the estimated values of

the three parameters of the Gaussian pro
ess, while the se
ond 
olumn re
ords implied statisti
s

of the distribution of ρ(X) at the estimated parameters - the expe
ted su

ess probability, the

standard deviation of su

ess probability, and the 
orrelation of su

ess probability between two

lo
ations one blo
k (18 km) away from ea
h other. The parameters are identi�ed by the empiri
al

analogues of these statisti
s in the well out
ome data. Most importantly, the estimated parameter

ℓ 
aptures the true spatial 
orrelation of exploration well out
omes.

Table 2: Oil Pro
ess Parameters

Parameter Estimate Implied Statisti
s

µ -1.728 E(ρ(X)) 0.207

(0.202)

ω 1.2664 SD(ρ(X)) 0.179

(0.146)

ℓ 0.862 Corr(ρ(0), ρ(1)) 0.471

(0.102)

Notes: The �rst 
olumn re
ords parameter estimates from �tting the likelihood fun
tion given by equation 3 to

data on the out
ome of all exploration wells drilled between 1964 and 1990 on the relevant area of the North Sea.

Standard errors 
omputed using the Hessian of the likelihood fun
tion in parentheses. The se
ond 
olumn re
ords

the implied expe
ted probability of su

ess, the standard deviation of the prior beliefs about probability of su

ess,

and the 
orrelation of su

ess probability between two lo
ations one blo
k (18 km) away from ea
h other.

3.2 Interpretation as a Bayesian Prior

The estimated parameters, (µ, ω, ℓ), 
an be thought of as des
ribing primitive geologi
al 
hara
-

teristi
s that determine the distribution of oil deposits over spa
e. If these parameters are known

by �rms and the Gaussian pro
ess model is a good approximation to the geologi
al pro
ess that

generates the distribution of oil, then the estimated pro
ess G(ρ|µ, ω, ℓ) des
ribes the rational

beliefs that �rms should hold about the probability of exploration well su

ess at ea
h lo
ation

X prior to observing the out
ome of any wells. The parameters of this prior also determine how

beliefs are updated a

ording to Bayes' rule after well results are observed.

In parti
ular, �rms whose prior is des
ribed by G(ρ) update their beliefs over the entire spa
e X

after observing a su

ess or failure at a parti
ular lo
ation X . Posterior beliefs at lo
ations 
loser

to X will be updated more than those at more distant lo
ations. Figure 3 illustrates how posterior

beliefs respond to well out
omes at di�erent distan
es under the estimated parameters. The solid

purple line illustrates the �rm's 
onstant prior expe
ted probability of su

ess of around 0.2.

9

The

9

The assumption of a 
onstant prior mean 
ould be relaxed to allow µ to depend on, for example, prior knowledge

of geologi
al features. µ represents �rms' mean beliefs in 1964, before any exploratory drilling took pla
e. Brennand
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dotted yellow line represents the �rm's posterior expe
ted probability of su

ess after observing

one su

essful well at 0 on the x-axis. The dashed red and blue lines 
orrespond to posteriors after

observing two and three su

essful wells at the same lo
ation. Noti
e that the expe
ted probability

of su

ess in
reases most at the well lo
ation, and de
reases smoothly at more distant lo
ations.

The true spatial 
orrelation of well out
omes, 
aptured by the parameter ℓ, determines the rate at

whi
h belief updating de
lines with distan
e. In parti
ular, the estimated value of ℓ implies that

�rms should update their beliefs about the probability of su

ess in response to well out
omes on

neighboring blo
ks and those two blo
ks away, but not in response to well out
omes three or more

blo
ks away. At these distan
es, the 
orrelation in well out
omes dies out and thus so does the

implied response of beliefs to well out
omes.

10

Figure 3: Response of Beliefs to Well Out
omes
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Notes: Figure depi
ts prior and posterior expe
ted value of ρ(X) in a one dimensional spa
e for posteriors 
omputed

after observing one, two, and three su

essful wells at X = 0. The parameters (µ, ω, ℓ) of the logisti
 Gaussian

pro
ess prior are set to the estimated values from Table 2.

Formally, let w ∈ W index wells, let s(w) ∈ {0, 1} be the out
ome of well w, and let Xw denote

the lo
ation of well w. If prior beliefs are given by the logisti
 Gaussian Pro
ess G(ρ) then the

et al. (1998) emphasize that knowledge of subsea geology was extremely limited before exploration began. Using a

modern map of a
tual geologi
al features as inputs to the prior mean would therefore be inappropriate. In addition,

as the maps in Appendix Figure A8 indi
ate, exploration did not begin in a parti
ularly produ
tive area, and the

geographi
 fo
us of exploration shifted dramati
ally after the �rst early dis
overies. For these reasons, I believe it

is not unreasonable to adopt a 
onstant prior mean.

10

In Appendix Figure A3 I illustrate belief updating under di�erent values of ℓ in a numeri
al example.
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posterior beliefs G′(ρ) after observing {(s(w), Xw)}w∈W are given by

G′(ρ) = B(G(ρ), {(s(w), Xw)}w∈W ), (4)

where B(·) is a Bayesian updating operator. Sin
e the signals that �rms re
eive are binary, there is

no analyti
al expression for the posterior beliefs given the Gaussian prior and the observed signals.

In parti
ular, G′(ρ) is non-Gaussian. I 
ompute posterior distributions using the Lapla
e approxi-

mation te
hnique of Rasmussen and Williams (2006) whi
h provides a Gaussian approximation to

the non-Gaussian posterior G′(ρ). I dis
uss the pro
edure used to 
ompute B(·) in more detail in

Appendix B.

Using the Bayesian updating rule it is possible to generate posterior beliefs for any set of observed

well realizations. Figure 4 is a map of posterior beliefs for a �rm that observed the out
ome

of all exploration wells drilled from 1964-1990. In the left panel, lighter regions have a higher

posterior expe
ted probability of su

ess, and 
orrespond to areas where more su

essful wells were

drilled. Darker regions indi
ate lower posterior expe
ted probability of su

ess, and 
orrespond to

areas where more unsu

essful wells were drilled. The right panel re
ords the posterior standard

deviation of beliefs, with darker regions indi
ating less un
ertainty. In general, the standard

deviation of posterior beliefs is lower in regions where more exploration wells have been drilled.

11

The Gaussian pro
ess model is a parsimonious approximation to more 
omplex inferen
es about

nearby geology made by geologists based on exploration well results. The method of spatial

interpolation between observed wells that is a
hieved by 
omputing the Gaussian Pro
ess posterior

is known in the geostatisti
s literature as Kriging (see for example standard geostatisti
s textbooks

su
h as Hohn, 1999). Kriging is a widely applied statisti
al te
hnique for making predi
tions

about the distribution of geologi
al features, in
luding oil deposits, over spa
e. Standard Kriging

of a 
ontinuous variable 
orresponds exa
tly to Bayesian updating of a Gaussian pro
ess with


ontinuous, normally distributed signals. The model of beliefs employed here 
orresponds to �trans-

Gaussian Kriging�, so 
alled be
ause of the use of a transformed Gaussian distribution (Diggle,

Tawn, and Moyeed, 1998). Whether or not we think these beliefs are a 
orre
t representation of

how oil deposits are distributed, the model of learning des
ribed above is representative of how

geologists (and presumably oil 
ompanies) think.

In addition to being representative of industry te
hniques, the model of spatial beliefs is 
losely

linked to the literature on Gaussian pro
esses in ma
hine learning, as summarized by Rasmussen

and Williams (2006). In this literature, optimal Bayesian learning based on Gaussian pro
ess priors

is used to 
onstru
t algorithms for e�
iently maximizing unknown fun
tions. In a 
lose analogue

to the ma
hine learning problem studied by, for example, Osborne et al. (2009), exploration

11

This is not ne
essarily the 
ase everywhere. In parti
ular, if the realized out
ome of a well at lo
ation X is

unlikely given prior beliefs, posterior varian
e around X 
an in
rease.
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Figure 4: Posterior Oil Well Probabilities

Notes: The left panel is a map of the posterior expe
ted probability of su

ess of a �rm with prior beliefs given by

the parameters in Table 2 that observes every well drilled between 1964 and 1990. The right panel is a map of the

posterior standard deviation of beliefs for the same �rm.

wells 
an be thought of as 
ostly evaluations of a fun
tion mapping geographi
al lo
ations to

the presen
e of oil, with the �rm's problem being to lo
ate the largest oil deposits at minimum


ost. The logisti
 Gaussian Pro
ess model of beliefs is a �exible (in terms of 
ovarian
e and mean

fun
tion spe
i�
ation) and 
omputationally tra
table model of spatial updating of beliefs with

binary signals that is appli
able to settings beyond oil exploration. See for example Hodgson and

Lewis (2018) on learning in 
onsumer sear
h.

3.3 Beliefs and Development Payo�s

In what follows, I adopt the additional simplifying assumption that �rms have beliefs about the

probability of su

ess at the blo
k level. In parti
ular, let ρj = ρ(Xj) where Xj are the 
oordinates

of the 
entroid of blo
k j ∈ {1, ..., J}. When an exploration well is drilled anywhere on blo
k j,

�rms update their beliefs as if the su

ess of that well is drawn with probability ρj . One way to

rationalize this assumption is to assume that the lo
ations of exploration wells within blo
ks are

random.

12

The probability of su

ess, ρj , then has a natural interpretation as the share of blo
k j

that 
ontains oil, and the observed su

ess rate is an estimate of this probability whi
h be
omes

more pre
ise as the number of wells on the blo
k in
reases. For example, Figure 5 illustrates a

12

In parti
ular, that well 
oordinates are drawn from a uniform distribution over the area of the blo
k.
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stylized example in whi
h wells have been drilled at random lo
ations within two blo
ks. In the

left blo
k, the oil �eld o

upies one-third of the area, and in the right blo
k, the oil �eld o

upies

one-�fth of the area. The su

ess rates, indi
ated by the ratio of green wells to all wells, are equal

to the sizes of the oil �elds - with one third of wells su

essful on the left blo
k and one �fth

su

essful on the right blo
k.

Figure 5: Su

ess Rate and Reserve Size

ρj = 0.333 ρj = 0.2

Notes: Stylized example. Ea
h panel represents a blo
k. The points are oil wells and the shaded area is the oil

�eld. Green wells are �su

essful� (that is, they en
ountered an oil 
olumn), and red wells are �unsu

essful�. The

probability of exploration well su

ess, ρj,on ea
h blo
k 
orresponds to the share of that blo
k o

upied by the oil

�eld.

Formally, I assume that the potential oil revenue yielded by blo
k j, πj , is drawn from a distribution

Γ(π|ρj , P ) where P is the oil pri
e and

∂E(πj)

∂ρj
> 0. A higher exploration su

ess probability ρj


orresponds to higher expe
ted oil revenue. Beliefs about exploration well su

ess G(ρ) then imply

beliefs about the potential oil revenue on blo
k j given by:

Γ̃j(π|G,P ) =

∫

Γ(π|ρj, P )dG(ρ). (5)

This interpretation of blo
k-level su

ess rates is supported by positive relationship between the

realized exploration su

ess rate and estimated oil reserves on developed blo
ks, illustrated by

Figure 2. Note that the assumption that probability of su

ess is a primitive feature of a blo
k and

within-blo
k lo
ation 
hoi
e is random implies that the realized su

ess rate on a blo
k should be


onstant over time. This might not be true if, for example, �rms 
ontinue to drill near previous

su

essful wells within the blo
k. I test this impli
ation in Appendix Table A5. I present the

results of regressions that show that within blo
ks, the su

ess rate is not signi�
antly higher or

lower for later wells than for earlier wells. That is, the e�e
t of the well sequen
e number on su

ess

probability is not statisti
ally signi�
ant. This is 
onsistent with a model in whi
h within-blo
k

well lo
ations are drawn at random.
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4 Des
riptive Eviden
e

The estimated model of beliefs suggests that there is high degree of 
orrelation between well

out
omes on neighboring blo
ks. This spatial 
orrelation is estimated from data on well out
omes

at di�erent lo
ations. In this se
tion, I use data on �rms' drilling de
isions to test whether �rm

behavior is 
onsistent with the estimated model of rational beliefs.

I provide eviden
e that �rms respond to the results of past wells, both their own wells and those of

other �rms, in a way that is 
onsistent with the estimated spatial 
orrelation of well results. I then

use the estimated model of beliefs to quantify the free riding in
entive fa
ed by �rms operating in

the North Sea. I provide dire
t eviden
e of free riding by showing how drilling behavior 
hanges

when the spatial arrangement of li
enses 
hanges.

4.1 Exploration Drilling Patterns

The estimated spatial 
orrelation illustrated by Figure 3 suggests that �rms should make inferen
es

a
ross spa
e based on past well results. I test this predi
tion using data on �rm behavior. Let

Sucjdot be the 
umulative number of su

essful wells drilled on blo
ks distan
e d from blo
k j

before date t by �rms o ∈ {f,−f}, where −f indi
ates all �rms other than �rm f . Failjdot is

analogously de�ned as the 
umulative number of past unsu

essful wells. To provide suggestive

eviden
e of the extent to whi
h �rms' exploratory drilling de
isions are 
orrelated with the results

of past wells drilled by di�erent �rms at di�erent lo
ations, I estimate the following regression

spe
i�
ation using OLS:

Explorefjt = αf + βj + γt +
∑

d

∑

o∈{f,−f}

gdo (Sucjdot, Failjdot)) + ǫfjt. (6)

Where gdo is a �exible fun
tion of 
umulative su

essful and su

essful well 
ounts for wells of type

(d, o). Explorefjt is an indi
ator for whether or not �rm f drilled an exploration well on blo
k j

in month t. Noti
e that the spe
i�
ation in
ludes �rm, blo
k, and month �xed e�e
ts. This means

that the e�e
ts of past wells are identi�ed by within-blo
k 
hanges in the set of well results over

time, and not by the fa
t that some blo
ks have higher average su

ess rates than others and these

blo
ks tend to be explored more.

Figure 6 re
ords the estimated marginal e�e
t of an the �rst past well of ea
h type on the probability

of exploration. I in
lude three distan
e bands in the regression - wells on the same blo
k, those 1-3

blo
ks away, and those 4-6 blo
ks away. Solid red 
ir
les indi
ate the e�e
t on the probability of

�rm f drilling an exploration well on blo
k j of an additional past su

essful well drilled by �rm

f at ea
h distan
e. Hollow red 
ir
les re
ord this e�e
t for unsu

essful past wells drilled by �rm

f . The results indi
ate that additional su

essful wells on the same blo
k and 1-3 blo
ks away

20



Figure 6: Response of Drilling Probability to Cumulative Past Results
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Notes: Points are the estimated marginal e�e
t of ea
h type of past well on Explorefjt from the spe
i�
ation given

by equation 6 where gdo(·) is quadrati
 in ea
h of the arguments. Marginal e�e
ts are 
omputed for the �rst well of

ea
h type. The y-axis is s
aled by multiplying the e�e
t by 104 and taking the log. Error bars are 95% 
on�den
e

intervals 
omputed using robust standard errors. All estimates are from one regression whi
h in
ludes quadrati
s

in ea
h of the 8 types of past well. The mean of the dependent variable is 0.0161. Sample in
ludes blo
k-months in

the relevant region up to De
ember 1990. An observation, (f, j, t) is in the sample if �rm f had drilling rights on

blo
k j in month t, and blo
k j had not yet been developed. I drop observations from highly explored regions where

the number of nearby own wells (those on 1st and 2nd degree neighboring blo
ks) is above the 95th per
entile of

the distribution in the data.

signi�
antly in
rease the probability of subsequent exploration, and an additional unsu

essful

wells signi�
antly de
rease the probability of subsequent exploration.

The e�e
t of an additional same �rm, same blo
k well is approximately 120% of the mean of the

dependent variable, Explorefjt, whi
h is 0.0161, and the size of the e�e
t is roughly equal for

su

essful and unsu

essful wells. The magnitude of the e�e
t de
reases with distan
e. Noti
e

that the y-axis of Figure 6 is on a log s
ale. The e�e
t of past wells at a distan
e of 1-3 blo
ks is

about 10% of the e�e
t of past same-blo
k wells. The e�e
t at distan
es of 4-6 blo
ks is on the

order of 1% of the same-blo
k e�e
t and is not statisti
ally signi�
ant.

Blue squares indi
ate the e�e
t of past wells drilled by other �rms on �rm f 's probability of

exploration. The e�e
ts are of the same sign but have magnitudes between 20% and 50% of the

same-�rm well e�e
ts. As with the same-�rm e�e
ts, the other-�rm e�e
ts diminish with distan
e

and lose statisti
al signi�
an
e at distan
es of 4-6 blo
ks.

13

These results suggest that �rm's de
isions about where to drill depend on the results of nearby

13

Sin
e the regression in
ludes blo
k �xed e�e
ts, the e�e
t of other �rm wells on the same blo
k 
omes from

variation in the number of wells over time when multiple �rms hold li
enses on the same blo
k. See Se
tion 2.2 for

dis
ussion of how I assign blo
ks to �rms.
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past wells, both their own wells and those of their rivals. The probability of drilling on blo
k j

responds both to the results of past wells on blo
k j as well as to the results of wells on nearby

blo
ks, suggesting that �rms make inferen
es a
ross spa
e at distan
es 
onsistent with the spatial


orrelation of well results illustrated by Figure 3, with the size of the drilling response de
lining

with distan
e. Exploration probability is also more responsive to own-�rm exploration results than

to other-�rm exploration results, suggesting that information �ow a
ross �rms is imperfe
t.

14

In Appendix Table A6 I report analogous results for di�erent sub-periods of the data. These

results indi
ate that the ratio of the e�e
t of wells 1-3 blo
ks away to the e�e
t of wells on the

same blo
k is relatively 
onstant over time. Firms do not appear to have been systemati
ally over-

or under-extrapolating a
ross spa
e during early exploration. This �nding is 
onsistent with the

assumption that the �rms are learning about the lo
ation of oil, not about the true value of the

spatial 
ovarian
e parameter ℓ whi
h I assume is known to �rms ex-ante.

To test dire
tly whether �rm behavior responds to 
hanges in beliefs, I regress �rm exploration

de
isions on model-implied posteriors. Sin
e exploration wells generate information, and their

value is in informing �rms' future drilling de
isions, a natural hypothesis is that the probability

of drilling an exploration well should be in
reasing in the expe
ted information generated by that

well.

15

For instan
e, the �rst exploration well drilled on a blo
k should be more valuable than the

tenth be
ause its marginal e�e
t on beliefs is greater.

I 
ompute the model-implied posterior beliefs for ea
h blo
k j, ea
h month t, based on all wells

drilled before that month a

ording to the Bayesian updating rule (4).

16

I obtain Et(ρj), the

posterior mean, and V art(ρj), the posterior varian
e of beliefs about the probability of su

ess

on blo
k j, ρj . To measure the expe
ted information gain of an additional well I obtain the

expe
ted Kulba
k-Leibler divergen
e, KLj,t, between the prior and posterior distributions following

an additional exploration well for ea
h (j, t).17

Column 1 of Table 3 re
ords the 
oe�
ients from a regression of KLj,t on the 
omputed posterior

varian
e and a quadrati
 in posterior mean at (j, t). There is an inverse u-shaped relationship

14

One potential 
on
ern is that these results 
ould be explained by the arrival over time of publi
 information

that is independent of drilling results and is 
orrelated over spa
e. To test of whether the information generated by

past wells is driving these results, I use the fa
t that the 
on�dentiality period on exploration data expires 5 years

after a well is drilled. In Appendix Figure A4 I show that moving an su

essful other-�rm well ba
k in time by

more than 6 months has a positive and signi�
ant e�e
t on the probability of exploration. The e�e
t is greatest for

wells 
lose to the 
on�dentiality 
uto�, drilled between 4.5 and 5 years ago. For wells that are older than 5 years,

there is no signi�
ant e�e
t, 
onsistent with the out
omes of these wells already being publi
 knowledge.

15

This predi
tion is true in the simple model presented in Appendix A. In more general settings, it is not ne
essarily

the 
ase that more informative wells are always more valuable. Note that the value of an exploration well is not

just the amount of information it generates, but its e�e
t on the �rm's future behavior and payo�s.

16

In this se
tion, I 
ompute beliefs as if all �rms observe the results of all other �rms' exploration wells. This

assumption is relaxed in the stru
tural model developed in Se
tion 5.

17

The KL divergen
e is a measure of the di�eren
e between two distributions. It 
an be interpreted as the

information gain when moving from one distribution to another (see Kullba
k and Leibler, 1951, and Kullba
k,

1997). See Appendix B for details.
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between expe
ted KL divergen
e and Et(ρj) that is maximized when Et(ρj) = 0.48. This re�e
ts

the 
lassi
 result in information theory (see for example Ma
Kay, 2003) that the information

generated by a Bernoulli random variable is maximized when the probability of su

ess is 0.5.

There is a positive relationship between V art(ρj) and KLjt. It is 
lear that as varian
e goes to 0,

the 
hange in beliefs from an additional well will also go to 0.

The se
ond 
olumn of Table 3 presents estimated 
oe�
ients from a regression of Explorefjt on

V art(ρj), a quadrati
 in Et(ρj), and (f, j) level �xed e�e
ts. Note that the 
oe�
ients follow the

same pattern as those in the �rst 
olumn: �rms are less likely to drill exploration wells on blo
ks

with very high or very low expe
ted probability of su

ess, and are more likely to drill exploration

wells on blo
ks with higher varian
e in beliefs. Firm behavior aligns 
losely with the theoreti
al

relationship between moments of the posterior beliefs and the expe
ted information generated by

exploration wells. This is 
on�rmed by the results in 
olumn 3, whi
h presents the estimated

positive and signi�
ant 
oe�
ient from a regression of Explorefjt on KLjt.

Table 3: Response of Drilling Probability to Posterior Beliefs

Dependent Variable: KL Divergen
e Exploration Well Develop Blo
k

Posterior Mean .547*** .275*** . .011***

(.001) (.062) . (.003)

Posterior Mean

2
-.570*** -.188** . .

(.002) (.089) . .

Posterior Varian
e .092*** .029*** . .001

(.000) (.008) . (.001)

KL Divergen
e . . .190*** -.039***

. . (.070) (.010)

R2
.914 .045 .043 .077

N 95690 95330 95330 93569

Firm-Blo
k and Month FE No Yes Yes No

Firm-Month FE No No No Yes

Notes: Standard errors 
lustered at the �rm-blo
k level. Mean, varian
e, and KL divergen
e of posterior beliefs


omputed for ea
h (f, j, t) as if all wells drilled by all �rms up to month t−1 are observed. Sample is all undeveloped

�rm-blo
k-months in the relevant region,. *** indi
ates signi�
an
e at the 99% level. ** indi
ates signi�
an
e at

the 95% level. * indi
ates signi�
an
e at the 90% level.

The last 
olumn of Table 3 present the results of a regression with Developfjt, an indi
ator for

whether �rm f developed blo
k j in month t, as the dependent variable. As illustrated in Figure

2, a blo
k's exploration well su

ess rate is positively 
orrelated with size of the oil �eld lo
ated on

that blo
k. Consistent with this, the results indi
ate that probability of development is in
reasing

in E(ρj). In 
ontrast to the exploration results there is a negative e�e
t of KLjt on development

- the more information 
ould be generated by an additional exploration well on a blo
k, the less

likely is a �rm to develop that blo
k.

18

18

The development regression in
ludes a �rm-month �xed e�e
t rather than a �rm-blo
k �xed e�e
t be
ause
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4.2 The Value of Information and the In
entive to Free Ride

The results presented in Se
tion 4.1 suggest that information spillovers a
ross spa
e and �rms have

a signi�
ant e�e
t on drilling behavior. To what extent do these externalities provide an in
entive

for �rms to delay exploration and free ride o� the information generated by other �rms' wells?

Using the estimated model of beliefs, it is possible to perform a ba
k of the envelope quanti�
ation

of the in
entive to delay exploration without invoking a further stru
tural model of �rm behavior.

I 
onsider a �rm f 's de
ision to delay drilling the �rst exploration well on blo
k j by one year.

I suppose that the �rm's beliefs are given by the estimated prior pro
ess and that, ea
h month,

ea
h blo
k held by another �rm is drilled with a �xed probability QE, whi
h I set equal to the

empiri
al mean exploration rate of 0.0219. I further assume that �rm f observes the results of ea
h

well drilled by another �rm with probability α. For a given arrangement of li
enses, I run twelve

month simulations of other �rms' drilling behavior and update the beliefs of �rm f . For ea
h

simulation, I 
al
ulate the information gained about blo
k j by �rm f from observing the results

of other �rms' wells, and 
ompare the mean information gain a
ross simulations (in parti
ular, the

expe
ted Kullba
k-Leibler divergen
e between the �rm's prior beliefs and the posterior after 12

months) to the expe
ted information gain from �rm f drilling its own exploration well on blo
k j.

Table 4: Information Gain from Delay of Exploration

Other Firm Neighbors One Year Delay at α = 0.4
Per
entile Same Blo
k First Degree Se
ond Degree Info. Generated Net Gain

1 0 0 0 0 -43.02

25 0 3 5 0.080 -15.42

50 0 5 9 0.120 -1.51

75 0 7 12 0.174 17.23

90 1 8 13 0.335 72.67

99 2 14 22 0.603 165.45

Notes: The �rst three 
olumns report per
entiles of the distribution of other �rm neighbors a
ross all (f, j, t)
observations in the relevant area from 1964-1990. First and se
ond degree neighbors are those one or two blo
ks

away (in
luding diagonal neighbors). Columns 4 reports the mean information generated from 1000 12 month

simulations, as des
ribed in the text. Column 5 presents the implied net gain in millions of dollars from delaying

exploration for 12 months, as des
ribed in the text.

Table 4 presents the expe
ted information generated from 12 month delay as a fra
tion of the

information generated by drilling an exploration well for six di�erent arrangements of li
enses.

Ea
h row 
orresponds to a li
ense arrangement where the numbers of other �rms holding li
enses

at di�erent distan
es from blo
k j are drawn from per
entiles of the empiri
al distribution. The

fourth 
olumn re
ords the information generated from one year of delay when α = 0.4, as a fra
tion

of the information generated by drilling one exploration well. The information gain from delay is

development happens at most on
e within ea
h (f, j), at the end of that �rm-blo
k's time series. Results with

�rm-blo
k �xed e�e
ts would therefore 
apture the fa
t that varian
e and KLjt tend to de
line over time.
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in
reasing in the density of other �rm neighbors. For the 25th per
entile arrangement, delaying

exploration by one year generates 8% of the information of an exploration well. For the 99th

per
entile arrangement, delay a
hieves 60% of the information generation of an exploration well.

The �fth 
olumn re
ords an approximation of the net gain in millions of dollars from delaying

exploration by one year, suggesting that �rms with an arrangement of neighboring li
enses in the

1st, 25th, and 50th per
entiles would not bene�t from delay, while �rms above the 75th per
entile

would gain on net.

19

To illustrate how these in
entives 
hange with the �ow of information be-

tween �rms, Appendix Figure A7 re
ords the net gain from delay for di�erent li
ense arrangement

per
entiles and for values of α ∈ [0, 1]. The gain from delay is in
reasing in α.

These results suggest that, if there is su�
ient �ow of information between �rms, variation in

spatial arrangement of li
enses in the data should result in 
hanges in the in
entive to free ride by

delaying exploration. To provide dire
t empiri
al eviden
e that su
h free riding in
entives matter,

I run regressions exploiting the variation in the spatial arrangement of li
enses.

The number of li
ensed blo
ks in a region is likely to be 
orrelated with, for example, the arrival

of information that is not 
aptured by well out
omes or 
hanges in region spe
i�
 drilling 
osts.

To isolate the 
ausal e�e
t of 
hanges in li
ense distribution on the in
entive to explore, I fo
us

on quasi-experimental variation by sele
ting (f, j, t) observations before and after dis
rete jumps

in the number of li
enses issued, 
orresponding to the months before and after the government

announ
es the results of li
ensing rounds. In parti
ular, I identify (f, j, t) observations for whi
h

the total number of li
ensed blo
ks neighboring blo
k j in
reases from the previous month. I

sele
t nine month windows 
entered on these li
ensing events and index these windows with γ. For

observations in a li
ensing window, I de�ne ∆(f, j, t) ∈ {−4,−3, ..., 4} as the number of months

before or after the relevant li
ensing event. I estimate the following spe
i�
ation on the set of

observations in li
ensing windows:

Explorefjt = αγ + α∆(f,j,t) + β1BlocksOwnfjt + β2BlocksOtherfjt +Xfjtδ + ǫfjt. (7)

Where Xfjt 
ontains all the regressors in equation 6. BlocksOwnfjt is the number of neighboring

blo
ks li
ensed to �rm f and BlocksOtherfjt is the number of neighboring blo
ks li
ensed to other

�rms. The 
hange in the number of li
ensed blo
ks near blo
k j within a window is unlikely to

re�e
t the arrival of new information about the produ
tivity of blo
k j, sin
e issued li
enses are the

result of appli
ations that are made before the beginning of the window. Any 
hanges in drilling

19

Suppose the information generated from delay as a share of one well is s. If the 
ost of drilling an exploration

well is c, then delaying the �rst exploration well redu
es the expe
ted 
ost of exploration by sc. The 
ost of delay

is the resulting dis
ounting of future pro�ts, V . If the annual dis
ount rate is β, then I 
ompute the net gain from

delay as sc − (1 − β)V . I set β = 0.9. I set V = 43.02 based Hunter's (2015) a

ount of the per-blo
k au
tion

revenue generated by one-o� au
tion li
ensing round held by the UK regulator in 1971, in�ated to millions of 2015

dollars. I set c = 34.55 based on the average per-well 
apital expenditure between 1970 and 2000 reported by the

regulator, in�ated to million of 2015 dollars.
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osts or arrival of information within ea
h window is therefore likely un
orrelated with 
hanges in

BlocksOwnfjt and BlocksOtherfjt.

Table 5: Regressions of Drilling Probability on Nearby Li
enses

Exploration Well Develop Blo
k

BlocksOwnfjt 4.739 . 3.300*** -.101

(5.800) . (.961) (.256)

BlocksOtherfjt -1.446 . .915*** -.059

(1.330) . (.267) (.064)

log(BlocksOwnfjt) . .028** . .

. (.014) . .

log(BlocksOtherfjt) . -.013*** . .

. (.004) . .

N 21971 21618 136430 136430

Firm-Blo
k, and Month FE No No Yes Yes

Experiment Fixed E�e
ts Yes Yes No No

Coe�
ients S
aled by 103 Yes No Yes Yes

Notes: Standard errors 
lustered at the �rm-blo
k level. Observations are at the (f, j, t) level. Sample in
ludes all

(f, j, t) observations that are within 4 months of a li
ensing event, for whi
h the �rm f has held a li
ense on blo
k

j for at least 6 months. Blo
k 
ounts are of all li
enses on blo
k j and neighboring blo
ks on date t. *** indi
ates

signi�
an
e at the 99% level. ** indi
ates signi�
an
e at the 95% level. * indi
ates signi�
an
e at the 90% level.

The �rst 
olumn of Table 5 reports the 
oe�
ients on BlocksOwnfjt and BlocksOtherfjt. Within-

window in
reases in the number of own-�rm blo
ks are 
orrelated with in
reased exploration prob-

ability, and within-window in
reases in the number of other-�rm blo
ks are 
orrelated with de-


reased exploration probability. The se
ond 
olumn reports results using the log of BlocksOwnfjt

and BlocksOtherfjt, with both 
oe�
ients signi�
ant and of the same sign as in the �rst 
ol-

umn. These results suggest that doubling the number of neighboring blo
ks li
ensed to �rm f

will in
rease the probability of exploration by �rm f on blo
k j by 0.8 per
entage points, and

doubling the number of blo
ks li
ensed to other �rms will redu
e the probability of exploration by

0.4 per
entage points. Noti
e that these e�e
ts are large relative to the mean of the dependent

variable, whi
h is 0.016 in this sample. This �nding is suggestive of a signi�
ant in
entive to delay

investment in exploration when the probability that another �rm will explore nearby in
reases. In

parti
ular, 
hanges in the number of blo
ks li
ensed to other �rms should not 
hange the value to

�rm f of the results of exploration on blo
k j, but 
an in
rease the value of delaying exploration.

The third and fourth 
olumns of Table 7 presents regressions of Explorefjt and Developfjt on

BlocksOwnfjt and BlocksOtherfjt that do not restri
t the sample to li
ensing windows. Noti
e

that the probability of exploration is in
reasing in both measures of nearby li
enses, but the e�e
t

of BlocksOwnfjt is substantially larger. The distribution of li
enses neighboring blo
k j is not

signi�
antly 
orrelated with the probability that blo
k j is developed. It seems reasonable that

a �rm would not delay development on a blo
k known to hold large reserves be
ause of expe
ted

26



exploration by rivals on nearby blo
ks, and the revenue produ
ed by a development well is not a

fun
tion of the number of surrounding blo
ks owned by the same �rm.

20

In Appendix Figures A5 and A6 I present further eviden
e that is suggestive of free riding. In

parti
ular, I reprodu
e a result from Hendri
ks and Porter (1996), who showed that the probability

of drilling an exploration well on unexplored tra
ts in the Gulf of Mexi
o in
reased near the drilling

deadline imposed by the tra
t lease. The authors argue that this delay until the end of the lease

term is eviden
e of a free riding in
entive. I show that the same pattern obtains on North Sea

blo
ks when the drilling deadline (whi
h, as dis
ussed in Se
tion 2, is not as stri
t as the deadline

imposed in the Gulf) approa
hes. I also show that this pattern obtains for li
ense blo
ks with a

large number of other �rm li
ense nearby, but is not present for blo
ks that are far from other �rm

li
enses, 
onsistent with the predi
tions presented in Table 4.

5 An E
onometri
 Model of Optimal Exploration

To measure the extent to whi
h information externalities a�e
t industry surplus, I estimate a

stru
tural e
onometri
 model of the �rm's exploration problem in whi
h I assume that �rm beliefs

follow the logisti
 Gaussian pro
ess model of Se
tion 3.2. I set up the �rm's problem by spe
ifying

a full information game in whi
h �rms observe the results of all wells. Motivated by the empiri-


al �ndings des
ribed in Se
tion 3, I then extend the model to one of asymmetri
 information in

whi
h �rms do not observe the results of other �rms' wells with 
ertainty. I des
ribe a simplify-

ing assumption on �rm beliefs and spe
ify an equilibrium 
on
ept that makes estimation of the

asymmetri
 information game feasible.

5.1 Full Information

I start by spe
ifying a full information game played by a set of �rms F . Firms are indexed by

f , dis
rete time periods are indexed by t, and blo
ks are indexed by j. J is the set of all blo
ks.

Jft ⊂ J is the set of undeveloped blo
ks on whi
h �rm f holds drilling rights at the beginning of

period t. J0t ⊂ J is the set of undeveloped blo
ks on whi
h no �rm holds drilling rights at the

beginning of period t. Pt is the oil pri
e.

Exploration wells are indexed by w, and ea
h well is asso
iated with an out
ome s(w) ∈ {0, 1},

a blo
k j(w), a �rm f(w), and a drill date t(w). The set of all lo
ations and realizations of

exploration wells drilled on date t is given by Wt = {(j(w), s(w)) : t(w) = t}.

20

One ex
eption to this is the 
ase of an oil reservoir whi
h 
rosses multiple blo
ks operated by di�erent �rms. In

these 
ases the oil reservoir is �unitized� by regulation, and revenue is split proportionally between operators of the

blo
ks. This provision removes the �
ommon pool� in
entive dis
ussed by Lin (2013) and the in
entive to develop

an overlapping reservoir before a neighboring rival.
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The �rm's prior beliefs about the probability of exploration well su

ess on ea
h blo
k are given by

the logisti
 Gaussian pro
ess G0 de�ned in equation X. Gft is �rm f 's posterior at the beginning

of period t. Under the assumption of full information �rms observe the results of all wells, so

Gft+1 = B(Gft,Wt) and Gft = Gt for all �rms f ∈ F , where B(·) is de�ned in equation 4.

The industry state at date t is des
ribed by

St = {Gt, {Jft}f∈F∪{0}, Pt}. (8)

Ea
h period, the �rm makes two de
isions sequentially. First, in the exploration stage, it sele
ts

at most one blo
k on whi
h to drill an exploration well. Then, in the development stage, it sele
ts

at most one blo
k to develop.

Drilling an exploration well on blo
k j in
urs a 
ost whi
h I allow to depend on the state, c(j,St)−

ǫftj . Developing blo
k j in
urs a 
ost κ − νftj . ǫftj and νfjt are private information 
ost sho
ks

drawn iid from logisti
 distributions with varian
e parameters σǫ and σν . Developing blo
k j at

date t yields a random payo� πjt. Firms' beliefs about the distribution of payo�s on blo
k j are

Γ̃j(π|Gt, Pt), de�ned in equation 5.

The timing of the game is as follows:

Exploration Stage

1. Given state St, ea
h �rm f observes a ve
tor of private 
ost sho
ks ǫft.

2. Firm f 
hooses an exploration a
tion, aEft ∈ Jft ∪ {0}. If aEft 6= 0, then �rm f in
urs an

exploration 
ost.

3. Exploration well results Wt are realized.

4. The industry state evolves to S ′
t = {Gt+1, {Jft}f∈F∪{0}, Pt}.

Development Stage

1. Given state S ′
t , ea
h �rm f observes a ve
tor of private 
ost sho
ks νft.

2. Firm f 
hooses a development a
tion, aDft ∈ Jft ∪ {0}. If aDft 6= 0, then �rm f in
urs a

development 
ost.

3. If aDft = j then the �rm f draws oil revenue πjt.
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4. The industry state evolves to St+1 = {Gt+1, {Jft+1}f∈F∪{0}, Pt+1}.
21

State variables evolve at the end of the development stage as follows. I assume that log oil pri
e

follows an exogenous random walk, so Pt+1 = exp(log(Pt) + ζt) where ζt ∼ N(0, σζ). I assume

that �rm li
enses on undeveloped blo
ks are issued and surrendered a

ording to an exogenous

sto
hasti
 pro
ess de�ned by probabilities P (j ∈ Jft+1|{Jgt}g∈F∪{0}, a
D
ft). Developed blo
ks are

removed from �rms' 
hoi
e sets, so P (j ∈ Jft+1|a
D
ft = j) = 0 and P (j ∈ Jft+1|j /∈ ∪{Jgt}g∈F∪{0}) =

0. This assumption eliminates any strategi
 
onsideration in the timing of drilling with respe
t

to regulatory deadlines, the announ
ement of new li
ensing rounds, and the �rm's de
ision to

surrender a blo
k.

The �rm's 
ontinuation values at the beginning of the exploration and development stages (before

private 
ost sho
ks are realized) are des
ribed by the following two Bellman equations:

V E
f (St) = Eǫft

[

max
aEt ∈Jft∪{0}

{

ES′

t

[

V D
f (S ′

t)|a
E
t ,St

]

− c(aEt ,St) + ǫftj

}

]

(9)

V D
f (S ′

t) = Eνft

[

max
aDt ∈Jft∪{0}

{

Eπ
aD
t
,St+1

[

βV E
f (St+1) + πaDt

|aDt ,S
′
t

]

− κ(aDt |S
′
t) + νftj

}

]

.

Where β is the one period dis
ount rate. The inner expe
tation in the exploration Bellman equation

is taken over realizations of the intermediate state S ′
t, with respe
t to the �rm's beliefs Gt and

beliefs about other �rms' exploration a
tions. The inner expe
tation in the development Bellman

equation is taken over realizations of development revenues πaD and realizations of next period's

state variable St, with respe
t to the �rm's beliefs Gt+1 and beliefs about other �rms' a
tions.

De�ne 
hoi
e spe
i�
 ex-ante (before private 
ost sho
ks are realized) value fun
tions as,

vEf (a
E
t ,St) =ES′

t

[

V D
f (S ′

t)|a
E
t ,St

]

− c(aEt ,St)

vDf (a
D
t ,S

′
t) =Eπ

aD
t
,St+1

[

βV E
f (St+1) + πaDt

|aDt ,S
′
t

]

− κ(aDt ,S
′
t). (10)

A Markov perfe
t equilibrium of this game is then de�ned by strategies aEf (S, ǫ) and aDf (S,ν)

that maximize the �rm's 
ontinuation value, 
onditional on the state variable and the privately

21

Note that I have assumed that �rms do not update their beliefs based on the out
omes of development de
isions.

Formally, this assumption means that although �rms obtain revenues πj after making development de
isions, they

do not observe πj . The assumption that �rms do not update their beliefs based on this realization is likely not

unreasonable. In reality oil �ow is obtained from a reservoir over many years, and additional information about

the true size of the �eld is gradually obtained. Furthermore, sin
e development platforms are very expensive, the

information value of development is unlikely to be pivotal to the development de
ision, and the marginal e�e
t of

information revealed by the development out
ome is likely to be small sin
e development takes pla
e only after

extensive exploration.

29



observed 
ost sho
ks,

aEf (S, ǫ) = arg max
aE∈Jf∪{0}

{

vEf (a
E ,S) + ǫtaE

}

(11)

aDf (S
′,ν) = arg max

aD∈Jf∪{0}

{

vDf (a
D,S ′) + νtaD

}

,

where the �rm fore
asts all �rms' a
tions 
onditional on the industry state using the true 
ondi-

tional 
hoi
e probabilities (CCPs) given by:

P (aEf = j|St) =
exp

(

1
σǫ
vEf (j,St)

)

∑

k∈Jft∪{0}
exp

(

1
σǫ
vEf (k,St))

) . (12)

With a similar expression for the CCP of development a
tion j, P (aDf = j|S ′
t).

5.2 Asymmetri
 Information

A key assumption made in the model des
ribed above is that �rms 
an perfe
tly observe the results

of ea
h other's exploration wells as soon as they are drilled. In reality, industry regulation allows

for 
on�dentiality of well data for the �rst �ve years after an exploration well is drilled, and the

empiri
al eviden
e presented in Se
tion 3 suggests imperfe
t spillover of information between �rms.

The extent to whi
h information �ows between �rms before the end of the well data 
on�dentiality

period is a potentially important determinant of �rms' in
entive to delay exploration.

To allow for imperfe
t spillovers of information in the model, I make an alternative assumption

about when �rms observe the results of exploration wells. In parti
ular, when a well w is drilled

by �rm f , I let ea
h �rm g 6= f observe the out
ome, s(w), with probability α. s(w) is revealed to

all �rms τ periods after the well is drilled, on expiry of the 
on�dentiality window.

Formally, let of(w) ∈ {0, 1} be a random variable drawn independently a
ross �rms after the

exploration stage of period t(w) where P (of(w) = 1|f(w) 6= f) = α and P (of(w) = 1|f(w) = f) =

1. The set of well results observed by �rm f in period t is

Wft = {(j(w), s(w)) : (of(w) = 1 and t(w) = t) or (of(w) = 0 and t(w) = t− τ)} . (13)

Firms observe the lo
ation, j(w), and the drill date, t(w), for all wells. This assumption re�e
ts

the fa
t that the regulator makes this data publi
 immediately after a well is drilled. Firms f 's

information about past wells with unobserved out
omes is

WU
ft = {(j(w), t(w)) : of(w) = 0 and t(w) > t− τ} . (14)
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The introdu
tion of this asymmetri
 information stru
ture 
ompli
ates the �rm's problem. In

general, Gft 6= Ggt sin
e �rms observe di�erent sets of well out
omes. To fore
ast next period's

state in equilibrium, �rm f must form beliefs about every other �rm g's beliefs, Ggt. The history

of �rm g's a
tions is informative about Ggt and about well out
omes unobserved by �rm f . Firm f

should therefore update its beliefs based not only on observed out
omes, but on the past behavior

of other �rms. For instan
e, if �rm g drilled many exploration wells on blo
k j, this should signal

to �rm f something about the su

ess probability on that blo
k, even if �rm f did not observe the

out
ome of any of those wells dire
tly. In 
ontrast to the full information game, this means that

the entire history of drilling and li
ense allo
ations should enter the �rm's state.

These 
omplexities make estimating the asymmetri
 information game and �nding equilibria 
om-

putationally infeasible. To make progress, I impose the following simplifying assumption on �rms'

beliefs about other �rms' a
tions.

• Assumption A1: Firm f believes that at every period t the probability of a new exploration

well being drilled by a �rm g 6= f on blo
k j ∈ Jgt is given by QE
t ∈ [0, 1]. Likewise �rm

f believes that at every period t the probability of �rm g 6= f developing blo
k j ∈ Jgt is

QD
t ∈ [0, 1].

Assumption A1 says that �rms believe that blo
ks held by other �rms are explored at a �xed rate

QE
and developed at a �xed rate QD

. Under this assumption I 
an rede�ne the state variable as:

Sft = {Gft, Jft,∪{Jgt}g 6=f , J0t, Pt,W
U
ft}. (15)

This �rm-spe
i�
 state is su�
ient for �rm f 's date t de
ision under asymmetri
 information.

Note that �rm f only needs to know whi
h blo
ks it holds and whi
h are held by some other �rm

(∪{Jgt}g 6=f), not the identity of the li
ense holding �rm for ea
h blo
k, sin
e the identity of the

blo
k owner does not a�e
t drilling probability under �rms' beliefs.

22

Further, Gft+1 = B(Gft,Wft)

as before. In parti
ular, Gft+1 does not depend on WU
ft sin
e �rms believe past wells were drilled

at an exogenous rate and drilling history does not 
ontain information about other �rms' beliefs.

The state variable in
ludes WU
ft sin
e �rms anti
ipate the release of well out
ome data at the end

of ea
h well's 
on�dentiality period.

Fixing QE
and QD

, the �rm's problem be
omes a single agent problem where other wells are drilled

at an exogenous rate. The �rm's optimal strategy is given by equation 11 and CCPs are given by

12, where �rm's expe
tations about the future a
tions of other �rms are now given by (QE , QD),

not the true CCPs. Fixing the initial 
onditions, de�ned by J0 and P0, and a value of (QE , QD),

22

Formally this requires additional assumptions on the sto
hasti
 pro
ess that governs the issuing and surrender

of li
enses. In parti
ular, P (j ∈ Jft+1|{Jgt}g∈F∪{0}, a
D
ft) = P (j ∈ Jft+1|Jft,∪{Jgt}g 6=f , J0t, a

D
ft), and P (j ∈

∪{Jgt+1}g 6=f |{Jgt}g∈F∪{0}, {a
D
gt}g∈F ) = P (j ∈ ∪{Jgt+1}g 6=f |Jft,∪{Jgt}g 6=f , J0t, {a

D
gt}g∈F ). I also assume Jf0 = {}

for all f ∈ F .
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�rms' optimal strategies imply probability distributions over realized states for ea
h (f, t). I use

these distributions to de�ne equilibrium in the asymmetri
 information model as follows.

• Assumption A2: Let P (aEf,t = j|Sf,t) and P (aDf,t = j|S ′
f,t) be �rms' equilibrium CCPs. Fix

a time horizon T . In equilibrium, �rms have beliefs about other �rms' exploration and

development rates given by:

QE = E





1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P (aEft = j|Sft)





(16)

QD = E





1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P (aDft = j|S ′
ft)



 .

Where the expe
tations are taken over states with respe
t to equilibrium state distributions.

This assumption means that in equilibrium, a �rm's beliefs about the probability of exploration

and development by other �rms are on average 
orre
t. QE
is equal to the average over �rms,

periods, and blo
ks of the expe
ted equilibrium probability of exploration. This means that QE

is an equilibrium obje
t, and, for example, poli
y 
hanges that 
hange �rms' in
entive to explore

will 
hange QE
in equilibrium.

Assumptions A1 and A2 retain the asymmetri
 information stru
ture but greatly simplify estima-

tion and 
omputation of equilibria. These assumptions also simplify the behavioral impli
ations of

the model in three signi�
ant ways. First, �rms' beliefs about the a
tions of other �rms are iden-

ti
al at all lo
ations and times. This means that free riding in
entives only vary with the number

of other �rms' blo
ks near a blo
k j, not with, for example, the number of unique �rms that hold

drilling li
enses nearby. Se
ondly, the model does not allow �rms to reason about how their a
tions

a�e
t other �rms' future behavior. For example, Assumption A1 pre
ludes the �en
ouragement

e�e
t� dis
ussed by Dong (2017), whi
h mitigates the free riding in
entive be
ause �rms have an

added in
entive to explore if doing so en
ourages other �rms to explore. Third, this assumption

shuts down any signaling in
entives, sin
e �rms to not update their beliefs based on the presen
e

of wells, only well results.

6 Estimation & Identi�
ation

6.1 Sample & Parameterization

I estimate the model using the subsample of the data that re
ords a
tivity on a 270 blo
k region


orresponding to the northern North Sea basin. This region 
ontains many of the large oil deposits
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dis
overed on the UK 
ontinental shelf.

23

I restri
t the estimation sample to this region in order

to redu
e 
omputational time. I use the monthly Brent 
rude pri
e in�ated to 2015 dollars using

the UK GDP de�ator to measure the oil pri
e. For years before 1980 where the Brent pri
e is

unavailable I use proje
ted values from a regression of Brent on the West Texas Intermediate pri
e.

I let a period be one month, and set the number to periods after whi
h well out
omes are made

publi
 to τ = 60.24 This 
orresponds to the 5 year 
on�dentiality period imposed by the regulator.

I set the one month dis
ount rate to β = 0.992, whi
h 
orresponds to a 10% annual dis
ount.

I impose the following parametri
 restri
tions on exploration 
osts:

c(j,Sft) = c0 + c1 ln(Nearbyjt). (17)

Where Nearbyjt be the number of li
ensed blo
ks �near� blo
k j at date t, 
ounting same-blo
k

li
enses, �rst and se
ond degree neighbors. This spe
i�
ation allows for information and te
hnology

spillovers in exploration drilling that are not expli
itly modeled. For example, more heavily li
ensed

areas are likely to be better understood in terms of geology and optimal drilling te
hnology (see

for example Covert (2015) and Ste
k (2018) on inter-�rm learning about lo
ation-spe
i�
 drilling

te
hnology).

The model parameters are therefore {θ1, θ2, α, σζ}, where θ1 = {µ, ω, ℓ} are the parameters of the

�rm's beliefs de�ned in Se
tion 3, θ2 = {c0, c1, κ0, σc, σκ} are the 
ost parameters, α is the proba-

bility of observing another �rm's well out
ome before it is made publi
, and σζ is the varian
e of

innovations to the oil pri
e random walk. Other obje
ts to be estimated are the transition prob-

abilities of the li
ense issuing pro
ess P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), the distribution of development

pro�ts, Γ(π; ρj , Pt), and �rm beliefs about other �rms' a
tions, QE
and QD

.

6.2 Estimation

Parameters θ1 are taken from the estimation pro
edure des
ribed in Se
tion 4.1. I estimate σζ

with the varian
e of monthly 
hanges in the log oil pri
e. I estimate Γ(·) using data on realized

oil �ows from all developed wells. I detail this part of estimation in Appendix C.4. Probabilities

P (j ∈ Jf,t+1|Jt, {Jg,t}∀g∈F ) that are used by �rms to fore
ast the evolution of li
ense assignments

are estimated using two probit regressions. First, I estimate the probability of a blo
k j being

li
ensed to any �rm in period t + 1 as a fun
tion of whether it was li
ensed to any �rm in period

23

Spe
i�
ally, this region 
orresponds to the area north of 59◦N , south of 62◦N , east of 1◦W , and west of the

UK-Norway border.

24

The 
hoi
e of a one month period imposes an impli
it 
apa
ity 
onstraint - ea
h �rm 
an 
hoose at most one

blo
k to explore and one blo
k to develop ea
h month. In pra
ti
e, in 94% of (f, t) observations where exploration
takes pla
e, only one exploration well is drilled. I never observe more than one blo
k developed by the same �rm

in the same month. In my detailed dis
ussion of the estimation routine in Appendix C, I des
ribe how I deal with

observations where there are multiple exploration wells in a month.
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t and the number of neighboring blo
ks li
ensed in period t. I then estimate the probability of

blo
k j being li
ensed to �rm f in period t + 1 
onditional on it being li
ensed to some �rm as a

fun
tion of whether it was li
ensed to �rm f in period t, whether it was li
ensed to any �rm in

period t, and the number of neighboring blo
ks li
ensed to �rm f in period t. I detail this part of

estimation in Appendix C.5.

The remaining parameters, θ2 and α, are estimated using a two step 
onditional 
hoi
e probability

method related to those des
ribed by Hotz, Miller, Sanders and Smith (1994) and Bajari, Benkard

and Levin (2007). In the �rst step, I obtain estimates of the 
onditional 
hoi
e probabilities (CCPs)

given by equation 12 and the parameter α. Using these estimates, I 
ompute the �rm's state-spe
i�



ontinuation values (9), as fun
tions of the remaining parameters θ2 by forward simulation. I then

�nd the value of θ2 that minimizes the distan
e between the �rst step estimates of the CCPs and

the 
hoi
e probabilities implied by the simulated 
ontinuation values. First step estimates of the

CCPs are also used to estimate the average exploration and development rates QE
and QD

whi
h


orrespond to �rms' beliefs. I des
ribe this two step pro
edure in detail in Appendix C.

6.2.1 Estimation of Conditional Choi
e Probabilities

The most important di�eren
e between the pro
edure I implement and the existing literature is

in the �rst step estimation of CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an a
tion j in the exploration and development stages of the game 
onditional on its state

S.

If the state variable were observable in the data, then P̂ (aEf = j|S) 
ould be estimated dire
tly using

the empiri
al 
hoi
e probability 
onditional on the state. However, the asymmetri
 information

stru
ture of the model means that the true state is not observed by the e
onometri
ian. In

parti
ular, the e
onometri
ian knows the out
ome of every well, but does not know whi
h out
omes

were observed by ea
h �rm. Formally, the data does not in
lude the ve
tor of that re
ords whi
h

other-�rm well out
omes were observed by �rm f . Di�erent realizations of of imply di�erent states

through the e�e
t of observed well out
omes on Gft and WU
ft. The data is therefore 
onsistent

with a set of possible states S̃f for ea
h �rm.

25

To re
over CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . The data is 
onsistent with two possible states: let S1
ft

be the state if of(w) = 1 and S0
ft be the state if of(w) = 0. From the e
onometri
ian's perspe
tive,

P (S1
ft|{S

1
ft,S

0
ft}, α) = α. I provide a formal de�nition of the distribution P (Sf |S̃f , α) in Appendix

C.

25

More pre
isely, and element of S̃f is a parti
ular sequen
e of �rm-f states Sf = {Sft}
T
t=1. See Appendix C for

a formal de�nition of S̃f .
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Given this distribution over states, the likelihood of a sequen
e of exploration 
hoi
e observations

is:

LE
f =

∑

Sf∈S̃f









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)P (aE = j|Sf)



P (Sf |S̃f , α)



 . (18)

I maximize this likelihood to obtain estimates of the 
onditional 
hoi
e probabilities P̂ (aEf = j|S)

and the information spillover parameter, α̂, whi
h 
ontrols the probability weight pla
ed on ea
h of

the di�erent states Sf ∈ S̃f that 
ould have obtained given the data. Sin
e the state variable is high

dimensional, I use the logit stru
ture of P̂ (aEf = j|S) implied by equation 12 and approximate the


hoi
e spe
i�
 value fun
tion for ea
h alternative with a linear equation in summary statisti
s of the

state variable. Full details are provided in Appendix C. In approximating a high dimensional state

variable with lower dimensional statisti
s I follow mu
h of the applied literature that estimates

dynami
 dis
rete 
hoi
e models with 
onditional 
hoi
e probability methods. For example, see

Ryan and Tu
ker (2011) and Collard-Wexler (2013).

6.3 Identi�
ation

6.3.1 Identi�
ation of CCPs

The �rst step of the estimation pro
edure re
overs the parameter α and 
onditional 
hoi
e proba-

bilities P̂ (a = j|S) at ea
h state S from data in whi
h ea
h observation is 
onsistent with a set of

states S̃. The model's information stru
ture means these obje
ts are separately identi�ed despite

the fa
t that the e
onometri
ian does not observe the full state. In parti
ular, I 
laim that the

list of 
hoi
e probabilities P (a = j|S̃) for ea
h set of states S̃ that it is possible to observe in the

data 
an be inverted to uniquely identify 
hoi
e probabilities 
onditioned on the unobserved states

P (a = j|S) and the information spillover parameter α.

To illustrate identi�
ation, 
onsider the following simpli�ed example. Suppose that a state is

des
ribed by a triple, S = (suc, fail, unobs), where suc is the number of su

essful wells observed,

fail is the number of unsu

essful wells observed, and unobs is the number of wells with unobserved

out
omes. Consider data that 
ontains observations 
onsistent with the following sets of states:

S̃A = {(1, 0, 0)} (19)

S̃B = {(0, 1, 0)}

S̃C = {(1, 0, 0), (0, 0, 1)}

S̃D = {(0, 1, 0), (0, 0, 1)}.

S̃A and S̃B are observed by the e
onometri
ian when there is one own-�rm well out
ome. The

e
onometri
ian then knows the state with 
ertainty sin
e the �rm always observes their own well
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out
ome. S̃C and S̃D are observed by the e
onometri
ian when there is one other-�rm well out-


ome. In this 
ase, the e
onometri
ian knows whether the well was su

essful or unsu

essful,

but not whether the �rm observed the out
ome or not. Given a value of the parameter α, 
hoi
e

probabilities 
onditional on the observed set of states 
an be written as:

P (a = j|S̃A) = P (a = j|S = (1, 0, 0)) (20)

P (a = j|S̃B) = P (a = j|S = (0, 1, 0))

P (a = j|S̃C) = αP (a = j|S = (1, 0, 0)) + (1− α)P (a = j|S = (0, 0, 1))

P (a = j|S̃D) = αP (a = j|S = (0, 1, 0)) + (1− α)P (a = j|S = (0, 0, 1)).

The left hand side of ea
h equation is a probability that is observable in the data. Noti
e that there

are four equations and four unknowns - three 
onditional 
hoi
e probabilities and the parameter

α. The �rst two equations yield estimates of P (a = j|S = (1, 0, 0)) and P (a = j|S = (0, 1, 0))

dire
tly. Rearranging the third and fourth equations yields:

α =
P (a = j|S̃C)− P (a = j|S̃D)

P (a = j|S̃A)− P (a = j|S̃B)
. (21)

This says that α is identi�ed by the di�eren
e between how mu
h the �rm responds to other �rm

wells (the numerator) and how mu
h the �rm responds to its own wells (the denominator). As

do
umented in Figure 6, �rms' exploration 
hoi
es respond more to the results of their own wells

than to those of other �rm wells, implying 0 < α < 1. P (a = j|S = (0, 0, 1)) is then identi�ed by

the level of P (a = j|S̃C) or P (a = j|S̃D).

This identi�
ation argument relies on two features of the model's information stru
ture. First, the

belief updating rule (4) treats own-�rm and other-�rm well results identi
ally. This means that we


an use the �rm's response to their own wells to infer how they would have responded if they had

observed another �rm's well. For example, P (a = j|S = (1, 0, 0)) enters both the �rst and third

equation in (20). Se
ond, if �rm f does not observe the out
ome s(w) of well w at date t, then the

s(w) does not enter Sft. This means that if a well was not observed, then the �rm's a
tions should

not depend on the well's out
ome. That is, the se
ond terms of the third and fourth equation in

(20) are identi
al. Relaxing either assumption would break identi�
ation by introdu
ing an extra

free parameter.

This argument extends to states with multiple well results and well results at di�erent distan
es

and dates. In parti
ular for states with n wells there are always at least as many equations as

unknowns in the n well analogue of (20). This means that the number of observable sets of states

S̃, whi
h 
orrespond to equations, is always at least one greater than the number of true states S.

In Appendix D I provide a proof that shows, in general, how P̂ (a = j|S) 
an be identi�ed from

observable quantities for any S. In pra
ti
e, additional identi�
ation 
omes from the approximation
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of the state variable whi
h smooths 
hoi
e probabilities a
ross states and allow extrapolation to

states not observed in the data.

This pro
edure, whi
h estimates the 
onditional 
hoi
e probabilities and α in one step, is sig-

ni�
antly less 
omputationally intensive than alternatives su
h as the Expe
tation-Maximization

pro
edure proposed by Ar
idia
ono and Miller (2011), whi
h requires iteration of the two step esti-

mator. Although 
al
ulation of the sum in equation 18 for di�erent values of α is 
omputationally

expensive, this �rst estimation step only has to be performed on
e.

6.3.2 Identi�
ation of Cost Parameters

The 
ost parameters are estimated in the nonlinear regression given by equation 33. Intuitively,


ost parameters c0 and κ are identi�ed by the average probability of exploration and development.

Lower average probability of drilling is rationalized by higher 
osts. Cost parameter c1 is identi�ed

by the extent to whi
h the probability of drilling is higher on blo
ks with more li
ensed blo
ks

nearby. Additional identifying variation 
omes from the di�eren
e in the response of drilling

probability to nearby own-�rm and other-�rm li
enses. Higher exploration drilling 
osts, c0, imply

that �rms have more of an in
entive to free ride and should have a lower exploration probability

when the surrounding blo
ks are owned by other �rms than when they are owned by the same

�rm.

The exploration varian
e parameter σǫ is identi�ed by the extent to whi
h �rms are more likely to

explore blo
ks for whi
h the expe
ted future revenue stream 
onditional on exploration is higher.

The development varian
e parameter σν is similarly identi�ed. To see this, noti
e that

1
σǫ
multiplies

the 
hoi
e spe
i�
 
ontinuation value vEf (j,St) in equation 12, and the sum of future revenue

enters linearly in the �rm's 
ontinuation value.

26

As the varian
e of 
ost sho
ks be
omes large, the

probability of any 
hoi
e j ∈ Jft ∪ {0} tends to

1
|Jft|+1

.

Finally note that, as dis
ussed by Bajari, Benkard, and Levin (2007), the two step pro
edure ob-

tains 
onsistent estimates of the model parameters if the data is generated by a single equilibrium.

I assume this here sin
e I 
annot guarantee that there is a unique equilibrium of the asymmetri


information game.

7 Results

7.1 Estimates

Detailed results for ea
h part of the estimation pro
edure are presented in Appendix C. Appendix

Table A1 reports des
riptive statisti
s on the estimated 
onditional 
hoi
e probabilities (CCPs)

26

See equation 30 in Appendix C.
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P̂ (aE = j|S) and P̂ (aD = j|S). In parti
ular, I report the marginal e�e
ts of varying di�erent

elements of the approximation to the state variable on the estimated 
hoi
e probabilities. The

patterns are broadly as expe
ted. The probability of exploration is in
reasing in the expe
ted

probability of su

ess and in the varian
e of beliefs, in line with the des
riptive results re
orded in

Table 3. Development probability is in
reasing in expe
ted probability of su

ess and de
reasing

in varian
e, also 
onsistent with the des
riptive results. Exploration probability is also in
reasing

in both the number of neighboring own-�rm li
enses and other-�rm li
enses. However, the e�e
t of

own �rm li
enses of the probability of exploration is almost twi
e the e�e
t of other �rm li
enses.

The level of these e�e
ts is rationalized in the model by the parameter c1, whi
h allows exploration


osts to be lower in regions with a high number of li
enses. The di�eren
e between these two

e�e
ts is then explained by the free riding in
entive indu
ed by additional other-�rm li
enses and

the in
reased value of information when there are more same-�rm li
enses nearby.

Table 6 reports estimated model parameters and the average exploration and development proba-

bilities, QE
and QD

. The parameter α, whi
h is estimated simultaneously with the CCPs indi
ates

that �rms behave as if they observe the results of 36.6% of other �rm wells before they are made

publi
. This �nding is in line with the des
riptive results reported in Figure 6, whi
h indi
ated

that the marginal e�e
t of an additional other-�rm well on the probability of exploration was

between 20% and 50% of the e�e
t of an own-�rm well. Re
all that the exploration 
ost is given

by c(j,Sft) = c0+ c1 ln(Nearbyjt). The estimated value of c1 indi
ates that the 
ost of exploration

is, as expe
ted, de
reasing in the number of nearby li
enses. Exploration 
ost at the average value

of Nearbyjt, reported as c̄ in Table 6, is about 25% of the development 
ost κ.

Table 6: Parameter Estimates

Parameter Estimate SE Parameter Estimate SE

α 0.3661 0.0412 κ0 16.3400 0.2431

c0 10.3514 0.1861 σc 1.4484 0.0354

c1 -1.9910 0.0464 σκ 2.0523 0.0720

c̄ 4.0571 0.1002 σ2
ξ 0.0048 0.0004

Average Choi
e Probabilities

QE
0.0223 QD

0.0017

Notes: Cost parameters are in billions of 2015 dollars. c̄ is 
omputed as the value of the expression given by equation

17 at the average value of Nearbyjt. Standard error of α is 
omputed using the Ja
obian of the likelihood fun
tion

given by equation 18 at the estimated parameter values. Standard error of σ2
ξ is 
omputed using the fourth 
entered

moment of month to month 
hanges in log pri
e. Standard errors for the remaining (
ost) parameters are 
omputed

using the Hessian of the se
ond step nonlinear least squares spe
i�
ation given by equation 33 in Appendix C. Note

that the standard error for the 
ost parameters does not take into a

ount the �rst step error, and is therefore likely

to be biased down.

Cost parameters are reported in billions of 2015 dollars. The estimated 
ost parameters are sub-

stantially larger than estimates of the 
apital 
osts of exploration and development from data on

expenditure provided by the regulator. The average 
apital expenditure per exploration well is
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$34.6 million and per development platform is $1.9 billion. To understand the dis
repan
y, noti
e

that the estimated 
ost parameters likely in
lude fri
tions su
h as the 
ost of relo
ating 
apital

equipment, redeploying labor, and other 
apa
ity 
onstraints. For example, I model exploration

as a monthly de
ision. If, in reality, drilling an exploration well ties up 
apital equipment for

several months, this would in�ate estimated 
osts. Furthermore, sin
e the model is estimated on

a small region of the North Sea, the 
ost parameters impli
itly 
ontain the opportunity 
ost of

drilling in this region rather than elsewhere. Realized 
osts also in
lude the random terms ǫ and

ν, whi
h I have interpreted as 
ost sho
ks but 
ould also 
apture sho
ks to information. One 
an

think of the estimated 
osts as being equal to the sum of engineering 
osts and the additional

fri
tions due to 
apa
ity 
onstraints, opportunity 
osts, and information sho
ks. Although these

fri
tions are relevant to the �rm, it is not 
lear that they should be in
luded in the 
al
ulation

of industry surplus used by the poli
y maker. In what follows, I use the estimated parameters

to 
ompute 
ounterfa
tual �rm a
tions. However, when I add up revenues and expenditures to


ompute industry pro�t for a given sequen
e of a
tions I will use the engineering 
osts obtained

from average 
apital expenditure rather than the model-implied 
osts.

To examine the �t of the model to the data, I simulate the model from 1964 to 1990. Simulations

are generated by drawing an a
tion for ea
h �rm, ea
h month, and updating �rms beliefs based on

the observed results. For ea
h month, I set the distribution of li
enses {Jft}f∈F and the oil pri
e

Pt equal to the truth. I use mean values of the posterior su

ess probability re
orded in Figure

4, whi
h is estimated using the true out
omes of all wells drilled before 1990, to draw exploration

well out
omes and development revenue.

Table 7 re
ords statisti
s on �rm a
tivity from the data and two simulations. The �rst 
olumn

re
ords the total the number of exploration wells, blo
ks developed, blo
ks explored, and the

average number of exploration wells drilled on developed and undeveloped blo
ks from the data.

The se
ond 
olumn re
ords the average of these statisti
s over 40 simulations of the model using

the �rst step CCPs, P̂ (aE = j|S) and P̂ (aD = j|S), to draw �rm a
tions. Sin
e the CCPs are

estimated dire
tly from the data, it is not surprising that the total number of exploration wells

drilled and blo
ks developed in these simulations mat
h the data 
losely. The estimated 
hoi
e

probabilities slightly overstate the number of exploration wells drilled on blo
ks that are eventually

developed, although the qualitative pattern that more wells are drilled on blo
ks that are developed

is preserved. This slight mismat
h is likely due to the approximation to the state variable used in

the �rst step of the estimation pro
edure.

The third 
olumn re
ords the average of these statisti
s over 40 simulations of the model using

approximate equilibrium 
hoi
e probabilities. Equilibrium 
hoi
e probabilities are 
omputed by

forward simulating the model-implied 
hoi
e probabilities, P (aE = j|S, θ̂2) using estimated pa-

rameters θ̂2 to obtain new estimates of the value fun
tion given by equation 30. These new value

fun
tion estimates are then used to 
ompute new 
hoi
e probabilities. The pro
ess is iterated until
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Table 7: Model Fit

Data Simulation

First Step Probabilities Equilibrium Probabilities

Exploration Wells 476 473.90 503.65

Blo
ks Explored 99 95.55 97.25

Blo
ks Developed 20 22.95 22.43

Exp. Wells on Dev. Blo
ks. 8.75 12.45 13.19

Exp. Wells on Undev. Blo
ks. 3.81 3.79 3.91

Notes: Column 1 re
ords statisti
s from the data 
overing 1964-1990 for the relevant region. Columns 2 and 3 are

averages over 40 simulations that 
over 1964-1990. . For ea
h month the assignment of blo
ks to �rms and the

oil pri
e in the simulations are set at their realized values. Simulations in 
olumn 2 draw �rm a
tions using the

�rst step estimates of the 
onditional 
hoi
e probabilities. Simulations in 
olumn 3 use approximate equilibrium


onditional 
hoi
e probabilities at the estimated parameter values.

the estimated 
hoi
e probabilities 
onverge. On ea
h iteration, the average exploration probabil-

ity Q̂E
is also updated. These equilibrium 
hoi
e probabilities are approximate be
ause I pla
e

restri
tions on how the probabilities 
an 
hange on ea
h iteration to improve stability and redu
e


omputational time. Details on this pro
edure are provided in Appendix E.

The di�eren
e between the se
ond and third 
olumns of Table 7 therefore re�e
ts the di�eren
e

between the �rst step 
hoi
e probabilities estimated dire
tly from the data, and the equilibrium


hoi
e probabilities implied by the model given the estimated 
ost parameters, θ̂2. Equilibirium


hoi
e probabilities overstate the number of exploration by about 6% wells and the number of blo
ks

developed by about 2% relative to the �rst step probabilities. When I examine the predi
tions of

the model under 
ounterfa
tual s
enarios, I use these equilibrium simulations as a baseline.

As an additional test of the �t of the model, I 
ompare the spatial distribution of exploration wells

in the data to simulations using the equilibrium 
hoi
e probabilities. The left panel of Figure 7 is

a heat map that re
ords the number of exploration wells drilled between 1964 and 1990 on ea
h

blo
k in the data. Lighter 
olored blo
ks were drilled more often than darker blo
ks. The large

dark region on the left side of the map was never li
ensed. Noti
e that there are three regions

of 
on
entrated drilling a
tivity - in the south, 
entered on 
oordinate (13, 3), in the middle of

the map, 
entered on 
oordinate (14, 10), and in the north, 
entered on (13, 15). The right panel

re
ords equivalent well 
ounts from the average of 40 simulations using the equilibrium a
tion

probabilities. Drilling is 
on
entrated around the same points in the south and middle of the map,

but not at the point (13, 15) in the north. Many wells were drilled on this blo
k despite it having

been li
ensed for a relatively short period of 134 months (
ompared to 290 and 434 month-�rm

observations for (13, 3) and (14, 10) respe
tively). The observed monthly drilling rate on this blo
k

is an outlier that is di�
ult for the model to rationalize.
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Figure 7: Model Fit: Well Lo
ations
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Notes: The left panel is a heat map re
ording the number of exploration wells drilled on ea
h blo
k of the region

used for stru
tural estimation from 1964 to 1990. More exploration wells were drilled on lighter blo
ks. The right

panel is an analogous heat map of the average number of wells drilled on ea
h blo
k over 40 simulations using the

baseline equilibrium 
hoi
e probabilities. In both panels, the number of wells per blo
k is trun
ated at 20 to better

illustrate the 
ross-blo
k varian
e.

7.2 Quantifying the E�e
ts of Information Spillovers

To illustrate how information spillovers a�e
t the equilibrium speed and e�
ien
y of exploration,

I simulate 
ounterfa
tual exploration and development de
isions. I separately quantify the e�e
t

of free riding and wasteful exploration on the equilibrium rates of exploration and development

and on industry surplus by removing these sour
es of ine�
ien
y from the model, �rst one at a

time and then jointly.

First, I remove the free riding in
entive by 
omputing �rm's optimal poli
y fun
tions under the

assumption that QE = 0. That is, I ask how �rms would behave if, at ea
h period, they believed

that no new wells would be drilled by other �rms at any period in the future. Under this assumption

there is no in
entive to strategi
ally delay exploration. This 
ounterfa
tual is not an equilibrium as

de�ned in Se
tion 5.2, sin
e �rms beliefs about the average exploration probability are in
onsistent

with the a
tual probability of exploration. Simulation of �rm behavior under these non-equilibrium

beliefs isolates the dire
t e�e
t of free riding on �rm behavior sin
e I allow �rms to learn the results

of past wells as in the baseline, but I remove the forward-looking in
entive to delay.

The e�e
t of eliminating the in
entive to free ride on industry out
omes is illustrated by 
omparing

the �rst and se
ond 
olumns of Table 8. The �rst 
olumn re
ords statisti
s on exploration wells

drilled, blo
ks developed, and industry revenue and pro�t for the baseline simulation. The se
ond


olumn re
ords the same statisti
s for the no free riding 
ounterfa
tual.

The �rst �ve rows re
ord statisti
s on exploration well and development 
ounts. Removing the

41



free riding in
entive brings exploration and development forward in time. The average number of

exploration wells drilled up to 1990 in
reases by 7.4% from 503.65 to 541.15. The number of blo
ks

developed before 1990 in
reases by 28% from 23.37 to 27.38. The e�
ien
y of exploration, whi
h I

measure using the number of exploration wells drilled per development well, and the distribution

of exploration wells between developed and undeveloped wells remain relatively 
onstant. The

sixth and seventh rows re
ord the 1964 present dis
ounted value of industry revenue and pro�t.

Moving from the baseline to the no free riding 
ounterfa
tual in
reases dis
ounted revenue by $6.21

billion or about 26% by bringing development forward in time. 45% of this in
rease in revenue


omes from the bringing the development of the �rst 22.43 blo
ks forward in time, in
reasing the

dis
ounted value of revenue. The remaining 55% 
omes from the development of additional blo
ks

before 1990 that were not developed in the baseline.

Table 8: De
omposition of E�e
ts

Baseline No Free Riding Info. Sharing Both

QE 0.0223 0 0.0223 0

α 0.3661 0.3661 1 1

Exp. Wells 503.65 541.15 567.30 604.83

Blo
ks Dev. 22.43 28.45 35.48 38.18

Exp. Wells/Dev 22.45 19.02 15.99 15.84

Exp. Wells on Dev. Blo
ks. 3.91 4.01 4.01 4.09

Exp. Wells on Undev. Blo
ks. 13.19 14.17 14.80 15.00

Revenue 24.09 30.30 37.74 40.15

Pro�t 13.85 18.12 23.59 25.06

Notes: Results are averages over 40 simulations that 
over 1964-1990. The assignment of blo
ks to �rms and the

oil pri
e are set at their realized values. Well out
omes and development revenue are drawn using the posterior

su

ess probabilities 
omputed using the true out
omes of all wells drilled before 1990. Revenue and pro�ts are in

billions of 2015 dollars. Pro�ts are 
omputed using estimates of exploration well and development 
ost from OGA

data on 
apital expenditure. PDV revenue and pro�t are 1964 values where the annual dis
ount fa
tor is 0.9.

The e�e
t of removing free riding on the timing of exploration and development is illustrated by


omparing the solid and dashed lines in Figure 8. The left panel re
ords the average number of

exploration wells and blo
ks explored ea
h month from 1975 to 1990. The right panel re
ords the

average number of blo
ks developed for the same period. Removing the free riding in
entive shifts

the date that a blo
k is �rst explored ba
k in time by around one year. This in
rease in exploration

speed translates to more rapid development. In the baseline simulation, 22.43 blo
ks are developed

by the end of 1990. Under no free riding, this development level is attained 13 months earlier, at

the end of 1989.

The se
ond quanti�
ation exer
ise removes wasteful exploration due to imperfe
t information

spillovers. I simulate the model at the baseline equilibrium 
hoi
e probabilities but allow �rms to

observe the results of ea
h other's wells with 
ertainty. That is, I set α = 1. I hold �rms' 
hoi
e
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probabilities (and, impli
itly, their poli
y fun
tions) �xed at the baseline level. This means that

�rms behave as if they expe
t the results of other �rms' wells to be revealed with probability equal

to the estimated value of α, 0.3661. This isolates the dire
t e�e
t of in
reased �ow of information

from the equilibrium e�e
ts of setting α = 1 on �rms' drilling de
isions.

Figure 8: De
omposition of E�e
ts
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Notes: The left panel plots the 
umulative number of exploration wells drilled and blo
ks explored (blo
ks on

whi
h at least one exploration well has been drilled) for ea
h month from 1975 to 1990 for three simulations.

Thi
k red lines plot the number of blo
ks explored and 
orrespond to the right axis. Thin blue lines plot the

number of exploration wells and 
orrespond to the left axis. The solid lines are the average of 40 simulations using

the baseline equilibrium 
hoi
e probabilities. The dashed lines are the average of 40 simulations under the no free

riding 
ounterfa
tual. The dotted lines are the average of 40 simulations under the no free riding and information

sharing 
ounterfa
tual. The right panel plots the number of blo
ks developed for the same three simulations.

The third 
olumn of Table 8 re
ords drilling, revenue, and pro�t statisti
s for this information

sharing simulation. Allowing for perfe
t information �ow without 
hanging �rms' poli
y fun
tions

in
reases the number of exploration wells drilled before 1990 by 143 relative to the baseline and

in
reases the number of blo
ks developed by 58% to 35.48. The e�
ien
y of exploration improves

substantially - the number of exploration wells drilled per blo
k developed is redu
ed to 15.99

from 22.45 in the baseline. This in
rease in e�
ien
y is also re�e
ted in an in
reased 
on
entration

of exploration wells on produ
tive blo
ks - the average number of exploration wells on developed

blo
ks in
reases by 12% from 13.19 to to 14.80 while the average number of exploration wells on

undeveloped blo
ks in
reases by only 3% from a mu
h lower base of 3.91.

Perfe
t information �ow in
reases dis
ounted industry pro�t by 70% to $23.59 billion from $13.85

billion in the baseline simulation. This e�e
t is about 2.28 times as large as the e�e
t of removing

free riding. This 
hange in industry surplus 
an be de
omposed into two e�e
ts. First, perfe
t

information �ow in
reases industry surplus by redu
ing wasteful exploration of unprodu
tive areas

and per-development 
osts, thereby redu
ing expenditure on exploration wells. Se
ond, in
reased
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information �ow allows �rms to identify produ
tive areas faster, bringing development forward in

time. The relative importan
e of these two e�e
ts 
an be examined using the following ba
k of the

envelope 
al
ulation. In the information sharing 
ounterfa
tual pro�t is 62.5% of revenue, while in

the baseline the margin is 57.5%. Applying the information sharing margin to the baseline revenue

results in a pro�t in
rease of $1.2 billion. This suggests that in
reased 
ost e�
ien
y is responsible

for about 19% of the in
rease in pro�t from information sharing, with the rest 
oming from faster

development.

Finally, I run a 
ounterfa
tual simulation that removes both free riding and wasteful exploration.

That is, I set α = 1 and QE = 0.27 The results of this simulation are re
orded in the fourth


olumn of Table 8. Eliminating both sour
es of ine�
ien
y in
reases exploration drilling by 20%

and development before 1990 by 70%. The dotted lines in Figure 8 illustrate the path of exploration

and development over time when both sour
es of ine�
ien
y are removed. Relative to the baseline,

development is brought forward in time by about three years. However, noti
e that the speed at

whi
h new blo
ks are explored is a
tually redu
ed relative to the no free riding 
ounterfa
tual - the

thi
k red dotted line in the left panel is below the thi
k red dashed line. Be
ause of the in
reased

information �ow, fewer blo
ks are explored more intensively and wasteful exploration is redu
ed.

The 
ombination of bringing development forward in time and redu
ing ine�
ient exploration

in
reases dis
ounted pro�ts by $11.21 billion, or 81% of the baseline.

The large gains from information sharing raise the question of why �rms do not engage in more

ex
hange of information before the 
on�dentiality windows expires. Indeed, the Coase theorem

suggests that �rms should be able to a
hieve the �rst-best out
ome by sharing information through

bilateral 
ontra
ts, eliminating both ine�
ient exploration and free riding by allowing �rms to

internalize the bene�ts of their dis
overies to other �rms. The empiri
al eviden
e indi
ates that this

e�
ient ex
hange of information does not take pla
e in reality. Furthermore, ane
dotal eviden
e

(Moreton, 1995) des
ribes a 
ulture of se
re
y around exploration out
omes. There are several

potential sour
es of transa
tion 
osts that might limit e�
ient trade. First, sharing well data

is not 
ostless to the �rm be
ause it may be valuable in future 
ompetitive li
ense appli
ations.

Se
ond, �rms have asymmetri
 information about the value of additional well data. There is a large

literature whi
h do
uments the role of su
h asymmetri
 information in preventing e�
ient trade

(Myerson and Satterthwaite, 1983; Farrell, 1987; Bessen, 2004). Beyond the standard problem of

trade under asymmetri
 information, there is an additional set of barriers to e�
ient trade when the

obje
t being traded is information. For example, it is di�
ult to signal the value of information to a

buyer without revealing that information (Anton and Yao, 2002), and the potential for information

to be 
ostlessly resold prevents the original seller from 
apturing the entire so
ial surplus that it

generates (Ali, Chen-Zion, and Lillethun, 2017).

27

Note that this is not equal to the �rst best out
ome where �rms jointly maximize industry pro�t. In this


ounterfa
tual, �rms do not internalize the bene�t of their drilling a
tivity on other �rms' pro�t.
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8 Counterfa
tual Property Rights Poli
y

The results indi
ate that the presen
e of a free riding in
entive and the limited spillover of infor-

mation between �rms both have signi�
ant e�e
ts on industry surplus. Removing both of these

sour
es of ine�
ien
y would result in a 81% in
rease in the present dis
ounted value of 1964-

1990 pro�ts by bringing development forward in time and in
reasing the e�
ien
y of exploration.

These large ine�
ien
ies suggest that the design of drilling rights and property rights over well data

should take information externalities into a

ount. In this se
tion I ask how mu
h industry surplus


ould be in
reased in equilibrium through alternative design of property rights that minimize the

ine�
ien
ies resulting from information spillovers.

I 
onsider two main regulatory levers whi
h the government 
an use to manipulate the �ow of infor-

mation between �rms. First, the regulator 
an de�ne property rights over data on well out
omes.

In parti
ular, well out
ome data is property of the �rm that drilled the well until the 
on�dential-

ity deadline, after whi
h it be
omes publi
 knowledge. By 
hanging the 
on�dentiality deadline,

the government 
an in
rease or de
rease the speed with whi
h information �ows between �rms

and manipulate �rms' in
entive to delay exploration. Se
ond, �xing the 
on�dentiality window,

the government 
an 
hange the spatial distribution of property rights. When ea
h �rm's drilling

li
enses neighbor fewer other-�rm li
enses the in
entive for �rms to delay exploration is redu
ed.

8.1 Con�dentiality Window

UK regulations spe
ify well out
omes are made publi
 �ve years after the date a well is drilled.

Changing the length of the well data 
on�dentiality period has two potential e�e
ts on �rms'

equilibrium drilling behavior. First, in
reasing the 
on�dentiality period de
reases the in
entive

to free ride. For example, when li
enses are issued on two neighboring blo
ks to two di�erent

�rms, ea
h �rm's drilling strategy depends on their expe
tations about the �ow of information

from the other �rm's wells. If the release of well data is pushed further into the future, then

the 
ost of delaying exploration is in
reased due to the dis
ounting of future pro�ts, and the

equilibrium probability of exploratory drilling should in
rease. On the other hand, lengthening

the 
on�dentiality window will redu
e the e�
ien
y of exploration by in
reasing wasteful drilling.

When well data is held 
on�dential for longer, �rms are more likely to explore blo
ks that other

�rms already believe to be unprodu
tive.

The regulatory problem of setting the optimal 
on�dentiality window is therefore a 
ase of trading

o� these two e�e
ts. If the free riding e�e
t dominates and there is �too mu
h� information �ow

between �rms, then it may be optimal to lengthen the 
on�dentiality window. On the other hand if

the wasteful exploration e�e
t dominates, and there is �too little� information �ow between �rms,

then it may be optimal to shorted the 
on�dentiality window. Whether one e�e
t or the other
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dominates at the 
urrent window length of �ve years is an empiri
al question.

To determine the e�e
t of 
hanging the 
on�dentiality window on industry surplus, I run 
oun-

terfa
tual simulations of the model under di�erent window lengths. For ea
h window length, I

�rst 
ompute the approximate equilibrium 
hoi
e probabilities implied by the estimated model

parameters using the �xed point algorithm des
ribed in Appendix E. I then simulate the model

using these 
hoi
e probabilities, imposing the relevant 
on�dentiality window lengths. The left

panel of Figure 9 re
ords the average over 40 simulations of industry surplus under 
on�dentiality

windows of 0, 2.5, 5 (the baseline), 7.5, and 10 years.

Figure 9: Con�dentiality Window
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Notes: The left panel re
ords the 1964 present dis
ounted value of 1964-1990 pro�t in 
ounterfa
tual simulations

with di�erent 
on�dentiality window lengths. In the right panel, the blue line, 
orresponding to the left y-axis,

re
ords the average exploration probability over �rms, blo
ks, and dates using equilibrium exploration 
hoi
e

probabilities 
omputed under di�erent window lengths. The exploration probabilities are 
omputed at the

baseline distribution of states. That is, the reported numbers are the average 
ounterfa
tual drilling probabilities

at the states realized in a simulation that uses the baseline drilling probabilities. The dashed red line,


orresponding to the right y-axis, re
ords the average present dis
ounted value of revenue per exploration well in

equilibrium under di�erent window lengths. Revenue and pro�t are in 2015 dollars, billions in the left paenla nd

millions in the right panel. All �gures are average over 40 simulations.

The results suggest that moving the 
on�dentiality window in either dire
tion from the 5 year

baseline will in
rease expe
ted industry surplus. In parti
ular, lengthening the 
on�dentiality

window to 7.5 raises surplus by 2% of the baseline value of $13.44 billion. Lengthening the


on�dentiality further to 10 years in
reases surplus to $15.37 billion, 11% higher than the baseline.

At 10 years, the gain in industry surplus is 36% of the gain from eliminating free riding re
orded

in Table 8. The no free riding 
ounterfa
tual provides a theoreti
al maximum on the in
rease

in surplus that 
an be obtained by in
reasing the 
on�dentiality window. Surplus under longer


on�dentiality windows is less than this maximum be
ause the no free riding 
ounterfa
tual holds

information �ow �xed at the baseline level, while longer 
on�dentiality windows redu
e the �ow

of information between �rms and therefore redu
e the e�
ien
y of exploration.
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Redu
ing the length of the 
on�dentiality window leads to a steeper rise in surplus, in
reasing to

$15.03 billion at 2.5 years. Surplus in
reases to $21.81 billion, or 57% higher than the baseline,

when the window is redu
ed to 0 years and well data is released immediately. When well data is

released immediately, the gain in surplus is 82% of the gain in the information sharing 
ounterfa
-

tual. Surplus is lower than under the information sharing 
ounterfa
tual be
ause of the additional

free rising in
entive indu
ed by redu
ing the exploration window. The information sharing 
oun-

terfa
tual in Table 8 held �rm 
hoi
e probabilities �xed at the baseline, while the 0 
on�dentiality

window simulation uses 
ounterfa
tual equilibrium exploration 
hoi
e probabilities.

The U-shaped relationship between the length of the 
on�dentiality window and industry surplus

suggests that at window lengths greater than 5 years, the e�e
t of limiting information �ow on

the free riding in
entive dominates the e�e
t on the e�
ien
y of drilling, and that at window

lengths less that 5 years the e�
ien
y e�e
t dominates. The right panel of Figure 9 illustrates

these two e�e
ts separately. The solid blue line re
ords the average probability of exploration

(QE
) for ea
h 
on�dentiality window. To illustrate the free riding e�e
t independently from the

e�e
t of improved information �ow on the speed of learning I �x the distribution of states at the

baseline - the �gure indi
ates that for any given state the probability of exploration de
reases

with shorter 
on�dentiality window lengths. The dashed red line re
ords revenue per exploration

well at the equilibrium distribution of states under ea
h 
on�dentiality window. This measure of

drilling e�
ien
y is higher and the marginal e�e
t of window length on e�
ien
y is greatest for

shorter window lengths. Indeed, for window lengths greater than 5 years, the e�e
t of extending

the window approa
hes 0. At these longer window lengths the e�e
t on free riding dominates -

extending the window in
reases the rate of exploration without substantially de
reasing the rate

at whi
h exploration is 
onverted into development.

The result that the true 
on�dentiality window is 
lose to the least optimal length begs the question

of why this length was 
hosen by the regulator. Kemp's (2012a) a

ount of the pro
ess by whi
h

the regulations were designed indi
ates that the 5-year window was arrived at through negotiations

between the government, who wanted information to be made publi
 earlier, and the major oil


ompanies, who were resistant to any regulation that diminished their property rights over well

data. The results reported in Figure 9 suggest that the settlement the parties arrived at, limiting

well data 
on�dentiality to �ve years, a
tually redu
ed industry surplus. The regulator's imposition

of a �ve-year window was not short enough for the e�
ien
y e�e
t to substantially ki
k in, but

did in
rease �rms' in
entive to strategi
ally delay exploration relative to the no-regulation default

of total 
on�dentiality.

Although the results indi
ate that it is optimal to set the 
on�dentiality window to 0, this his-

tori
al ba
kground suggests that the optimal politi
ally feasible poli
y 
hange might be to extend

the 
on�dentiality window. This �nding is spe
i�
 to the UK setting, and is a fun
tion of the

politi
al pro
ess that determined the initial regulations. In other regulatory environments where
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on�dentiality periods are already short, for example the Bakken Shale �elds of North Dakota

where well data is 
on�dential for 6 months, lengthening the 
on�dentiality would likely have a

negative e�e
t on industry surplus.

28

8.2 Spatial Arrangement of Li
enses

In addition to manipulating the �ow of information between �rms, the regulator 
an 
hange the

spatial arrangement of property rights. If, as suggested by the results in Table 8, the potential to

learn from the results of other �rms' wells redu
es the exploration rate in equilibrium, then the

regulator should take this e�e
t into a

ount when assigning blo
ks to �rms. In parti
ular, spatial

arrangements of property rights in whi
h ea
h �rm's blo
ks are 
lustered together should minimize

the free riding problem and improve the speed at whi
h ea
h �rm learns about their blo
ks. First,

sin
e there are fewer inter-�rm boundaries in the spatial allo
ation of li
enses there is less in
entive

for �rms to delay exploration in order to learn from other �rms' exploration. Se
ond, the spatial


orrelation of well out
omes means that value of exploration to the �rm is higher when a blo
k is

surrounded by more same-�rm li
enses. Finally, the e�
ien
y of exploration should be improved

under a 
lustered li
ense assignment sin
e ea
h well provides more information to the �rm about

the probability of su

ess on its blo
ks, and fewer wells are therefore required to obtain a given

amount of information.

29

To quantify the e�e
t of spatial reallo
ation of li
enses, I 
onstru
t an alternative li
ense allo
ation

for ea
h month in the data using an algorithm that maximizes the spatial 
lustering of �rms'

li
enses. Ea
h year, the algorithm reallo
ates the li
enses that are issued to year to �rms using a

deferred a

eptan
e algorithm in whi
h blo
ks propose to �rms and are a

epted or reje
ted. The

algorithm in
reases 
lustering be
ause blo
ks prefer to be allo
ated to �rms with more existing

li
enses nearby, and �rms would like to be assigned the blo
ks that are nearest to their existing

blo
ks. The new assignment holds �xed the number of blo
ks assigned to ea
h �rm in ea
h year.

The drilling 
apa
ity of the industry (one well per �rm per month in the model) is therefore held

�xed relative to the baseline, and only the lo
ation of ea
h �rm's li
enses 
hanges. Details of the

li
ense 
lustering algorithm are provided in Appendix F.

Figure 10 illustrates the true and 
ounterfa
tual li
ense assignments in January 1975. The left

panel maps the li
enses held by the largest 5 �rms, with li
enses held by other �rms in red. The

28

Of 
ourse, other oil and gas produ
ing regions su
h as the Bakken Shale are subje
t to di�erent drilling

te
hnology, geology, tra
t sizes et
. and the shape of the e�e
ts illustrated in Figure 9, whi
h are a fun
tion of the

underlying model parameters, are likely di�erent.

29

Note that 
lustering li
enses has an additional e�e
t on drilling 
apa
ity. For instan
e, if a set of four neighboring

blo
ks are li
ensed to four di�erent �rms, the drilling 
apa
ity for that set of blo
ks is higher than if all four blo
ks

are li
ensed to the same �rm. Clustering li
enses therefore redu
es lo
al drilling 
apa
ity, although total 
apa
ity

a
ross the entire region is held �xed. This e�e
t is likely not of �rst order importan
e in pra
ti
e sin
e the average

exploration probability per �rm-blo
k-month is around 2%, and the one blo
k per month 
apa
ity 
onstraint is far

from binding.
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Figure 10: Clustered Li
enses
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Notes: Left panel illustrates the lo
ation of drilling li
enses for the �ve largest �rms in January 1975 on the region

of the North Sea used for stru
tural estimation. Orange 
orresponds to Total, green to Cono
o, yellow to Shell,

purple to BP, and light blue to Amo
o. Red blo
ks are li
ensed to other �rms, and dark blue blo
ks are

unli
ensed. The right panel illustrates the 
ounterfa
tual li
ense assignment 
onstru
ted using the 
lustering

algorithm dis
ussed in Appendix F.

right panel illustrates the 
ounterfa
tual 
lustered li
ense assignment in the same month. The

di�eren
e between the allo
ations is visually 
lear - ea
h of the largest 5 �rms holds li
enses on

one or two 
ontiguous regions in the 
ounterfa
tual assignment, while in the true assignment these

�rms hold li
enses on between 3 and 7 dis
onne
ted sets of blo
ks. The �rst two rows of Table

9 re
ord how the 
lustering algorithm 
hanges the average number of nearby own and other �rm

li
enses (1st or se
ond degree neighbors), where the average is taken a
ross �rms, blo
ks, and

months.

The third through seventh rows of Table 9 re
ord statisti
s on exploration wells, development

of blo
ks, revenue and pro�t in equilibrium under the baseline and 
ounterfa
tual li
ense assign-

ments.

30

Clustering �rms' li
enses in
reases the total number of exploration wells drilled between

1964 and 1990 by 8% and in
reases the number of blo
ks developed by 28%. The dis
ounted value

of industry pro�t in
reases by 42% from $13.85 billion to $19.62 billion. 13% of this in
rease in

pro�t is from 
ost savings - the number of exploration wells drilled per developed blo
ks falls from

30

Equilibrium 
hoi
e probabilities 
hange under the 
ounterfa
tual li
ense assignment be
ause of the de�nition

of equilibrium given by Assumption A.2 in Se
tion 5. The equilibrium value of QE
, �rms' beliefs about the rate of

exploration of other �rms, is de�ned as the average exploration rate at the equilibrium distribution of states. Under

a di�erent allo
ation of li
enses the equilibrium distribution of states 
hanges. I estimate a new li
ense allo
ation

pro
ess, P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), using the 
ounterfa
tual li
enses, whi
h I use when forward simulating in the

equilibrium algorithm detailed in Appendix E.
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Table 9: Clustered Li
enses

Li
enses Baseline Clustered

Nearby Own Li
enses 0.371 0.583

Nearby Other Li
enses 3.270 2.873

Exp. Wells 503.65 543.88

Blo
ks Dev. 22.43 28.78

Exp. Wells/Dev 22.45 18.90

Revenue 24.09 32.40

Pro�t 13.85 19.62

Notes: Results are averages over 40 simulations that 
over 1964-1990. Oil pri
e is set at its realized values. Well

out
omes and development revenue are drawn using the posterior su

ess probabilities 
omputed using the true

out
omes of all wells drilled before 1990. Revenue and pro�ts are in billions of 2015 dollars. Pro�ts are 
omputed

using estimates of exploration well and development 
ost from OGA data on 
apital expenditure. PDV revenue

and pro�t are 1964 values where the annual dis
ount fa
tor is 0.9. In the �rst 
olumn, the assignment of blo
ks to

�rms is set to the true assignment. I the se
ond 
olumn, the assignment of blo
ks to �rms is set to the


ounterfa
tual 
lustered assignment.

22.45 to 18.90 - with the remaining 87% due to in
reased revenue. Industry surplus is greater than

in the 
ounterfa
tual that eliminates free riding reported in Table 8, and a
hieves 59% of the gain

in surplus from the information sharing 
ounterfa
tual.

Under this 
ounterfa
tual assignment, �rms have less in
entive to free ride and are able to learn

more qui
kly from the results of their own wells, sin
e ea
h well provides more information about

other blo
ks owned by the same �rm than under the baseline. By taking advantage of these e�e
ts,

the results suggest that the government 
ould substantially in
rease industry surplus through a

simple rearrangement of the spatial allo
ation of blo
ks to �rms. Indeed, there is no sense in whi
h

this parti
ular allo
ation is optimal, and it may be that other allo
ations would result in faster

learning and a higher surplus. Within the limits of the model, whi
h for example rules out any

�rm spe
i�
 knowledge about parti
ular blo
ks before exploration, these results provide a lower

bound on the potential gain from spatial reassignment of li
enses.

As with the 
on�dentiality window, it is worth asking why the a
tual allo
ation of li
enses to �rms

does not appear to fully take into a

ount information externalities. The allo
ation me
hanism

that has been in pla
e sin
e the �rst li
enses were issued in 1964 has relied on �rms submitting

appli
ations for spe
i�
 blo
ks. One reason that �rms may not apply for a large number of li
enses


lose together is that this type of 
lustered allo
ation in
reases the risk borne by ea
h individual

�rm. Be
ause of the spatial 
orrelation of oil deposits, a risk averse �rm with a 
onstant prior mean

would prefer to be allo
ated li
enses that are spread over a wide area. Under risk aversion, 
lustered

li
ense allo
ations are therefore likely to be industry-optimal but not optimal in expe
tation for

the individual �rms. Appli
ation data is 
on�dential, so I 
annot empiri
ally verify whether �rms'

appli
ations are spatially dispersed. However, in my 
onversations with the regulator I learned
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that the government has o

asionally re
ommended �rms take on li
enses for blo
ks for whi
h they

did not apply in order to 
reate 
ontiguous blo
ks of li
enses like those generated by the 
lustering

algorithm. One alternative poli
y that 
ould a
hieve some of the gain from li
ense 
lustering would

be to require �rms to apply for li
enses at a regional rather than blo
k level, with the government

determining the exa
t allo
ation of blo
ks to �rms within the region.

9 Con
lusion

In many industries the 
reation of new knowledge through R&D is 
arried out in a de
entralized

manner by 
ompeting �rms. The growth of the industry-wide sto
k of knowledge depends on the

extent to whi
h �rms 
an observe and build on ea
h other's innovations. Allowing information

spillovers between �rms 
an improve the speed of 
umulative resear
h and redu
e dupli
ative or

so
ially ine�
ient investments. On the other hand, information spillovers 
an diminish �rms'

individual in
entives to innovate by enabling free riding on the innovations of other �rms. The

design of property rights over innovations plays an important role in balan
ing these e�e
ts.

I study the e�e
ts of information spillovers on R&D in the 
ontext of oil exploration, using histori
al

data from the UK North Sea. Oil exploration by individual �rms 
an be thought of as a pro
ess of


umulative learning about the lo
ation of oil deposits. Exploration wells are experiments lo
ated

in geographi
al spa
e with observable out
omes. If �rms 
an learn from the results of other �rms'

wells they fa
e an in
entive to delay exploration. However, if other �rms' well out
omes are

unobserved �rms are likely to make ine�
ient drilling de
isions, for example exploring regions

that are known by other �rms to be unprodu
tive.

To quantify the e�e
ts of information spillovers, I build and estimate a model of the �rm's dynami


exploration problem with spatial learning and information spillovers a
ross �rms. The estimated

model indi
ates that there is imperfe
t information �ow between �rms. In 
ounterfa
tual simula-

tions, I show that removing the in
entive to free ride brings exploration and development forward

in time, in
reasing the number of exploration wells drilled between 1965 and 1990 by 7.4% and

in
reasing industry surplus in the same time period by 31%. Holding the free riding in
entive

�xed and allowing perfe
t information �ow between �rms in
reases surplus by 70% by in
reasing

the speed of learning, in
reasing the 
ost e�
ien
y of exploration by redu
ing the number of de-

velopment wells drilled per developed blo
k, and in
reasing the 
on
entration of development on

produ
tive blo
ks.

Equilibrium simulations under 
ounterfa
tual property rights poli
ies highlight the tradeo� be-

tween free riding and e�
ient 
umulative resear
h. Strengthening property rights by extending

the well data 
on�dentiality period in
reases industry surplus by in
reasing the rate of exploration,

while weakening property rights by limiting the 
on�dentiality period in
reases industry surplus by
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in
reasing the speed of learning and e�
ien
y of exploration. Over the range of poli
ies I examine,

redu
ing the 
on�dentiality window to 0 a
hieves the highest industry surplus, although extending

the 
on�dentiality window in
reases surplus at the baseline of 5 years.

Noti
e that the gains from strengthening property rights here are due to the e�e
t of limiting inter-

�rm information �ow on the in
entive to free ride on other �rms' dis
overies. This di�ers from the

more 
ommonly dis
ussed motive of allowing �rms to 
apture the surplus from their innovations.

In this setting, the ability of �rms to pro�t from their dis
overies is held �xed a
ross alternative

poli
ies. Firms always have the right to extra
t the oil they �nd on their blo
ks, with only the

ability to bene�t from other �rms' investments 
hanging a
ross alternative poli
ies. The spe
i�


features of this setting mean that the information externality e�e
ts of variation in property rights

are not 
on�ated with 
hanges in the ability of a �rm to pro�t from its own dis
overies.

31

There is a substantial body of re
ent work quantifying the extent to whi
h property rights limit

follow-on resear
h in a number of settings (Murray and Stern, 2007; Williams, 2013; Murray et al.,

2016), but little empiri
al work on the potential for weaker property rights to en
ourage free riding.

The poli
y results in this paper suggest that the question of the optimal generosity of property

rights is subtle, even in the absen
e of an e�e
t of stronger property rights on �rms' ability to

extra
t rent from their dis
overies. In some settings it may be optimal to strengthen property

rights to redu
e the free riding in
entive even though stronger property rights hinder 
umulative

resear
h.

The �nal set of results quanti�es the e�e
t of 
hanging the spatial allo
ation of li
enses to �rms.

By 
lustering li
enses, the regulator is able to redu
e the in
entive to free ride and in
rease the

speed of learning, sin
e ea
h �rm learns more about its own blo
ks from a single well. The e�e
ts of


lustering on industry surplus are large, in
reasing surplus by more than the no free riding 
ounter-

fa
tual. This �nding is related to the theoreti
al literature on learning in teams (Holmstrom, 1982;

Campbell, Ederer, and Spinnewijn, 2013), and suggests in settings where resear
h is de
entralized

but a so
ial planner is able to assign proje
ts to ea
h resear
her (here, oil �rms), surplus 
an be

enhan
ed by designing the assignment to minimize the extent to whi
h ea
h team member 
an

free ride o� the others' resear
h and maximize the extent to whi
h ea
h team member's resear
h

is 
umulative. This insight 
ould, for example, have appli
ations to the organization of publi
ly

funded resear
h e�orts whi
h involve many independent resear
hers and labs 
ontributing to a


ommon proje
t.

Methodologi
ally, this paper makes two 
ontributions that are appli
able to other settings. First,

the model of beliefs and learning 
an be used to study other industries where resear
h takes pla
e

31

Similarly, in none of the 
ounterfa
tual experiments I examine do �rms internalize the bene�t their exploration

to other �rms. In parti
ular, simplifying assumption A1 prevents �rms from internalizing the e�e
t of their own

exploration on other �rms' future behavior. Relaxing this assumption would 
ompli
ate the model but would allow

me to 
ompute, for example, �rst-best exploration behavior in a s
enario with full information sharing in whi
h

�rms 
ollude to maximize industry surplus.
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in a well de�ned spa
e. For example, measures of mole
ular similarity are important metri
s in the

exploratory phase of pharma
euti
al development (Nikolova and Jaworska, 2003), and measures

of the distan
e between mole
ular stru
tures are in
reasingly used in the e
onomi
s literature on

pharma
euti
al R&D (Krieger, Li, and Papanikolau, 2017; Cunningham, Ederer, and Ma, 2018).

An appli
ation of this model to resear
h in 
hemi
al spa
e might be able to inform the design of

property rights, for example the dis
losure of 
lini
al trial results, in that industry. Se
ond, the

estimation approa
h developed in this paper is potentially appli
able to other settings in whi
h

agents have asymmetri
 information and the e
onometri
ian is not fully informed about ea
h

agent's information set.
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Appendix

A Theoreti
al Framework

In this se
tion, I present a simple model of exploration to illustrate the e�e
ts of information

externalities on �rms' drilling de
isions and stru
ture the subsequent empiri
al analysis. Consider

a two period drilling game played by two �rms, i and j, who 
ontrol adja
ent blo
ks. In the �rst

period, �rms simultaneously de
ide whether to drill an exploration well on their respe
tive blo
ks.

Exploration wells on blo
k i provide a binary signal about the presen
e of oil, and are su

essful

with probability ρi ∈ (0, 1), whi
h is a primitive determined by te
hnology and the geology of

the region being explored. Ea
h �rm always observes whether their own well is su

essful, and

observes whether or not a well drilled by the rival �rm is su

essful with probability α ∈ [0, 1].

In the se
ond period, �rms de
ide whether or not to develop the blo
k at 
ost κ. Development

yields a payo� π(ρi) > 0 with π′(ρi) > 0, π(0) < κ, and π(1) > κ, whi
h 
an be thought of as

the expe
ted present dis
ounted pro�t from the �ow of oil over the blo
k's lifetime. In reality,

although exploration wells yield more 
omplex geologi
al data, the su

ess rate of wells based on a

binary wet/dry 
lassi�
ation is an important statisti
 in determining whether to develop, 
ontinue

exploring, or abandon a blo
k. See for example Ler
he and Ma
Kay (1995) and Bi
kel and Smith

(2006) who present models of optimal sequential exploration de
isions based on binary signals.

Firm i's de
ision in ea
h period depends on their beliefs about ρi ∈ [0, 1], the probability of

exploration well su

ess on their blo
k. Suppose that �rms have a 
ommon prior belief that the

ve
tor ρ = (ρi, ρj) is drawn from a distribution F (ρ). Let σij be the 
orrelation between ρi and

ρj implied by F (ρ). Let Iit = (ownit, otherit) be �rm i's information at the beginning of period

t. ownit ∈ {−1, 0, 1} re
ords �rm i's exploration well out
omes from period t − 1. If ownit = 1,

�rm i drilled a su

essful exploration well, if ownit = −1, �rm i drilled an unsu

essful well, and

if ownit = 0, �rm i did not drill an exploration well. otherit ∈ {−1, 0, 1} is �rm i's information

about �rm j's exploration well out
omes, de�ned analogously ex
ept that otherit = 0 if �rm j

drilled a well and �rm i did not observe it. Let G(ρ|I) be the Bayesian posterior distribution of

ρ given observed out
omes I. Assume Ii1 = (0, 0) and therefore G(ρ|Ii1) = F (ρ) for both �rms.

Firms start period 1 with identi
al information and beliefs. Firms then de
ide whether to drill

an exploration well, and the results of wells are observed, with the results of a rival �rm's well

being observed with probability α. At the beginning of period 2, �rm i's beliefs are represented

by the posterior distribution G(ρ|Ii2). At this stage, �rms' posterior beliefs 
an di�er be
ause of

di�eren
es in their information sets.

Let ρ̃(I) =
∫ 1

0
ρdG(ρ|I) be the expe
ted su

ess probability, and π̃(I) =

∫ 1

0
π(ρ)dG(ρ|I) be the

expe
ted development pro�t for a given information set, I. Let ρ0 = ρ̃(0, 0). In period 2, �rm i
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will drill a development well at 
ost κ if and only if the expe
ted return to doing so is positive.

That is, π̃(Ii,2)− κ ≥ 0. Therefore, de�ne a �rm's value fun
tion at the beginning of period 2 as:

V (I) = max{π̃(I)− κ, 0}

Let Wn,m be the period 1 expe
tation of V (I) 
onditional on the �rm observing the results of

n ∈ {0, 1} of their own and m ∈ {0, 1}of the other �rm's exploration wells. That is,

W0,0 = V (0, 0)

W0,1 = ρ0V (0, 1) + (1− ρ0)V (0,−1)

W1,0 = ρ0V (1, 0) + (1− ρ0)V (−1, 0)

W1,1 = ρ0ρ̃(0, 1)V (1, 1) + ρ0(1− ρ̃(0, 1)) (V (−1, 1) + V (1,−1)) + (1− ρ0)(1− ρ̃(0,−1))V (−1,−1)

In the �rst stage, �rms 
hoose whether or not to drill an exploration well at 
ost c+ ǫi. I assume ǫi

private information to �rm i, and is drawn from a type-I extreme value distribution with varian
e

parameter σǫ. It is then straightforward to show that the unique Bayes-Nash equilibrium of the

exploration game is for ea
h �rm to drill an exploration well with probability p∗ given by the

solution to equation 22. In what follows I assume W0,0 = 0. This assumption means that if not

exploration results are observed it is not optimal to develop the blo
k. This assumption 
an be

relaxed without 
hanging the nature of the equilibrium.

p∗ =
exp

(

1
σǫ
(p∗α(W1,1 −W1,0) +W1,0 − c)

)

exp
(

1
σǫ
p∗αW0,1

)

+ exp
(

1
σǫ
(p∗α(W1,1 −W1,0) +W1,0 − c)

)
(22)

Note that the value of additional information is always positive, so W1,1 > W1,0 > W0,1 > W0,0. I

will fo
us on the 
ase of diminishing marginal value of information where W1,1−W1,0 < W0,1. That

is, I assume the marginal value to �rm i of observing the out
ome of �rm j's well is higher when

�rm i does not drill a well itself.

32

Under this assumption, it is straightforward to demonstrate

the following proposition.

Proposition 1. If W1,1 −W1,0 < W0,1 then

∂p∗

∂α
< 0. If in addition, 0 <

∂W1,1

∂σij
<

∂W0,1

∂σij
, then

∂p∗

∂σij
< 0

Proof. Let P1 denote the right hand side of equation 22. Let P0 = 1− P1.

32

That the value of additional signals should be diminishing is intuitive - in the limit additional signals have

no value as the posterior varian
e goes to zero. However, returns to information are not ne
essarily diminishing

everywhere, and it is possible to 
onstru
t settings in whi
h the se
ond signal to be more valuable than the �rst

(see Radner and Stiglitz (1984) for a dis
ussion of non-
on
avities in the returns to information).
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Applying the impli
it fun
tion theorem to equation 22 yields

∂p∗

∂α
= −

(

p∗P1P0 (W11 −W10 −W01)

αP1P0 (W11 −W10 −W01)− σǫ

)

,

whi
h is < 0 if W1,1 −W1,0 < W0,1.

Applying the same approa
h to obtain the derivative with respe
t to σij , noting that

∂W0,1

∂σij
6= 0,

∂W1,1

∂σij
6= 0, and ∂W1,0

∂σij
= 0, yields

∂p∗

∂σij

= −





p∗P1P0

(

∂W1,1

∂σij
−

∂W0,1

∂σij

)

αP1P0 (W11 −W10 −W01)− σǫ



 ,

whi
h is < 0 if W1,1 −W1,0 < W0,1 and 0 <
∂W1,1

∂σij
<

∂W0,1

∂σij
.

The �rst part of this theorem says that as the probability of information spillover between �rms

in
reases, the equilibrium exploration probability falls. If �rms are more likely to observe the

results of their rival's exploration wells, then �rms have more of an in
entive to free ride sin
e the

relative expe
ted value of drilling their own well falls. The se
ond part of this theorem says that

the equilibrium probability of exploration is negatively related to the 
orrelation between ρi and

ρj , as long as 0 <
∂W1,1

∂σij
<

∂W0,1

∂σij
. This property applies, for example, if ρi and ρj are distributed

a

ording to a transformation of a multivariate Niormal distribution, as in the Gaussian pro
ess

model developed in Se
tion 3 of the paper. Intuitively, in
reased 
orrelation between �rms' signals

has a larger e�e
t of a �rm's 
ontinuation value when they only observe the other �rm's signal

and not their own. There is more in
entive for �rms to free ride when the signals generated

by exploration wells on di�erent blo
ks are more 
orrelated. In parti
ular, if ρi = ρj (perfe
t


orrelation) then information generated by �rm j's exploration well is of equal value to �rm i

as information generated by its own exploration well. In this 
ase, W1,0 = W0,1. If there is

no 
orrelation, then signals generated by �rm j are not informative about ρi, and W1,1 = W1,0

and W0,1 = 0. In this 
ase, the equilibrium exploration rate, p∗, is identi
al to the equilibrium

exploration rate that obtains when α = 0.

This result illustrates that the extent to whi
h �rms have an in
entive to free ride in exploration

depends on the information �ow between �rms - parameterized by α - and the 
ovarian
e of

signals generated by exploration wells on di�erent blo
ks - parameterized by σij . Information �ow

is largely a fun
tion of te
hnology and regulation - for example, the information 
on�dentiality

period imposed by the UK regulator. Correlation of exploration well out
omes at di�erent lo
ations

is a fun
tion of underlying geology and the size and arrangement of li
ense blo
ks. The remainder

of this paper uses the UK data to estimate empiri
al analogues of these obje
ts in the 
ontext of
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North Sea oil exploration and quanti�es the e�e
t of information externalities on industry surplus

using an e
onometri
 model that builds on the simple theoreti
al model presented here.

A �nal theoreti
al result illustrates the trade o� fa
ed by the so
ial planner in manipulaitng

information �ow between �rms.

Proposition 2. Let p̃ be the probability of exploration that maximizes the joint expe
ted surplus of

the two �rms. Let p be the equilibrium probability when α = 0, and p be the equilibrium probability

when α = 1. If W10 > c and W1,0 +W0,1 − c > 2W1,1 − 2c, then for some value of σǫ, p < p̃ < p.

Proof. First, note that if W1,0 > c, then p → 1 and p → 1 as σǫ → ∞ and p → 0.5 and p → 0.5 as

σǫ → 0. Note also that p > p for any value of σǫ ∈ (0,∞) by Proposition 1. Sin
e equation 22 is


ontinuous in σǫ, for any p̃ ∈ (0.5, 1) there exists a value σ̃ǫ ∈ (0,∞) su
h that p > p̃ > p.

Now, write the obje
tive fun
tion of the planner who 
an set the probability of exploration and

observes all well out
omes as:

p̃ = arg max
p∈[0,1]

p2(2W1,1 − 2c) + 2p(1− p)(W1,0 +W0,1 − c).

The planner's optimum is given by:

p̃ =
1

2

(

W1,0 −W0,1 − c

W1,0 +W0,1 −W1,1

)

.

If W1,0 > c, then W1,1 > c and therefore p̃ > 0.5. furthermore, if W1,0+W0,1− c > 2W1,1− 2c then

p̃ < 1.

The 
ondition W10 > c says that the so
ial planner would prefer to drill a well on one of the blo
ks

than none of the blo
ks. The 
ondition W1,0 + W0,1 − c > 2W1,1 − 2c holds when the value of

information is su�
iently 
on
ave su
h that the so
ial planner would like to drill only one well on

one of the blo
ks. This result shows that the de
entralized equilibrium 
an generate either too

many or too few wells in expe
tation, and information �ow between �rms 
an be �too high� or �too

low�. Values of α that are too 
lose to one indu
e too mu
h free riding, su
h that the expe
ted

number of exploration wells is too low. On the other hand, low values of α make is more likely

that more than one exploration well is drilled. This result illustrates the 
ountervailing e�e
ts of

information �ow between �rms on so
ial surplus in equilibrium. Too little information �ow results

in so
ially ine�
ient exploration, sin
e the so
ial value of additional exploration wells beyond the

�rst is lower than c. On the other hand, too mu
h information �ow between �rms in
reases the

free riding in
entive and results in too little exploration in equilibrium.

This result suggests that exploration behavior is a de
entralized equilibrium may be suboptimal,

and that government poli
y that manipulates the arrangement of li
enses (and thus the 
orrelation
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of signals between �rms) or the information �ow between �rms might bring equilibrium exploration

rates 
loser to the so
ial optimum.

B Details of Logisti
 Gaussian Pro
ess Model

This se
tion des
ribes the Bayesian updating rule for the logisti
 Gaussian pro
ess model and relies

heavily on Se
tion 3 of Rasmussen and Williams (2006). The 
ode that I use to implement the

numeri
al Bayesian updating rule is a modi�ed version of the Matlab pa
kage made available by

Rasmussen and Williams.

33

The latent variable, λ(X) is assumed to be distributed a

ording at a Gaussian pro
ess. That

is, λ(X) is a 
ontinuous fun
tion, and any �nite 
olle
tion of K lo
ations {1, ..., K}, the ve
tor

(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a


ovarian
e matrix with (j, k) element κ(Xj , Xk) where κ(Xj , Xk) → κ(Xj, Xj) as |Xj −Xk| → 0.

I assume a 
onstant prior mean and a 
ovarian
e spe
i�
ation given by equation 2. The prior

distribution is therefore de�ned by three parameters, (µ, ω, ℓ). Denote the density fun
tion of

prior distribution of λ by p0(λ). Observed data is des
ribed by y = {(s(w), Xw)}w∈W for a set of

wells, W . The Bayesian posterior distribution of λ 
onditional on y is given by:

p1(λ|y) =
p0(λ)p(y|λ)

p(y)
(23)

p(y|λ) =
∏

w∈W

(1(s(w) = 1)ρ(λ(Xw)) + 1(s(w) = 0) (1− ρ(λ(Xw))))

p(y) =
∏

w∈W

(

1(s(w) = 1)

∫

ρ(λ(Xw))p0(λ)dλ+ 1(s(w) = 0)

(

1−

∫

ρ(λ(Xw))p0(λ)dλ

))

Where ρ(λ(X)) is de�ned by equation 1. This posterior distribution is di�
ult to work with. In

parti
ular, in order to 
ompute the posterior E(ρ(X)|y) for some lo
ation X I must �rst 
ompute

the marginal distribution of λ(X), whi
h is given by:

p(λ(X) = λ̃|y) =

∫

1(λ(X) = λ̃)p1(λ|y)dλ (24)

Then the expe
ted value of ρ(X) is given by:

E(ρ(X)|y) =

∫

ρ(λ̃)p(λ(X) = λ̃|y)dλ̃ (25)

The posterior marginal distribution of λ(X) given by equation 24 is non-gaussian and has no

33

Available at http://www.gaussianpro
ess.org/.
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analyti
al expression. This means that it is 
omputationally 
ostly to 
ompute E(ρ(X)|y).

To solve this problem I use a Gaussian approximation to the posterior p1(λ|y) 
omputed using the

Lapla
e approximation te
hnique detailed in Se
tion 3.4 of Rasmussen and Williams (2006), based

on Willaims and Barber (1998). This method is widely used for Bayesian 
lassi�
ation problems

in 
omputer s
ien
e (Tipping, 2001) and in geostatisti
s (Diggle, Tawn, and Moyeed, 1998).

Denote the Gaussian approximation to p1(λ|y) by q1(λ|y). Sin
e q1(λ|y) is Gaussian, the posterior

distribution over any �nite 
olle
tion of K lo
ations 
an be written as a N(µ1,Σ1) where µ1
is

K × 1 and Σ1
is K ×K. In parti
ular, the marginal distribution given by equation 24 is a Normal

distribution.

Noti
e that, sin
e q1(λ|y) is itself a Gaussian pro
ess, it is straightforward to update beliefs again

given a new set of data, y′, following the same pro
edure. This updating pro
edure de�nes the

operator B(·) in equation 4, where G(ρ) is the distribution of ρ implied by the prior Gaussian

distribution of λ and the logisti
 squashing fun
tion 1, and G′(ρ) is the distribution over ρ de�ned

by the Gaussian approximation to the posterior distribution of λ.

B.1 Gaussian Pro
ess Likelihood

Let s be a ve
tor of well out
omes and X be a ve
tor of well lo
ations, both random variables.

Ve
tors are arranged in 
hronologi
al order so that the �rst element of ea
h ve
tor 
orresponds to

the �rst well drilled, the se
ond to the se
ond well drilled et
. Write the wth element of ea
h ve
tor

as sw and Xw. Let ρ(·) : X → [0, 1] be the random fun
tion whi
h de�nes the probability of su

ess

at ea
h lo
ation in the spa
e X, drawn form a logisti
 Gaussian pro
ess with density g(ρ, θ) where

θ is a parameter ve
tor. sw is a Bernoulli random draw with probability P (sw = 1) = ρ(Xw).

Adopt the following assumption about the pro
ess that generates X :

• Assumption A.3: Xw is drawn from a distribution F (Xw|θ, {(Xy, sy)}y<w). That is, the

distribution of Xw depends only on the parameters θ, and the lo
ations and out
omes of

past wells, and not on the random fun
tion ρ dire
tly.

The joint distribution of (ρ, s,X) is then given by:

F (ρ, s,X) =

[

g(ρ, θ)
∏

w

ρ(Xw)
1(sw=1)(1− ρ(Xw))

1(sw=0)

][

∏

w

f(Xw|θ;{(Xy, sy)}y<w)

]

.

In the language of Cox (1975) the joint distribution is the produ
t of two partial likelihood fun
tions.

One that is the produ
t of the probabilities of out
omes sw 
onditional on lo
ations Xw, (the left

bra
kets) and one that is the produ
t of the probabilities of lo
ations Xw 
onditional on past
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lo
ations and out
omes {(Xy, sy)}y<w (the right bra
kets). Wong (1986) shows that 
onsistent

estimates of the parameters θ 
an be obtained by maximizing partial likelihood fun
tions with this

nested 
onditioning stru
ture. That is, on
e 
an omit one or the other of the two partial likelihood

fun
tions and obtain 
onsistent estimates of the parameters θ. Chapter 13.8 of Wooldridge (2002)

dis
usses this partial likelihood approa
h in detail for a panel data setting (of whi
h this is a spe
ial


ase).

To obtain the likelihood fun
tion given in equation 3, the random fun
tion ρ is integrated out of

the partial likelihood given by the left bra
kets. Gill (1992) shows that su
h a marginalized partial

likelihood fun
tion has the same properties as the partial likelihood provided that the omitted

term that appears in the full but not the partial likelihood does not depend on the variable that

is integrated out. This is exa
tly assumption A.3.

B.2 KL Divergen
e

I 
ompute the expe
ted KL divergen
e for ea
h (j, t) a

ording to the following equation:

KLjt = Et(ρj)

∫

gt(ρ|{j, 1}) log

(

gt(ρ|{j, 1})

gt(ρ)

)

dρ

+ (1−Et(ρj))

∫

gt(ρ|{j, 0}) log

(

gt(ρ|{j, 0})

gt(ρ)

)

dρ (26)

Where gt(ρ) is the density of the �rm's posterior beliefs over the ve
tor ρ after observing all wells

up to date t, gt(ρ|{j, 1}) is the updated posterior after observing an additional su

essful well on

blo
k j, and gt(ρ|{j, 0}) is the updated posterior after observing an additional unsu

essful well

on blo
k j. The �rst term in the expression is the expe
ted probability of su

ess on blo
k j

multiplied by the information gain from a su

essful well on that blo
k. The se
ond term is the

expe
ted probability of failure on blo
k j multiplied by the information gain from a failed well.

C Estimation Details

C.1 First Step: Estimating Conditional Choi
e Probabilities

In the �rst step, I estimate CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an a
tion j in the exploration and development stages of the game 
onditional on its state

S. With a su�
iently large data set, these probabilities 
ould be estimated as empiri
al means

for ea
h state. However, sin
e the number of possible states is large relative to the data, I impose

some additional stru
ture. Consider �rst the exploration de
ision. Noti
e that equation 12 
an be
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rewritten as

P (aEf = j|S) =
exp

(

ṽEf (j,S)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,S))
)

(27)

where ṽEf (j,S) =
1
σǫ
vEf (j,S) −

1
σǫ
vEf (0,S).

I approximate ṽf
E(j,S) with a linear equation with the following terms:

• Summary statisti
s of the �rm's beliefs: E(ρj |Gft), E(ρj |Gft)
2
, V ar(ρj |Gft), V ar(ρj |Gft)

2
,

and E(ρj |Gft)V ar(ρj|Gft).

• The number of li
enses held near blo
k j by �rm f and by other �rms: |{k : k ∈ Jft and d(j, k) ≤

1}|, |{k : k ∈ ∪{Jgt}g 6=f and d(j, k) ≤ 1}|, and |{k : k ∈ ∪{Jgt}g∈F and d(j, k) ≤ 2}|, where

d(j, k) = 1 if j and k are neighbors, d(j, k) = 2 if j and k are se
ond degree neighbors et
.

• The number of nearby unobserved wells within one year of being made publi
: |{w : of (w) =

0 and t(w) + τ − 12 ≤ t ≤ t(w) + τ}|.

• A quadrati
 in the pri
e level: Pt and P 2
t .

• Blo
k j and �rm f �xed e�e
ts.

Estimating P̂ (aEf = j|S) is then a 
ase of estimating the parameters of this approximation to

ṽf
E(j,S).

The approximation to ṽf
E(j,S) depends on the distribution of li
enses and wells �near� blo
k j.

Intuitively, the di�eren
e between the value of drilling on blo
k j and taking no a
tion should not

depend on the distribution of li
enses and wells at distant lo
ations. Fixed e�e
ts are in
luded to

a

ount for blo
k level heterogeneity in drilling 
osts or beliefs not a

ounted for by well results

and �rm level heterogeneity is drilling 
osts. If blo
k level �xed e�e
ts are not in
luded, blo
k level

heterogeneity 
an lead to biased estimates of the logit 
oe�
ients on �rms' beliefs. In parti
ular,

blo
ks that have idiosyn
rati
ally low drilling 
osts or on whi
h there is additional publi
 infor-

mation indi
ating potential produ
tivity are likely to be explored more intensively. Firm beliefs

about these blo
ks are likely to have lower varian
e on average be
ause of this high exploration

rate. A
ross-blo
k variation in average drilling rates and beliefs would therefore lead to the spu-

rious 
on
lusion that greater un
ertainty in beliefs redu
es the probability of exploration. Sin
e

there is no expli
it blo
k or �rm level heterogeneity in the model, I estimate the parameters of

the polynomial approximation to ṽf
E(j,S) on
e in
luding �xed e�e
ts, then I �nd the inter
ept

that mat
hes the average exploration probability without �xed e�e
ts, holding other parameters

at their estimated level. I use this inter
ept in generating predi
ted 
hoi
e probabilities.

If the state variable were observable in the data, then P̂ (aEf = j|S) 
ould be estimated using the

likelihood fun
tion implied by equation 27. However, the asymmetri
 information stru
ture of the
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model means that the true state is not observed by the e
onometri
ian. The data does not in
lude

the ve
tor of that re
ords whi
h other-�rm well out
omes were observed by �rm f . Di�erent

realizations of of imply di�erent states through the e�e
t of observed well out
omes on Gft and

WU
ft. The data is therefore 
onsistent with a set of possible states S̃f for ea
h �rm.

34

To re
over CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . Let S1
ft be the state if of(w) = 1 and S0

ft be the state

if of(w) = 0. From the e
onometri
ian's perspe
tive, P (S1
ft|{S

1
ft,S

0
ft}, α) = α. I provide a formal

de�nition of the distribution P (Sf |S̃f , α) in subse
tion C.3 below

Given this distribution over states, the likelihood of a sequen
e of exploration 
hoi
e observations

is:

LE
f =

∑

Sf∈S̃f









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)
exp

(

ṽEf (j,Sft)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,Sft))
)



P (Sf |S̃f , α)



 . (28)

I maximize this likelihood to jointly estimate the 
oe�
ients of the approximation to ṽEf (j,Sft)

and the parameter α. Sin
e I sometimes observe multiple exploration wells for the same (f, t) I

treat these as separate observations inside the bra
kets in equation 28.

I derive a similar expression for the likelihood of a sequen
e of development 
hoi
es. Fixing α at

the previously estimated value, I maximize the development likelihood to estimate the 
oe�
ients

of the approximation to ṽDf (j,Sft). Be
ause development of a blo
k is a rare event (it o

urs

only 20 times in the estimation sample), I in
lude fewer statisti
s in the approximation to the

state variable to avoid over�tting. In parti
ular, I omit �xed e�e
ts, quadrati
 terms in �rms'

beliefs about ρj and the oil pri
e, and statisti
s on the number of nearby li
enses and nearby

unobserved wells. Adding higher order terms in beliefs about ρj leads to impre
ise 
oe�
ient

estimates, suggesting that extrapolation of the predi
ted 
hoi
e probabilities to unobserved states

would be unreliable. The estimated 
oe�
ients imply 
onditional 
hoi
e probability estimates,

P̂ (aE = j|S) and P̂ (aD = j|S).

I use P̂ (aE = j|S) and P̂ (aD = j|S) to estimate the �rms beliefs about the average exploration

34

More pre
isely, and element of S̃f is a parti
ular sequen
e of �rm-f states Sf = {Sft}
T
t=1. See the subse
tion

below for a formal de�nition of S̃f .
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rate QE
and QD

de�ned in equation 16 with the mean CCPs a
ross realized states in the data,

Q̂E =
1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P̂ (aE = j|Sft) (29)

Q̂D =
1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P̂ (aD = j|Sft).

Logit 
oe�
ients and marginal e�e
ts for he estimated CCPs are re
orded in Table A1.

Table A1: Conditional Choi
e Probabilities: Logit Coe�
ients

Exploration Development

Coe�
ient SE Marginal E�e
t Coe�
ient SE Marginal E�e
t

Beliefs about ρj

Mean 14.526 2.292 0.1764 3.022 1.680 0.0049

Varian
e 4.916 1.149 0.0216 -5.582 2.201 -0.0089

Mean Squared -9.041 1.967

Varian
e Squared -1.733 0.396

Mean ∗ Varian
e -1.461 1.741

Oil Pri
e ($100s) 3.272 1.337 0.0134 -0.233 0.704 -0.0004

Oil Pri
e Squared ($100s) -0.020 0.009

Li
enses

Own Firm Neighboring 0.129 0.029 0.0028

Other Firm Neighboring 0.015 0.030 0.0003

Total Nearby 0.105 0.016 0.0023

Unobserved Wells -0.153 0.034 -0.0033

Mean Exploration Probability (Q̂E
) 0.0223

Mean Development Probability (Q̂D
) 0.0017

N Firms 44 44

N Firm-Months 5977 5977

Notes: Table re
ords logit 
oe�
ients on state var summary statisti
s the enter the approximation to the state

for the �rm's exploration and development de
isions. Standard errors are 
omuted using the outer produ
t of the

gradients of the log likelihood. Marginal e�e
ts are the predi
ted 
hange in exploration and development probability

from a marginal 
hange in ea
h of the listed statisti
s. E�e
ts are 
al
ulated using the �rst derivatives of the logit


hoi
e probability expression. All statisti
s are for the 
ase of a �rm with drilling rights on a single blo
k, j, for

whi
h the statisti
s that enter the approximation to the state variable are set to the mean observed values from the

data.
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C.2 Se
ond Step: Estimating Dynami
 Parameters

In the se
ond step, I use the estimated 
onditional 
hoi
e probabilities P̂ (aE = j|S) and P̂ (aD =

j|S) to estimate the 
ost parameters θ2. The �rm's value fun
tions (9) 
an be written in terms of

the expe
ted sum of future payo�s and 
osts as

V E
f (S, θ2) = E





∞
∑

t=0

βt
∑

j=Jft

(

1(aDft = j) (πj − (κ0 − νftj))− 1(aEft = j) (c(j,Sft)− ǫftj)
)



 . (30)

Where the expe
tations are taken over all future 
ost sho
ks, �rm a
tions, and realizations of

s(w), of(w), and πj with respe
t to the �rm's beliefs at state S, and c(Sft, j) is given by equation

17. To estimate this expe
tation, I forward simulate the model from initial state S using the

CCP estimates P̂ (aE = j|S) and P̂ (aD = j|S) to draw �rm f 's a
tions and estimates of �rm f 's

beliefs about other �rms a
tions Q̂E
and Q̂D

to draw other �rms' a
tions.

35

Simulation pro
eeds

as follows:

1. Draw an exploration a
tion using probabilities P̂ (aEft = j|St). Compute expe
ted 
ost sho
k

ǫftaE , given realized a
tion. If a well is drilled, let it be su

essful with probability 
orre-

sponding to �rm f 's beliefs at state St.

2. Draw other �rms' exploration a
tions using Q̂E . Let wells be su

essful with probability


orresponding to �rm f 's beliefs at state Sft.

3. Draw of(w) for wells drilled by other �rms using α̂.

4. Update state to S ′
ft.

5. Draw a development a
tion using P̂ (aDft = j|S ′
ft). Compute expe
ted 
ost sho
k νftaE , given

realized a
tion. If blo
k j is developed draw development revenue πj from the distribution


orresponding to �rm f 's beliefs at state S ′
ft.

6. Draw other �rms' development a
tions using Q̂D.

7. Update state to Sft+1. Go to step 1.

36

35

Hotz and Miller (1993) obtain estimates of the �rm's value fun
tion using �nite dependen
e by normalizing one

state to have a 
ontinuation value of 0. This approa
h is 
ompli
ated here sin
e the �absorbing state� of developing

all blo
ks is the result of a series of 
hoi
es, rather than a single 
hoi
e that is available at every state (for example

exit in a standard dynami
 oligopoly model).

36

Noti
e that sin
e 
ost parameters θ2 enter equation 30 linearly, I only need to perform the simulation step on
e.

Simulated 
ontinuation values 
an be obtained under di�erent parameter ve
tors θ2 by multiplying the simulated


osts and revenues by the relevant elements of the parameter ve
tor (Bajari, Benkard, and Levin, 2007).
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Let r index simulation runs and V E
fr(S, θ2) be the present dis
ounted sum of �rm f 's payo�s and


osts from run r. Given R simulations from state S, estimates of the value fun
tions given by

equation 30 are:

V̂ E
f (S, θ2) =

1

R

R
∑

r=1

[

V E
fr(S, θ2)

]

. (31)

A similar pro
edure is used to 
ompute estimates of development stage value fun
tions V̂ D
f (S, θ2)

where the simulation algorithm is started at step 5. In pra
ti
e I set R = 500 and run ea
h

simulation for 480 periods (40 years). Plugging estimated value fun
tions into equation 10 yields

estimates of 
hoi
e-spe
i�
 value fun
tions, v̂Ef (a
E,S, θ2) and v̂Df (a

D,S, θ2), whi
h 
an be 
ombined

with equation 12 to generate model-implied 
hoi
e probabilities

P̃ (aEf = j|S, θ2) =
exp

(

1
σǫ
v̂Ef (j,S, θ2)

)

∑

k∈Jft∪{0}
exp

(

1
σǫ
v̂Ef (j,S, θ2))

) . (32)

With a similar expression for P̃ (aDf = j|S, θ2). Dropping the E and D for simpli
ity, I write

the relationship between the model-implied probabilities and the empiri
al �rst-step probabilities,

P̂j(S), as:

P̂ (a = j|S) = P̃ (a = j|S, θ2) + ξjS (33)

Where, at the true parameters, ξjS 
ontains the error due to sample size and approximation of the

state variables in P̂ (a = j|S) and the simulation error in P̃ (a = j|S, θ2). I estimate the parameters

θ2 by non-linear least squares, sta
king exploration 
hoi
e and development 
hoi
e probabilities

for ea
h state S. Note that I 
an 
ompute both P̂ (a = j|S)) and P̃ (a = j|S, θ2) for any state S,

in
luding those not dire
tly observed in the data. In pra
ti
e I sele
t a random 25% subset of the

states observed in the data to in
lude in the regression.

Sin
e the simlated value fun
tions enter non-linearly in the model implied probabilities, P̃ (a =

j|S, θ2), non-linear least squares estimation based on equation 33 is asymptoti
ally biased if the

number of simulation draws, R, is �xed (La�ont, Ossard, and Vuong, 1995). To ensure 
onsisten
y,

it is ne
essary either to add a bias 
orre
tion term, or to assume that R goes to in�nity faster

than the square root of the number of observations (Gourieroux and Monfort, 1993) - here the

number of states in
luded in the regression. Due to 
omputational di�
ulty in obtaining the bias


orre
tion term, I rely on the assumption of an asymptoti
ally in
reasing number of simulation

draws.
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C.3 Te
hni
al Details on Distribution of States

De�ne a period t observation as

Xt = {{(j(w), s(w), f(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}, (34)

where the data 
onsists of T su
h observations, X = {Xt}
T
t=1. If the states {Sft}f∈F were uniquely

identi�ed by Xt, then P̂ (aEf = j|S) 
ould be estimated using a straightforward logit. This is not

possible sin
e the e
onometri
ian does not observe the ve
tor of . That is, the e
onometri
ian does

not know whi
h well out
omes ea
h �rm observed in reality. Di�erent realizations of of imply

di�erent states through the e�e
t of observed well out
omes on Gft and WU
ft. The state variable

Sft is therefore not dire
tly observed in the data, and for every (f, t), the data is 
onsistent with

a set of states.

Formally, denote a sequen
e of �rm f states as Sf = {Sft}
T
t=1. There exists a fun
tion s(·) su
h

that Sf = s(of |X). De�ne S̃f (X) as the range of this fun
tion. That is, S̃f is the set of �rm f

states that are 
onsistent with the data. There also exists an inverse 
orresponden
e s−1(Sf |X)

that maps states to (possibly multiple) ve
tors of that imply those states.

To re
over CCP estimates, observe that di�erent values of α de�ne distributions over the elements

of S̃f . In parti
ular, the probability of sequen
e of states Sf ∈ S̃f , 
onditional on the data is:

P (Sf |X,α) =
∑

o∈s−1(Sf |X)

(

α
∑

w o(w)(1− α)
∑

w(1−o(w))
)

. (35)

Given this distribution over true states, the likelihood of a sequen
e of exploration 
hoi
e obser-

vations 
onditional on (X,α) is given by:

LE
f =

∑

Sf∈S̃f (X)









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)
exp

(

ṽEf (j,Sft)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,Sft))
)



P (Sf |X,α)



 . (36)

Note that the summation in equation 36 is an expe
tation. In pra
ti
e, it is 
omputationally infea-

sible to 
ompute the a
tion probabilities at every possible state sequen
e Sf ∈ S̃f . I approximate

this expe
tation for di�erent values of α using importan
e sampling methods.

C.4 Estimation of Development Payo�s

Firms de
ide to develop blo
ks based on the expe
ted payo� from the blo
k, πj and the �xed 
ost

of developing the blo
k, κ. πj is drawn from a distribution Γ(π; ρj, P ). I assume that development

payo� is given by πj = Rjµ(P ) where Rj is the quantity of oil reserves on blo
k j (in barrels), and
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µ(P ) is a multiplier that depends on the pri
e per barrel. I assume that reserves are drawn from

a log normal distribution: Rj ∼ logN(αR + µRρj, σR). Note that the mean parameter depends on

the true exploration su

ess probability of the blo
k, ρj .

Note that I do not observe Rj dire
tly in the data, but I do observe the realized �ow of oil from

all produ
tion wells drilled from a development platform up to 2000. I 
annot use the total oil

produ
ed from ea
h blo
k to measure Rj for two reasons. First, most �elds were still produ
ing in

January 2000, the last month in my data, and the sum of all oil produ
ed is therefore less than the

total reserves. Se
ond, older �elds may have undergone several rounds of redevelopments (so-
alled

�enhan
ed oil re
overy�. See Jahn, Cook, and Graham, 1998).

A 
lassi
 produ
tion pro�le involves a pre-spe
i�ed number of wells being drilled, over whi
h time

the produ
tion �ow of the �eld ramps up. On
e the total number of wells is rea
hed, produ
tion

peaks and then begins to fall o� (Ler
he and Ma
Kay, 1999). To estimate the volume of reserves

initially per
eived as re
overable by the �rm, I use data on the set of wells that were drilled before

produ
tion peaked on ea
h blo
k, and extrapolate into the future using an estimate of the rate of

post-peak de
line in produ
tion. Let t0(j) be the month that produ
tion began on blo
k j and let

t∗(j) be the month of peak produ
tion. Let rj(t) be the observed �ow of oil from blo
k j in month

t. I estimate a parameter bj that measures the rate of post-peak de
line in produ
tion separately

for ea
h blo
k j by applying non-linear least squares to the following spe
i�
ation:

rj(t) = rj(t
∗(j))exp(−bj(t− t∗(j))) + ǫjt (37)

Where the estimation sample in
ludes all months after t∗(j) for all developed blo
ks, j. Estimated

initial reserves are then given by:

Rj =

t∗(j)
∑

t=t0(j)

rj(t) +
∞
∑

t=0

rj(t
∗(j))exp(−b̂jt) (38)

Where the �rst term is the realized pre-peak produ
tion, and the se
ond term is the extrapolated

post-peak produ
tion.

Figure 2 illustrates the relationship between exploration su

ess rate and log estimated reserves.

Noti
e that the expe
ted size of the reserves is monotoni
ally in
reasing in the su

ess rate of

exploration wells on the same blo
k, and the relationship is approximately log-linear. I assume

log-linearity and estimate the parameters of the distribution of Rj by OLS using the following

regression spe
i�
ation:

log(Rj) = αR + µRρj + ǫj (39)

Where ǫj ∼ N(0, σR) and I measure ρj using the realized pre-development exploration well su

ess

rate on blo
k j. The estimated parameters are reported in Table A2.
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Finally, note that πj = Rjµ(P ) where µ(P ) = P (1 − 0.125) 1−β40

40(1−β)
, This multiplier 
onverts the

total reserves in barrels to the present dis
ounted value of revenue at the 
urrent pri
e level, less

the 12.5% royalty paid to the government, where oil is assumed to �ow at a 
onstant rate for 40

years, at whi
h point the reserves, Rj are exhausted.

Table A2: Distribution of Development Payo�s

Parameter Estimate SE

αR 1.594 0.420

µR 5.990 0.964

σ2
R 1.949 0.115

N 80

Notes: Reported 
oe�
ients are from OLS estimation of regression spe
i�
ation given by equation 39. Sample

in
ludes one observation for ea
h of the 80 blo
ks developed before 2000 in the area north of 55◦N and east of 2◦W .

Left hand side variable is the log of the predi
ted oil reserves on blo
k j, measured in millions of barrels. Right

hand side variable is the observed exploration well su

ess rate for blo
k j 
al
ulated using all exploration wells

drilled on blo
k j before development.

C.5 Estimation of Li
ense Issuing Pro
ess

Firm f has beliefs about the evolution of the distribution of drilling li
enses des
ribed by a two

step pro
ess that takes pla
e at the beginning of ea
h period. First, the set of all blo
ks that will

be li
ensed to any �rm that period is drawn. Next the identities of the �rms who re
eive li
enses

on ea
h blo
k are drawn. The pro
ess is des
ribed by the following equations:

P (j ∈ ∪{Jgt}g∈F |Sft−1) = Φ(β0 + β1Licjt−1 + β2LicNeighborsjt−1) (40)

P (j ∈ Jft|j ∈ ∪{Jgt}g∈F ,Sft−1) = Φ(β3 + β4Licfjt−1 + β5Licjt−1 + β6LicNeighborsfjt−1)

Where Licjt−1 is an indi
ator for whether blo
k j was li
ensed to any �rm at date t−1, Licfjt−1 is

an indi
ator for whether blo
k j was li
ensed to �rm f at date t−1, LicNeighborsjt−1 is the number

of blo
ks neighboring blo
k j that were li
ensed to any �rm at date t − 1, LicNeighborsfjt−1 is

the number of blo
ks neighboring blo
k j that were li
ensed to �rm f at date t − 1, and Φ(·) is

the standard Normal distribution fun
tion.

The �rst equation des
ribes the probability that blo
k j is li
ensed to some �rm in date t. The

se
ond equation des
ribes the probability that blo
k j is li
ensed to �rm f , 
onditional on it being

li
ensed to some �rm at date t. Noti
e that this spe
i�
ation does not rule out multiple �rms

re
eiving li
enses on the same blo
k. However, I allow the probability blo
k j is li
ensed to �rm f

in period t to be a fun
tion of whether it was li
ensed to another �rm in the previous period, t−1.
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Table A3: Li
ense Issuing Pro
ess

Probability of Assignment Conditional Probability

to Any Firm of Assignment to f

Dependent Variable 1(j ∈ ∪{Jgt}g∈F ) 1(j ∈ ∪Jft)
Conditional on ∀j ∈ J ∀j ∈ ∪{Jft}f∈F

Constant -3.004*** -2.001***

(.039) (.036)

Li
ensed in t− 1 5.334*** -1.780***

(.056) (.050)

Li
ensed to f in t− 1 . 6.611***

. (.056)

Neighbors Li
ensed in t− 1 .366*** .

(.055) .

Neighbors Li
ensed to f in t− 1 . .099

. (.066)

N 81270 860112

Notes: Reported 
oe�
ients are from probit regressions of equations 40. The �rst 
olumn reports 
oe�
ients from

the �rst equation. An observation is a blo
k-month. The left hand side variable is an indi
ator for whether blo
k j

is li
ensed to any �rm f ∈ F in month t. The sample in
ludes all blo
k-month 
ombinations for 1965-1990 on the set

of blo
ks used in the stru
tural estimation, in
luding those never li
ensed. The se
ond 
olumn re
ords 
oe�
ients

from the se
ond equation. An observation is a �rm-blop
k-month. The left hand side is an indi
ator fro whether

blo
k j is li
ensed to �rm f in month t. The sample in
ludes all possible �rm-blo
k-month 
ombinations for those

blo
k-months where j is li
ensed to some �rm f ∈ F . This is, if blo
k j was li
ensed to �rm f in month t, the

regresison would in
lude a (g, j, t) observation for every �rm g ∈ F .

I estimate the parameters of equations 40 by running two probit regressions. The �rst equation is

estimated using a panel at the blo
k-month level. The sample in
ludes of all blo
ks for every month

from 1965 to 2000. The left hand side variable is an indi
ator for whether blo
k j was li
ensed

to any �rm in month t. The se
ond equation is estimated using a panel at the �rm-blo
k-month

level. The sample in
ludes an observation for every possible (f, j, t) 
ombination for months t in

whi
h blo
k j was li
ensed to some �rm.

The estimated parameters for both equations are re
orded in Table A3.

D Identi�
ation Details

In this se
tion I provide a proof of identi�
ation of the exploration 
onditional 
hoi
e probabilities

(CCPs) P (aEf = j|S) and the information spillover parameter, α. Identi
al reasoning applies to

development 
hoi
e probabilities. I use the notation developed in Se
tion 6 of the main paper

and in Appendix D. In addition, let X be the spa
e of possible data points, where X ∈ X is an
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observation as de�ned by equation 34.

Proposition 3. Suppose P (aEf = j|S̃f (X)) is observed for all f and all X ∈ X. These observed

probabilities are 
onsistent with a unique value of α and a unique value of P (aEf = j|Sf) for every

possible state Sf .

Proof. First, suppose that α is known.

Let wt be a ve
tor of length W = |{w : t(w) < t}| indexed by i ∈ [1, ...,W ] is an index whi
h


ontains the identity w of ea
h well w ∈ {w : t(w) < t} in some order su
h that we 
an refer to well

identities by, wt(i) . Let γft be a ve
tor of length W with ith element γft(i) = 1(f(wt(i)) = f).

γft is a ve
tor of indi
ators for whether ea
h well w was drilled by �rm f .

We 
an then rewrite the observable data Xt as Xt = {xt, {γft}f∈F}. Where

xt = {{(j(w), s(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}.

xt des
ribes the lo
ation and out
ome of all wells drilled up to date t, the date t distribution of

li
enses, and the oil pri
e.

De�ne oft as a ve
tor of length W with ith element given by oft(i) = of (wt(i)). oft is just an

ordered ve
tor of 
ontaining indi
ators for whether �rm f observed ea
h well w ∈ {w : t(w) < t}

(a subset of the elements of of).

Suppose for simpli
ity that all wells w, t− t(w) < τ , so no wells are older than the 
on�dentiality

period τ . This assumption simpli�es notation, and the following argument easily generalizes. I

now drop the t subs
ript for simpli
ity.

Firm f 's state is uniquely de�ned by the pair (of , x). That is, there exists a fun
tion Sf =

s(f,of , x). The set of states that are 
onsistent with the obje
ts observed in the data is de�ned

by a 
orresponden
e S̃f = s̃(f,γf , X). In parti
ular:

s̃(f,γf , x) = {s(f,of , x) : γf(i) = 1 ⇒ of(i) = 1∀i ∈ [1, ...,W ]}.

So s̃(f,γf , x) 
ontains states implied by all possible values of of . In parti
ular, ea
h well drilled

by a �rm other than f may or may not have been observed.

Now �x a value of x. There are 2W possible values of γf and therefore of S̃f = s̃(f,γf , x). There

are also 2W possible values of of and therefore of Sf = s(f,of , x). Let Sf(x) be the set of possible

values of Sf and S̃f (x) be the set of possible values of S̃f . For any a
tion 
hoi
e j ∈ Jf and any

S̃f ∈ S̃f (x) we 
an write:

P (aEf = j|S̃f) =
∑

Sf∈Sf (x)

P (aEf = j|S)P (Sf |S̃f).
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Where P (Sf |S̃f) is a fun
tion of α given by equation 35 if Sf ∈ S̃f and P (S|S̃f) = 0 if Sf /∈ S̃f .

There are 2W su
h equations whi
h de�ne a linear system P̃ = AP where P̃ is a 2W × 1 ve
tor

whi
h sta
ks the probabilities P (aEf = j|S̃f), P is a 2W × 1 ve
tor whi
h sta
ks the probabilities

P (aEf = j|S), and A is a 2W × 2W matrix 
ontaining the probabilities P (Sf |S̃f) whi
h are known

fun
tions of α. P̃ is observed in the data. A is a known fun
tion of the single parameter α. P is

an unknown ve
tor for whi
h we would like to solve.

The ve
tor of true CCPs P 
an be re
overed from the observed probabilities, P̃ when A has full

rank. This is the 
ase here be
ause the system of equations 
an be written su
h that A is lower

triangular with non-zero diagonal elements. I show this by providing an algorithm to solve the

system by forward substitution, whi
h is only possible in a triangular system of equations. The

algorithm pro
eeds as follows:

1. Denote the ve
tor with all entries equal to 1 by 1 Start with γ1
f = 1. Let S̃1

f = s̃(f, 1, x)

and S1
f = s(f, 1, x) . Noti
e S̃1

f = S1
f . If all wells were drilled by �rm f , then they are all

observed. Therefore

P (aEf = j|S̃1
f ) = P (aEf = j|S1

f ).

P (aEf = j|S1
f ) is uniquely identi�ed.

2. Denote the ve
tor with all entries ex
ept the ith equal to 1 and the ith equal to 0 by 1
{i}
.

Let γ2
f = 1

{i}
. Let S̃2

f = s̃(f, 1{i}, x) and S2
f = s(f, 1{i}, x) . Noti
e that S̃2

f = {S1
f ,S

2
f}. The

�rm either did or did not observe the ith well. Therefore

P (aEf = j|S̃2
f ) = αP (aEf = j|S1

f ) + (1− α)P (aEf = j|S2
f ).

Sin
e the other terms are already known, P (aEf = j|S2
f ) is uniquely identi�ed.

3. Repeat step 2 for ea
h index ∀i ∈ [1, ...,W ].

4. Pro
eed to ve
tors γf with two entries equal to 0 and repeat step 2.

5. Continue iterating through ve
tors with in
reasingly more entries equal to 0 until P (aEf =

j|Sf ) has been solved for for all Sf ∈ Sf (x).

This algorithm generates the unique solution P of the system of equations P̃ = AP . This 
an be

repeated for any value of x.

Now I argue that α is uniquely identi�ed. Fix a pair (x, x′) where x and x′
are identi
al ex
ept for
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the out
ome of the ith well. The following four equations hold:

P (aEf = j|s̃(f, 1, x)) = P (aEf = j|s(f, 1, x))

P (aEf = j|s̃(f, 1, x′)) = P (aEf = j|s(f, 1, x′))

P (aEf = j|s̃(f, 1{i}, x)) = αP (aEf = j|s(f, 1, x)) + (1− α)P (aEf = j|s(f, 1{i}, x))

P (aEf = j|s̃(f, 1,{i} x′)) = αP (aEf = j|s(f, 1, x′)) + (1− α)P (aEf = j|s(f, 1{i}, x′))

The left hand side of ea
h equation is observed. Noti
e that P (aEf = j|s(f, 1{i}, x)) = P (aEf =

j|s(f, 1{i}, x′)) sin
e when the ith well is unobserved the two states are identi
al to the �rm. There

are therefore three unknown 
hoi
e probabilities and the parameter α on the right hand side. α


an be solved for in terms of observed quantities.

E Simulation Details

In this se
tion, I des
ribe the simulation algorithm used to 
ompute approximate 
ounterfa
tual

equilibria of the estimated model. Inputs to the simulation are a ve
tor of model parameters, θ, a


on�dentiality window, τ , a li
ense assignment{Jft}f∈F for ea
h period, and �rst step 
onditional


hoi
e probability (CCP) estimates, P̂ (aE = j|S) and P̂ (aD = j|S). The output of the simulation

are equilibrium CCPs, P ∗(aE = j|S). Note that I hold development 
hoi
e probabilities �xed.

The algorithm works by taking a set of CCPs as input and forward simulating those probabilities

from ea
h state Sf . The simulation generates model-implied 
hoi
e probabilities. If the probability

of exploration is, on average, higher (lower) a

ording to the model implied probabilities than the

input CCPs then the CCPs are adjusted by in
reasing (de
reasing) the inter
ept term in the linear

approximation to the relative 
ontinuation values, ṽEf (j,S), that enter the logit expression of

CCPs given by equation 27. The pro
edure is repeated using the adjusted CCPs and and adjusted

value of QE
until the di�eren
e in implied probability of exploration between the model-implied

probabilities and the input CCPs 
onverges to 0. In parti
ular,

Note that this pro
edure adjusts the average exploration probability, allowing the rate of explo-

ration to vary under di�erent 
ounterfa
tual s
enarios for example be
ause of in
reased or de
reased

in
entive to free ride, but holds �xed the response of relative 
ontinuation values, ṽEf (j,S), to vari-

ation in the state variable. I make this simpli�
ation to improve the stability of the pro
edure

while using a 
omputationally feasible number of simulation runs.

The algorithm pro
eeds as follows:

1. Fix a set of states, S and use �rst step CCPs P̂ 1(aE = j|S) and P̂ (aD = j|S) and �rst step

estimates of Q̂E1
and Q̂D1

to perform the forward simulation des
ribed in Appendix Se
tion
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D.2 for ea
h S ∈ S. This pro
edure generates model implied exploration probabilities,

P̃ 1(aEf = j|S, θ).

2. Compute the the average deviation between the �rst step and model implied CCPs, ∆1 =
∑

S∈S

(

P̃ 1(aEf = j|S, θ)− P̂ 1(aE = j|S)
)

. Adjust the �rst step CCPs a

ording to:

P̂ 2(aEf = j|S) =
exp

(

v̂E1
f (j,S) + δ

)

1 +
∑

k∈Jft
exp

(

v̂E1
f (k,S) + δ

)

Where ∆ is the adjustment to the estimated �rst step 
ontinuation values. δ > 0 if ∆1 > 0

and δ < 0 if ∆1 < 0. Let v̂E2
f (j,S) = v̂E1

f (j,S) + δ.

3. Simulate the model for all months from 1965 to 1990 using the distribution of li
enses

{Jft}f∈F and the new CCPs P̂ 2(aEf = j|S). Generate a new average exploration and de-

velopemnt probabilities, Q̂E2
and Q̂D2

.

4. Go ba
k to step 1 and repeat with new exploration CCPs P̂ 2(aEf = j|S) and new average

probabilities Q̂E2
and Q̂D2

. Repeat the algorithm k times until

∑

S∈S

(

P̃ k(aEf = j|S, θ)− P̂ k(aE = j|S)
)

≈ 0.

F Li
ense Clustering Algorithm

In this se
tion I des
ribe the algorithm used to generate the 
lustered li
ense assignment. Let

{Jfy}f∈F be the li
ense assignment at the end of year y. Let J̃y be the set of li
enses that were

issued in year y. An element of J̃y is a triple (Xj , t1, t2) where Xj identi�es the blo
k 
oordinates,

t1 is the start date and t2 is the end date of the li
ense as observed in the data. Let J̃fy ⊂ J̃y be

the set of subset of year y li
enses that were assigned to �rm f in the data. Finally, let {J̃ ′
fy}f∈F

be the 
ounterfa
tual li
ense assignment for year y.

Li
enses and �rms have preferen
es over ea
h other given by a distan
e metri
, Ωfjy. The distan
e

metri
 is 
hosen su
h that new li
enses want to be assigned to �rms whi
h hold a larger number of

nearby li
enses, and �rms want to be assigned the li
enses that are 
lose to many of their existing

li
enses. In parti
ular,

Ωfjy =
∑

k∈J ′

fy−1

exp (−|Xk −Xj |) . (41)

Noti
e that Ωfjy is in
reasing in the number of li
enses held by f at a given distan
e from blo
k j,

and de
reasing in the distan
e of any one li
ense from blo
k j, holding the lo
ations of the other

li
enses �xed.
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The algorithm pro
eeds as follows.

1. Start with the initial assignment {J̃ ′
f0}f∈F = {J̃f0}f∈F .

2. Let F0 be the set of �rms for whi
h J̃ ′
f0 6= {}. Let F−0 = F\F0.

3. Run a deferred a

eptan
e mat
hing algorithm between the set of �rms F0 and the set of

li
enses J̃1. Ea
h �rm f ranks blo
ks a

ording to a distan
e metri
 Ωfj1. Ea
h li
ense j

ranks �rms a

ording to Ωfj1. Ea
h li
ense j 
an only be mat
hed to one �rm. Ea
h �rm

has a quota given by Qf1 = |J̃f1|.

(a) Ea
h li
ense j proposes to its highest ranked �rm.

(b) Firm f a

epts the highest ranked Qf1 li
enses from those that propose to it. If fewer

than Qf1 li
enses propose to it it a

epts all of them. Li
enses that are not a

epted

are reje
ted.

(
) Reje
ted li
enses propose to their se
ond highest ranked �rm.

(d) Firm f a

epts the highest ranked Qf1 li
enses from those that propose to it and those

that it has already a

epted. Li
enses that are not a

epted are reje
ted (in
luding

those previously a

epted).

(e) Repeat until all li
enses are either a

epted by some �rm or have been reje
ted by all

�rms.

(f) For ea
h �rm f ∈ F0, the set of li
enses that were a

epted is then J̃ ′
f1.

4. Denote the li
enses reje
ted at year 1 by J̃R
1 .

5. Take the �rm f ∈ F−0 with the largest quota, Qf1. Assign �rm f a random li
ense j ∈ J̃R
1 .

Compute Ωfj1 for the remaining li
enses given this assignment.

6. Assign �rm f its Qf1−1 top ranked li
enses. The set of li
enses assigned in then J̃ ′
f1. Repeat

steps 5 and 6 for all other �rms f ∈ F−0 in order of quota size.

7. Repeat for ea
h year.

The algorithm generates a li
ense assignment that holds �xed the number of blo
ks assigned to

ea
h �rm ea
h year and the length that ea
h li
ense was a
tive. As re
orded in Table 9, the average

number of nearby own-�rm blo
ks is higher and the average number of nearby other-�rm blo
ks

is lower under the 
lustered li
ense assignment. I do not 
laim that this assignment is in any way

�optimal�, but this algorithm provides a method for systemati
ally assigning blo
ks to �rms in a

way that in
reases the average number of same-�rm neighbors.
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G Additional Tables and Figures

Table A4: Regressions of Exploration Probability on Equity Holders' Nearby Li
enses

Exploration Well

BlocksOwnfjt 2.467*** 2.479*** 2.505*** 2.401***

(.875) (.858) (.851) (.868)

BlocksOpEquityfjt -.514 . . -1.026

(1.277) . . (1.304)

BlocksEquityOpfjt . 1.351 . 1.220

. (.824) . (.816)

BlocksEquityEquityfjt . . .846 .902

. . (.617) (.623)

N 80562 80562 80562 80562

Firm-Blo
k, and Month FE Yes Yes Yes Yes

Coe�
ients S
aled by 103 Yes Yes Yes Yes

Notes: Ea
h 
olumn re
ords OLS estimates of the 
oe�
ients from a regression of Explorefjt on 
ounts on of

nearby li
enses (1st and 2nd degree neighbors). BlocksOpEquityfjt is the number of blo
ks nearby blo
k j at

month t on whi
h �rm f , the operator of blo
k j, is an equity holder but not an operator. BlocksEquityOpfjt is

the 
ount of blo
ks nearby blo
k j at date t for whi
h one of the non-operator �rms with equity on blo
k j is the

operator. BlocksEquityEquityfjt is the 
ount of blo
ks nearby blo
k j at date t for whi
h one of the non-operator

�rms with equity on blo
k j is a non-operator equity holder. Regressions also in
lude 
ontrols for past well results

as in equation 6 Standard errors 
lustered at the �rm-blo
k level. *** indi
ates signi�
an
e at the 99% level. **

indi
ates signi�
an
e at the 95% level. * indi
ates signi�
an
e at the 90% level.

Table A5: Blo
k Level Su

ess Rates Over Time

Dependent Variable: Well Su

ess

Well Sequen
e Number .025*** -.001 .003

(.002) (.003) (.003)

Year -.005*** .005** .

(.001) (.002) .

N 2105 2105 2105

Blo
k FE No Yes Yes

Notes: Sample in
ludes all exploration wells drilled before 1991 on the region north of 55◦N and east of 2◦W . Left

hand side variable is an indi
ator for whether the well was su

essful. Well sequen
e number re
ords the order in

whi
h wells were drilled on a blo
k. The �rst well on blo
k j has well sequen
e number 1, the se
ond well has well

sequen
e number 2, et
. *** indi
ates signi�
an
e at the 99% level. ** indi
ates signi�
an
e at the 95% level. *

indi
ates signi�
an
e at the 90% level.
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Table A6: Ratio of Response to Nearby Wells to Response to Same-Blo
k Wells

Su

essful Wells Unsu

essful Wells

Years Ratio SE Ratio SE

1966-1980 0.160 0.118 0.090 0.030

1971-1985 0.103 0.066 0.048 0.036

1976-1990 0.124 0.057 0.078 0.045

1981-1995 0.090 0.067 0.082 0.040

1986-2000 0.131 0.168 0.049 0.029

Notes: Table reports the ratio of the estimated marginal e�e
t of past wells on nearby blo
ks (1-3 blo
ks away) to

past wells on the same blo
k on Explorefjt from the spe
i�
ation given by equation 6 where gdo(·) is quadrati
 in
ea
h of the arguments. Marginal e�e
t is 
omputed for the �rst well of ea
h type. Sample in
ludes blo
k-months in

the relevant region up for the time period indi
ated in the �rst 
olumn. An observation, (f, j, t) is in the sample if

�rm f had drilling rights on blo
k j in month t, and blo
k j had not yet been developed. I drop observations from

highly explored regions where the number of nearby own wells (those on 1st and 2nd degree neighboring blo
ks) is

above the 95th per
entile of the distribution in the data. Robust standard errors are reported.

Figure A1: Top 25 Firms
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Notes: Figure plots the number of blo
k-month pairs for 1964-1990 li
ensed to ea
h of the top 25 �rms, and the set

of all other �rms.
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Figure A2: Gaussian Pro
ess Draws
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Notes: Figure plots two draws (solid lines) from a logisti
 Gaussian pro
ess with parameters µ = 0, ω = 5, and
ρ = 5 on a one-dimensional spa
e. The dashed line 
orresponds to the prior mean.

Figure A3: Gaussian Pro
ess Learning
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Notes: The x-axis of both panels represents the one dimensional spa
e [0, 1] on whi
h the Gaussian pro
ess is

de�ned. The dashed yellow line in the left panel plots the expe
ted value of ρ(X) for X ∈ [0, 1] under prior beliefs
represented by a logisti
 Gaussian pro
ess de�ned a

ording to equations 1 - 2 with µ(X) = 1 and ω = 5. The solid
blue line in the left panel represents the posterior expe
tation of ρ(X) after observing a su

essful well at X = 60
and an unsu

essful well at X = 30 when ℓ = 15. The dotted red line represntes the posterior expe
tation when

ℓ = 5. The right panel plots the standard deviation of ρ(X) under the same prior (red dashed line) and posterior

(solid blue line) beliefs.
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Figure A4: E�e
t of Well Age on Exploration
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Notes: Figure plots OLS estimates of 
oe�
ients from a spe
i�
ation 6 with additional 
ontrols for the number

of past su

essful other-�rm wells 1-3 blo
ks away and more than T months old (SucT ) and the number of su
h

wells more than T − 6 months old (SucT−6). Ea
h point is the 
oe�
ient on SucT for a di�erent regression, where

the de�nition of T is given by the x-axis. For example, the �rst point plots the e�e
t of in
reasing the number of

su

essful other �rm wells more than 1 year old, holding �xed the total number of past su

essful wells and the

number of past su

essful wells more than 6 months old. It 
an therefore be interpreted as the e�e
t of moving a

well drilled 6-12 months ago ba
k in time so it is more than 12 months old. Solid lines indi
ate a 95% 
on�den
e

interval 
omputed using robust standard errors. Verti
al line indi
ates 5 year expiry date for well 
on�dentiality.

Figure A5: Distribution of Months to First Exploration
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Notes: Ea
h panel plots the distribution of time to �rst exploration a
ross blo
ks. The left panel re
ords this

distribution for blo
ks with a 72 month initial drilling deadline, and the right panel re
ords this distribution for

blo
ks with a 48 month initial drilling deadline, with the deadlines indi
ated by verti
al lines. The sample in
ludes

all blo
ks on the the region north of 55◦N and east of 2◦W �rst explored before 1990.
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Figure A6: Distribution of Months to First Exploration by Distribution of Nearby Li
enses
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Notes: Figure plots the distribution of time to �rst exploration a
ross blo
ks with 72 month drilling deadlines. I sort

�rm-blo
ks into quartiles a

ording to the share of nearby li
enses operated by the same �rm at the date the drilling

li
ense was issued. I plot the distribution of time to �rst exploration for the top quartile - those blo
k-li
enses where

more than 91% of nearby blo
ks are operated by the other �rms - and the bottom quartile - those blo
k-li
enses

where less than 70% of nearby blo
ks are operated by other �rms. The sample in
ludes all blo
ks with 72 motnh

drilling deadlines on the the region north of 55◦N and east of 2◦W �rst explored before 1990. Time to drill is

residualized against a 
ubi
 polynomial in the total number of nearby blo
ks li
ensed.
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Figure A7: In
entive to Delay Exploration by One Year
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Notes: Figure re
ords the net gain from delaying exploration by 12 months for di�erent li
ense arrangements and

levels of α. Computation of net gain is from 2000 simulations, as des
ribed in the text.
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Figure A8: Maps of Early Exploration
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Notes: Ea
h map plots the lo
ation of exploration wells drilled that year. Red points are unsu

essful wells and

green points are su

essful wells.
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