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Abstrat

Information spillovers between �rms an redue the inentive to invest in R&D if property

rights do not prevent �rms from free riding on ompetitors' innovations. Conversely, strong

property rights over innovations an impede umulative researh and lead to ine�ient du-

pliation of e�ort. These e�ets are partiularly aute in natural resoure exploration, where

disoveries are spatially orrelated and property rights over neighboring regions are alloated

to ompeting �rms. I use data from o�shore oil exploration in the UK to quantify the ef-

fets of information externalities on the speed and e�ieny of exploration by estimating a

dynami strutural model of the �rm's exploration problem. Firms drill exploration wells

to learn about the spatial distribution of oil and fae a trade-o� between drilling now and

delaying exploration to learn from other �rms' wells. I show that removing the inentive to

free ride brings exploration forward by about 1 year and inreases industry surplus by 31%.

Allowing perfet information �ow between �rms raises industry surplus by a further 38%.

Counterfatual poliy simulations highlight the trade o� between disouraging free riding and

enouraging umulative researh - stronger property rights over exploration well data inrease

the rate of exploration, while weaker property rights inrease the e�ieny and speed of learn-

ing but redue the rate of exploration. Spatial lustering of eah �rm's drilling lienses both

redues the inentive to free ride and inreases the speed of learning.
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1 Introdution

The inentive for a �rm to invest in researh and development depends on the extent to whih it

an bene�t from the investments of its ompetitors. If the knowledge generated by R&D, suh

as new tehnologies, the results of experiments, or the disovery of mineral deposits, is publily

observable, �rms may have an inentive to free ride on their ompetitors' innovations, for example

by introduing similar produts or mining in loations near their rivals' disoveries. When eah �rm

would rather wait to observe the results of other �rms' researh than invest in R&D themselves, the

equilibrium rate of innovation an fall below the soially optimal level (Bolton and Harris, 1999).

On the other hand if information �ow between �rms is limited, for example by property rights on

existing innovations, the progress of researh may be slowed beause of ine�ient dupliation and

the inability of researhers to build on eah other's disoveries (Williams, 2013).

The growth of knowledge and the generation of new ideas are the most important drivers of

eonomi growth (Romer, 1990; Jones, 2002), and ine�ienies in the rate of innovation have

potentially signi�ant eonomi e�ets. Poliy that de�nes property rights over innovations plays

an important role in ontrolling the e�ets of information externalities and balaning the trade

o� between disouraging free riding and enouraging umulative researh. For example, patent

law assigns property rights over innovations so that �rms who pro�t from an innovation must

ompensate the inventor for their researh investment. Broader patents minimize the potential

for free riding but inrease the ost of researh that builds on existing patents, and may therefore

diret researh investment away from soially e�ient projets (Sothmer, 1991).

In this paper, I quantify the e�ets of information externalities on R&D in the ontext of oil

exploration. Several features of this industry make it an ideal setting for studying the general

problem of information spillovers and the design of optimal property rights regulation. When

an oil �rm drills an exploration well it generates knowledge about the presene or absene of

resoures in a partiular loation. Exploration wells an therefore be thought of as experiments

with observable outomes loated at points in a geographi spae. Sine oil deposits are spatially

orrelated, the result of exploration in one loation generates information about the likelihood of

�nding oil in nearby, unexplored loations. The spatial nature of researh in this industry means

that the extent to whih di�erent experiments are more or less losely related is well de�ned.

Researh is umulative in the sense that the �ndings from exploration wells diret the loation of

future wells and the deision to develop �elds and extrat oil.

Sine multiple �rms operate in the same region, the results of rival �rms' wells provide information

that an determine the path of a �rm's exploration. If �rms an see the results of eah other's

exploration ativity, then there is an inentive to free ride and delay investment in exploration

until another �rm has made disoveries that an diret subsequent drilling. However, if the results

of exploration are on�dential then �rms are likely to engage in wasteful exploration of regions that
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are known by other �rms to be unprodutive.

1

I use data overing the history of o�shore drilling

in the UK between 1964 and 1990 to quantify these ine�ienies and the extent to whih they an

be mitigated by ounterfatual property rights poliies. The magnitude of these e�ets depends

on the spatial orrelation of well outomes, the extent to whih �rms an observe the results of

eah others' wells, and the spatial arrangement of drilling lienses assigned to di�erent �rms.

I start by measuring the spatial orrelation of well outomes. I �t a logisti Gaussian proess

model to data on the loations and outomes of all exploration wells drilled before 1990. This

model allows binary outomes - wells are either suessful or unsuessful - to be orrelated aross

spae. The estimated Gaussian proess an be used as a Bayesian prior that embeds spatial

learning. When a suessful or unsuessful well is drilled, the implied posterior beliefs about

the probability of �nding oil are updated at all other loations, with the pereived probability

at nearby loations updating more than at distant loations. The updating rule orresponds

to a geostatistial tehnique for interpolating over spae that is widely used in natural resoure

exploration.

The estimated spatial orrelation indiates that the results of exploration wells should have a

signi�ant e�et on beliefs about the probability of well suess at distanes of up to 50 km. To test

whether �rm behavior is onsistent with this spatial orrelation, I regress �rm drilling deisions on

past well results. I �nd that �rms' probability of exploration at a loation is signi�antly inreasing

in the number of suessful past wells and signi�antly dereasing in the number of unsuessful

past wells. The response delines in distane in line with the measured spatial orrelation. Firms'

response to the results of their own past wells is 2 to 5 times as as large as their response to other

�rms' wells, suggesting imperfet information �ow between �rms.

Next, I measure how exploration probability varies with the spatial distribution of property rights.

Drilling lienses are issued to �rms on 22x18 km bloks. I �nd that the monthly probability of

exploration on a blok inreases by 0.8 perentage points when the number of nearby bloks lienses

to the same �rm is doubled and dereases by 0.4 perentage points when the number of nearby

bloks liensed to other �rms is doubled. These e�ets are statistially and eonomially signi�ant

and onsistent with the presene of a free riding inentive - �rms are less likely to explore where

there is a greater potential to learn from other �rms' exploration.

Together, these desriptive �ndings suggest that information spillovers over spae and between

�rms play an important role in �rms' exploration deisions. To measure the e�et of these exter-

nalities on equilibrium exploration rates and industry surplus I inorporate the model of spatial

beliefs into a strutural model of the �rm's exploration problem. Firms fae a dynami disrete

1

This trade-o� between free riding and ine�ient exploration has been identi�ed as important for poliy making

in the industry literature. For example, in their survey of UK oil and gas regulation, Rowland and Hann (1987, p.

13) note that �if it is not possible to exlude other ompanies from the results of an exploration well... ompanies

will wait for other ompanies' drilling results and exploration will be deferred,� but if �information is treated highly

on�dentially... an unregulated market would be likely to generate repetitious exploration ativity.�
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hoie problem in whih, eah period, they an hoose to drill exploration wells on the set of bloks

over whih they have property rights. At the end of eah period �rms observe the results of their

exploration wells, observe the results of other �rm's wells with some probability, α ∈ [0, 1], and

update their beliefs about the spatial distribution of oil.

The model's asymmetri information struture ompliates the �rm's problem. Firms observe

di�erent sets of well outomes, and in order to foreast other �rms' drilling behavior eah �rm needs

to form beliefs about the outomes of unobserved wells and about other �rms' beliefs. To make

estimation of the model and omputation of equilibria feasible I adopt the simplifying assumption

that �rms believe bloks held by other �rms are explored at a �xed rate whih is equal to the true

average probability of exploration in equilibrium. This removes ertain strategi inentives - for

example the inentive to signal to other �rms through drilling - but leaves in tat the asymmetri

information struture and the inentives I am interested in measuring. In partiular, �rms fae a

trade o� between drilling now and delaying exploration to learn from the results of other �rms'

wells that depends on the spatial arrangement of drilling lienses and the probability of observing

the results of other �rms' wells.

The estimated value of the spillover parameter, α, indiates that �rms observe the results of

other �rms' wells with 37% probability. The presene of substantial but imperfet information

spillovers means that equilibrium exploration behavior ould be a�eted by both free riding - sine

�rms observe eah other's well results and have an inentive to delay exploration - and ine�ient

exploration - sine spillovers are imperfet, eah �rm has less information on whih to base its

drilling deisions than the set of all �rms ombined.

I perform ounterfatual simulations to quantify these two e�ets. First, I remove the inentive for

�rms to free ride and simulate ounterfatual exploration and development behavior. I �nd that

exploration and development is brought forward in time by about one year, inreasing the number

of exploration wells drilled between 1964 and 1990 by 7.4%. Removing free riding inreases the

1964 present disounted value of 1964-1990 industry surplus by 31%. Next, I allow for perfet

information sharing between �rms, holding �rms' inentive to free ride �xed at the baseline level.

The number of exploration wells inreases by 12.6% and the e�ieny of exploration inreases

substantially - sine �rms an perfetly observe eah other's well results, umulative learning

is faster. The number of exploration wells per blok developed falls and exploration wells are

more onentrated on produtive bloks. Industry surplus is 70% higher than the baseline in this

information sharing ounterfatual.

I next ask to what extent these ine�ienies ould be mitigated through alternative property rights.

Under the urrent regulations in the UK, data from exploration wells is property of the �rm for

�ve years before being made publi. Weakening property rights by shortening the on�dentiality

window will inrease the �ow of information between �rms, and is likely to inrease the e�ieny

of exploration but may also inrease the inentive to free ride. On the other hand, strengthening
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property rights by extending the on�dentiality window will derease the inentive to free ride but

slow umulative learning and redue the e�ieny of exploration.

I simulate equilibrium behavior under di�erent on�dentiality window lengths and �nd that in-

dustry surplus is inreased under both longer and shorter on�dentiality windows. When the

on�dentiality window is inreased to 10 years, the inrease in the exploration rate dominates the

redution in exploration e�ieny and industry surplus inreases by 11%. When the on�dentiality

window is redued to 0, the inreased the speed of learning and e�ieny of exploration overomes

the free riding e�et, and industry surplus inreases by 57%. Although a marginal inrease in

window length would inrease surplus, the free riding e�et is su�iently small suh that it is

optimal for well data to be released immediately.

Finally, I show how the spatial distribution of property rights a�ets exploration inentives. When

eah �rm's drilling lienses neighbor fewer other-�rm lienses the inentive for �rms to delay

exploration is redued and the value to �rms of the information generated by their own wells

is greater. I onstrut a ounterfatual spatial assignment of property rights that lusters eah

�rm's lienses together, holding the total number of bloks assigned to eah �rm �xed. Under

the lustered assignment the number of exploration wells drilled inreases by 8% and the number

of exploration wells per developed blok falls from 22.45 to 18.9. I do not laim that this is the

optimal arrangement of property rights, so these �gures represent a lower bound on the possible

e�et of spatial reorganization.

The results highlight the tension between disouraging free riding and enouraging e�ient umu-

lative researh in the design of property rights over innovations. In this setting, there are ranges of

the poliy spae in whih strengthening property rights leads to a marginal improvement in surplus

and ranges where weakening property rights is optimal. This trade o� applies in other settings,

for example in de�ning the breadth of patents, regulations about the release of data from linial

trials, and the property rights onditions attahed to publi funding of researh. The quantitative

results on the spatial assignment of lienses an be thought of as an example of deentralized

researh where a prinipal (here, the government) assigns researh projets to independent agents

(here, �rms). The results suggest that there are signi�ant gains from assignments of projets

that minimize the potential for information spillovers aross agents. This �nding ould be applied

to, for example, publily funded researh e�orts that oordinate the ativity of many independent

sientists.

This paper ontributes to the large literature on �rms' inentives to ondut R&D (Arrow, 1971;

Dasgupta and Stiglitz, 1980; Spene, 1984). In partiular, I build on reent papers that ask whether

and to what extent intelletual property rights hinder subsequent innovation (Murray and Stern,

2007; Williams, 2013; Murray et al., 2016). Both Williams (2013) and Murray et al. (2016) address

this issue in a similar spirit to this paper, by fousing on spei� settings where the set of possible

researh projets and umulative nature of researh is well de�ned, rather than looking at researh
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in general and using metris suh as patent itations to measure umulative innovation (see for

example, Ja�e, Trajtenberg, and Henderson, 1993). I ontribute to this literature by quantifying

the trade o� between this e�et on umulative researh and the free riding inentive that has

been disussed in the theory literature (Hendriks and Kovenok, 1989; Bolton and Farrell, 1990;

Bolton and Harris, 1999). This paper di�ers from muh of the innovation literature by using

a strutural model of the �rm's sequential researh (here, exploration) problem to quantify the

e�ets of information externalities and alternative property rights poliies.

The results in this paper also ontribute to an existing empirial literature on the e�et of infor-

mation externalities in oil exploration. Muh of this literature, summarized by Porter (1995) and

Haile, Hendriks, and Porter (2010), has foused on bidding inentives in liense autions using

data from the Gulf of Mexio. Less attention has been given to the post-liensing exploration

inentives indued by di�erent property rights poliies. Notable exeptions inlude Hendriks

and Porter (1996), who show that the probability of exploration on trats in the Gulf of Mexio

inreases sharply when �rms drilling lienses are lose to expiry, and Lin (2009), who �nds no

evidene that �rms are more likely to drill exploration wells after neighboring trats are explored.

The desriptive results I present are losest to those of Levitt (2016), who shows how exploration

deisions respond to past well outomes using data from Alberta and �nds evidene of limited

information spillovers aross �rms operating within the same region. I show how these spillovers

vary with distane and the spatial distribution of drilling lienses.

Existing papers on oil and gas exploration that estimate strutural models of the �rm's exploration

problem inlude Levitt (2009), Lin (2013), Agerton (2018), and Stek (2018). The model I estimate

in this paper di�ers from existing work by inorporating both Bayesian learning with spatially

orrelated beliefs and information leakage aross �rms. This allows me to simulate exploration

paths under ounterfatual poliies whih hange the dependene of eah �rm's beliefs on the

results of other �rms' exploration wells, for example under di�erent spatial assignments of bloks

to �rms. Stek (2018) uses a losely related dynami model of the �rm's deision of when to

drill in the presene of soial learning about the optimal inputs to hydrauli fraturing. Stek's

�nding of a signi�ant free riding e�et when there is unertainty about the optimal tehnology is

omplementary to the �ndings of this paper, whih measures the free riding e�et in the presene

of unertainty about the loation of oil deposits.

Other related papers in the eonomis of oil and gas exploration inlude Kellogg (2011), who pro-

vides evidene of learning about drilling tehnology, showing that pairs of oil prodution ompanies

and drilling ontrators develop relationship-spei� knowledge, and Covert (2015), who investi-

gates �rm learning about the optimal drilling tehnology at di�erent loations in North Dakota's

Bakken Shale. Covert's methodology is partiularly lose to mine, as he also uses a Gaussian

proess to model �rms' beliefs about the e�etiveness of di�erent drilling tehnologies in di�erent

loations. The results I present in Setion 4, whih show that �rms are more likely to drill explo-
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ration wells in loations where the outome is more unertain, ontrast with the �ndings of Covert

(2015), who shows that oil �rms do not atively experiment with fraking tehnology when the

optimal hoie of inputs in unertain.

Finally, the proedure used to estimate the strutural model of the �rm's exploration problem

builds on the literature on estimation of dynami games using onditional hoie probability

methods, following Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994), and Ba-

jari, Benkard, and Levin (2007). In partiular, I extend these methods to a setting in whih the

eonometriian is uninformed about eah agent's information set. The proedure I propose to deal

with this latent state variable is less generally appliable but less omputationally intensive than

the Expetation-Maximization proedure proposed by Aridiaono and Miller (2011).

The remainder of this paper proeeds as follows. Setion 2 provides an overview of the setting

and a summary of the data. Setion 3 presents a model of spatial beliefs about the loation of

oil deposits. Setion 4 presents redued form results that provide evidene of spatial learning,

information spillovers, and free riding. In Setion 5 I develop a dynami strutural model of

optimal exploration with information spillovers, and in Setion 6 I disuss estimation of the model.

Results and poliy ounterfatuals are presented in Setions 7 and 8. Setion 9 onludes.

2 UK Oil Exploration: Setting and Data

I use data overing the history of oil drilling in the UK Continental Shelf (UKCS) from 1964 to

1990. Oil exploration and prodution on the UKCS is arried out by private ompanies who hold

drilling lienses issued by the government. The �rst suh lienses were issued in 1964, and the

�rst suessful (oil yielding) well was drilled in 1969. Disoveries of the large Forties and Brent oil

�elds followed in 1970 and 1971. Drilling ativity took o� after the oil prie shok of 1973, and by

the 1980s the North Sea was an important produer of oil and gas. I fous on the region of the

UKCS north of 55◦N and east of 2◦W , mapped in Figure 1, whih is bordered on the north and

east by the Norwegian and Faroese eonomi zones. This region ontains the main oil produing

areas of the North Sea and has few natural gas �elds, whih are mostly south of 55◦N .

2.1 Tehnology

O�shore oil prodution an be divided into two phases of investment and two distint tehnologies.

First, oil reservoirs must be loated through the drilling of exploration wells. These wells are

typially drilled from mobile rigs or drill ships and generate information about the geology under

the seabed at a partiular point, inluding the presene or absene of oil in that loation. It is

important to note that the results of a single exploration well provide limited information about
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the size of an oil deposit, and many exploration wells must be drilled to estimate the volume of a

reservoir. When a su�iently large oil �eld has been loated, the �eld is developed. This seond

phase of investment involves the onstrution of a prodution platform, a large stati faility

typially anhored to the sea bed by stilts or onrete olumns with the apaity to extrat large

volumes of oil.

I observe the oordinates and operating �rm of every exploration well drilled and development

platform onstruted from 1964 to 1990. The left panel of Figure 1 maps exploration wells in the

relevant region. For eah exploration well, I observe a binary outome - whether or not it was

suessful. In industry terms, a suessful exploration well is one that enounters an �oil olumn�,

and an unsuessful well is a �dry hole�. In reality, although exploration wells yield more omplex

geologial data, the suess rate of wells based on a binary wet/dry lassi�ation is an important

statisti in determining whether to develop, ontinue exploring, or abandon a region. See for

example Lerhe and MaKay (1995) and Bikel and Smith (2006) who present models of optimal

sequential exploration deisions based on binary signals. I observe eah development platform's

monthly oil and gas prodution in m3
up to the year 2000.

2.2 Regulation

The UKCS is divided into bloks measuring 12x10 nautial miles (approx. 22x18 km). These bloks

are indiated by the grid squares on the maps in Figure 1. The UK government holds liensing

rounds at irregular intervals (one every 1 to 2 years), during whih lienses that grant drilling

rights over bloks are issued to oil and gas ompanies. Unlike in many ountries, drilling rights are

not alloated by autions. Instead, the government announes a set of bloks that are available,

and �rms submit appliations whih onsist of a list of bloks, a portfolio of researh on the geology

and potential produtivity of the areas requested, a proposed drilling program, and evidene

of tehnial and �nanial apaity. Appliations for eah blok are evaluated by government

geosientists. Although a formal soring rubri alloates points for a large number of assessment

riteria inluding �nanial ompeteny, trak reord, use of new tehnology, and the extent and

feasibility of the proposed drilling program, the assessment proess allows government sientists

and evaluators to exerise disretion in determining the alloation of bloks to �rms. Although the

evaluation riteria have hanged over time, the disretionary system itself has remained relatively

unhanged sine 1964.

2

Liense holders pay an annual per-blok fee, and are subjet to 12.5% royalty payments on the

2

A few bloks were o�ered at aution in the early 1970s, but this experiment was determined to be unsuessful.

Aording to a regulatory manager at the Oil and Gas Authority (OGA), the result of the autions was that �the

Treasury got a whole bunh of money but nobody drilled any wells.� By ontrast, the disretionary system has

�stood the test of time�. The belief among UK regulators is that autions divert money away from �rms' drilling

budgets.
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gross value of all oil extrated. Lienses have an initial period of 4 or 6 years during whih �rms

are required to arry out a minimum work requirement. I refer to the end of this period as the

liense's work date. Minimum work requirements are typially light, even in highly ative areas.

During the 1970s �3 exploration wells per... 7 bloks beame the norm� in the main �ontested�

areas (Kemp, 2012a p. 58). Lienses in less ontested �frontier� areas often did not require any

drilling, only seismi analysis.

Figure 1: Wells and Liense Bloks

Notes: Grid squares are liense bloks. The left panel plots the loation of all exploration wells drilled from 1964

to 1990. The right panel reords liense holders for eah blok in January 1975. Note that if multiple �rms hold

lienses on separate setions of a blok, only one of those �rms (hosen at random) is represented on this map.

I observe the history of liense alloations for all bloks. In assigning bloks to �rms I make

two important simplifying assumptions. First, I fous only on the �operator� �rm for eah blok.

Lienses are often issued to onsortia of �rms, eah of whih hold some share of equity on the blok.

The operator, typially the largest equity holder, is given responsibility for day to day operations

and deision making. Non-operator equity holders are typially smaller oil ompanies that do

not operate any bloks themselves, and are often banks or other �nanial institutions. Major oil

ompanies do enter joint ventures, with one of the ompanies ating as operator, but these are

typially long lasting allianes rather than blok by blok deisions.

3

In the main analysis below,

I will be ignoring seondary equity holders and treating the operating �rm as the sole deision

3

For example, 97% of bloks operated by Shell between 1964 and 1990 were atually liensed to Shell and Esso

in a 50-50 split. Esso was at some point the operator of 16 unique bloks, ompared to more than 740 bloks that

were joint ventures with Shell. Only 8.6% of blok-months operated by one of the top 5 �rms (who together operate

more than 50% of all blok-months) have another top 5 �rms as a seondary equity holder. This falls to 2.8%

among the top 4 �rms.
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maker, with all seondary equity holders being passive investors.

4

Seond, lienses are sometimes

issued over parts of bloks, splitting the original bloks into smaller areas that an be held by

di�erent �rms. All of the analysis below will take plae at the blok level. Therefore, if two �rms

have drilling rights on the two halves of blok j, I will reord them both as having independent

drilling rights on blok j. In pratie, 88.2% of liensed blok-months have only one liense holder.

11.5% of blok-months have two liense holders and a negligible fration have more than two.

Subjet to these simpli�ations, the right panel of Figure 1 maps the loations of liensed bloks

operated by the 5 largest �rms in January 1975. There are 73 unique operators between 1964 and

1990, but 90% of blok-months are operated by one of the top 25 �rms, and over 50% are operated

by one of the top 5. Appendix Figure A1 illustrates the distribution of lienses at the blok-month

level aross �rms.

A �nal set of regulations de�ne property rights over the information generated by wells. The

prodution of development platforms is reported to the government and published on a monthly

basis. Data from exploration wells, inluding whether or not the well was suessful, is property of

the �rm for the �rst �ve years after a well is drilled. After this on�dentiality period, well data is

reported to the government and made publily available. In reality there is likely to be information

�ow between �rms during this on�dentiality period for a number of reasons: �rms an exhange

or sell well data, information an leak through shared employees, ontrators, or investors, and the

ativities assoiated with a suessful exploration well might be visibly di�erent than the ativities

assoiated with an unsuessful exploration well. The extent to whih information �ows between

�rms during this on�dentiality period is an objet of interest in the empirial analysis that follows.

2.3 Data

Table 1 ontains summary statistis desribing the data. Observations are at the �rm-blok level.

That is, if a partiular blok is liensed multiple times to di�erent �rms, it appears in Table 1 as

many times as it is liensed. There are a total of 628 bloks ever liensed and 1470 �rm-blok

pairs between 1964 and 1990. I fous on two ations - the drilling of exploration wells and the

development of bloks. I onsider the development of a blok as a one o� deision to invest in a

development platform. I reord a blok as being developed on the drill date of the �rst development

well. In reality, this would ome several months after onstrution of the development platform

begins. I onsider development to be a terminal ation. One a blok is developed, I drop it from

the data.

4

Appendix Table A4 presents regressions of drilling probability on the distribution of surrounding lienses that

suggest this is a reasonable assumption. The number of nearby lienses operated by the same �rm as blok j has

a onsistent, statistially signi�ant positive e�et on the probability of exploration on blok j. The number of

nearby lienses with the same seondary equity holders as blok j, on whih the operator of blok j is a seondary

equity holder, and on whih one of the seondary equity holders on blok j is the operator, all have no statistially

signi�ant e�et on drilling probability.
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Table 1: Summary Statistis: Bloks & Wells

Firm-Bloks All Explored Exp. &

Devel-

oped

Exp. &

Not

Dev.

Not

Exp.

N 1470 721 160 561 749

Share Explored .490 1.000 1.000 1.000 0.000

Share Developed .120 .222 1.000 0.000 .021

First Exp. After Work Date . .227 .280 .215 .

Own Share of Nearby Bloks:

Mean .199 .178 .181 .177 .219

SD .217 .199 .206 .197 .231

Exploration Wells per Blok 2.002 4.082 10.138 2.355 0.000

Share Suessful .199 .199 .444 .129 .

Notes: Table reords statistis on all liense-blok pairs ative between 1964 and 1990. In partiular, if a blok

is liensed to multiple �rms it appears multiple times in this Table. Eah olumn reords statistis on subsets of

liense-bloks de�ned aording to whether they are ever explored or developed. Own share of nearby bloks is

de�ned as the share of liense-bloks that are at most third degree neighbors that are liensed to the same �rm.

The seond olumn of Table 1 reords statistis on the set of �rm-bloks that are ever explored - that

is, those �rm-bloks where at least one exploration well was drilled - and the third olumn reords

statistis for those �rm-bloks that are ever developed. 49% of �rm-bloks are ever explored,

and among these, 22% are developed. Note that the information generated by a single well is

insu�ient to establish the size of an oil reservoir, and �rms must drill many exploration wells on

a blok before making the deision to develop. On average, over 10 exploration wells are drilled

before a blok is developed, and 2.3 exploration wells are drilled on bloks that are explored but

not developed. The bottom row of Table 1 reords the suess rate of exploration wells aross the

di�erent types of �rm-blok. 44% of exploration wells are suessful on bloks that are eventually

developed, while only 13% of wells are suessful on bloks that are never developed. The suess

rate of exploration wells on a blok is orrelated withe the size of any underlying oil reservoir.

Thus, if an initial exploration well yields oil, but subsequent wells do not, the blok is likely to

only hold small oil deposits and is unlikely to be developed. Figure 2 illustrates the distribution of

estimated reserves in log millions of barrels over all developed bloks.

5

The distribution is plotted

separately for four quartiles of the exploration suess rate. There is a positive, approximately

linear relationship between exploration suess rate prior to development and log estimated reserves

Note that the work requirement poliy leaves signi�ant sope for �rms to delay exploration. The

work requirement typially demands at most one exploration well be drilled per blok, but it is

lear that many more than one exploration well must be drilled before a blok is developed. While

5

The methodology used to estimate reserves is outlined in Appendix C.
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Figure 2: Estimated Reserves
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Notes: Figure reords the distribution of estimated oil reserve volume, measured in log millions of barrels, aross

all developed bloks in the relevant area. The box plot markers reord the lower adjaent value, 25th perentile,

median, 75th perentile, and upper adjaent value. The distribution is plotted separately for four subsets of bloks

de�ned by the quartiles of the pre-development exploration well suess rate. A regression of log estimated reserves

on suess rate has a slope oe�ient of 5.990 with a standard error of 0.964.

the work requirement poliy is therefore likely to hasten the drilling of the �rst exploration well on

a blok, there are no requirements on the speed with whih the subsequent program of exploration

must take plae. The fourth row of Table 1 indiates that almost a quarter of bloks that are ever

explored are �rst explored after the work requirement date. These �ndings orroborate laims from

industry literature that indiate the terms of drilling lienses issued in the UK are onsiderably

more generous than those issued, for example, in the Gulf of Mexio, and provide onsiderable

room for �rms to �stokpile� unexplored and undeveloped areage for many years (Gordon, 2015).

3 A Model of Spatially Correlated Beliefs

The e�et of information externalities on �rms' exploration deisions depends on the spatial ar-

rangement of lienses, the extent to whih �rms an observe the results of eah other's wells, and

on the orrelation of exploration results at di�erent loations. In Appendix A I show that in a

simple two �rm, two blok model, spatial orrelation in well outomes redues the equilibrium rate

of exploration below the soial optimum. The magnitude of this free riding e�et is determined by

the extent to whih well results are orrelated over spae. In partiular, the more orrelated are

outomes on neighboring bloks, the lower the equilibrium rate of exploration.

In this setion, I measure this spatial orrelation by estimating a statistial model of the distribution

12



of oil that allows the results of exploration wells at di�erent loations to be orrelated. By �tting

the model to data on the outomes of all exploration wells drilled between 1964 and 1990, I obtain

an estimate of the extent to whih this ovariane of well outomes delines with distane. I

interpret the estimated model as desribing the true spatial orrelation of oil deposits determined

by underlying geology.

I then show how this statistial model an be used as a Bayesian prior about the distribution of oil.

If �rms know the true parameter values, then the estimated model implies a Bayesian updating

rule for �rms with rational beliefs. In partiular, �rms' posterior beliefs about the probability

of exploration well suess at a given loation are a funtion of past well outomes at nearby

loations. The true orrelation of well outomes informs the extent to whih �rms should make

inferenes over spae when updating their beliefs after observing well outomes. This model of

spatial learning allows me to ompute �rms' posterior beliefs about the loation of oil deposits

after observing di�erent sets of wells.

3.1 Statistial Model of the Distribution of Oil

I start by desribing a statistial model of the distribution of oil over spae. I model the probability

that an exploration well at a partiular loation is suessful as a ontinuous funtion over spae

drawn from a Gaussian proess. This model assumes that the loation of oil is distributed randomly

over spae but allows spatial orrelation - the outomes of exploration wells lose to eah other

are highly orrelated and the degree of orrelation delines with distane. A draw from this

proess is a ontinuous funtion that, depending on the parameters of the proess, an have many

loal maxima orresponding to separate lusters of oil �elds (see Appendix Figure A2 for a one

dimensional example). As I disuss further below, Gaussian proesses are widely used in natural

resoure exploration to model the spatial distribution of geologial features (see for example Hohn,

1999).

Formally, let ρ(X) : X → [0, 1] be a funtion that de�nes the probability of exploration well

suess at loations X ∈ X. I model ρ(X) as being drawn from a logisti Gaussian proess G(ρ)

over the spae X.

6

In partiular, for any loation X ,

ρ(X) ≡ ρ(λ(X)) =
1

1 + exp(−λ(X))
, (1)

where λ(X) is a ontinuous funtion fromX to R. Equation 1 is a logisti funtion that �squashes�

6

If well suess rates were independent aross loations j, a natural model would draw ρj ∈ [0, 1] from a beta

distribution. However, it is likely that well outomes are orrelated aross spae. Indeed, the results presented

below in Figure 6 indiate that �rms' exploration deisions on blok j respond to the results of exploration wells

on nearby bloks. There is no natural multivariate analogue of the beta distribution that allows me to speify a

ovariane between ρj and ρk for j 6= k.
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λ(X) so that ρ(X) ∈ [0, 1].7

The funtion λ(X) is drawn from a Gaussian proess with mean funtion µ(X) and ovariane

funtion κ(X,X ′). This means that for any �nite olletion of K loations {1, ..., K}, the vetor

(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a

ovariane matrix with (j, k) element κ(Xj , Xk). The prior mean funtion µ : X → R is assumed

to be smooth and the ovariane funtion κ : X × X → R must be suh that the resulting

ovariane matrix for any K loations is symmetri and positive semi-de�nite. One ovariane

funtion that satis�es these assumptions is the square exponential ovariane funtion (Rasmussen

and Williams, 2006) given by

κ(X,X ′) = ω2exp

(

− |X −X ′|2

2ℓ2

)

. (2)

The parameter ω ontrols the variane of the proess. In partiular, for any X , the marginal

distribution of λ(X) is given by λ(X) ∼ N(µ(X), ω). The parameter ℓ ontrols the ovariane

between λ(X) and λ(X ′) for X 6= X ′
. Notie that as the distane |X −X ′| between two loations

inreases, the ovariane falls at a rate proportional to ℓ. As |X −X ′| goes to 0, the orrelation

of λ(X) and λ(X ′) goes to 1, so draws from this proess are ontinuous funtions.

I estimate the parameters, (µ(X), ω, ℓ), of the Gaussian proess model using data on the binary

outomes of all well exploration wells drilled between 1964 and 1990. Let s = (s1, s2, ..., sW ) be

a vetor of length W where W is the total number of exploration wells drilled by all �rms and

sw = 1 if well s was suessful, and otherwise sw = 0. Let X = (X1, ..., XW ) be a matrix reording

the blok entroid oordinates of eah well. Then the likelihood of well outomes s onditional on

well loations X is given by:

8

L(s|X, µ, ω, ℓ) =

∫

(

W
∏

w=1

ρ(Xw)
1(sw=1)(1− ρ(Xw))

1(sw=0)

)

dG(ρ;µ, ω, ℓ) (3)

The integrand is the produt of Bernoulli likelihoods for eah well for a partiular draw of ρ, whih

enodes suess probabilities at every loation Xw. The integral is over draws of ρ with respet

to the distribution G(ρ), whih is a funtion of the parameters. Note that I assume a �at mean

funtion, µ(X) = µ(X ′) = µ.

7

If well suess rates were independent aross loations, a natural model would draw ρ(X) ∈ [0, 1] from a beta

distribution. However, it is likely that well outomes are orrelated aross spae. There is no natural multivariate

analogue of the beta distribution that allows me to speify a ovariane between ρ(X) and ρ(X ′).
8

This is a partial likelihood in the sense of Cox (1975). In Appendix B I provide a ondition on the proess that

determines well loations X under whih this is a valid likelihood funtion. See also hapter 13.8 of Wooldridge

(2002). I use the hyperparameter estimation ode provided by Rasmussen and Williams (2006) to implement the

maximum likelihood estimation. The integral in equation 3 is approximated using Laplae's method. See setion

5.5 of Rasmussen and Williams (2006) for details.
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Table 2 reords maximum likelihood estimates. The �rst olumn reords the estimated values of

the three parameters of the Gaussian proess, while the seond olumn reords implied statistis

of the distribution of ρ(X) at the estimated parameters - the expeted suess probability, the

standard deviation of suess probability, and the orrelation of suess probability between two

loations one blok (18 km) away from eah other. The parameters are identi�ed by the empirial

analogues of these statistis in the well outome data. Most importantly, the estimated parameter

ℓ aptures the true spatial orrelation of exploration well outomes.

Table 2: Oil Proess Parameters

Parameter Estimate Implied Statistis

µ -1.728 E(ρ(X)) 0.207

(0.202)

ω 1.2664 SD(ρ(X)) 0.179

(0.146)

ℓ 0.862 Corr(ρ(0), ρ(1)) 0.471

(0.102)

Notes: The �rst olumn reords parameter estimates from �tting the likelihood funtion given by equation 3 to

data on the outome of all exploration wells drilled between 1964 and 1990 on the relevant area of the North Sea.

Standard errors omputed using the Hessian of the likelihood funtion in parentheses. The seond olumn reords

the implied expeted probability of suess, the standard deviation of the prior beliefs about probability of suess,

and the orrelation of suess probability between two loations one blok (18 km) away from eah other.

3.2 Interpretation as a Bayesian Prior

The estimated parameters, (µ, ω, ℓ), an be thought of as desribing primitive geologial hara-

teristis that determine the distribution of oil deposits over spae. If these parameters are known

by �rms and the Gaussian proess model is a good approximation to the geologial proess that

generates the distribution of oil, then the estimated proess G(ρ|µ, ω, ℓ) desribes the rational

beliefs that �rms should hold about the probability of exploration well suess at eah loation

X prior to observing the outome of any wells. The parameters of this prior also determine how

beliefs are updated aording to Bayes' rule after well results are observed.

In partiular, �rms whose prior is desribed by G(ρ) update their beliefs over the entire spae X

after observing a suess or failure at a partiular loation X . Posterior beliefs at loations loser

to X will be updated more than those at more distant loations. Figure 3 illustrates how posterior

beliefs respond to well outomes at di�erent distanes under the estimated parameters. The solid

purple line illustrates the �rm's onstant prior expeted probability of suess of around 0.2.

9

The

9

The assumption of a onstant prior mean ould be relaxed to allow µ to depend on, for example, prior knowledge

of geologial features. µ represents �rms' mean beliefs in 1964, before any exploratory drilling took plae. Brennand
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dotted yellow line represents the �rm's posterior expeted probability of suess after observing

one suessful well at 0 on the x-axis. The dashed red and blue lines orrespond to posteriors after

observing two and three suessful wells at the same loation. Notie that the expeted probability

of suess inreases most at the well loation, and dereases smoothly at more distant loations.

The true spatial orrelation of well outomes, aptured by the parameter ℓ, determines the rate at

whih belief updating delines with distane. In partiular, the estimated value of ℓ implies that

�rms should update their beliefs about the probability of suess in response to well outomes on

neighboring bloks and those two bloks away, but not in response to well outomes three or more

bloks away. At these distanes, the orrelation in well outomes dies out and thus so does the

implied response of beliefs to well outomes.

10

Figure 3: Response of Beliefs to Well Outomes
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Notes: Figure depits prior and posterior expeted value of ρ(X) in a one dimensional spae for posteriors omputed

after observing one, two, and three suessful wells at X = 0. The parameters (µ, ω, ℓ) of the logisti Gaussian

proess prior are set to the estimated values from Table 2.

Formally, let w ∈ W index wells, let s(w) ∈ {0, 1} be the outome of well w, and let Xw denote

the loation of well w. If prior beliefs are given by the logisti Gaussian Proess G(ρ) then the

et al. (1998) emphasize that knowledge of subsea geology was extremely limited before exploration began. Using a

modern map of atual geologial features as inputs to the prior mean would therefore be inappropriate. In addition,

as the maps in Appendix Figure A8 indiate, exploration did not begin in a partiularly produtive area, and the

geographi fous of exploration shifted dramatially after the �rst early disoveries. For these reasons, I believe it

is not unreasonable to adopt a onstant prior mean.

10

In Appendix Figure A3 I illustrate belief updating under di�erent values of ℓ in a numerial example.
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posterior beliefs G′(ρ) after observing {(s(w), Xw)}w∈W are given by

G′(ρ) = B(G(ρ), {(s(w), Xw)}w∈W ), (4)

where B(·) is a Bayesian updating operator. Sine the signals that �rms reeive are binary, there is

no analytial expression for the posterior beliefs given the Gaussian prior and the observed signals.

In partiular, G′(ρ) is non-Gaussian. I ompute posterior distributions using the Laplae approxi-

mation tehnique of Rasmussen and Williams (2006) whih provides a Gaussian approximation to

the non-Gaussian posterior G′(ρ). I disuss the proedure used to ompute B(·) in more detail in

Appendix B.

Using the Bayesian updating rule it is possible to generate posterior beliefs for any set of observed

well realizations. Figure 4 is a map of posterior beliefs for a �rm that observed the outome

of all exploration wells drilled from 1964-1990. In the left panel, lighter regions have a higher

posterior expeted probability of suess, and orrespond to areas where more suessful wells were

drilled. Darker regions indiate lower posterior expeted probability of suess, and orrespond to

areas where more unsuessful wells were drilled. The right panel reords the posterior standard

deviation of beliefs, with darker regions indiating less unertainty. In general, the standard

deviation of posterior beliefs is lower in regions where more exploration wells have been drilled.

11

The Gaussian proess model is a parsimonious approximation to more omplex inferenes about

nearby geology made by geologists based on exploration well results. The method of spatial

interpolation between observed wells that is ahieved by omputing the Gaussian Proess posterior

is known in the geostatistis literature as Kriging (see for example standard geostatistis textbooks

suh as Hohn, 1999). Kriging is a widely applied statistial tehnique for making preditions

about the distribution of geologial features, inluding oil deposits, over spae. Standard Kriging

of a ontinuous variable orresponds exatly to Bayesian updating of a Gaussian proess with

ontinuous, normally distributed signals. The model of beliefs employed here orresponds to �trans-

Gaussian Kriging�, so alled beause of the use of a transformed Gaussian distribution (Diggle,

Tawn, and Moyeed, 1998). Whether or not we think these beliefs are a orret representation of

how oil deposits are distributed, the model of learning desribed above is representative of how

geologists (and presumably oil ompanies) think.

In addition to being representative of industry tehniques, the model of spatial beliefs is losely

linked to the literature on Gaussian proesses in mahine learning, as summarized by Rasmussen

and Williams (2006). In this literature, optimal Bayesian learning based on Gaussian proess priors

is used to onstrut algorithms for e�iently maximizing unknown funtions. In a lose analogue

to the mahine learning problem studied by, for example, Osborne et al. (2009), exploration

11

This is not neessarily the ase everywhere. In partiular, if the realized outome of a well at loation X is

unlikely given prior beliefs, posterior variane around X an inrease.
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Figure 4: Posterior Oil Well Probabilities

Notes: The left panel is a map of the posterior expeted probability of suess of a �rm with prior beliefs given by

the parameters in Table 2 that observes every well drilled between 1964 and 1990. The right panel is a map of the

posterior standard deviation of beliefs for the same �rm.

wells an be thought of as ostly evaluations of a funtion mapping geographial loations to

the presene of oil, with the �rm's problem being to loate the largest oil deposits at minimum

ost. The logisti Gaussian Proess model of beliefs is a �exible (in terms of ovariane and mean

funtion spei�ation) and omputationally tratable model of spatial updating of beliefs with

binary signals that is appliable to settings beyond oil exploration. See for example Hodgson and

Lewis (2018) on learning in onsumer searh.

3.3 Beliefs and Development Payo�s

In what follows, I adopt the additional simplifying assumption that �rms have beliefs about the

probability of suess at the blok level. In partiular, let ρj = ρ(Xj) where Xj are the oordinates

of the entroid of blok j ∈ {1, ..., J}. When an exploration well is drilled anywhere on blok j,

�rms update their beliefs as if the suess of that well is drawn with probability ρj . One way to

rationalize this assumption is to assume that the loations of exploration wells within bloks are

random.

12

The probability of suess, ρj , then has a natural interpretation as the share of blok j

that ontains oil, and the observed suess rate is an estimate of this probability whih beomes

more preise as the number of wells on the blok inreases. For example, Figure 5 illustrates a

12

In partiular, that well oordinates are drawn from a uniform distribution over the area of the blok.
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stylized example in whih wells have been drilled at random loations within two bloks. In the

left blok, the oil �eld oupies one-third of the area, and in the right blok, the oil �eld oupies

one-�fth of the area. The suess rates, indiated by the ratio of green wells to all wells, are equal

to the sizes of the oil �elds - with one third of wells suessful on the left blok and one �fth

suessful on the right blok.

Figure 5: Suess Rate and Reserve Size

ρj = 0.333 ρj = 0.2

Notes: Stylized example. Eah panel represents a blok. The points are oil wells and the shaded area is the oil

�eld. Green wells are �suessful� (that is, they enountered an oil olumn), and red wells are �unsuessful�. The

probability of exploration well suess, ρj,on eah blok orresponds to the share of that blok oupied by the oil

�eld.

Formally, I assume that the potential oil revenue yielded by blok j, πj , is drawn from a distribution

Γ(π|ρj , P ) where P is the oil prie and

∂E(πj)

∂ρj
> 0. A higher exploration suess probability ρj

orresponds to higher expeted oil revenue. Beliefs about exploration well suess G(ρ) then imply

beliefs about the potential oil revenue on blok j given by:

Γ̃j(π|G,P ) =

∫

Γ(π|ρj, P )dG(ρ). (5)

This interpretation of blok-level suess rates is supported by positive relationship between the

realized exploration suess rate and estimated oil reserves on developed bloks, illustrated by

Figure 2. Note that the assumption that probability of suess is a primitive feature of a blok and

within-blok loation hoie is random implies that the realized suess rate on a blok should be

onstant over time. This might not be true if, for example, �rms ontinue to drill near previous

suessful wells within the blok. I test this impliation in Appendix Table A5. I present the

results of regressions that show that within bloks, the suess rate is not signi�antly higher or

lower for later wells than for earlier wells. That is, the e�et of the well sequene number on suess

probability is not statistially signi�ant. This is onsistent with a model in whih within-blok

well loations are drawn at random.
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4 Desriptive Evidene

The estimated model of beliefs suggests that there is high degree of orrelation between well

outomes on neighboring bloks. This spatial orrelation is estimated from data on well outomes

at di�erent loations. In this setion, I use data on �rms' drilling deisions to test whether �rm

behavior is onsistent with the estimated model of rational beliefs.

I provide evidene that �rms respond to the results of past wells, both their own wells and those of

other �rms, in a way that is onsistent with the estimated spatial orrelation of well results. I then

use the estimated model of beliefs to quantify the free riding inentive faed by �rms operating in

the North Sea. I provide diret evidene of free riding by showing how drilling behavior hanges

when the spatial arrangement of lienses hanges.

4.1 Exploration Drilling Patterns

The estimated spatial orrelation illustrated by Figure 3 suggests that �rms should make inferenes

aross spae based on past well results. I test this predition using data on �rm behavior. Let

Sucjdot be the umulative number of suessful wells drilled on bloks distane d from blok j

before date t by �rms o ∈ {f,−f}, where −f indiates all �rms other than �rm f . Failjdot is

analogously de�ned as the umulative number of past unsuessful wells. To provide suggestive

evidene of the extent to whih �rms' exploratory drilling deisions are orrelated with the results

of past wells drilled by di�erent �rms at di�erent loations, I estimate the following regression

spei�ation using OLS:

Explorefjt = αf + βj + γt +
∑

d

∑

o∈{f,−f}

gdo (Sucjdot, Failjdot)) + ǫfjt. (6)

Where gdo is a �exible funtion of umulative suessful and suessful well ounts for wells of type

(d, o). Explorefjt is an indiator for whether or not �rm f drilled an exploration well on blok j

in month t. Notie that the spei�ation inludes �rm, blok, and month �xed e�ets. This means

that the e�ets of past wells are identi�ed by within-blok hanges in the set of well results over

time, and not by the fat that some bloks have higher average suess rates than others and these

bloks tend to be explored more.

Figure 6 reords the estimated marginal e�et of an the �rst past well of eah type on the probability

of exploration. I inlude three distane bands in the regression - wells on the same blok, those 1-3

bloks away, and those 4-6 bloks away. Solid red irles indiate the e�et on the probability of

�rm f drilling an exploration well on blok j of an additional past suessful well drilled by �rm

f at eah distane. Hollow red irles reord this e�et for unsuessful past wells drilled by �rm

f . The results indiate that additional suessful wells on the same blok and 1-3 bloks away
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Figure 6: Response of Drilling Probability to Cumulative Past Results
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Notes: Points are the estimated marginal e�et of eah type of past well on Explorefjt from the spei�ation given

by equation 6 where gdo(·) is quadrati in eah of the arguments. Marginal e�ets are omputed for the �rst well of

eah type. The y-axis is saled by multiplying the e�et by 104 and taking the log. Error bars are 95% on�dene
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in eah of the 8 types of past well. The mean of the dependent variable is 0.0161. Sample inludes blok-months in

the relevant region up to Deember 1990. An observation, (f, j, t) is in the sample if �rm f had drilling rights on

blok j in month t, and blok j had not yet been developed. I drop observations from highly explored regions where

the number of nearby own wells (those on 1st and 2nd degree neighboring bloks) is above the 95th perentile of

the distribution in the data.

signi�antly inrease the probability of subsequent exploration, and an additional unsuessful

wells signi�antly derease the probability of subsequent exploration.

The e�et of an additional same �rm, same blok well is approximately 120% of the mean of the

dependent variable, Explorefjt, whih is 0.0161, and the size of the e�et is roughly equal for

suessful and unsuessful wells. The magnitude of the e�et dereases with distane. Notie

that the y-axis of Figure 6 is on a log sale. The e�et of past wells at a distane of 1-3 bloks is

about 10% of the e�et of past same-blok wells. The e�et at distanes of 4-6 bloks is on the

order of 1% of the same-blok e�et and is not statistially signi�ant.

Blue squares indiate the e�et of past wells drilled by other �rms on �rm f 's probability of

exploration. The e�ets are of the same sign but have magnitudes between 20% and 50% of the

same-�rm well e�ets. As with the same-�rm e�ets, the other-�rm e�ets diminish with distane

and lose statistial signi�ane at distanes of 4-6 bloks.

13

These results suggest that �rm's deisions about where to drill depend on the results of nearby

13

Sine the regression inludes blok �xed e�ets, the e�et of other �rm wells on the same blok omes from

variation in the number of wells over time when multiple �rms hold lienses on the same blok. See Setion 2.2 for

disussion of how I assign bloks to �rms.
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past wells, both their own wells and those of their rivals. The probability of drilling on blok j

responds both to the results of past wells on blok j as well as to the results of wells on nearby

bloks, suggesting that �rms make inferenes aross spae at distanes onsistent with the spatial

orrelation of well results illustrated by Figure 3, with the size of the drilling response delining

with distane. Exploration probability is also more responsive to own-�rm exploration results than

to other-�rm exploration results, suggesting that information �ow aross �rms is imperfet.

14

In Appendix Table A6 I report analogous results for di�erent sub-periods of the data. These

results indiate that the ratio of the e�et of wells 1-3 bloks away to the e�et of wells on the

same blok is relatively onstant over time. Firms do not appear to have been systematially over-

or under-extrapolating aross spae during early exploration. This �nding is onsistent with the

assumption that the �rms are learning about the loation of oil, not about the true value of the

spatial ovariane parameter ℓ whih I assume is known to �rms ex-ante.

To test diretly whether �rm behavior responds to hanges in beliefs, I regress �rm exploration

deisions on model-implied posteriors. Sine exploration wells generate information, and their

value is in informing �rms' future drilling deisions, a natural hypothesis is that the probability

of drilling an exploration well should be inreasing in the expeted information generated by that

well.

15

For instane, the �rst exploration well drilled on a blok should be more valuable than the

tenth beause its marginal e�et on beliefs is greater.

I ompute the model-implied posterior beliefs for eah blok j, eah month t, based on all wells

drilled before that month aording to the Bayesian updating rule (4).

16

I obtain Et(ρj), the

posterior mean, and V art(ρj), the posterior variane of beliefs about the probability of suess

on blok j, ρj . To measure the expeted information gain of an additional well I obtain the

expeted Kulbak-Leibler divergene, KLj,t, between the prior and posterior distributions following

an additional exploration well for eah (j, t).17

Column 1 of Table 3 reords the oe�ients from a regression of KLj,t on the omputed posterior

variane and a quadrati in posterior mean at (j, t). There is an inverse u-shaped relationship

14

One potential onern is that these results ould be explained by the arrival over time of publi information

that is independent of drilling results and is orrelated over spae. To test of whether the information generated by

past wells is driving these results, I use the fat that the on�dentiality period on exploration data expires 5 years

after a well is drilled. In Appendix Figure A4 I show that moving an suessful other-�rm well bak in time by

more than 6 months has a positive and signi�ant e�et on the probability of exploration. The e�et is greatest for

wells lose to the on�dentiality uto�, drilled between 4.5 and 5 years ago. For wells that are older than 5 years,

there is no signi�ant e�et, onsistent with the outomes of these wells already being publi knowledge.

15

This predition is true in the simple model presented in Appendix A. In more general settings, it is not neessarily

the ase that more informative wells are always more valuable. Note that the value of an exploration well is not

just the amount of information it generates, but its e�et on the �rm's future behavior and payo�s.

16

In this setion, I ompute beliefs as if all �rms observe the results of all other �rms' exploration wells. This

assumption is relaxed in the strutural model developed in Setion 5.

17

The KL divergene is a measure of the di�erene between two distributions. It an be interpreted as the

information gain when moving from one distribution to another (see Kullbak and Leibler, 1951, and Kullbak,

1997). See Appendix B for details.
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between expeted KL divergene and Et(ρj) that is maximized when Et(ρj) = 0.48. This re�ets

the lassi result in information theory (see for example MaKay, 2003) that the information

generated by a Bernoulli random variable is maximized when the probability of suess is 0.5.

There is a positive relationship between V art(ρj) and KLjt. It is lear that as variane goes to 0,

the hange in beliefs from an additional well will also go to 0.

The seond olumn of Table 3 presents estimated oe�ients from a regression of Explorefjt on

V art(ρj), a quadrati in Et(ρj), and (f, j) level �xed e�ets. Note that the oe�ients follow the

same pattern as those in the �rst olumn: �rms are less likely to drill exploration wells on bloks

with very high or very low expeted probability of suess, and are more likely to drill exploration

wells on bloks with higher variane in beliefs. Firm behavior aligns losely with the theoretial

relationship between moments of the posterior beliefs and the expeted information generated by

exploration wells. This is on�rmed by the results in olumn 3, whih presents the estimated

positive and signi�ant oe�ient from a regression of Explorefjt on KLjt.

Table 3: Response of Drilling Probability to Posterior Beliefs

Dependent Variable: KL Divergene Exploration Well Develop Blok

Posterior Mean .547*** .275*** . .011***

(.001) (.062) . (.003)

Posterior Mean

2
-.570*** -.188** . .

(.002) (.089) . .

Posterior Variane .092*** .029*** . .001

(.000) (.008) . (.001)

KL Divergene . . .190*** -.039***

. . (.070) (.010)

R2
.914 .045 .043 .077

N 95690 95330 95330 93569

Firm-Blok and Month FE No Yes Yes No

Firm-Month FE No No No Yes

Notes: Standard errors lustered at the �rm-blok level. Mean, variane, and KL divergene of posterior beliefs

omputed for eah (f, j, t) as if all wells drilled by all �rms up to month t−1 are observed. Sample is all undeveloped

�rm-blok-months in the relevant region,. *** indiates signi�ane at the 99% level. ** indiates signi�ane at

the 95% level. * indiates signi�ane at the 90% level.

The last olumn of Table 3 present the results of a regression with Developfjt, an indiator for

whether �rm f developed blok j in month t, as the dependent variable. As illustrated in Figure

2, a blok's exploration well suess rate is positively orrelated with size of the oil �eld loated on

that blok. Consistent with this, the results indiate that probability of development is inreasing

in E(ρj). In ontrast to the exploration results there is a negative e�et of KLjt on development

- the more information ould be generated by an additional exploration well on a blok, the less

likely is a �rm to develop that blok.

18

18

The development regression inludes a �rm-month �xed e�et rather than a �rm-blok �xed e�et beause
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4.2 The Value of Information and the Inentive to Free Ride

The results presented in Setion 4.1 suggest that information spillovers aross spae and �rms have

a signi�ant e�et on drilling behavior. To what extent do these externalities provide an inentive

for �rms to delay exploration and free ride o� the information generated by other �rms' wells?

Using the estimated model of beliefs, it is possible to perform a bak of the envelope quanti�ation

of the inentive to delay exploration without invoking a further strutural model of �rm behavior.

I onsider a �rm f 's deision to delay drilling the �rst exploration well on blok j by one year.

I suppose that the �rm's beliefs are given by the estimated prior proess and that, eah month,

eah blok held by another �rm is drilled with a �xed probability QE, whih I set equal to the

empirial mean exploration rate of 0.0219. I further assume that �rm f observes the results of eah

well drilled by another �rm with probability α. For a given arrangement of lienses, I run twelve

month simulations of other �rms' drilling behavior and update the beliefs of �rm f . For eah

simulation, I alulate the information gained about blok j by �rm f from observing the results

of other �rms' wells, and ompare the mean information gain aross simulations (in partiular, the

expeted Kullbak-Leibler divergene between the �rm's prior beliefs and the posterior after 12

months) to the expeted information gain from �rm f drilling its own exploration well on blok j.

Table 4: Information Gain from Delay of Exploration

Other Firm Neighbors One Year Delay at α = 0.4
Perentile Same Blok First Degree Seond Degree Info. Generated Net Gain

1 0 0 0 0 -43.02

25 0 3 5 0.080 -15.42

50 0 5 9 0.120 -1.51

75 0 7 12 0.174 17.23

90 1 8 13 0.335 72.67

99 2 14 22 0.603 165.45

Notes: The �rst three olumns report perentiles of the distribution of other �rm neighbors aross all (f, j, t)
observations in the relevant area from 1964-1990. First and seond degree neighbors are those one or two bloks

away (inluding diagonal neighbors). Columns 4 reports the mean information generated from 1000 12 month

simulations, as desribed in the text. Column 5 presents the implied net gain in millions of dollars from delaying

exploration for 12 months, as desribed in the text.

Table 4 presents the expeted information generated from 12 month delay as a fration of the

information generated by drilling an exploration well for six di�erent arrangements of lienses.

Eah row orresponds to a liense arrangement where the numbers of other �rms holding lienses

at di�erent distanes from blok j are drawn from perentiles of the empirial distribution. The

fourth olumn reords the information generated from one year of delay when α = 0.4, as a fration

of the information generated by drilling one exploration well. The information gain from delay is

development happens at most one within eah (f, j), at the end of that �rm-blok's time series. Results with

�rm-blok �xed e�ets would therefore apture the fat that variane and KLjt tend to deline over time.
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inreasing in the density of other �rm neighbors. For the 25th perentile arrangement, delaying

exploration by one year generates 8% of the information of an exploration well. For the 99th

perentile arrangement, delay ahieves 60% of the information generation of an exploration well.

The �fth olumn reords an approximation of the net gain in millions of dollars from delaying

exploration by one year, suggesting that �rms with an arrangement of neighboring lienses in the

1st, 25th, and 50th perentiles would not bene�t from delay, while �rms above the 75th perentile

would gain on net.

19

To illustrate how these inentives hange with the �ow of information be-

tween �rms, Appendix Figure A7 reords the net gain from delay for di�erent liense arrangement

perentiles and for values of α ∈ [0, 1]. The gain from delay is inreasing in α.

These results suggest that, if there is su�ient �ow of information between �rms, variation in

spatial arrangement of lienses in the data should result in hanges in the inentive to free ride by

delaying exploration. To provide diret empirial evidene that suh free riding inentives matter,

I run regressions exploiting the variation in the spatial arrangement of lienses.

The number of liensed bloks in a region is likely to be orrelated with, for example, the arrival

of information that is not aptured by well outomes or hanges in region spei� drilling osts.

To isolate the ausal e�et of hanges in liense distribution on the inentive to explore, I fous

on quasi-experimental variation by seleting (f, j, t) observations before and after disrete jumps

in the number of lienses issued, orresponding to the months before and after the government

announes the results of liensing rounds. In partiular, I identify (f, j, t) observations for whih

the total number of liensed bloks neighboring blok j inreases from the previous month. I

selet nine month windows entered on these liensing events and index these windows with γ. For

observations in a liensing window, I de�ne ∆(f, j, t) ∈ {−4,−3, ..., 4} as the number of months

before or after the relevant liensing event. I estimate the following spei�ation on the set of

observations in liensing windows:

Explorefjt = αγ + α∆(f,j,t) + β1BlocksOwnfjt + β2BlocksOtherfjt +Xfjtδ + ǫfjt. (7)

Where Xfjt ontains all the regressors in equation 6. BlocksOwnfjt is the number of neighboring

bloks liensed to �rm f and BlocksOtherfjt is the number of neighboring bloks liensed to other

�rms. The hange in the number of liensed bloks near blok j within a window is unlikely to

re�et the arrival of new information about the produtivity of blok j, sine issued lienses are the

result of appliations that are made before the beginning of the window. Any hanges in drilling

19

Suppose the information generated from delay as a share of one well is s. If the ost of drilling an exploration

well is c, then delaying the �rst exploration well redues the expeted ost of exploration by sc. The ost of delay

is the resulting disounting of future pro�ts, V . If the annual disount rate is β, then I ompute the net gain from

delay as sc − (1 − β)V . I set β = 0.9. I set V = 43.02 based Hunter's (2015) aount of the per-blok aution

revenue generated by one-o� aution liensing round held by the UK regulator in 1971, in�ated to millions of 2015

dollars. I set c = 34.55 based on the average per-well apital expenditure between 1970 and 2000 reported by the

regulator, in�ated to million of 2015 dollars.

25



osts or arrival of information within eah window is therefore likely unorrelated with hanges in

BlocksOwnfjt and BlocksOtherfjt.

Table 5: Regressions of Drilling Probability on Nearby Lienses

Exploration Well Develop Blok

BlocksOwnfjt 4.739 . 3.300*** -.101

(5.800) . (.961) (.256)

BlocksOtherfjt -1.446 . .915*** -.059

(1.330) . (.267) (.064)

log(BlocksOwnfjt) . .028** . .

. (.014) . .

log(BlocksOtherfjt) . -.013*** . .

. (.004) . .

N 21971 21618 136430 136430

Firm-Blok, and Month FE No No Yes Yes

Experiment Fixed E�ets Yes Yes No No

Coe�ients Saled by 103 Yes No Yes Yes

Notes: Standard errors lustered at the �rm-blok level. Observations are at the (f, j, t) level. Sample inludes all

(f, j, t) observations that are within 4 months of a liensing event, for whih the �rm f has held a liense on blok

j for at least 6 months. Blok ounts are of all lienses on blok j and neighboring bloks on date t. *** indiates

signi�ane at the 99% level. ** indiates signi�ane at the 95% level. * indiates signi�ane at the 90% level.

The �rst olumn of Table 5 reports the oe�ients on BlocksOwnfjt and BlocksOtherfjt. Within-

window inreases in the number of own-�rm bloks are orrelated with inreased exploration prob-

ability, and within-window inreases in the number of other-�rm bloks are orrelated with de-

reased exploration probability. The seond olumn reports results using the log of BlocksOwnfjt

and BlocksOtherfjt, with both oe�ients signi�ant and of the same sign as in the �rst ol-

umn. These results suggest that doubling the number of neighboring bloks liensed to �rm f

will inrease the probability of exploration by �rm f on blok j by 0.8 perentage points, and

doubling the number of bloks liensed to other �rms will redue the probability of exploration by

0.4 perentage points. Notie that these e�ets are large relative to the mean of the dependent

variable, whih is 0.016 in this sample. This �nding is suggestive of a signi�ant inentive to delay

investment in exploration when the probability that another �rm will explore nearby inreases. In

partiular, hanges in the number of bloks liensed to other �rms should not hange the value to

�rm f of the results of exploration on blok j, but an inrease the value of delaying exploration.

The third and fourth olumns of Table 7 presents regressions of Explorefjt and Developfjt on

BlocksOwnfjt and BlocksOtherfjt that do not restrit the sample to liensing windows. Notie

that the probability of exploration is inreasing in both measures of nearby lienses, but the e�et

of BlocksOwnfjt is substantially larger. The distribution of lienses neighboring blok j is not

signi�antly orrelated with the probability that blok j is developed. It seems reasonable that

a �rm would not delay development on a blok known to hold large reserves beause of expeted
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exploration by rivals on nearby bloks, and the revenue produed by a development well is not a

funtion of the number of surrounding bloks owned by the same �rm.

20

In Appendix Figures A5 and A6 I present further evidene that is suggestive of free riding. In

partiular, I reprodue a result from Hendriks and Porter (1996), who showed that the probability

of drilling an exploration well on unexplored trats in the Gulf of Mexio inreased near the drilling

deadline imposed by the trat lease. The authors argue that this delay until the end of the lease

term is evidene of a free riding inentive. I show that the same pattern obtains on North Sea

bloks when the drilling deadline (whih, as disussed in Setion 2, is not as strit as the deadline

imposed in the Gulf) approahes. I also show that this pattern obtains for liense bloks with a

large number of other �rm liense nearby, but is not present for bloks that are far from other �rm

lienses, onsistent with the preditions presented in Table 4.

5 An Eonometri Model of Optimal Exploration

To measure the extent to whih information externalities a�et industry surplus, I estimate a

strutural eonometri model of the �rm's exploration problem in whih I assume that �rm beliefs

follow the logisti Gaussian proess model of Setion 3.2. I set up the �rm's problem by speifying

a full information game in whih �rms observe the results of all wells. Motivated by the empiri-

al �ndings desribed in Setion 3, I then extend the model to one of asymmetri information in

whih �rms do not observe the results of other �rms' wells with ertainty. I desribe a simplify-

ing assumption on �rm beliefs and speify an equilibrium onept that makes estimation of the

asymmetri information game feasible.

5.1 Full Information

I start by speifying a full information game played by a set of �rms F . Firms are indexed by

f , disrete time periods are indexed by t, and bloks are indexed by j. J is the set of all bloks.

Jft ⊂ J is the set of undeveloped bloks on whih �rm f holds drilling rights at the beginning of

period t. J0t ⊂ J is the set of undeveloped bloks on whih no �rm holds drilling rights at the

beginning of period t. Pt is the oil prie.

Exploration wells are indexed by w, and eah well is assoiated with an outome s(w) ∈ {0, 1},

a blok j(w), a �rm f(w), and a drill date t(w). The set of all loations and realizations of

exploration wells drilled on date t is given by Wt = {(j(w), s(w)) : t(w) = t}.

20

One exeption to this is the ase of an oil reservoir whih rosses multiple bloks operated by di�erent �rms. In

these ases the oil reservoir is �unitized� by regulation, and revenue is split proportionally between operators of the

bloks. This provision removes the �ommon pool� inentive disussed by Lin (2013) and the inentive to develop

an overlapping reservoir before a neighboring rival.
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The �rm's prior beliefs about the probability of exploration well suess on eah blok are given by

the logisti Gaussian proess G0 de�ned in equation X. Gft is �rm f 's posterior at the beginning

of period t. Under the assumption of full information �rms observe the results of all wells, so

Gft+1 = B(Gft,Wt) and Gft = Gt for all �rms f ∈ F , where B(·) is de�ned in equation 4.

The industry state at date t is desribed by

St = {Gt, {Jft}f∈F∪{0}, Pt}. (8)

Eah period, the �rm makes two deisions sequentially. First, in the exploration stage, it selets

at most one blok on whih to drill an exploration well. Then, in the development stage, it selets

at most one blok to develop.

Drilling an exploration well on blok j inurs a ost whih I allow to depend on the state, c(j,St)−

ǫftj . Developing blok j inurs a ost κ − νftj . ǫftj and νfjt are private information ost shoks

drawn iid from logisti distributions with variane parameters σǫ and σν . Developing blok j at

date t yields a random payo� πjt. Firms' beliefs about the distribution of payo�s on blok j are

Γ̃j(π|Gt, Pt), de�ned in equation 5.

The timing of the game is as follows:

Exploration Stage

1. Given state St, eah �rm f observes a vetor of private ost shoks ǫft.

2. Firm f hooses an exploration ation, aEft ∈ Jft ∪ {0}. If aEft 6= 0, then �rm f inurs an

exploration ost.

3. Exploration well results Wt are realized.

4. The industry state evolves to S ′
t = {Gt+1, {Jft}f∈F∪{0}, Pt}.

Development Stage

1. Given state S ′
t , eah �rm f observes a vetor of private ost shoks νft.

2. Firm f hooses a development ation, aDft ∈ Jft ∪ {0}. If aDft 6= 0, then �rm f inurs a

development ost.

3. If aDft = j then the �rm f draws oil revenue πjt.
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4. The industry state evolves to St+1 = {Gt+1, {Jft+1}f∈F∪{0}, Pt+1}.
21

State variables evolve at the end of the development stage as follows. I assume that log oil prie

follows an exogenous random walk, so Pt+1 = exp(log(Pt) + ζt) where ζt ∼ N(0, σζ). I assume

that �rm lienses on undeveloped bloks are issued and surrendered aording to an exogenous

stohasti proess de�ned by probabilities P (j ∈ Jft+1|{Jgt}g∈F∪{0}, a
D
ft). Developed bloks are

removed from �rms' hoie sets, so P (j ∈ Jft+1|a
D
ft = j) = 0 and P (j ∈ Jft+1|j /∈ ∪{Jgt}g∈F∪{0}) =

0. This assumption eliminates any strategi onsideration in the timing of drilling with respet

to regulatory deadlines, the announement of new liensing rounds, and the �rm's deision to

surrender a blok.

The �rm's ontinuation values at the beginning of the exploration and development stages (before

private ost shoks are realized) are desribed by the following two Bellman equations:

V E
f (St) = Eǫft

[

max
aEt ∈Jft∪{0}

{

ES′

t

[

V D
f (S ′

t)|a
E
t ,St

]

− c(aEt ,St) + ǫftj

}

]

(9)

V D
f (S ′

t) = Eνft

[

max
aDt ∈Jft∪{0}

{

Eπ
aD
t
,St+1

[

βV E
f (St+1) + πaDt

|aDt ,S
′
t

]

− κ(aDt |S
′
t) + νftj

}

]

.

Where β is the one period disount rate. The inner expetation in the exploration Bellman equation

is taken over realizations of the intermediate state S ′
t, with respet to the �rm's beliefs Gt and

beliefs about other �rms' exploration ations. The inner expetation in the development Bellman

equation is taken over realizations of development revenues πaD and realizations of next period's

state variable St, with respet to the �rm's beliefs Gt+1 and beliefs about other �rms' ations.

De�ne hoie spei� ex-ante (before private ost shoks are realized) value funtions as,

vEf (a
E
t ,St) =ES′

t

[

V D
f (S ′

t)|a
E
t ,St

]

− c(aEt ,St)

vDf (a
D
t ,S

′
t) =Eπ

aD
t
,St+1

[

βV E
f (St+1) + πaDt

|aDt ,S
′
t

]

− κ(aDt ,S
′
t). (10)

A Markov perfet equilibrium of this game is then de�ned by strategies aEf (S, ǫ) and aDf (S,ν)

that maximize the �rm's ontinuation value, onditional on the state variable and the privately

21

Note that I have assumed that �rms do not update their beliefs based on the outomes of development deisions.

Formally, this assumption means that although �rms obtain revenues πj after making development deisions, they

do not observe πj . The assumption that �rms do not update their beliefs based on this realization is likely not

unreasonable. In reality oil �ow is obtained from a reservoir over many years, and additional information about

the true size of the �eld is gradually obtained. Furthermore, sine development platforms are very expensive, the

information value of development is unlikely to be pivotal to the development deision, and the marginal e�et of

information revealed by the development outome is likely to be small sine development takes plae only after

extensive exploration.
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observed ost shoks,

aEf (S, ǫ) = arg max
aE∈Jf∪{0}

{

vEf (a
E ,S) + ǫtaE

}

(11)

aDf (S
′,ν) = arg max

aD∈Jf∪{0}

{

vDf (a
D,S ′) + νtaD

}

,

where the �rm foreasts all �rms' ations onditional on the industry state using the true ondi-

tional hoie probabilities (CCPs) given by:

P (aEf = j|St) =
exp

(

1
σǫ
vEf (j,St)

)

∑

k∈Jft∪{0}
exp

(

1
σǫ
vEf (k,St))

) . (12)

With a similar expression for the CCP of development ation j, P (aDf = j|S ′
t).

5.2 Asymmetri Information

A key assumption made in the model desribed above is that �rms an perfetly observe the results

of eah other's exploration wells as soon as they are drilled. In reality, industry regulation allows

for on�dentiality of well data for the �rst �ve years after an exploration well is drilled, and the

empirial evidene presented in Setion 3 suggests imperfet spillover of information between �rms.

The extent to whih information �ows between �rms before the end of the well data on�dentiality

period is a potentially important determinant of �rms' inentive to delay exploration.

To allow for imperfet spillovers of information in the model, I make an alternative assumption

about when �rms observe the results of exploration wells. In partiular, when a well w is drilled

by �rm f , I let eah �rm g 6= f observe the outome, s(w), with probability α. s(w) is revealed to

all �rms τ periods after the well is drilled, on expiry of the on�dentiality window.

Formally, let of(w) ∈ {0, 1} be a random variable drawn independently aross �rms after the

exploration stage of period t(w) where P (of(w) = 1|f(w) 6= f) = α and P (of(w) = 1|f(w) = f) =

1. The set of well results observed by �rm f in period t is

Wft = {(j(w), s(w)) : (of(w) = 1 and t(w) = t) or (of(w) = 0 and t(w) = t− τ)} . (13)

Firms observe the loation, j(w), and the drill date, t(w), for all wells. This assumption re�ets

the fat that the regulator makes this data publi immediately after a well is drilled. Firms f 's

information about past wells with unobserved outomes is

WU
ft = {(j(w), t(w)) : of(w) = 0 and t(w) > t− τ} . (14)
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The introdution of this asymmetri information struture ompliates the �rm's problem. In

general, Gft 6= Ggt sine �rms observe di�erent sets of well outomes. To foreast next period's

state in equilibrium, �rm f must form beliefs about every other �rm g's beliefs, Ggt. The history

of �rm g's ations is informative about Ggt and about well outomes unobserved by �rm f . Firm f

should therefore update its beliefs based not only on observed outomes, but on the past behavior

of other �rms. For instane, if �rm g drilled many exploration wells on blok j, this should signal

to �rm f something about the suess probability on that blok, even if �rm f did not observe the

outome of any of those wells diretly. In ontrast to the full information game, this means that

the entire history of drilling and liense alloations should enter the �rm's state.

These omplexities make estimating the asymmetri information game and �nding equilibria om-

putationally infeasible. To make progress, I impose the following simplifying assumption on �rms'

beliefs about other �rms' ations.

• Assumption A1: Firm f believes that at every period t the probability of a new exploration

well being drilled by a �rm g 6= f on blok j ∈ Jgt is given by QE
t ∈ [0, 1]. Likewise �rm

f believes that at every period t the probability of �rm g 6= f developing blok j ∈ Jgt is

QD
t ∈ [0, 1].

Assumption A1 says that �rms believe that bloks held by other �rms are explored at a �xed rate

QE
and developed at a �xed rate QD

. Under this assumption I an rede�ne the state variable as:

Sft = {Gft, Jft,∪{Jgt}g 6=f , J0t, Pt,W
U
ft}. (15)

This �rm-spei� state is su�ient for �rm f 's date t deision under asymmetri information.

Note that �rm f only needs to know whih bloks it holds and whih are held by some other �rm

(∪{Jgt}g 6=f), not the identity of the liense holding �rm for eah blok, sine the identity of the

blok owner does not a�et drilling probability under �rms' beliefs.

22

Further, Gft+1 = B(Gft,Wft)

as before. In partiular, Gft+1 does not depend on WU
ft sine �rms believe past wells were drilled

at an exogenous rate and drilling history does not ontain information about other �rms' beliefs.

The state variable inludes WU
ft sine �rms antiipate the release of well outome data at the end

of eah well's on�dentiality period.

Fixing QE
and QD

, the �rm's problem beomes a single agent problem where other wells are drilled

at an exogenous rate. The �rm's optimal strategy is given by equation 11 and CCPs are given by

12, where �rm's expetations about the future ations of other �rms are now given by (QE , QD),

not the true CCPs. Fixing the initial onditions, de�ned by J0 and P0, and a value of (QE , QD),

22

Formally this requires additional assumptions on the stohasti proess that governs the issuing and surrender

of lienses. In partiular, P (j ∈ Jft+1|{Jgt}g∈F∪{0}, a
D
ft) = P (j ∈ Jft+1|Jft,∪{Jgt}g 6=f , J0t, a

D
ft), and P (j ∈

∪{Jgt+1}g 6=f |{Jgt}g∈F∪{0}, {a
D
gt}g∈F ) = P (j ∈ ∪{Jgt+1}g 6=f |Jft,∪{Jgt}g 6=f , J0t, {a

D
gt}g∈F ). I also assume Jf0 = {}

for all f ∈ F .
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�rms' optimal strategies imply probability distributions over realized states for eah (f, t). I use

these distributions to de�ne equilibrium in the asymmetri information model as follows.

• Assumption A2: Let P (aEf,t = j|Sf,t) and P (aDf,t = j|S ′
f,t) be �rms' equilibrium CCPs. Fix

a time horizon T . In equilibrium, �rms have beliefs about other �rms' exploration and

development rates given by:

QE = E





1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P (aEft = j|Sft)





(16)

QD = E





1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P (aDft = j|S ′
ft)



 .

Where the expetations are taken over states with respet to equilibrium state distributions.

This assumption means that in equilibrium, a �rm's beliefs about the probability of exploration

and development by other �rms are on average orret. QE
is equal to the average over �rms,

periods, and bloks of the expeted equilibrium probability of exploration. This means that QE

is an equilibrium objet, and, for example, poliy hanges that hange �rms' inentive to explore

will hange QE
in equilibrium.

Assumptions A1 and A2 retain the asymmetri information struture but greatly simplify estima-

tion and omputation of equilibria. These assumptions also simplify the behavioral impliations of

the model in three signi�ant ways. First, �rms' beliefs about the ations of other �rms are iden-

tial at all loations and times. This means that free riding inentives only vary with the number

of other �rms' bloks near a blok j, not with, for example, the number of unique �rms that hold

drilling lienses nearby. Seondly, the model does not allow �rms to reason about how their ations

a�et other �rms' future behavior. For example, Assumption A1 preludes the �enouragement

e�et� disussed by Dong (2017), whih mitigates the free riding inentive beause �rms have an

added inentive to explore if doing so enourages other �rms to explore. Third, this assumption

shuts down any signaling inentives, sine �rms to not update their beliefs based on the presene

of wells, only well results.

6 Estimation & Identi�ation

6.1 Sample & Parameterization

I estimate the model using the subsample of the data that reords ativity on a 270 blok region

orresponding to the northern North Sea basin. This region ontains many of the large oil deposits
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disovered on the UK ontinental shelf.

23

I restrit the estimation sample to this region in order

to redue omputational time. I use the monthly Brent rude prie in�ated to 2015 dollars using

the UK GDP de�ator to measure the oil prie. For years before 1980 where the Brent prie is

unavailable I use projeted values from a regression of Brent on the West Texas Intermediate prie.

I let a period be one month, and set the number to periods after whih well outomes are made

publi to τ = 60.24 This orresponds to the 5 year on�dentiality period imposed by the regulator.

I set the one month disount rate to β = 0.992, whih orresponds to a 10% annual disount.

I impose the following parametri restritions on exploration osts:

c(j,Sft) = c0 + c1 ln(Nearbyjt). (17)

Where Nearbyjt be the number of liensed bloks �near� blok j at date t, ounting same-blok

lienses, �rst and seond degree neighbors. This spei�ation allows for information and tehnology

spillovers in exploration drilling that are not expliitly modeled. For example, more heavily liensed

areas are likely to be better understood in terms of geology and optimal drilling tehnology (see

for example Covert (2015) and Stek (2018) on inter-�rm learning about loation-spei� drilling

tehnology).

The model parameters are therefore {θ1, θ2, α, σζ}, where θ1 = {µ, ω, ℓ} are the parameters of the

�rm's beliefs de�ned in Setion 3, θ2 = {c0, c1, κ0, σc, σκ} are the ost parameters, α is the proba-

bility of observing another �rm's well outome before it is made publi, and σζ is the variane of

innovations to the oil prie random walk. Other objets to be estimated are the transition prob-

abilities of the liense issuing proess P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), the distribution of development

pro�ts, Γ(π; ρj , Pt), and �rm beliefs about other �rms' ations, QE
and QD

.

6.2 Estimation

Parameters θ1 are taken from the estimation proedure desribed in Setion 4.1. I estimate σζ

with the variane of monthly hanges in the log oil prie. I estimate Γ(·) using data on realized

oil �ows from all developed wells. I detail this part of estimation in Appendix C.4. Probabilities

P (j ∈ Jf,t+1|Jt, {Jg,t}∀g∈F ) that are used by �rms to foreast the evolution of liense assignments

are estimated using two probit regressions. First, I estimate the probability of a blok j being

liensed to any �rm in period t + 1 as a funtion of whether it was liensed to any �rm in period

23

Spei�ally, this region orresponds to the area north of 59◦N , south of 62◦N , east of 1◦W , and west of the

UK-Norway border.

24

The hoie of a one month period imposes an impliit apaity onstraint - eah �rm an hoose at most one

blok to explore and one blok to develop eah month. In pratie, in 94% of (f, t) observations where exploration
takes plae, only one exploration well is drilled. I never observe more than one blok developed by the same �rm

in the same month. In my detailed disussion of the estimation routine in Appendix C, I desribe how I deal with

observations where there are multiple exploration wells in a month.
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t and the number of neighboring bloks liensed in period t. I then estimate the probability of

blok j being liensed to �rm f in period t + 1 onditional on it being liensed to some �rm as a

funtion of whether it was liensed to �rm f in period t, whether it was liensed to any �rm in

period t, and the number of neighboring bloks liensed to �rm f in period t. I detail this part of

estimation in Appendix C.5.

The remaining parameters, θ2 and α, are estimated using a two step onditional hoie probability

method related to those desribed by Hotz, Miller, Sanders and Smith (1994) and Bajari, Benkard

and Levin (2007). In the �rst step, I obtain estimates of the onditional hoie probabilities (CCPs)

given by equation 12 and the parameter α. Using these estimates, I ompute the �rm's state-spei�

ontinuation values (9), as funtions of the remaining parameters θ2 by forward simulation. I then

�nd the value of θ2 that minimizes the distane between the �rst step estimates of the CCPs and

the hoie probabilities implied by the simulated ontinuation values. First step estimates of the

CCPs are also used to estimate the average exploration and development rates QE
and QD

whih

orrespond to �rms' beliefs. I desribe this two step proedure in detail in Appendix C.

6.2.1 Estimation of Conditional Choie Probabilities

The most important di�erene between the proedure I implement and the existing literature is

in the �rst step estimation of CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an ation j in the exploration and development stages of the game onditional on its state

S.

If the state variable were observable in the data, then P̂ (aEf = j|S) ould be estimated diretly using

the empirial hoie probability onditional on the state. However, the asymmetri information

struture of the model means that the true state is not observed by the eonometriian. In

partiular, the eonometriian knows the outome of every well, but does not know whih outomes

were observed by eah �rm. Formally, the data does not inlude the vetor of that reords whih

other-�rm well outomes were observed by �rm f . Di�erent realizations of of imply di�erent states

through the e�et of observed well outomes on Gft and WU
ft. The data is therefore onsistent

with a set of possible states S̃f for eah �rm.

25

To reover CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . The data is onsistent with two possible states: let S1
ft

be the state if of(w) = 1 and S0
ft be the state if of(w) = 0. From the eonometriian's perspetive,

P (S1
ft|{S

1
ft,S

0
ft}, α) = α. I provide a formal de�nition of the distribution P (Sf |S̃f , α) in Appendix

C.

25

More preisely, and element of S̃f is a partiular sequene of �rm-f states Sf = {Sft}
T
t=1. See Appendix C for

a formal de�nition of S̃f .
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Given this distribution over states, the likelihood of a sequene of exploration hoie observations

is:

LE
f =

∑

Sf∈S̃f









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)P (aE = j|Sf)



P (Sf |S̃f , α)



 . (18)

I maximize this likelihood to obtain estimates of the onditional hoie probabilities P̂ (aEf = j|S)

and the information spillover parameter, α̂, whih ontrols the probability weight plaed on eah of

the di�erent states Sf ∈ S̃f that ould have obtained given the data. Sine the state variable is high

dimensional, I use the logit struture of P̂ (aEf = j|S) implied by equation 12 and approximate the

hoie spei� value funtion for eah alternative with a linear equation in summary statistis of the

state variable. Full details are provided in Appendix C. In approximating a high dimensional state

variable with lower dimensional statistis I follow muh of the applied literature that estimates

dynami disrete hoie models with onditional hoie probability methods. For example, see

Ryan and Tuker (2011) and Collard-Wexler (2013).

6.3 Identi�ation

6.3.1 Identi�ation of CCPs

The �rst step of the estimation proedure reovers the parameter α and onditional hoie proba-

bilities P̂ (a = j|S) at eah state S from data in whih eah observation is onsistent with a set of

states S̃. The model's information struture means these objets are separately identi�ed despite

the fat that the eonometriian does not observe the full state. In partiular, I laim that the

list of hoie probabilities P (a = j|S̃) for eah set of states S̃ that it is possible to observe in the

data an be inverted to uniquely identify hoie probabilities onditioned on the unobserved states

P (a = j|S) and the information spillover parameter α.

To illustrate identi�ation, onsider the following simpli�ed example. Suppose that a state is

desribed by a triple, S = (suc, fail, unobs), where suc is the number of suessful wells observed,

fail is the number of unsuessful wells observed, and unobs is the number of wells with unobserved

outomes. Consider data that ontains observations onsistent with the following sets of states:

S̃A = {(1, 0, 0)} (19)

S̃B = {(0, 1, 0)}

S̃C = {(1, 0, 0), (0, 0, 1)}

S̃D = {(0, 1, 0), (0, 0, 1)}.

S̃A and S̃B are observed by the eonometriian when there is one own-�rm well outome. The

eonometriian then knows the state with ertainty sine the �rm always observes their own well
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outome. S̃C and S̃D are observed by the eonometriian when there is one other-�rm well out-

ome. In this ase, the eonometriian knows whether the well was suessful or unsuessful,

but not whether the �rm observed the outome or not. Given a value of the parameter α, hoie

probabilities onditional on the observed set of states an be written as:

P (a = j|S̃A) = P (a = j|S = (1, 0, 0)) (20)

P (a = j|S̃B) = P (a = j|S = (0, 1, 0))

P (a = j|S̃C) = αP (a = j|S = (1, 0, 0)) + (1− α)P (a = j|S = (0, 0, 1))

P (a = j|S̃D) = αP (a = j|S = (0, 1, 0)) + (1− α)P (a = j|S = (0, 0, 1)).

The left hand side of eah equation is a probability that is observable in the data. Notie that there

are four equations and four unknowns - three onditional hoie probabilities and the parameter

α. The �rst two equations yield estimates of P (a = j|S = (1, 0, 0)) and P (a = j|S = (0, 1, 0))

diretly. Rearranging the third and fourth equations yields:

α =
P (a = j|S̃C)− P (a = j|S̃D)

P (a = j|S̃A)− P (a = j|S̃B)
. (21)

This says that α is identi�ed by the di�erene between how muh the �rm responds to other �rm

wells (the numerator) and how muh the �rm responds to its own wells (the denominator). As

doumented in Figure 6, �rms' exploration hoies respond more to the results of their own wells

than to those of other �rm wells, implying 0 < α < 1. P (a = j|S = (0, 0, 1)) is then identi�ed by

the level of P (a = j|S̃C) or P (a = j|S̃D).

This identi�ation argument relies on two features of the model's information struture. First, the

belief updating rule (4) treats own-�rm and other-�rm well results identially. This means that we

an use the �rm's response to their own wells to infer how they would have responded if they had

observed another �rm's well. For example, P (a = j|S = (1, 0, 0)) enters both the �rst and third

equation in (20). Seond, if �rm f does not observe the outome s(w) of well w at date t, then the

s(w) does not enter Sft. This means that if a well was not observed, then the �rm's ations should

not depend on the well's outome. That is, the seond terms of the third and fourth equation in

(20) are idential. Relaxing either assumption would break identi�ation by introduing an extra

free parameter.

This argument extends to states with multiple well results and well results at di�erent distanes

and dates. In partiular for states with n wells there are always at least as many equations as

unknowns in the n well analogue of (20). This means that the number of observable sets of states

S̃, whih orrespond to equations, is always at least one greater than the number of true states S.

In Appendix D I provide a proof that shows, in general, how P̂ (a = j|S) an be identi�ed from

observable quantities for any S. In pratie, additional identi�ation omes from the approximation
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of the state variable whih smooths hoie probabilities aross states and allow extrapolation to

states not observed in the data.

This proedure, whih estimates the onditional hoie probabilities and α in one step, is sig-

ni�antly less omputationally intensive than alternatives suh as the Expetation-Maximization

proedure proposed by Aridiaono and Miller (2011), whih requires iteration of the two step esti-

mator. Although alulation of the sum in equation 18 for di�erent values of α is omputationally

expensive, this �rst estimation step only has to be performed one.

6.3.2 Identi�ation of Cost Parameters

The ost parameters are estimated in the nonlinear regression given by equation 33. Intuitively,

ost parameters c0 and κ are identi�ed by the average probability of exploration and development.

Lower average probability of drilling is rationalized by higher osts. Cost parameter c1 is identi�ed

by the extent to whih the probability of drilling is higher on bloks with more liensed bloks

nearby. Additional identifying variation omes from the di�erene in the response of drilling

probability to nearby own-�rm and other-�rm lienses. Higher exploration drilling osts, c0, imply

that �rms have more of an inentive to free ride and should have a lower exploration probability

when the surrounding bloks are owned by other �rms than when they are owned by the same

�rm.

The exploration variane parameter σǫ is identi�ed by the extent to whih �rms are more likely to

explore bloks for whih the expeted future revenue stream onditional on exploration is higher.

The development variane parameter σν is similarly identi�ed. To see this, notie that

1
σǫ
multiplies

the hoie spei� ontinuation value vEf (j,St) in equation 12, and the sum of future revenue

enters linearly in the �rm's ontinuation value.

26

As the variane of ost shoks beomes large, the

probability of any hoie j ∈ Jft ∪ {0} tends to

1
|Jft|+1

.

Finally note that, as disussed by Bajari, Benkard, and Levin (2007), the two step proedure ob-

tains onsistent estimates of the model parameters if the data is generated by a single equilibrium.

I assume this here sine I annot guarantee that there is a unique equilibrium of the asymmetri

information game.

7 Results

7.1 Estimates

Detailed results for eah part of the estimation proedure are presented in Appendix C. Appendix

Table A1 reports desriptive statistis on the estimated onditional hoie probabilities (CCPs)

26

See equation 30 in Appendix C.
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P̂ (aE = j|S) and P̂ (aD = j|S). In partiular, I report the marginal e�ets of varying di�erent

elements of the approximation to the state variable on the estimated hoie probabilities. The

patterns are broadly as expeted. The probability of exploration is inreasing in the expeted

probability of suess and in the variane of beliefs, in line with the desriptive results reorded in

Table 3. Development probability is inreasing in expeted probability of suess and dereasing

in variane, also onsistent with the desriptive results. Exploration probability is also inreasing

in both the number of neighboring own-�rm lienses and other-�rm lienses. However, the e�et of

own �rm lienses of the probability of exploration is almost twie the e�et of other �rm lienses.

The level of these e�ets is rationalized in the model by the parameter c1, whih allows exploration

osts to be lower in regions with a high number of lienses. The di�erene between these two

e�ets is then explained by the free riding inentive indued by additional other-�rm lienses and

the inreased value of information when there are more same-�rm lienses nearby.

Table 6 reports estimated model parameters and the average exploration and development proba-

bilities, QE
and QD

. The parameter α, whih is estimated simultaneously with the CCPs indiates

that �rms behave as if they observe the results of 36.6% of other �rm wells before they are made

publi. This �nding is in line with the desriptive results reported in Figure 6, whih indiated

that the marginal e�et of an additional other-�rm well on the probability of exploration was

between 20% and 50% of the e�et of an own-�rm well. Reall that the exploration ost is given

by c(j,Sft) = c0+ c1 ln(Nearbyjt). The estimated value of c1 indiates that the ost of exploration

is, as expeted, dereasing in the number of nearby lienses. Exploration ost at the average value

of Nearbyjt, reported as c̄ in Table 6, is about 25% of the development ost κ.

Table 6: Parameter Estimates

Parameter Estimate SE Parameter Estimate SE

α 0.3661 0.0412 κ0 16.3400 0.2431

c0 10.3514 0.1861 σc 1.4484 0.0354

c1 -1.9910 0.0464 σκ 2.0523 0.0720

c̄ 4.0571 0.1002 σ2
ξ 0.0048 0.0004

Average Choie Probabilities

QE
0.0223 QD

0.0017

Notes: Cost parameters are in billions of 2015 dollars. c̄ is omputed as the value of the expression given by equation

17 at the average value of Nearbyjt. Standard error of α is omputed using the Jaobian of the likelihood funtion

given by equation 18 at the estimated parameter values. Standard error of σ2
ξ is omputed using the fourth entered

moment of month to month hanges in log prie. Standard errors for the remaining (ost) parameters are omputed

using the Hessian of the seond step nonlinear least squares spei�ation given by equation 33 in Appendix C. Note

that the standard error for the ost parameters does not take into aount the �rst step error, and is therefore likely

to be biased down.

Cost parameters are reported in billions of 2015 dollars. The estimated ost parameters are sub-

stantially larger than estimates of the apital osts of exploration and development from data on

expenditure provided by the regulator. The average apital expenditure per exploration well is
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$34.6 million and per development platform is $1.9 billion. To understand the disrepany, notie

that the estimated ost parameters likely inlude fritions suh as the ost of reloating apital

equipment, redeploying labor, and other apaity onstraints. For example, I model exploration

as a monthly deision. If, in reality, drilling an exploration well ties up apital equipment for

several months, this would in�ate estimated osts. Furthermore, sine the model is estimated on

a small region of the North Sea, the ost parameters impliitly ontain the opportunity ost of

drilling in this region rather than elsewhere. Realized osts also inlude the random terms ǫ and

ν, whih I have interpreted as ost shoks but ould also apture shoks to information. One an

think of the estimated osts as being equal to the sum of engineering osts and the additional

fritions due to apaity onstraints, opportunity osts, and information shoks. Although these

fritions are relevant to the �rm, it is not lear that they should be inluded in the alulation

of industry surplus used by the poliy maker. In what follows, I use the estimated parameters

to ompute ounterfatual �rm ations. However, when I add up revenues and expenditures to

ompute industry pro�t for a given sequene of ations I will use the engineering osts obtained

from average apital expenditure rather than the model-implied osts.

To examine the �t of the model to the data, I simulate the model from 1964 to 1990. Simulations

are generated by drawing an ation for eah �rm, eah month, and updating �rms beliefs based on

the observed results. For eah month, I set the distribution of lienses {Jft}f∈F and the oil prie

Pt equal to the truth. I use mean values of the posterior suess probability reorded in Figure

4, whih is estimated using the true outomes of all wells drilled before 1990, to draw exploration

well outomes and development revenue.

Table 7 reords statistis on �rm ativity from the data and two simulations. The �rst olumn

reords the total the number of exploration wells, bloks developed, bloks explored, and the

average number of exploration wells drilled on developed and undeveloped bloks from the data.

The seond olumn reords the average of these statistis over 40 simulations of the model using

the �rst step CCPs, P̂ (aE = j|S) and P̂ (aD = j|S), to draw �rm ations. Sine the CCPs are

estimated diretly from the data, it is not surprising that the total number of exploration wells

drilled and bloks developed in these simulations math the data losely. The estimated hoie

probabilities slightly overstate the number of exploration wells drilled on bloks that are eventually

developed, although the qualitative pattern that more wells are drilled on bloks that are developed

is preserved. This slight mismath is likely due to the approximation to the state variable used in

the �rst step of the estimation proedure.

The third olumn reords the average of these statistis over 40 simulations of the model using

approximate equilibrium hoie probabilities. Equilibrium hoie probabilities are omputed by

forward simulating the model-implied hoie probabilities, P (aE = j|S, θ̂2) using estimated pa-

rameters θ̂2 to obtain new estimates of the value funtion given by equation 30. These new value

funtion estimates are then used to ompute new hoie probabilities. The proess is iterated until
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Table 7: Model Fit

Data Simulation

First Step Probabilities Equilibrium Probabilities

Exploration Wells 476 473.90 503.65

Bloks Explored 99 95.55 97.25

Bloks Developed 20 22.95 22.43

Exp. Wells on Dev. Bloks. 8.75 12.45 13.19

Exp. Wells on Undev. Bloks. 3.81 3.79 3.91

Notes: Column 1 reords statistis from the data overing 1964-1990 for the relevant region. Columns 2 and 3 are

averages over 40 simulations that over 1964-1990. . For eah month the assignment of bloks to �rms and the

oil prie in the simulations are set at their realized values. Simulations in olumn 2 draw �rm ations using the

�rst step estimates of the onditional hoie probabilities. Simulations in olumn 3 use approximate equilibrium

onditional hoie probabilities at the estimated parameter values.

the estimated hoie probabilities onverge. On eah iteration, the average exploration probabil-

ity Q̂E
is also updated. These equilibrium hoie probabilities are approximate beause I plae

restritions on how the probabilities an hange on eah iteration to improve stability and redue

omputational time. Details on this proedure are provided in Appendix E.

The di�erene between the seond and third olumns of Table 7 therefore re�ets the di�erene

between the �rst step hoie probabilities estimated diretly from the data, and the equilibrium

hoie probabilities implied by the model given the estimated ost parameters, θ̂2. Equilibirium

hoie probabilities overstate the number of exploration by about 6% wells and the number of bloks

developed by about 2% relative to the �rst step probabilities. When I examine the preditions of

the model under ounterfatual senarios, I use these equilibrium simulations as a baseline.

As an additional test of the �t of the model, I ompare the spatial distribution of exploration wells

in the data to simulations using the equilibrium hoie probabilities. The left panel of Figure 7 is

a heat map that reords the number of exploration wells drilled between 1964 and 1990 on eah

blok in the data. Lighter olored bloks were drilled more often than darker bloks. The large

dark region on the left side of the map was never liensed. Notie that there are three regions

of onentrated drilling ativity - in the south, entered on oordinate (13, 3), in the middle of

the map, entered on oordinate (14, 10), and in the north, entered on (13, 15). The right panel

reords equivalent well ounts from the average of 40 simulations using the equilibrium ation

probabilities. Drilling is onentrated around the same points in the south and middle of the map,

but not at the point (13, 15) in the north. Many wells were drilled on this blok despite it having

been liensed for a relatively short period of 134 months (ompared to 290 and 434 month-�rm

observations for (13, 3) and (14, 10) respetively). The observed monthly drilling rate on this blok

is an outlier that is di�ult for the model to rationalize.
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Figure 7: Model Fit: Well Loations
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Notes: The left panel is a heat map reording the number of exploration wells drilled on eah blok of the region

used for strutural estimation from 1964 to 1990. More exploration wells were drilled on lighter bloks. The right

panel is an analogous heat map of the average number of wells drilled on eah blok over 40 simulations using the

baseline equilibrium hoie probabilities. In both panels, the number of wells per blok is trunated at 20 to better

illustrate the ross-blok variane.

7.2 Quantifying the E�ets of Information Spillovers

To illustrate how information spillovers a�et the equilibrium speed and e�ieny of exploration,

I simulate ounterfatual exploration and development deisions. I separately quantify the e�et

of free riding and wasteful exploration on the equilibrium rates of exploration and development

and on industry surplus by removing these soures of ine�ieny from the model, �rst one at a

time and then jointly.

First, I remove the free riding inentive by omputing �rm's optimal poliy funtions under the

assumption that QE = 0. That is, I ask how �rms would behave if, at eah period, they believed

that no new wells would be drilled by other �rms at any period in the future. Under this assumption

there is no inentive to strategially delay exploration. This ounterfatual is not an equilibrium as

de�ned in Setion 5.2, sine �rms beliefs about the average exploration probability are inonsistent

with the atual probability of exploration. Simulation of �rm behavior under these non-equilibrium

beliefs isolates the diret e�et of free riding on �rm behavior sine I allow �rms to learn the results

of past wells as in the baseline, but I remove the forward-looking inentive to delay.

The e�et of eliminating the inentive to free ride on industry outomes is illustrated by omparing

the �rst and seond olumns of Table 8. The �rst olumn reords statistis on exploration wells

drilled, bloks developed, and industry revenue and pro�t for the baseline simulation. The seond

olumn reords the same statistis for the no free riding ounterfatual.

The �rst �ve rows reord statistis on exploration well and development ounts. Removing the
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free riding inentive brings exploration and development forward in time. The average number of

exploration wells drilled up to 1990 inreases by 7.4% from 503.65 to 541.15. The number of bloks

developed before 1990 inreases by 28% from 23.37 to 27.38. The e�ieny of exploration, whih I

measure using the number of exploration wells drilled per development well, and the distribution

of exploration wells between developed and undeveloped wells remain relatively onstant. The

sixth and seventh rows reord the 1964 present disounted value of industry revenue and pro�t.

Moving from the baseline to the no free riding ounterfatual inreases disounted revenue by $6.21

billion or about 26% by bringing development forward in time. 45% of this inrease in revenue

omes from the bringing the development of the �rst 22.43 bloks forward in time, inreasing the

disounted value of revenue. The remaining 55% omes from the development of additional bloks

before 1990 that were not developed in the baseline.

Table 8: Deomposition of E�ets

Baseline No Free Riding Info. Sharing Both

QE 0.0223 0 0.0223 0

α 0.3661 0.3661 1 1

Exp. Wells 503.65 541.15 567.30 604.83

Bloks Dev. 22.43 28.45 35.48 38.18

Exp. Wells/Dev 22.45 19.02 15.99 15.84

Exp. Wells on Dev. Bloks. 3.91 4.01 4.01 4.09

Exp. Wells on Undev. Bloks. 13.19 14.17 14.80 15.00

Revenue 24.09 30.30 37.74 40.15

Pro�t 13.85 18.12 23.59 25.06

Notes: Results are averages over 40 simulations that over 1964-1990. The assignment of bloks to �rms and the

oil prie are set at their realized values. Well outomes and development revenue are drawn using the posterior

suess probabilities omputed using the true outomes of all wells drilled before 1990. Revenue and pro�ts are in

billions of 2015 dollars. Pro�ts are omputed using estimates of exploration well and development ost from OGA

data on apital expenditure. PDV revenue and pro�t are 1964 values where the annual disount fator is 0.9.

The e�et of removing free riding on the timing of exploration and development is illustrated by

omparing the solid and dashed lines in Figure 8. The left panel reords the average number of

exploration wells and bloks explored eah month from 1975 to 1990. The right panel reords the

average number of bloks developed for the same period. Removing the free riding inentive shifts

the date that a blok is �rst explored bak in time by around one year. This inrease in exploration

speed translates to more rapid development. In the baseline simulation, 22.43 bloks are developed

by the end of 1990. Under no free riding, this development level is attained 13 months earlier, at

the end of 1989.

The seond quanti�ation exerise removes wasteful exploration due to imperfet information

spillovers. I simulate the model at the baseline equilibrium hoie probabilities but allow �rms to

observe the results of eah other's wells with ertainty. That is, I set α = 1. I hold �rms' hoie
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probabilities (and, impliitly, their poliy funtions) �xed at the baseline level. This means that

�rms behave as if they expet the results of other �rms' wells to be revealed with probability equal

to the estimated value of α, 0.3661. This isolates the diret e�et of inreased �ow of information

from the equilibrium e�ets of setting α = 1 on �rms' drilling deisions.

Figure 8: Deomposition of E�ets
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Notes: The left panel plots the umulative number of exploration wells drilled and bloks explored (bloks on

whih at least one exploration well has been drilled) for eah month from 1975 to 1990 for three simulations.

Thik red lines plot the number of bloks explored and orrespond to the right axis. Thin blue lines plot the

number of exploration wells and orrespond to the left axis. The solid lines are the average of 40 simulations using

the baseline equilibrium hoie probabilities. The dashed lines are the average of 40 simulations under the no free

riding ounterfatual. The dotted lines are the average of 40 simulations under the no free riding and information

sharing ounterfatual. The right panel plots the number of bloks developed for the same three simulations.

The third olumn of Table 8 reords drilling, revenue, and pro�t statistis for this information

sharing simulation. Allowing for perfet information �ow without hanging �rms' poliy funtions

inreases the number of exploration wells drilled before 1990 by 143 relative to the baseline and

inreases the number of bloks developed by 58% to 35.48. The e�ieny of exploration improves

substantially - the number of exploration wells drilled per blok developed is redued to 15.99

from 22.45 in the baseline. This inrease in e�ieny is also re�eted in an inreased onentration

of exploration wells on produtive bloks - the average number of exploration wells on developed

bloks inreases by 12% from 13.19 to to 14.80 while the average number of exploration wells on

undeveloped bloks inreases by only 3% from a muh lower base of 3.91.

Perfet information �ow inreases disounted industry pro�t by 70% to $23.59 billion from $13.85

billion in the baseline simulation. This e�et is about 2.28 times as large as the e�et of removing

free riding. This hange in industry surplus an be deomposed into two e�ets. First, perfet

information �ow inreases industry surplus by reduing wasteful exploration of unprodutive areas

and per-development osts, thereby reduing expenditure on exploration wells. Seond, inreased
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information �ow allows �rms to identify produtive areas faster, bringing development forward in

time. The relative importane of these two e�ets an be examined using the following bak of the

envelope alulation. In the information sharing ounterfatual pro�t is 62.5% of revenue, while in

the baseline the margin is 57.5%. Applying the information sharing margin to the baseline revenue

results in a pro�t inrease of $1.2 billion. This suggests that inreased ost e�ieny is responsible

for about 19% of the inrease in pro�t from information sharing, with the rest oming from faster

development.

Finally, I run a ounterfatual simulation that removes both free riding and wasteful exploration.

That is, I set α = 1 and QE = 0.27 The results of this simulation are reorded in the fourth

olumn of Table 8. Eliminating both soures of ine�ieny inreases exploration drilling by 20%

and development before 1990 by 70%. The dotted lines in Figure 8 illustrate the path of exploration

and development over time when both soures of ine�ieny are removed. Relative to the baseline,

development is brought forward in time by about three years. However, notie that the speed at

whih new bloks are explored is atually redued relative to the no free riding ounterfatual - the

thik red dotted line in the left panel is below the thik red dashed line. Beause of the inreased

information �ow, fewer bloks are explored more intensively and wasteful exploration is redued.

The ombination of bringing development forward in time and reduing ine�ient exploration

inreases disounted pro�ts by $11.21 billion, or 81% of the baseline.

The large gains from information sharing raise the question of why �rms do not engage in more

exhange of information before the on�dentiality windows expires. Indeed, the Coase theorem

suggests that �rms should be able to ahieve the �rst-best outome by sharing information through

bilateral ontrats, eliminating both ine�ient exploration and free riding by allowing �rms to

internalize the bene�ts of their disoveries to other �rms. The empirial evidene indiates that this

e�ient exhange of information does not take plae in reality. Furthermore, anedotal evidene

(Moreton, 1995) desribes a ulture of serey around exploration outomes. There are several

potential soures of transation osts that might limit e�ient trade. First, sharing well data

is not ostless to the �rm beause it may be valuable in future ompetitive liense appliations.

Seond, �rms have asymmetri information about the value of additional well data. There is a large

literature whih douments the role of suh asymmetri information in preventing e�ient trade

(Myerson and Satterthwaite, 1983; Farrell, 1987; Bessen, 2004). Beyond the standard problem of

trade under asymmetri information, there is an additional set of barriers to e�ient trade when the

objet being traded is information. For example, it is di�ult to signal the value of information to a

buyer without revealing that information (Anton and Yao, 2002), and the potential for information

to be ostlessly resold prevents the original seller from apturing the entire soial surplus that it

generates (Ali, Chen-Zion, and Lillethun, 2017).

27

Note that this is not equal to the �rst best outome where �rms jointly maximize industry pro�t. In this

ounterfatual, �rms do not internalize the bene�t of their drilling ativity on other �rms' pro�t.
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8 Counterfatual Property Rights Poliy

The results indiate that the presene of a free riding inentive and the limited spillover of infor-

mation between �rms both have signi�ant e�ets on industry surplus. Removing both of these

soures of ine�ieny would result in a 81% inrease in the present disounted value of 1964-

1990 pro�ts by bringing development forward in time and inreasing the e�ieny of exploration.

These large ine�ienies suggest that the design of drilling rights and property rights over well data

should take information externalities into aount. In this setion I ask how muh industry surplus

ould be inreased in equilibrium through alternative design of property rights that minimize the

ine�ienies resulting from information spillovers.

I onsider two main regulatory levers whih the government an use to manipulate the �ow of infor-

mation between �rms. First, the regulator an de�ne property rights over data on well outomes.

In partiular, well outome data is property of the �rm that drilled the well until the on�dential-

ity deadline, after whih it beomes publi knowledge. By hanging the on�dentiality deadline,

the government an inrease or derease the speed with whih information �ows between �rms

and manipulate �rms' inentive to delay exploration. Seond, �xing the on�dentiality window,

the government an hange the spatial distribution of property rights. When eah �rm's drilling

lienses neighbor fewer other-�rm lienses the inentive for �rms to delay exploration is redued.

8.1 Con�dentiality Window

UK regulations speify well outomes are made publi �ve years after the date a well is drilled.

Changing the length of the well data on�dentiality period has two potential e�ets on �rms'

equilibrium drilling behavior. First, inreasing the on�dentiality period dereases the inentive

to free ride. For example, when lienses are issued on two neighboring bloks to two di�erent

�rms, eah �rm's drilling strategy depends on their expetations about the �ow of information

from the other �rm's wells. If the release of well data is pushed further into the future, then

the ost of delaying exploration is inreased due to the disounting of future pro�ts, and the

equilibrium probability of exploratory drilling should inrease. On the other hand, lengthening

the on�dentiality window will redue the e�ieny of exploration by inreasing wasteful drilling.

When well data is held on�dential for longer, �rms are more likely to explore bloks that other

�rms already believe to be unprodutive.

The regulatory problem of setting the optimal on�dentiality window is therefore a ase of trading

o� these two e�ets. If the free riding e�et dominates and there is �too muh� information �ow

between �rms, then it may be optimal to lengthen the on�dentiality window. On the other hand if

the wasteful exploration e�et dominates, and there is �too little� information �ow between �rms,

then it may be optimal to shorted the on�dentiality window. Whether one e�et or the other
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dominates at the urrent window length of �ve years is an empirial question.

To determine the e�et of hanging the on�dentiality window on industry surplus, I run oun-

terfatual simulations of the model under di�erent window lengths. For eah window length, I

�rst ompute the approximate equilibrium hoie probabilities implied by the estimated model

parameters using the �xed point algorithm desribed in Appendix E. I then simulate the model

using these hoie probabilities, imposing the relevant on�dentiality window lengths. The left

panel of Figure 9 reords the average over 40 simulations of industry surplus under on�dentiality

windows of 0, 2.5, 5 (the baseline), 7.5, and 10 years.

Figure 9: Con�dentiality Window
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Notes: The left panel reords the 1964 present disounted value of 1964-1990 pro�t in ounterfatual simulations

with di�erent on�dentiality window lengths. In the right panel, the blue line, orresponding to the left y-axis,

reords the average exploration probability over �rms, bloks, and dates using equilibrium exploration hoie

probabilities omputed under di�erent window lengths. The exploration probabilities are omputed at the

baseline distribution of states. That is, the reported numbers are the average ounterfatual drilling probabilities

at the states realized in a simulation that uses the baseline drilling probabilities. The dashed red line,

orresponding to the right y-axis, reords the average present disounted value of revenue per exploration well in

equilibrium under di�erent window lengths. Revenue and pro�t are in 2015 dollars, billions in the left paenla nd

millions in the right panel. All �gures are average over 40 simulations.

The results suggest that moving the on�dentiality window in either diretion from the 5 year

baseline will inrease expeted industry surplus. In partiular, lengthening the on�dentiality

window to 7.5 raises surplus by 2% of the baseline value of $13.44 billion. Lengthening the

on�dentiality further to 10 years inreases surplus to $15.37 billion, 11% higher than the baseline.

At 10 years, the gain in industry surplus is 36% of the gain from eliminating free riding reorded

in Table 8. The no free riding ounterfatual provides a theoretial maximum on the inrease

in surplus that an be obtained by inreasing the on�dentiality window. Surplus under longer

on�dentiality windows is less than this maximum beause the no free riding ounterfatual holds

information �ow �xed at the baseline level, while longer on�dentiality windows redue the �ow

of information between �rms and therefore redue the e�ieny of exploration.
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Reduing the length of the on�dentiality window leads to a steeper rise in surplus, inreasing to

$15.03 billion at 2.5 years. Surplus inreases to $21.81 billion, or 57% higher than the baseline,

when the window is redued to 0 years and well data is released immediately. When well data is

released immediately, the gain in surplus is 82% of the gain in the information sharing ounterfa-

tual. Surplus is lower than under the information sharing ounterfatual beause of the additional

free rising inentive indued by reduing the exploration window. The information sharing oun-

terfatual in Table 8 held �rm hoie probabilities �xed at the baseline, while the 0 on�dentiality

window simulation uses ounterfatual equilibrium exploration hoie probabilities.

The U-shaped relationship between the length of the on�dentiality window and industry surplus

suggests that at window lengths greater than 5 years, the e�et of limiting information �ow on

the free riding inentive dominates the e�et on the e�ieny of drilling, and that at window

lengths less that 5 years the e�ieny e�et dominates. The right panel of Figure 9 illustrates

these two e�ets separately. The solid blue line reords the average probability of exploration

(QE
) for eah on�dentiality window. To illustrate the free riding e�et independently from the

e�et of improved information �ow on the speed of learning I �x the distribution of states at the

baseline - the �gure indiates that for any given state the probability of exploration dereases

with shorter on�dentiality window lengths. The dashed red line reords revenue per exploration

well at the equilibrium distribution of states under eah on�dentiality window. This measure of

drilling e�ieny is higher and the marginal e�et of window length on e�ieny is greatest for

shorter window lengths. Indeed, for window lengths greater than 5 years, the e�et of extending

the window approahes 0. At these longer window lengths the e�et on free riding dominates -

extending the window inreases the rate of exploration without substantially dereasing the rate

at whih exploration is onverted into development.

The result that the true on�dentiality window is lose to the least optimal length begs the question

of why this length was hosen by the regulator. Kemp's (2012a) aount of the proess by whih

the regulations were designed indiates that the 5-year window was arrived at through negotiations

between the government, who wanted information to be made publi earlier, and the major oil

ompanies, who were resistant to any regulation that diminished their property rights over well

data. The results reported in Figure 9 suggest that the settlement the parties arrived at, limiting

well data on�dentiality to �ve years, atually redued industry surplus. The regulator's imposition

of a �ve-year window was not short enough for the e�ieny e�et to substantially kik in, but

did inrease �rms' inentive to strategially delay exploration relative to the no-regulation default

of total on�dentiality.

Although the results indiate that it is optimal to set the on�dentiality window to 0, this his-

torial bakground suggests that the optimal politially feasible poliy hange might be to extend

the on�dentiality window. This �nding is spei� to the UK setting, and is a funtion of the

politial proess that determined the initial regulations. In other regulatory environments where
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on�dentiality periods are already short, for example the Bakken Shale �elds of North Dakota

where well data is on�dential for 6 months, lengthening the on�dentiality would likely have a

negative e�et on industry surplus.

28

8.2 Spatial Arrangement of Lienses

In addition to manipulating the �ow of information between �rms, the regulator an hange the

spatial arrangement of property rights. If, as suggested by the results in Table 8, the potential to

learn from the results of other �rms' wells redues the exploration rate in equilibrium, then the

regulator should take this e�et into aount when assigning bloks to �rms. In partiular, spatial

arrangements of property rights in whih eah �rm's bloks are lustered together should minimize

the free riding problem and improve the speed at whih eah �rm learns about their bloks. First,

sine there are fewer inter-�rm boundaries in the spatial alloation of lienses there is less inentive

for �rms to delay exploration in order to learn from other �rms' exploration. Seond, the spatial

orrelation of well outomes means that value of exploration to the �rm is higher when a blok is

surrounded by more same-�rm lienses. Finally, the e�ieny of exploration should be improved

under a lustered liense assignment sine eah well provides more information to the �rm about

the probability of suess on its bloks, and fewer wells are therefore required to obtain a given

amount of information.

29

To quantify the e�et of spatial realloation of lienses, I onstrut an alternative liense alloation

for eah month in the data using an algorithm that maximizes the spatial lustering of �rms'

lienses. Eah year, the algorithm realloates the lienses that are issued to year to �rms using a

deferred aeptane algorithm in whih bloks propose to �rms and are aepted or rejeted. The

algorithm inreases lustering beause bloks prefer to be alloated to �rms with more existing

lienses nearby, and �rms would like to be assigned the bloks that are nearest to their existing

bloks. The new assignment holds �xed the number of bloks assigned to eah �rm in eah year.

The drilling apaity of the industry (one well per �rm per month in the model) is therefore held

�xed relative to the baseline, and only the loation of eah �rm's lienses hanges. Details of the

liense lustering algorithm are provided in Appendix F.

Figure 10 illustrates the true and ounterfatual liense assignments in January 1975. The left

panel maps the lienses held by the largest 5 �rms, with lienses held by other �rms in red. The

28

Of ourse, other oil and gas produing regions suh as the Bakken Shale are subjet to di�erent drilling

tehnology, geology, trat sizes et. and the shape of the e�ets illustrated in Figure 9, whih are a funtion of the

underlying model parameters, are likely di�erent.

29

Note that lustering lienses has an additional e�et on drilling apaity. For instane, if a set of four neighboring

bloks are liensed to four di�erent �rms, the drilling apaity for that set of bloks is higher than if all four bloks

are liensed to the same �rm. Clustering lienses therefore redues loal drilling apaity, although total apaity

aross the entire region is held �xed. This e�et is likely not of �rst order importane in pratie sine the average

exploration probability per �rm-blok-month is around 2%, and the one blok per month apaity onstraint is far

from binding.

48



Figure 10: Clustered Lienses
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Notes: Left panel illustrates the loation of drilling lienses for the �ve largest �rms in January 1975 on the region

of the North Sea used for strutural estimation. Orange orresponds to Total, green to Conoo, yellow to Shell,

purple to BP, and light blue to Amoo. Red bloks are liensed to other �rms, and dark blue bloks are

unliensed. The right panel illustrates the ounterfatual liense assignment onstruted using the lustering

algorithm disussed in Appendix F.

right panel illustrates the ounterfatual lustered liense assignment in the same month. The

di�erene between the alloations is visually lear - eah of the largest 5 �rms holds lienses on

one or two ontiguous regions in the ounterfatual assignment, while in the true assignment these

�rms hold lienses on between 3 and 7 disonneted sets of bloks. The �rst two rows of Table

9 reord how the lustering algorithm hanges the average number of nearby own and other �rm

lienses (1st or seond degree neighbors), where the average is taken aross �rms, bloks, and

months.

The third through seventh rows of Table 9 reord statistis on exploration wells, development

of bloks, revenue and pro�t in equilibrium under the baseline and ounterfatual liense assign-

ments.

30

Clustering �rms' lienses inreases the total number of exploration wells drilled between

1964 and 1990 by 8% and inreases the number of bloks developed by 28%. The disounted value

of industry pro�t inreases by 42% from $13.85 billion to $19.62 billion. 13% of this inrease in

pro�t is from ost savings - the number of exploration wells drilled per developed bloks falls from

30

Equilibrium hoie probabilities hange under the ounterfatual liense assignment beause of the de�nition

of equilibrium given by Assumption A.2 in Setion 5. The equilibrium value of QE
, �rms' beliefs about the rate of

exploration of other �rms, is de�ned as the average exploration rate at the equilibrium distribution of states. Under

a di�erent alloation of lienses the equilibrium distribution of states hanges. I estimate a new liense alloation

proess, P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), using the ounterfatual lienses, whih I use when forward simulating in the

equilibrium algorithm detailed in Appendix E.
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Table 9: Clustered Lienses

Lienses Baseline Clustered

Nearby Own Lienses 0.371 0.583

Nearby Other Lienses 3.270 2.873

Exp. Wells 503.65 543.88

Bloks Dev. 22.43 28.78

Exp. Wells/Dev 22.45 18.90

Revenue 24.09 32.40

Pro�t 13.85 19.62

Notes: Results are averages over 40 simulations that over 1964-1990. Oil prie is set at its realized values. Well

outomes and development revenue are drawn using the posterior suess probabilities omputed using the true

outomes of all wells drilled before 1990. Revenue and pro�ts are in billions of 2015 dollars. Pro�ts are omputed

using estimates of exploration well and development ost from OGA data on apital expenditure. PDV revenue

and pro�t are 1964 values where the annual disount fator is 0.9. In the �rst olumn, the assignment of bloks to

�rms is set to the true assignment. I the seond olumn, the assignment of bloks to �rms is set to the

ounterfatual lustered assignment.

22.45 to 18.90 - with the remaining 87% due to inreased revenue. Industry surplus is greater than

in the ounterfatual that eliminates free riding reported in Table 8, and ahieves 59% of the gain

in surplus from the information sharing ounterfatual.

Under this ounterfatual assignment, �rms have less inentive to free ride and are able to learn

more quikly from the results of their own wells, sine eah well provides more information about

other bloks owned by the same �rm than under the baseline. By taking advantage of these e�ets,

the results suggest that the government ould substantially inrease industry surplus through a

simple rearrangement of the spatial alloation of bloks to �rms. Indeed, there is no sense in whih

this partiular alloation is optimal, and it may be that other alloations would result in faster

learning and a higher surplus. Within the limits of the model, whih for example rules out any

�rm spei� knowledge about partiular bloks before exploration, these results provide a lower

bound on the potential gain from spatial reassignment of lienses.

As with the on�dentiality window, it is worth asking why the atual alloation of lienses to �rms

does not appear to fully take into aount information externalities. The alloation mehanism

that has been in plae sine the �rst lienses were issued in 1964 has relied on �rms submitting

appliations for spei� bloks. One reason that �rms may not apply for a large number of lienses

lose together is that this type of lustered alloation inreases the risk borne by eah individual

�rm. Beause of the spatial orrelation of oil deposits, a risk averse �rm with a onstant prior mean

would prefer to be alloated lienses that are spread over a wide area. Under risk aversion, lustered

liense alloations are therefore likely to be industry-optimal but not optimal in expetation for

the individual �rms. Appliation data is on�dential, so I annot empirially verify whether �rms'

appliations are spatially dispersed. However, in my onversations with the regulator I learned
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that the government has oasionally reommended �rms take on lienses for bloks for whih they

did not apply in order to reate ontiguous bloks of lienses like those generated by the lustering

algorithm. One alternative poliy that ould ahieve some of the gain from liense lustering would

be to require �rms to apply for lienses at a regional rather than blok level, with the government

determining the exat alloation of bloks to �rms within the region.

9 Conlusion

In many industries the reation of new knowledge through R&D is arried out in a deentralized

manner by ompeting �rms. The growth of the industry-wide stok of knowledge depends on the

extent to whih �rms an observe and build on eah other's innovations. Allowing information

spillovers between �rms an improve the speed of umulative researh and redue dupliative or

soially ine�ient investments. On the other hand, information spillovers an diminish �rms'

individual inentives to innovate by enabling free riding on the innovations of other �rms. The

design of property rights over innovations plays an important role in balaning these e�ets.

I study the e�ets of information spillovers on R&D in the ontext of oil exploration, using historial

data from the UK North Sea. Oil exploration by individual �rms an be thought of as a proess of

umulative learning about the loation of oil deposits. Exploration wells are experiments loated

in geographial spae with observable outomes. If �rms an learn from the results of other �rms'

wells they fae an inentive to delay exploration. However, if other �rms' well outomes are

unobserved �rms are likely to make ine�ient drilling deisions, for example exploring regions

that are known by other �rms to be unprodutive.

To quantify the e�ets of information spillovers, I build and estimate a model of the �rm's dynami

exploration problem with spatial learning and information spillovers aross �rms. The estimated

model indiates that there is imperfet information �ow between �rms. In ounterfatual simula-

tions, I show that removing the inentive to free ride brings exploration and development forward

in time, inreasing the number of exploration wells drilled between 1965 and 1990 by 7.4% and

inreasing industry surplus in the same time period by 31%. Holding the free riding inentive

�xed and allowing perfet information �ow between �rms inreases surplus by 70% by inreasing

the speed of learning, inreasing the ost e�ieny of exploration by reduing the number of de-

velopment wells drilled per developed blok, and inreasing the onentration of development on

produtive bloks.

Equilibrium simulations under ounterfatual property rights poliies highlight the tradeo� be-

tween free riding and e�ient umulative researh. Strengthening property rights by extending

the well data on�dentiality period inreases industry surplus by inreasing the rate of exploration,

while weakening property rights by limiting the on�dentiality period inreases industry surplus by
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inreasing the speed of learning and e�ieny of exploration. Over the range of poliies I examine,

reduing the on�dentiality window to 0 ahieves the highest industry surplus, although extending

the on�dentiality window inreases surplus at the baseline of 5 years.

Notie that the gains from strengthening property rights here are due to the e�et of limiting inter-

�rm information �ow on the inentive to free ride on other �rms' disoveries. This di�ers from the

more ommonly disussed motive of allowing �rms to apture the surplus from their innovations.

In this setting, the ability of �rms to pro�t from their disoveries is held �xed aross alternative

poliies. Firms always have the right to extrat the oil they �nd on their bloks, with only the

ability to bene�t from other �rms' investments hanging aross alternative poliies. The spei�

features of this setting mean that the information externality e�ets of variation in property rights

are not on�ated with hanges in the ability of a �rm to pro�t from its own disoveries.

31

There is a substantial body of reent work quantifying the extent to whih property rights limit

follow-on researh in a number of settings (Murray and Stern, 2007; Williams, 2013; Murray et al.,

2016), but little empirial work on the potential for weaker property rights to enourage free riding.

The poliy results in this paper suggest that the question of the optimal generosity of property

rights is subtle, even in the absene of an e�et of stronger property rights on �rms' ability to

extrat rent from their disoveries. In some settings it may be optimal to strengthen property

rights to redue the free riding inentive even though stronger property rights hinder umulative

researh.

The �nal set of results quanti�es the e�et of hanging the spatial alloation of lienses to �rms.

By lustering lienses, the regulator is able to redue the inentive to free ride and inrease the

speed of learning, sine eah �rm learns more about its own bloks from a single well. The e�ets of

lustering on industry surplus are large, inreasing surplus by more than the no free riding ounter-

fatual. This �nding is related to the theoretial literature on learning in teams (Holmstrom, 1982;

Campbell, Ederer, and Spinnewijn, 2013), and suggests in settings where researh is deentralized

but a soial planner is able to assign projets to eah researher (here, oil �rms), surplus an be

enhaned by designing the assignment to minimize the extent to whih eah team member an

free ride o� the others' researh and maximize the extent to whih eah team member's researh

is umulative. This insight ould, for example, have appliations to the organization of publily

funded researh e�orts whih involve many independent researhers and labs ontributing to a

ommon projet.

Methodologially, this paper makes two ontributions that are appliable to other settings. First,

the model of beliefs and learning an be used to study other industries where researh takes plae

31

Similarly, in none of the ounterfatual experiments I examine do �rms internalize the bene�t their exploration

to other �rms. In partiular, simplifying assumption A1 prevents �rms from internalizing the e�et of their own

exploration on other �rms' future behavior. Relaxing this assumption would ompliate the model but would allow

me to ompute, for example, �rst-best exploration behavior in a senario with full information sharing in whih

�rms ollude to maximize industry surplus.
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in a well de�ned spae. For example, measures of moleular similarity are important metris in the

exploratory phase of pharmaeutial development (Nikolova and Jaworska, 2003), and measures

of the distane between moleular strutures are inreasingly used in the eonomis literature on

pharmaeutial R&D (Krieger, Li, and Papanikolau, 2017; Cunningham, Ederer, and Ma, 2018).

An appliation of this model to researh in hemial spae might be able to inform the design of

property rights, for example the dislosure of linial trial results, in that industry. Seond, the

estimation approah developed in this paper is potentially appliable to other settings in whih

agents have asymmetri information and the eonometriian is not fully informed about eah

agent's information set.
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Appendix

A Theoretial Framework

In this setion, I present a simple model of exploration to illustrate the e�ets of information

externalities on �rms' drilling deisions and struture the subsequent empirial analysis. Consider

a two period drilling game played by two �rms, i and j, who ontrol adjaent bloks. In the �rst

period, �rms simultaneously deide whether to drill an exploration well on their respetive bloks.

Exploration wells on blok i provide a binary signal about the presene of oil, and are suessful

with probability ρi ∈ (0, 1), whih is a primitive determined by tehnology and the geology of

the region being explored. Eah �rm always observes whether their own well is suessful, and

observes whether or not a well drilled by the rival �rm is suessful with probability α ∈ [0, 1].

In the seond period, �rms deide whether or not to develop the blok at ost κ. Development

yields a payo� π(ρi) > 0 with π′(ρi) > 0, π(0) < κ, and π(1) > κ, whih an be thought of as

the expeted present disounted pro�t from the �ow of oil over the blok's lifetime. In reality,

although exploration wells yield more omplex geologial data, the suess rate of wells based on a

binary wet/dry lassi�ation is an important statisti in determining whether to develop, ontinue

exploring, or abandon a blok. See for example Lerhe and MaKay (1995) and Bikel and Smith

(2006) who present models of optimal sequential exploration deisions based on binary signals.

Firm i's deision in eah period depends on their beliefs about ρi ∈ [0, 1], the probability of

exploration well suess on their blok. Suppose that �rms have a ommon prior belief that the

vetor ρ = (ρi, ρj) is drawn from a distribution F (ρ). Let σij be the orrelation between ρi and

ρj implied by F (ρ). Let Iit = (ownit, otherit) be �rm i's information at the beginning of period

t. ownit ∈ {−1, 0, 1} reords �rm i's exploration well outomes from period t − 1. If ownit = 1,

�rm i drilled a suessful exploration well, if ownit = −1, �rm i drilled an unsuessful well, and

if ownit = 0, �rm i did not drill an exploration well. otherit ∈ {−1, 0, 1} is �rm i's information

about �rm j's exploration well outomes, de�ned analogously exept that otherit = 0 if �rm j

drilled a well and �rm i did not observe it. Let G(ρ|I) be the Bayesian posterior distribution of

ρ given observed outomes I. Assume Ii1 = (0, 0) and therefore G(ρ|Ii1) = F (ρ) for both �rms.

Firms start period 1 with idential information and beliefs. Firms then deide whether to drill

an exploration well, and the results of wells are observed, with the results of a rival �rm's well

being observed with probability α. At the beginning of period 2, �rm i's beliefs are represented

by the posterior distribution G(ρ|Ii2). At this stage, �rms' posterior beliefs an di�er beause of

di�erenes in their information sets.

Let ρ̃(I) =
∫ 1

0
ρdG(ρ|I) be the expeted suess probability, and π̃(I) =

∫ 1

0
π(ρ)dG(ρ|I) be the

expeted development pro�t for a given information set, I. Let ρ0 = ρ̃(0, 0). In period 2, �rm i
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will drill a development well at ost κ if and only if the expeted return to doing so is positive.

That is, π̃(Ii,2)− κ ≥ 0. Therefore, de�ne a �rm's value funtion at the beginning of period 2 as:

V (I) = max{π̃(I)− κ, 0}

Let Wn,m be the period 1 expetation of V (I) onditional on the �rm observing the results of

n ∈ {0, 1} of their own and m ∈ {0, 1}of the other �rm's exploration wells. That is,

W0,0 = V (0, 0)

W0,1 = ρ0V (0, 1) + (1− ρ0)V (0,−1)

W1,0 = ρ0V (1, 0) + (1− ρ0)V (−1, 0)

W1,1 = ρ0ρ̃(0, 1)V (1, 1) + ρ0(1− ρ̃(0, 1)) (V (−1, 1) + V (1,−1)) + (1− ρ0)(1− ρ̃(0,−1))V (−1,−1)

In the �rst stage, �rms hoose whether or not to drill an exploration well at ost c+ ǫi. I assume ǫi

private information to �rm i, and is drawn from a type-I extreme value distribution with variane

parameter σǫ. It is then straightforward to show that the unique Bayes-Nash equilibrium of the

exploration game is for eah �rm to drill an exploration well with probability p∗ given by the

solution to equation 22. In what follows I assume W0,0 = 0. This assumption means that if not

exploration results are observed it is not optimal to develop the blok. This assumption an be

relaxed without hanging the nature of the equilibrium.

p∗ =
exp

(

1
σǫ
(p∗α(W1,1 −W1,0) +W1,0 − c)

)

exp
(

1
σǫ
p∗αW0,1

)

+ exp
(

1
σǫ
(p∗α(W1,1 −W1,0) +W1,0 − c)

)
(22)

Note that the value of additional information is always positive, so W1,1 > W1,0 > W0,1 > W0,0. I

will fous on the ase of diminishing marginal value of information where W1,1−W1,0 < W0,1. That

is, I assume the marginal value to �rm i of observing the outome of �rm j's well is higher when

�rm i does not drill a well itself.
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Under this assumption, it is straightforward to demonstrate

the following proposition.

Proposition 1. If W1,1 −W1,0 < W0,1 then

∂p∗

∂α
< 0. If in addition, 0 <

∂W1,1

∂σij
<

∂W0,1

∂σij
, then

∂p∗

∂σij
< 0

Proof. Let P1 denote the right hand side of equation 22. Let P0 = 1− P1.

32

That the value of additional signals should be diminishing is intuitive - in the limit additional signals have

no value as the posterior variane goes to zero. However, returns to information are not neessarily diminishing

everywhere, and it is possible to onstrut settings in whih the seond signal to be more valuable than the �rst

(see Radner and Stiglitz (1984) for a disussion of non-onavities in the returns to information).
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Applying the impliit funtion theorem to equation 22 yields

∂p∗

∂α
= −

(

p∗P1P0 (W11 −W10 −W01)

αP1P0 (W11 −W10 −W01)− σǫ

)

,

whih is < 0 if W1,1 −W1,0 < W0,1.

Applying the same approah to obtain the derivative with respet to σij , noting that

∂W0,1

∂σij
6= 0,

∂W1,1

∂σij
6= 0, and ∂W1,0

∂σij
= 0, yields

∂p∗

∂σij

= −





p∗P1P0

(

∂W1,1

∂σij
−

∂W0,1

∂σij

)

αP1P0 (W11 −W10 −W01)− σǫ



 ,

whih is < 0 if W1,1 −W1,0 < W0,1 and 0 <
∂W1,1

∂σij
<

∂W0,1

∂σij
.

The �rst part of this theorem says that as the probability of information spillover between �rms

inreases, the equilibrium exploration probability falls. If �rms are more likely to observe the

results of their rival's exploration wells, then �rms have more of an inentive to free ride sine the

relative expeted value of drilling their own well falls. The seond part of this theorem says that

the equilibrium probability of exploration is negatively related to the orrelation between ρi and

ρj , as long as 0 <
∂W1,1

∂σij
<

∂W0,1

∂σij
. This property applies, for example, if ρi and ρj are distributed

aording to a transformation of a multivariate Niormal distribution, as in the Gaussian proess

model developed in Setion 3 of the paper. Intuitively, inreased orrelation between �rms' signals

has a larger e�et of a �rm's ontinuation value when they only observe the other �rm's signal

and not their own. There is more inentive for �rms to free ride when the signals generated

by exploration wells on di�erent bloks are more orrelated. In partiular, if ρi = ρj (perfet

orrelation) then information generated by �rm j's exploration well is of equal value to �rm i

as information generated by its own exploration well. In this ase, W1,0 = W0,1. If there is

no orrelation, then signals generated by �rm j are not informative about ρi, and W1,1 = W1,0

and W0,1 = 0. In this ase, the equilibrium exploration rate, p∗, is idential to the equilibrium

exploration rate that obtains when α = 0.

This result illustrates that the extent to whih �rms have an inentive to free ride in exploration

depends on the information �ow between �rms - parameterized by α - and the ovariane of

signals generated by exploration wells on di�erent bloks - parameterized by σij . Information �ow

is largely a funtion of tehnology and regulation - for example, the information on�dentiality

period imposed by the UK regulator. Correlation of exploration well outomes at di�erent loations

is a funtion of underlying geology and the size and arrangement of liense bloks. The remainder

of this paper uses the UK data to estimate empirial analogues of these objets in the ontext of
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North Sea oil exploration and quanti�es the e�et of information externalities on industry surplus

using an eonometri model that builds on the simple theoretial model presented here.

A �nal theoretial result illustrates the trade o� faed by the soial planner in manipulaitng

information �ow between �rms.

Proposition 2. Let p̃ be the probability of exploration that maximizes the joint expeted surplus of

the two �rms. Let p be the equilibrium probability when α = 0, and p be the equilibrium probability

when α = 1. If W10 > c and W1,0 +W0,1 − c > 2W1,1 − 2c, then for some value of σǫ, p < p̃ < p.

Proof. First, note that if W1,0 > c, then p → 1 and p → 1 as σǫ → ∞ and p → 0.5 and p → 0.5 as

σǫ → 0. Note also that p > p for any value of σǫ ∈ (0,∞) by Proposition 1. Sine equation 22 is

ontinuous in σǫ, for any p̃ ∈ (0.5, 1) there exists a value σ̃ǫ ∈ (0,∞) suh that p > p̃ > p.

Now, write the objetive funtion of the planner who an set the probability of exploration and

observes all well outomes as:

p̃ = arg max
p∈[0,1]

p2(2W1,1 − 2c) + 2p(1− p)(W1,0 +W0,1 − c).

The planner's optimum is given by:

p̃ =
1

2

(

W1,0 −W0,1 − c

W1,0 +W0,1 −W1,1

)

.

If W1,0 > c, then W1,1 > c and therefore p̃ > 0.5. furthermore, if W1,0+W0,1− c > 2W1,1− 2c then

p̃ < 1.

The ondition W10 > c says that the soial planner would prefer to drill a well on one of the bloks

than none of the bloks. The ondition W1,0 + W0,1 − c > 2W1,1 − 2c holds when the value of

information is su�iently onave suh that the soial planner would like to drill only one well on

one of the bloks. This result shows that the deentralized equilibrium an generate either too

many or too few wells in expetation, and information �ow between �rms an be �too high� or �too

low�. Values of α that are too lose to one indue too muh free riding, suh that the expeted

number of exploration wells is too low. On the other hand, low values of α make is more likely

that more than one exploration well is drilled. This result illustrates the ountervailing e�ets of

information �ow between �rms on soial surplus in equilibrium. Too little information �ow results

in soially ine�ient exploration, sine the soial value of additional exploration wells beyond the

�rst is lower than c. On the other hand, too muh information �ow between �rms inreases the

free riding inentive and results in too little exploration in equilibrium.

This result suggests that exploration behavior is a deentralized equilibrium may be suboptimal,

and that government poliy that manipulates the arrangement of lienses (and thus the orrelation
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of signals between �rms) or the information �ow between �rms might bring equilibrium exploration

rates loser to the soial optimum.

B Details of Logisti Gaussian Proess Model

This setion desribes the Bayesian updating rule for the logisti Gaussian proess model and relies

heavily on Setion 3 of Rasmussen and Williams (2006). The ode that I use to implement the

numerial Bayesian updating rule is a modi�ed version of the Matlab pakage made available by

Rasmussen and Williams.

33

The latent variable, λ(X) is assumed to be distributed aording at a Gaussian proess. That

is, λ(X) is a ontinuous funtion, and any �nite olletion of K loations {1, ..., K}, the vetor

(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a

ovariane matrix with (j, k) element κ(Xj , Xk) where κ(Xj , Xk) → κ(Xj, Xj) as |Xj −Xk| → 0.

I assume a onstant prior mean and a ovariane spei�ation given by equation 2. The prior

distribution is therefore de�ned by three parameters, (µ, ω, ℓ). Denote the density funtion of

prior distribution of λ by p0(λ). Observed data is desribed by y = {(s(w), Xw)}w∈W for a set of

wells, W . The Bayesian posterior distribution of λ onditional on y is given by:

p1(λ|y) =
p0(λ)p(y|λ)

p(y)
(23)

p(y|λ) =
∏

w∈W

(1(s(w) = 1)ρ(λ(Xw)) + 1(s(w) = 0) (1− ρ(λ(Xw))))

p(y) =
∏

w∈W

(

1(s(w) = 1)

∫

ρ(λ(Xw))p0(λ)dλ+ 1(s(w) = 0)

(

1−

∫

ρ(λ(Xw))p0(λ)dλ

))

Where ρ(λ(X)) is de�ned by equation 1. This posterior distribution is di�ult to work with. In

partiular, in order to ompute the posterior E(ρ(X)|y) for some loation X I must �rst ompute

the marginal distribution of λ(X), whih is given by:

p(λ(X) = λ̃|y) =

∫

1(λ(X) = λ̃)p1(λ|y)dλ (24)

Then the expeted value of ρ(X) is given by:

E(ρ(X)|y) =

∫

ρ(λ̃)p(λ(X) = λ̃|y)dλ̃ (25)

The posterior marginal distribution of λ(X) given by equation 24 is non-gaussian and has no

33

Available at http://www.gaussianproess.org/.
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analytial expression. This means that it is omputationally ostly to ompute E(ρ(X)|y).

To solve this problem I use a Gaussian approximation to the posterior p1(λ|y) omputed using the

Laplae approximation tehnique detailed in Setion 3.4 of Rasmussen and Williams (2006), based

on Willaims and Barber (1998). This method is widely used for Bayesian lassi�ation problems

in omputer siene (Tipping, 2001) and in geostatistis (Diggle, Tawn, and Moyeed, 1998).

Denote the Gaussian approximation to p1(λ|y) by q1(λ|y). Sine q1(λ|y) is Gaussian, the posterior

distribution over any �nite olletion of K loations an be written as a N(µ1,Σ1) where µ1
is

K × 1 and Σ1
is K ×K. In partiular, the marginal distribution given by equation 24 is a Normal

distribution.

Notie that, sine q1(λ|y) is itself a Gaussian proess, it is straightforward to update beliefs again

given a new set of data, y′, following the same proedure. This updating proedure de�nes the

operator B(·) in equation 4, where G(ρ) is the distribution of ρ implied by the prior Gaussian

distribution of λ and the logisti squashing funtion 1, and G′(ρ) is the distribution over ρ de�ned

by the Gaussian approximation to the posterior distribution of λ.

B.1 Gaussian Proess Likelihood

Let s be a vetor of well outomes and X be a vetor of well loations, both random variables.

Vetors are arranged in hronologial order so that the �rst element of eah vetor orresponds to

the �rst well drilled, the seond to the seond well drilled et. Write the wth element of eah vetor

as sw and Xw. Let ρ(·) : X → [0, 1] be the random funtion whih de�nes the probability of suess

at eah loation in the spae X, drawn form a logisti Gaussian proess with density g(ρ, θ) where

θ is a parameter vetor. sw is a Bernoulli random draw with probability P (sw = 1) = ρ(Xw).

Adopt the following assumption about the proess that generates X :

• Assumption A.3: Xw is drawn from a distribution F (Xw|θ, {(Xy, sy)}y<w). That is, the

distribution of Xw depends only on the parameters θ, and the loations and outomes of

past wells, and not on the random funtion ρ diretly.

The joint distribution of (ρ, s,X) is then given by:

F (ρ, s,X) =

[

g(ρ, θ)
∏

w

ρ(Xw)
1(sw=1)(1− ρ(Xw))

1(sw=0)

][

∏

w

f(Xw|θ;{(Xy, sy)}y<w)

]

.

In the language of Cox (1975) the joint distribution is the produt of two partial likelihood funtions.

One that is the produt of the probabilities of outomes sw onditional on loations Xw, (the left

brakets) and one that is the produt of the probabilities of loations Xw onditional on past
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loations and outomes {(Xy, sy)}y<w (the right brakets). Wong (1986) shows that onsistent

estimates of the parameters θ an be obtained by maximizing partial likelihood funtions with this

nested onditioning struture. That is, one an omit one or the other of the two partial likelihood

funtions and obtain onsistent estimates of the parameters θ. Chapter 13.8 of Wooldridge (2002)

disusses this partial likelihood approah in detail for a panel data setting (of whih this is a speial

ase).

To obtain the likelihood funtion given in equation 3, the random funtion ρ is integrated out of

the partial likelihood given by the left brakets. Gill (1992) shows that suh a marginalized partial

likelihood funtion has the same properties as the partial likelihood provided that the omitted

term that appears in the full but not the partial likelihood does not depend on the variable that

is integrated out. This is exatly assumption A.3.

B.2 KL Divergene

I ompute the expeted KL divergene for eah (j, t) aording to the following equation:

KLjt = Et(ρj)

∫

gt(ρ|{j, 1}) log

(

gt(ρ|{j, 1})

gt(ρ)

)

dρ

+ (1−Et(ρj))

∫

gt(ρ|{j, 0}) log

(

gt(ρ|{j, 0})

gt(ρ)

)

dρ (26)

Where gt(ρ) is the density of the �rm's posterior beliefs over the vetor ρ after observing all wells

up to date t, gt(ρ|{j, 1}) is the updated posterior after observing an additional suessful well on

blok j, and gt(ρ|{j, 0}) is the updated posterior after observing an additional unsuessful well

on blok j. The �rst term in the expression is the expeted probability of suess on blok j

multiplied by the information gain from a suessful well on that blok. The seond term is the

expeted probability of failure on blok j multiplied by the information gain from a failed well.

C Estimation Details

C.1 First Step: Estimating Conditional Choie Probabilities

In the �rst step, I estimate CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an ation j in the exploration and development stages of the game onditional on its state

S. With a su�iently large data set, these probabilities ould be estimated as empirial means

for eah state. However, sine the number of possible states is large relative to the data, I impose

some additional struture. Consider �rst the exploration deision. Notie that equation 12 an be
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rewritten as

P (aEf = j|S) =
exp

(

ṽEf (j,S)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,S))
)

(27)

where ṽEf (j,S) =
1
σǫ
vEf (j,S) −

1
σǫ
vEf (0,S).

I approximate ṽf
E(j,S) with a linear equation with the following terms:

• Summary statistis of the �rm's beliefs: E(ρj |Gft), E(ρj |Gft)
2
, V ar(ρj |Gft), V ar(ρj |Gft)

2
,

and E(ρj |Gft)V ar(ρj|Gft).

• The number of lienses held near blok j by �rm f and by other �rms: |{k : k ∈ Jft and d(j, k) ≤

1}|, |{k : k ∈ ∪{Jgt}g 6=f and d(j, k) ≤ 1}|, and |{k : k ∈ ∪{Jgt}g∈F and d(j, k) ≤ 2}|, where

d(j, k) = 1 if j and k are neighbors, d(j, k) = 2 if j and k are seond degree neighbors et.

• The number of nearby unobserved wells within one year of being made publi: |{w : of (w) =

0 and t(w) + τ − 12 ≤ t ≤ t(w) + τ}|.

• A quadrati in the prie level: Pt and P 2
t .

• Blok j and �rm f �xed e�ets.

Estimating P̂ (aEf = j|S) is then a ase of estimating the parameters of this approximation to

ṽf
E(j,S).

The approximation to ṽf
E(j,S) depends on the distribution of lienses and wells �near� blok j.

Intuitively, the di�erene between the value of drilling on blok j and taking no ation should not

depend on the distribution of lienses and wells at distant loations. Fixed e�ets are inluded to

aount for blok level heterogeneity in drilling osts or beliefs not aounted for by well results

and �rm level heterogeneity is drilling osts. If blok level �xed e�ets are not inluded, blok level

heterogeneity an lead to biased estimates of the logit oe�ients on �rms' beliefs. In partiular,

bloks that have idiosynratially low drilling osts or on whih there is additional publi infor-

mation indiating potential produtivity are likely to be explored more intensively. Firm beliefs

about these bloks are likely to have lower variane on average beause of this high exploration

rate. Aross-blok variation in average drilling rates and beliefs would therefore lead to the spu-

rious onlusion that greater unertainty in beliefs redues the probability of exploration. Sine

there is no expliit blok or �rm level heterogeneity in the model, I estimate the parameters of

the polynomial approximation to ṽf
E(j,S) one inluding �xed e�ets, then I �nd the interept

that mathes the average exploration probability without �xed e�ets, holding other parameters

at their estimated level. I use this interept in generating predited hoie probabilities.

If the state variable were observable in the data, then P̂ (aEf = j|S) ould be estimated using the

likelihood funtion implied by equation 27. However, the asymmetri information struture of the
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model means that the true state is not observed by the eonometriian. The data does not inlude

the vetor of that reords whih other-�rm well outomes were observed by �rm f . Di�erent

realizations of of imply di�erent states through the e�et of observed well outomes on Gft and

WU
ft. The data is therefore onsistent with a set of possible states S̃f for eah �rm.

34

To reover CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . Let S1
ft be the state if of(w) = 1 and S0

ft be the state

if of(w) = 0. From the eonometriian's perspetive, P (S1
ft|{S

1
ft,S

0
ft}, α) = α. I provide a formal

de�nition of the distribution P (Sf |S̃f , α) in subsetion C.3 below

Given this distribution over states, the likelihood of a sequene of exploration hoie observations

is:

LE
f =

∑

Sf∈S̃f









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)
exp

(

ṽEf (j,Sft)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,Sft))
)



P (Sf |S̃f , α)



 . (28)

I maximize this likelihood to jointly estimate the oe�ients of the approximation to ṽEf (j,Sft)

and the parameter α. Sine I sometimes observe multiple exploration wells for the same (f, t) I

treat these as separate observations inside the brakets in equation 28.

I derive a similar expression for the likelihood of a sequene of development hoies. Fixing α at

the previously estimated value, I maximize the development likelihood to estimate the oe�ients

of the approximation to ṽDf (j,Sft). Beause development of a blok is a rare event (it ours

only 20 times in the estimation sample), I inlude fewer statistis in the approximation to the

state variable to avoid over�tting. In partiular, I omit �xed e�ets, quadrati terms in �rms'

beliefs about ρj and the oil prie, and statistis on the number of nearby lienses and nearby

unobserved wells. Adding higher order terms in beliefs about ρj leads to impreise oe�ient

estimates, suggesting that extrapolation of the predited hoie probabilities to unobserved states

would be unreliable. The estimated oe�ients imply onditional hoie probability estimates,

P̂ (aE = j|S) and P̂ (aD = j|S).

I use P̂ (aE = j|S) and P̂ (aD = j|S) to estimate the �rms beliefs about the average exploration

34

More preisely, and element of S̃f is a partiular sequene of �rm-f states Sf = {Sft}
T
t=1. See the subsetion

below for a formal de�nition of S̃f .

66



rate QE
and QD

de�ned in equation 16 with the mean CCPs aross realized states in the data,

Q̂E =
1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P̂ (aE = j|Sft) (29)

Q̂D =
1

TF

T
∑

t=1

F
∑

f=1

1

|Jft|

∑

j∈Jft

P̂ (aD = j|Sft).

Logit oe�ients and marginal e�ets for he estimated CCPs are reorded in Table A1.

Table A1: Conditional Choie Probabilities: Logit Coe�ients

Exploration Development

Coe�ient SE Marginal E�et Coe�ient SE Marginal E�et

Beliefs about ρj

Mean 14.526 2.292 0.1764 3.022 1.680 0.0049

Variane 4.916 1.149 0.0216 -5.582 2.201 -0.0089

Mean Squared -9.041 1.967

Variane Squared -1.733 0.396

Mean ∗ Variane -1.461 1.741

Oil Prie ($100s) 3.272 1.337 0.0134 -0.233 0.704 -0.0004

Oil Prie Squared ($100s) -0.020 0.009

Lienses

Own Firm Neighboring 0.129 0.029 0.0028

Other Firm Neighboring 0.015 0.030 0.0003

Total Nearby 0.105 0.016 0.0023

Unobserved Wells -0.153 0.034 -0.0033

Mean Exploration Probability (Q̂E
) 0.0223

Mean Development Probability (Q̂D
) 0.0017

N Firms 44 44

N Firm-Months 5977 5977

Notes: Table reords logit oe�ients on state var summary statistis the enter the approximation to the state

for the �rm's exploration and development deisions. Standard errors are omuted using the outer produt of the

gradients of the log likelihood. Marginal e�ets are the predited hange in exploration and development probability

from a marginal hange in eah of the listed statistis. E�ets are alulated using the �rst derivatives of the logit

hoie probability expression. All statistis are for the ase of a �rm with drilling rights on a single blok, j, for

whih the statistis that enter the approximation to the state variable are set to the mean observed values from the

data.
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C.2 Seond Step: Estimating Dynami Parameters

In the seond step, I use the estimated onditional hoie probabilities P̂ (aE = j|S) and P̂ (aD =

j|S) to estimate the ost parameters θ2. The �rm's value funtions (9) an be written in terms of

the expeted sum of future payo�s and osts as

V E
f (S, θ2) = E





∞
∑

t=0

βt
∑

j=Jft

(

1(aDft = j) (πj − (κ0 − νftj))− 1(aEft = j) (c(j,Sft)− ǫftj)
)



 . (30)

Where the expetations are taken over all future ost shoks, �rm ations, and realizations of

s(w), of(w), and πj with respet to the �rm's beliefs at state S, and c(Sft, j) is given by equation

17. To estimate this expetation, I forward simulate the model from initial state S using the

CCP estimates P̂ (aE = j|S) and P̂ (aD = j|S) to draw �rm f 's ations and estimates of �rm f 's

beliefs about other �rms ations Q̂E
and Q̂D

to draw other �rms' ations.
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Simulation proeeds

as follows:

1. Draw an exploration ation using probabilities P̂ (aEft = j|St). Compute expeted ost shok

ǫftaE , given realized ation. If a well is drilled, let it be suessful with probability orre-

sponding to �rm f 's beliefs at state St.

2. Draw other �rms' exploration ations using Q̂E . Let wells be suessful with probability

orresponding to �rm f 's beliefs at state Sft.

3. Draw of(w) for wells drilled by other �rms using α̂.

4. Update state to S ′
ft.

5. Draw a development ation using P̂ (aDft = j|S ′
ft). Compute expeted ost shok νftaE , given

realized ation. If blok j is developed draw development revenue πj from the distribution

orresponding to �rm f 's beliefs at state S ′
ft.

6. Draw other �rms' development ations using Q̂D.

7. Update state to Sft+1. Go to step 1.

36

35

Hotz and Miller (1993) obtain estimates of the �rm's value funtion using �nite dependene by normalizing one

state to have a ontinuation value of 0. This approah is ompliated here sine the �absorbing state� of developing

all bloks is the result of a series of hoies, rather than a single hoie that is available at every state (for example

exit in a standard dynami oligopoly model).

36

Notie that sine ost parameters θ2 enter equation 30 linearly, I only need to perform the simulation step one.

Simulated ontinuation values an be obtained under di�erent parameter vetors θ2 by multiplying the simulated

osts and revenues by the relevant elements of the parameter vetor (Bajari, Benkard, and Levin, 2007).
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Let r index simulation runs and V E
fr(S, θ2) be the present disounted sum of �rm f 's payo�s and

osts from run r. Given R simulations from state S, estimates of the value funtions given by

equation 30 are:

V̂ E
f (S, θ2) =

1

R

R
∑

r=1

[

V E
fr(S, θ2)

]

. (31)

A similar proedure is used to ompute estimates of development stage value funtions V̂ D
f (S, θ2)

where the simulation algorithm is started at step 5. In pratie I set R = 500 and run eah

simulation for 480 periods (40 years). Plugging estimated value funtions into equation 10 yields

estimates of hoie-spei� value funtions, v̂Ef (a
E,S, θ2) and v̂Df (a

D,S, θ2), whih an be ombined

with equation 12 to generate model-implied hoie probabilities

P̃ (aEf = j|S, θ2) =
exp

(

1
σǫ
v̂Ef (j,S, θ2)

)

∑

k∈Jft∪{0}
exp

(

1
σǫ
v̂Ef (j,S, θ2))

) . (32)

With a similar expression for P̃ (aDf = j|S, θ2). Dropping the E and D for simpliity, I write

the relationship between the model-implied probabilities and the empirial �rst-step probabilities,

P̂j(S), as:

P̂ (a = j|S) = P̃ (a = j|S, θ2) + ξjS (33)

Where, at the true parameters, ξjS ontains the error due to sample size and approximation of the

state variables in P̂ (a = j|S) and the simulation error in P̃ (a = j|S, θ2). I estimate the parameters

θ2 by non-linear least squares, staking exploration hoie and development hoie probabilities

for eah state S. Note that I an ompute both P̂ (a = j|S)) and P̃ (a = j|S, θ2) for any state S,

inluding those not diretly observed in the data. In pratie I selet a random 25% subset of the

states observed in the data to inlude in the regression.

Sine the simlated value funtions enter non-linearly in the model implied probabilities, P̃ (a =

j|S, θ2), non-linear least squares estimation based on equation 33 is asymptotially biased if the

number of simulation draws, R, is �xed (La�ont, Ossard, and Vuong, 1995). To ensure onsisteny,

it is neessary either to add a bias orretion term, or to assume that R goes to in�nity faster

than the square root of the number of observations (Gourieroux and Monfort, 1993) - here the

number of states inluded in the regression. Due to omputational di�ulty in obtaining the bias

orretion term, I rely on the assumption of an asymptotially inreasing number of simulation

draws.
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C.3 Tehnial Details on Distribution of States

De�ne a period t observation as

Xt = {{(j(w), s(w), f(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}, (34)

where the data onsists of T suh observations, X = {Xt}
T
t=1. If the states {Sft}f∈F were uniquely

identi�ed by Xt, then P̂ (aEf = j|S) ould be estimated using a straightforward logit. This is not

possible sine the eonometriian does not observe the vetor of . That is, the eonometriian does

not know whih well outomes eah �rm observed in reality. Di�erent realizations of of imply

di�erent states through the e�et of observed well outomes on Gft and WU
ft. The state variable

Sft is therefore not diretly observed in the data, and for every (f, t), the data is onsistent with

a set of states.

Formally, denote a sequene of �rm f states as Sf = {Sft}
T
t=1. There exists a funtion s(·) suh

that Sf = s(of |X). De�ne S̃f (X) as the range of this funtion. That is, S̃f is the set of �rm f

states that are onsistent with the data. There also exists an inverse orrespondene s−1(Sf |X)

that maps states to (possibly multiple) vetors of that imply those states.

To reover CCP estimates, observe that di�erent values of α de�ne distributions over the elements

of S̃f . In partiular, the probability of sequene of states Sf ∈ S̃f , onditional on the data is:

P (Sf |X,α) =
∑

o∈s−1(Sf |X)

(

α
∑

w o(w)(1− α)
∑

w(1−o(w))
)

. (35)

Given this distribution over true states, the likelihood of a sequene of exploration hoie obser-

vations onditional on (X,α) is given by:

LE
f =

∑

Sf∈S̃f (X)









T
∏

t=1

∏

j∈Jft∪{0}

1(aEft = j)
exp

(

ṽEf (j,Sft)
)

1 +
∑

k∈Jft
exp

(

ṽEf (k,Sft))
)



P (Sf |X,α)



 . (36)

Note that the summation in equation 36 is an expetation. In pratie, it is omputationally infea-

sible to ompute the ation probabilities at every possible state sequene Sf ∈ S̃f . I approximate

this expetation for di�erent values of α using importane sampling methods.

C.4 Estimation of Development Payo�s

Firms deide to develop bloks based on the expeted payo� from the blok, πj and the �xed ost

of developing the blok, κ. πj is drawn from a distribution Γ(π; ρj, P ). I assume that development

payo� is given by πj = Rjµ(P ) where Rj is the quantity of oil reserves on blok j (in barrels), and
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µ(P ) is a multiplier that depends on the prie per barrel. I assume that reserves are drawn from

a log normal distribution: Rj ∼ logN(αR + µRρj, σR). Note that the mean parameter depends on

the true exploration suess probability of the blok, ρj .

Note that I do not observe Rj diretly in the data, but I do observe the realized �ow of oil from

all prodution wells drilled from a development platform up to 2000. I annot use the total oil

produed from eah blok to measure Rj for two reasons. First, most �elds were still produing in

January 2000, the last month in my data, and the sum of all oil produed is therefore less than the

total reserves. Seond, older �elds may have undergone several rounds of redevelopments (so-alled

�enhaned oil reovery�. See Jahn, Cook, and Graham, 1998).

A lassi prodution pro�le involves a pre-spei�ed number of wells being drilled, over whih time

the prodution �ow of the �eld ramps up. One the total number of wells is reahed, prodution

peaks and then begins to fall o� (Lerhe and MaKay, 1999). To estimate the volume of reserves

initially pereived as reoverable by the �rm, I use data on the set of wells that were drilled before

prodution peaked on eah blok, and extrapolate into the future using an estimate of the rate of

post-peak deline in prodution. Let t0(j) be the month that prodution began on blok j and let

t∗(j) be the month of peak prodution. Let rj(t) be the observed �ow of oil from blok j in month

t. I estimate a parameter bj that measures the rate of post-peak deline in prodution separately

for eah blok j by applying non-linear least squares to the following spei�ation:

rj(t) = rj(t
∗(j))exp(−bj(t− t∗(j))) + ǫjt (37)

Where the estimation sample inludes all months after t∗(j) for all developed bloks, j. Estimated

initial reserves are then given by:

Rj =

t∗(j)
∑

t=t0(j)

rj(t) +
∞
∑

t=0

rj(t
∗(j))exp(−b̂jt) (38)

Where the �rst term is the realized pre-peak prodution, and the seond term is the extrapolated

post-peak prodution.

Figure 2 illustrates the relationship between exploration suess rate and log estimated reserves.

Notie that the expeted size of the reserves is monotonially inreasing in the suess rate of

exploration wells on the same blok, and the relationship is approximately log-linear. I assume

log-linearity and estimate the parameters of the distribution of Rj by OLS using the following

regression spei�ation:

log(Rj) = αR + µRρj + ǫj (39)

Where ǫj ∼ N(0, σR) and I measure ρj using the realized pre-development exploration well suess

rate on blok j. The estimated parameters are reported in Table A2.
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Finally, note that πj = Rjµ(P ) where µ(P ) = P (1 − 0.125) 1−β40

40(1−β)
, This multiplier onverts the

total reserves in barrels to the present disounted value of revenue at the urrent prie level, less

the 12.5% royalty paid to the government, where oil is assumed to �ow at a onstant rate for 40

years, at whih point the reserves, Rj are exhausted.

Table A2: Distribution of Development Payo�s

Parameter Estimate SE

αR 1.594 0.420

µR 5.990 0.964

σ2
R 1.949 0.115

N 80

Notes: Reported oe�ients are from OLS estimation of regression spei�ation given by equation 39. Sample

inludes one observation for eah of the 80 bloks developed before 2000 in the area north of 55◦N and east of 2◦W .

Left hand side variable is the log of the predited oil reserves on blok j, measured in millions of barrels. Right

hand side variable is the observed exploration well suess rate for blok j alulated using all exploration wells

drilled on blok j before development.

C.5 Estimation of Liense Issuing Proess

Firm f has beliefs about the evolution of the distribution of drilling lienses desribed by a two

step proess that takes plae at the beginning of eah period. First, the set of all bloks that will

be liensed to any �rm that period is drawn. Next the identities of the �rms who reeive lienses

on eah blok are drawn. The proess is desribed by the following equations:

P (j ∈ ∪{Jgt}g∈F |Sft−1) = Φ(β0 + β1Licjt−1 + β2LicNeighborsjt−1) (40)

P (j ∈ Jft|j ∈ ∪{Jgt}g∈F ,Sft−1) = Φ(β3 + β4Licfjt−1 + β5Licjt−1 + β6LicNeighborsfjt−1)

Where Licjt−1 is an indiator for whether blok j was liensed to any �rm at date t−1, Licfjt−1 is

an indiator for whether blok j was liensed to �rm f at date t−1, LicNeighborsjt−1 is the number

of bloks neighboring blok j that were liensed to any �rm at date t − 1, LicNeighborsfjt−1 is

the number of bloks neighboring blok j that were liensed to �rm f at date t − 1, and Φ(·) is

the standard Normal distribution funtion.

The �rst equation desribes the probability that blok j is liensed to some �rm in date t. The

seond equation desribes the probability that blok j is liensed to �rm f , onditional on it being

liensed to some �rm at date t. Notie that this spei�ation does not rule out multiple �rms

reeiving lienses on the same blok. However, I allow the probability blok j is liensed to �rm f

in period t to be a funtion of whether it was liensed to another �rm in the previous period, t−1.
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Table A3: Liense Issuing Proess

Probability of Assignment Conditional Probability

to Any Firm of Assignment to f

Dependent Variable 1(j ∈ ∪{Jgt}g∈F ) 1(j ∈ ∪Jft)
Conditional on ∀j ∈ J ∀j ∈ ∪{Jft}f∈F

Constant -3.004*** -2.001***

(.039) (.036)

Liensed in t− 1 5.334*** -1.780***

(.056) (.050)

Liensed to f in t− 1 . 6.611***

. (.056)

Neighbors Liensed in t− 1 .366*** .

(.055) .

Neighbors Liensed to f in t− 1 . .099

. (.066)

N 81270 860112

Notes: Reported oe�ients are from probit regressions of equations 40. The �rst olumn reports oe�ients from

the �rst equation. An observation is a blok-month. The left hand side variable is an indiator for whether blok j

is liensed to any �rm f ∈ F in month t. The sample inludes all blok-month ombinations for 1965-1990 on the set

of bloks used in the strutural estimation, inluding those never liensed. The seond olumn reords oe�ients

from the seond equation. An observation is a �rm-blopk-month. The left hand side is an indiator fro whether

blok j is liensed to �rm f in month t. The sample inludes all possible �rm-blok-month ombinations for those

blok-months where j is liensed to some �rm f ∈ F . This is, if blok j was liensed to �rm f in month t, the

regresison would inlude a (g, j, t) observation for every �rm g ∈ F .

I estimate the parameters of equations 40 by running two probit regressions. The �rst equation is

estimated using a panel at the blok-month level. The sample inludes of all bloks for every month

from 1965 to 2000. The left hand side variable is an indiator for whether blok j was liensed

to any �rm in month t. The seond equation is estimated using a panel at the �rm-blok-month

level. The sample inludes an observation for every possible (f, j, t) ombination for months t in

whih blok j was liensed to some �rm.

The estimated parameters for both equations are reorded in Table A3.

D Identi�ation Details

In this setion I provide a proof of identi�ation of the exploration onditional hoie probabilities

(CCPs) P (aEf = j|S) and the information spillover parameter, α. Idential reasoning applies to

development hoie probabilities. I use the notation developed in Setion 6 of the main paper

and in Appendix D. In addition, let X be the spae of possible data points, where X ∈ X is an
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observation as de�ned by equation 34.

Proposition 3. Suppose P (aEf = j|S̃f (X)) is observed for all f and all X ∈ X. These observed

probabilities are onsistent with a unique value of α and a unique value of P (aEf = j|Sf) for every

possible state Sf .

Proof. First, suppose that α is known.

Let wt be a vetor of length W = |{w : t(w) < t}| indexed by i ∈ [1, ...,W ] is an index whih

ontains the identity w of eah well w ∈ {w : t(w) < t} in some order suh that we an refer to well

identities by, wt(i) . Let γft be a vetor of length W with ith element γft(i) = 1(f(wt(i)) = f).

γft is a vetor of indiators for whether eah well w was drilled by �rm f .

We an then rewrite the observable data Xt as Xt = {xt, {γft}f∈F}. Where

xt = {{(j(w), s(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}.

xt desribes the loation and outome of all wells drilled up to date t, the date t distribution of

lienses, and the oil prie.

De�ne oft as a vetor of length W with ith element given by oft(i) = of (wt(i)). oft is just an

ordered vetor of ontaining indiators for whether �rm f observed eah well w ∈ {w : t(w) < t}

(a subset of the elements of of).

Suppose for simpliity that all wells w, t− t(w) < τ , so no wells are older than the on�dentiality

period τ . This assumption simpli�es notation, and the following argument easily generalizes. I

now drop the t subsript for simpliity.

Firm f 's state is uniquely de�ned by the pair (of , x). That is, there exists a funtion Sf =

s(f,of , x). The set of states that are onsistent with the objets observed in the data is de�ned

by a orrespondene S̃f = s̃(f,γf , X). In partiular:

s̃(f,γf , x) = {s(f,of , x) : γf(i) = 1 ⇒ of(i) = 1∀i ∈ [1, ...,W ]}.

So s̃(f,γf , x) ontains states implied by all possible values of of . In partiular, eah well drilled

by a �rm other than f may or may not have been observed.

Now �x a value of x. There are 2W possible values of γf and therefore of S̃f = s̃(f,γf , x). There

are also 2W possible values of of and therefore of Sf = s(f,of , x). Let Sf(x) be the set of possible

values of Sf and S̃f (x) be the set of possible values of S̃f . For any ation hoie j ∈ Jf and any

S̃f ∈ S̃f (x) we an write:

P (aEf = j|S̃f) =
∑

Sf∈Sf (x)

P (aEf = j|S)P (Sf |S̃f).
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Where P (Sf |S̃f) is a funtion of α given by equation 35 if Sf ∈ S̃f and P (S|S̃f) = 0 if Sf /∈ S̃f .

There are 2W suh equations whih de�ne a linear system P̃ = AP where P̃ is a 2W × 1 vetor

whih staks the probabilities P (aEf = j|S̃f), P is a 2W × 1 vetor whih staks the probabilities

P (aEf = j|S), and A is a 2W × 2W matrix ontaining the probabilities P (Sf |S̃f) whih are known

funtions of α. P̃ is observed in the data. A is a known funtion of the single parameter α. P is

an unknown vetor for whih we would like to solve.

The vetor of true CCPs P an be reovered from the observed probabilities, P̃ when A has full

rank. This is the ase here beause the system of equations an be written suh that A is lower

triangular with non-zero diagonal elements. I show this by providing an algorithm to solve the

system by forward substitution, whih is only possible in a triangular system of equations. The

algorithm proeeds as follows:

1. Denote the vetor with all entries equal to 1 by 1 Start with γ1
f = 1. Let S̃1

f = s̃(f, 1, x)

and S1
f = s(f, 1, x) . Notie S̃1

f = S1
f . If all wells were drilled by �rm f , then they are all

observed. Therefore

P (aEf = j|S̃1
f ) = P (aEf = j|S1

f ).

P (aEf = j|S1
f ) is uniquely identi�ed.

2. Denote the vetor with all entries exept the ith equal to 1 and the ith equal to 0 by 1
{i}
.

Let γ2
f = 1

{i}
. Let S̃2

f = s̃(f, 1{i}, x) and S2
f = s(f, 1{i}, x) . Notie that S̃2

f = {S1
f ,S

2
f}. The

�rm either did or did not observe the ith well. Therefore

P (aEf = j|S̃2
f ) = αP (aEf = j|S1

f ) + (1− α)P (aEf = j|S2
f ).

Sine the other terms are already known, P (aEf = j|S2
f ) is uniquely identi�ed.

3. Repeat step 2 for eah index ∀i ∈ [1, ...,W ].

4. Proeed to vetors γf with two entries equal to 0 and repeat step 2.

5. Continue iterating through vetors with inreasingly more entries equal to 0 until P (aEf =

j|Sf ) has been solved for for all Sf ∈ Sf (x).

This algorithm generates the unique solution P of the system of equations P̃ = AP . This an be

repeated for any value of x.

Now I argue that α is uniquely identi�ed. Fix a pair (x, x′) where x and x′
are idential exept for
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the outome of the ith well. The following four equations hold:

P (aEf = j|s̃(f, 1, x)) = P (aEf = j|s(f, 1, x))

P (aEf = j|s̃(f, 1, x′)) = P (aEf = j|s(f, 1, x′))

P (aEf = j|s̃(f, 1{i}, x)) = αP (aEf = j|s(f, 1, x)) + (1− α)P (aEf = j|s(f, 1{i}, x))

P (aEf = j|s̃(f, 1,{i} x′)) = αP (aEf = j|s(f, 1, x′)) + (1− α)P (aEf = j|s(f, 1{i}, x′))

The left hand side of eah equation is observed. Notie that P (aEf = j|s(f, 1{i}, x)) = P (aEf =

j|s(f, 1{i}, x′)) sine when the ith well is unobserved the two states are idential to the �rm. There

are therefore three unknown hoie probabilities and the parameter α on the right hand side. α

an be solved for in terms of observed quantities.

E Simulation Details

In this setion, I desribe the simulation algorithm used to ompute approximate ounterfatual

equilibria of the estimated model. Inputs to the simulation are a vetor of model parameters, θ, a

on�dentiality window, τ , a liense assignment{Jft}f∈F for eah period, and �rst step onditional

hoie probability (CCP) estimates, P̂ (aE = j|S) and P̂ (aD = j|S). The output of the simulation

are equilibrium CCPs, P ∗(aE = j|S). Note that I hold development hoie probabilities �xed.

The algorithm works by taking a set of CCPs as input and forward simulating those probabilities

from eah state Sf . The simulation generates model-implied hoie probabilities. If the probability

of exploration is, on average, higher (lower) aording to the model implied probabilities than the

input CCPs then the CCPs are adjusted by inreasing (dereasing) the interept term in the linear

approximation to the relative ontinuation values, ṽEf (j,S), that enter the logit expression of

CCPs given by equation 27. The proedure is repeated using the adjusted CCPs and and adjusted

value of QE
until the di�erene in implied probability of exploration between the model-implied

probabilities and the input CCPs onverges to 0. In partiular,

Note that this proedure adjusts the average exploration probability, allowing the rate of explo-

ration to vary under di�erent ounterfatual senarios for example beause of inreased or dereased

inentive to free ride, but holds �xed the response of relative ontinuation values, ṽEf (j,S), to vari-

ation in the state variable. I make this simpli�ation to improve the stability of the proedure

while using a omputationally feasible number of simulation runs.

The algorithm proeeds as follows:

1. Fix a set of states, S and use �rst step CCPs P̂ 1(aE = j|S) and P̂ (aD = j|S) and �rst step

estimates of Q̂E1
and Q̂D1

to perform the forward simulation desribed in Appendix Setion
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D.2 for eah S ∈ S. This proedure generates model implied exploration probabilities,

P̃ 1(aEf = j|S, θ).

2. Compute the the average deviation between the �rst step and model implied CCPs, ∆1 =
∑

S∈S

(

P̃ 1(aEf = j|S, θ)− P̂ 1(aE = j|S)
)

. Adjust the �rst step CCPs aording to:

P̂ 2(aEf = j|S) =
exp

(

v̂E1
f (j,S) + δ

)

1 +
∑

k∈Jft
exp

(

v̂E1
f (k,S) + δ

)

Where ∆ is the adjustment to the estimated �rst step ontinuation values. δ > 0 if ∆1 > 0

and δ < 0 if ∆1 < 0. Let v̂E2
f (j,S) = v̂E1

f (j,S) + δ.

3. Simulate the model for all months from 1965 to 1990 using the distribution of lienses

{Jft}f∈F and the new CCPs P̂ 2(aEf = j|S). Generate a new average exploration and de-

velopemnt probabilities, Q̂E2
and Q̂D2

.

4. Go bak to step 1 and repeat with new exploration CCPs P̂ 2(aEf = j|S) and new average

probabilities Q̂E2
and Q̂D2

. Repeat the algorithm k times until

∑

S∈S

(

P̃ k(aEf = j|S, θ)− P̂ k(aE = j|S)
)

≈ 0.

F Liense Clustering Algorithm

In this setion I desribe the algorithm used to generate the lustered liense assignment. Let

{Jfy}f∈F be the liense assignment at the end of year y. Let J̃y be the set of lienses that were

issued in year y. An element of J̃y is a triple (Xj , t1, t2) where Xj identi�es the blok oordinates,

t1 is the start date and t2 is the end date of the liense as observed in the data. Let J̃fy ⊂ J̃y be

the set of subset of year y lienses that were assigned to �rm f in the data. Finally, let {J̃ ′
fy}f∈F

be the ounterfatual liense assignment for year y.

Lienses and �rms have preferenes over eah other given by a distane metri, Ωfjy. The distane

metri is hosen suh that new lienses want to be assigned to �rms whih hold a larger number of

nearby lienses, and �rms want to be assigned the lienses that are lose to many of their existing

lienses. In partiular,

Ωfjy =
∑

k∈J ′

fy−1

exp (−|Xk −Xj |) . (41)

Notie that Ωfjy is inreasing in the number of lienses held by f at a given distane from blok j,

and dereasing in the distane of any one liense from blok j, holding the loations of the other

lienses �xed.
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The algorithm proeeds as follows.

1. Start with the initial assignment {J̃ ′
f0}f∈F = {J̃f0}f∈F .

2. Let F0 be the set of �rms for whih J̃ ′
f0 6= {}. Let F−0 = F\F0.

3. Run a deferred aeptane mathing algorithm between the set of �rms F0 and the set of

lienses J̃1. Eah �rm f ranks bloks aording to a distane metri Ωfj1. Eah liense j

ranks �rms aording to Ωfj1. Eah liense j an only be mathed to one �rm. Eah �rm

has a quota given by Qf1 = |J̃f1|.

(a) Eah liense j proposes to its highest ranked �rm.

(b) Firm f aepts the highest ranked Qf1 lienses from those that propose to it. If fewer

than Qf1 lienses propose to it it aepts all of them. Lienses that are not aepted

are rejeted.

() Rejeted lienses propose to their seond highest ranked �rm.

(d) Firm f aepts the highest ranked Qf1 lienses from those that propose to it and those

that it has already aepted. Lienses that are not aepted are rejeted (inluding

those previously aepted).

(e) Repeat until all lienses are either aepted by some �rm or have been rejeted by all

�rms.

(f) For eah �rm f ∈ F0, the set of lienses that were aepted is then J̃ ′
f1.

4. Denote the lienses rejeted at year 1 by J̃R
1 .

5. Take the �rm f ∈ F−0 with the largest quota, Qf1. Assign �rm f a random liense j ∈ J̃R
1 .

Compute Ωfj1 for the remaining lienses given this assignment.

6. Assign �rm f its Qf1−1 top ranked lienses. The set of lienses assigned in then J̃ ′
f1. Repeat

steps 5 and 6 for all other �rms f ∈ F−0 in order of quota size.

7. Repeat for eah year.

The algorithm generates a liense assignment that holds �xed the number of bloks assigned to

eah �rm eah year and the length that eah liense was ative. As reorded in Table 9, the average

number of nearby own-�rm bloks is higher and the average number of nearby other-�rm bloks

is lower under the lustered liense assignment. I do not laim that this assignment is in any way

�optimal�, but this algorithm provides a method for systematially assigning bloks to �rms in a

way that inreases the average number of same-�rm neighbors.
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G Additional Tables and Figures

Table A4: Regressions of Exploration Probability on Equity Holders' Nearby Lienses

Exploration Well

BlocksOwnfjt 2.467*** 2.479*** 2.505*** 2.401***

(.875) (.858) (.851) (.868)

BlocksOpEquityfjt -.514 . . -1.026

(1.277) . . (1.304)

BlocksEquityOpfjt . 1.351 . 1.220

. (.824) . (.816)

BlocksEquityEquityfjt . . .846 .902

. . (.617) (.623)

N 80562 80562 80562 80562

Firm-Blok, and Month FE Yes Yes Yes Yes

Coe�ients Saled by 103 Yes Yes Yes Yes

Notes: Eah olumn reords OLS estimates of the oe�ients from a regression of Explorefjt on ounts on of

nearby lienses (1st and 2nd degree neighbors). BlocksOpEquityfjt is the number of bloks nearby blok j at

month t on whih �rm f , the operator of blok j, is an equity holder but not an operator. BlocksEquityOpfjt is

the ount of bloks nearby blok j at date t for whih one of the non-operator �rms with equity on blok j is the

operator. BlocksEquityEquityfjt is the ount of bloks nearby blok j at date t for whih one of the non-operator

�rms with equity on blok j is a non-operator equity holder. Regressions also inlude ontrols for past well results

as in equation 6 Standard errors lustered at the �rm-blok level. *** indiates signi�ane at the 99% level. **

indiates signi�ane at the 95% level. * indiates signi�ane at the 90% level.

Table A5: Blok Level Suess Rates Over Time

Dependent Variable: Well Suess

Well Sequene Number .025*** -.001 .003

(.002) (.003) (.003)

Year -.005*** .005** .

(.001) (.002) .

N 2105 2105 2105

Blok FE No Yes Yes

Notes: Sample inludes all exploration wells drilled before 1991 on the region north of 55◦N and east of 2◦W . Left

hand side variable is an indiator for whether the well was suessful. Well sequene number reords the order in

whih wells were drilled on a blok. The �rst well on blok j has well sequene number 1, the seond well has well

sequene number 2, et. *** indiates signi�ane at the 99% level. ** indiates signi�ane at the 95% level. *

indiates signi�ane at the 90% level.
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Table A6: Ratio of Response to Nearby Wells to Response to Same-Blok Wells

Suessful Wells Unsuessful Wells

Years Ratio SE Ratio SE

1966-1980 0.160 0.118 0.090 0.030

1971-1985 0.103 0.066 0.048 0.036

1976-1990 0.124 0.057 0.078 0.045

1981-1995 0.090 0.067 0.082 0.040

1986-2000 0.131 0.168 0.049 0.029

Notes: Table reports the ratio of the estimated marginal e�et of past wells on nearby bloks (1-3 bloks away) to

past wells on the same blok on Explorefjt from the spei�ation given by equation 6 where gdo(·) is quadrati in
eah of the arguments. Marginal e�et is omputed for the �rst well of eah type. Sample inludes blok-months in

the relevant region up for the time period indiated in the �rst olumn. An observation, (f, j, t) is in the sample if

�rm f had drilling rights on blok j in month t, and blok j had not yet been developed. I drop observations from

highly explored regions where the number of nearby own wells (those on 1st and 2nd degree neighboring bloks) is

above the 95th perentile of the distribution in the data. Robust standard errors are reported.

Figure A1: Top 25 Firms
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Notes: Figure plots the number of blok-month pairs for 1964-1990 liensed to eah of the top 25 �rms, and the set

of all other �rms.
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Figure A2: Gaussian Proess Draws
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Notes: Figure plots two draws (solid lines) from a logisti Gaussian proess with parameters µ = 0, ω = 5, and
ρ = 5 on a one-dimensional spae. The dashed line orresponds to the prior mean.

Figure A3: Gaussian Proess Learning
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Notes: The x-axis of both panels represents the one dimensional spae [0, 1] on whih the Gaussian proess is

de�ned. The dashed yellow line in the left panel plots the expeted value of ρ(X) for X ∈ [0, 1] under prior beliefs
represented by a logisti Gaussian proess de�ned aording to equations 1 - 2 with µ(X) = 1 and ω = 5. The solid
blue line in the left panel represents the posterior expetation of ρ(X) after observing a suessful well at X = 60
and an unsuessful well at X = 30 when ℓ = 15. The dotted red line represntes the posterior expetation when

ℓ = 5. The right panel plots the standard deviation of ρ(X) under the same prior (red dashed line) and posterior

(solid blue line) beliefs.
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Figure A4: E�et of Well Age on Exploration
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Notes: Figure plots OLS estimates of oe�ients from a spei�ation 6 with additional ontrols for the number

of past suessful other-�rm wells 1-3 bloks away and more than T months old (SucT ) and the number of suh

wells more than T − 6 months old (SucT−6). Eah point is the oe�ient on SucT for a di�erent regression, where

the de�nition of T is given by the x-axis. For example, the �rst point plots the e�et of inreasing the number of

suessful other �rm wells more than 1 year old, holding �xed the total number of past suessful wells and the

number of past suessful wells more than 6 months old. It an therefore be interpreted as the e�et of moving a

well drilled 6-12 months ago bak in time so it is more than 12 months old. Solid lines indiate a 95% on�dene

interval omputed using robust standard errors. Vertial line indiates 5 year expiry date for well on�dentiality.

Figure A5: Distribution of Months to First Exploration
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Notes: Eah panel plots the distribution of time to �rst exploration aross bloks. The left panel reords this

distribution for bloks with a 72 month initial drilling deadline, and the right panel reords this distribution for

bloks with a 48 month initial drilling deadline, with the deadlines indiated by vertial lines. The sample inludes

all bloks on the the region north of 55◦N and east of 2◦W �rst explored before 1990.
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Figure A6: Distribution of Months to First Exploration by Distribution of Nearby Lienses
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Notes: Figure plots the distribution of time to �rst exploration aross bloks with 72 month drilling deadlines. I sort

�rm-bloks into quartiles aording to the share of nearby lienses operated by the same �rm at the date the drilling

liense was issued. I plot the distribution of time to �rst exploration for the top quartile - those blok-lienses where

more than 91% of nearby bloks are operated by the other �rms - and the bottom quartile - those blok-lienses

where less than 70% of nearby bloks are operated by other �rms. The sample inludes all bloks with 72 motnh

drilling deadlines on the the region north of 55◦N and east of 2◦W �rst explored before 1990. Time to drill is

residualized against a ubi polynomial in the total number of nearby bloks liensed.
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Figure A7: Inentive to Delay Exploration by One Year
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Notes: Figure reords the net gain from delaying exploration by 12 months for di�erent liense arrangements and

levels of α. Computation of net gain is from 2000 simulations, as desribed in the text.
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Figure A8: Maps of Early Exploration
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Notes: Eah map plots the loation of exploration wells drilled that year. Red points are unsuessful wells and

green points are suessful wells.
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