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Abstract

This article introduces two results for instrumental variable models with a continuous en-

dogenous variable, allowing for the most general unobserved heterogeneity. The first result

is a proof of a generalization of Pearl’s conjecture (Pearl 1995b), showing that the exclusion

restriction of an instrument cannot be tested in this setting without making structural assump-

tions. The proof is constructive and opens the door to potentially reestablish testability under

weak assumptions. The second and main result is an approach for estimating sharp bounds on

any possible causal effect, making no or minimal structural assumptions on the model besides

the exclusion restriction. The key for this is to consider the instrumental variable model as

two dependent stochastic processes and to construct an infinite dimensional linear program on

their paths, the solution to which provides the counterfactual bounds. This framework can in

principle encompass every structural assumption made in instrumental variable models and is

the natural generalization of the complier-, defier-, never taker-, always taker distinction to the

continuous setting. To showcase the estimation procedure, we obtain bounds on distributional

causal effects of expenditures on leisure and food, using the 1996 UK Family Expenditure

Survey. We find that food is a necessity while leisure is a luxury good, thereby corroborating

the predictions from economic theory while introducing only minimal assumptions during the

estimation process.

∗For the latest version of this paper please click here. Correspondence: Florian Gunsilius@brown.edu. I am very

grateful to Susanne Schennach and Toru Kitagawa as well as Adam McCloskey and Ken Chay for their support

and very helpful feedback throughout this project. I also want to thank Stefan Höderlein, Shakeeb Khan, Arthur

Lewbel, Eric Renault, Jesse Shapiro, Michael Bedard, Simon Freyaldenhoven, Stefano Polloni, and Kevin Proulx, as

well as the seminar participants at Brown University and Boston College for very helpful comments and discussions

which helped me improve the article. All errors are mine. For the publication process, my goal is to separate the

two main results and submit them as separate articles. In fact, the first result already exists as a separate note

(Gunsilius 2018b).
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1 Introduction

Estimating causal effects such as the average treatment effect (ATE) of an endogenous variable X

on an outcome Y using a potential instrument Z for X is a fundamental problem in economics.

The two main issues in this setting are (i) to check whether Z is exogenous to the model and, based

on this, (ii) to estimate the respective causal effect from the data under minimal assumptions. The

first issue calls for testable conditions under which Z satisfies the exclusion restriction. The second

calls for a nonparametric framework for estimating causal effects which allows for nonlinearity and

general unobserved heterogeneity, but does not require structural assumptions for the estimation

process.

Despite their fundamental nature, there are only a few articles in the literature addressing

these issues in this generality, all of which currently require a discrete X either in theory or in

practice. This limits their applicability in many settings, as many endogenous variables of in-

terest are continuous. For instance, one challenging problem is estimating a household’s relative

expenditure on different goods with total expenditure as the (continuous) endogenous variable

(Blundell, Chen & Kristensen 2007; Imbens & Newey 2009). Currently, no practical nonpara-

metric estimation procedures exist for this problem in our setting, where we avoid structural

assumptions such as monotonicity or other shape restrictions of the involved production func-

tions. Other general classes of applications stem from the evaluation of social programs with

self-selection and randomized control trials with imperfect compliance. For instance, repayment

obligations for micro-credit contracts, such as the interest rate, are sometimes chosen as the (con-

tinuous) treatment in randomized control trials in development economics and finance (Karlan

& Zinman 2005). In these settings it frequently happens that the lending institution cannot

perfectly comply with the assigned randomization of credit contracts due to internal guidelines,

which induces an endogeneity problem (Karlan & Zinman 2011).

This paper deals with the case where X is continuous. We address both issues in this setting.

First, we prove a slight generalization of Pearl’s conjecture (Pearl 1995b), showing that without

any structural assumptions the exclusion restriction of Z can in fact not be tested when X is con-

tinuous and hence needs to be an assumption in the model. Second, and this is the main result of

this article, based on the exclusion restriction we provide a general framework for obtaining sharp

upper and lower bounds on any causal effect of interest like the ATE, quantile effects, or distribu-

tional causal effects, in the case where X and possibly Y and Z are continuous. We do so under

minimal assumptions and allowing for the most general unobservable heterogeneity, generalizing

the results in Balke & Pearl (1994) and Balke & Pearl (1997). What is more, the framework we

introduce is general enough to in principle encompass any structural form assumption made on

the model, such as monotonicity. It hence constitutes an alternative to current approaches for

phrasing questions in nonseparable triangular models and can be of use in basically any setting

where the quantities of interest are causal relationships.

Both of the results we propose in this article possess properties which make them well-suited to
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address issues (i) and (ii). As for the testability of the exclusion restriction, we want to emphasize

that the proof of Pearl’s conjecture is constructive. In particular, we can pinpoint when testability

fails and hence provide a first step towards reestablishing testability in this general setting. As

for our main result, one major contribution is that we have found a way to make the general

theoretical framework for estimating bounds on causal effects applicable in practice, even in the

general case where all variables are continuous. In particular, we introduce a general “sampling

of paths” approach in order to approximate the optimal solutions of the infinite dimensional

problems well in practice. This is the first instance in the literature where an estimator of this

generality is feasible in the continuous case. As a result, applied researchers can also use our

estimator for robustness checks prior to a parametric estimation, as our approach is laid out to

handle general forms of randomness in the data.

In order to demonstrate the power of this approach, we obtain upper and lower bounds on

distributional causal effects of expenditures on food and leisure using the 1995/1996 UK Family

Expenditure survey (FES), only assuming that expenditure is continuous. We find strong evidence

that leisure is a luxury while food is a necessity good. We do not make structural assumptions

on the model other than continuity, so that we corroborate these economic postulates completely

nonparametrically and without introducing further structural assumptions for the estimation

procedure.

This article is structured as follows. In section 2 we provide the formal setting for both

results and their connections to the literature. Section 3 contains the impossibility result on the

testability of the exclusion restriction of Z. Section 4 contains the main results of this article on

the estimation of causal effects. We outline the problem and the underlying intuition in subsection

4.1. We construct the infinite dimensional linear programs in the main subsection 4.2, discuss

their theoretical properties in subsection 4.3 and their statistical properties in subsection 4.4. In

section 5 we introduce our practical implementation of the infinite dimensional linear programs

by our “sampling of paths”-algorithm. Section 6 contains our empirical application where we

estimate consumer expenditure. Section 7 concludes. The appendix contains an overview of the

mathematical notation we use as well as all proofs.

For readers with an applied focus we provide a running example about randomized control

trials with imperfect compliance for a continuous treatment throughout subsections 4.1 and 4.2 to

convey the main intuition of section 4. The end of each part of the running example is denoted by

4. One can get the fundamental idea of section 4 by only reading its introduction (page 10), the

running example (pages 13, 16, and 19), the main result (Theorem 1, page 19), and the corollary

for obtaining general causal effects like the ATE (Corollary 1, page 23), skipping everything else,

in particular subsections 4.3 and 4.4.
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2 Formal setting and relation to the literature

Throughout this article it will be convenient to have a structural representation of an instrumental

variable model available:
Y = h(X,V )

X = g(Z,U).
(1)

Here, Y is the outcome variable, X is endogenous in the sense that it depends on the unobservable

variable V , and Z is a potential instrument satisfying the relevance condition Z 6⊥⊥ X, where “⊥⊥”

denotes independence. Both V and U are unobserved random variables and can be of arbitrary

and even of infinite dimension, just like Y , X, and Z. The production functions h and g are

unknown.

Model (1) represents the most general structural form of an instrumental variable model (Pearl

1995b, Heckman 2001, Heckman & Vytlacil 2005 and references therein) and is general enough

to encompass all important counterfactual relations, while being precise enough to enable all

necessary mathematical derivations.1 In the economics literature (1) is known as a nonseparable

triangular model and has been the focus of a large number of articles, many of which deal with

the identification of the production function h. Our focus in this article is on identifying and

estimating causal effects of an exogenous shift of X on Y .

The main assumption on the error terms made in these models is the exclusion restriction

Z ⊥⊥ (V,U). It implies that the only influence the instrument Z has on the outcome Y is through

X, i.e. Z ⊥⊥ Y |X, (V,U). This follows from the fact that Z is not present in the second stage of

model (1), which implies that there are no unobserved variables which jointly affect Z and Y ;

hence, if Z satisfies the exclusion restriction, then it is exogenous to the model. Also note that

we require full independence of the instrument and not conditional mean independence or even

weaker requirements. The reason is that we work in the most general nonlinear and nonparametric

setting and do not want to make assumptions on the functional form of h or g. In the first part

of this paper, i.e. section 3, we show that the exclusion restriction is not testable in the general

setting with continuous X. From section 4 on we therefore assume it.

The results in this article are most closely related to two broad strands in the literature.

First, and most generally, model (1) is the most comprehensive form of a nonseparable triangular

model, which connects our results to this literature. Second, and more specifically, our results are

connected to the literature on identification of causal- or treatment effects, often in the setting of

program evaluation with self-selection (Imbens & Wooldridge 2009) or randomized control trials

under imperfect compliance (Imbens & Angrist 1994, Angrist, Imbens & Rubin 1996). In the

latter setting Y is the outcome, X is the actual treatment received, and Z is the original treatment

assignment, the “intent-to-treat” variable, which serves as an instrument for the treatment X.

1Other representations of instrumental variable models are graphs (Pearl 1995a) and counterfactual notation
(Rubin 1974). The appendix in Pearl (1995b) gives an overview of the connections between the different represen-
tations.
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In the literature on general nonseparable triangular models there has been a surge in interest

on the (partial-) identification of causal effects. Imbens & Newey (2009) derive identification

results for the ATE and quantile effects while allowing for Y , X, and Z to be continuous, which

makes their result closely related to ours in terms of the setting. In order to derive these results the

authors require functional form assumptions on the relation betweenX and Z, however, as they are

also interested in (point-) identifying h. In particular, they assume that g is strictly monotonic and

continuous in Z and that U is univariate. Other identification results in nonseparable triangular

models often focus on the production function h and also either require monotonicity assumptions

(e.g. Chesher 2003, Chernozhukov & Hansen 2005, Shaikh & Vytlacil 2011, Torgovitsky 2015,

d’Haultfœuille & Février 2015) or presuppose some other general structural relationship (Florens,

Heckman, Meghir & Vytlacil 2008). Recently, Heckman & Pinto (2018) introduced the concept

of unordered monotonicity in this setting, requiring the endogenous variable to be discrete. In

contrast, our approach is completely general in that it does not require any a priori functional

form assumptions, but provides a new way to include them in the model in the most general

setting where X is allowed to be continuous.2

The article which is most closely related in the general theoretical handling of the problem

is Chesher & Rosen (2017) which introduces a general framework for partial identification, using

the Aumann integral and Artstein’s inequality. Their framework works with a general model

M based on general structural assumptions. Our approach is comparable in its generality even

though we exclusively focus on causal effects. What distinguishes our approach from theirs is the

applicability in practice. In fact, our identification and estimation strategy via infinite dimensional

linear programs enables us to derive a practical and consistent estimation procedure for the most

general setting, in addition to the general framework we set up. In contrast, results relying

on Artstein’s inequality run into severe curses of dimensionality for endogenous variables with

many points in their support as the inequalities describing the identified region grow very rapidly

(Beresteanu, Molchanov & Molinari 2012). Garen (1984) treats schooling as a continuous variable

for similar reasons, for instance. Through our optimization approach we deal with this problem

by a new “sampling of paths”-approach, which makes our problem applicable in the most general

continuous setting in practice. Our approach also subsumes the discrete and binary approaches.

Two other important articles focusing on the partial identification in general models are

Beresteanu, Molchanov & Molinari (2012) and Galichon & Henry (2011) which use the concept

of random sets and optimal transport, in particular Choquet’s capacity theorem (Choquet 1954),

to obtain sharp bounds on different properties of interest. The former article assumes discrete

X while the latter article deals with partially identifying unknown parameters in a structural

setting. Their approaches, despite different from ours, are interesting as they rely on capacity

theory. In fact, we write our problem as a general capacity problem (Anderson & Nash 1987,

Anderson, Lewis & Wu 1989, Lai & Wu 1992) on a functional space in order to arrive at our

2Our framework also encompasses the case of discrete or binary X, in which case the stochastic processes we
introduce would be point-processes.
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partial identification result, which is a generalization of Choquet’s capacity problem.

Recently, Mogstad, Santos & Torgovitsky (2018) introduced an optimization approach which

deals with obtaining general causal effects in the setting where the endogenous variable is binary.

Other articles relying on (finite) dimensional linear or convex optimization programs for estimating

bounds on quantities of interest in general models are Chiburis (2010), Demuynck (2015), Honoré

& Tamer (2006), Manski (2007), Molinari (2008), Lafférs (2015), Kamat (2017), Torgovitsky

(2016), and Kitamura & Stoye (2018). Our approach is the first to define a general infinite

dimensional linear program and enables the researcher to estimate causal effects in a general

continuous setting with only minimal assumptions.

In the literature on the testability of the exclusion restriction Pearl (1995b) and Manski (2003)

were the first to derive a testable implication for when Z satisfies the exclusion restriction when

X is discrete. Extending these results, Kitagawa (2010) and Kitagawa (2015) derive a test when

Y is continuous and X and Z are binary in different settings, also testing monotonicity of the

instrument. Kitagawa (2009), again for binary X and Z, shows that Pearl’s instrument inequality

gives a sharp testable implication allowing Y to have arbitrary support. Kédagni & Mourifié (2015)

show the same conclusion for binary Y and augment Pearl’s inequalities by further inequalities

in the case where Z has more than two points in its support. We complement these results by

proving Pearl’s conjecture (Pearl 1995b), showing that the exclusion restriction is not testable

when X is continuous. The way we set up the proof of Pearl’s conjecture is also related to recent

results from the literature on identification of nonseparable triangular models such as Hoderlein,

Holzmann, Kasy & Meister (2017) and Hoderlein, Holzmann & Meister (2017) which show that

(point-) identification in general nonseparable triangular models with general heterogeneity is not

achievable without relatively strong structural assumptions.

The most closely related results in spirit for tackling issue (ii), despite the fact that they focus

on the case where Y , X, and Z are binary, are Balke & Pearl (1994) and Balke & Pearl (1997)

which provide tight upper and lower bounds on any potential causal effect of interest under no

or minimal structural assumptions. These results strengthen the original results in Robins (1989)

and Manski (1990) who found upper and lower bounds on causal effect also in the setting where

X is binary. Kitagawa (2009) derives closed-form solutions for sharp bounds on causal effects

for a continuous Y and binary X and Z, building on ideas from both Balke & Pearl (1997) and

Manski (1990). Recently, Russell (2017) derived sharp bounds on causal effects for Y , X discrete

using Artstein’s inequality and optimal transport theory similar to Galichon & Henry (2011). We

complement these results by obtaining sharp bounds in the most general continuous setting, in

particular generalizing Balke & Pearl (1994) and Balke & Pearl (1997) to the continuous setting.

The focus of our main result is on identification and estimation, but we do derive large sample

asymptotics for the infinite dimensional linear programs, for each bound separately. These asymp-

totic results might be of interest in themselves as they constitute new results for nonparametric

plug-in estimators of infinite dimensional constrained linear programs.3 To obtain accurate cov-

3The proofs are general enough to also hold for nonparametric plug-in estimators of many infinite dimensional
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erage of the identified set based on our large-sample result, one can use established results from

the literature such as Imbens & Manski (2004).

3 First result: Testability of the exclusion restriction of Z

Here we prove a generalization of Pearl’s conjecture (Pearl 1995b), showing that the exclusion

restriction Z ⊥⊥ (V,U) is not testable when X is continuous. In fact, we prove a slightly stronger

result: we show that the exclusion restriction on Z is not testable even if g(z, U) is assumed to be

invertible in U in model (1). In addition, we show that the conjecture holds even if the instrument

Z is allowed to have (finitely many) atoms, which covers every probability measure encountered

in practice. Our method of proof does not cover the case where the respective measure has a

countably infinite number of atoms4, but those measures cannot be recovered in practice via

standard statistical methods and are therefore pathological. Allowing for g to be invertible in

U allows us to make a connection to the voter paradox in majority voting. In fact, the key for

proving the stronger version of the conjecture is to construct a Condorcet cycle in uncountable

state space.

Our definition of a continuous random variable is the most general in that we consider contin-

uous random variables to be nonatomic. A nonatomic probability measure PX is one where for

every measurable set A in the Borel σ-algebra AX with PX(A) > 0, there exists B ∈ AX with

B ⊂ A and PX(A) > PX(B) > 0. For example, probability measures which are absolutely contin-

uous with respect to Lebesgue measure are nonatomic, but there exist many nonatomic measures

which do not possess a density with respect to Lebesgue measure. If the respective σ-algebra is

the Borel σ-algebra, then a measure is nonatomic if and only if every point has measure zero. In

the following, calligraphic letters like Y, X , and Z denote the support of the measures PY , PX ,

and PZ , respectively.5

We now state Pearl’s conjecture (Pearl 1995b) in our notation and give some intuition. The

formal proof is relegated to the appendix.6 In our set-up we can state Pearl’s conjecture as well

as its slight extension as follows.

Conjecture (Pearl (1995b)). Let Y , X, and Z be random variables, where PZ is a general

probability measure with at most finitely many atoms. If the marginal PX|Z=z of PY,X|Z=z is

nonatomic for almost every z ∈ Z, then PY,X|Z=z can be generated through model (1):

y = h(x, v)

x = g(z, u) with Z ⊥⊥ (V,U).

constrained convex programs under minimal modifications.
4I thank Susanne Schennach for this remark.
5Note that the supports can be of arbitrary dimension in principle as long as they are Polish, i.e. separable,

complete, and metrizable spaces.
6Also see the note Gunsilius (2018b) for this result.
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This even holds if the function g(z, u) is assumed to be invertible in U .

To see that this conjecture implies that the exclusion restriction for Z cannot be tested when

X is continuous, notice that if every possible observable measure PY,X|Z can be generated by the

model whilst assuming Z ⊥⊥ (V,U), then there can be no testable restrictions on the model. That

is, if a model manages to fit every possible data generating process, then it can never be tested,

as there are no settings in which it can fail to explain the observables.

Let us give two important remarks on this conjecture. First, note that the above statement is

slightly more technical than the wording of Pearl’s original conjecture; in particular, Pearl simply

stated that “if the variable X is continuous, then every joint density fY,X|Z=z can be generated by

model (1)”. Since we work in an instrumental variable model, the important probability measures

are PY,X|Z=z and PX|Z=z, so that the continuity assumption needs to be upheld with respect to

the conditional measure PX|Z=z and not the unconditional measure PX . In fact, this is what

Pearl meant when he stated the conjecture, as the proof of the conjecture relies on a Lemma in

Pearl (1995b) (Lemma 1 below), which explicitly relies on the fact that the measure PX|Z=z is

nonatomic almost everywhere—Pearl himself exclusively worked with density functions and hence

implicitly assumed that all relevant distributions, especially PX|Z=z and PY,X|Z=z, are absolutely

continuous with respect to Lebesgue measure, a stronger condition than we uphold.

Second, the above statement of the conjecture is more general in that it allows for the as-

sumption that g is invertible in U , which is a structural assumption in this model. Also, we only

require PX|Z=z to be nonatomic for almost every z ∈ Z and only require that Z has at most

finitely many atoms. The other conditional distributions including Y such as PY,X|Z=z are left

completely unspecified.

Let us now give the idea for the proof of the conjecture. For this we need to introduce the

concept of generators, a term coined in Pearl (1995b).

Definition 1 (Generator). Given a probability measure PX|Z , a function x = g(z, u) is a gen-

erator of PX|Z if and only if there exists some probability measure on the domain of U such

that g(z, U) is distributed as PX|Z=z. A generator is one-to-one if and only if for almost every

zi, zj ∈ Z and u ∈ U g(zi, u) = g(zj , u) implies zi = zj.

We need generators because of the following lemma, which is the key for proving the conjecture.

The special case of this lemma for probability density functions was derived and proved in Pearl

(1995b).

Lemma 1. Any probability measure PY,X|Z whose marginal PX|Z has a one-to-one generator can

be generated by (1).

This lemma reduces the problem of proving the conjecture to simply proving that there exists

a one-to-one generator for each possible PX|Z . Note that by using Lemma 1 we do not make any

assumptions on the distribution of Y , so that we can allow for general distributions here too,
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which does not change the result. In fact, the whole proof works with the properties of PX|Z=z,

which we assume to be nonatomic for almost all z ∈ Z.

Now the main idea for the proof of the conjecture lies in the realization that a one-to-one

generator is a special type of production function g(z, u) mapping the unobservable U onto X for

almost every z. For illustrative purposes of this point, let X, Z, and U be discrete with three

values each: x1, x2, x3 each with probability 1
3 , z1, z2, and z3 each with probability 1

3 , and the

same for U . Then we can build a matrix where the mth row represents fzm(U) and the nth column

represents xn. Each cell (m,n) of the matrix contains the index i ∈ {1, 2, 3} of ui assigned to

(m,n) by the generator g(zm, ·). For example the matrix could look like this:

x1 x2 x3 z1 u3 u2 u1

z2 u3 u1 u2

z3 u1 u2 u3︸ ︷︷ ︸
not one-to-one in z

Consider the cell (2, 1). The entry u3 means that the value u3 gets mapped to x1 for z2. In this

case, the map g(z, u) represented by this matrix is clearly not a one-to-one generator as needed,

since it maps u3 onto x1 for both z1 and z2.

In order for g(z, u) to be a one-to-one generator, one simply needs to guarantee that no

column contains two or more equal numbers. However, in our generalization of Pearl’s conjecture

we also assume that g(z, u) is a measure preserving isomorphism in both variables. We must hence

require that neither columns nor rows contain two equal numbers. This requirement is analogous

to constructing a Condorcet cycle from voter theory, which is possible for n = m:

x1 x2 x3 z1 u1 u2 u3

z2 u2 u3 u1

z3 u3 u1 u2︸ ︷︷ ︸
Condorcet cycle:

invertible in both z and u

Therefore, our proof of the conjecture proceeds by showing that a Condorcet cycle can always be

constructed in the continuous setting, which we do in the formal proof in the appendix.

Three further remarks about the conjecture and our proof are in order. First, in order for

the construction of the Condorcet cycle to work in uncountable state space, a nonatomic PX|Z=z

for almost all z is crucial. In fact, every Borel set E ⊂ [0, 1] of positive measure contains an

uncountable number of elements, so that even if there is an uncountable number of z, one can

always find a permutation of E such that almost every x ∈ E corresponds to exactly one z, hence
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constructing a Condorcet cycle.

Second, our proof of Pearl’s conjecture also gives a simple explanation for why the exclusion

restriction of Z can be testable when X is discrete. As an example, let X and Z each take

three values, x1, x2, and x3 as well as z1, z2, z3, and let U be uniformly distributed on the unit

interval. Moreover, assume that PX|Z=z1(x1) + PX|Z=z2(x1) > 1. In this case, there cannot exist

a Condorcet cycle. In fact, no matter how we partition the unit interval for U , the fact that

PX|Z=z1(x1) +PX|Z=z2(x1) > 1 always implies that there is some Borel set Eu ⊂ [0, 1] of measure

PU (Eu) = PX|Z=z1(x1) + PX|Z=z2(x1)− 1 = εu > 0,

which gets mapped to x1 for z1 and z2, no matter the measure preserving map g(z, u), imply-

ing that there cannot be a Condorcet cycle or even a one-to-one generator as depicted in the

illustration of the proof.

Third, note that we can intuitively understand the construction of the Condorcet cycle in our

proof as a special construction of the function g(z, u), which has a non-standard form. In the

literature on nonseparable triangular models, one usually assumes monotonicty and continuity of

g. In contrast, for our non-testability result we need to allow for very general classes of functions g

so that we can always replicate the observable joint distribution FY,X|Z=z. In this sense, it might

be possible to reestablish testability of the exclusion restriction even in the continuous setting by

restricting the set of allowable functions g.7

Overall, the fact that we managed to prove the impossibility theorem constructively makes

us hopeful that we can find more appropriate functional form assumptions on the production

functions to make the exclusion restriction testable in the continuous setting, too. In the general

setting of model (1), this section shows, however, that we need to assume the exclusion restriction.

Let us now turn to the main result of this article, the estimation of causal effects.

4 Main result: Obtaining bounds on causal effects

This is the main section of this paper where we provide theoretical and practical results to obtain

tight upper and lower bounds on the counterfactual probability PY |X∗ which in turn yields bounds

on the ATE or any other possible causal effect.8

Let us quickly lay out the problem of identifying causal effects in the model

Y = h(X,W )

X = g(Z,W ),

7I thank Toru Kitagawa for this remark.
8Throughout, we will denote the counterfactual probability for exogenous X by PY |X∗ . This notation has been

used in other articles dealing with the identification of nonseparable triangular models, see for instance Torgovitsky
(2015).
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where Z ⊥⊥W for W := (V,U) . This is an equivalent form of (1), which makes it easier to get the

main point across in this subsection. Intuitively, the fundamental problem for deriving bounds on

the ATE or quantile effects, or any causal effect for that matter, is to identify the counterfactual

probability PY |X∗ for an exogenous change in X. Note that PY |X∗ is unobservable and does not

coincide with the observable PY |X , since the latter gives the probability of the outcome given an

endogenous change in X. This is because X depends on W so that we need to represent the

exogenous version as

PY |X∗ =

∫
W
PY |X,W=wPW (dw)

using model (1), where W is the support of PW and where PY |X,W=w is a conditional measure.

Unfortunately, the only distribution in the data which gives us correct information on the DGP

is PY,X|Z , because X is endogenous, so that the observable PY |X is different from PY |X∗ . To see

this, write PY,X|Z in our model as

PY,X|Z =

∫
W
PY |X,Z,W=wPX|Z,W=wPW (dw) =

∫
W
PY |X,W=wPX|Z,W=wPW (dw),

as Z ⊥⊥ Y |X,W (Balke & Pearl 1994, p. 50).

Now, if X were actually exogenous we would have PX|Z,W = PX|Z , so that we could identify

PY |X∗ by

PY |X =
PY,X|Z

PX|Z
=

∫
W PY |X,W=wPX|Z,W=wPW (dw)

PX|Z
=
PX|Z

∫
W PY |X,W=wPW (dw)

PX|Z
= PY |X∗ .

That is, the observable PY |X would coincide with PY |X∗ in the case where X is actually exogenous.

As soon as X is endogenous, the above line of reasoning does not work anymore, so that PY |X∗ 6=
PY |X in general. Under endogeneity of X we will only be able to identify bounds on PY |X∗ without

further assumptions. For this it is convenient to model W as two latent variables U and V as in

model (1). The endogeneity of X can then be captured by the fact that V depends on U , so that

one needs to replace PW (dw) by the joint measure µ(dv, du).

4.1 Outline of the problem, assumptions, and intuition

In this subsection we give an outline for why the problem is so difficult to solve for continuous X

by contrasting it to the case where Y , X, and Z are discrete, in particular binary. Throughout,

we need to uphold the exclusion restriction, based on our impossibility result from the previous

section.

Assumption 1 (Exclusion restriction). In model (1) it holds that Z ⊥⊥ (V,U).

The main challenge in the continuous setting is that under continuous X one needs to dis-

tinguish between an infinite number of production functions g and h, whereas in the binary case
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there are only four different functions (the standard defier, complier, never taker, and always

taker distinction). Let us be more precise.

In the binary case, i.e. where Y,X,Z take values in {0, 1}, the problem of bounding the

counterfactual probability PY |X∗ can be solved by finding the solution to a simple linear program

using the response variables U and V , as in Balke & Pearl (1994). The important thing to realize

is that u and v index the respective production functions g(z, ·) and h(x, ·) from model (1). In

this case, both U and V possess four realizations as there are four possible functions mapping Z

to X and X to Y in each case: u1 corresponds to the function g mapping the realization Z = 0

to X = 0 and the realization Z = 1 to X = 0 (the never takers), u2 corresponds to the function

g mapping Z = 0 to X = 0 and Z = 1 to X = 1 (the compliers), u3 corresponds to the function

g mapping Z = 0 to X = 1 and Z = 1 to X = 0 (the defiers), and u4 corresponds to the function

g mapping Z = 0 to X = 1 and Z = 1 to X = 1 (the always takers). An analogous set-up holds

for v1, . . . , v4 in terms of realizations of Y and X.

Generalizing this idea, it is not hard to see that the cardinality of U is of the rate nm, where

m is the number of points in Z and n is the number of points in X .9 Analogously for v, which is

of the rate qn, where q is the number of points in Y. Therefore, already a simple generalization

to the 3-values case will, without further assumptions, lead to 33 = 27 values for both v and u.

Cheng & Small (2006) provide an identification result in this setting by circumventing this issue

in the 3-value problem: they make monotonicity assumptions on the production functions g and

h in order to bring down the cardinality of v and u from 27 to 4 again.

Now for general continuous Y , X, and Z the cardinality of U and V will be that of the power

set of the continuum, 2c. Therefore, the natural σ-algebra for the measure spaces on which U

and V are defined is the Lebesgue σ-algebra which has the cardinality of the power set of the

continuum. We assume that Y , X, and Z lie in the standard Borel σ-algebra. This set-up is the

direct analogue of the finite dimensional setting, as the cardinality of the Borel σ-algebra is that

of the continuum.

The key realization then is that g(z, u) and h(x, v) induce stochastic processes described by the

conditional measures PX|Z=z and PY |X∗=x, respectively. To see this recall that a stochastic process

Xt with t ∈ T for an arbitrary index set T is a collection of T random variables X : (Ω,S , P )→
(R,B, PX), where PX is the pushforward measure of P through X. In mathematical terms the

random variable is a function between Ω and R such that PX(E) = P (X−1E) for every E ∈ B.

Now compare this to our nonseparable triangular model (1). By definition, the two measures

PX|Z=z and PY |X∗=x are the pushforward measures of PU and PV via the production functions

g(z, U) and h(x, V ) for almost all z and x, respectively. In particular, (U ,A , PU ) and (V,A , PV )

take the place of (Ω,S , P ) and g(z, ·) as well as h(x, ·) take the place of Xt. One can therefore

view PX|Z and PY |X∗ as being induced by the stochastic processes Xz(u) and Yx(v) which in turn

are induced by g(z, U) and h(x, V ) pushing forward PU and PV , respectively. In the binary case,

9As in the previous section, calligraphic letters define sets or the spaces on which the corresponding random
variables are defined.
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this means that each type, e.g. the never taker, is one path of the 2-point stochastic process. In

our more general setting, the never taker corresponds to the path which is constant at 0 for every

realization z.

Therefore, PY |X∗=x0(Ey) for some realization x0 of X∗ and some event Ey is the probability

that a path of Yx(v) goes through the set Ey at the point x0. Analogously, the observable

PY,X|Z=z(Ay,x) defines the probability that both processes Yx(v) and Xz(u) go through the set

Ay,x at z. Upper and lower bounds on PY |X∗=x0(Ey) for fixed x0 and Ey can then be obtained

by maximizing or minimizing the probability that the path of the stochastic process Yx(v) goes

through Ey at x0 under the constraint that the probability that both processes Yx(v) and Xz(u)

jointly go through the set Ay,x at z is PY,X|Z=z(Ay,x) for each set Ay,x and realization z of Z.

Running example (1). To make our theoretical results more tangible we consider the following

setting. Suppose we have data from a (fictive) randomized control trial estimating the efficacy

of repayment obligations in microcredit contracts on general outcomes like business profits or ex-

penditure, a complex problem in development finance (Karlan & Zinman 2005; Karlan & Zinman

2011; Field, Pande, Papp & Rigol 2013). The (continuous) treatment X is a certain repayment

obligation of the microcredit contract, e.g. the interest rate, the grace period in days, or the over-

all financing period—let us say it is the interest rate. The outcome Y could be weekly business

profits, household income, or the savings rate over the next several years (Field, Pande, Papp &

Rigol 2013). Since those randomized control trials rely on a cooperating lender, usually a bank,

there can be compliance issues. In particular, the bank might give out credits with different

conditions than those initially randomly assigned in order to not risk losing money (Karlan &

Zinman 2011). This results in an endogeneity problem as the adjustments made by the bank are

usually based on proprietary information and are not observed by the economist. The instrument

in this case is the initially randomly assigned interest rate. The goal for us in this setting is to

still obtain sharp upper and lower bounds on different causal effects of interest.

With a continuous treatment the amount of the treatment (i.e. the interest rate in percent)

actually received can deviate from the assigned treatment in an infinite number of ways. The

experimenter can only work with the overall distribution PY,X|Z=z since she knows that the ob-

served distributions PY |X and PX|Z are for an endogenous X due to the imperfect compliance.

Our approach therefore consists of obtaining the “best”- and “worst” case scenario for the coun-

terfactual probability PY |X∗=x0(Ey) for some event Ey we are interested in given an exogenous

assignment of an interest rate of x0 percent.10 Assume we are interested in the event Ey that the

overall savings rate after 5 years increased by 10% given an assigned interest rate of x0 percent.

The idea of our approach is to introduce a theoretical device: hypothetical participants, anal-

ogous to the binary case, i.e. the never takers, always takers, compliers and defiers for the relation

10Note that we can also work with more general events Ex for X∗, not just a fixed number x0. For example, we
can condition on the fact that X∗ lies in a range of percentages. In addition, we can identify other causal effect
like the ATE, but we stick with the counterfactual probability to convey the intuition for this part of the running
example.
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between X and Z. In a continuous setting there are an infinite number of such hypothetical

participants, not just four. Each of those participants—and this is the main idea—is specified by

a path of the stochastic processes Xz and Yx of the first and second stage of the instrumental vari-

able model, i.e. “response profiles”, which are indexed by the unobservable U and V , respectively.

A response profile for Xz tells the respective participant what interest rate x she actually receives

for each assigned interest rate z. For instance, the never taker is the path of the stochastic process

which is always zero for each value of Z, i.e. this participant’s response profile is to receive, for

every z the value zero (i.e. the bank will not give her any credit, no matter what interest rate

was initially assigned to her). The path of the complier would be the 45◦ line, since this partic-

ipant perfectly obtains whichever condition was randomly assigned (this is a participant with a

very good credit score: no matter what interest rate we assign randomly, the bank will give the

participant exactly this interest rate).

Analogously a response profile Yx(v) “tells” a participant how much she reacts (y) to a certain

level of the treatment x. In this case the process Yx models the fact that participants respond

differently in terms of savings- or investment rate to different levels of interest rates; for instance,

the hypothetical participant who does not respond to the treatment at all has the path Yx ≡ 0 for

any value of x; she would never invest anything, no matter how good the conditions of the interest

rate. Very intuitively, the idea then is to find the relative number of hypothetical participants

(i.e. the weights on the respective paths of the stochastic processes) that maximizes (for an upper

bound) or minimizes (for a lower bound) the relative number of hypothetical participants which

respond to a given interest rate of x0 percent by an increase in their overall savings rate after

5 years by 10% subject to the constraint that the composition of the hypothetical participants

replicates the joint observable weight (i.e. probability) PY,X|Z=z.

Put slightly differently, for an upper (lower) bound we want to see how many (few) hypothetical

participants who respond exactly an increase of the 5 year savings rate by 10% for an assigned

interest rate of x0 percent we can possibly fit in our model such that we still obtain an overall

composition of hypothetical participants which replicate the observable composition induced by

PY,X|Z=z for every z. This framework is the natural generalization of the seminal distinction

into always taker, never taker, complier, and defier from Angrist, Imbens & Rubin (1996) to the

continuous setting.

Note in this respect that Z need not be a continuous random variable, which it rarely is in

applied research. We allow for Z to be discrete or binary; the corresponding stochastic process

Xz in the latter case would then be a 2-point process instead of a continuous stochastic process.

In fact, we can actually allow for all Y , X, and Z to be discrete; this case is easier to handle than

the general continuous case as we then have fewer (i.e. a finite number) of stochastic processes

to optimize over. In fact, our framework also works in the case where Y and X are discrete or

binary, too, which makes our approach a direct generalization of Balke & Pearl (1994) and Balke

& Pearl (1997). In the following our benchmark set-up will be for continuous Y , X, and Z since

this is the most general and complicated setting. 4
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The most general assumption we need in this respect is to ensure that those probability

measures actually define stochastic processes. The basic assumption we make throughout is

Assumption 2 (Regularity). (i) Y , X, Z, U , and V are random variables taking values in [0, 1].

Under Assumption 2 the induced stochastic processes are defined on [0, 1][0,1] ⊂ R[0,1] with the

canonical σ-algebra induced by their respective cylinder sets. For example, the cylinder sets for

Xz(u) are

{Xz(u) ∈ [0, 1][0,1] : (Xz1 , . . . , Xzk) ∈ B,B ∈ B[0,1]}.

Therefore, each u and v indexes one equivalence class of modifications of stochastic processes

defined by the cylindrical σ-Borel algebra and the respective measure.11

As a second remark on this assumption, note that requiring the random variables to take

values in [0, 1] is not restrictive as there always exists a measure preserving isomorphism from any

Polish space equipped with the Borel σ-algebra and some nonatomic measure P onto the unit

interval equipped with Lebesgue measure (Bogachev 2007, Theorem 9.1.11). Since we will make

use of the compactness of [0, 1] in some proofs, our results hold for compact subsets of Polish

spaces.12

As a third and final remark, note that we set out to solve a more general problem than other

identification results in nonseparable triangular models (e.g. Imbens & Newey 2009, Torgovitsky

2015 and references therein), where assumptions on the dimension of U and V are constantly

made. Our focus lies on partially identifying PY |X∗ and not point-identifying the production

function h, so that we do not make any functional form assumptions on h or g which would lead

to further structural assumptions on the dimensionality of V and U . All we need for our setting

is a measure space which has cardinality 2c in order to index all possible paths of the respective

stochastic process Yx(v). The unit interval equipped with the Lebesgue σ-algebra is the easiest

set-up to work with for our purposes and this is why we choose it.13

We can now use Kolmogorov’s Extension Theorem (Bauer 1996, Theorem 35.3) in order to

prove that the stochastic processes Yx(v) and Xz(u) induced by the measures PY |X∗=x and PX|Z=z

exist.

Proposition 1 (Existence of the stochastic processes). Under Assumption 2 the measures PX|Z=z

and PY |X∗=x induce stochastic processes Xz and Yx.

Note that right now, Proposition 1 only guarantees that there exist measure spaces (Ω,A, P )

on which Xz and (Ω̃,A, P̃ ) on which Yx are defined. In the next section we construct measure

preserving isomorphisms between the laws of the stochastic processes PY |X∗=x and PX|Z=z and

11A modification of a path Xz(u) of a stochastic process is another path X ′z(u) which differs from Xz(u) only
on a set of measure zero.

12It is most likely possible to extend the results to the non-compact setting under formal complications.
13It is also from this point of view that a general consideration of the case of a continuous X is important, as it

allows us to circumvent the combinatorial issues which often plague approaches using discretization arguments.
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the unit interval, so that we can define Xz on ([0, 1],A[0,1], PU ) and Yx on ([0, 1],A[0,1], PV ) and in

turn interpret PY |X∗=x and PX|Z=z as the laws of the stochastic processes defined by model (1)

which are indexed by v and u, respectively. We will already use U and V in this section, while

the formal construction is in the next section.

In principle, Assumptions 1 and 2 are the only assumptions we need to make our subsequent

approach work. One can therefore identify the ATE without any structural assumptions on g and

h. However, the σ-algebra induced by the cylinder sets on R[0,1] is rather coarse. In particular, the

space C([0, 1]) is not measurable in this σ-algebra (Bauer 1996, Corollary 38.5). This technicality

is important as in many applications it is warranted to make the assumption that the paths

of the stochastic processes satisfy certain properties, like continuity, monotonicity, or some other

general (nonparametric) functional form assumption. For instance in section 6 we apply our result

to estimate Engel curves, for which the continuity assumption is natural.

Running example (2). Throughout this article, the only assumption we make is that the

stochastic processes (i.e. response profiles of the hypothetical participants) Yx(v) and Xz(u) are

continuous, i.e. to require that Yx(v) and Xz(u) lie in C([0, 1]) instead of R[0,1]. This assumption

translates to requiring that g and h be continuous with respect to X and Z in model (1), respec-

tively. In fact, continuity of h with respect to X means that small changes in the administered

treatment X do not lead to vastly different outcomes Y . Continuity of g with respect to Z means

that if the actual interest rate Z intended to be assigned only changes slightly, then the actual as-

signed interest rate X does not vastly change. Our approach also works without this assumption,

allowing for jumps. For instance in the microcredit example it can happen that the credit is not

granted even though a certain interest was randomly assigned, which would yield jumps down of

the stochastic processes.

This also gives a first indication of how we are able to include general (nonparametric) struc-

tural assumptions in model (1): we translate the respective assumption from the production

functions g(z, u) and h(x, v) to the response profiles Xz(u) and Yx(v). Different assumptions will

rule out or allow for different profiles. For instance, in the microcredit randomized trial it is

reasonable to allow for jumps in the response profiles: it might happen that the bank gives a

credit to a person that was not assigned to receive a credit, in which case there would be a jump

in the interest rate for this person. The same holds in the other direction: the bank might decide

to not give a credit to some person even though it was instructed to do so, in which case there

would be a jump to zero in the interest rate.

Since assumptions like continuity, monotonicity, or certain starting points of the processes rule

out a number of paths of the stochastic processes, they will lead to tighter bounds ceteris paribus

when upheld in the model, something which has also been described before (Heckman & Vytlacil

2005). Our general framework allows for an intuitive explanation: we do not have to account for

as many potential strategies when optimizing, which in general leads to tighter bounds. Finally

note that the generality of our approach provides a framework for potentially testing the strength
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of these structural assumptions: assumptions which yield tighter bounds are stronger in general.

4

Continuity assumptions are structural assumptions on the model, but are very weak; in fact,

they don’t even have a counterpart when X is binary. Moreover, the space C([0, 1]) is a Polish

space, i.e. a completely metrizable and separable metric space, so that one can construct an in-

dexing of the respective paths of a stochastic process by u and v rather easily by relying on results

in Kuratowski (1934) which introduces a practical way to construct a measure preserving isomor-

phism from some Polish space onto the unit interval. In fact, we use Kuratowski’s construction

when setting up the indexing of the stochastic processes for our main result in the next section.

Another way to restrict the paths of the stochastic processes would be to assume that the

stochastic processes Yx(v) and Xz(u) induced by PY |X∗=x and PX|Z=z lie in the Skorokhod space

D([0, 1]) of functions which are right-continuous and possess left limits (Billingsley 1999, Chapter

3). In that case, one would relax the continuity assumption to allow for a countable set of jump-

discontinuities. The Skorokhod space when equipped with the corresponding Skorokhod metric

is a Polish space, so that it would be equally convenient to obtain an indexing of the paths of the

respective stochastic processes by u and v as in the space C([0, 1]), using the general construction

in Kuratowski (1934).

As mentioned, we will stick with the continuity assumption throughout as we also assume

continuity of Engel curves in our application. The most well-known and basic condition for

obtaining smoothness of the paths of the stochastic processes is the following.

Assumption 3 (Hölder continuous paths). There are fixed real numbers α, β, γ, δ > 0 and real

fixed finite constants cx, cy > 0 such that

E(|Yx1 − Yx2 |α) :=

∫
[0,1]
|Yx1(v)− Yx2(v)|απ1µ(dv) ≤ cy|x1 − x2|1+β and

E(|Xz1 −Xz2 |γ) :=

∫
[0,1]
|Xz1(u)−Xz2(u)|γπ2µ(du) ≤ cx|z1 − z2|1+δ

for all x1, x2 ∈ [0, 1] and z1, z2 ∈ [0, 1], and where π1µ and π2µ are the marginal measures of µ.

Two remarks about this assumption are in order. First, note that it actually implies that

the paths of the stochastic processes are Hölder continuous, so that the corresponding stochastic

processes can be defined on C([0, 1]) ⊂ R[0,1].

Proposition 2. Under Assumptions 2 and 3 the stochastic processes Yx(v) and Xz(u) induced

by the disintegrated measures PY |X∗=x and PX|Z=z possess a Hölder continuous modification of

all orders λY ∈ (0, βα) and λX ∈ (0, δγ ) and can hence be defined on C([0, 1]).

The proof of this proposition follows directly from Kolmogorov’s Continuity Theorem (Bauer

1996, Theorem 39.3), and the fact that the continuous paths are actually Hölder continuous

17



follows from Theorem 39.4 in Bauer (1996). In fact, we chose this assumption, because it is

the standard assumption in the literature for guaranteeing that the stochastic processes have a

continuous modification.

Second, the actual choice of the variables α, β, γ, δ > 0 as well as the constants cx, cy > 0

should be based on two things in principle: the a priori belief about the smoothness of the

production functions h(x, v) and g(z, u) and the observable PY,X|Z=z, as Proposition 2 gives an

upper bound on the degree of smoothness of the paths. In fact, as λY and λX approach 0 the

respective paths become less and less smooth and become only bounded in the limit. This limit,

i.e. λX = 0 or λY = 0 is excluded, however, as one cannot define the processes on C([0, 1]) in this

case.

We also require a similar assumption on the observable distribution FY,X|Z=z, which we need

in order to prove the large sample properties of the program in section 4.4.

Assumption 4 (Regularity of the observable distribution function). The observable measure

PY,X|Z=z induces a distribution function FY,X|Z=z(y, x) ∈ C([0, 1]3) which satisfies the following

condition:∫
[0,1]2

∫
[0,1]2

|(sy, sx)− (ty, tx)|η1dFY,X|Z=z1(sy, sx)dFY,X|Z=z2(ty, tx) ≤ cy,x|z1 − z2|1+η2 (2)

for some constants η1, η2, cy,x > 0.

Assumption 4 is similar to Assumption 3. In particular, the regularity condition (2) is a

sufficient condition for the constraint of our infinite dimensional linear program to be non-empty

as we prove in Lemma 4 below. The non-emptiness of the constraint is important for us as it

enables us to use a general form of the functional Delta-method in order to derive the large sample

distribution for a natural nonparametric plug-in estimator. Both assumptions are very weak and

should always be satisfied in models. If not, then one should work with more general stochastic

processes anyways. Moreover, note that Assumptions 3 and 4 are only of theoretical relevance for

us; in fact, when estimating the model in practice in section 5, we construct continuous stochastic

processes by simply simulating paths from a trinomial tree, so that we do not have to deal with

setting the appropriate constants from Assumptions 3 and 4 for this purpose.

Let us now turn to the main subsection of this article where we introduce the infinite dimen-

sional linear programs which yield the bounds on our causal effects.

4.2 The formal result: Constructing the infinite dimensional linear programs

To make our main result easier to understand, let us state the main relations here again. Recall

that we started out with unobservable measures PY |X∗ and PX|Z , which induce stochastic pro-

cesses on [0, 1][0,1] by the construction as product measures as in Proposition 1. Proposition 2

shows that those product measures can be defined on C([0, 1]) under the continuity assumptions.

Using the construction by Hess, which we state below in Lemmas 2 and 3, we define an indexing
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of the paths of the stochastic processes Yx(v) and Xz(u) for almost every v and u. This enables

us to replace the general measure spaces (Ω,A , PV ) and (Ω,A , PU ) of stochastic processes by

([0, 1],A[0,1], π1µ) and ([0, 1],A[0,1], π2µ), which is important as it allows us to find the optimal

joint measure µ on [0, 1]2 instead of some general abstract measure space. Using these ideas we

can state the main result of this article.

Theorem 1 (Infinite dimensional linear program for bounds on counterfactual probabilities). Let

Assumptions 1 – 3 hold. Then (lower/upper) bounds on the respective counterfactual distributions

FY |X∗=x0(y∗) for fixed y∗ ∈ [0, 1] and x0 ∈ [0, 1] can be obtained as solutions to the following

infinite dimensional linear programs:

minimize/maximizeµ∈P∗([0,1]2)

∫
[0,1]

HY,X(y∗, x0, v)π1µ(dv)

s.t. FY,X|Z=z(y, x) =

∫
[0,1]2

GY,X(y, x, z, v, u)µ(dv, du)

(3)

for all (y, x) ∈ [0, 1]2 and almost all z ∈ [0, 1].14 Here, P∗([0, 1]2) denotes the set of all measures

on ([0, 1]2,A[0,1]2) whose marginal measures π1µ and π2µ satisfy Assumption 3, i.e.

P∗([0, 1]2) := {µ ∈ P([0, 1]2) : Yx]π1µ and Xz]π2µ satisfy Assumption 3}. (4)

HY,X and GY,X are integral kernels of the form

HY,X(y, x, v) = 1[0,y] {Yx(v)} and (5)

GY,X(y, x, z, v, u) = 1[0,y]×[0,x]
{
YXz(u)(v)

}
(6)

where Yx]π1µ and Xz]π2µ denote the respective pushforward measures, i.e. laws of Yx and Xz.

Let us give an intuitive explanation of this result in terms of our

Running example (3). The intuitive idea for Theorem 1 is as follows. Recall that the underlying

idea is to work with the hypothetical participants, or more specifically: their response profiles

which are defined by paths of the stochastic processes Yx and Xz, respectively. We then obtain the

counterfactual probability PY |X∗=x0(Ey) for some event Ey at exogenously assigned x0 by changing

the composition of response profiles in the model, as mentioned previously. Here “changing the

composition” means to find a joint measure (i.e. weight) µ on the paths of the stochastic processes

Yx(v) and Xz(u).

The indexing of the paths Yx(v) and Xz(u) needed for Theorem 1 is provided in Lemmas 2 and

3 below. This is one way of assigning an index u and v to (almost) every path of the stochastic

processes Xz and Yx, respectively, so that we are allowed to write Xz(u) and Yx(v). This indexing

has the additional benefit that we can work with the measure µ on the unit square [0, 1]2, which

14Note that throughout we define conditional distributions as FY,X|Z=z(y, x) and do not write FY,X|Z=z(y, x, z).
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is the space where the indices of the response profiles U and V live. In this respect, it is also

helpful to interpret µ as a probability on the response profiles instead of a weight—in this case one

has one hypothetical participant who chooses between all admissible responses and puts a certain

probability on these. The only assumptions we make in this setting is the exclusion restriction

(Assumption 1), the normalization that all variables lie in the unit interval (Assumption 2), and

the requirement that the paths of the stochastic processes are continuous (Assumption 3)—the

approach works equally well when replacing the continuity assumption by some more general

assumption, like allowing for jumps, however.

Also notice that Theorem 1 remains unchanged for binary or discrete instruments Z. All one

has to do is change the stochastic processes Xz, but the optimization problem stays exactly the

same. In fact, the case where all Y , X, and Z are continuous is by far the most complicated case

since one then needs to optimize over the greatest number of stochastic processes. For binary Z,

we obtain a 2-point stochastic process for continuous X. As mentioned, our optimization problem

also works when all variables are discrete or binary.

Theorem 1 uses the probability interpretation in conjunction with the construction of the

indices u and v of the paths of the stochastic processes; in particular, it tries to adjust the prob-

ability on the strategies of the hypothetical participant such that it maximizes (for an upper

bound) or minimizes (for a lower bound) the probability of the hypothetical participant reacting

with a 5 year savings rate of 10% to an assigned interest rate of x0 percent such that the overall

probability of the participant’s response profile for both processes Yx and Xz perfectly replicates

the observable joint probability measure PY,X|Z=z. In this respect, the constraint set P∗([0, 1]2)

contains all the admissible strategies, i.e. all structural assumptions we make on the stochastic

processes. For instance, under the continuity assumption (Assumption 3) it contains only mea-

sures which induce continuous stochastic processes. Different functional form assumptions on the

response profiles will change the elements P∗([0, 1]2), but do not change the structure of the linear

programs. This makes including such assumptions convenient in our setting.

The notation in (3) does make clear that there is indeed a need for optimization. To see this,

recall that we allow for a large class of stochastic processes in general, i.e. h(X, v) and g(Z, u)

are not injective in v and u, which translates to the fact that the stochastic processes Yx(v) and

Xz(u) each have crossing paths. If paths cross at a point, it is not clear which response profile

induced this action, so that knowing the joint distribution PY,X|Z=z does not guarantee that we

know the distributions PY |X∗ and PX|Z . In fact, there are infinitely many probability measures

µ on the paths of the processes Yx and Xz which satisfy the constraint as FY,X|Z=z(y, x) only

gives a joint measure for both paths simultaneously, but it does not pin down paths individually

as the processes are dependent: Yx depends on the position of Xz. Note in this respect that the

exclusion restriction Z ⊥⊥ (V,U) is incorporated in the function GY,X ; in fact, the processes Yx(v)

and Xz(u) are constructed independently, so that the only thing that makes them dependent is

the fact that Yx(v) depends on x, which is the realization of the process Xz(u) at z. No other

relation between V and Z is present.
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In this respect it is interesting to consider point-identification results from the literature on

nonseparable triangular models, as Imbens & Newey (2009) or Torgovitsky (2015). In fact, every

identification result in this literature in one way or another requires monotonicity of h(x, ·) and

g(z, ·) in v and u, respectively (e.g. Imbens 2007 and references therein). The idea is that mono-

tonicity makes h and g injective in v and u, respectively. In our setting, injectivity of h in v means

that the paths of Yx(v) never intersect, so that for each (y, x) there is a unique v—this would

guarantee that we could point-identify (under some more regularity assumptions) the latent distri-

butions PY |X∗ and PX|Z=z, as we would have a unique response profile (Yx, Xz) for the observable

PY,X|Z=z. This is why monotonicity is such a staple in the literature on point-identification of

nonparametric models. 4

Let us now show how to construct the indexing of the paths of the stochastic processes,

adapting the ideas from Hess (1982). For this we first need to construct dyadic quasi-intervals in

R[0,1].

Lemma 2 (Construction of dyadic quasi-intervals). There is a family (Fi)i∈N∗ of dyadic quasi

intervals Fi in R[0,1] with the following properties for all k ∈ N and (n1, . . . , nk) ∈ Nk.

(i) Fn1,...,nk is a dyadic quasi-interval of order k − 1.

(ii) R[0,1] =
⋃∞
n=1 Fn. Moreover, the Fi can be made mutually disjoint via

Dn1,...,nk := Fn1,...,nk \ (Fn1,...,nk−1,1 ∪ · · · ∪ Fn1,...,nk−1,nk−1),

so that Dn1,...,nk =
⋃∞
n=1 Fn1,...,nk,n, R[0,1] =

⋃
· nDn, and P (Fn1,...,nk) = P (Dn1,...,nk).15

(iii) (Fn1,...,nk)◦ = ∅.

Proof. The proof in Hess (1982, p. 338–340) is for the space R(0,1]×{0}, but the same construction

works for R[0,1] and therefore [0, 1][0,1].

Dyadic quasi intervals form a countable partition of R[0,1] and are the key step in constructing

the indexing. They make the space R[0,1] manageable by dividing it up into an ever finer partition

of quasi-intervals, depending on how far one pushes the dyadic expansion. In particular, for each

k ∈ N one obtains an infinite set of quasi-intervals at the kth dyadic expansion. For k = 3, for

instance, one would have nine partitions of R into an infinite sequence of dyadic intervals16 at the

points tj = j
2m , j = 0, 1, 2, . . . , 8. The maximal length of each of those dyadic intervals in R would

be less than or equal to 1
8 . The higher k, the finer the partition of R as well as the partition of

[0, 1] by t. As k →∞, the sequence of quasi-intervals grows dense in R[0,1].

15⋃· n defines disjoint unions.
16Here, it is crucial to note the distinction between dyadic intervals and dyadic quasi-intervals. The former form

a partition of the space R and hence form a part of a dyadic quasi-inteval. In fact, dyadic quasi-intervals are a
“collection” of dyadic partitions of R at dyadic points in [0, 1].
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The next step in the construction of indices is to actually construct, for both processes Yx(v)

and Xz(u) respectively, a Borel homeomorphism from the irrational numbers I in [0, 1] to the set

of Hölder continuous functions on [0, 1], i.e. C0,λY ([0, 1]) and C0,λX ([0, 1]) for λY , λX defined in

Proposition 2. We can construct these homeomorphisms again in analogy to Hess (1982). Recall

in this respect that the set of Hölder continuous functions on [0, 1] is an Fσ subset of C([0, 1]).

Lemma 3 (Construction of the indexings). For λY and λX there exists a respective increas-

ing sequence of closed subsets (JYm)m∈N of I and a respective (1, 1)-homeomorphism φV : JY →
C0,λY ([0, 1]), JY :=

⋃∞
m=1 J

Y
m as well as φU : JX → C0,λX ([0, 1]), JX :=

⋃∞
m=1 J

X
m such that, for

every m ∈ N, the restriction of φV to JYm is a (0, 1)-homeomorphism from JYm onto C0,λY
m ([0, 1])

and the restriction of φU to JXm is a (0, 1)-homeomorphism from JXm onto C0,λX
m ([0, 1]).17

Proof. See Hess (1982, p. 340–341).

Having constructed the dyadic quasi-intervals with the help of Lemma 2, the idea of Lemma

3 is to construct the two indexings, i.e. (1, 1)-homeomorphisms by considering all non-empty

intersections of the closed subsets C0,λ
m ([0, 1]) of λ-Hölder continuous functions with the respective

partition of quasi-intervals Fn1,...,nk . Formally, this can be expressed as

Bm
n1,...,nk

:= Fn1,...,nk ∩ C
0,λ
m ([0, 1]).

The respective indexing is then obtained by identifying the set of irrational numbers I with the

Baire space NN, the space of natural sequences (Aliprantis & Border 2006, Section 3.14) and to

set

I ⊃ Jm := {(ni)i∈N ∈ NN : Bm
n1,...,nk

6= ∅},

which identifies the dyadic intervals through which Hölder continuous paths go with a subspace

of Baire space and hence of the irrational numbers in I. The proof of Lemma 3 in Hess (1982)

then shows that this produces a (1, 1)-homeomorphism from J =
⋃∞
m=1 Jm onto C0,λ([0, 1]). Note

that C0,λ([0, 1]) ⊂ C([0, 1]).

When facing binary or discrete Z one can adjust the above construction rather easily and

define Xz to be a “multi-point-process” in the discrete case, by choosing only d points on the unit

interval for Z and not a complete dyadic approximation. This would make the construction much

easier in fact; all one has to do is make sure that the stochastic process Xz is well-defined in a

mathematical sense in order to define a joint measure µ over both processes. We will not go into

detail here since our focus is on the most general (and most complicated) case where all variables

are allowed to be continuous.

Theorem 1 allows us to obtain general causal effects if we apply it at two different points x0

and x1 for the same y∗ by taking the difference FY |X∗=x1(y∗) − FY |X∗=x0(y∗) as the objective

17Cλm([0, 1]) is the set of all functions f on [0, 1] for which |f(x1) − f(x2)| ≤ m|x1 − x2|λ for all x1, x2 ∈ [0, 1].
See the notation in the appendix for further information.

22



function. The value of this problem then is the distributional causal effect when X is changed

from x0 to x1. Similarly, one could obtain bounds on causal effects for subsets of X by integrating

over some Borel sets Ex0 and Ex1 , for instance, in which case the causal effect would be obtained

by using the objective function∫
[0,1]

∫
Ex0

HY,X(y∗, x, v)dxπ1µ(dv)−
∫
[0,1]

∫
Ex1

HY,X(y∗, x, v)dxπ1µ(dv).

Theorem 1 is hence in the form to obtain any causal effect. For the ATE we also have to adjust

the objective function a little.

Corollary 1 (Bounds on the ATE). In order to obtain upper bounds on the ATE of a change

from X = x0 to X = x1 one needs to change the objective function to∫
[0,1]

H∗(x1, v)π1µ(dv)−
∫
[0,1]

H∗(x0, v)π1µ(dv),

for H∗(x, v) := Yx(v).

Throughout the next section we focus on the programs (3) where the objective function is for

obtaining probabilities and not the ATE. Since the objective function for the ATE is continuous

all results we prove in the following for the distributional causal effects carry over to the ATE.

Before turning to properties of the programs, we want to state an equivalence result. Note that

we have stated the programs (3) in such a way that they replicate the observable distribution

function FY,X|Z=z, which is a more general requirement than the framework in Balke & Pearl

(1994) or Kitagawa (2009) who work with the density function fY,X|Z=z. The following proposition

shows that we can obtain the bounds by considering either the CDF or the PDF if the latter exists.

Proposition 3 (Equivalence result for densities). If FY,X|Z=z possesses a density fY,X|Z=z(y, x)

with respect to Lebesgue measure for almost every z ∈ [0, 1], then the following programs are

almost everywhere equivalent to the respective programs (3):

min/maxµ∈P∗([0,1]2)

∫
[0,1]

HY,X(y∗, x0, v)π1µ(dv)

s.t. fY,X|Z=z(y, x) =

∫ ∫
Γ(y, x, z, v, u)µ(dv, du),

(7)

where

Γ(y, x, z, v, u) = δ
(
y − YXz(u)(v)

)
δ (x−Xz(u))

is the product of two shifted Dirac delta-distributions.

When establishing the theoretical properties of the optimization programs in the following we

use the CDF-versions, because it will be easier to establish the large sample distributions of the
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programs when estimating FY,X|Z=z by a smoothed estimator F̂Y,X|Z=z;hn with some bandwidth

hn; the additional smoothness makes proving the large sample results easier for us in section 4.4.

Let us first turn to analyzing the infinite dimensional linear programs in more depth.

4.3 Theoretical properties of the linear programs

The maximal and minimal solutions to the infinite dimensional linear program established in

the previous subsection provide the required bounds on PY |X∗=x and a fortiori on the ATE. We

therefore need to analyze its properties to guarantee that the optimization problems are well-

behaved. We do so in this and the next subsection. In this subsection we focus on mathematical,

in the next subsection on statistical properties.

We show that the constraint set, which in actuality is a constraint correspondence18 as it

depends on the observed distribution FY,X|Z , is convex and pre-compact-valued in the weak

topology. Furthermore, we establish the dual problems and show that there is no duality gap

under a weak structural assumption on the estimable FY,X|Z , so that one can use the dual program

to solve the problem. Most importantly, however, we show that the optimization problems in

Theorem 1 take the form of a general version of the general capacity problem (Anderson & Nash

1987; Anderson, Lewis & Wu 1989), a well-studied infinite-dimensional linear program in measure

spaces which takes the form

min
µ∈M(Y)

∫
Y
f(y)µ(dy)

s.t.

∫
Y
ϕ(y, x)µ(dy) ≥ g(x),

(8)

where it is usually assumed that f ∈ C(Y), g ∈ C(X ).19

The general capacity problem extends the simple capacity problem from Choquet (1954).

Our problem is even more general than the general capacity problem as we integrate over paths

of stochastic processes and not just points in Euclidean space. Therefore, we solve this problem

approximately in practice. We do this in section 5 by a sampling approach; in addition, we borrow

the idea of discarding unimportant paths for our optimization from cutting plane approaches

designed for general capacity problems on Euclidean spaces, introduced in generality by Lai &

Wu (1992) and Wu, Fang & Lin (2001).

Let us start with phrasing the problems (3) in terms of the general capacity problem. Com-

paring (3) and (8) we see that our problem is already in the form of the general capacity problem,

except for the fact that we have an equality constraint and require µ ∈ P∗([0, 1]2) instead of

M([0, 1]2). Moreover, the functions HY,X and GY,X do not lie in C([0, 1]2) and C([0, 1]5), respec-

tively, as they are (products of) indicator functions. We can, however, approximate HY,X and

18A correspondence is a “multivalued function”. For a nice introduction to correspondences, consider Aliprantis
& Border (2006, Chapter 17).

19Note that if we work in more general spaces like D([0, 1]) or R[0,1], this assumption is unrealistic. One then has
to prove analogous results to the ones we derive below for FY,X|Z=z(y, x) ∈ D([0, 1]3) for instance, which proceeds
along the same lines if we equip D([0, 1]3) with the Skorokhod metric.
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GY,X by (products of) smooth functions such as versions of the logistic function S(x) = exp(x)
exp(x)+1 .

For example, we can approximate 1[0,y]{Yx(v)} by

S1(Yx(v), y, ε1) :=
1(

1 + exp
(
−ε1

(
Yx(v) + ε

−1/2
1

)))(
1 + exp

(
−ε1

(
y − Yx(v) + ε

−1/2
1

)))
and 1[0,y]×[0,x]{YXz(u)(v), Xz(u)} by S1(YXz(u)(v), y, ε1) · S2(Xz(u), x, ε2) for ε1, ε2 > 0 and as

ε1, ε2 → +∞.

Also recall that Yx(v) and Xz(u) are (0, 1)-homeomorphisms between [0, 1] and C0,λ
m ([0, 1])

for every m ∈ R+ by the construction in Lemmas 2 and 3, so they are continuous maps in

particular. The compositions S1(Yx(v), ε1) and S1(Yx(v), ε1) · S2(Xz(u), ε2) are hence contin-

uous in u and v for all ε1, ε2 > 0. From now on we will denote the continuous approxi-

mation of HY,X(y, x, v) by Ξ(y, x, v, u) := S1(Yx(v), ε1) and the continuous approximation of

GY,X(y, x, z, v, u) by Θ(y, x, z, v, u) := S1(Yx(v), y) · S2(Xz(u), x), suppressing the dependence on

ε1 and ε2 and letting Ξ depend on u. Analogously, we can approximate the Dirac delta-functions

Γ(y, x, z, v, u) by standard mollifiers, i.e. kernel density estimators in order to translate our prob-

lems (7) to the setting of the general capacity problem. Again, the density case is more natural

for the general capacity problem, but we focus on the slightly more general case of the CDF since

our practical problem in section 5 is based on the CDF version.

The fact that the kernels HY,X and GY,X can be approximated by continuous functions helps

us introduce appropriate operators. In particular, we can define a linear integral operator Θµ by

Θµ(y, x, z) :=

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du).

The domain of Θ is M([0, 1]2) and the codomain is C([0, 1]3) since Θ is the continuous approxi-

mation of an indicator function. In this setting we can define the bilinear functionals 〈ρ, f〉1 on

M([0, 1]2)× C([0, 1]2) and 〈f̃ , ν〉2 on C([0, 1]3)×M([0, 1]3) by

〈ρ, f〉1 :=

∫
[0,1]2

f(v, u)ρ(dv, du) and

〈f̃ , ν〉2 :=

∫
[0,1]3

f̃(y, x, z)ν(y, x, z),

so that we have by the Fubini-Tonelli theorem

〈Θµ, ν〉2 =

∫
[0,1]3

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du)ν(dy, dx, dz)

=

∫
[0,1]2

∫
[0,1]3

Θ(y, x, z, v, u)ν(dy, dx, dz)µ(dv, du) = 〈µ,Θ∗ν〉1,

where Θ∗ν : M([0, 1]3) → C([0, 1]2) is the adjoint operator of Θµ. We always endow C([0, 1]3)
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with the uniform topology, but will consider different topologies on M([0, 1]2). From now on, we

will prove all properties of the following alternative versions of (3)

inf
µ∈P∗([0,1]2)

∫
[0,1]

Ξ(y∗, x0, v, u)µ(dv, du)

s.t. FY,X|Z=z(y, x) =

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du) and

sup
µ∈P∗([0,1]2)

∫
[0,1]

Ξ(y∗, x0, v, u)µ(dv, du)

s.t. FY,X|Z=z(y, x) =

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du).

(9)

As a first step towards showing that the problems (9) are well-defined, we need to prove that the

constraint correspondence20

A(FY,X|Z=z(y, x)) := P∗([0, 1]2) ∩ E([0, 1]2)

= P∗([0, 1]2) ∩
{
µ ∈ P([0, 1]2) : Θµ = FY,X|Z=z(y, x)

} (10)

is non-empty.

Lemma 4 (Non-emptiness of the constraint correspondence). If Assumptions 1 – 4 hold then

there exist cx, cy, α, β, γ, δ > 0 as required in Assumption 3 and a µ ∈ P∗([0, 1]2) such that

Θµ = FY,X|Z=z(y, x).

From now on we will implicitly assume that the constants have been chosen such that the

problems have a solution, as Assumptions 2 and 4 are theoretical devices for our proofs, but do

not appear directly when solving the problem in practice. Based on the above results, we have

the following

Proposition 4 (Regularity of the constraint correspondence). Under Assumptions 1 – 3 the

set P∗([0, 1]2) is convex and compact in the weak topology. Under Assumptions 1 – 4 the con-

straint correspondence A(FY,X|Z=z(y, x)) is non-empty, convex, and pre-compact for an appropri-

ate choice of α, β, γ, δ, cy, cx > 0.

Proposition 4 shows that the correspondence A(FY,X|Z=z(y, x)) is well-behaved; in particular,

the set P∗([0, 1]2) is convex and compact in the weak topology, even though its interior is empty.

Convexity and compactness are very helpful properties, as they enable us to prove statistical

large sample properties of the value functions m(FY,X|Z=z(y, x)) and m(FY,X|Z=z(y, x)), which

we define as

m(FY,X|Z=z(y, x)) =

infµ Ξµ if µ ∈ A(FY,X|Z=z(y, x))

+∞ otherwise

20A(FY,X|Z=z(y, x)) is indeed a correspondence as it depends on FY,X|Z=z(y, x).
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m(FY,X|Z=z(y, x)) =

supµ Ξµ if µ ∈ A(FY,X|Z=z(y, x))

−∞ otherwise
.

Before turning to this we provide the dual problems to (9) and show that they yield the same

results as the primal problems, for the sake of completeness. In finite dimensions it does not

matter if one solves the primal problem or its dual, since both will give the same solution under

fairly weak and standard conditions; this property is called strong duality. In contrast to the finite

dimensional case, strong duality need not hold in infinite dimensions. We now show, however,

that under the above assumptions strong duality does hold for the problems (9).

Proposition 5 (Lagrangian dual programs and strong duality). The Lagrangian dual problems

to (9) are

sup
ν∈M([0,1]3)

inf
µ∈P∗([0,1]2)

∫
[0,1]2

Ξ(y∗, x0, v, u)µ(dv, du)

+

∫
[0,1]3]

(
FY,X|Z=z(y, x)−

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du)

)
ν(dy, dx, dz)

and

inf
ν∈M([0,1]3)

sup
µ∈P∗([0,1]2)

∫
[0,1]2

Ξ(y∗, x0, v, u)µ(dv, du)

+

∫
[0,1]3]

(
FY,X|Z=z(y, x)−

∫
[0,1]2

Θ(y, x, z, v, u)µ(dv, du)

)
ν(dy, dx, dz).

(11)

Also, there is no duality gap under Assumptions 1 – 4.

We do not need the dual program for our purposes, but the proof of strong duality in our

setting is instructive—in fact, we can build a proof for the large sample distribution of the infinite

dimensional programs based on ideas of the proof of strong duality. Also note that Proposition 5

does not assert that the optimal values of the dual problems are achieved by some ν ∈M([0, 1]3).

The issue is that we can only prove that the optimal value functions m(FY,X|Z=z(y, x)) and

m(FY,X|Z=z(y, x)) are upper- respectively lower semicontinuous, which guarantees strong duality

but not the fact that the optima of the dual problems are actually achieved. This is not an issue

for us since we only care about the value functions in our setting.

The problem which prevents m(FY,X|Z=z(y, x)) and m(FY,X|Z=z(y, x)) from being continu-

ous in our setting is the constraint that µ ∈ P∗([0, 1]2), which is a subset with empty inte-

rior in M([0, 1]2) equipped with either the total variation distance or the weak topology. This

means that for any conditional distribution function F ′Y,X|Z=z ∈ C([0, 1]3) which does not corre-

spond to a probability measure but a general Borel measure, we have m(F ′Y,X|Z=z(y, x)) = −∞
and m(F ′Y,X|Z=z(y, x)) = +∞ as A(F ′Y,X|Z=z) is empty in this case. The set of all continuous

conditional probability distribution functions FY,X|Z=z also has empty interior in the set of all
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continuous functions, so that the interior of the domain of m and m is empty, which prevents

them from being continuous on all of C([0, 1]3). We therefore cannot simply use the infinite

dimensional Slater condition which would immediately give strong duality. However, continuity

of m and m is reestablished if we restrict FY,X|Z to satisfy Assumption 4, which we denote by

FY,X|Z ∈ F([0, 1]3) ⊂ C([0, 1]3) for F([0, 1]3) := {F ∈ C([0, 1]3) : F satisfies Assumption 4}, and

this is the idea for the proof of asymptotic normality, which we turn to now.

4.4 Statistical properties of the linear programs

Let us now turn to the statistical properties of the programs. In the following we prove that

the natural plug-in estimators where we replace FY,X|Z=z by a smoothed estimator F̂Y,X|Z=z;hn ∈
F([0, 1]3) are well-behaved in the sense that they are uniformly asymptotically linear. We ex-

plicitly require F̂Y,X|Z=z;hn to be continuous and to satisfy Assumption 4. In addition, for this

section we assume that PY,X|Z=z possesses a density with respect to Lebesgue measure for almost

every z ∈ Z, which allows us to use standard results from the literature of smoothed empirical

processes, in particular from Giné & Nickl (2008).

Assumption 5. The observable measure PY,X|Z=z possesses a density pY,X|Z=z with respect to

Lebesgue measure for almost every z ∈ Z.

We denote our kernel density estimator for pY,X,Z by

P̂Y,X,Z;n ∗Khn(y, x, z) :=
1

nh3n

n∑
i=1

K

(
y − Yi
hn

)
K

(
x−Xi

hn

)
K

(
z − Zi
hn

)
,

where K denotes a smoothing kernel, hn denotes the bandwidth, and f ∗g denotes the convolution

between two functions f and g. Based on this, we have the following notation for the conditional

kernel density estimator for pY,X|Z

P̂Y,X|Z;n ∗Khn(y, x, z) :=

1
nh3n

∑n
i=1K

(
y−Yi
hn

)
K
(
x−Xi
hn

)
K
(
z−Zi
hn

)
1
nhn

∑n
i=1K

(
z−Zi
hn

) .

Using this notation we write the smoothed empirical process as

√
n(P̂Y,X|Z;n∗Khn−PY,X|Z)(f) =

1√
n

n∑
i=1

(
f ∗Khn(Yi, Xi, Zi)−

∫
[0,1]3

f(y, x, z)PY,X|Z=z(dy, dx)

)

for functions f in some appropriate (Donsker or pregaussian) class G. Weak convergence of this

empirical process to some limiting process Z over the class G is then denoted as

√
n
(
P̂Y,X|Z;n ∗Khn − PY,X|Z

)
`∞(G)
=⇒ Z,
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where `∞(G) denotes the space of all uniformly real bounded functions on G. If we set the class G
to be the set of all rectangles in [0, 1]3, then the smoothed empirical process above is a smoothed

empirical distribution function, and we write

√
n
(
F̂Y,X|Z;hn − FY,X|Z

)
=⇒ Z,

where the limiting process Z is indexed by all rectangles on [0, 1]3.

In order to make the smoothed empirical processes asymptotically linear, we require slightly

stronger assumptions on the distribution function than we had previously.

Assumption 6 (Regularity of the density). The density pY,X|Z associated with PY,X|Z is bounded

on [0, 1]2 for almost every z ∈ [0, 1] or satisfies pY,X|Z ∈ Cs,λ
′
([0, 1]3) for some s ≥ 0 and λ′ ≥ 0.

We also choose appropriate kernels Khn and bandwidths hn.

Assumption 7 (Regularity of the kernel density estimator). The kernels Khn are of order r =

λ′ + 1 − t for some t with 0 < t < λ′ + 1. The bandwidths hn > 0 satisfy hλ
′+1−t
n n1/2 → 0 as

n→∞.

Assumptions 6 and 7 guarantee that the smoothed empirical processes converge, which follows

from Proposition 4 in Giné & Nickl (2008); in particular, the choice of bandwidth and the kernel

make the bias asymptotically negligible. These are all standard assumptions and very weak.

Finally, we assume that F̂Y,X|Z;hn ∈ F([0, 1]3), so that the optimization problems are guaran-

teed to be non-empty.

Assumption 8 (Continuous path requirement for the smoothed empirical distribution). F̂Y,X|Z;hn ∈
F([0, 1]3), i.e.∫
[0,1]2

∫
[0,1]2

|(sy, sx)−(ty, tx)|η1dP̂Y,X|Z=z1;n∗Khn(sy, sx)dP̂Y,X|Z=z2;n∗Khn(ty, tx) ≤ cy,x|z1−z2|1+η2

for some cy,x, η1, η2 > 0.

Assumption 8 is a sufficient condition for the linear programs to have a solution in finite sam-

ples. In particular, it guarantees that the value functions are Hadamard differentiable tangentially

to F([0, 1]3). Assumption 8 is simply a regularity condition and a very weak one at that. It should

be satisfied in nearly all practical settings; in those where it is not one should work with more

general stochastic processes that allow for jumps. We now have the following

Proposition 6 (Uniform large sample results). Under Assumptions 1 – 8 it holds that

√
n
(
m(F̂Y,X|Z;hn)−m(FY,X|Z)

)
=⇒ ṁFY,X|Z (G) and

√
n
(
m(F̂Y,X|Z;hn)−m(FY,X|Z)

)
=⇒ ṁFY,X|Z

(G)
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where G a Brownian bridge indexed by all rectangles on [0, 1]3, and

ṁFY,X|Z (F ) = min
ν∈∂m(FY,X|Z)

〈F, ν〉2 for F ∈ F([0, 1]3)

ṁFY,X|Z
(F ) = max

ν∈∂m(FY,X|Z)
〈F, ν〉2 for F ∈ F([0, 1]3)

are the directional Hadamard derivatives of m(·) and m(·) at FY,X|Z tangentially to the set

F([0, 1]3).

Here ∂m(FY,X|Z) denotes the subgradient of m at FY,X|Z . In general, the measure ν ∈
M([0, 1]3) belongs to ∂m(FY,X|Z) if m(FY,X|Z + tF ) ≥ m(FY,X|Z) + t〈F, ν〉2 for all F ∈ C([0, 1]3)

and t > 0, see for instance Rockafellar (1974, p. 33). Note furthermore that maxν∈∂m(FY,X|Z)〈F, ν〉2
is the support function of the subgradient, which is equicontinuous in a neighborhood around zero

in our setting (see p. 31 in Rockafellar 1974). Also note that the value functionsm andm are barely

lower- respectively upper semicontinuous on C([0, 1]3) and clearly not Hadamard differentiable

there. We only require differentiability tangentially to F([0, 1]3) ⊂ C([0, 1]3), however, which

is enough for the Functional Delta Method to hold, which in turn proves asymptotic linearity

(Shapiro 1991, Theorem 2.1).

To give an intuitive explanation of this result, note that we can only show that the linear

programs perturb continuously over the set F([0, 1]3), but not over all of C([0, 1]3) as there

are some directions in which the optimal value of the programs change drastically even though

F̂Y,X|Z=z;hn only changes slightly. We therefore provide directions, namely directions in F([0, 1]3),

for which the optimal value does vary continuously, which we do by showing that the value function

is both upper- and lower semicontinuous on this set. This is where Assumption 8 comes into play,

which requires that there always exists a solution to the finite sample linear programs. The

functional Delta-Method is still valid if we only consider certain directions and not the whole

space, so that we can use it to derive the large sample properties in particular directions.

Proposition 6 can be used to perform inference on each bound separately. In practice, the

large sample distribution will be estimated by bootstrapping or subsampling methods. It is known,

however, that the bootstrap for the delta method can fail in general when the function is only

directionally Hadamard differentiable. Dümbgen (1993) and more recently Fang & Santos (2014)

derive results which provide consistency of (versions of) the bootstrap in this setting. Second,

note that Proposition 6 gives large sample results for each bound separately. In order to obtain

uniform confidence intervals with appropriate coverage, one can use established ideas from the

literature (Chernozhukov, Lee & Rosen 2013, Imbens & Manski 2004, Stoye 2009). The results

developed in this section fit together nicely with the existing literature on uniform inference in

partially identified models, and we refer to these articles for further information, as this is not

the main focus of this article.

Let us finally turn to the practical implementation and the application.
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5 Practical implementation

We want to apply the results from the previous section to nonparametrically estimate bounds

on distributional causal effects for expenditures. For this we have to introduce the practical

implementation first, which we do in this section.

The infinite dimensional linear programs we constructed theoretically in the previous section

are similar to, but more general than, optimal stochastic control or reinforcement learning prob-

lems since we do not assume a Markovian structure on the stochastic processes in general. Finding

the optimal global solution to these general problems via a brute force method requires exponen-

tial time and memory (e.g. Kappen 2007). Moreover, even checking whether a given solution to

the problem is smaller than some value requires us to check the solution on exponentially many

paths, which is infeasible. In practice, we therefore solve them by approximating their solutions

via a sampling approach, which we find yields very reasonable approximate solutions, already for

coarse grids.

We now present an algorithm for solving the infinite dimensional linear programs in practice

via this “sampling of paths” approach. Recall from the previous section that we have to perform

a dyadic decomposition of the unit interval, and the finer the dyadic decomposition, the more

accurate the solution to the optimization program. Throughout this section we denote by mi =

2i + 1 the total number of points in the respective dyadic decomposition of order i ∈ N. As

i → ∞, we obtain the true infinite dimensional linear programs from section 4. Of course, there

is a tradeoff in practice as a finer dyadic decomposition of the unit interval leads to a higher

complexity of the linear programs to solve.

In practice, there are many different ways to sample paths of stochastic processes. Standard

ways are to use general stochastic differential equations driven by Levy-processes for instance.

Another approach—specifically for sampling continuous paths—is to use a recombining trinomial

tree, which is centered on the mi points of the respective dyadic decomposition. Other assump-

tions besides continuity would translate to different requirements on the paths of the stochastic

processes. For instance, more stringent assumptions like monotonicity can be incorporated by

ruling out non-monotonic paths in this model. This is one way of changing the set P∗([0, 1]2)

from Theorem 1 in practice.

Note, however, that the way one samples the paths of the processes has an effect on the

solution, which should be taken into account when applying the algorithm in practice. In partic-

ular, one can introduce assumptions on the paths of the processes by choosing different sampling

approaches. For instance, using an SDE driven by Brownian motion for the sampling will only

allow for stochastic paths of this structure and not other approaches. It is therefore important in

practice to be clear which approach one uses for the sampling.

In this paper we use trinomial trees for sampling paths of stochastic processes as we want to

uphold continuity as an assumption. To give an example of our approach consider the simple

example by setting i = 2 in the dyadic approximation, which gives m2 = 5 points, i.e. the points
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0, 0.25, 0.5, 0.75, 1. We decompose all intervals for Y,X, and Z like this. Consider the recombining

tree for the stochastic process Yx. At the point x = 0 Y consequently has 5 possible starting points,

y ∈ {0, 0.25, 0.5, 0.75, 1}. Suppose we pick y0 = 0.5 at x = 0. Then we construct the trinomial

tree by allowing y to take three possible values at the point x = 0.25: it can stay at its place, in

which case, y0.25 = 0.5, it can move up one node, i.e. y0.25 = 0.75, or it can move down one node,

i.e. y0.25 = 0.25. If we move through the tree for all points like this, we have sampled one path of

the respective continuous stochastic process at those points. The same holds for the process Xz.

When sampling paths from this trinomial tree we use a general “sampling” probability which

we denote by Ps. In particular, we randomly determine the probability for each of the three

possible paths (up one node, stay the same, down one node) at each node anew; that is, Ps is

defined as the process which gives, at each node, a new randomly assigned probability distribution

over the three alternatives. We do this for all samples of nodes and think that this gives the

greatest variety of paths in our sampling approach, so that our only assumption really just is

continuity and nothing else. In principle, we could use other sampling probabilities Ps, but these

would most likely translate to further, in our case unwanted, assumptions. For instance, a fixed

probability distribution which put the most weight on the “up” alternative would put most weight

on increasing paths; this would result in most paths being increasing as the probability of sampling

a decreasing path in practice would be very low.

We can now present our algorithm for solving the infinite dimensional linear programs ap-

proximately in practice.

Algorithm.

0. Initial step: randomly sample some set

R0 := {(Yxi(vl), Xzi(ul)) , l = 1, . . . , kinit, i = 1, . . . ,mj}

of initial paths, where kinit is the number of initial paths to sample, and where mj is the

number of grid-points on the unit interval based on the dyadic decomposition of order j.

Sample paths with or without replacement21 with sampling measure Ps. Fix some δ > 0 and

nδ ∈ N, which will control the convergence criterion of the algorithm. Compute the matrix

Θ0 and the corresponding vector Ξ0, based on these paths, using the logistic approximations

S1(Yx(v), y, ε1) and S1(YXz(u)(v), y, ε1) ·S2(Xz(u), x, ε2) for some large ε1, ε2 > 0. Set k = 1

and set

Θmax
0 = Θmin

0 = Θ0 and Ξmax0 = Ξmin0 = Ξ0.

21In our application we sample with replacement, because we want to test whether this algorithm converges
even if we are able to sample all possible paths. We are in the process of implementing a way to sample without
replacement, which is most likely more efficient.
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1. At iteration k, randomly sample a set

Rk :=
{(
Yxj (vl), Xzj (ul)

)
, l = 1, . . . , kadd, i = 1, . . . ,mj

}
of stochastic paths to add to the program, where kadd is the number of paths to add. Sample

paths with or without replacement under Ps and make sure the sampled paths are unique.

Compute the preliminary matrices Θ̃min
k and Θ̃max

k as well as the vectors Ξ̃mink and Ξ̃maxk

based on these paths as in the initial step. Update the matrices Θmin
k−1 and Θmax

k−1 as

Θmin
k = [Θmin

k−1 Θ̃min
k ], Θmax

k = [Θmax
k−1 Θ̃max

k ],

i.e. by appending the respective columns of Θ̃·k to Θ·k−1. In addition, update the vectors Ξmink−1
and Ξmaxk−1 as

Ξmink = [
(
Ξmink−1

)′ (
Ξ̃mink

)′
]′ and Ξmaxk = [

(
Ξmaxk−1

)′ (
Ξ̃maxk

)′
]′,

where A′ denotes the transpose of the matrix A.

2. Solve the programs

minimize
µ≥0, ~1′µ≤1

(
Ξmink

)′
µ and maximize

µ≥0, ~1′µ≤1
(Ξmaxk )′ µ

s.t. Θmin
k µ = F̂Y,X|Z=z;hn s.t. Θmax

k µ = F̂Y,X|Z=z;hn ,

(12)

where µ is a vector with dimension equal to the number of sampled paths, F̂Y,X|Z=z;hn is

the smoothed estimator of the CDF from section 4 supported on the mj points of the dyadic

approximation of the unit interval, and where ~1 denotes the vector of the same dimension

as µ containing all ones. Store the optimal solutions to these problems as Vk,min and Vk,max

and the optimizers as µk,min and µk,max. If the moving standard deviations

 1

n− 1

nδ∑
j=1

(
Vk−j,min − V̄k,min

)21/2

≤ δ and

 1

n− 1

nδ∑
j=1

(
Vk−j,max − V̄k,max

)21/2

≤ δ,

for the window length nδ and the δ > 0 chosen in stage 0, stop and output Vk,min and Vk,max

as the solution. Here,

V̄k,min =
1

n

nδ∑
j=1

Vk−j,min and V̄k,max =
1

n

nδ∑
j=1

Vk−j,max

are the moving averages.

3. Delete all columns from Θmin
k and all rows from Ξmink for which the corresponding values of
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µk,min are zero. Analogously for Θmax
k . Increment k → k + 1 and go to step 1.

The basic idea of the algorithm is as follows: in principle, we would like to solve the linear

optimization problems in the algorithm by optimizing over all possible continuous paths of the

processes Yx and Xz. However, even for rather coarse dyadic approximations this requires an

exorbitant amount of memory. Our idea therefore is to randomly sample paths and to hope

that we sample “enough” of the relevant paths in order to obtain a good approximation to the

optimal solution. In this respect, the convergence criterion checks if the last nδ solutions to the

approximate problems were all similar in the sense that the moving standard deviation of the last

nδ solutions must be small. This implies that over the last nδ iterations of the algorithm, no new

path has been added which drastically changed the solution. This does not guarantee that there

does not exist such a path in the set of paths we have not sampled; however, the finer the grid,

the less “weight” will be attributed to each single possible path, so that with reasonably fine grids

there will not be big jumps in the convergence of the optimization procedure since single paths

do not carry as much weight, especially if we sample enough. In proposition 8 below we state

formally what we mean by “sampling enough paths”.

Before doing this, two important remarks are warranted concerning the linear programs we

solve in stage 2. First, note that in practice we introduce different errors into the linear programs.

The main error is the “sampling error” introduced by estimating F̂Y,X|Z=z;hn in practice, which

we do via the ‘np’-package in R (Hayfield & Racine 2008) using a cross-validated bandwidth. In

particular, the linear programs are likely to not admit a solution due to the equality constraint

Θµ = F̂Y,X|Z=z;hn in practice. This might even happen theoretically, but the practical approxi-

mation aggravates this issue. This is an important challenge we have to overcome in practice.

We deal with this issue by replacing the theoretical linear programs in stage 2 of the algorithm

by their relaxed versions

minimize
µ≥0, ~1′µ≤1

(
Ξmink

)′
µ and maximize

µ≥0, ~1′µ≤1
(Ξmaxk )′ µ

s.t. ‖Θmin
k µ− F̂Y,X|Z=z;hn‖

2
2 ≤ εmin s.t. ‖Θmax

k µ− F̂Y,X|Z=z;hn‖
2
2 ≤ εmax

(13)

for some small εmin, εmax > 0. The above relaxed versions of the linear programs are equivalent

to the penalized programs

minimize
µ≥0,~1′µ≤1

(
Ξmink

)′
µ+

λmin
2
‖Θmin

k µ− F̂Y,X|Z=z;hn‖
2
2 and

maximize
µ≥0,~1′µ≤1

(Ξmaxk )′ µ− λmax
2
‖Θmax

k µ− F̂Y,X|Z=z;hn‖
2
2

(14)

for some penalties λmin and λmax, which is a standard result from the theory of convex optimiza-

tion.

Second, we need to show that the finite dimensional versions are consistent for our infinite
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dimensional program as the dyadic approximation becomes finer. For this we write the programs

(13) as

minmize/maximize
µj∈P∗j ([0,1]2)

∫
Ξj(y

∗
j , x0,j , zj , u, v)µj(dv, du)

1

mj

mj∑
i=1

(
F̂Y,X|Z=zi;hn(yi, xi)−

∫
Θj(yi, xi, zi, u, v)µj(du, dv)

)2

<
1

mj
ε′ := εj ,

(15)

were ε′ > 0 is εmin or εmax depending on whether we minimize or maximize. Note that we weight

the squared Euclidean norm by 1
mj

, which does not change the optimization problem for fixed j.

Here, P∗j ([0, 1]2) is the space of probability measures satisfying the same assumptions as the

measures in P∗([0, 1]2), but supported on the dyadic points of the corresponding dyadic approxi-

mation of order j. Ξj and Θj are the vectors as in (13) and the points y∗j and x0,j are the dyadic

points closest to but smaller than y∗ and x0; ‖ · ‖ is the Euclidean norm. The consistency of our

finite dimensional programs is then captured in the following

Proposition 7. Let Assumptions 1 – 4 hold. As the order j of the dyadic approximation increases

to infinity the optimal solutions of the finite dimensional programs (15), with F̂Y,X|Z;hn replaced

by FY,X|Z , converge to optimal solutions of the relaxed infinite dimensional programs

minimize/maximize
µ∈P∗([0,1]2)

∫
Ξ(y∗, x0, z, u, v)µ(dv, du)

s.t.

∥∥∥∥FY,X|Z=z(y, x)−
∫

Θ(y, x, z, u, v)µ(du, dv)

∥∥∥∥2
L2([0,1]3)

≤ ε
(16)

for every ε > 0 and fixed FY,X|Z=z. ‖ · ‖L2([0,1]3) denotes the L2-norm with respect to Lebesgue

measure on [0, 1]3.

Proposition 7 shows that optimal solutions of the relaxed finite dimensional programs converge

to optimal solutions of the infinite dimensional programs for continuous FY,X|Z , but it does not

state that every optimal µ to the infinite dimensional programs (16) has a sequence of optimal

measures that converge to them. This is not a problem in our setting, however, as we only care

about the objective function of the optimization problems, for which we only need one optimal

measure µ. We only prove the proposition for the relaxed programs as we use the relaxed finite

dimensional programs in practice.

Having addressed the two comments, we can now formally state what we mean by “sampling

enough” paths. First, note that we consider this question with respect to a given finite dyadic

approximation, since in general we cannot hope to obtain a fine covering of an infinite dimensional

set with finitely many paths. Second, the notion of “enough” should not be taken too literally.

In particular, we cannot obtain results which show how far the optimal solution of the sampled

problems is from the problems with all possible paths without making strong assumptions. What
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we can do is to derive a probabilistic result which provides a lower bound on “enough” if we want to

be reasonably confident that the optimization problem over the sampled finite dimensional linear

program would also be optimal over the infinite dimensional program. For this, we introduce the

dual problems of (14), which turn out to be second order polynomials in the dual variable y:

min
y≥0
− 1

2
y2~1′

(
λminD

min
k

)−1~1 + y
[
~1′
(
λminD

min
k

)−1 [
λmin

(
Θmin
k

)′
F̂Y,X|Z=z;hn − Ξmink

]
− 1
]

+Rmin

min
y≥0
− 1

2
y2~1′ (λmaxD

max
k )−1~1 + y

[
~1′ (λmaxD

max
k )−1

[
λmax (Θmax

k )′ F̂Y,X|Z=z;hn + Ξmaxk

]
− 1
]

+Rmax,

where Dmin
k :=

(
Θmin
k

)′
Θmin
k and Dmax

k := (Θmax
k )′Θmax

k , and where Rmin and Rmax are the

constants of the second order polynomials. Since both problems are well-behaved, it follows that

the optimal values of the primal problems coincide with the optimal values of the dual problems,

so that we can use the latter to derive our result for the following sampling result, which is similar

to the a sampling result in Pucci de Farias & Van Roy (2004).

Proposition 8 (Probabilistic finite sample near optimality). Fix a finite dyadic decomposition

of the unit interval of order j, yielding mj points. Sample, with some probability Ps, paths of the

finite set Wj of all continuous paths supported on the mj points. Then for every ε, δ ∈ (0, 1) there

exists a sample W(s(δ, ε)) drawn from Wj of at least size

s(δ, ε) ≥ 4

ε

(
3 ln

(
12

ε

)
+ ln

(
4

δ

))
such that with confidence 1− δ it holds that

sup
{y: aw,maxy2+ybw,max+rw,max≤Vw,max}

Ps
({
i : ai,maxy

2 + ybi,max + ri,max > Vw,max
})
≤ ε and

sup
{y: aw,miny2+ybw,min+rw,min≥Vw,min}

Ps
({
i : ai,miny

2 + ybi,min + ri,min < Vw,min
})
≤ ε,

where

aw,max := ~1′
(
λmaxD̃

max
)−1

~1,

bw,max :=

[
~1′
(
λmaxD̃

max
)−1 [

λmax

(
Θ̃max

)′
F̂Y,X|Z=z;hn − Ξ̃max

]
− 1

]
,

rw,max := R̃max,

ai,max := ~1′ (λmaxD
max)−1~1,

bi,max :=
[
~1′ (λmaxD

max)−1
[
λmax (Θmax)′ F̂Y,X|Z=z;hn − Ξmax

]
− 1
]
,

ri,max := Rmax,
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for D̃max, Θ̃max, Ξ̃max, and R̃max which are made up of only paths in W(s(δ, ε)) and Dmax,

Θmax, Ξmax, and Rmax which are made up of those paths who yield a greater value than the

optimal value for the sampled linear program Vw,max. Analogously for the minimization.

Three remarks concerning this result are in order. First, the sampling rate O(4ε
(
3
(
12
ε

)
+
(
4
δ

))
)

does not directly depend on mj , a surprising result at first glance. This follows from the fact that

the dual programs can be written as a univariate second order polynomial in y, and it is known

that polynomials have finite VC-dimension (Vapnik & Chervonenkis 1971) which does not depend

on the number of points mj . Second, Proposition 8 gives a theoretical lower bound on how many

paths we have to sample in order to be confident, with probability 1− δ, that the solution of the

sampled linear program coincides with the optimal solution of the general linear program with

probability 1− ε, where the latter probability is measured with respect to the sampling measure

Ps. Note that this result does not say anything about how far the optimal solution of the sampled

linear program is from the general linear program. We only provide a probabilistic result which

states that we can be confident that the optimal solution of our sampled linear program coincides

with the general linear program.

Third, in practice one should sample as many paths as possible given the memory and time

constraints and make sure that one samples all forms of admissible paths in order to span the

space of all paths adequately. The reason is that even for small ε, the set

{
i : ai,maxy

2 + ybi,max + ri,max > Vw,max
}

will still consist of several million paths if our overall set of all paths for a given dyadic order

j has a cardinality of several billion. Note that since the paths grow super-exponentially, this

happens already for dyadic approximations of low order, so that even though the probability of

sampling those paths with Ps is less than ε, those are still a very large number of possible paths.

In practice one should always sample enough paths until one sees convergence of the optimal

values. In our practical application in the next section we provide pictures which show what we

mean by convergence of the optimal values.

To not make the memory requirements grow too fast, we add stage 3 in the algorithm, dropping

paths which turn out to not have an influence on the optimal values. This approach of dropping

paths which are not relevant in stage 3 is similar in spirit to the corresponding stage in the relaxed

cutting plane approach introduced in Wu, Fang & Lin (2001) for solving the general capacity

problem. Recall that µ is a finite sample approximation for a given dyadic approximation, so that

zero-elements in the vector µ doe not satisfy the relaxed constraint, which is the main idea for

discarding these paths.

In order to solve the programs (14) efficiently we apply the alternating direction method of

multipliers (ADMM) (Boyd, Parikh, Chu, Peleato & Eckstein 2011 and Parikh & Boyd 2014) for

quadratic programs. This algorithm is known to converge rather quickly to reasonable approxima-

tions of the optimum, which makes it a perfect tool for our purposes. For the algorithm we need
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to specify two more parameters, the augmented Lagrangian parameter ρ and an over-relaxation

parameter α, which control the convergence of the ADMM algorithm to the optimum. In prac-

tice, we found that an over-relaxation parameter of α = 1.7 leads to quick convergence. For more

information on the ADMM algorithm we refer to Boyd, Parikh, Chu, Peleato & Eckstein (2011)

and Parikh & Boyd (2014).

6 Application: Estimating expenditures

We apply our algorithm to estimate bounds on causal effects of expenditures using the 1995/1996

UK family expenditure expenditure survey. Analogous to Blundell, Chen & Kristensen (2007)

and Imbens & Newey (2009), the outcome of interest Y will be the share of expenditure on a

commodity, in our case food or leisure, and X will be the log of total expenditure, scaled to lie

in the unit interval. The instrument we use is gross earnings of the head of the household, which

assumes that the way the head of the household earns the money is (sufficiently) independent

of the household’s expenditure allocation; this instrument is used in both Blundell, Chen &

Kristensen (2007) and Imbens & Newey (2009). All three variables are inherently continuous and

hence fit perfectly into our model. We use a subset of married and cohabiting couples where

the head of the household is aged between 20 and 55, and couples with 3 or more children are

excluded. We also exclude households where the head of the household is unemployed in order to

have the instrument available for each observation. This leaves us with 1650 observations. The

only structural assumption we make on the model is continuity, i.e. we assume that h and g are

continuous functions in X and Z, respectively. This is a natural assumptions since Engel curves

are usually believed to be continuous.

Figure 1 provides a typical example of the performance of our algorithm for a very coarse

grid. It depicts the convergence of the upper and lower bound for the values y∗ = 0.75 and

x0 = 0.75, where the outcome Y is the share of expenditure on leisure for different levels of the

penalization parameters λmin and λmax, and where we have scaled X and Z to lie in the unit

interval. Note that we use a very coarse dyadic approximation of order 2 of the unit interval

for this performance analysis, giving us the 5 grid-points (0, 0.25, 0.5, 0.75, 1). This allows us

check if our algorithm actually converges when we are able to sample all possible paths with high

probability—we sample 16 new paths each time, giving us 160, 000 paths overall, which are far

more than the maximal number of continuous paths for this coarse dyadic approximation, so that

with very high probability we managed to sample every possible path.

Note that the bounds are rather large, but not trivial.22 The size of the bounds is to be

expected due to the very coarse approximation; in actuality, we had expected completely trivial

bounds due to the coarseness of the grid, so a non-trivial lower bound at this stage might suggest

that the information-to-noise-ratio is rather high in the data to answer the respective question.

22They are non-trivial in all estimations we ran, not just this one.
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Figure 1: Convergence of upper and lower bounds on FY |X∗=0.75(0.75) for λmin = λmax = 100
(top) and λmin = λmax = 600 (bottom) and a very coarse dyadic approximation of order 2; we
sample 16 new paths at each iteration. For the lower value of λ·, we see a clear convergence of
the algorithm, whereas the algorithm does not converge for the higher value of λ·.

Note the dependence on the penalty-terms λmin and λmax: for λmin = λmax = 100, we obtain

convergence of the algorithm; the upper bound for FY |X∗=0.75(0.75) is 1, and the lower bound is

0.065. As soon as we penalize the OLS-constraint too much, we do not obtain convergence of

the algorithm. The solution paths of the programs depend on the penalization parameters λmin

and λmax, which should be expected. In fact, if λmin and λmax are too small, we put almost no

weight on the constraint. In contrast, if λmin and λmax are too big, we basically solve an OLS

problem for the constraint and do not put any weight on the objective function, in which case

the bounds will not converge in general, but only display erratic behavior, due to the sampling of

the constraints approach. This again follows from the fact that the equality constraint does not

admit a solution in general. We hence have a tradeoff for the penalty terms. These results only

serve to check the convergence properties of our algorithm, but are too coarse to provide good
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estimations of the bounds of the counterfactual probabilities.

The following results are for a more reasonable grid and constitute our main results for this

application. Here, we use the dyadic approximation of order 4, yielding m4 = 17 points on the unit

interval. Figure 2 depicts the distributional causal effects for the lower quartile of the expenditure

on leisure and food.
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Figure 2: Convergence of upper (black) and lower (gray) bounds on FY |X∗=0.75(0.25) −
FY |X∗=0.25(0.25) for Y being the relative spending on leisure and food. The penalty terms are
λmin = λmax = 1 and the dyadic approximation is of order 4. We sample 25 new paths at each
iteration.

Here we had to lower the penalization parameters λmin and λmax to 1, because the grid is now

much finer than before. The bounds are narrower than in the coarse approximation. Consider

the left panel first. The upper bound is actually slightly negative for the last 300 iterations with

−0.013 as an average while the lower bound is −0.39, providing very strong evidence that leisure

is a luxury good. In fact, these bounds imply that families who do not spend a lot on leisure

despite spending spend more overall (in the sense that they lie in the upper quartile of all families

in overall spending) are very likely to spend even less on leisure, relatively, if they had a negative

shock to overall spending. Put differently, families are much more likely to lie in the lower quartile

for expenditure on leisure if they lie in the lower quartile in overall spending than families who lie

in the upper quartile in overall spending, a strong indication that leisure is a luxury good. Note

that the upper bound for leisure in Figure 2 does not have a trend and fluctuates between 0 and

0.05, which could be an indication that the theoretical upper bound is reached. In contrast, the

lower bound for leisure has not leveled off, yet, implying that we would need to sample even more

paths to get it to level off at some point. This implies that the actual lower bound is actually

smaller than the one depicted here.
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As for the right panel in Figure 2 the first thing to notice is that the bounds on the counter-

factual probabilities are “shifted up” compared to the bounds on leisure. In fact, the lower bound

is −0.025 while the upper bound is 0.4. This indicates that families who spend a lot in general

and do not spend much on food compared to overall expenditure would spend much more on food

relatively if they spent much less overall. Put differently, families are much more likely to lie in

higher quartiles for expenditure on food if they lie in the lower quartile in overall spending than

families who lie in the upper quartile in overall spending. This is strong evidence for a necessity

good.

Only considering the lower quartile for y∗ for the difference FY |X∗=0.75(y
∗) − FY |X∗=0.25(y

∗)

does not provide enough evidence for our claim, however. Table 1 therefore provides the upper-

and lower bounds for the expenditure on both leisure and food for different percentiles y∗.

Leisure Food

y∗ # paths Lower bound Upper bound # paths Lower bound Upper bound

0.05 108, 225 −0.36 0.23 119, 200 −0.088 0.27
0.15 121, 250 −0.51 0.025 109, 175 −0.18 0.39
0.25 116, 375 −0.39 −0.031 105, 000 −0.075 0.41
0.35 116, 925 −0.16 0.043 108, 175 −0.011 0.38
0.75 123, 625 −0.051 0.021 117, 125 −0.050 0.023

# paths is the number of paths sampled, which is iterations ×25.

Table 1: Upper- and lower bounds for FY |X∗=0.75(y
∗)−FY |X∗=0.25(y

∗) for different percentiles y∗.

Table 1 provides “envelopes” for the counterfactual distributions and corroborates the findings

from Figure 2 that food is a necessity while leisure is a luxury good by showing that the upper

and lower bounds for food and leisure are rather similar for y∗ = {0.15, 0.25, 0.35}. In fact, we see

the clearest effects for lower probabilities. Figure 3 depicts the convergence of the distributional

effects for y∗ = 0.35. As y∗ becomes bigger, the upper and lower bounds for both food and

leisure become closer and centered around zero. This is expected as there are very few families

who spend more than three quarters of their overall budget on food or leisure, so that we are

not comparing many families for this quantile. In particular, for y∗ = 0.75, there is basically no

difference between families with a small budget and families with a large budget. Moreover, the

convergence for higher values of y∗, in particular y∗ = 0.75 is very smooth, another sign that

there is not a lot of difference between families wit a large budget compared to families with a

low budget in this echelon of spending on food and leisure. Figure 4 depicts this.

The results we have obtained are surprisingly clear. Recall that our model is completely

general, so we did not make any assumptions during the estimation process. In particular, our

model also incorporates measurement errors, which indicates that the ratio of information to noise

in the data for answering these questions is rather high. Moreover, note that we did not restrict

the heterogeneity in any way, despite the fact that U, V are univariate. In particular, the way our

estimation problem is set up, the assumption of univariate U and V is without loss of generality as
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Figure 3: Convergence of upper (black) and lower (gray) bounds on FY |X∗=0.75(0.35) −
FY |X∗=0.25(0.35) for Y being the relative spending on leisure and food. The penalty terms are
λmin = λmax = 1 and the dyadic approximation is of order 4. We sample 25 new paths at each
iteration.
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Figure 4: Convergence of upper (black) and lower (gray) bounds on FY |X∗=0.75(0.75) −
FY |X∗=0.25(0.75) for Y being the relative spending on leisure and food. The penalty terms are
λmin = λmax = 0.3 and the dyadic approximation is of order 4. We sample 25 new paths at each
iteration.

there are always (almost) invertible maps between the unit interval and any general (even infinite

dimensional) spaces.

In fact, we only need some general measure space which can index all possible paths, and the
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most convenient space for this is the unit interval. The difference to other identification results

allowing for general unobserved heterogeneity is that we only work with the cardinality of the

sets on which U and V are defined, because our identification problems are so general; all other

results in the literature make additional topological or order-theoretic assumptions (invertibility

of g(Z,U) in U for instance), often restricting the dimension of the unobservables U and/or V .

Simply using cardinality is the most general approach, which is why we can estimate models with

the most general heterogeneity by restricting U and V to be the unit interval.

Overall, our results not only corroborate the theoretical predictions for expenditure, but also

the previous results obtained in Blundell, Chen & Kristensen (2007), Imbens & Newey (2009), and

Song (2018). Those articles estimate Engel curves for different commodities, in particular leisure

and food; throughout they find decreasing Engel curves for food and increasing Engel curves for

leisure, implying that leisure is a luxury while food is a necessity good. During their estimation

process Imbens & Newey (2009) and Song (2018) assume a univariate and strictly monotonic

production function g(z, U) between X and U for all z and use a control variable approach to

estimate the production function h; Blundell, Chen & Kristensen (2007) estimate Engel curves

semi-nonparametrically, obtaining similar results. Our approach corroborates all of these results.

In this sense our result is a “robustness check” for other non- or semiparametric approaches.

As a next step we want to check different identifying assumptions such as monotonicity directly

in our general estimation procedure, gauging how strong the different identification assumptions

are. Since those structural assumptions rule out many paths of stochastic processes, they should

lead to tighter bounds all else equal. The size of these bounds then gives an indication for how

strong those identifying assumptions are for the given problem at hand. We plan on pursuing this

in a future article.

7 Conclusion

In this article we have analyzed two fundamental questions in instrumental variable models in the

setting where the endogenous variable is continuous.

First, we have proved a slight generalization of the conjecture in Pearl (1995b), showing that

the exclusion restriction of an instrument cannot be tested in general instrumental variable models

with a continuous endogenous variable. The idea is to construct a general measure preserving

isomorphism for the first stage, which is akin to the construction of an (almost everywhere)

Condorcet cycle in uncountable state space. This result has several interesting implications for

the general research on instrumental variable models. In particular, it implies that the continuous

case is fundamentally different from the discrete case and that one should be cautious when arguing

about testability of the continuous case by using discretization. Moreover, the construction of a

Condorcet cycle implies that we need to allow for very general production functions in order to

arrive at the impossibility theorem. This suggests that testability can be reestablished in this

setting under some weak structural form assumptions.
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Second, as our main result we have derived a new way to estimate sharp bounds on counter-

factual probabilities, generalizing the approach in Balke & Pearl (1994) and Balke & Pearl (1997)

to the continuous setting. The idea is to treat the two stages of the nonseparable triangular model

as two general dependent stochastic processes, which enables us to derive the counterfactual prob-

abilities by solving an infinite dimensional linear program over the paths. These programs allow

for the complete nonparametric setting and in principle enable us to encompass any possible

(nonparametric) functional form assumptions. In particular, this framework enables us to test

the ability for identification of models of these functional form assumptions: stronger nonpara-

metric functional form assumptions will lead to narrower bounds. We plan to explore this in a

future paper. More fundamentally, it can serve as a new framework for general nonparametric

identification in instrumental variable models.

One major challenge to overcome was the practical implementation of the infinite dimensional

linear programs. We have done so by introducing a new “sampling of paths” approach, where we

randomly draw paths of the respective stochastic processes and solve a finite dimensional linear

program over these paths. We seem to be the first in the mathematical literature to introduce such

an approach for solving general infinite dimensional linear programs over stochastic processes—a

class of optimization problems which also include general stochastic optimal control problems.

This approach works rather well and generates informative bounds even in very coarse approxi-

mations and no other assumptions than the continuity of the respective stochastic processes. We

also show that optimal measures of the finite dimensional programs converge to optimal measures

of the infinite dimensional programs if we let the dyadic approximation go to infinity, proving

consistency of our finite dimensional approach.

The key in practice is to choose an appropriate penalization parameter for these problems

which can be compared to other penalty parameters as in LASSO or ridge regression, only in

a functional setting. Currently, we have no general rule for choosing this parameter, except for

the rule of thumb that we should pick large penalty terms without losing convergence of the

algorithm. We plan to explore statistical ways for choosing it in a future paper. Moreover, we

want to optimize the sampling approach—in particular, sampling uniformly is almost surely not

the optimal thing to do. We are currently testing other, more efficient sampling routines which

cut down memory- and time requirements. We have written an R program which allows the user

to apply our approach to any data-set as soon as all variables are normalized to the unit interval.

We plan to extend this program into a full R package.

The bounds we obtain on the respective distributional causal effects on the relative expendi-

ture on food and leisure corroborate the theoretical predictions from economic theory: we find

that leisure is a luxury good whereas food is a necessity good, corroborating the predictions from

economic theory. This is especially interesting since we did not make any functional form assump-

tions except continuity during the estimation process and the results we obtained are still clear.

In a next step we plan on applying our approach to different and more refined areas of goods.

Our general framework has many other possible applications in a variety of fields and is the
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natural generalization of the seminal complier-, defier-, always taker-, never taker distinction

from Angrist, Imbens & Rubin (1996). In particular, it is well-suited to answer causal questions

whenever the endogenous variable is continuous, which is the case in economics, finance, and

medicine. The main advantage is that we directly solve the infinite dimensional programs in all

generality. In general, researchers can also use our approach in an initial step in their research to

gauge the “informational” content of the data or certain structural assumptions for the question

at hand before taking a more structural or parametric estimation approach.
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Dümbgen, L. (1993), ‘On nondifferentiable functions and the bootstrap’, Probability Theory and

Related Fields 95(1), 125–140.

Fang, Z. & Santos, A. (2014), ‘Inference on directionally differentiable functions’, arXiv:

1404.3763 .

Field, E., Pande, R., Papp, J. & Rigol, N. (2013), ‘Does the classic microfinance model discourage

entrepreneurship among the poor? Experimental evidence from India’, American Economic

Review 103(6), 2196–2226.

Florens, J.-P., Heckman, J. J., Meghir, C. & Vytlacil, E. (2008), ‘Identification of treatment effects

using control functions in models with continuous, endogenous treatment and heterogeneous

effects’, Econometrica 76(5), 1191–1206.

46



Galichon, A. & Henry, M. (2011), ‘Set identification in models with multiple equilibria’, The

Review of Economic Studies 78(4), 1264–1298.

Garen, J. (1984), ‘The returns to schooling: A selectivity bias approach with a continuous choice

variable’, Econometrica 52(5), 1199–1218.
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A Notation

The paths of the stochastic processes we construct lie in different function spaces, depending on

the assumptions we make. Our working assumption will require the paths to lie in the space of

continuous functions on the unit interval, denoted by C([0, 1]). We always equip C([0, 1]) with the

supremum norm ‖f‖∞ := supx∈[0,1] |f(x)|, which makes C([0, 1]) a Banach space; in fact, under

this norm C([0, 1]) becomes a special Banach lattice, an AM space, under the corresponding

partial order f ≤ g ∈ C([0, 1]) if and only if f(x) ≤ g(x) for all x ∈ [0, 1].

We say that some convex problem in general, and a linear program in particular, has no duality

gap if solving the dual problem gives the same result as solving the original (primal) problem.

For an overview of duality in infinite dimensional linear programs we refer to the monograph

Anderson & Nash (1987) and for general convex programs to Rockafellar (1974). When working

in general Banach spaces the standard duality bracket will be defined by 〈f, µ〉.
The natural dual space of C([0, 1]), C∗([0, 1]), is the Banach latticeM([0, 1]) of all finite Borel

measures on [0, 1], since [0, 1] is compact (Aliprantis & Border 2006, Corollary 14.15). The partial

order ≤ on M([0, 1]) is defined by µ ≤ ν if and only if µ(A) ≤ ν(A) for all Borel sets A ∈ [0, 1].

The subset M+([0, 1]) of all positive Borel measures forms a convex cone in M([0, 1]). The
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subset of all Borel probability measures on [0, 1], P([0, 1]), is the intersection of the unit sphere

in M([0, 1]) with the positive convex cone M+([0, 1]).

The space M([0, 1]) is metrizable. This is convenient as it enables standard arguments using

sequences. We will also need different topologies on M([0, 1]). The first important topology is

the weak topology induced by the notion of weak convergence. A sequence of measures (Pn)n∈N

converges to a measure P weakly on some support S, denoted by Pn ⇒ P , if and only if∫
S
f(x)Pn(dx)→

∫
S
f(x)P (dx)

for every bounded and continuous real function f on S (Billingsley 1999). The second, even

weaker, topology we briefly mention is induced by the concept of vague convergence of measures.

We say that the sequence {Pn} converges vaguely to P on S if∫
S
f(x)Pn(dx)→

∫
S
f(x)P (dx)

for every continuous f which vanishes at infinity. The topology induced by vague convergence

(the vague topology) is the weak∗ topology of C([0, 1]). Since we work on the unit interval [0, 1]

which is a compact space, vague and weak convergence coincide. The last topology we put on the

space of Borel measures is induced by the total variation norm on M([0, 1]) defined by

‖P ′ − P‖TV := sup
f

(∫
f(x)P ′(dx)−

∫
f(x)P (dx)

)
,

where f ranges over the set of all measurable functions from [0, 1] → [−1, 1]. If P ′ and P are

probability measures we can write the total variation distance as

‖P ′ − P‖TV := sup
A∈B
|P ′(A)− P (A)|,

where B is an appropriate Borel σ-algebra.

Under our working assumptions it will turn out that the paths of the stochastic processes

Yx(v) and Xz(u) are actually Hölder continuous, i.e. lie in some Hölder space. To introduce the

notion of Hölder spaces, let k := (k1, . . . , kd) be a multi-index of non-negative integers k1, . . . , kd.

Set |k| =
∑d

i=1 ki and for some function f(x1, . . . , xd) write

Dkf :=
∂|k|

(∂x1)k1 · · · (∂xd)kd
f(x1, . . . , xd),

which is a general form of writing the partial-derivatives-tensors of a multivariate function. Based
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on this we define the Hölder norm of f by

‖f‖Ck,λ :=
∑

0≤|a|≤k

‖Daf‖∞ +
∑
|a|=k

sup
x1,x2∈[0,1]:x1 6=x2

‖Daf(x1)−Daf(x2)‖
|x1 − x2|(λ−bλc)

.

‖ · ‖ stands for some norm in Rd. The Hölder space Ck,λ then consists of all functions with finite

Hölder norm, i.e. f ∈ Ck,λ([0, 1]) if and only if ‖f‖Ck,λ <∞. For the construction of the respective

stochastic processes, we also use the closed subsets C0,λ
K ([0, 1]) := {f ∈ C0,λ([0, 1]) : ‖f‖C0,λ ≤ K}

of C0,λ([0, 1]). We call a function smooth if it lies in all Hölder spaces, i.e. if C∞([0, 1]).

In addition to standard functions, we also briefly work with the Dirac-delta distribution δ(x),

which is the point-evaluation functional on the space of smooth functions with compact supports.

The Dirac-delta distribution cannot be represented as a function as it satisfies
∫
δ(x−x0)f(x)dx =

f(x0) as well as
∫
δ(x)dx = 1. We will call δ(x) a distribution throughout, since we think it will

not be confused with the concept of a probability distribution function.

Let us now turn to more measure theoretic concepts. As in the previous section we define

a measurable space on some space Ω by (Ω,S ), where S is the corresponding σ-algebra. We

denote Borel σ-algebras by B. Once we put a measure P on the measurable space, it becomes

a measure space (Ω,S , P ). A measure space is complete if every subset of a measure zero set

is also of measure zero. Note that the Borel σ-algebra is not complete. Its completion is the

Lebesgue σ-algebra, which we will denote by A . The cardinality of A is that of the power set

of the continuum, whereas the cardinality of the Borel σ-algebra is that of the continuum, i.e. is

smaller.

A random variable X is a measurable function X : Ω→ Rd, d ≥ 1, which pushes forward the

measure P defined on Ω to a measure PX on Rd by PX(Ex) = P (X−1(Ex)), where Ey ∈ B[0,1]d and

X−1 denotes the preimage of X as defined in section 3. The measure PX is called the pushforward

measure of P through X. By πi we define the generic projections onto the i-th coordinate of some

vector space. For example, for a vector x ∈ Rd πix = xi. For a measure µ supported on Rd we

mean the marginal distribution on the i-th coordinate after integrating out all other coordinates

when writing πiµ. To avoid confusion with the smoothness parameter λ defined above, we denote

Lebesgue measure on Rd simply by dx. Moreover, following standard mathematical conventions,

we denote the linear integral operator

Tf(x) :=

∫
T (x, y)f(y)dy

and its kernel T (x, y) by the same letter.

We also need to introduce ways to construct stochastic processes. For this we work with dyadic

intervals in [0, 1], i.e. intervals with endpoints of the form j
2m , where j,m ∈ N. Note that the dyadic

numbers form a dense subset of the real number line which is important to construct continuous

stochastic processes. A dyadic interval Q in Rk is of the form Q := [a1, bi]× [a2, b2]× · · · × [ak, bk]
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and we define its length by l(Q) = maxi∈{1,...,k} |bi − ai|. I denotes the set of irrational numbers

in [0, 1] and will be identified with the Baire space NN (Aliprantis & Border 2006, 3.14). The

Baire space is the space of all sequences of natural numbers and is helpful to assign unique “postal

codes” to the irrational and hence real numbers.

To do this, we define for some finite vector of natural numbers (n1, . . . , nk) ∈ Nk,

〈n1, . . . , nk〉 := {(mi)i∈N ∈ NN : m1 = n1, . . . ,mk = nk}

the identification of this vector with a set in Baire space. In particular, this identification is the

set of all infinite postal codes in Baire space which start with the numbers n1, . . . , nk. By N∗ we

denote the set of all n-tuples of natural numbers, i.e. N∗ :=
⋃∞
k=1Nk. For more information on

the Baire space we refer to Aliprantis & Border (2006, Chapter 3.14).

Based on the notion of an interval, we define a quasi-interval I(n; t1, . . . , tn; a1, b1; . . . ; an, bn)

as a subset of R[0,1] of the form

I(n; t1, . . . , tn; a1, b1; . . . ; an, bn) := {f ∈ R[0,1] : ai ≤ f(ti) ≤ bi, i = 1 . . . , n}.

This is a set of some intervals in R defined at respective points t1, . . . , tn ∈ [0, 1] and is needed for

constructing stochastic processes. Intuitively, quasi-intervals are needed to define all real-valued

stochastic processes in R which pass through the interval [ai, bi] at time ti. Quasi-intervals are a

special type of cylinder sets

It1,...,tk(B) := {f ∈ R[0,1] : (f(t1), . . . , f(tk)) ∈ B,B ∈ BRk}.

It1,...,t2m (B) is a dyadic quasi-interval of order m provided that tj = j
2m , j = 0, 1, . . . , 2m and B

is a dyadic interval in R2m of length l(B) ≤ 1
2m . On each quasi-interval It1,...,tk(B) one can define

a “size” by P (It1,...,tk(B)) through some finite measure P .

For the construction of the respective stochastic processes we also use Fσ sets, which are

uncountable unions of closed sets. In this respect we denote the interior of a set A by A◦, its

closure by Ā, and its complement by Ac.
⋃
· denotes disjoint union of sets. A map φ : X → Y

between measure spaces equipped with the Borel σ-algebra is a Borel -isomorphism if φ and φ−1

are Borel measurable. Following the definitions of Kuratowski (1934) and Hess (1982), φ is a

(0, 1)-homeomorphism if φ−1(B) is open and φ(A) is an Fσ set for open B ⊂ Y and A ⊂ X;

it is called a (1, 1)-homeomorphism if φ−1(B) and φ(A) are both Fσ sets. Lastly, we call a set

pre-compact if its closure is compact.
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B Proofs omitted from the main text

B.1 Proof of Lemma 1

Proof. Let g(Z,U) be a one-to-one generator of the measure PX|Z and factor PY,X|Z = PY |X,ZPX|Z .

Use x = g(z, u) to generate PX|Z=z via PU and some other function y = h′(x, z, v′) to generate

PY |X=x,Z=z via PV ′ , where u and v′ are independent. Note that h′ exists by Theorem 9.2.2 in Bo-

gachev (2007). Since g is one-to-one in z, one can invert it to obtain z = g−1(x, u) and substitute

this into h′ to get y = h′(x, g−1(x, u), v′) = h(x, u, v′), which conforms to Model (1) if we consider

(u, v′) as v. Note that since U and V ′ are independent and both can be made independent of

Z by changing the unobservable production functions h′ and g, it holds that Z ⊥⊥ (V,U). This

construction can always be achieved, even if we require U and V to be univariate, as every Polish

space equipped with a Borel probability measure is isomorphic to the unit interval with some

probability measure (Bogachev 2007, Theorem 9.2.2), so that there always exists a probability

measure for V which is the pushforward of a probability measure for (U, V ′).

To show in a simple example that restrictions on the dimension of U and V cannot help, assume

that all random variables take values in the unit interval [0, 1]. It then holds that (u, v′) ∈ [0, 1]2

while v ∈ [0, 1]. In this case one can construct a standard Hilbert- or Peano curve H : [0, 1] →
[0, 1]2 which is a measure preserving isomorphism from the unit interval to the unit square.

Theorem 9.2.2 in Bogachev (2007) shows that this is a special case of a more general property,

which is the property we need for the impossibility result.

B.2 Proof of Pearl’s conjecture

For the proof of the conjecture we need to introduce two additional mathematical concepts besides

generators: measure preserving isomorphisms, and disintegrations. The concept of disintegrations

gives meaning to the restriction of a joint probability measure PY,X to a subset of Lebesgue

measure zero, for instance the conditional measure PY |X=x when X is a continuous random

variable inducing a nonatomic probability measure PX . A disintegration PY |X=x(A) for some

Borel set A is a version of the standard conditional expectation E(1{Y ∈ A}|FX) for some

filtration FX ⊂ BX when it exists, where 1{E} denotes the standard indicator function which is

1 if the event E happens and 0 otherwise. The existence of a disintegration can be shown under

very general circumstances and is guaranteed in our setting (see Theorem 1 in Chang & Pollard

1997). Working with disintegrations instead of general conditional expectations makes the proof

less burdensome in terms of notation.

The second formal concept we require for the proof of the conjecture is the notion of measure

preserving isomorphisms. A map T : X → Y transporting a probability measure PX onto another
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probability measure PY is measure preserving if it is measurable23 and

PY (E) = PX(T−1E) (17)

for every set E in the Borel σ-algebra BY corresponding to Y .24 If T is invertible and its inverse

is also measure preserving, it is called a measure-preserving isomorphism. For all our work, we

only need measure preserving isomorphisms up to sets of measure zero, as measure preserving

isomorphisms can only be identified up to sets of measure zero anyways. Therefore, from now

on we mean “measure preserving isomorphism modulus sets of measure zero” when we write

“measure preserving isomorphism”.

We can now turn towards the proof of the conjecture. As mentioned, the key is Lemma 1,

which reduces the problem of proving the conjecture to simply proving that there exists a one-to-

one generator for each possible PX|Z . Also note that by using Lemma 1 we do not need to make

any assumptions on the distribution of Y , so that we can allow for general distributions here too,

which does not change the result. In fact, the whole proof works with the properties of PX|Z=z,

which we assume to be nonatomic for almost all z ∈ Z.

For the construction of the Condorcet cycle in our proof, we need the following technical

lemma about measure preserving isomorphisms, which is proved in Halmos (1956, p. 74).

Lemma 5. Fix some probability measure m on a measurable space (X ,BX ), where X ⊂ R is an

interval. If E and F are Borel sets of the same measure in the interval X , i.e. m(F ) = m(E),

then there exists a measure preserving isomorphism T : X → X such that m(TE + F ) = 0 on

X .25

We are now ready to prove the conjecture. Note that we prove a slightly stronger statement

than Conjecture 3, as we can construct some g which is a measure preserving isomorphism in

both U and Z.

Proof of Pearl’s conjecture. We will assume that all random variables take values in the unit in-

terval, which is without loss of generality as for every probability measure µ on a Polish space

there exists a measure preserving isomorphism onto the unit interval equipped with some proba-

bility measure ν; in case µ is nonatomic one can pick ν to be Lebesgue measure (Bogachev 2007,

Theorem 9.2.2).

To begin notice that g(z, ·) in model (1) is by definition a measure-preserving map g(z, ·) :

[0, 1] → [0, 1] for almost every z. In fact, since PX|Z=z for almost all z and PU are probability

measures, we can require g to be a measure preserving isomorphism, i.e. to be invertible with

measure preserving inverse by Theorem 9.2.2 in Bogachev (2007). Note also that g is only specified

23Measurability of T means that BX = T−1BY , where BY and BX are the Borel σ-algebras corresponding to
Y and X, respectively.

24T−1E denotes the set of points x ∈ X such that Tx ∈ E.
25For two sets A and B, A+B denotes their disjoint sum (A \B) ∪ (B \A).

55



up to sets of measure zero, so that in our proof we only have to specify it modulus sets of measure

zero, too. Of course, if we can prove the conjecture when choosing g to be a measure preserving

isomorphism, we have also proved it for general measure preserving maps.

We proceed by first proving the conjecture for nonatomic PZ with support26 Z ⊂ [0, 1]. After

that we extend the result to allow for PZ with atoms.27 In light of Lemma 1, we only have to

show that PX|Z=z admits a one-to-one generator modulus sets of measure zero. We hence need

to show that for each z ∈ [0, 1] there exists a measure preserving isomorphism g(z, u) between PU

and PX|Z=z such that g(zi, u) 6= g(zj , u) for almost all zi, zj ∈ [0, 1], zi 6= zj and u ∈ [0, 1].

We show that such g exists by factoring it as g(z, u) = Tzfz(u). Here, fz : [0, 1]→ [0, 1] is some

measure preserving isomorphism between PU and the respective PX|Z=z. We require Tz to be a

measure preserving isomorphism on the measure space ([0, 1],B[0,1], PX|Z=z) garbling the map

fz.
28 To be more precise, since fz is allowed to be any measure preserving isomorphism, it may

well happen that fzi(u) = fzj (u) for some zi, zj , u ∈ [0, 1]. We therefore need to show that there

always exists a collection Tz of measure preserving isomorphisms such that Tzifzi(u) 6= Tzjfzj (u)

for almost all zi, zj , and u ∈ [0, 1]. The idea to achieve this is to prove a simple generalization

of the Condorcet Paradox to uncountable state space as outlined in the main text. The proof is

therefore complete if we can show that a Condorcet cycle can always be constructed in the case

where X = [0, 1] = Z = U when Tz is a measure preserving isomorphism.

To show this, let PU be Lebesgue measure on [0, 1] and let fz(u) be any measure preserving

isomorphism from PU to PX|Z=z for all z.29 If fz(u) is a one-to-one generator, we just let Tz be

the identity for all z and the conclusion follows. So assume that there are Borel sets Eu ⊂ [0, 1]

and EZ of measure PU (Eu) = εu and PZ(EZ) = εZ for some εu, εZ > 0 such that fzi(u) = fzj (u)

for almost all u ∈ Eu and zi, zj ∈ EZ . Then we can define a measure preserving permutation

Tz : [0, 1]→ [0, 1] which is garbling of fz in the sense that Tzifzi(u) 6= Tzifzj (u) almost all u ∈ Eu
and zi, zj ∈ EZ .

To do this, partition EZ = E1
Z ∪ E2

Z into two disjoint parts E1
Z and E2

Z of equal measure

PZ(E1
Z) = PZ(E2

Z) =
1

2
εZ

26The support Z of a measure PZ is defined by two criteria. First, it is the closed set Z on which the measure
PZ concentrates, i.e. PZ([0, 1] \ Z) = 0. Second, it is such that for every open set G such that G ∩ Z 6= ∅, it holds
that P (G ∩ Z) > 0, i.e. every open set intersecting the support has positive measure. This is a straightforward
generalization of the support of a density function and the reader can always think about the latter. It is also
important to note that every probability measure on Rd has a support.

27Note that this covers all types of probability measures with finitely many atoms, even continuous singular
ones on R as a general finite measure can be uniquely decomposed into a nonatomic measure and a purely atomic
measure under the assumption that they are singular with respect to one another, see Theorem 2.1 in Johnson
(1970). In fact, continuous singular measures like Cantor measures are nonatomic measures with a set of Hausdorff
dimension smaller than one as support.

28Note that Tz is a measure preserving isomorphism which maps to the same measure space, whereas fz maps
between different measure spaces. We need this set-up since we want to use Lemma 5, which works for isomorphisms
acting on the same measure space.

29We assume U to follow the uniform distribution on [0, 1] for convenience, we could specify any other distribution;
also note that this is without any loss of generality, as we are free to choose the distribution of U for this proof.
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and do the same with Eu, i.e. Eu = E1
u ∪ E2

u with

PU (E1
u) = PU (E2

u) =
1

2
εu.

Since fz is a measure preserving isomorphism for every z ∈ [0, 1], it must be the case that fz(E
1
u)

and fz(E
2
u) are disjoint modulus sets of measure zero and that

PX|Z=z(fz(E
1
u)) = PX|Z=z(fz(E

2
u)) =

1

2
εu for all z ∈ EZ .

Define Tz to be the identity for z ∈ E1
Z ; for z ∈ E2

Z let it be such that Tzfz(E
1
u) = fz(E

2
u) and

Tzfz(E
2
u) = fz(E

1
u), i.e. switching fz(E

1
u) and fz(E

2
u). Lemma 5 guarantees that this is always

possible. Now partition E2
Z into two parts of equal measure E21

Z and E22
Z , so that

PZ(E21
Z ) = PZ(E22

Z ) =
1

4
εZ

and do the same with E2
u. Then on E21

Z , let Tz be the same as on E2
Z and on E22

Z let it be such

that Tzfz(E
21
u ) = fz(E

22
u ) and Tzfz(E

22
u ) = fz(E

21
u ).

At stage n ∈ N with sequences Eiu and EiZ for i ∈ {1, 2}n, the inductive step is to split Eiu and

EiZ into two disjoint Borel subsets of equal measure Ei∧1u and Ei∧2u as well as Ei∧1Z and Ei∧2Z .30

Then on Ei∧1Z let Tz be identical to Tz on EiZ and on Ei∧2Z let it be such that

Tzfz(E
i∧1
u ) = Tzfz(E

i∧2
u ) and Tzfz(E

i∧2
u ) = Tzfz(E

i∧1
u ),

which is possible by Lemma 5. Now let us order the set {1, 2}N as follows: Start with the sequence

of all ones, which is the minimal element. Then change the first digit from a 1 to a 2, keeping

all other digits. Then change the first digit back to 1 and the second to a 2, keeping all others

as 1. Let the digit 2 “run through all positions” up to infinity. After this change the first two

digits to a 2, keeping all other digits at 1, and let the second 2 run through all positions, keeping

the first position at 2. Change the first position back to 1 and keep the second position a 2 while

running the second 2 through all positions. Do the same with three 2’s, four 2’s and so on. This

is a well-ordering since every subset of {1, 2}N has a smallest element (Aliprantis & Border 2006,

p. 18). Therefore, we can proceed by transfinite induction for all i ∈ {1, 2}N over this well-ordered

set, which yields an uncountable Condorcet cycle for Tzfz(u) modulus sets of measure zero in the

sense that Tzifzi(u) 6= Tzifzj (u) almost all u ∈ Eu and zi, zj ∈ EZ .

This construction only uses values within EZ and Eu, respectively, and can hence be applied

separately to every combination of Borel sets EZ and Eu for which fzi(u) = fzj (u) for u ∈ Eu,

yielding a Condorcet cycle up to sets of measure zero for all of [0, 1] if we let Tz be the identity

for all other Borel sets. This proves the conjecture in the case where EZ is uncountable since g

30The notation i ∧ 1 means appending the number 1 to the sequence i.
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can only be specified modulus sets of measure zero.

For the case where Z has finitely many atoms, the above construction can be adapted as

follows. If there is no atomic z ∈ [0, 1] such that fz(u) = fzi(u) for some other zi ∈ [0, 1] and

some u ∈ [0, 1], then the same construction as above works. If there is some number of atomic zj ,

j = {1, . . . , k}, for which there is a Borel set Eu and some Borel set EZ such that fzj (u) = fzi(u)

for all zi ∈ EZ and all u ∈ Eu, then in the construction above can be adjusted as follows.

Consider the Borel set F :=
⋃k
j=1 zj ∪EZ and partition EZ into two disjoint Borel subsets E1

Z

and E2
Z of equal measure

PZ(E1
Z) = PZ(E2

Z) =
1

2
εZ

and the corresponding Eu into k + 2 disjoint Borel sets E1
u, . . . , E

k+2
u of equal measure, i.e.

PU (E1
u) = . . . = PU (Ek+2

u ) =
1

k + 2
εu.

Then for z1 let Tz1 be the identity. For the other values z2, . . . , zk as well as any z ∈ E1
Z and

z′ ∈ E2
Z let Tzj be a cyclic map (which can be done by Lemma 5), i.e. for z2

Tz2fz2(Ek+2
u ) = fz2(E1

u), Tz2fz2(E1
u) = fz2(E2

u), . . . , Tz2fz2(Ek+1
u ) = fz2(Ek+2

u ),

for z3

Tz3fz3(Ek+1
u ) = fz2(E1

u), Tz3fz3(Ek+2
u ) = fz3(E2

u), . . . , Tz2fz2(Eku) = fz2(Ek+2
u ),

for zk

Tzkfzk(E1
u) = fzk(Eku), Tzkfzk(E2

u) = fzk(Ek+1
u ), . . . ,

for z ∈ E1
Z

Tzfz(E
1
u) = fz(E

k+1
u ), Tzfz(E

2
u) = fz(E

k+2
u ), . . . ,

and for z′ ∈ E2
Z

Tz′fz′(E
1
u) = fz′(E

k+2
u ), Tz′fz′(E

2
u) = fz′(E

1
u), . . .

Then at each iteration n of the construction split EizZ , iz ∈ {1, 2}n, into two disjoint Borel

subsets Eiz∧1Z and Eiz∧2Z of equal measure

PZ(Eiz∧1Z ) = PZ(Eiz∧2Z ) =
1

2n
εZ

and Eiuu , iu ∈ {1, . . . , k+2}n into k+2 disjoint Borel subsets Eiu∧1u , . . . , Eiu∧k+2
u of equal measure

PU (Eiu∧1u ) = . . . = PU (Eiu∧k+2
u ) =

1

(k + 2)n
εu,
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leave Tz1 unchanged from period n − 1 on Eiz∧1, and construct it to be cyclic (which again can

be done by Lemma 5) for the other z, i.e. for z2

Tz2fz2(Eiu∧k+2
u ) = fz2(Eiu∧1u ), . . . , Tz2fz2(Eiu∧k+1

u ) = fz2(Eiu∧k+2
u ),

for z3

Tz3fz3(Eiu∧k+1
u ) = fz2(Eiu∧1u ), . . . , Tz2fz2(Eiu∧ku ) = fz2(Eiu∧k+2

u ),

for zk

Tzkfzk(Eiu∧1u ) = fzk(Eiu∧ku ), Tzkfzk(Eiu∧2u ) = fzk(Eiu∧k+1
u ), . . . ,

for z ∈ Eiz∧1Z

Tzfz(E
iu∧1
u ) = fz(E

iu∧k+1
u ), Tzfz(E

iu∧2
u ) = fz(E

iu∧k+2
u ), . . . ,

and for z′ ∈ Eiz∧2Z

Tz′fz′(E
iu∧1
u ) = fz′(E

iu∧k+2
u ), Tz′fz′(E

iu∧2
u ) = fz′(E

iu∧1
u ), . . .

Then again by transfinite induction as in the previous case one obtains a Condorcet cycle Tz(fz(u))

modulus sets of measure zero in the sense that Tzifzi(u) 6= Tzifzj (u) almost all u ∈ Eu and

z, z′ ∈ EZ as well as z1, . . . , zk, as required.

Finally, the case where there are only finitely many atoms z1, z2, . . . , zk such that fzj (u) =

fzi(u) for some Borel set Eu ⊂ [0, 1] with measure PU (Eu) = εu > 0 is a special case of the

above construction. The above construction covers all cases for uncountable or discrete subsets

EZ where fz(u) is not a one-to-one generator. In all cases we were able to construct a Condorcet

cycle for all of [0, 1] by letting Tz be the identity map on all other sets except those sets EZ ; by

definition, a Condorcet cycle is equivalent to a one-to-one generator. Therefore, we can apply

Lemma 1 to finish the proof.

B.3 Proof of Proposition 1

Proof. We focus on PX|Z=z as the case for PY |X∗=x is completely analogous. We build a product

measurable space ([0, 1]n,
⊗

n B[0,1],n) and define the product measure
⊗n

i=1 PX|Z=zi on it. Then

it is not hard to see that the family {
⊗n

i=1 PX|Z=zi : n ∈ N} of finite dimensional product

measures forms a projective family (Bauer 1996, Definition 35.2). Indeed, if {zn∗} ⊂ {zn},
then the product measure

⊗n∗

i=1 PX|Z=zi is the marginal distribution of
⊗n

i=1 PX|Z=zi . We can

therefore apply Kolmogorov’s Extension Theorem (Bauer 1996, Theorem 35.3) to conclude that

there exists a measure space (Ω,A, P ) and a family of random variables Xz(ω), z ∈ [0, 1] such that

PX|Z=z is the law of the stochastic process Xz(ω). An analogous conclusion holds for PY |X∗=x

and Yx(ω̃).
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B.4 Proof of Theorem 1

Proof. The construction in Hess (1982) is only for Wiener measure on C([0, 1]). We therefore need

to show that our measures PY |X∗ and PX|Z also induce stochastic processes which are defined on

C([0, 1]) under Assumption 3. In addition, we need to show that the linear program actually does

what we want it to do, namely giving us bounds on the counterfactual probabilities. Let us start

with the first issue. Showing this is similar to Hess (1982).

We focus on PX|Z and the corresponding construction since the case for PY |X∗ is perfectly

analogous. Recall the following definitions from Lemmas 2 and 3 in the main text: Fn1,...,nk is

a dyadic quasi-interval of order k − 1, Dn1,...,nk is the disjoint version of these quasi-intervals

from Lemma 2, J ≡ JX is the Fσ-set of closed subsets Jm of I from Lemma 3. Moreover,

Bm
n1,...,nk

:= Fn1,...,nk ∩ C
0,λ
m ([0, 1]) and I ⊃ Jm := {(ni)i∈N ∈ NN : Bm

n1,...,nk
6= ∅}.

We now show that if PX|Z satisfies Assumption 3, then there exists a measure ρ on NN with

the following two properties: (i) ρ(〈n1, . . . , nk〉) = P (Fn1,...,nk) for all k ∈ N and (ii) ρ(J) = 1,

where P is the measure of the stochastic process Xz on the dyadic quasi-interval induced by PX|Z

and X = g(Z,U), (n1, . . . , nk) ∈ Nk. Part (i) is straightforward by setting ρ(〈n1, . . . , nk〉) =

P (Fn1,...,nk) = P (Dn1,...,nk) (Hess 1982, p. 342). So let us show (ii). This can be done if we find a

real valued function q(m), m ∈ N such that ρ(NN \ Jm) ≤ q(m) for all but finitely many m and

q(m)→ 0 as m→∞. Hess (1982, p. 343) shows that

NN \ Jm ⊂
∞⋃
k=1

2k−1⋃
j=0

⋃
Dn1,...,nk∩B

c·m
k,j 6=∅

〈n1, . . . , nk〉

 ,
for c := 1−2−λ

2 and where

Bh
k,j :=

{
f ∈ R[0,1] :

∣∣∣∣f j+1

2k
− f j

2k

∣∣∣∣ > h · 2−kλ
}
.

This implies that

ρ(NN \ Jm) ≤
∞∑
k=1

2k−1∑
j=0

∑
Dn1,...,nk∩B

c·m
k,j 6=∅

ρ(〈n1, . . . , nk〉)


=

∞∑
k=1

2k−1∑
j=0

∑
Dn1,...,nk∩B

c·m
k,j 6=∅

P (Dn1,...,nk)

 =: q(c ·m),

so that all we have to prove is limm→∞ q(c ·m) = 0.

But this follows from Assumption 3 and Chebychev’s inequality just as in the proof of Kol-

mogorov’s continuity theorem. In fact, we have for λ ∈ (0, δγ ) by Chebychev’s inequality and

60



Assumption 3

2k−1∑
j=0

P

(∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣ > m · c · 2−kλ
)

≤
2k−1∑
j=0

E

(∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣γ)
m · c · 2−λγk

≤cx ·m−1 · c−1 · 2−k(δ−λγ)

But this implies that

∞∑
k=1

2k−1∑
j=0

∑
Dn1,...,nk∩B

c·m
k,j 6=∅

P (Dn1,...,nk)


≤
∞∑
k=1

2k−1∑
j=0

P

(∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣ > m · c · 2−kλ
)

≤cx ·m−1 · c−1
∞∑
k=1

2−k(δ−λγ) < +∞,

so that q(c · m) → 0 as m → ∞. This proves that ρ satisfies (i) and (ii) and is hence an

admissible measure on NN. Finally, the thusly constructed measure is supported on C([0, 1]) by

an application of the Borel-Cantelli lemma in conjunction with the last inequality above, which

implies that Xz possesses a modification with Hölder exponent λ ∈ (0, δγ ). In particular, let us

denote Ak :=

{∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣ > m · c · 2−kλ
}

. Then

P (Ak) ≤
2k−1∑
j=0

P

(∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣ > m · c · 2−kλ
)
< +∞.

Now since
∑∞

k=1 P (Ak) < +∞, it holds by the Borel-Cantelli Lemma that P (
⋂∞
l=1

⋃∞
k=lAk) = 0,

i.e. this set is of probability zero. But this implies that there is a continuous modification such

that ∣∣∣∣X j+1

2k
−X j

2k

∣∣∣∣ ≤ m · c · 2−kλ
P -almost everywhere. Now the conclusion follows verbatim from the standard way to prove

Kolmogorov’s continuity theorem, for which we refer to Bauer (1996, Theorem 39.3).

Note that the measure is supported on every cylinder set, which follows from the equicontinuity

of the sets C0,λ
m ([0, 1]) and the fact that limm→∞ P

(
C0,λ
m ([0, 1])

)
= 1, which in turn follow directly

from our construction (Hess 1982, p. 346). The measure ρ constructed on NN can be regarded
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as a nonatomic measure on [0, 1] such that ρ(U) > 0 for every non-empty open U ⊂ [0, 1], since

we can identify the irrational numbers with Baire space. Furthermore, the Borel isomorphism φU

from Lemma 3 is such that ρ(E) = P (φ−1U (E)) for every Borel set E ⊂ [0, 1] (Hess 1982, p. 345).

The analogous construction works for PY |X∗ and a measure ν analogous to ρ.

The measure µ from the statement of Theorem 1 must hence be such that its marginals

PV = π1µ and PU = π2µ are such that φ−1V (PV ) and φ−1X (PU ) define proper probability measures

on C([0, 1]) which is just what P∗([0, 1]2) requires. We therefore define the measure µ as the

induced measure of (YXz(u)(v), Xz(u)), i.e. as µu · π2µ, where µu is the disintegrated measure

defined for a fixed path Xz(u). For fixed z, the path Xz(u) gives a unique x, and µu is then

induced by the map φV as before. The difference to π1µ is that x is not externally determined,

but determined by fixing a path Xz(u)—varying z gives different values for x, and based on those

we define the measure induced by µu. In fact, this captures the property that the processes

Yx and Xz only depend on one another by the fact that Yx depends on the position of Xz and

hence on the value of u in general. This is hence a direct transformation of the nonseparable

triangular model (1) to the two dependent stochastic processes Yx and Xz. Now since φV and

φU fix the unobservables v and u, the proof that (3), (5), and (6) are of the correct form can be

accomplished in perfect analogy to the argumentation in Balke & Pearl (1994). For given values

(y, x, z) the distribution FY,X|Z=z(y, x) determines the probability that the continuous stochastic

processes Yx(v) and Xz(u) go through the sets [0, y] × [0, x] at z. GY,X captures exactly this.

Analogously, HY,X captures all pairs of processes Yx(v) and Xz(u) for which Yx(v) goes through

[0, y∗] at x0.

B.5 Proof of Proposition 3

Proof. We only need to prove that the constraints are equivalent. So consider the constraint from

the problems (7)

fY,X|Z=z(y, x) =

∫ ∫
Γ(y, x, z, v, u)µ(dv, du).

Now integrate both sides and apply Fubini’s Theorem to obtain

FY,X|Z=z(y, x) =

∫
[0,y]×[0,x]

fY,X|Z=z(sy, sx)dsydsx

=

∫
[0,y]×[0,x]

∫ ∫
Γ(y, x, z, v, u)µ(dv, du)dsydsx

=

∫
[0,y]×[0,x]

∫ ∫
δ
(
sy − YXz(u)(v)

)
δ (sx −Xz(u))µ(dv, du)dsydsx

=

∫ ∫ ∫
[0,y]×[0,x]

δ
(
sy − YXz(u)(v)

)
δ (sx −Xz(u)) dsydsxµ(dv, du)

=

∫ ∫ ∫ x

0

∫
1[0,y](sy)δ

(
sy − YXz(u)(v)

)
δ (sx −Xz(u)) dsydsxµ(dv, du)
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=

∫ ∫ ∫
1[0,x](sx)1[0,y]

(
YXz(u)(v)

)
δ (sx −Xz(u)) dsxµ(dv, du)

=

∫ ∫
1[0,x] (Xz(u))1[0,y]

(
YXz(u)(v)

)
µ(dv, du)

=

∫ ∫
GY,X(y, x, z, v, u)µ(dv, du)

≡
∫
[0,1]2

GY,X(y, x, z, v, u)µ(dv, du)

where lines 6 and 7 follow from the property of the Dirac-delta distribution. Therefore, the CDF-

constraint is the integrated PDF-constraint. From this, and the fact that a PDF uniquely defines

a CDF and a CDF uniquely defines a PDF almost everywhere, we obtain the equivalency almost

everywhere of the constraints and a fortiori the equivalency almost everywhere of the optimization

problems (3) and (7).

B.6 Proof of Lemma 4

Proof. Let Assumption 4 hold. In order for A(PY,X|Z=z) to be non-empty we need to require that

the latent stochastic processes Yx and Xz satisfy Assumption 3, i.e.∫
[0,1]
|Yx1(v)− Yx2(v)|α π1µ(dv) ≤ cy|x1 − x2|1+β and∫

[0,1]
|Xz1(u)−Xz2(u)|γ π2µ(du) ≤ cx|z1 − z2|1+δ

for some fixed constants cy, cx, α, β, γ, δ > 0. We can write the constraint as

FY,X|Z=z(y, x) =

∫
[0,1]2

1[0,y]×[0,x]{sy, sx}PY,X|Z=z(dsy, dsx)

=

∫
[0,1]2

1[0,y]×[0,x]
{
YXz(u)(v), Xz(u)

}
µ(dv, du),

that is, the constraint requirement is that FY,X|Z=z be the pushforward law of the joint measure

µ at z ∈ [0, 1].

We now argue that every product measure µ := π1µ⊗ π2µ with marginals satisfying Assump-

tion 3 is in A(FY,X|Z=z) for every FY,X|Z=z satisfying Assumption 4. To see this, recall that by

Assumption 4 it holds that∫
[0,1]2

∫
[0,1]2

|(sy, sx)− (ty, tx)|η1PY,X|Z=z1(dsy, dsx)PY,X|Z=z2(dty, dtx) ≤ cy,x|z1 − z2|1+η2 .

We can then write∫
[0,1]2

∫
[0,1]2

|(sy, sx)− (ty, tx)|η1PY,X|Z=z1(dsy, dsx)PY,X|Z=z2(dty, dtx)
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=

∫
[0,1]2

∣∣∣(YXz1 (u)(v), Xz1(u)
)
−
(
YXz2 (u)(v), Xz2(u)

)∣∣∣η1 µ(dv, du)

=

∫ 1

0

∫ 1

0

∣∣∣(YXz1 (u)(v), Xz1(u)
)
−
(
YXz2 (u)(v), Xz2(u)

)∣∣∣η1 µu(dv)π2µ(du)

=

∫ 1

0

∣∣∣YXz1 (u)(v)− YXz2 (u)(v)
∣∣∣η1 µu(dv)

∫ 1

0
|Xz1(u)−Xz2(u)|η1 π2µ(du)

=

∫ 1

0

∣∣∣YXz1 (u)(v)− YXz2 (u)(v)
∣∣∣η1 π1µ(dv)

∫ 1

0
|Xz1(u)−Xz2(u)|η1 π2µ(du)

=

∫ 1

0
|Yx1(v)− Yx2(v)|η1 π1µ(dv)

∫ 1

0
|Xz1(u)−Xz2(u)|η1 π2µ(du)

≤cy|x1 − x2|1+η3cx|z1 − z2|1+η4

≤cycx|z1 − z2|1+η4

≤cycx|z1 − z2|1+η2 =: cy,x|z1 − z2|1+η2 .

Here the second line follows from the fact that FY,X|Z=z(y, x) is the induced joint law of the

processes Yx and Xz, as required by the constraint in the optimization problem. The third line

follows from a disintegration of µ into µu and π2µ. The fifth line follows from our Assumption

µ := π1µ⊗π2µ, which implies that the disintegrated measure coincides with the marginal measure.

The sixth line follows from the fact that (V,U) ⊥⊥ Z by assumption and by our assumption that

µ = π1µ⊗ π2µ; because of this we can simply replace the expression Xz1(u) and Xz2(u) by some

points x1 and x2 as the left integral does not depend on u. The seventh line follows by setting

α = γ = η1 and β = δ = η2, and the eighth line follows from the fact that |x1 − x2|1+η2 ≤ 1

for all x1, x2 ∈ [0, 1] since η2 > 0. Finally, the ninth line follows from η2 ≤ η4 and the fact that

|z1 − z2| ≤ 1.

B.7 Proof of Proposition 4

Proof. Let us first show convexity and compactness of P∗([0, 1]2) under Assumptions 2 and 3. As

for convexity, recall from the proof of Theorem 1 that for given α, β, γ, δ > 0 and given cy, cx > 0

we can write Assumption 3 in terms of the measure µ from (3) as

π1µ(NN \ Jα,βm ) ≤ cy ·m−1 · C−1 ·
∞∑
k=1

2−k(β−λ1α) < +∞ and

π2µ(NN \ Jγ,δm ) ≤ cx ·m−1 · C−1 ·
∞∑
k=1

2−k(δ−λ2γ) < +∞
(18)

for λ1 ∈ (0, βα) and λ2 ∈ (0, δγ ). For fixed α, β, γ, δ, cy, cx > 0, P∗([0, 1]2) is easily seen to be

convex as the projection operators π1 and π2 are linear so that if µ1, µ2 ∈ P∗([0, 1]2), then

π1 ((1− t)µ1 + tµ2) = (1− t)π1µ1 + tπ1µ2 and analogously for π2. Therefore, for (1− t)µ1 + tµ2
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we have

π1µ(NN \Jα,βm ) = (1− t)π1µ1(NN \Jα,βm )+ tπ1µ2(NN \Jα,βm ) ≤ cy ·m−1 ·C−1 ·
∞∑
k=1

2−k(β−λ1α) < +∞,

and analogously for π2.

As for compactness, it follows from Prokhorov’s theorem (e.g. Theorem 5.1 in Billingsley 1999)

that the set of all probability measures on [0, 1]2, P([0, 1]2), is compact in the weak topology. We

therefore only have to prove that P∗([0, 1]2) is closed in the weak topology to prove compactness.

To prove closedness of P∗([0, 1]2), let (µn)n∈N be a sequence of probability measures in P∗([0, 1]2)

converging weakly to some µ. Recall from Lemma 3 that the constructed (1, 1)-homeomorphisms

φV and φU are (0, 1)-homeomorphisms from each Jα,βm (respectively Jγ,δm ) onto the closed subsets

Cλm([0, 1]) ⊂ C([0, 1]) for each m. Therefore, NN \ Jα,βm and NN \ Jγ,δm are open for all m as

C([0, 1]) \ Cλm([0, 1]) is open for all m. Now since µn converges weakly to µ, it follows from

Portmanteau’s Theorem that lim infn µn(O) ≥ µ(O) for all open Borel sets O (Billingsley 1999,

Theorem 2.1), so that

π1µ(NN \ Jα,βm ) ≤ lim inf
n

π1µn(NN \ Jα,βm ) ≤ cy ·m−1 · C−1 ·
∞∑
k=1

2−k(β−λ1α)

π2µ(NN \ Jγ,δm ) ≤ lim inf
n

π2µn(NN \ Jγ,δm ) ≤ cx ·m−1 · C−1 ·
∞∑
k=1

2−k(δ−λ2γ),

so that µ ∈ P∗([0, 1]2).

Let us now show non-emptiness and convexity of A(FY,X|Z=z(y, x)) under Assumptions 2 – 4.

The fact that A(FY,X|Z=z(y, x)) is non-empty follows directly from Lemma 4. As for convexity of

E([0, 1]2), let µ1, µ2 ∈ E([0, 1]2). Since the operator Θµ : M([0, 1]2) → C([0, 1]3) is linear it also

holds that Θ[(1− t)µ1](y, x, z) + Θ[tµ2](y, x, z) = FY,X|Z=z(y, x) for all t ∈ (0, 1). This, together

with the convexity of P∗([0, 1]2) shows that A(FY,X|Z=z(y, x)) is a convex-valued correspondence.

Pre-compactness follows from the fact that it is a subset of the compact P∗([0, 1]2).

B.8 Proof of Proposition 5

Proof. We focus on the minimization problem as the maximization is completely analogous. We

prove that the value function m(·) is convex, proper, and lower semicontinuous at FY,X|Z=z from

which strong duality follows. Ξµ is convex and has a finite value for some µ ∈ P∗([0, 1]2), which

implies that m(FY,X|Z=z(y, x)) is convex and proper if it is lower-semicontinuous by Theorem 4 in

Rockafellar (1974). So all we need to show is lower semicontinuity. The function m(FY,X|Z=z(y, x))

is lower semicontinuous if its epigraph epi(α) := {FY,X|Z=z ∈ C([0, 1]3) : m(FY,X|Z=z(y, x)) ≤ α},
i.e. the set of all values greater or equal than the function value, is closed for any α ∈ R.

To show closedness of the epigraph of m(FY,X|Z=z(y, x)) fix some α < +∞ first and let
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{FY,X|Z;n}n∈N ∈ epi(α) be a sequence. Since {FY,X|Z;n}n∈N ∈ epi(α), it holds by definition of

m(·) that FY,X|Z;n is a probability distribution function for all n, as general distribution functions

cannot be replicated by a probability measure µ. Then by the uniform convergence it must be

the case that FY,X|Z is a probability distribution. Since m(FY,X|Z=z;n(y, x)) ≤ α, it holds by

definition of m that FY,X|Z=z;n(y, x) is replicable by some µn ∈ P∗([0, 1]2) in the sense that

FY,X|Z=z;n(y, x) =

∫
[0,1]2

GY,X(y, x, z, v, u)µn(dv, du).

We can therefore write

FY,X|Z=z;n(y, x) =

∫
[0,1]2

S1(sy, y)S2(sx, x)dFY,X|Z=z;n(sy, sx) + δ

=

∫
[0,1]2

S1
(
YXz(u)(v), y, ε1

)
· S2 (Xz(u), x, ε2)µn(dv, du) + δ

=µn (Yx ∈ [0, y], Xz ∈ [0, x]) + δ,

(19)

where the approximation error δ ∈ (−ε, ε) for some small ε > 0 is due to the approximation of

the indicator functions by logit functions.

The requirement (19) means that the measure PY,X|Z=z;n associated with FY,X|Z=z;n(y, x)

is the pushforward of µn via (Yx, Xz), so that different choices of (YXz(u)(v), Xz(u)) yield dif-

ferent compatible µn. Furthermore, recall that Yx(v) and Xz(u) are (0, 1)-homeomorphisms for

C0,λ
c ([0, 1]) for some c < +∞, which is fixed by Assumption 3, so that their Cartesian prod-

uct (YXz(u)(v), Xz(u)) is continuous. Since we assumed that FY,X|Z=z;n ∈ epi(α), it must be

that A(FY,X|Z=z;n(y, x)) is non-empty for all n by definition of m. Now since FY,X|Z=z;n(y, x)

converges and is hence a Cauchy sequence, the requirement (19) implies that for every ε > 0

there exists N ∈ N such that for all m,n ≥ N there exist µm ∈ A(FY,X|Z=z;m(y, x)) and

µn ∈ A(FY,X|Z=z;n(y, x)) with

sup
(y,x,z)∈[0,1]3

|µm (Yx ∈ [0, y], Xz ∈ [0, x])− µn (Yx ∈ [0, y], Xz ∈ [0, x])|

≤ sup
(y,x,z)∈[0,1]3

|FY,X|Z=z;m(y, x)− FY,X|Z=z;n(y, x)|+ 2δ

=‖FY,X|Z;m − FY,X|Z;n‖∞ + 2δ < ε+ 2δ.

But recall that the set of all rectangles induce the Borel σ-algebra, so that

sup
(y,x,z)∈[0,1]3

|µm (Yx ∈ [0, y], Xz ∈ [0, x])− µn (Yx ∈ [0, y], Xz ∈ [0, x])| = ‖µm − µn‖TV ,

which, while letting δ → 0, implies that {µn}n∈N is a Cauchy sequence in M([0, 1]2) equipped

with the topology induced by the total variation distance. Since M([0, 1]2) equipped with the
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total variation norm is a Banach space, this sequence converges to some µ, which must satisfy

(19). This implies that A(FY,X|Z=z(y, x)) is non-empty. Moreover, since we did not restrict µn

besides requiring (19), this holds for any sequence {µn}n∈N ⊂ P∗([0, 1]2) satisfying (19).

Furthermore, recall the definition of Ξ∫
[0,1]2

Ξ(y∗, x0, v, u)µ(dv, du) = µ(Yx0 ∈ [0, y∗]) + δ = π1µ(Yx0 ∈ [0, y∗]) + δ,

where δ is again the approximation error. This implies, while letting δ → 0, by continuity

of π1 that ‖π1µm − π1µ‖TV → 0. Now since the optimal value m(FY,X|Z=z;n(y, x)) is not

necessarily achieved by some µ∗n, we can pick a µ′n which is close enough in the sense that

µ′n ∈ A(FY,X|Z=z;n(y, x)) and Ξµ′n = Ξµ∗n + η for some 0 < η < ε and every n ∈ N. This is

always possible since S1(YXz(u)(v), y, ε1) and S2(Xz(u), x, ε2) are continuous in v and u, respec-

tively and P∗([0, 1]2) is compact in the weak topology. In fact, since A(FY,X|Z=z;N (y, x)) is weakly

pre-compact, it must be the case that µ∗N lies in the closure of A(FY,X|Z=z;N (y, x)), so that there

exists a sequence {µmn }m∈N which lies in A(FY,X|Z=z;N (y, x)), satisfies (19), and converges to µ∗n.

But since the above reasoning holds for any sequence of {µn}n∈N, it must also hold for sequences

{µ′n}n∈N, i.e. ‖µ′n → µ′‖TV → 0 for some µ ∈ A(FY,X|Z=z(y, x)). Since we can make η as small as

we want and by the continuity of π1, this implies that m(FY,X|Z=z;n(y, x))→ m(FY,X|Z=z(y, x)),

which shows that m is lower semicontinuous.

To prove strong duality from this, let us write the Lagrangian K(µ, ν) of the constrained

optimization problem as

K(µ, ν) := Ξµ+ 〈FY,X|Z −Θµ, ν〉2, (20)

where ν ∈M([0, 1]3) is the Lagrange multiplier. Then we can write the problem in the following

Lagrangian form

inf
µ∈P∗([0,1]2)

sup
ν∈M([0,1]3)

K(µ, ν). (21)

The dual problem can then be written as

sup
ν∈M([0,1]3)

inf
µ∈P∗([0,1]2)

K(µ, ν). (22)

Now note that for f ∈ C([0, 1]3)

Φ(µ, f) :=

Ξµ if µ ∈ P∗([0, 1]2) and FY,X|Z=z(y, x)−Θµ− f = 0

+∞ otherwise

is convex in both its arguments, so that Theorem 7 in Rockafellar (1974) implies that

sup
ν∈M([0,1]3)

inf
µ∈P∗([0,1]2)

K(µ, ν) = lim inf
f→0

m(FY,X|Z + f).
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But since m(·) is lower semicontinuous it holds that lim inff→0m(FY,X|Z +f) = m(FY,X|Z), which

is the value function of our constrained problem at FY,X|Z . This shows that there is no duality

gap between the two problems.

B.9 Proof of Proposition 6

Proof. For the proof we show directional Hadamard differentiability ofm(·) tangentially to F([0, 1]3).

This, in combination with the Functional Delta Method and uniform weak convergence of the

smoothed empirical processes, will then yield the result. As before, we give the proof for m(·) as

the proof for m(·) is analogous.

First, note that under Assumptions 2 – 7 it follows from Proposition 4 in Giné & Nickl (2008)

and the fact that the set of all rectangles in [0, 1]3 is a translation-invariant Donsker class that

√
n
(
F̂Y,X|Z;hn − FY,X|Z

)
⇒ G,

where G is an FY,X|Z-Brownian bridge indexed by the set of all rectangles in [0, 1]3.

Second, we need to show that m(FY,X|Z=z(y, x)) is continuous at every point of the set

F([0, 1]3) ⊂ C([0, 1]3)

F([0, 1]3) := {F (y, x, z) ∈ C([0, 1]3) : F (y, x, z) satisfies Assumption 4}.

The proof for this is similar to the proof of Proposition 5. In fact, just as in this proof we use

(19)

FY,X|Z=z;n(y, x) =

∫
[0,1]2

S1(sy, y)S2(sx, x)dFY,X|Z=z;n(sy, sx) + δ

=

∫
[0,1]2

S1
(
YXz(u)(v), y, ε1

)
· S2 (Xz(u), x, ε2)µn(dv, du) + δ

=µn (Yx ∈ [0, y], Xz ∈ [0, x]) + δ,

for some approximation error δ ∈ (−ε, ε), ε > 0 which we set to zero for saving on notation. In

Proposition 5 we already proved that m(·) is lower semicontinuous on C([0, 1]3). Now we prove

that it is continuous on F([0, 1]3). We only need to show upper semicontinuity, i.e. we need to

show that its hypograph hyp(α) := {FY,X|Z=z ∈ F([0, 1]3) : m(FY,X|Z=z(y, x)) ≥ α} is closed.

To show this, note that by Lemma 4 A(FY,X|Z=z(y, x)) is non-empty for every FY,X|Z=z(y, x) ∈
F([0, 1]3), so that m(FY,X|Z=z(y, x)) < +∞. Now let {FY,X|Z;n}n∈N ⊂ hyp(α) be some sequence

converging to some FY,X|Z , that is ‖FY,X|Z;n−FY,X|Z‖∞ → 0 as n→∞. Since A(FY,X|Z;n(y, x)) is

non-empty, there exist corresponding µn ∈ P∗([0, 1]2) for which FY,X|Z;n is the pushforward. Then

by the same reasoning as in the proof of Proposition 5 this implies that ‖µn−µ‖TV → 0 as n→∞
for some µn for which FY,X|Z=z;n(y, x) are the pushforwards via some (Yx, Xz). But since π1 is a

continuous operator, it must also hold that ‖π1µn − π1µ‖∞ → 0 for these µn. Now, analogously
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as in the proof of Proposition 5, we can set up a sequence {µmn }m∈N for every n ∈ N which

converges to the respectively optimal µ∗n which might not be achieved. Then similar to before

we can conclude that m(FY,X|Z=z;n(y, x)) → m(FY,X|Z=z(y, x)), by continuity of the objective

function. This shows upper semicontinuity of m(·) on F([0, 1]3) and therefore continuity.

Let us now show Hadamard directional differentiability of m(·) tangentially to F([0, 1]3). To

do so, we need to show that the limit

ṁFY,X|Z
(F ) = lim

n→∞
t−1n
(
m(FY,X|Z + tnFn)−m(FY,X|Z)

)
exists, where {tn}n∈N ∈ R+ is a sequence of positive numbers converging to zero and {Fn}n∈N ⊂
F([0, 1]3) is a sequence converging to some F ∈ F([0, 1]3). Note that the subgradient of m(·) on

the contingent (Bouligand) cone31 TFY,X|Z (F([0, 1]3)) is defined as

ν ∈ ∂m(FY,X|Z) ⇔ m(FY,X|Z+F ) ≥ m(FY,X|Z)+t〈F, ν〉2 for all F ∈ F([0, 1]3), t > 0.

(23)

Based on this we now show that the Hadamard directional derivative tangentially to F([0, 1]3)

exists and takes the form

ṁFY,X|Z
(F ) = max

ν∈∂m(FY,X|Z)
〈F, ν〉2 for F ∈ F([0, 1]3),

which is very similar to the conclusion in Theorem 11 of Rockafellar (1974), the only difference

being that we require F to lie in the subset F([0, 1]3) and not the whole space M([0, 1]3). To do

so first notice that (23) is equivalent to the statement

ν ∈ ∂m(FY,X|Z) ⇔ ṁFY,X|Z
(F ) ≥ 〈F, ν〉2 for all F ∈ F([0, 1]3),

as the limit tn ↓ 0 in the Hadamard directional derivative is equivalent to taking inf{t > 0}
(Rockafellar 1974, p. 33). But then by definition it holds that

ṁFY,X|Z
(F ) =

0 if ν ∈ ∂m(FY,X|Z)

+∞ if ν 6∈ ∂m(FY,X|Z),

i.e. the Hadamard directional derivative is the indicator function from convex analysis of the

subgradient ∂mFY,X|Z
(F ), all of course contingent on TFY,X|Z (F([0, 1]3)). The convex conjugate

of an indicator function from convex analysis is the support function

sup{〈F, ν〉2 : ν ∈ ∂m(FY,X|Z)},
31The contingent cone Tx(S) of a set S ⊂ X in some Banach space X at a point x ∈ X is defined as the set of all

tangent elements h ∈ X at x. An element h is tangent to S at x if there exists a sequence of elements {xn}n∈N ∈ X
with limn→∞ xn = x and a sequence {rn}n∈N ∈ R+ of positive elements such that h = limn→∞ rn(x− xn).
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see Rockafellar (1974, p. 16), so that the closure of the function ṁFY,X|Z
(F ) on TFY,X|Z (F([0, 1]3))

coincides with the support function sup{〈F, ν〉2 : ν ∈ ∂m(FY,X|Z)}, see Rockafellar (1974, p. 34).

But since m(F ) is continuous on F([0, 1]3), it holds that ∂m(FY,X|Z) is weakly compact since its

support function is continuous everywhere on F([0, 1]3) and hence equicontinuous (Rockafellar

1974, p. 34). Therefore, the supremum is attained and it holds that

ṁFY,X|Z
(F ) = max{〈F, ν〉2 : ν ∈ ∂m(FY,X|Z)}.

We can then apply the Functional Delta Method (Shapiro 1991, Theorem 2.1) to conclude

that
√
n
(
m(F̂Y,X|Z;n)−m(FY,X,Z)

)
=⇒ ṁFY,X|Z

(G),

for F̂Y,X|Z;n ∈ F([0, 1]3) for all n ∈ N.

B.10 Proof of Proposition 7

Proof. We only focus on the minimization problem as the maximization is perfectly analogous.

Note that y∗j and x0,j in (15) are the closest smaller or equal dyadic points to y∗ and x0. Since the

dyadic points are dense in [0, 1] it holds that (y∗j , x0,j)→ (y∗, x0) as j →∞. It is important that

the dyadic points y∗j and x0,j are smaller than y∗ and x0, since we make use of Dini’s theorem

below.

Now let {µj}j∈N be a sequence of feasible measures, i.e. measures satisfying the constraint (15).

We first want to show that those measures converge weakly to a feasible measure µ∞ satisfying∥∥∥∥FY,X|Z=z(y, x)−
∫

Θ(y, x, z, u, v)µ∞(du, dv)

∥∥∥∥2
L2([0,1]3)

≤ ε (24)

for every ε > 0 as j → ∞. Here ‖ · ‖2L2([0,1]3) is the squared L2-norm with respect to Lebesgue

measure on [0, 1]3. We showed in the proof of Theorem 1 that for each dyadic decomposition j of

the unit interval with mj points, the marginal measures π1µj(dv) and π2µj(du) for a measure µj

supported on those dyadic points induce measures PY |X∈{xi,...,xmj } and PX|Z∈{zi,...,zmj }. As the

order j increases, these measures converge weakly to PY |X=x and PX|Z=z, respectively, for almost

all x, z by the construction in Lemmas 2 and 3 and Theorem 1. Therefore by the Portmanteau

theorem (Billingsley 1999, Theorem 2.1) and the mapping theorem (Billingsley 1999, Theorem

2.7) the measures µj converge weakly to µ∞, because the constructed indices in Lemmas 2 and 3

are continuous by Assumption 3 for fixed cy, cx.

Furthermore, it holds that Θj(yj , xj , zj , v, u) → Θ(y, x, z, v, u) for all v, u by Dini’s theorem.

In particular, recall that all Θj as well as Θ are a logistic approximation to the indicator function

1[0,y]×[0,x]. Now since yj and xj , and zj are smaller or equal to y and x, and z by our construction

of Θj , it holds that Θj converge monotonically to Θ in the sense that Θj ≤ Θj+1. Moreover, the

construction of the indices in Lemma 3 is a (0, 1)-homeomorphism between [0, 1] and C0,λ
c ([0, 1])
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for some constant c < +∞ only depending on λ from Assumption 3. Therefore, all Θj and Θ are

continuous; in particular, they are uniformly continuous as [0, 1] is compact. Therefore, by Dini’s

theorem, it holds that Θj(yj , xj , zj , u, v)→ Θ(y, x, z, u, v) for all u, v. Hence, by weak convergence

in conjunction with uniform convergence of the Θj it holds that∫
Θj(y, x, z, v, u)µj(dv, du)→

∫
Θ(y, x, z, v, u)µ∞(dv, du),

where µ∞ is the limit as j → ∞. This last step is similar to part of the proof of Theorem 1 in

Mendiondo & Stockbridge (1998).

FY,X|Z=z(y, x)−
∫

Θ(y, x, z, v, u)µ(dv, du)

is continuous for every µ ∈ P∗([0, 1]2) by the construction of Θ and the assumption on FY,X|Z=z

and is therefore Riemann integrable. The dyadic points are asymptotically uniformly distributed

on the unit interval. In particular, for any δ > 0 there exists a large enough j0 ∈ N with

corresponding finite decomposition of [0, 1] into mj0 subintervals {Ji, . . . , Jmj0} such that the

upper and lower Darboux sums

mj0∑
i=1

1

mj0

tiLeb(Ji) and

mj0∑
i=1

1

mj0

siLeb(Ji)

are within δ of ∥∥∥∥FY,X|Z=z(y, x)−
∫

Θ(y, x, z, u, v)µ∞(du, dv)

∥∥∥∥2
L2([0,1]3)

.

Here ti (si) is the maximum (minimum) value of FY,X|Z=z(y, x)−
∫

Θ(y, x, z, v, u)µ(dv, du) on the

dyadic interval Ji.

Putting everything together, it therefore holds that for every η > 0 there exists j0 ∈ N such

that∣∣∣∣∣ 1

mj0

mj0∑
i=1

(
FY,X|Z=zi(yi, xi)−

∫
Θj0(yi, xi, zi, u, v)µj0(du, dv)

)2

−
∥∥∥∥FY,X|Z=z(y, x)−

∫
Θ(y, x, z, u, v)µ∞(du, dv)

∥∥∥∥2
L2([0,1]3)

∣∣∣∣∣ < η.

Recall that every µj satisfies the constraint of (15), and εj → 0 as j → ∞. Therefore, for every

ε > 0 there is a large enough j0 ∈ N such that η < ε. By assumption 4 we know that there exists

a µ which satisfies the linear infinite dimensional constraint perfectly, so that (24) follows.

Now we need to show that a sequence {µ∗j} of optimal measures converges to an optimal

measure µ∗∞. But this follows from the fact that Ξj are uniformly continuous and converge

uniformly to Ξ by Dini’s theorem. In particular, suppose by contradiction that µ∗∞ is not optimal,
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i.e. there exists a feasible µ0 ∈ P∗([0, 1]2) such that∫
Ξ(y∗, x0, z, v, u)µ0(dv, du) ≤

∫
Ξ(y∗, x0, z, v, u)µ∗∞(dv, du)− δ

for some δ > 0. Then note that we can project the measure µ0 and its corresponding induced

measures P 0
Y |X=x and P 0

X|Z=z onto the dyadic points for some order j. In particular, since those

projections are continuous it follows that for any η > 0 there exists j0 such that for all j ≥ j0∣∣∣∣∫ Ξj(y
∗
j , x0,j , zj , v, u)µ0,j(dv, du)−

∫
Ξ(y∗, x0, z, v, u)µ0(dv, du)

∣∣∣∣ < η

where µ0,j denotes the projection of µ onto the dyadic points; this follows from the fact that all

measures in P∗([0, 1]2), and so also µ0, are tight, so that the finite projections onto the dyadic

points are a determining class for µ0 (Billingsley 1999, Example 1.3). But this implies directly

that there must exist a large enough j1 such that∫
Ξj1(y∗j1 , x0,j1 , zj1 , v, u)µ0,j1(dv, du) <

∫
Ξj1(y∗j1 , x0,j1 , zj1 , v, u)µ∗j1(dv, du)

if we choose η < δ, which implies that µ∗j−1 is not optimal, a contradiction.

B.11 Proof of Proposition 8

Proof. The proof of this proposition follows a similar reasoning to the proof of Theorem 2.1 in

Pucci de Farias & Van Roy (2004), the difference being that we do not sample constraints like

they do, but variables. We need to work with the dual programs of the linear programs in order

to derive the result, as the sampled “variables” in the primal program correspond to sampled

constraints in the dual program by standard duality arguments. Recall that the problems read

minimize
µ≥0,~1′µ≤1

(
Ξ̃mink

)′
µw,min +

λmin
2
‖Θ̃min

k µw,min − F̂Y,X|Z=z;hn‖
2
2 and

maximize
µ≥0,~1′µ≤1

(
Ξ̃maxk

)′
µw,max −

λmax
2
‖Θ̃max

k µw,max − F̂Y,X|Z=z;hn‖
2
2

Since we use the Euclidean norm for the penalization, these penalized programs can be written

as

min
µ≥0,~1′µ≤1

λmin
2

µ′Dmin
k µ−

(
λmin

(
Θmin
k

)′
F̂Y,X|Z=z;hn − Ξmink

)′
µ+

λmin
2

(
F̂Y,X|Z=z;hn

)′
F̂Y,X|Z=z;hn

min
µ≥0,~1′µ≤1

λmax
2

µ′Dmax
k µ−

(
λmax (Θmax

k )′ F̂Y,X|Z=z;hn + Ξmaxk

)′
µ+

λmax
2

(
F̂Y,X|Z=z;hn

)′
F̂Y,X|Z=z;hn ,

where

Dmin
k :=

(
Θmin
k

)′
Θmin
k and Dmax

k := (Θmax
k )′Θmax

k .
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As stated, we need to consider the dual programs to the penalized programs since we do not

want the vector µ to grow in dimension. These dual programs are quadratic functions in the dual

variable y:

min
y≥0
− 1

2
y2~1′

(
λminD

min
k

)−1~1 + y
[
~1′
(
λminD

min
k

)−1 [
λmin

(
Θmin
k

)′
F̂Y,X|Z=z;hn − Ξmink

]
− 1
]

+Rmin

min
y≥0
− 1

2
y2~1′ (λmaxD

max
k )−1~1 + y

[
~1′ (λmaxD

max
k )−1

[
λmax (Θmax

k )′ F̂Y,X|Z=z;hn + Ξmaxk

]
− 1
]

+Rmax,

for

Rmin :=
λmin

2

(
F̂Y,X|Z=z;hn

)′
F̂Y,X|Z=z;hn

− 1

2

[
λmin

(
Θmin
k

)′
F̂Y,X|Z=z;hn − Ξmink

]′ (
λminD

min
k

)−1 [
λmin

(
Θmin
k

)′
F̂Y,X|Z=z;hn − Ξmink

]
Rmax :=

λmax
2

(
F̂Y,X|Z=z;hn

)′
F̂Y,X|Z=z;hn

− 1

2

[
λmax (Θmax

k )′ F̂Y,X|Z=z;hn + Ξmaxk

]′
(λmaxD

max
k )−1

[
λmax (Θmax

k )′ F̂Y,X|Z=z;hn + Ξmaxk

]
.

Furthermore, since these programs are finite dimensional and well-behaved, strong duality holds,

so that the optimal value of the primal program coincides with the optimal value of the dual

program. The idea now is to exploit the finiteness of the VC-dimension (Vapnik & Chervonenkis

1971) of second-order polynomials on R in combination with Theorem 8.4.1 in Anthony & Biggs

(1997). To be more specific, a standard result in complexity theory is that the VC-dimension of

real polynomials of degree D in d variables is
(
d+D
d

)
, which follows from a bound on their shatter

functions, see Theorem 5.5 in Matous̆ek (2009). In our case the degree of the dual programs is

D = 2 and the dimension is d = 1.

The conclusion now follows from the same reasoning as in Pucci de Farias & Van Roy (2004),

by applying Theorem 8.4.1 in Anthony & Biggs (1997). In particular, note that the hypothesis-set

H :=

{
{(ai, bi, ri) ∈ R3 :

1

2
aiy

2 + ybi + ri ≤ 0} : y ∈ R
}

has VC-dimension 3 from what we have argued above. But now it follows directly from Theorem

8.4.1 in Anthony & Biggs (1997) that

sup
{y: awy2+ybw+rw≤0, w∈W(s(δ,ε))}

Ps
({
i : aiy

2 + ybi + ri > 0
})
≤ ε

if the set W(s(δ, ε)) has cardinality of at least s(δ, ε). Here the index i runs over all admissible

paths for the given dyadic approximation of order j. Note that by changing the constant r
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accordingly, we can change the hypothesis set to

H :=

{
{(ai, bi, ri) ∈ R3 :

1

2
aiy

2 + ybi + ri ≤ V min
k } : y ∈ R

}
.

This implies that

sup
{y: awy2+ybw+rw≤Vmink , w∈Ws(δ,ε)}

Ps
({
i : aiy

2 + ybi + ri > V min
k

})
≤ ε,

so that the confidence of obtaining the optimal value with the sampled approach is 1− δ.
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