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Abstract

In structural stochastic volatility asset pricing models, changes in volatility affect risk premia
through two channels: (1) the investor’s willingness to bear high volatility in order to get high
expected returns as measured by the market risk price, and (2) the investor’s direct aversion
to changes in future volatility as measured by the volatility risk price. Disentangling these
channels is difficult and poses a subtle identification problem that invalidates standard inference.
We adopt the discrete-time exponentially affine model of Han, Khrapov, and Renault (2018),
which links the identification of the volatility risk price to the leverage effect. In particular, we
develop a minimum distance criterion that links the market risk price, the volatility risk price,
and the leverage effect to the well-behaved reduced-form parameters governing the return and
volatility’s joint distribution. The link functions are almost flat if the leverage effect is close
to zero, making estimating the volatility risk price difficult. We apply the conditional quasi-
likelihood ratio test Andrews and Mikusheva (2016) develop in a nonlinear GMM framework to a
minimum distance framework. The resulting conditional quasi-likelihood ratio test is uniformly
valid. We invert this test to derive robust confidence sets that provide correct coverage for the
risk prices regardless of the leverage effect’s magnitude.
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1 Introduction

A fundamental question in finance is how investors optimally trade off risk and return. Economic
theories predict investors demand a higher return as compensation for bearing more risk. Hence, we
should expect a positive relationship between the mean and volatility of returns. Some seminal early
papers proposed a static trade-off between risk and expected return, most notably the capital asset
pricing model (CAPM) of Sharpe (1964) and Lintner (1965). In practice, volatility varies over time.
Consequently, a significant strand of the recent literature examines the dynamic tradeoff between
volatility and returns, including structural stochastic volatility models (Christoffersen, Heston, and
Jacobs 2013; Bansal et al. 2014; Dew-Becker et al. 2017). In nonlinear models such as these,
investors care not just about how an asset’s returns co-move with the volatility but also care how
they co-move with changes in volatility.

In structural stochastic volatility models, changes in volatility affect risk premia through two
channels: (1) the investor’s willingness to tolerate high volatility in order to get high expected
returns as measured by the market risk price, and (2) the investor’s direct aversion to changes in
future volatility as measured by the volatility risk price. We adopt the discrete-time exponentially
affine model of Han, Khrapov, and Renault (2018), who represent the market risk price and the
volatility risk price by two structural parameters. In this model, Han, Khrapov, and Renault
(2018) establish the significant result that the identification of the volatility risk price depends on a
substantial leverage effect, which is the negative contemporaneous correlation between returns and
volatility.

Although the leverage effect is theoretically less than zero, it is difficult to quantify empirically,
and its estimate usually is small (Aït-Sahalia, Fan, and Li 2013). When the leverage effect is small,
the data only provide a limited amount of information about the volatility risk, compared to the
finite-sample noise in the data. This low signal-to-noise ratio, as modeled by weak identification,
invalidates standard inference based on the generalized method of moments (GMM) estimator, see
Stock and Wright (2000) and Andrews and Cheng (2012).

We provide an identification-robust confidence set for the structural parameters that measure the
market risk price, the volatility risk price, and the leverage effect. The robust confidence set provides
correct asymptotic coverage, uniformly over a large set of models that allow for any magnitude of
the leverage effect. This uniform validity is crucial for the confidence set to have good finite-sample
coverage (Mikusheva 2007; Andrews and Guggenberger 2010). In contrast, standard confidence sets
based on the GMM estimator and its asymptotic normality do not have uniform validity in the
presence of a small leverage effect. This issue affects all of the structural parameters because they
are estimated simultaneously.

We achieve robust inference in two steps. First, we establish a minimum distance criterion
using link functions between the structural parameters and a set of reduced-form parameters that
determine the joint distribution of the return and volatility. The structural model implies that
the link functions are zero when evaluated at the true values of the structural parameters and
the reduced-form parameters. Identification and estimation of these reduced form parameters are
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standard and are not affected by the presence of a small leverage effect. However, the link functions
are almost flat in one of the structural parameters when the leverage effect is small, resulting in
weak identification. Second, given this minimum distance criterion, we invert the conditional quasi-
likelihood ratio (QLR) test by Andrews and Mikusheva (2016) to construct a robust confidence
set. The key feature of this test is that it treats the flat link functions as an infinite dimensional
nuisance parameter. The critical value is constructed by conditioning on a sufficient statistic for
this nuisance parameter, and it is shown to yield a valid test regardless of the nuisance parameter.
Andrews and Mikusheva (2016) develop this test in a GMM framework. We show it works in the
minimum distance context here and provide conditions for its asymptotic validity. For practitioners,
we provide a detailed algorithm for the construction of this simulation-based robust confidence set.

Our paper relates to the empirical analysis of the effect of volatility on risk premia. As Lettau
and Ludvigson (2010) mention, the evidence here is inconclusive. Bollerslev, Engle, and Wooldridge
(1988), Harvey (1989), Ghysels, Santa-Clara, and Valkanov (2005), Bali and Peng (2006), and
Ludvigson and Ng (2007) find a positive relationship, while Campbell (1987), Breen, Glosten, and
Jagannathan (1989), Pagan and Hong (1991), Whitelaw (1994), and Brandt and Kang (2004) find
a negative relationship. Also, some papers use both a market risk factor and a variance risk factor
to explain the risk premia dynamics, including Christoffersen, Heston, and Jacobs (2013), Feunou
et al. (2014), and Dew-Becker et al. (2017). In related strand of the literature, Bollerslev, Law,
and Tauchen (2008) and Drechsler and Yaron (2011) document a substantial positive variance risk
premium. We contribute to this literature by providing the first method for making valid inference
for the market risk price and the volatility risk price. This new confidence set not only allows for
both effects but also takes into account the potential identification issue.

The weak identification issue studied in this paper is relevant in many economic applications,
ranging from linear instrumental variable models (Staiger and Stock 1997) to nonlinear structural
models (Mavroeidis, Plagborg-Møller, and Stock 2014; Andrews and Mikusheva 2015). This paper is
the first one to study this issue in structural asset pricing models with stochastic volatility. Moreira
(2003) introduces the conditional inference approach to the linear instrumental variable model,
and Kleibergen (2005) applies it to the nonlinear GMM problem. Andrews and Mikusheva (2016)
propose conditional inference for nonlinear GMM problems with an infinite-dimensional nuisance
parameter. This paper applies it to a minimum distance criterion and extends the scope of its
application to a new type of asset pricing model.

The rest of the paper is organized as follows. Section 2 provides the model and its parame-
terization. Section 3 provides model-implied restrictions and use them to derive the link function.
Section 4 provides the asymptotic distribution of the reduced-form parameter and robust inference
for the structural parameter. A detailed algorithm to construct the robust confidence set is given
in Section 4.3. Proofs are given in the appendix.
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2 The Model

This section provides a parametric structural model with stochastic volatility, following Han, Khrapov,
and Renault (2018). They extend the discrete-time exponentially-affine model of Darolles, Gouriéroux,
and Jasiak (2006), and their model is a natural discrete-time analog of the Heston (1993) model.
We specify this model using a stochastic discount factor (SDF), also called the pricing kernel, and
the physical measure, which gives the joint distribution of the return and volatility dynamics.1 We
first define the SDF and parameterize it as an exponential affine function with unknown parameters.
We then provide parametric distribution for the physical measure.

Let Pt be the price of the asset under consideration. Let rt+1 = log(Pt+1/Pt) − rf denote
the log excess return minus the risk-free rate and σ2

t+1 denote its volatility. The observed data is
Wt = (rt, σ

2
t ) for t = 1, . . . , T . Let Ft be the representative investor’s information set at time t .

2.1 Stochastic Discount Factor and Its Parameterization

The prices of all assets satisfy the following asset pricing equation in terms of the SDF:

Pt = E [Mt,t+1 exp (−rf )Pt+1 | Ft] . (1)

Following the definition of rt+1, the pricing equation implies that for all assets

1 = E [Mt,t+1 exp (rt+1) | Ft] . (2)

We start by parameterizing the SDF by the exponential affine model. Let π be the price of
volatility risk and κ be the price of market risk. They are both considered as structural parameters.

Definition 1. Parameterize the Stochastic Discount Factor

Mt,t+1(π, κ) = exp
(
m0 +m1σ

2
t − πσ2

t+1 − κrt+1

)
. (3)

Throughout we assume that the two risks that command nonzero prices are the market risk
price and the volatility risk price. Consequently, we only use variation in the first two moments of
the data to estimate these parameters.

2.2 Parameterizing the Volatility and Return Dynamics

Next, we parameterize the joint distribution of {Wt : t = 1, . . . , T}. Following Han, Khrapov, and
Renault (2018), we make the following assumptions. First, the return rt and volatility σ2

t are first-
order Markov. Second, there is no Granger-causality from the return to the volatility. Third, returns
are independent across time given the volatility. We do allow σ2

t and rt to be contemporaneously
correlated, as they are in the data.

1. The risk-neutral measure is unobserved due to the lack of option data.
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Under these assumptions, the volatility drives all of the dynamics of the process. The only
relevant information in the information set Ft for time t + 1-measurable variables is contained in
σ2
t . In general, σ2

t , σ2
t+1, and rt+1 form a sufficient statistic for Ft+1.

We adopt the conditional autoregressive gamma process as in Gouriéroux and Jasiak (2006) and
Han, Khrapov, and Renault (2018) for the volatility process. The model is parameterized in terms
of the Laplace transform:

E
[
exp(−xσ2

t+1)
∣∣Ft] = exp

(
−A(x)σ2

t −B(x)
)

(4)

for all x ∈ R. The function A(x) and B(x) are parameterized as follows.

Definition 2. Parameterize the Volatility Dynamics

A(x) :=
ρx

1 + cx
, (5)

B(x) := δ log(1 + cx), (6)

with ρ ∈ [0, 1− ε], c > ε, δ > ε for some ε > 0.

In this specification, ρ is a persistence parameter, c is a scale parameter, and δ is a level
parameter. We can see this clearly in the following conditional mean and variance formulas for
σ2
t+1.

Remark 1 (Volatilty Moment Conditions).

E
[
σ2
t+1

∣∣σ2
t

]
= ρσ2

t + cδ, (7)

Var
[
σ2
t+1

∣∣σ2
t

]
= 2cρσ2

t + c2δ. (8)

Next, we model the return dynamics. Similar to the volatility dynamics, the distribution of rt
given σ2

t+1 and σ2
t is specified in terms of the Laplace transform:

E
[
exp(−xrt+1)

∣∣Ft, σ2
t+1

]
= exp

(
−C(x)σ2

t+1 −D(x)σ2
t − E(x)

)
(9)

for all x ∈ R. The function C(x), D(x), and E(x) are parameterized as follows such that the return
has a conditional Gaussian distribution.

Definition 3. Parameterize the Return Dynamics

C(x) := ψx− 1− φ2

2
x2, (10)

D(x) := βx, (11)

E(x) := γx, (12)

with φ ∈ [−1 + ε, 0] for some ε > 0.
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Under this specification, we have the following representation of the conditional mean and vari-
ance for rt+1.

Remark 2 (Return Moment Conditions).

E
[
rt+1

∣∣σ2
t , σ

2
t+1

]
= ψσ2

t+1 + βσ2
t + γ, (13)

Var
[
rt+1

∣∣σ2
t , σ

2
t+1

]
= (1− φ2)σ2

t+1. (14)

The parameter φ represents the leverage effect because it measures the return volatility reduction
after conditioning on the volatility path.

3 Link Functions

So far, we have introduced the following parameters: (m0,m1, κ, π) in SDF, (ρ, c, δ) for the volatility
dynamics, and (ψ, β, γ, φ) for the return dynamics. Next, we explore restrictions among these
parameters that are consistent with this model. In other words, not all of these parameters can
change freely under the structural model.

We use these restrictions to construct link functions between a set of reduced-form parameters
and a set of structural parameters. These link functions play an important role on separating the
regularly behaved reduced-form parameters from the structural parameters. They also are used to
conduct identification robust inference for the structural parameters based on a minimum distance
criterion. All of these restrictions are also imposed in the GMM estimation in Han, Khrapov, and
Renault (2018). However, because the volatility risk price is weakly identified, they calibrate it
instead of estimating it. Given this calibrated value, they proceed to estimate all other parameters
with GMM.

3.1 Pricing Equation Restrictions

We first explore restrictions implied by the pricing equation E[Mt,t+1 exp(rt+1) | Ft] = 1. We start
with a simple result stating that the constants m0 and m1 are normalization constants implied by
all the other parameters. Thus, m0 and m1 are not free parameters to be estimated. Instead, they
should take the value given below, once other parameters are specified. These restrictions on m0

and m1 are obtained by applying the restriction E[Mt,t+1 exp(rt+1)|Ft] = 1 to the risk free asset.
Applying the same argument to any other asset, we also obtain another set of two restrictions,
which can be written in terms of the coefficients β and γ under the linear form of D(x) and E(x).

Lemma 1. Given the parameterization in the model, the pricing equation E[Mt,t+1 exp(rt+1) | Ft] =

1 implies that

m0 = E(κ) +B (π + C (κ)) ,

m1 = D (κ) +A (π + C (κ)) ,
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and

γ = B (π + C (κ− 1))−B (π + C (κ)) ,

β = A (π + C (κ− 1))−A (π + C (κ)) .

The two equalities on β and γ link them to the market risk price, κ, and the volatility risk price,
π, through the functions A(·), B(·), C(·), which also involve parameters (ρ, c, δ, ψ, φ).We treat these
two equalities as link functions in the minimum distance criterion specified below.

3.2 Leverage Effect Restrictions

Following Han, Khrapov, and Renault (2018), we parameterize ψ as

ψ =
φ√
2c
− 1− φ2

2
σ2
t+1 + (1− φ2)κσ2

t+1. (15)

The first part φ/
√

2c measures the leverage effect arising from the instantaneous correlation be-
tween rt+1 and σ2

t+1. The second part is the traditional Jensen effect term that arises from taking
expectation of a log-Gaussian random variable. The third term arises from risk-aversion, which is
why it is proportional to κ.

3.3 Structural and Reduced-Form Parameters

Because φ is the leverage effect parameter, we group it together with market risk price, κ, and the
volatility risk price, π, and call θ := (κ, π, φ)′ structural parameters. These structural parameters
are estimated by restrictions from this structural model. In contrast, the other parameters in the
conditional mean and variance of the return and volatility, see Remark 1 and Remark 2, are simply
estimated using these moments, without any model restrictions. As such, we call them the reduced-
form parameters. Because 1 − φ2 shows up in the conditional variance of rt+1, see (14), we define
ζ = 1 − φ2 as a reduced-form parameter and link it to the structural parameter φ through this
relationship. To sum up, the reduced-form parameters are ω := (ρ, c, δ, ψ, β, γ, ζ)′.

Using ζ as a reduced-form parameter has the additional benefit of avoiding estimating φ di-
rectly. Estimating φ when its true value is close to 0 results in an estimator with a non-standard
asymptotic distribution due to the boundary constraint. The inference procedure below does not
require estimation of φ and is uniform over φ even if its true value is on or close to the boundary 0.

The link functions between the structural parameter θ and the reduced-form parameter ω are
collected together in

g(θ, ω) =


γ − [B (π + C (κ− 1))−B (π + C (κ))]

β − [A (π + C (κ− 1))−A (π + C (κ))]

ψ − (1− φ2)κ+ 1
2(1− φ2)− 1/(2c)1/2φ

ζ −
(
1− φ2

)

 . (16)
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For the inference problem studied below, we know g(θ0, ω0) = 0 when evaluated at the true value
of θ and ω.

3.4 Identification

One of the important contributions of Han, Khrapov, and Renault (2018) is to establish the rela-
tionship between the identification of the volatility risk price and the leverage effect. In particular,
they show that when the leverage effect parameter φ = 0, the volatility risk price π is not identified.
To see this result, note that the only source of identification information on π are the first two link
functions in g(θ0, ω0) = 0, which come from Lemma 1. Clearly, these two equations are independent
of π if C(κ) = C(κ− 1). Using the definition of C(·) and (15), we have

C(κ)− C(κ− 1) = ψ − (1− φ2)

(
κ− 1

2

)
=

φ√
2c
. (17)

Clearly, the strength of identification is governed by the strength of the leverage effect. In other
words, we need φ 6= 0 to identify the volatility risk price π.

Even if φ 6= 0, we do not know it. In practice, with a finite-sample size and different types of
noise in the data, such as measurement errors and omitted variables, a substantial leverage effect
is required to obtain a standard identification situation where the noise in the data is negligible
compared to the information to identify π. However, if only a small leverage effect is found, as in
Bandi and Renò (2012) and Aït-Sahalia, Fan, and Li (2013), or the magnitude of the leverage effect
is completely unknown, an identification robust procedure is needed to conduct inference in this
problem. We provide such a procedure now.

4 Robust Inference for Risk Prices

4.1 Asymptotic Distribution of the Reduced-Form Parameter

Write ω = (ω1, ω2, ω3)′, where ω1 = (ρ, c, δ)′ ∈ O1, ω2 = (γ, β, ψ)′ ∈ O2, and ω3 = ζ ∈ O3. The
parameter space for ω is O = O1 × O2 × O3 ⊂ Rdω . The true value of ω is assumed to be in the
interior of the parameter space.

Below we describe the estimator ω̂ := (ω̂1, ω̂2, ω̂3)′ and provide its asymptotic distribution. We
estimate these parameters separately because ω1 only shows up in the conditional mean and variance
of σ2

t+1, ω2 only shows up in the conditional mean of rt+1, and ω3 only shows up in the conditional
variance of rt+1.

We first estimate ω1 = (ρ, c)′ based on the conditional mean and variance of σ2
t+1, which can be

equivalently written as

E[σ2
t+1|σ2

t ] = A and E[σ4
t+1|σ2

t ] = B, where

A = ρσ2
t + cδ and B = A2 +

(
2cρσ2

t + c2δ
)
. (18)
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Because the conditional mean of σ2
t+1 and σ4

t+1 are linear and quadratic functions, respectively, of
the conditioning variable σ2

t , without loss of efficiency, they can be transformed to the unconditional
moments

E[ht(ω10)] = 0, where ht(ω1) = [(1, σ2
t )⊗ (σ2

t+1 −A), (1, σ2
t , σ

4
t )⊗ (σ4

t+1 −B)]′, (19)

and ω10 represents the true value of ω1. The two-step GMM estimator of ω1 is

ω̂1 = arg min
ω1∈O1

(
T−1

T∑
t=1

ht(ω1)

)′
V̂1

(
T−1

T∑
t=1

ht(ω1)

)
, (20)

where V̂1 is a consistent estimator of V1 =
∑∞

m=−∞Cov[ht(ω10), ht+m(ω10)].

We estimate ω2 by the generalized least squares (GLS) estimator because the conditional mean
of rt+1 is a linear function of the conditioning variable σ2

t and σ2
t+1 and the conditional variance is

proportional to σ2
t+1. The GLS estimator of ω2 is

ω̂2 =

(
T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtyt, where

xt = σ−1
t+1(1, σ2

t , σ
2
t+1)′ and yt = σ−1

t+1rt+1. (21)

We estimate ω3 by the sample variance estimator

ω̂3 = T−1
T∑
t=1

(yt − ŷt)2 , where ŷt = x′tω̂2. (22)

Let P denote the distribution of the data {Wt = (rt+1, σ
2
t+1) : t ≥ 1} and P denote the parameter

space of P . Note that the true values of the structural parameter and the reduced-form parameters
are all determined by P. We allow P to change with T. For notational simplicity, the dependence
on P and T is suppressed.

Let

ft(ω) =

 ht(ω1)

xt(yt − x′tω2)

(yt − x′tω2)2

 ∈ Rdf and V =
∞∑

m=−∞
Cov [ft(ω0), ft+m(ω0)] . (23)

The estimator ω̂ defined above is based on the first moment of ft(ω). Thus, the limiting distribution
of ω̂ relates to the limiting distribution of T−1/2

∑T
t=1(ft(ω0)−E[ft(ω0]) following from the central

limit theorem. Furthermore, because ω1 is the GMM estimator based on some nonlinear moment
conditions, we need uniform convergence of the sample moments and their derivatives to show the
consistency and asymptotic normality of ω̂1. These uniform convergence follows from the uniform
law of large numbers. Because ω̂2 is a simple OLS estimator by regressing yt and xt, we need the
regressors to not exhibit multicollinearity. We make the necessary assumptions below. All of them
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are easily verifiable with weakly dependent time series data.
Let V̂ denote a heteroskedasticity and autocorrelation consistent (HAC) estimator of V . The

estimator V̂1 is a submatrix of V̂ associate with V1. Let Ht(ω1) = ∂ht(ω1)/∂ω′1.

Assumption R. The following conditions hold uniformly over P ∈ P, for some fixed 0 < C <∞.

1. T−1
∑T

t=1(ht(ω1) − E[ht(ω1)) →p 0 and T−1
∑T

t=1(Ht(ω1) − E[Ht(ω1)]) →p 0, E[Ht(ω1)] is
continuous in ω1, all uniformly over the parameter space of ω1.

2. T−1
∑T

t=1(xtx
′
t − E[xtx

′
t])→p0.

3. V −1/2{T−1/2(
∑T

t=1 ft(ω0)− E[ft(ω0)]} →dN(0, I) and V̂ − V →p 0.

4. C−1 ≤ λmin(A) ≤ λmax(A) ≤ C for A = V,E[Ht (ω1,0)′Ht (ω1,0)]),E[xtx
′
t],E[ztz

′
t], where

zt = (1, σ2
t , σ

4
t )
′.

Let H(ω1) = E[Ht(ω1)] and H(ω1) = T−1
∑T

t=1Ht(ω1). Define

B = diag{[H(ω10)V −1
1 H(ω10)]−1H(ω10)V −1

1 ,E[xtx
′
t]
−1, 1},

B̂ = diag{[H(ω̂1)′V̂ −1
1 H(ω̂1)]−1H(ω̂1)′V̂ −1

1 , [T−1
T∑
t=1

xtx
′
t]
−1, 1}. (24)

The following lemma provides the asymptotic distribution of the reduced-form parameter and a
consistent estimator of its asymptotic covariance. Note that we put the asymptotic covariance on
the left side of the convergence to allow the distribution of the data to change with sample size T .

Lemma 2. Suppose Assumption R holds. The following results hold uniformly over P ∈ P.

ξT := Ω−1/2T−1/2(ω̂ − ω0)→d ξ ∼ N(0, I), where Ω = BV B′,

and
Ω̂− Ω→p 0, where Ω̂ = B̂V̂ B̂′.

4.2 Weak Identification

The true value of the structural parameter θ and the reduced-form parameter ω satisfy the link
function g(θ0, ω0) = 0. In a standard problem without any identification issues, we can estimate θ0

by the minimum distance estimator θ̂ = (κ̂, π̂, φ̂)′, which minimizes QT (θ) = g(θ, ω̂)′WT g(θ, ω̂) for
some weighting matrix WT , and construct tests and confidence sets for θ0 using an asymptotically
normal approximation for T 1/2(θ̂−θ0). However, this standard method does not work in the present
problem when π0 is only weakly identified. In this case, g(θ, ω̂) is almost flat in π and the minimum
distance estimator of π̂ is not even consistent. To make the problem even more complicated, the
inconsistency of π̂ has a spillover effect on κ̂ and φ̂, making the distribution of κ̂ and φ̂ non-normal
even in large samples.
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Before presenting the robust confidence set, we first introduce some useful quantities and provide
a heuristic discussion of the identification problem and its consequences. Let G(θ, ω) denote the
partial derivative of g(θ, ω) with respect to (w.r.t.) ω. Let g0(θ) = g(θ, ω0) and G0(θ) = G(θ, ω0) be
the link function and its derivative evaluated at ω0 and ĝ(θ) = g(θ, ω̂) and Ĝ(θ) = G(θ, ω̂) be the
same quantities evaluated at the estimator ω̂. The delta method gives

ηT (θ) := T 1/2 [ĝ(θ)− g0(θ)] = G0(θ)Ω1/2 · ξT + op(1), (25)

where ξT →d N(0, I) following Lemma 2. Thus, ηT (·) weakly converges to a Gaussian process η(·)
with covariance function Σ(θ1, θ2) = G0(θ1)ΩG0(θ2)′.

Following (25), we can write T 1/2ĝ(θ) = ηT (θ) + T 1/2g0(θ), where ηT (θ) is the noise from
the reduced-form parameter estimation and T 1/2g0(θ) is the signal from the link function. Under
weak identification, g0(θ) is almost flat in θ, modeled as the signal T 1/2g0(θ) being finite even for
θ 6= θ0 and T → ∞. Thus, the signal and the noise are of the same order of magnitude, yielding
an inconsistent minimum distance estimator θ̂. This is in contrast with the strong identification
scenario, where T 1/2g0(θ) → ∞ for θ 6= θ0 as T → ∞ and g0(θ0) = 0. In this case, the signal is
strong enough that the minimum distance estimator is consistent.

The identification strength of θ0 is determined by the function T 1/2g0(θ). However, this function
is unknown and cannot be consistently estimated (due to T 1/2). Thus, we take the conditional
inference procedure as in Andrews and Mikusheva (2016) and view T 1/2g0(θ) as an infinite dimen-
sional nuisance parameter for the inference of θ0. The goal is to construct robust confidence set for
θ0 that has correct size asymptotically regardless of this unknown nuisance parameter.

4.3 Conditional QLR Test

We construct a confidence set for θ ∈ Θ := [0,M1] × [−M2, 0] × [1 − ε, 0] by inverting the test
H0 : θ = θ0 vs H1 : θ 6= θ0, where M1 and M2 are large positive constants and ε is a small positive
constant. The test statistic is a QLR statistic that takes the form

QLR(θ0) := T ĝ(θ0)′Σ̂(θ0, θ0)−1ĝ(θ0)−min
θ∈Θ

T ĝ(θ)′Σ̂(θ, θ)−1ĝ(θ), (26)

where Σ̂(θ1, θ2, ) = Ĝ(θ1)Ω̂Ĝ(θ2)′ and Ω̂ is the consistent estimator of Ω defined above.
Andrews and Mikusheva (2016) provide the conditional QLR test in a nonlinear GMM problem,

where ĝ(θ) is replaced by a sample moment. The same method can be applied to the present
nonlinear minimum distance problem. Following Andrews and Mikusheva (2016), we first project
ĝ(θ) onto ĝ(θ0) and construct a residual process

r̂(θ) = ĝ(θ)− Σ̂(θ, θ0)Σ̂(θ0, θ0)−1ĝ(θ0). (27)

The limiting distributions of r̂(θ) and ĝ(θ0) are Gaussian and independent. Thus, conditional on
r̂(θ), the asymptotic distribution of ĝ(θ) no longer depends on the nuisance parameter, T 1/2g0(θ),
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making the procedure robust to any identification strength.
Specifically, we obtain the 1−α conditional quantile of the QLR statistic, denoted by c1−α(r, θ0),

as follows. For b = 1, . . . , B, we take independent draws η∗b ∼ N(0, Σ̂(θ0, θ0)) and produce a
simulated process,

g∗b (θ) := r̂(θ) + Σ̂(θ, θ0)Σ̂(θ0, θ0)−1η∗b , (28)

and a simulated statistic,

QLR∗b(θ0) := T ĝ(θ0)′Σ̂(θ0, θ0)−1ĝ(θ0)−min
θ∈Π

Tg∗b (θ)
′Σ̂(θ, θ)−1g∗b (θ). (29)

Let b0 = d(1−α)Be, the smallest integer greater than or equal to (1−α)B. Then the critical value
c1−α(r, θ0) is the bth0 smallest value among {QLR∗b , b = 1, . . . , B}. We execute the steps reported in
Algorithm 1 to form a robust confidence set for θ.

Algorithm 1 Construing the Confidence Set

1. Estimate the reduced-form parameter ω̂ = (ω̂1, ω̂2, ω̂3)′ following the estimators defined in
(20), (21), and (22).

2. Obtain a consistent estimator of ω̂’s asymptotic covariance Ω̂ = B̂V̂ B̂′, where B̂ is defined in
(24) and V̂ is a HAC estimator of V.

3. For θ0 ∈ Θ,

(a) Construct the QLR statistic QLR(θ0) in (26) using g(θ, ω), G(θ, ω), ω̂, and Ω̂.

(b) Compute the residual process r̂(θ) in (27).

(c) Given r̂(θ), compute the critical value c1−α(r, θ0) described above.

4. Repeat these steps for different values of θ0. Construct a confidence set by collecting the null
values that are not rejected, i.e., the nominal level 1− α confidence set for θ0 is

CST = {θ0 : QLRT (θ0) ≤ c1−α(r, θ0)}. (30)

To obtain confidence intervals for each element of θ0, one simple solution is to project the
confidence set constructed above to each axis. The resulting confidence interval also has correct
coverage. An alternative solution is to first concentrate out the nuisance parameters before applying
the conditional inference approach above, see Andrews and Mikusheva (2016, Section 5). However,
this concentration approach only works when the nuisance parameter is strongly identified. In the
present set-up, this approach does not work for κ and φ because the nuisance parameter π is weakly
identified.

Assumption S. The following conditions hold over P ∈ P, for any θ in its parameter space, and
any ω in some fixed neighborhood around its true value, for some fixed 0 < C <∞.

1. g(θ, ω) is partially differentiable in ω, with partial derivative G(θ, ω) that satisfies ||G(θ1, ω)−
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G(θ2, ω)|| ≤ C||θ1 − θ2|| and ||G(θ, ω1)−G(θ, ω2)|| ≤ C||ω1 − ω2||.

2. C−1 ≤ λmin(G(θ, ω)′G(θ, ω)) ≤ λmax(G(θ, ω)′G(θ, ω)) ≤ C.

Theorem 3. Suppose Assumption R and Assumption S hold. Then,

lim inf
T→∞

inf
P∈P

Pr (θ0 ∈ CST ) ≥ 1− α.

This Lemma states that the confidence set constructed by the conditional QLR test has correct
asymptotic size. Uniformity is important for this confidence set to cover the true parameter with
a probability close to 1 − α in finite-samples. This uniform result is established over a parameter
space P that allows for weak identification of the structural parameter θ.

5 Simulations and Empirical Results

To be added.

References

Aït-Sahalia, Yacine, Jianqing Fan, and Yingying Li. 2013. “The Leverage Effect Puzzle: Disentan-
gling Sources of Bias at High Frequency.” Journal of Financial Economics 109 (1): 224–249.

Andrews, Donald W. K., and Xu Cheng. 2012. “Estimation and Inference With Weak, Semi-Strong,
and Strong Identification.” Econometrica 80 (5): 2153–2211.

Andrews, Donald W.K., and Patrik Guggenberger. 2010. “Asymptotic Size and a Problem with
Subsampling and with the M out of N Bootstrap.” Econometric Theory 26 (2): 426–468.

Andrews, Isaiah, and Anna Mikusheva. 2015. “Maximum Likelihood Inference in Weakly Identified
Dynamic Stochastic General Equilibrium Models.” Quantitative Economics 6 (1): 123–152.

. 2016. “Conditional Inference With a Functional Nuisance Parameter.” Econometrica 84 (4):
1571–1612.

Bali, Turan G., and Lin Peng. 2006. “Is There a Risk–Return Trade-off? Evidence from High-
Frequency Data.” Journal of Applied Econometrics 21 (8): 1169–1198.

Bandi, Federico M., and Roberto Renò. 2012. “Time-varying Leverage Effects.” Journal of Econo-
metrics 169 (1): 94–113.

Bansal, Ravi, Dana Kiku, Ivan Shaliastovich, and Amir Yaron. 2014. “Volatility, the Macroeconomy,
and Asset Prices.” The Journal of Finance 69 (6): 2471–2511.

Bollerslev, Tim, Robert F. Engle, and Jeffrey M. Wooldridge. 1988. “A Capital-Asset Pricing Model
with Time-varying Covariances.” Journal of Political Economy 96 (1): 116–131.

12



Bollerslev, Tim, Tzuo Hann Law, and George Tauchen. 2008. “Risk, Jumps and Diversification.”
Journal of Econometrics 144 (1): 234–256.

Brandt, Michael W., and Qiang Kang. 2004. “On the Relationship Between the Conditional Mean
and Volatility of Stock Returns: A Latent VAR Approach.” Journal of Financial Economics 72
(2): 217–257.

Breen, William, Lawrence R. Glosten, and Ravi Jagannathan. 1989. “Economic Significance of
Predictable Variations in Stock Index Returns.” The Journal of Finance 44 (5): 1177–1189.

Campbell, John Y. 1987. “Stock Returns and the Term Structure.” Journal of Financial Economics
18 (2): 373–399.

Christoffersen, Peter, Steven Heston, and Kris Jacobs. 2013. “Capturing Option Anomalies with a
Variance-Dependent Pricing Kernel.” The Review of Financial Studies 26 (8): 1963–2006.

Darolles, Serge, Christian Gouriéroux, and Joann Jasiak. 2006. “Structural Laplace Transform and
Compound Autoregressive Models.” Journal of Time Series Analysis 27 (4): 477–503.

Dew-Becker, Ian, Stefano Giglio, Anh Le, and Marius Rodriguez. 2017. “The Price of Variance Risk.”
Journal of Financial Economics 123 (2): 225–250.

Drechsler, Itamar, and Amir Yaron. 2011. “What’s Vol Got to Do with It.” The Review of Financial
Studies 24 (1): 1–45.

Feunou, Bruno, Jean-Sébastien Fontaine, Abderrahim Taamouti, and Roméo Tédongap. 2014. “Risk
Premium, Variance Premium, and the Maturity Structure of Uncertainty.” Review of Finance
18 (1): 219–269.

Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov. 2005. “There is a Risk-Return Trade-off
after All.” Journal of Financial Economics 76 (3): 509–548.

Gouriéroux, Christian, and Joann Jasiak. 2006. “Autoregressive Gamma Processes.” Journal of
Forecasting 25 (2): 129–152.

Han, Hyojin, Stanislav Khrapov, and Eric Renault. 2018. The Leverage Effect Puzzle Revisited:
Identification in Discrete Time. Working Paper. Brown University.

Harvey, Campbell R. 1989. “Time-Varying Conditional Covariances in Tests of Asset Pricing Mod-
els.” Journal of Financial Economics 24 (2): 289–317.

Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Ap-
plications to Bond and Currency Options.” The Review of Financial Studies 6 (2): 327–343.

Kleibergen, Frank. 2005. “Testing Parameters in GMM Without Assuming That They Are Identi-
fied.” Econometrica 73 (4): 1103–1123.

13



Lettau, Martin, and Sydney C. Ludvigson. 2010. “Measuring and Modeling Variation in the Risk-
Return Tradeoff.” Chap. 11, edited by Yacine Aït-Sahalia and Lars Peter Hansen, 1:617–690.
Handbook of Financial Econometrics. Elsevier.

Lintner, John. 1965. “Security Prices, Risk, and Maximal Gains From Diversification.” The Journal
of Finance 20 (4): 587–615.

Ludvigson, Sydney C., and Serena Ng. 2007. “The Empirical Risk–Return Relation: A Factor Anal-
ysis Approach.” Journal of Financial Economics 83 (1): 171–222.

Mavroeidis, Sophocles, Mikkel Plagborg-Møller, and James H. Stock. 2014. “Empirical Evidence on
Inflation Expectations in the New Keynesian Phillips Curve.” Journal of Economic Literature
52, no. 1 (March): 124–88.

Mikusheva, Anna. 2007. “Uniform Inference in Autoregressive Models.” Econometrica 75 (5): 1411–
1452.

Moreira, Marcelo J. 2003. “A Conditional Likelihood Ratio Test for Structural Models.” Economet-
rica 71 (4): 1027–1048.

Pagan, Adrian R., and Y.S. Hong. 1991. “Nonparametric Estimation and the Risk Premium.”
Chap. 2 in Nonparametric and Semiparametric Methods in Econometrics and Statistics: Pro-
ceedings of the Fifth International Symposium in Economic Theory and Econometrics, edited
by William A. Barnett, James Powell, and George Tauchen, 51–75. Cambridge University Press.

Sharpe, William F. 1964. “Capital Asset Prices: A Theory of Market Equilibrium Under Conditions
of Risk.” The Journal of Finance 19 (3): 425–442.

Staiger, Douglas, and James H. Stock. 1997. “Instrumental Variables Regression with Weak Instru-
ments.” Econometrica 65 (3): 557–586.

Stock, James H., and Jonathan H. Wright. 2000. “GMM with Weak Identification.” Econometrica
68 (5): 1055–1096.

Whitelaw, Robert F. 1994. “Time Variations and Covariations in the Expectation and Volatility of
Stock Market Returns.” The Journal of Finance 49 (2): 515–541.

14



Appendix A Proofs

A.1 Proof of Lemma 1

Proof. For the risk free asset, rt+1 = 0. Therefore, we have

1 = E
[
exp

(
m0 +m1σ

2
t − πσ2

t+1 − κrt+1

) ∣∣Ft]
= exp(m0 +m1σt)E

[
exp

(
−πσ2

t+1

)
E
[
exp (−κrt+1)

∣∣Ft, σ2
t+1

] ∣∣Ft]
= exp(m0 − E (κ) +m1σt −D (κ)σ2

t )E
[
exp

(
−πσ2

t+1 − C (κ)σ2
t+1

) ∣∣Ft]
= exp(m0 − E (κ) +m1σt −D (κ)σ2

t −A (π + C (κ))σ2
t −B (π + C (κ))), (31)

where the first equality follows from the pricing equation, the second equality follows from the law
of iterated expectations, the third equation uses the Laplace transform for rt+1 in (9), and the last
equality follows from the Laplace transform for σ2

t+1 in (4). Since Mt,t+1 must integrate to 1, the
constant term and coefficient for σ2

t must equal 0, which gives the claimed result for m0 and m1.

We can apply the same argument above to any asset rt+1. This gives the same result, except κ
is replaced by κ− 1 throughout. This implies that the two equalities for m0 and m1 also hold with
κ replaced by κ− 1. Therefore,

E(κ− 1) +B (C (κ− 1) + π) = E(κ) +B (C (κ) + π) ,

D (κ− 1) +A (C (κ− 1) + π) = D (κ) +A (C (κ) + π) . (32)

The claimed results for γ and β follow from γ = E(κ)− E(κ− 1) and β = D(κ)−D(κ− 1) under
the linear specification of E(x) = γx and D(x) = βx.

A.2 Proof of Lemma 2

Proof. Under the assumption that (i) E(ztz
′
t) has the smallest eigenvalue bounded away from 0 and

(ii) c > ε and δ > ε for some ε > 0, we not only have ω10 as an uniquely minimizer of ||E[ht(ω1)]||
but also have a uniform positive lower bound for ‖E[ht(ω1)]‖ for ‖ω1−ω10‖ ≥ ε. Thus, consistency
of ω̂1 follows from standard arguments for the consistency of a GMM estimator under an uniform
convergence of the criterion under Assumption R (1) and (2).

Let h(ω1) = T−1
∑T

t=1 ht(ω1) and H(ω) = T−1
∑T

t=1Ht(ω1). By construction, the estimator
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satisfies the first-order condition

0 =

 H(ω̂1)′V̂ −1
1 h(ω̂1)

T−1
∑T

T=1 xt(yt − x′tω̂2)

ω̂3 − T−1
∑T

t=1 (yt − ŷt)2



=

 H(ω̂1)′V̂ −1
1 h(ω10) +H(ω̂1)′V̂ −1

1 H(ω̃1)(ω̂1 − ω10)

T−1
∑T

t=1 xt(yt − x′tω20)− T−1
∑T

t=1 xtx
′
t (ω̂2 − ω20)

(ω̂3 − ω3) + ω3 − T−1
∑T

t=1 (yt − xtω̂2)2

 , (33)

where the second equality follows from a mean value expansion of h(ω̂1) around ω10, with ω̃1 between
ω10 and ω̂1. Let

B̃ = diag

{
[H(ω̂1)′V̂ −1

1 H(ω̃1)]−1H(ω̂1)′V̂ −1
1 , [T−1

T∑
t=1

xtx
′
t]
−1, 1

}
. (34)

Then (33) implies that

T 1/2 (ω̂ − ω) = B̃ · T−1/2
T∑
t=1

 −ht(ω10)

xt(yt − x′tω20)

(yt − xtω̂2)2 − ω3



= B̃ · T−1/2
T∑
t=1


−ht(ω10)

xt(yt − x′tω20)

(yt − x′tω20)2 − E
[
(yt − x′tω20)2

]
+

 0

0

εT

 , (35)

where the second equality uses ω3 = E[(yt − x′tω20)2] by definition and

εT = T−1/2
T∑
t=1

[(
yt − x′tω̂2

)2 − (yt − x′tω20

)2]
= 2T−1

T∑
t=1

(
yt − x′tω20

)
x′t

[
T 1/2 (ω̂2 − ω20)

]
+ op(1)

= op(1) (36)

because T−1
∑T

t=1 (yt − x′tω20)x′t →p 0 and T 1/2(ω̂2 − ω20) = Op(1) following Assumption R. In
addition,

B̃ →p B (37)

following from the consistency of ω̂1 and Assumption R. Finally, the desirable result follows from
(35)–(37) and Assumption R. The consistency of Ω̂ follows from the consistency of B̂ and V̂ .
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A.3 Proof of Theorem 3

Proof. We obtain this result by applying Andrews and Mikusheva (2016, Theorem 1). We now
verify Assumptions 1-3 in Andrews and Mikusheva (2016). To show weak convergence ηT (·) to η(·)
uniformly over P, note that by a second-order Taylor expansion,

ηT (θ) := T 1/2 [ĝ(θ)− g0(θ)] = G0(θ)Ω1/2ξT + δT , where

ξT = Ω−1/2T 1/2 (ω̂ − ω0) , δT = (G(θ, ω̃)−G(θ, ω0))T 1/2(ω̂ − ω0), (38)

and ω̃ is between ω̂ and ω0. Because ‖G(θ, ω̃)−G(θ, ω0)‖ ≤ C‖ω̃ − ω0‖, δT = op(1) uniformly over
P following Lemma 2. To show G0(θ)Ω1/2ξT weakly converges to η(·), it is sufficient to show (i)
the pointwise convergence (

G0(θ1)Ω1/2ξT

G0(θ2)Ω1/2ξT

)
→d

(
η(θ1)

η(θ2)

)
, (39)

which follows from Lemma 2, and (ii) the stochastic equicontinuity condition, i.e., for every ε > 0

and χ > 0, there exists a δ > 0 such that

lim sup
T→∞

Pr

(
sup
P∈P

sup
‖θ1−θ2‖≤δ

∥∥∥G0(θ1)Ω1/2ξT −G0(θ2)Ω1/2ξT

∥∥∥ > ε

)
< χ. (40)

For some C <∞, we have ‖G0(θ1)−G(θ2)‖ ≤ C‖θ1−θ2‖ by Assumption S, and we have ‖Ω1/2‖ ≤ C
under Assumption R because F and V both have bounded largest eigenvalues. Thus,

lim sup
T→∞

Pr

(
sup
P∈P

sup
‖θ1−θ2‖≤δ

∥∥∥G0(θ1)Ω1/2ξT −G0(θ2)Ω1/2ξT

∥∥∥ > ε

)

≤ lim sup
T→∞

Pr

(
C2 sup

P∈P
‖ξT ‖ >

ε

δ

)
. (41)

Because ξT = Op(1) uniformly over P ∈ P, there exists δ such that ε/δ is large enough to make the
right hand side of the inequality in (41) smaller than χ.

Assumptions 2 and 3 of Andrews and Mikusheva (2016, Theorem 1) follow from Assumption R.
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