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Abstract

Most economic data are multivariate and so estimating multivariate densities is a classic problem
in the literature. However, given vector-valued data — {xt}Tt=1 — the curse of dimensionality
makes nonparametrically estimating the data’s density infeasible if the number of series, D,
is large. Hence, we do not seek to provide estimators that perform well all of the time (it
is impossible), but rather seek to provide estimators that perform well most of the time. We
adapt the ideas in the Bayesian compression literature to density estimation by randomly binning
the data. The binning randomly determines both the number of bins and which observation is
placed in which bin. This novel procedure induces a simple mixture representation for the data’s
density. For any finite number of periods, T , the number of mixture components used is random.
We construct a bound for this variable as a function of T that holds with high probability.
We adopt the nonparametric Bayesian framework and construct a computationally efficient
density estimator using Dirichlet processes. Since the number of mixture components is the key
determinant of our model’s complexity, our estimator’s convergence rates —

√
log(T )/

√
T in

the unconditional case and log(T )/
√
T in the conditional case — depend on D only through

the constant term. We then analyze our estimators’ performance in a monthly macroeconomic
panel and a daily financial panel. Our procedure performs well in capturing the data’s stylized
features such as time-varying volatility and fat-tails.
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1 Introduction

Estimating multivariate densities is a classic problem across econometrics, statistics, and computer
science. Researchers often find parametric assumptions restrictive and their models sensitive to
deviations from these assumptions. On the other hand, given vector-valued data — {xt}Tt=1 —
nonparametrically estimating the data’s density becomes infeasible if the number of series, D, is
large. This phenomenon is called the curse of dimensionality. In particular, the number of terms
required to approximate a general distribution grows exponentially quickly with D, (Stone 1980,
1982). For example, the number of terms a Taylor series approximation uses is proportional to TD,
where T is the number of periods.1

Leading examples of commonly used estimators that suffer from this curse of dimensionality
include kernel estimation, as surveyed by Ichimura and Todd (2007), and sieve estimation, as
surveyed by Chen (2007). The list of possible applications is too vast to enumerate here. In
dynamic environments alone, obtaining good conditional densities is pivotal for forecasting, risk
measurement, studying heterogeneous agent models, and so on, (Krusell and Smith 1998; Fan 2005;
Patton, Ziegel, and Chen 2018).

Several authors have studied Bayesian density estimators, attaining these minimax rates up to
a logarithmic factor without picking any tuning parameters, (Ghosal, Ghosh, and Vaart 2000; van
der Vaart and van Zanten 2008; Ghosal and van der Vaart 2017). These models typically, though
not exclusively, use mixture distributions to form a sieve. There is also developing literature on
Bayesian estimation of conditional distributions, (Geweke and Keane 2007; Norets 2010; Pati,
Dunson, and Tokdar 2013). These papers view minimax rates through the lens of information
theory, characterizing the data generating process’s entropy. They find that minimax rates that
decline exponentially fast with D, (Yang and Barron 1999).

This exponential increase in the number of parameters makes applying these methods to datasets
with more than three or four series prohibitive. However, these minimax rates, as they are known,
characterize estimators’ worst-case behavior. Hence, we do not seek to provide estimators that
perform well all of the time (it is impossible), but rather seek to provide estimators that perform
well most of the time. The easy way to do this would be to restrict the set of data generating
processes (DGPs) we consider. For example, parametric models have only a finite number of
parameters regardless of T , and so the convergence rate is independent of any fixed D. However,
in general, we want to guarantee a fast convergence rate without restricting the set of DGPs we
allow.

To do this, we adapt the ideas in the Bayesian compression literature to density estimation
by randomly binning the vectors xt. This rapidly-growing literature in mathematics and statistics
studies randomly compressing the data independently of D. It applies a random operator to some
multivariate data — XT — that significantly simplifies the problem. Various authors derive bounds
that hold the vast majority of the time with respect to the randomness the compression introduces.

1. In general, the number of terms a sieve requires equals T g(D) for some function g that depends on the set of
functions being approximated.
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These bounds are useful in our case because even though we must place strong restrictions on
the compression, we do not need to place them on the DGP. Johnson and Lindenstrauss (1984)
introduced the idea of projecting a Gaussian process into a lower dimensional subspace. More
recently, Koop, Korobilis, and Pettenuzzo (2017) introduced these ideas to econometrics using them
to estimate a vector autoregression in many dimensions, while Boucheron, Lugosi, and Massart
(2013) provide a book-length treatment.

We construct a novel random procedure which determines both the number of bins and which
vector xt is placed in which bin. Having constructed these bins, we bound the tail behavior of the
approximation error by noting that binning and clustering refer to the same procedure. Hence, our
binning procedure induces a simple mixture representation for both the unconditional and transition
densities of both i.i.d. and Markov data. Given a realization of this random clustering, we construct
an approximating distribution for each cluster. Since we do not know the true clustering, we average
over these approximating distributions.

For any finite T , the number of mixture components used is random. We construct a bound for
this variable as a function of T that holds with high probability. In particular, we show that dis-
tance between the induced mixture representation and the data’s true distribution as measured by
standard divergences such as Hellinger and Kullback-Leibler is small even when we take supremum
over the set of true DGPs even when D is large.

Having constructed these tight bounds on the complexity of our mixture sieve, we convert them
into convergence rates for the estimators by adopting the nonparametric Bayesian literature refer-
enced above. In particular, we construct an estimator for the transition density of a Markov process
that reduces to a standard Dirichlet Gaussian mixture when there are no dynamics. We then adapt
the slice sampling algorithm of Walker (2007) to efficiently sample the infinite mixture approxima-
tion. Since the number of mixture components is the key determinant of our model’s complexity,
our estimators’ convergences rates —

√
log(T )/

√
T in the unconditional case and log(T )/

√
T in

the conditional case — depend on D only through the constant term. We then analyze our estima-
tors’ performance in a monthly macroeconomic panel and a daily financial panel. The procedure
performs well in capturing the data’s stylized features such as time-varying volatility and fat-tails.

To summarize, we show that our estimator converges rapidly — it doe not require many mixture
components even when D is large — with arbitrarily high probability. We do this by tolerating
a small chance of our estimator’s converging slowly as determined by our data-agnostic random
clustering. Even though we cannot beat the minimax rate in general, we show that our estimators
will perform well when D is large, even when the true distribution is not smooth.

We organize the paper as follows. Section 3 surveys the literature. Section 4 describes the
data generating process. Section 5 constructs the sieve and provides conditions under which it
approximates the true density well. Section 6 proves our estimators converge at the rates given
above. Section 7 provides our estimation strategy. Section 9 analyzes the performance of our
estimator in a simulation. Section 8 introduces the data and the prior we use for the empirical
analysis. Section 10 uses our method to empirically analyze a monthly macroeconomic panel and
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a daily financial panel. Section 11 concludes. The appendices contain all the relevant proofs and
additional empirical results.

2 Intuition

The results we mentioned so far likely seem surprising, so we now explain why they are actually
reasonable. We do this by discussing the intuition driving the results in the Bayesian compression
literature. The number of D-dimensional hypercubes cubes of width 1

T required to fill a large
hypercube of width 1 equals TD. This is why the number of terms used by a sieve grows exponen-
tially with D. The compression algorithms in the Bayesian compression literature avoid requiring
as many terms by exploiting two facts. First, random data tend to cluster in balls. Second, the
volume of a D-dimensional ball grows exponentially slower with the number of series than the
hypercube does. Figure 1 shows the volume of a D-dimensional ball relative to a D-dimensional
hypercube. As D grows, filling the D-dimensional ball with points becomes easier relative to filling
the D-dimensional hypercube. We exploit this behavior to construct a sieve for the D-dimensional
ball instead of constructing a sieve for the D-dimensional hypercube as the literature usually does.
Since the volume of the ball grows more slowly, our sieve requires far fewer terms, especially when
D is large.

Figure 1: Volume of a Ball Relative to a Hypercube
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Moving forward, we construct a sieve for the ball and not the hypercube. We do this by
developing the first sparse discrete operator to cluster the data. This operator does not significantly
perturb the data’s first two sample moments. Given a process which is locally asymptotically
normal, having the first two moments being close implies the associated densities are close. Since
this operator is discrete, it induces a Gaussian mixture representation of a density where the number
of components does not grow faster with the data’s dimension.

The number of mixture components determines the complexity of a Gaussian mixture. For any
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fixed sample-size T , this is a random variable. Consequently, given the data, the convergence rate
itself is as a random variable with respect to prior. We consider an asymptotic experiment where
T grows and D is fixed. We show with prior probability 1 − δ, where δ is a small number chosen
by the econometrician, the number of components grows logarithmically with the time dimension
T . We do this by constructing finite-sample bounds that hold for all T . This differs from the
literature because they study problems where the prior (if it even exists) does not affect their
bounds. Consequently, they cannot exploit the prior that the smoothness gives to the posterior.
At a technical level, for any fixed T our sieve is not a measurable function of the data and so the
bounds derived by Stone (1980) and others do not apply.

3 Literature Review

Our paper lies at the intersection of several stands of literature. First, our theoretical results
belong to literature on concentration inequalities. As mentioned above, the key idea of projecting
a Gaussian process into a lower dimensional subspace dates back to Johnson and Lindenstrauss
(1984). We rely heavily on Klartag and Mendelson (2005), Boucheron, Lugosi, and Massart (2013),
and Talagrand (2014) to develop the random operator we use. Our main contribution to this
literature is that, to the best of our knowledge, we are the first to construct a random operator
that both compresses the data in a way that provides bounds that independent of the dimension
and induces a mixture representation for the density.

Second, our main estimation results characterize Bayesian posteriors’ concentration rates. Over
the past approximately twenty years, various authors have worked extensively on these issues
starting with the seminal papers Ghosal, Ghosh, and Vaart (2000) and Shen and Wasserman (2001).
The most closely related paper is Nguyen (2016) which analyzes the estimation of the latent mixing
measure in a hierarchical model. This paper also provides a some general conditions at which
you can nonparametrically estimate multivariate densities without a curse of dimensionality. In
particular, it shows if the data’s generating process (DGP) can be represented as a hierarchical
Dirichlet Gaussian mixture model, the posterior converges rapidly. (The particular rate depends
upon various assumptions on the DGP in ways that he exposits.)

Our approximating model has a form very similar to those he considers there and in an accom-
panying paper, Nguyen (2013), and we rely on his work on the geometry of infinite mixture models
to characterize the behavior of our model. Unlike him, we provide some general conditions under
which we can represent the DGP in a way suitable to this analysis instead of assuming it directly.

Our work on transition density estimation in Bayesian contexts builds upon a number of mod-
els in that literature. Perhaps the most similar class of models is the smoothly mixing regres-
sions started in Geweke and Keane (2007) and extended by Norets and various coauthors (Norets
2010; Norets and Pelenis 2012; Norets and Pati 2017). These papers focus on the models with
finitely many mixture components and mixing weights that depend upon the conditioning vari-
ables. Conversely, our models treat the mixing variables as latent and uses infinitely many of them
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asymptotically.
A few other authors have considered Bayesian nonparametric conditional density estimation.

Pati, Dunson, and Tokdar (2013) directly models the mixture probabilities like Norets and coauthors
do in a Gaussian mixture model. A recent work by Kalli and Griffin (2018) models the stationary
and transition densities using Bayesian nonparametric methods with infinite mixtures where they
use adaptive truncation to pick the number of mixture components as in Griffin (2016). However,
they do not provide theoretical results regarding consistency or convergence rate. In contrast,
our method endogenously determines the number of active mixtures and requires fewer tuning
parameters.

Our empirical work and the practical questions that initially motivated this project concern
flexible modeling of multivariate transition densities. The literature on this topic focus on the
practical performance of the estimators under consideration instead of their theoretical properties.
The seminal papers in this regard include work on regime-switching models, (Hamilton 1989); time-
varying parameter VAR models, (Primiceri 2005); stochastic volatility models (Kim, Shephard, and
Chib 1998); and many, many others that we cannot adequately survey due to space constraints.
The main advantage of our model is we provide strict guarantees on when our model approximates
the diverse nonlinear, non-Gaussian dynamics present in the data. In addition, our model is very
parsimonious, and we provide valid credible sets for the parameters of interest.

4 Data Generating Process

Consider a D-dimensional time series: XT := {xt}Tt=1. Assume that XT is first-order hidden Markov
and is a Gaussian process.2 We want to estimate xt’s conditional densities for t = 1, . . . , T .

Definition 1 (Data Generating Process).

p0,T (xt | Ft−1) :=

∞∑
k=1

πk,t−1ϕ (xt |xt−1βk,t,Σk,t) (1)

Since XT is Gaussian process, the conditional density p0,T (xt|Ft−1) has an infinite Gaussian
mixture representation for each time period. Each mixture component has the associated mixture
probability πk,t−1 and component-specific parameters (βk,t,Σk,t). We also assume that each xt has
finite mean and finite variance. It is worth noting that even though XT is a Gaussian process,
its conditional densities — p0,T (xt | Ft−1) — are not necessarily Gaussian. The Gaussian process
assumption is quite general allowing, for example, for both multiple modes and fat tails. We let
the true DGP depend upon T because at this point we are only approximating the density for a
fixed T . Of course, the Markov implies a consistency condition across p0,T for all T .

2. That is, there exists a latent state zt, such that (xt, zt) are jointly Markov. The zt may be a constant.
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Definition 2 (Approximating Model).

qT (xt | Ft−1) :=

KT∑
k=1

πk,t−1ϕ (xt |xt−1βk,Σk) (2)

The approximating model is a Gaussian mixture with KT components, where KT governs
the complexity of the model. As one would expect, KT grows with T . Second, each cluster’s
components, (βk,Σk), no longer have time t subscripts. The idea is that we can reuse the latent
mixing variables (βk,t,Σk,t) across time without loss of generality. If two separate time periods
have similar enough dynamics, we group them into one component with the same parameters.
Now, as the clusters are defined differently in the true and approximating models, there is no
simple relationship between them.

In what follows, we denote the true distribution as P0,T and the approximating distribution as
QT , with associated densities p0,T and qT . Throughout, we use µT to refer to the T ×D-matrix of
means. In the following sections, we will also consider the rescaled data:

X̃T :=
XT − µT√
∥XT − µT ∥L2

∈ STD−1 :=
{
x ∈ RTD

∣∣ ∥X∥L2 = 1
}
. (3)

Since we are on the unit hypersphere, we are in a compact space for any fixed T . Since
XT − µT is a zero-mean Gaussian process, its TD × TD covariance matrix completely determines
its distribution. We define the analogous densities of X̃T as above — p̃0,T and q̃T .

5 Sieve Construction

5.1 Setting up the Problem

In this section, we construct a sieve, a sequence of approximating models, that approximates a wide
variety of data generating processes while still being as simple as possible. By simple, we mean
that the metric entropy of these approximating models grows slowly with the number of datapoints.
This is useful because metric entropy controls the rate at which posteriors converge as shown by
Ghosal, Ghosh, and Vaart (2000) and Shen and Wasserman (2001). It also controls the minimax
rate at which estimators can converge (Wong and Shen 1995; Yang and Barron 1999).

The problem we are tackling is approximating a marginal density which lies in the space of
densities over RD — P(RD) — and a transition density which lies in associated the product space

— P(RD) × P(RD). These problems are not well-posed because there exist multiple equivalent
representations for each density given XT that satisfy some bound on the distance to p0,T in some
metric on P

(
RD
)
. This implies that we can choose a representation that is particularly amenable

to estimation for each T . In practice, we want to find the most parsimonious density that still
approximates well.

The way we construct our sieve is as follows. Given some ϵ > 0, we construct a mapping ΘT
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that takes this hypersphere and maps it onto a K ×D hypersphere, where K ≪ T . This mapping
only perturbs the norms of the individual elements by at most ϵ.3

Having done that, we show the relevant densities are also not perturbed significantly in Theo-
rem 2. This is true whenever the norm of the matrix is a locally sufficient statistic for the density.
In other words, we can use bounds on divergences of ∥x̃t∥L2

to bound divergences over P(X̃).

5.2 Bounding the Norm Perturbation

We construct our approximate sufficient statistic for X̃T by borrowing ideas from Bayesian com-
pression theory. Intuitively, we take X̃T and “project” it onto a lower-dimensional space. The
reason this intuition is not exact is because the target space is not a subspace of the original space.
In particular, we want the compressed data to follow a mixture distribution. This implies that
the compression operator ΘT must be a discretization operator. A mixture distribution for some
collection of data X̃T is a binning of the data where the data in each bin has the same parametric
distribution. The question is how to construct the bins.

A standard discretization operator with K bins is a T ×K matrix where each row θt contains
exactly one 1 and the rest of the elements equal zero. A variable xt is in bin k if and only if θt,k = 1,
i.e. ΘT has a 1 in row t column k. This does not satisfy our needs for two reasons. First, since all
of the elements are weakly positive E[θt,k] ̸= 0. Second, once we see a 1, the rest of the columns in
the row must contain zeros, which makes the columns too dependent for our results to go through.

Fixing the first issue is relatively straightforward, we let θt,k take on values from {−1, 0, 1} and
xt is in bin k if θt,k = 1 and in bin K + k if θt,k = −1. There is no reason the elements of θ must
be positive. The second issue is more problematic. We could just let each row have, potentially, as
many 1’s and −1’s as necessary. By doing this, seeing a 1 in column k gives us no information about
columns k + 1 through K. It does complicate the analysis slightly, though, for we are effectively
letting each time period be in more than one component simultaneously. In other words, we do not
just create a mixture distribution across time periods but also create one in each time period.

To make the discussion in the previous few paragraphs more formal, we define a random operator
ΘT . We use a stick-breaking process to construct ΘT , adapting the form often used to construct
Dirichlet processes, as proposed by Sethuraman (1994).4

Definition 3 (ΘT Operator). Let b be a Bernoulli random variable with Pr(b = 1) ∈ (0, 1). Draw
another random variable χ ∈ {−1, 1} with probability 1/2 each. Let T ∈ N be given. Draw T

variables θ := χ · b independent of all of the previous values, and form them into a column-vector
— θ:,1. Form another column vector θ:,2 the same way and append it to the right of ΘT . Continue
this until all of the rows of ΘT contain at least one nonzero element.

The reason we form the ΘT operator in this manner is so that E[θ] = 0, but Var(θ) = E[|θ|] =
Pr(b = 1). Furthermore, its rows are independent and its columns form a martingale-difference

3. We are constructing an ϵ-isometry.
4. In Section 5.7, we will show that ΘT can be replaced by a Dirichlet process without affecting our results.
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Figure 2: Sieve Construction

Define X̃T := XT−µT
∥XT ∥L2

.

Construct ΘT :
RT×D → RK×D,
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Only perturbs
X̃ ′
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small amount.

Clusters X̃T -space.

Show ∥X̃T ∥ and
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T X̃T ∥ close =⇒
traces are close.

Theorem 1

Lemma 4 Lemma 3

Lemma 2

Compress Σ̃
−1/2
T X̃T .

This creates a
sieve q̃T where

h∞(q̃T , p̃0,T ) < C(δ)ϵ.

Proposition 6

Lemma 5

Joint densities are close
implies that marginal
distributions are close.

Theorem 3

Joint densities are close
implies that transition
distributions are close.

Theorem 4

h∞(q̃T , p̃0,T ) < C(δ)ϵ.Theorem 2

This graph displays the dependencies between the various lemmas and theorems. Dashed lines are
dependencies, solid lines are labels, and dotted lines are comments.
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sequence. The only dependence between the columns of ΘT arises through the stopping rule, and
stopped martingales are still martingales. In addition, ΘT is independent of X̃T . Since ΘT is
discrete, ΘT implicitly clusters X̃T . Consider some row θt of ΘT . For each column of θt, define a
bin as |Θt,k| × sign(Θt,k). Clearly, if ΘT has KT columns, there are 2KT possible total bins.

Our analysis requires a tight bound on the tail behavior of KT . To do create such a bound, we
must understand its distribution. By Lemma 2, the probability density function of KT is

Pr(KT ≤ K̃) ∝ (1− (1− Pr(b = 1))K̃)T . (4)

Furthermore, we show in Lemma 3 that KT ∝ log(T ) with high probability. This feature will be
relied upon extensively in what follows.

We claimed above that ΘT constructs an approximate sufficient statistic by binning X̃T . In other
words, we are compressing the data. Equation (4) quantifies the amount by which we compress the
data. Instead of considering each of the T values of xt separately, we can bin them into KT bins,
and we can treat each bin identically. Since KT ∝ log(T ), this substantially reduces the complexity.

We also must show that ΘT preserves the x̃t’s densities. It is not a sufficient statistic if we lose
necessary information. We turn to this now.

Theorem 1 (Bounding the Norm Perturbation). Let ΘT be constructed as in Definition 3 with
the number of columns denoted by KT . Let ϵ > 0 be given. Let 0 < δ < 1 be given such that
0 < log 1

δ < c1ϵ
2KT for some constant c1. Let X̃T be in the unit hypersphere in RTD−1. Then

with probability greater than 1− 2δ with respect to ΘT , there exists a constant c2 such that for any
ϵ >

√
logT
KT

sup
t

|∥θtx̃t∥L2 − ∥x̃t∥L2 | < c2

(
1 + log 1

δ

)
ϵ. (5)

This means that as long as we choose ΘT with the number of columns K ∝ log(T ), the norms
of x̃t are perturbed by at most ϵ by applying ΘT . This holds with probability at least 1 − 2δ

with respect to the distribution over ΘT . Since X̃T ∈ STD−1, Theorem 1 shows that we can map
STD−1 onto a smaller space SKTD−1, with K ≪ T , without perturbing the individual elements
significantly.

5.3 Distances on the Space of Densities

In the previous section, we showed that ΘT does not affect x̃t’s norms significantly. These norms
are not themselves interesting objects. Rather, they are interesting because they form a sufficient
statistic for the Gaussian process. To show the densities are close, we must convert these distances
between ∥x̃t∥L2

into distances on P(X̃t).
Conditional on ΘT , Θ′

T X̃T has some distribution. Since X̃T is a normalized Gaussian process
and ΘT is a matrix, this process is Gaussian conditional on ΘT . This implies there exists a
distribution for X̃T constructed by integrating out ΘT . This provides an approximating distribution
Q̃T for X̃T . Since ΘT is almost surely discrete, this approximating distribution is a mixture as in
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Definition 2. We can represent this approximating model as an integral with respect to a latent
mixing measure. Since the parameters in each components are means and covariances, this latent
mixture measure is a measure over that space. Let GQt be the associated mixing measure over this
space of means and covariances for each t. Because ΘT can have more than one non-zero element,
we constructed a mixing distribution in each period, even conditional on ΘT . Let GQ be the latent
mixing measure over the space of GQt . In other words, for each t, we draw GQt from GQ. What this
means in practice, is that since latent mixing measures are almost surely discrete, the GQt share the
same atoms. This regularizes the mixing measures across time, i.e., it creates a lot of “smoothness”
in the approximating model. However, since the atoms of GQ are left arbitrary, it does not restrict
the set of DGPs that can be approximated well.

Then ϕ (· |Σ) is a mean-zero multivariate Gaussian density with covariance Σ. Let δQt be the
mixture identity that tells you which cluster Σt is in. Then Q̃T can be expressed as

Q̃T (X̃ ) =

∫
G

∫
Gt

ϕ
(
x̃t

∣∣∣ δQt ) dGQt (δQt ) dGQ(dGQt ). (6)

Likewise, P0,T can be written as

P̃0,T (X̃ ) =

∫
G

∫
Gt

ϕ
(
x̃t
∣∣ δPt ) dGPt (δPt ) dGP (dGPt ) , (7)

with its associated latent mixing measures and mixture identities. The approximating cluster
identity δQ is different from δP because δQ’s clustering is induced by ΘT , not the underlying true
clustering.

Since the densities are paramterized as mixtures in terms of their covariances, we need to convert
a clustering in x̃t-space into a clustering in Σt-space so that we can make a statement about the
densities. In general, the norms of x̃t and x̃t∗ being close is insufficient to imply that the associated
matrix norms for Σt and Σt∗ are close. Consequently, we cluster Σ

−1/2
t x̃t directly.

The error bound Theorem 1 provides is independent of δPt and so it does not depend on Σt. In
other words, for times t, t∗ such that the associated x̃’s are in the same cluster δQk , the following
holds:5

sup
t,t∗∈δQk

∣∣x̃tΣ−1
t x̃t − x̃′t∗Σ

−1
t∗ x̃t∗

∣∣ < ϵ. (8)

Here ϵ is independent of t, t∗, and the cluster identity. We can view the right-hand side of Eq. (8) as
a difference on the space of covariance matrices. Accordingly, we introduce the following semimetric
on the space of covariance matrices.6

5. We abuse notation slightly and use t ∈ δQk if the cluster identity associated with xt equals δqk.
6. It is a semimetric because we can have Σ ̸= Ω but δwl2(Σ,Ω) = 0. The two matrices may differ in ways that

cannot be picked up by the set of x ∈ cluster k.
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Definition 4 (Weighted-L2 Semimetric).

δwl2(Σk,Ωk) := sup
t,t∗∈δQk

∣∣x̃′tΣ−1
k x̃t − x̃′t∗Ω

−1
k x̃t∗

∣∣ (9)

It is worth noting that the δwl2 is compatible with, and weaker than, the max-norm.7 The
max-norm is equivalent to the L2-norm up to a scale transformation, and the relevant scale is a
constant since we only consider full-rank matrices. Hence, we can consider the space of covariance
matrices as a Polish space because the space of D×D matrices is isomorphic to RD×D and we are
choosing an open subset of that space. In other words, δwl2 constructs a set of equivalence classes
over the space of covariance matrices, where two sample covariances are equivalent if the implied
second-moment behavior of the {x̃t ∈ δQk } is indistinguishable.

Definition 4 converts bounds in the space of x̃t into bounds on the space of covariance matrices.
We still have to convert this to a bound on the space of densities. The distance we use here is the
Hellinger distance.

Definition 5. Hellinger Distance

h(p, q) :=
1√
2

√∫ (√
p(x)−

√
q(x)

)2
dx (10)

This distance is useful because it is a valid norm on the space of densities. Since the covariance
matrix is a sufficient statistic for a centered Gaussian process, we can convert bounds between
the covariances into bounds in Hellinger distance. Instead of applying this directly to the joint
distribution, we take the supremum over the conditional distributions.

Definition 6 (Supremum Hellinger Distance).

h2∞(p, q) := sup
FPt−1F

Q
t−1, 1≤t≤T

h2
(
p
(
·
∣∣FP

t−1

)
, q
(
·
∣∣∣FQ

t−1

))
(11)

The supremum Hellinger distance will be useful later because it is stronger than both the
Hellinger distance and the Kullback-Leibler divergence applied to the joint density. As a conse-
quence, once we bound the divergence in terms of h∞, we can directly deduce the other bounds
that we need.

5.4 Representing the Joint Density

Here we show that the approximating distribution of X̃T induced by ΘT is close to the true distribu-
tion P̃0,T in h∞. This is true when the rescaled trace (sample second moment) is a locally sufficient

7. If we choose x, y in xΣ−1y to be (possibly) different unit selection vectors we can pick out the maximum absolute
deviation between elements in the two matrices. This is clearly at least as big as the δwl2 because that semimetric
requires x, y to be the same.
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statistic for the density. Hence, we can use bounds on divergences in X̃ to bound divergences in
the space of probability measures over X̃ .

Theorem 2 (Representing the Joint Density). Let X̃T := x̃1, . . . x̃T be a D-dimensional Gaussian
process with period t stochastic means µt and covariances Σt, where Σt is positive-definite for all
t. Let ΘT be the generalized selection matrix constructed in Definition 3. Let P̃0,T denote the
distribution of X̃T . Then given ϵ > 0 and for some δ ∈ (0, 1), the approximating distribution
QT , which is the mixture distribution over X̃ defined by the clustering induced by ΘT satisfies the
following with probability at least 1− 2δ with respect to ΘT

h∞

(
P̃0,T (X̃ ), Q̃T (X̃ )

)
< C log

(
1

δ

)
ϵ. (12)

The way we represent the joint density is as follows. Since X̃ lives in STD−1, we start by mapping
STD−1 onto a smaller space SKTD−1 where KT ≪ T . This is very similar to the various projection
arguments that are made in the literature in that we are projecting STD−1 into a “smaller” space.
However, the operator ΘT we use does not form a projection because it is not mapping the space
onto itself. The unit sphere in RKTD is not a subset of the one in RTD.

Unlike, the previous compression operators in the literature, ΘT is discrete, and so it clusters
x̃t. This implies that the density of x̃t can be represented as a process with respect to a discrete
measure. That is, QT is a mixture distribution. In addition, we show in Section 5.7, that we can
assume that this latent measure is Dirichlet without loss of generality. In other words, our method
represents the X̃T process as an integral with respect to a Dirichlet process. However, since X̃T

is a Gaussian process and hence locally Gaussian, we can represent X̃T using a Gaussian mixture
process whose mixing is driven by the Dirichlet process.

The main issue is that we have stated the bound of the rescaled X̃T , not XT . As one might
expect, estimating the true joint density of XT is impossible. Since ∥XT ∥2 ∝ T , the bound we
have is of the order

√
Tϵ which is useless. Instead, we consider simpler quantities such as XT ’s

marginal density (Section 5.5) and transition density (Section 5.6). We show that sample mean of
the marginal and transition densities converges to those implied by QT , and hence those implied
by P0,T . This is feasible because sample means converge to population means. we cannot construct
a sample mean of joint density because we only ever have one realization.

5.5 Representing the Marginal Density

We now derive a representation for the marginal density of XT from the representation for the joint
density. We first consider the case where the true density has a product form, i.e. the data are
independent. The intuition behind the proof is that you can bound the maximum deviation of the
approximating joint density by Tϵ2 using Theorem 2. Then standard arguments about convergence
of means for product measures give a 1

T term. Hence, the deviation between the averages is bounded
by ϵ2. We use the Hellinger distance here instead of the sup-Hellinger distance because there is no
conditioning information we need to take the supremum over.
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Theorem 3 (Representing the Marginal Density). Let x1, . . . xT be drawn from p0,T , where p0,T has
a product density. Let ΘT be constructed as in Theorem 2 for each t. Let ϵ be given. We construct qT
by using the ΘT operator to group the data, and we assume that the data are Gaussian distributed
within each component with component-wise means and covariances given by their conditional
expectations. Then with probability 1 − 2δ with respect to ΘT , there exists a constant C such that
the following holds uniformly in T

h

(∫
Gt

ϕ
(
xt
∣∣ δPt ) dGt(δPt ),∫

Gt

ϕ
(
xt

∣∣∣ δQt ) dGt(δQt )) < C log
(
1

δ

)
ϵ. (13)

We now extend Theorem 3 to the non-i.i.d. case. The hidden Markov assumption implies that
the transitions are conditionally i.i.d. and this conditioning does not affect the convergence rate
because we have a supremum-norm bound on the deviations in the joint density. Uniform ergodicity
implies that the sample marginal density converges to the true one. Consequently, using dependent
data instead of independent data does not affect the approximation results.

Corollary 3.1 (Representing the Marginal Density with Markov Data). Theorem 3 continues to
hold when the xt form a uniformly ergodic hidden Markov chain instead of being fully independent.

5.6 Representing the Transition Density

We show here our model approximates transition densities well. Since the data are Markov, we can
construct the sample transition density as an average of the transitions in the data. Component by
component, we solve for the correct conditional distributions in the approximating model. Similar
to above, we relate the error in the transition densities and the error for the joint densities. We can
consider the space of transitions as the product space X̃T ⊗ X̃T . We can construct the marginal
density in the space. As before, we can exploit the approximate product form here to get a 1/T

term in the convergence rate and use Theorem 2 to get a Tϵ2 term. Again, the T terms cancel, and
so we bound the distance by ϵ2.

Theorem 4 (Transition Density Representation). Let x1 . . . xT ∈ RT×D be a uniformly ergodic
Markov Gaussian process with density p0,T . Let ϵ > 0 be given. Let K ≥ c log(T )2/ϵ for some
constant c. Let δt be the cluster identity at time t. Then there exists a mixture density qT with K
clusters such that the following holds:

qT (xt |xt−1, δt−1) :=
K∑
k=1

ϕ (βkxt−1,Σk)Pr (δt = k | δt−1) . (14)

We obtain qT

(
xt

∣∣∣FQ
t−1

)
from qT (xt |xt−1, δt−1) by integrating out δt−1 with its posterior distribu-

tion. Then with probability 1− 2δ with respect to the prior

h∞

(
p0,T

(
xt
∣∣FP

t−1

)
, qT

(
xt

∣∣∣FQ
t−1

))
< C

√
log 1

δ
ϵ. (15)



15

5.7 Replacing ΘT with a Dirichlet Process

The previous subsections use ΘT to construct an approximating representation that is very close
to the true model. We want to construct an estimator that takes this representation to the data.
(We do not claim that the representation is unique.) Here we argue that ΘT can be chosen to be a
Dirichlet process without loss of generality.

Consider the ΘT process as in Definition 3 except we no longer stop when we no longer need
columns. Then Theorem 2 shows that we can represent the density as an integral with respect to
the random measure generated by ΘT with probability 1−2δ. In other words, there exists a subset
ΘT space with Pr(that subset) = (1 − 2δ) such that the representation above holds. Since each
realization, Θ′

T ∈ Θ′
T -space, is a consistent sequence of categorical random variables, we can extend

the probability space for these realizations by using a Dirichlet process. Intuitively, we are placing
a Dirichlet prior on these categorical random variables. Consequently, we can view the sequence of
clusters at each time t as an integral to a Dirichlet process without loss of generality. Furthermore,
taking the union of these Dirichlet processes creates a Dirichlet process over the entire space. This
is because the Dirichlet process is a normalized completely random measure (Lin, Grimson, and
Fisher 2010). This implies we can view the Dirichlet process in each period as a draw from one
overarching Dirichlet process. To put it the notation we used to construct QT , we can view DQ

t

as a draw from DQ and assume that both processes are Dirichlet, i.e., we are using a hierarchical
Dirichlet process. Again by using the normalized completely random measure property of Dirichlet
processes, this implies that the implied prior for the transition densities is Dirichlet.

6 Bayesian Nonparametrics and Convergence Rates

6.1 Problem Setup

We now use the sieve and associated bounds constructed in the previous section to derive the
convergence rates of the associated estimators. We adopt a standard Bayesian nonparametric
framework and show how fast the posteriors contract to the true model. In particular, we assume
the data {xt}Tt=1 are drawn from some distribution P0,T which is paramterized P0,T (· | ξ), for ξ ∈ Ξ.
This parameter set is equipped with the Borel σ-field B with associated prior distribution Π. We
further assume that there exists a regular conditional distribution of XT given ξ — P (XT | ξ) on
the sample space (X ,X ). This implicitly defines a joint distribution over (X × Ξ,X × B):

P (XT ∈ A, ξ ∈ B) =

∫
B
P (A | ξ) dΠ(ξ). (16)

Under some technical conditions, we can define a regular version of the conditional distribution of
ξ given XT , i.e. a Markov kernel from (X ,X ) into (Ξ,B), which is called the posterior.

Definition 7. Posterior Distribution

Π(B |XT ) := P ({ξ ∈ B} |XT ) , B ∈ B (17)
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Figure 3: Contraction Rates

Exponentially consis-
tent tests exist with

respect to h∞ (p0,T , qT ).

Lemma 1
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ity and divergence
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The transition density
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T
.

Theorem 7

The marginal density
contracts at rate logT√

T
.

Theorem 8

Note: This graph displays the dependencies between the various lemmas and theorems. Dashed
lines are dependencies, solid lines are labels.

Posterior contraction rates characterize the speed at which the posterior distribution become
close to the true value in a distributional sense. They are useful for two reasons. First, it puts
upper bound on the convergence rate of point estimators such as the mean. Second, it tells you the
speed at which inference using the estimated posterior distribution becomes valid. Our definition
of this rate comes from Ghosal and van der Vaart (2017, Theorem 8.2).

Definition 8. Contraction Rate A sequence ϵT is a posterior contraction rate at parameter ξ0
with respect to the semimetric d if ΠT ({ξ | d(ξ0, ξ) ≥MT ϵT } |XT ) → 0 in P (XT | ξ0)-probability
for every MT → ∞. If all experiments share the same probability space the convergence to zero
takes place almost surely P (X∞ | ξ0), then ϵT is a posterior contraction rate in the strong sense.

To bound the asymptotic behavior of ϵT , we must simultaneously bound two separate quantities.
First, we must show our model is close to the true data generating process in an appropriate distance.
This is what we did in the previous section. Second, we must bound the complexity (entropy) of
our model, showing that it does not grow too rapidly.

We start by defining some notation that we use in deriving our theorems for the contraction
rates. The concepts we use here are standard in the Bayesian nonparametrics literature. First, we
define the metric (Kolmogorov) entropy for some small distance ϵ, some set Ξ, and some semimetrics
dT and eT . (One can, of course, use the same semimetric for both dT and eT .)

Definition 9 (Metric Entropy). N(Cϵ, dT (ξ, ξ0), eT ) is the function whose value for ϵ > 0 is the
minimum number of balls of radius Cϵ with respect to dT semimetric (i.e., dT -balls of radius Cϵ)
needed to cover an eT -ball of radius ϵ around the true parameter ξ0.
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The logarithm of this number — the Le Cam Dimension — is the relevant measure of the model’s
complexity, and hence the “size” of the sieve, and controls the minimax rate under some technical
conditions. We define a ball with respect to the minimum of the Kullback-Leibler divergence and
some of related divergence measures. We adopt the following two concepts used in Ghosal and van
der Vaart (2007).

First, Vk,0 is “essentially” the kth centered moment of the Kullback-Leibler divergence between
two densities f, g, and associated distributions F,G:

Vk,0(f, g) :=

∫
|log(f/g)− DKL (f || g)|k dF. (18)

Having defined Vk,0(f, g), we define the relevant balls. fT (X | ξ) is the density of the length T

data sequence XT associated with parameter ξ. The ball is defined

BT (ξ0, ϵ, k) :=
{
ξ ∈ Ξ

∣∣DKL (f (XT | ξ0) || f (XT | ξ)) ≤ Tϵ2, Vk,0(f (XT | ξ0) , f (XT | ξ0)) ≤ Tϵ2
}
.

(19)
Having defined the relevant notations we now quote Ghosal and van der Vaart (2007, Theoerem

1). This theorem provides general conditions for convergence of posterior distributions even if the
data are not i.i.d.. It extends the theorems in Ghosal, Ghosh, and Vaart (2000), which is the most
common way to derive convergence rates in the literature, to the dynamic case.

Theorem 5 (Ghosal and van der Vaart (2007) Theorem 1). Let dT and eT be semimetrics on Ξ.
Let ϵT > 0, ϵT → 0,

(
1
Tϵ2

)−1 ∈ O(1). C1 > 1, ΞT ∈ Ξ be such that for sufficient large n ∈ N.

1. There exist exponentially consistent tests ΥT as in Lemma 1 with respect to dT .

2. sup
ϵT>ϵ

logN
(
C2

2
ϵ, {ξ ∈ ΞT | dT (ξ, ξ0) ≤ ϵ} , en

)
≤ Tϵ2T (20)

3. ΠT ({ξ ∈ ΞT |nϵT < dT (ξ, ξ0) ≤ 2nϵT } |X)

ΠT (BT (ξ0, ϵT , C1) |X)
≤ exp

(
C2Tϵ

2
Tn

2

2

)
(21)

Then for every MT → ∞, we have that

Pr
T
(ΠT ({ξ ∈ ΞT | dT (ξ, ξ0) ≥MT ϵT } |X) | ξ0) → 0 (22)

6.2 Contraction Rates

We now show that tests exists with respect to the semimetric that we use: h∞. It is stronger
than the divergences usually used in the Bayesian nonparametric estimation of Markov transition
densities: the average squared Hellinger distance (Ghosal and van der Vaart 2017, 542).

Note, h2∞ should be interpreted as a distance on the joint distributions because we can always
factor a joint distribution as

fT (X) = f (xT | FT−1) · f (xT−1 | FT−2) · · · f (x2 | F1) · f (x1 | F0) , (23)
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where I use F0 to refer to the information that is always known, as is standard.
It is worth noting that h2∞ is a function of T even though we suppress it in the notation. We

are only considering deviations between the densities over length T sequences. The first goal is to
show that the consistent tests to separate two distributions in relevant semimetric exist. To do so,
we provide the following lemma.

Lemma 1 (Exponentially consistent tests exist with respect to h∞). There exist tests ΥT and
universal constants C2 > 0, C3 > 0 satisfying for every ϵ > 0 and each ξ1 ∈ Ξ and true parameter
ξ0 with h∞(ξ1, ξ0):

1. Pr
T
(ΥT | ξ0) ≤ exp(−C2Tϵ

2) (24)

2. sup
ξ∈Ξ,en(ξ1,ξ)<ϵC3

Pr
T
(1−ΥT | ξ0) ≤ exp(−C2Tϵ

2) (25)

Then the following two conditions hold with probability 1− 2δT with respect to the prior:

sup
ϵT>ϵ

logN ((ϵ, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ ϵ} , h∞) ≤ Tϵ2T (26)

and
ΠT (BT (ξ0, ϵT , C1) |X) ≥ C exp

(
−C0Tϵ

2
T

)
. (27)

Having done that we show that Eq. (20) and Eq. (21) hold. As noted in Ghosal and van der
Vaart (2007, 197), the numerator is trivially bounded by 1, as long as TϵT → ∞ which it will.

Proposition 6 (Bounding the Posterior Divergence). Let p0 be a uniformly ergodic Hidden Markov
Gaussian process, i.e. p0 :=

∑
k pkϕ (· |µt,Σt) with finite mean and finite variance. Let ΞT ⊂ Ξ and

T → ∞. Let the following condition hold with probability 1 − 2δ for δ > 0 and constants C and
n ∈ N

sup
t
h
(
qT

(
xt

∣∣∣FQ
t−1

)
, p0,T

(
xt
∣∣FP

t−1

))
< CηT . (28)

Let ϵn,T := log(T )
√
n

√
T

. Then the following two conditions hold with probability 1− 2δ with respect
to the prior

sup
ϵT,n>ϵn

logN ((ϵn, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ ϵn} , h∞) ≤ Tϵ2T,n, (29)

and
ΠT (BT (ξ0, ϵT,n, 2) |X) ≥ C exp

(
−C0Tϵ

2
T,n

)
. (30)

As a consequence, by Theorem 5, we have the following result.

Theorem 7 (Contraction Rate of the Transition Density). Let p0 be a uniformly ergodic Hidden
Markov Gaussian process, i.e. p0 :=

∑
k πt,kϕ (· |µt,Σt) with finite mean and finite variance. Let

T → ∞, then the following holds with ϵT =

√
log(T )2
T with probability 1−2δ with respect to the prior.
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There exists a constant C independent of T such that the posterior over the transition densities
constructed above and the true transition density satisfies

P0

ΠT

 sup
FPt−1,F

Q
t−1

h
(
p0,T

(
xt
∣∣FP

t−1

)
, qT

(
xt

∣∣∣FQ
t−1

))
≥ CϵT

∣∣∣∣∣∣XT

→ 0. (31)

We also bound for the convergence rate of the marginal density. This should not be too surpris-
ing. Estimating the Markov transition density with respect to h∞ is strictly harder than estimating
the marginal distribution. You can integrate out the marginal distribution by using the stationary
distribution. (In this context, the stationary and marginal distributions are the same.) Also, since
i.i.d. data is trivially uniformly ergodic Markov processes, we cover the i.i.d. case as well.

Theorem 8 (Contraction Rate of the Marginal Density). Let p0 be a uniformly ergodic Hidden
Markov Gaussian process, i.e. p0 :=

∑
k pkϕ (· |µt,Σt) with finite mean and finite variance. Let

T → ∞, then the following holds with ϵT =

√
log(T )
T with probability 1− 2δ with respect to the prior.

There exists a constant C independent of T such that the posterior over the transition densities
constructed above and the true transition density satisfies

P0 (ΠT (h (p0,T (xt) , qT (xt)) ≥ CϵT |X)) → 0. (32)

7 Estimation Strategy

As discussed all along, we use Bayesian methods to estimate our model. So far, the discussion has
been rather abstract, and we have focused on providing theoretical results concerning our general
estimation strategy. We construct a Gibbs sampler to estimate the model in this section.

Recall the definition of the approximating model:

qT (xt | Ft−1) :=

KT∑
k=1

π (k = δt | δt−1)ϕ (βkxt−1,Σk) . (33)

We need to place a prior on each of the components in this model. We start by using a Dirichlet
process to construct a prior on πk,t−1 = π (k = δt | δt−1), and hence implicitly on KT . We then
construct priors for βk and Σk. Equation (33) is almost a standard Gaussian mixture model.8

Given δt = k, we apply the standard Bayesian regression to obtain βk and Σk with normal-inverse-
Wishart prior. However, the predictive distributions approximated by the mixtures are time-varying.
Hence, we must construct a prior for the transition matrix — Π — of the cluster identities — δt.

8. Conditional on δt−1 it is.
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7.1 Posterior for the Cluster Identities

In each period, the density is a Dirichlet mixture model, as is the marginal density. Consequently,
we can draw the cluster identities by adapting algorithms from the literature. Essentially, we are
in the standard situation, except our prior varies from period to period.

There are two difficult issues with sampling Dirichlet mixtures. First, because the prior al-
lows for infinitely many clusters, we cannot sum the probabilities, and hence cannot compute the
marginal cluster probabilities. In other words, we cannot compute the probability of cluster k, pk,
by using 1−

∑
κ̸=k pκ. This is true in any Dirichlet mixture model, and several authors have devel-

oped ingenious ways of dealing with this issue. We adopt the algorithm developed by Walker (2007)
because this algorithm is exact, (we do not need to truncate the distribution), and computationally
efficient. He does this by introducing a random variable — ut — so that, conditional on ut, the
distributions are available in closed form.

Given the cluster parameters, we can write the distribution of xt as

f(xt) =
∞∑
k=0

πt,kϕ (xt |βk,Σk) . (34)

As predicted, we introduce a latent variable ut ∼ U(0, πt,k) so we can rewrite Eq. (34) as

f(xt) =
∞∑
k=0

1 (ut < πt,k)ϕ (xt |βk,Σk) =
∞∑
k=0

πt,kU (ut | 0, πt,k)ϕ (xt |βk,Σk) . (35)

Consequently, with probability πt,k, xt and ut are independent, and so the marginal density for ut
is

f (ut |πt) =
∞∑
k=0

πt,kU (ut | 0, πt,k) =
∞∑
k=0

1 (ut < πt,k) . (36)

Hence, conditional on πt,k=δt , we can draw ut from U(0, πt,k=δt). Then we can condition on
{u}Tt=1 as a vector, but not on πk,t:

f
(
{vk}∞k=0

∣∣ {δt}Tt=1

)
= prior ({vk}∞k=0)

T∏
t=1

1

vk=δt ∏
κ<δt

(1− vκ) > uk=δt

 , (37)

where the vk are the sticks in the stick-breaking representation of the prior.

The dependence between the ut does not affect Eq. (37) because the vk do not depend upon t.
Hence, the vt are conditionally independent given {ut}Tt=1. Exploiting this independence and the
stick-breaking representation of the prior, we can draw vt from the above, since it only shows up
once in the product. By adopting the prior for the sticks implied by standard Dirichlet process —
Beta(1, α), we use Eq. (37) to draw vk. As shown by Papaspiliopoulos and Roberts (2008), this
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implies the sticks for k = 0, 1, . . . are distributed:

vk ∼ Beta

(
T∑
t=1

1(δt = k) + 1, T −
k∑

κ=1

T∑
t=1

1(δt = κ) + α

)
. (38)

We only need to do this for vk, such that k ≤ max(δt). They are the only vk that appear in the
likelihood. We can calculate the marginal cluster probabilities πk

πk = vk

k∏
κ=1

(1− vκ). (39)

The tricky part is sampling the indicator variables. If the data were i.i.d., we could convert the
vk into πk, and then compute the set of possible δt. However, the data are not i.i.d., i.e., the π
depend on δt−1. This is what is done in the references above. The question at hand is how do you
change the underlying marginal distribution (which is what we have computed) to the conditional
distribution while conditioning on the dependence structure embedded in the transition matrix.

What we must do is to construct a probability matrix such that relationship between two
clusters, say κ1 and κ2, remain the same as they did in the old case, but the marginal distributions
are correct. Consider two transition matrices Π and Π̃ and associated marginal distributions π
and π̃. We know that Markov transition matrices and marginal distributions have the following
relationship for all k:9

πk =
∞∑
κ=0

Πκ,kπκ. (40)

Define Π̃∗ so that Π̃∗
κ,k = Πκ,k

π̃k
πk

πκ
π̃κ

.

π̃k =
π̃k
πk
πk =

π̃k
πk

∞∑
κ=0

Πκ,kπκ =
∞∑
κ=0

π̃k
πk

Πκ,kπκ =
∞∑
κ=0

π̃k
πk

Πκ,k
πκ
π̃κ
π̃κ =

∞∑
κ=0

Π̃∗
κ,kπ̃κ. (41)

In other words, Π∗ has the same marginals as Π̃. In addition, since we only multiplied and divided
through by elements of the marginal distribution, we did not alter the dependence structure embed-
ded in Π. Consequently, Π̃∗ = Π̃. More rigorously, we condition on all but the first left eigenvector
of the transition matrix, Π̃, and replace that left eigenvector with the one associated with the new
stationary distribution. Then we calculate the resulting transition matrix. Since the transition
matrices associated with irreducible Markov chains have exactly one stationary distribution and
that stationary distribution is the first left eigenvector (the one associated with the eigenvector 1),
this new transition matrix is the Π̃ we derived in Eq. (41). If our new stationary distribution π̃ has
more clusters than the old one π did, we use the prior for Π to compute them. We do not have
to perturb them any because we have no datapoints in them and so they are the same between Π

and Π̃ as they have the same prior. Likelihoods are irrelevant in sections of the space without any

9. This is the standard condition that a stationary distribution is a left-eigenvector of the transition matrix.
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observations.

From Π̃ can compute πt,k for each t by using the stationary distribution for πt,0 and using the
Markov property of δt−1 for t > 1, and iterating forward. We can now compute {k : πt,k > ut} for
each t. Then the posterior of δt is

Pr (δt = k | · · · ) ∝ 1 (k ∈ {k : πt,k > ut})ϕ (xt |βkxt−1,Σk) . (42)

Since this is a finite set with known probabilities, we can easily sample from it. The δt are categorical
variables.

7.2 Posterior for the Coefficient Parameters

We use a standard normal inverse-Wishart prior for the component coefficients:

βk ∼ Φ(ββ,Σβ). (43)

Since this is a conjugate prior, we can directly use the standard formulas to estimate it.

As mentioned above, we adopt an inverse-Wishart prior for the covariance matrices. We can
write the inverse-Wishart prior in the following form for the Inverse-Wishart density with inverse
scale matrix Ψ, and prior degrees of freedom ν:

Σk |Ψ, ν ∼ Inverse-Wishart (Σk |Ψ, ν) . (44)

We have several covariance matrices to estimate, one for each k. Standard Bayesian intuition
implies that our estimators will be more efficient if we specify a hierarchical model for them. Then
we can estimate the hyperparameters ν and Ψ. This will be particularly useful in our case because
we have some clusters without many datapoints in them. Consequently, we need to shrink them a
great deal. By estimating the hyperparameters, we shrink them to precisely the right place.

We adapt the hierarchical prior Huang and Wand (2013) construct. We deviate from them
to allow the hyper-covariance matrix scales to have off-diagonal elements. In other words, our
covariance matrices are i.i.d. before we see any of the data, but the prior for a new covariance
matrix is not necessarily i.i.d. In addition, Huang and Wand’s (2013) model does not necessarily
have a density with respect to Lebesgue measure for the covariance matrix itself.

We parameterize our model as follows. We have two degree of freedom parameters — µ1 and
µ2. We use Ω := E[Σk] to parameterize the scale.10

10. This is implied by the Definition 10 by the formula for the mean of an Inverse-Wishart random variable. E[Σk] =
Scale

Degrees of Freedom−D−1
= (µ1−2)Ω

µ1+D−1−D−1
= Ω.
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Definition 10 (Prior for the Covariances).

Σ1,Σ2, . . .ΣK |Ω i.i.d.∼ Inverse-Wishart (µ1 +D − 1, (µ1 − 2)Ω) (45)

Ω
i.i.d.∼ Wishart

(
µ2 +D − 1,

diag(A1, . . . , AD)

µ2 +D − 1

)
(46)

If we send µ2 → ∞ the implied prior for the prior for Ω becomes fully dogmatic. Setting ν2 = 1/2

implies the
√
Σk have half-t distributions if D = 1. In general, the (Σk)dd have appropriately scaled

F -distributions.11 If the off-diagonal elements of Ω almost surely equal to 0, the diagonal elements
satisfy (Σk)dd ∼ Γ−1

(
µ1/2, (

µ1
2 − 1)Ωdd

)
. This is why we let the number of degrees of freedom in

Eq. (45) depend upon D. In general, the mean of these elements is the same, but the distribution
is different since the off-diagonal elements of Ω affect the distribution of (Σk)dd.

Obviously, conditional on Ω, everything is independent. So the two questions of interest are as
follows. First, what is the posterior distribution of Ω? Second, what is the posterior distribution
of Σk given Ω, {xt | δt = k}?

The answer the second question is entirely standard. You draw Σk from its Inverse-Wishart
posterior in the standard fashion. The answer to the first question is slightly non-standard but
still not particularly difficult. We derive the posterior below. Let V be the prior scale, i.e. V :=

diag (A1, . . . AP ), then

p (Ω |Σ1, . . .ΣK , A1, . . . , AD) (47)

∝
K∏
k=1

|Ω|
µ1+D−1

2 exp
(
−µ1 − 2

2
tr
(
ΩΣ−1

k

))
· |Ω|

µ2−2
2 exp

(
−1

2
tr
(
V−1Ω

))

Since matrix multiplication distributes over matrix addition.

=|Ω|
K(µ1+D−1)

2 exp
(
−µ1 − 2

2

K∑
k=1

tr
(
ΩΣ−1

k

))
· |Ω|

µ2−2
2 exp

(
−1

2
tr
(
V−1Ω

))
(48)

=|Ω|
K(µ1+D−1)+µ2−2

2 exp
(
−1

2
tr
((

V−1 + (µ1 − 2)
K∑
k=1

Σ−1
k

)
Ω

))
(49)

This is the kernel of a Wishart distribution. That is

Ω |Σ1 . . .ΣK , A1, . . . AD ∼ Wishart

K(µ1 +D − 1) + (µ2 +D − 1),

(
V−1 + (µ1 − 2)

K∑
k=1

Σ−1
k

)−1
 .

(50)
As noted by Huang and Wand (2013), if Ω is almost surely diagonal, then the correlation

parameters in Σk have a prior density of the form p(ρij) ∝ (1−ρij)µ1/2−1, −1 < ρij < 1. Note, this

11. σ2 ∼ F (1, ν) =⇒ σ ∼ Half -t(ν). In the one dimensional case, ν2 = 1/2 implies that σ2 ∼ F (1, ν). This
result is not feasible in the multivariate case while maintaining a density with respect to Lebesgue measure. If we let
µ1 → 2, we recover this expression. However, Ω is not well-defined in this case.
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implies that as µ1 → 2, then the distribution of these off-diagonal elements approaches U(−1, 1).
Conversely, as µ1 → ∞, the distribution of these off-diagonal elements converges to point masses at
the off-diagonal elements of Ω. The off-diagonal elements of Ω are normal variance-mean mixtures
where the mixing density is a χ2 distribution as is standard for Wishart priors.

If in the course of the algorithm, we need to add a new component, we draw the parameters
from the prior. If we have a component with data already in it, then we draw from the posterior.

7.3 Posterior on the Transition Matrix

We place Dirichlet process prior over these cluster identities in each period to allow for an arbitrary
number of clusters. By stacking the Dirichlet processes over time, we obtain a Dirichlet process
over the (δt−1, δt) product space. Intuitively, we are constructing a Π as a Dirichlet-distributed
infinite-dimensional square matrix as noted by Lin, Grimson, and Fisher (2010).

Given the cluster identities δt which we drew in Section 7.1, we draw the transition matrices.
We do this by noting that the prior probability of a transition is the product of the unconditional
probability appropriately normalized. We can update this by counting the proportion of realized
transitions:

(ΠT )kj =
Pr(δt−1 = k)Pr(δt = j) + #(transitions k → j)

Pr(δt−1 = k) +
∑

j #(transitions k → j)
. (51)

Each element, (ΠT )kj , reflects that the belief over (δt−1, δt) and is updated by counting the
number of transitions from k to j. Lastly, once we condition on a cluster k, we can simply run
a Bayesian regression to estimate (βk,Σk) in a standard manner. We iterate our posterior Gibbs
sampler to draw from the joint posterior.

7.4 Identification Strategy and Cluster Labeling Problem

As mentioned in the introduction to this section, the other problem endemic to mixture models is
that the cluster identities are not identified. In particular, we have a label switching problem. A
model with clusters labeled 0 and 1 is the same model as one with those clusters labeled 1 and 0.
This is particularly problematic in i.i.d. environments because there is no natural way to order the
clusters.

In a time series environment, like the one we consider here, we can label the clusters by when
they first appear. The first period is always in cluster zero. The second cluster to arrive is always
cluster one. This has two nice features relative to the existing methods of ordering the clusters
such as by their probabilities. First, it imposes a strict order of the clusters. We have no ties, such
as occur in a weighting by probability when the two probabilities are equal. Second, the ordering
is invariant to estimation uncertainty. I do not have to estimate which datapoint comes first in the
time series, and so it is easy to maintain the same ordering over time.

Pursuant to this identification restriction, we re-order the cluster identities immediately before
returning a posterior draw so that they always arrive in time order. This does not solve the problem
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that estimating these cluster identity for each period is difficult, but it does reduce the amount of
multi-modality in our posterior.

8 Data and Prior

We downloaded monthly data on real consumption (DPCERAM1M225NBEA), the consumer price
index (CPIAUCSL), the personal consumption expenditures price index (PCEPI), industrial pro-
duction (INDPRO), housing supply (MSACSR), the M2 measure of money supply (M2), total
nonfarm payrolls (PAYEMS), and 10-year Government bond yields from the Federal Reserve Bank
of Saint Louis economic database, (FRED). We chose these data series because they are several
of the fundamental economic series underlying the macroeconomy, and they span much of the
interesting variation.

All of the data were seasonally-adjusted by FRED. We converted to percent changes by log-
differencing all of the data except for the consumption measure, which was already measured in
percent changes and the long-term interest rate. We then demeaned the data and rescaled them
so they have standard deviations equal to 1. This is useful because it puts all of the data on the
same scale.

The data covers the January 1963 to January 2017. The time dimension is 649, and the cross-
sectional dimension is 8. Figure 4 shows the standardized monthly macroeconomic data used in
this subsection. The gray bars are the NBER recessions.

Figure 4: Monthly Macroeconomic Series
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The next dataset we use is financial. There are two types of data used here. The first are
volatility measures. We downloaded high-frequency data from Wharton Research Data Services
(WRDS)’s Trade and Quote (TAQ) database. The three series we used were the Financial Select
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Sector SPDR ETF (XLF), Vanguard Financials ETF (VFH), and the Vanguard Real Estate ETF
(VNQ). We then computed the 5 min realized volatility, we then took the logarithm of this volatility.
The second dataset we downloaded from FRED. The first is the price of West Texas Intermediate
(DCOILWTICO). The second is the price of Gold Bullion, (GOLDAMGBD228NLBM), and the
third is the CBOE Volatilty Index / VIX (VIXCLS), of which we took the logarithm. Again, we
standardize the data so that it is mean zero and all of the series have standard deviation equal to
one.

The time periods covered range from January 3rd, 2005 to December 31st, 2014, a total of
2350 periods. This empirical application is useful because these series are also of great interest to
practitioners and policymakers, and they are known to have highly non-Gaussian dynamics. The
literature studying stochastic volatility in financial data is one of the largest literatures in economics.
They also exhibit time-varying fat tails and often have complex tail dependencies (Patton 2012).

Figure 5: Daily Financial Series
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We use the same prior for both datasets and for the simulation, as in Table 1 to make our
results more easily interpretable. The prior we use for the component coefficients has a Kronecker
structure, and so we specify prior beliefs over the relationship between regressands and regressors
separately. In particular, the parameters are a priori independent across different regressands.

The prior we use for the component parameters and base Dirichlet measure is rather flat. We
are not imposing a great deal of a priori structure. In addition, the theory tells us it will not matter
asymptotically.

9 Simulation Results

Having characterized our estimators’ theoretical properties, we now consider their behavior in prac-
tice. We analyze the performance in simulations to better better understand how the approximation
works when we know what the true DGP is. The data generating process (DGP) we consider is



27

Table 1: Prior

Expected Number of Components 20
Component Coefficients

Intercept 0
Expected Diagonal Autocorrelation 1
Expected Off-Diagonal Autocorrelation 0

Component Covariances
Mean .252ID
µ1 3
µ2 3

the smooth transition autoregressive model (STAR). These models introduce nonlinearity into the
linear autoregressive DGP by letting the parameters depend upon the data xt−1, (Teräsvirta 1994;
van Dijk, Teräsvirta, and Franses 2002):12

xt = (1− Logistic(xt−1)) ζ1xt−1+Logistic(xt−1)ζ2xt−1+ϵt, ϵt ∼ Student’s t
(
0, σ2ϵ , df = 5

)
. (52)

This is useful because it satisfies our nonparametric restrictions, (The density is smooth and has
finite mean and variance), but is not a finite Gaussian mixture. It is not a special case of our sieve.

We parameterize the logistic transition function as

Logistic(xt−1) := [1 + exp (− (xt−1 − µ))]−1 . (53)

We parameterize the DGP by setting ζ1 = 0.8, ζ2 = −0.3 and µ = 0. We use the Student’s
t-distributed innovations to give the innovations distribution fat tails. As we can see in Fig. 6
our method based on the Gaussian mixtures approximates the dynamics of the STAR model quite
closely.

Figure 6a shows the in-sample predictive posterior density of xt given xt−1. The colored intervals
shows the credible set drawn with posterior draws for with the labeled percentages. The red line
shows the true xt. The black solid line is the posterior median. We can see that the posterior
transition density closely captures the true dynamics of xt. Figure 6b shows the cluster identities
over time. The Fig. 6c shows the probability integral transition (PIT) histogram. The PIT is the
cumulative density of the random variable xT+1 evaluated at the true realization. Figure 6d shows
the PIT autocorrelation function (ACF). If the predictive distribution is correctly conditionally
calibrated, the PIT histogram should be distributed as Uniform[0,1] and ACF should not show any
serial dependence. The gray area is credible set drawn using Barlett’s formula. From Fig. 6c and
Fig. 6d, we see that this is the case.

12. We also conducted simulation experiments with other specifications including univariate structural break model
and vector autoregressive model with regime-switching correlation. These results are available upon request.
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Figure 6: STAR Simulation Results
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In addition, we can see from Fig. 6b that we use more clusters as time progresses. This is almost
by construction. The bands in that graph are confidence intervals with coverage given in the left.
In addition, since the Student’ t-distribution has fatter tails than the normal we use at least three
clusters in all of the periods.

However, not only do they increase, they increase at the predicted rate. The black line in Fig. 6b
is C log(T )2, where we pick C to match the number of components used. The rate of increase is
very close to log(T )2, exactly as theory predicts.

10 Empirical Results

10.1 Monthly Macroeconomic Series

Using the macroeconomic data, we obtain the posterior draws from our sampler which are summa-
rized in Fig. 7. In Fig. 7a, we see that the conditional mean tracks the dynamics of data quite well.
We can divide the conditional variance in each period into two components using the law of total
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volatility:
Var (xt | Ft−1) = Var (E [xt | δt] | Ft−1) + E [Var (xt | δt) | Ft−1] . (54)

Since the model is linear conditional on the cluster identity δt, the first term comes from variation
in βkxt, while the second arises from variation in the innovations. Figure 7d shows the volatility
associated with autoregressive coefficients, whereas Fig. 7b shows the volatility associated with
innovations. The total volatility, which we graph for consumption in Fig. 9a, is the sum of the
two. Interestingly, most of the variation arises from the variation in the conditional means, not the
variation in the conditional variances.

Comparing these two volatilities, we observe bigger changes in dynamics for the coefficient
volatility. Figure 7c shows the number of active clusters in each period. This implies that the
stochastic volatility in macroeconomic data studied in papers such as Fernández-Villaverde and
Rubio-Ramı́rez (2010) and Fernández-Villaverde et al. (2015) can be more parsimoniously modeled
using variation in the conditional mean than by using stochastic volatility.

Examining the time-variation in the cluster identities in Fig. 7c, we can see that we only use 2
clusters in the vast majority of cases. Hence, our model is very parsimonious. We did not impose
this. The prior mean for the number of clusters (20) was higher than this, and in several of the
other examples, the algorithm used more. We can also see that the cluster identity fluctuates at a
very high frequency. Unlike many regime-switching models, we do not have a “recession” regime
and a “normal-times” regimes.

Figure 7: Empirical Results with Monthly Macroeconomic Series
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(b) Innovation Volatility
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To show that our algorithm works reasonably well in practice, we display the conditional density
forecast for consumption in Fig. 8.13 If the model works perfectly, the probability integral transform
(PIT) should be independent and distributed U [0, 1]. As we can see, it is roughly independent and
distributed approximately uniformly. The main caveat is this is an in-sample fit.

The dynamics of the data in Fig. 8a are not obviously non-Gaussian or non-linear. Are we

13. Predictive Densities and PIT’s for the other series are provided in Section D.
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(c) Cluster Identity
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Figure 8: 1-Period Ahead Conditional Forecasts: Consumption Expenditure
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effectively just estimating a VAR? No, if we examine the conditional variance, (Fig. 9a), we see that
it spikes a great deal in recessions. In other words, we can see stochastic volatility in consumption
data that varies with the business cycle. Interestingly, neither skewness, (Fig. 9b), nor kurtosis,
(Fig. 9c), varies dramatically. The data actually become more positively skewed in recessions.

This time-variation in volatility but not in higher-moments is interesting on a number of dimen-
sions. For example, similar to Schorfheide, Song, and Yaron (2018), we find stochastic volatility for
consumption growth at business cycle frequencies using purely macroeconomic data. Conversely,
disaster models such as Barro and Jin (2011) and Tsai and Wachter (2016) predict that kurtosis
should either always be high, (not approximately 3) or increase substantially during disasters.

Our model estimates a large number of parameters, and so we cannot show you all of them. In
each of the KT components we have a D× (D+1) coefficient matrix and D×D covariance matrix.
We also have a KT ×KT transition matrix. One parameter that is particularly interesting is the
transition matrix, and so we report the mean transition matrix draw, and associated stationary
distribution. In general, this is an infinite matrix, but this estimation only required two components.
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Figure 9: Consumption Variability
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Table 2: Macroeconomic Transition Matrix

0 1 Marginal
0 0.60 0.40 0.53
1 0.47 0.53 0.48

As can clearly be seen in Table 2, both components are very common, taking up around one-
half of the periods each. In addition, they are not very persistent. The diagonal of this matrix
governs the probability of remaining in the same component. It is larger in magnitude than the
off-diagonal, but not by a large amount. This is also apparent from Fig. 7c, where we see the more
likely a posteriori cluster switching between the two very frequently.

10.2 Daily Financial Series

Using the various financial series, we obtain the posterior draws from our sampler which are sum-
marized in Fig. 10. In Fig. 10a, we can see the conditional mean dynamics. Again, the mean tracks
the data relatively well, and we see a sharp increase in the volatility during crises.

Similar to the macroeconomic dataset, we see that almost all of the increase in volatility is
coming from volatility in the conditional means. The Fig. 10d shows the volatility associated with
autoregressive coefficients, whereas the Fig. 10b show the volatility associated with innovations.

Figure 10c shows the number of active clusters in each period. The number of clusters is
much smaller than the length of the time series, as our theory predicts. It is much larger than the
macroeconomic case though. We see some time-variation in the number, but not a great deal. Most
of the time is spent in the clusters 0 – 2. Also, recall our identification scheme labels the clusters
by when they first occur. This is why the cluster probability for cluster 0 starts at 1.

Figure 11 shows the 1-period ahead conditional forecasts for the price of oil.14 Figure 11a shows

14. The other series’ forecasts are in Section E.
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Figure 10: Empirical Results with Daily Financial Series
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(c) Number of clusters
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that the posterior transition density tracks the dynamics of oil price somewhat well. In particular,
Fig. 11b is only roughly uniformly distributed, the tails are not estimated that well. The algorithm
seems to struggle in finite samples when there is different levels of fat-tails across the various series.
This is likely because the current prior specification for the component coefficients does not have a
hierarchical structure, and so we cannot shrink all of the intercepts as far to zero as we would like.
Estimating intercepts (expected returns) for financial data is known to be quite difficult, (Lettau
and Ludvigson 2010), and we are doing it in each component. Conversely, Fig. 11c shows the
autocorrelation function of PIT. It displays no serial correlation.

As with the macroeconomic data, we estimated far to many parameters to report them all here.
Again, we consider the transition matrix. Unlike the previous case, we need several more clusters
to approximate the financial data well. In Table 3, we report the first 6 components of the infinite-
dimensional transition matrix. Here we see that the probability of being in each cluster declines
rapidly. Again, we see the diagonal being slightly, but not significantly larger than the off-diagonal
components. There is some persistence in the clusters, but not a large amount.
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Figure 11: 1-Period Ahead Conditional Forecasts: OIL
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Table 3: Financial Transition Matrix

0 1 2 3 4 5 Marginal
0 0.48 0.26 0.22 0.14 0.12 0.11 0.41
1 0.37 0.34 0.28 0.11 0.11 0.09 0.27
2 0.31 0.24 0.35 0.12 0.11 0.09 0.23
3 0.35 0.13 0.14 0.24 0.12 0.09 0.05
4 0.25 0.14 0.13 0.12 0.23 0.10 0.02
5 0.26 0.12 0.12 0.10 0.10 0.20 0.01

11 Conclusion

In this paper, we show how to practically estimate marginal and transition densities of multivariate
processes. This is a classic question in econometrics because most economic datasets are multivari-
ate and parametric approximations often perform poorly. Furthermore, even outside of economics,
other data-based disciplines face the same issues. We develop a Dirichlet Gaussian mixture model
to estimate a wide variety of processes quite rapidly. Our method scales to a more series than the
literature has thus far been able to handle and performs reasonably well in practice.

We provide new theory that shows, under some general assumptions, the posterior distribution
of our estimators converges more rapidly than has been shown previously. In particular, we exploit
the tail behavior of probability distributions in high dimensions to show that our estimator for the
marginal densities converges at a

√
log(T )/T rate and our estimator for the transition densities

converge at a log(T )/
√
T rate with high probability. This rate is noteworthy because it is the

parametric rate up to a logarithmic term. It is remarkable because these rates do not depend on
the number of series.

We show that this estimation strategy performs well in simulations and when applied to various
macroeconomic and financial data. In the empirical applications, we show that macroeconomic and
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financial data’s dynamics are often far from Gaussian and the dynamic structure moves across the
business cycle. We further find that our proposed representation requires more than one mixture
component, but only a few, to handle the data’s dynamics well.
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Appendix A Measure Concentration

A.1 Generic Chaining

We start with recalling a few definitions and fixing some notation. Recall the definition of a γ-
functional, where the infimum is taken with respect to all subsets Xs ⊂ X ⊂ RT×D such that the
cardinality |Xs| ≤ 22

s and |X0| = 1, and d is a metric.
γα(X , d) = inf supx∈X

∑∞
s=0 2

s/αd(s,Xs)
γ2(X , d) is useful because it controls the expected size of a Gaussian process by the majorizing

measures theorem, (Talagrand 1996).
Recall the definition of the Orlicz norm of order p. This is useful because a standard argument

shows if X has a bounded ψp norm then the tail of X decays faster than 2 exp
(
− xp

∥x∥pψp

)
. Hence,

if x has a finite ψ2 norm, it is subgaussain„
ψp := infC>0 E

[
exp

(
|X|p
Cp − 1

)
≤ 1
]

A.2 Definition and Properties of the ΘT -operator

Lemma 2. Let K be the number of columns of ΘT as defined in Definition 3. Then its probability
density function has the following form, where µ := Pr(b = 1).

Pr(K ≤ K̃) =
(
1− (1− µ)K̃

)T
(55)
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Proof.

Pr(K ≤ K̃) = Pr(All of the rows contain at least one one) (56)

= Pr(Row t contains at least one one)T (57)

= (1− Pr(row t contains all zeros.))T (58)

=
(
1− (1− µ)K̃

)T
(59)

Lemma 3. There exists a constant γ ∈ (0, 1) and constants c1, c2, such that with probability at
least γ, the following holds.

c1 log(T ) ≤ K ≤ c2 log(T ) (60)

Proof. Let B := exp(K̃) We set the cumulative distribution function equal to 1−γ, i.e. the survival
function equal to γ.

(1− γ) = (1− (1− µ)K̃)T (61)

=⇒ log(1− γ)/T = log(1− (1− µ)K̃) (62)

We use the bases in this way so that the change of base constant is positive.

=⇒ log(1− γ)/T = log
(
1−

(
1

1− µ

)− logB
)

(63)

Using a change-of-base formula.

=⇒ log(1− γ)/T = log
(
1−

(
1

B

)− log(1−µ)
)

(64)

=⇒ log(1− γ)/T = log
(
1−Blog(1−µ)

)
(65)

Taking the Taylor series approximation of the logarithm function around 1.

=⇒ − log(1− γ)/T ≈ Blog(1−µ) (66)

=⇒ T ∝ B− log(1−µ) (67)

=⇒ B ∝ T−1/ log(1−µ) (68)

=⇒ K ∝ − 1

log(1− µ)
log(T ) (69)

=⇒ K ∝ log(T ) (70)
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We can bound this in the opposite direction by replacing 1− γ with γ.

A.3 Relationship between the Orlicz and L2 norms.

We use the following lemma in our proof of Theorem 1. We need it to bound the tail deviations
using a bound on the 2nd moment deviations.

Lemma 4. Let ΘT be a matrix constructed as in Definition 3. Let {xt}Tt=1 be a sequence of known
random vectors of length D. Then we have the following.

1. The squared L2-norm of x is equivalent to E
[
⟨Θk, x⟩2

]
.

2. The squared L2-norm of x, ∥x∥2L2
dominates the 2nd-order Orlicz norm.

Proof.

Part 8.1. First, we start by showing Item 1. The root of the proof follows from realizing that ΘT

is a generalized selection matrix, and covariances are dominated by variances.

EΘ

[
X ′ΘkΘ

′
kX
]
= EΘ

[
T∑
t=1

xtθt,kθt,kx
′
t

]
= EΘk

[
T∑
t=1

|θt,k|xtx′t

]
(71)

Simplifying this using independence of the rows of Θk.

=
1

K

T∑
t=1

xtx
′
t (72)

Note, this implies that EΘ{θkX} = ∥x∥2L2
because they are both sums over all of the elements

considered.
Now, consider EΘ [X ′ΘΘ′X]. Since the columns of ΘT are a martingale difference sequence,

variances of sums are sums of variances.

EΘ

[
X ′ΘΘ′X

]
=

K∑
k=1

EΘk

[
X ′ΘkΘ

′
kX
]
=

T∑
t=1

xtx
′
t (73)

Part 8.2. Now, that we have shown Item 1, we need to show that L2 norm dominates the ψ2

norm. This is useful because it implies that if we can control the variance of the distribution, we
automatically control the tails as well.
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inf
{
C > 0

∣∣∣∣E [exp
(
|⟨Θk, x⟩|2

C2

)]
− 1 ≤ 1

}
(74)

= inf
{
C > 0

∣∣∣∣∣E
[

exp
(∑T

t=1|δt,k|x′txt + 2
∑

t,τ ̸=t δt,kδτ,kx
′
txτ

C2

)]
≤ 2

}
(75)

Since the cross-terms are proportional to squares, and the Θk are generalized selection vectors.

≤ inf
{
C > 0

∣∣∣∣∣E
[

exp
(
2
∑T

t=1|δt,k|x′txt
C2

)]
≤ 2

}
(76)

By the definition of the exponential function and |δt,k| ∈ {0, 1}.

= inf

C > 0

∣∣∣∣∣∣∣E
 ∞∑
h=0

2h
(∑T

t=1|δt,k|x′txt
)h

C2hh!

 ≤ 2

 (77)

= inf
{
C > 0

∣∣∣∣∣E
[ ∞∑
h=0

2h
∑∑

kt=h

(
h

k1,k2,...kT

)∏T
t=1|δt,k|(x′txt)kt

C2hh!

]
≤ 2

}
(78)

Since everything is absolutely convergent, we can interchange expectations and infinite sums.

= inf
{
C > 0

∣∣∣∣∣
∞∑
h=0

2h
∑∑

kt=h

(
h

k1,k2,...kT

)∏T
t=1

1
K (x′txt)

kt

C2hh!
≤ 2

}
(79)

Then we can use the multinomial theorem and the formula for the exponential function in the
opposite direction.

= inf
{
C > 0

∣∣∣∣∣ 1K exp
(
2∥x∥2L2

C2

)
≤ 2

}
(80)

= inf
{
C > 0

∣∣∣∣∣ 2∥x∥2L2

C2
= log (2K)

}
(81)

Since K ≥ 1.

≤
√
2∥x∥L2√
log (2)

(82)

Therefore, if we set β ∝
√

log(2)
2 , we have that the L2-norm dominates the ψ2-norm.
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A.4 Norm Equivalence

In the section below we reproduce Klartag and Mendelson (2005, Prososition 2.2). The one change
that we make is that we spell out one of the constants as a function of its arguments. We do this
because we will need to take limits with respect to δ on what follows.

Proposition 9 (Klartag and Mendelson (2005) Proposition 2.2). Let (X , d) be a metric space
and let {Zx}x∈X be a stochastic process. Let K > 0,Υ : [0,∞) → R and set Wx := Υ(|Zx|) and
ϵ := γ2(X ,d)√

K
. Assume that for some η > 0 and exp (−c1(η)K) < δ < 1

4 , the following hold.

1. For any x, y ∈ X and u < δ0 :=
4
η log 1

δ ,

Pr (|Zx − Zy| > ud(x, y)) < exp
(
− η

δ0
Ku2

)
(83)

2. For any x, y ∈ X and u > 1

Pr (|Wx −Wy| > ud(x, y)) < exp
(
−ηKu2

)
(84)

3. For any x ∈ X , with probability larger than 1− δ, |Zx| < ϵ.

4. Υ is increasing, differentiable at zero and Υ′(0) > 0.

Then, with probability larger than 1 − 2δ, where C(Υ, δ, η) :=
(
c(Υ)c(η)( 2η (log 1

δ + 1))
)
> 0

where c(Υ) and c(η) depend solely on their arguments.

sup
x∈X

|Zx| < C(Υ, δ, η)ϵ. (85)

Here we quote a version of Bernstein’s inequality for martingales due to (Peña 1999, Theorem
1.2A), which we use later.

Theorem 10 (Bernstein’s Inequality for Martingales). Let {xi,Fi} be a martingale difference
sequence with E [xi | Fi−1] = 0,E

[
x2i
∣∣Fi−1

]
= σ2i , vk =

∑k
i=1 σ

2
i . Furthermore, assume that

E [|xi|n | Fi−1] ≤ n!
2 σ

2
iM

n−2 almost everywhere. Then, for all x, y > 0,

Pr
({∣∣∣∣∣

k∑
i=1

xi

∣∣∣∣∣ ≥ u, vk ≤ y for some k
})

≥ 2 exp
(
− u2

2(y + uM)

)
(86)

If we choose c small enough, this implies the following.

Pr
({∣∣∣∣∣1k

k∑
i=1

xi

∣∣∣∣∣ ≥ u, vk ≤ y for some k
})

≥ 2 exp
(
−cmin

{
u2k2

v
,
uk

M

})
(87)
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Theorem 1 (Bounding the Norm Perturbation). Let ΘT be constructed as in Definition 3 with
the number of columns denoted by KT . Let ϵ > 0 be given. Let 0 < δ < 1 be given such that
0 < log 1

δ < c1ϵ
2KT for some constant c1. Let X̃T be in the unit hypersphere in RTD−1. Then

with probability greater than 1− 2δ with respect to ΘT , there exists a constant c2 such that for any
ϵ >

√
logT
KT

sup
t

|∥θtx̃t∥L2 − ∥x̃t∥L2 | < c2

(
1 + log 1

δ

)
ϵ. (5)

Proof. We mimic the proof of Klartag and Mendelson 2005, Theorem 3.1, verifying the conditions
of Proposition 9. Similar to them we use Υ(t) =

√
1 = t. Our conclusion is stated in terms of

the logarithm of the sample size — T. This is a weaker conclusion than theirs as γ2
(
X̃ , ∥·∥L2

)
<

C
√

log(T ). We can see this by combining the majorizing measure theorem, (Talagrand 2014,
Theorem 2.4.1), and the minoration theorem, (Lemma 2.4.2). Effectively, we have an upper bound
for the supremum of a Gaussian process and tighter upper bound for the same process.

We start by fixing some notation. Let x, y ∈ X . We use the functional notation x(θk) to refer∑D
d=1 θ

′
kxd.

ZKx :=
1

K

K∑
k=1

x2(θk)− ∥x∥2L2
(88)

Consider ZKx − ZKy .

ZKx − ZKy =
1

K

K∑
k=1

x2(θk)− y2(θk) =
1

K

K∑
k=1

(x− y)(θk)(x+ y)(θk) (89)

Part 10.1. Let Yk := x2(θk)− y2(θk).

Pr(|Yk| > 4u∥x− y∥ψ2
∥x+ y∥ψ2

) (90)

≤ Pr(|Yk| > 2
√
u∥x− y∥ψ2

) + Pr(|Yk| > 2
√
u∥x+ y∥ψ2

) (91)

≤ 2 exp(−u) (92)

This implies that ∥Yk∥ψ1
≤ c1∥x− y∥ψ2

∥x+ y∥ψ2
≤ c2∥x− y∥ψ2

. We do not need the β used
by Klartag and Mendelson because the entries in our θ operator are uniformly bounded by 1 in
absolute value.

The Yk are a martingale difference sequence, and so we can apply Theorem 10. They are a
martingale difference sequences because the expectation in the next period is either the current value
because the increments are mean zero if the sum does not stop or identically zero if they do. If we
set v = 4K∥Yk∥2ψ1

we can use Bernstein’s inequality for martingales mentioned above.
∑K

k=1 σ
2
k ≤ v

with probability 1 because this variance is either the same as it is in the independent case or zero.
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Consequently, by Theorem 10, we have the following if set v := 4K∥θ∥2ψ1
and M = ∥θ∥ψ1

:

Pr
({∣∣∣∣∣ 1K

K∑
k=1

θk

∣∣∣∣∣ > u

})
≤ 2 exp

(
−cK min

{
u2

∥θ∥2ψ1

,
u

∥θ∥ψ1

})
(93)

Then by applying Eq. (93) to Pr(
∣∣zkx − zky

∣∣ > u), we have the following.

Pr
(∣∣∣Zkx − Zky

∣∣∣ > u
)
≤ 2 exp

(
−cmin

{
u2

∥x− y∥2L2

,
u

∥x− y∥L2

})
(94)

The estimate for Pr
(∣∣Zkx ∣∣ > u

)
follows from the same method but we define Yk := x2(θk) − 1,

and use the fact that ∥x(θ)∥ψ2
≤ 1, which we verified in Lemma 4. The L2-norm is bounded above

by 1 because we are using rescaled data.
We fix η ≤ c. Assume that u < δ0 = 4 1

η log 1
δ . Then we have

Pr
(∣∣∣Zkx − Zky

∣∣∣ > 2∥x− y∥L2

)
≤ 2 exp

(
ηK min

{
u, u2

})
< exp

(
−ηKu2

δ0

)
. (95)

Part 10.2.

Wx −Wy =

(
1

K

K∑
k=1

x2(θi)

)1/2

−

(
1

K

K∑
k=1

y2(θi)

)1/2

≤

(
1

K

K∑
k=1

(x− y)2(θi)

)1/2

(96)

Applying Eq. (93) for u > 1.

Pr
(
|Wx −Wy| > u∥x− y∥ψ2

)
≤ Pr

(
1

K

K∑
k=1

(x− y)2(θk) > u2∥x− y∥2ψ2

)
(97)

≤ Pr
(

1

K

K∑
k=1

(x− y)2(θk) > u2∥x− y∥2ψ1

)
(98)

< exp
(
−cku2

)
(99)

Since η < c.

≤ exp
(
−ηKu2

)
(100)

Part 10.3. For any x ∈ X by Eq. (93),

Pr(|Zx| > ϵ) < exp(−ηKϵ2) < δ (101)

Part 10.4.
Υ′(0) = 1/2 > 0 (102)
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Appendix B Representation Theory

B.1 The Joint Density

Lemma 5. Consider the ratio of the densities between p0,T and qT . Let δqk be a clustering of xt
with respect to qT . Let these clusters δqk satisfy the following, where µqk = EP0,T

[
xt
∣∣ t ∈ δqk

]
and

Σqk = CovP0,T
[xt |xt ∈ δqt ]:

sup
δqk

sup
xt∈δqk

∣∣∣(xt − µt)
′Σ−1
t (xt − µt)−

(
xt − µqk

)′ (
Σqk
)−1 (

xt − µqk
)∣∣∣ < C(δ)ϵ. (103)

Then the log-divergence satisfies

sup
xt,x∗t

∣∣(xt − µt)
′Σ−1
t (xt − µt)− (xt∗ − µt∗)

′Σ−1
t∗ (xt∗ − µt∗)

∣∣ < ϵ =⇒ sup
xt,x∗t

∣∣∣∣log p0(xt)

p0 (xt∗)

∣∣∣∣ ∝ ϵ. (104)

Proof. Consider the log ratio of Gaussian kernels:

− 1

2
sup
δqk

sup
xt∈δqk

∣∣∣(xt − µt)
′Σ−1
t (xt − µt)−

(
xt − µqk

)′ (
Σqk
)−1 (

xt − µqk
)∣∣∣ (105)

(The right-hand side is bounded by assumption.)

≤ −1

2
ϵ.

Consider the ratio of the proportionality constants χp and χq associated with the kernels kp, kq

above:

1

χp
=

∫
X
kp(x) dx,

1

χq
=

∫
X
kq(x) dx. (106)

By the definition of proportionality constant, we can write∣∣∣∣χqχp
∣∣∣∣ = ∫

kq(x) dx∫
kp(y) dy

. (107)

Since 1
x is a convex function, by Jensen’s inequality:

≤
∫ ∫

k2(x) dx

k1(y)
dy (108)

=

∫ ∫
kq(x)

kp(y)
dx dy. (109)
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(We can change measures to P0,T . The Jacobian terms for each of the two densities cancel.)

=

∫ ∫
kq(x)

kp(y)
dP0,T (x) dP0,T (y). (110)

That will be less than the maximum ratio deviation integrated appropriately:

≤
∫

sup
δqk

sup
xt∈δqt

kq(xt)

kp(xt)
dP0,T (x). (111)

We can rewrite the integral with respect to P0,T as an average:

=
1

T

∑
t

sup
δqk

sup
xt∈δqt

kq(xt)

kp(xt)
. (112)

We can split the sum up into a sum within the groups and a sum over the groups:

=
1

T

∑
δqk

sup
δqk

∑
xt∈δqk

sup
xt∈δqt

kq(xt)

kp(xt)
. (113)

By Eq. (105), the kernel ratio is bounded above, and the second part is just a density integrated
over its entire domain:

≤ 1

T
T exp

(
−1

2
c(δ)ϵ

)
(114)

≤ exp
(
−1

2
c(δ)ϵ

)
. (115)

We can bound the inverse-ratio of the proportionality constants — µq
µp

in the same way. We just
interchange the labels on the kernels.

Consequently, the proportionality constants satisfy the following.∣∣∣∣log µ1
µ2

∣∣∣∣ = 1

2
c(δ)ϵ (116)

Hence the log ratio of the densities is the sum of the log-ratio of the kernels and the log-ratio
of the proportionality constants for some global constants C1 and C2.∣∣∣∣log p0,T (xt)

qT (xt)

∣∣∣∣ = C1C(δ)ϵ,

∣∣∣∣log qT (xt)

p0,T (xt)

∣∣∣∣ = C2C(δ)ϵ (117)

Proposition 11. Let X̃ := x̃1, . . . x̃T be a D-dimensional Gaussian process with stochastic means
µt and covariances Σt, where Σt is positive-definite for all t. Let ΘT be the generalized selection
matrix defined in Definition 3. Let P̃0,T denote the distribution of X̃. Then given ϵ > 0 and for
some δ ∈ (0, 1), the approximating distribution QT , which is the mixture distribution over X̃ defined
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by the clustering induced by ΘT satisfies the following with probability at least 1 − 2δ with respect
to ΘT .

sup
t
h2
(∫

Gt

ϕ
(
x̃t
∣∣ δPt ) dGPt (δPt ),∫

Gt

ϕ
(
x̃t

∣∣∣ δQt ) dGQt (δQt )) < c

(
log 1

δ

)2

ϵ2 (118)

Proof. In this proof, we drop the tilde’s over the xt because all of the terms have them.

sup
t
h2
(∫

Gt

ϕ
(
xt
∣∣ δPt ) dGPt (δPt ),∫

Gt

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )) (119)

Combining the integrals with respect to the marginals (GPt , G
Q
t ) into a integral with respect to the

joint, and exploiting the convexity of the supremum and of the squaured Hellinger distance gives:

≤
∫
Gt×Gt

sup
t
h2
(
ϕ
(
xt
∣∣ δPt ) , ϕ(xt ∣∣∣ δQt ))K(GPt , G

Q
t ). (120)

We can then expand the definition of h2 using its formula as an f -divergence:

≤
∫
Gt×Gt

sup
t

∫
RD

∣∣∣∣∣∣∣
 ϕ

(
xt
∣∣ δPt )

ϕ
(
xt

∣∣∣ δQt )
1/2

− 1

∣∣∣∣∣∣∣
2

dΦ
(
xt

∣∣∣ δQt )K(GPt , G
Q
t ). (121)

Since we are only considering the density for one period within the integral:

=

∫
Gt×Gt

∫
RD

sup
t

∣∣∣∣∣∣∣
 ϕ

(
xt
∣∣ δPt )

ϕ
(
xt

∣∣∣ δQt )
1/2

− 1

∣∣∣∣∣∣∣
2

dΦ
(
xt

∣∣∣ δQt )K(GPt , G
Q
t ). (122)

By Lemma 5 and a first-order Taylor series of the exponential function after pulling the square-root
inside

≤
∫
Gt×Gt

∫
RD

sup
t

∣∣∣(xt − µPt )
′ΣPt (xt − µPt )− (xt − µQt )Σ

Q
t (xt − µQt )

∣∣∣ dΦ(xt ∣∣∣ δQt )K(GPt , G
Q
t ).

(123)

Since QT was defined through applying ΘT to ΣPt
−1/2

(xt−µt), by Theorem 1 this norm perturbation
is within ϵ2 of each other, we just have to square the constant:

≤ C

(
log 1

δ

)2 ∫
Gt×Gt

∫
RD

|ϵ|2 dΦ
(
xt

∣∣∣ δQt )K(GPt , G
Q
t ). (124)
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All of the integrals integrate to 1:

= C

(
log 1

δ

)2

ϵ2. (125)

Theorem 2 (Representing the Joint Density). Let X̃T := x̃1, . . . x̃T be a D-dimensional Gaussian
process with period t stochastic means µt and covariances Σt, where Σt is positive-definite for all
t. Let ΘT be the generalized selection matrix constructed in Definition 3. Let P̃0,T denote the
distribution of X̃T . Then given ϵ > 0 and for some δ ∈ (0, 1), the approximating distribution
QT , which is the mixture distribution over X̃ defined by the clustering induced by ΘT satisfies the
following with probability at least 1− 2δ with respect to ΘT

h∞

(
P̃0,T (X̃ ), Q̃T (X̃ )

)
< C log

(
1

δ

)
ϵ. (12)

Proof. Let GP , GQ be the associated mixing measures of the associated covariances. Let K be a
coupling from between the space of GP and GQ, and the space of such couplings be T (GP , GQ).
Consider the squared supremum Hellinger distance — h2∞ — between P0,T and QT . The proof here
is based on a combination of proofs of Nguyen (2016, Lemma 3.1) and Nguyen (2016, Lemma 3.2).
Let δt be the latent mixture identity that tells you which cluster µt,Σt is in. Then we can represent
both densities succinctly as follows. Importantly, we do not require that the GPt are independent.

p0,T (X̃ ) =

∫
G

∫
Gt

ϕ
(
xt
∣∣ δPt ) dGPt (δPt ) dGP (dGPt ) (126)

We represent qT in the same fashion replacing the P ’s in the expression above with Q’s.

qT (X̃ ) =

∫
G

∫
Gt

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt ) dGQ (dGQt ) (127)

Then the squared sup-Hellinger distance between the two measures has the following form.

h2∞

(
p0,T (X̃ ), qT (X̃ )

)
(128)

= h2∞

(∫ ∫
ϕ
(
xt
∣∣ δPt ) dGPt (δPt ) dGP (dGP ),∫ ∫ ϕ

(
xt

∣∣∣ δQt ) dGQt (δQt ) dGQ(dGQt )) (129)

Letting K(GP , GQ) be any coupling between the two densities, we can combine GP and GQ into
one process. We want to integrate with respect to their joint density.

= h2∞

(∫
G

∫
Gt

ϕ
(
xt
∣∣ δPt ) dGPt (δPt ) dK(dGPt , dG

Q
t ),

∫
G

∫
Gt

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )K(dGPt , dG
Q
t )

)
(130)
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Since supremum of squared Hellinger distance is convex as is the supremum, by Jensen’s inequality
that is bounded by the following.

≤
∫
G×G

sup
t
h2
(∫

Gt

ϕ
(
xt
∣∣ δPt ) dGPt (δPt ), ∫

Gt

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )) dK(dGPt , dG
Q
t ) (131)

If we can bound the supremum of the deviations over the periods, we have bounded the joint.
This is true even in the dependent case.

We can place the bound obtained in Proposition 11 inside Eq. (131). Since we are integrating
Cϵ2 over a joint density, the density is bounded above by 1, and we are done.

In other words, we have with probability 1− 2δ.

h2∞(P0,T (X̃ ), QT (X̃ )) < C

(
log 1

δ

)2

ϵ2 (132)

Lemma 6. Let f, g be two densities of locally asymptotically normal (LAN) processes.15 Squared
Hellinger distance and Kullback-Leibler divergence are equivalent.

Proof. Consider the following decomposition.

∫
(
√
f/g − 1) dG (133)

=

∫ (
exp

(
1

2
(log f − log g)

)
− 1

)
dG (134)

Taking a mean-value expansion of the exponential function.

=

∫ (
1 +

1

2
log f

g
+O

(
log
(
f

g

)2
)

− 1

)
dG (135)

=

∫
1

2
log f

g
dG+

∫
O

(
log
(
f

g

)2
)
dG (136)

most By the locally asymptotically normal assumption log f(x) ∝ (x − µf )
′Σ−1
f (x − µf ) + o(T )

Choose ϵ ∝ 1
T .

log(f/g)2 (137)

By the convexity of the square function.

≤
∣∣∣(x− µf )

′Σ−1
f (x− µf )− (x− µg)

′Σ−1
g (x− µg)

∣∣∣+O(ϵ)O(ϵ) (138)

15. This trivially covers all Gaussian processes.



50

We can bring back in the log deviation at the expense of at most a ϵ term.

≤
∣∣∣(x− µf )

′Σ−1
f (x− µf )− (x− µg)

′Σ−1
g (x− µg)

∣∣∣2 +O(ϵ2) (139)

The first term in the above expansion is clearly bounded by log(f/g). Consequently, DKL (f || g)
bounds squared Hellinger. We can see from the Taylor series expansion in Eq. (135) that it is also
bounded by the squared Hellinger distance as well.

B.2 Representing the Marginal Density

Theorem 3 (Representing the Marginal Density). Let x1, . . . xT be drawn from p0,T , where p0,T has
a product density. Let ΘT be constructed as in Theorem 2 for each t. Let ϵ be given. We construct qT
by using the ΘT operator to group the data, and we assume that the data are Gaussian distributed
within each component with component-wise means and covariances given by their conditional
expectations. Then with probability 1 − 2δ with respect to ΘT , there exists a constant C such that
the following holds uniformly in T

h

(∫
Gt

ϕ
(
xt
∣∣ δPt ) dGt(δPt ),∫

Gt

ϕ
(
xt

∣∣∣ δQt ) dGt(δQt )) < C log
(
1

δ

)
ϵ. (13)

Proof. We start by comparing the Hellinger distance between the joint densities, which are both
product measures. We want to compare the difference between the marginal densities in terms of
the difference between the joint densities. In particular, we show that the difference between the
marginal densities is 1/T times the difference between the joint densities if the joint densities have
a product form. By Theorem 2, we know that is bounded by Tϵ2, and so we have the desired result.
The strange thing is that we are trying to bound the difference between the joint density and its
components in the opposite direction as is usually done. We want to bind the component distance
in terms of the joint density distance instead of the other way around.

We want to bind the component distance in terms of the joint density distance instead of the
other way around. We can write the squared Hellinger distance between the joint distributions as
follows. Let Gm be the marginal distribution over δt. Note, the following holds.

T∏
t=1

∫
Gt

ϕ (xt | δt) dGt(δt) =
T∏
t=1

∫
Gm

ϕ (xt | δt) dGm(δt) (140)

All it is saying is that the joint T independent draws from the marginal are the same as T
independent draws from a sequence of G1, . . . GT , drawn from G. Note, by assumption G has a
product form, else this would not hold. The Kullback-Leibler divergence between the two joint
distributions is
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DKL (qT || p0,T ) =
∫
RT×D

log
(
qT
p0,T

)
dP0,T (141)

=

∫
RT×D

log

∏T
t=1

∫
Gt
ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )∏T
t=1

∫
Gt
ϕ
(
xt
∣∣ δPt ) dGPt (δPt )

 dP0,T (142)

Ratios of products are products of ratios, and logs of products are sums of logs.

=

∫
RT×D

T∑
t=1

log

∫Gt ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )∫
Gt
ϕ
(
xt
∣∣ δPt ) dGPt (δPt )

 dP0,T (143)

As noted in the definition of the marginal distribution, Eq. (140). Noting that both the P0,T and
QT are product distributions.

=

∫
RT×D

T∑
t=1

log

∫Gm ϕ
(
xt

∣∣∣ δQt ) dGQm(δQt )∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPm(δPt )

 dP0,T (144)

We can rewrite P0,T in terms of its mixture representation. Note, the δt with respect to P0,t have
no superscript because they are different variables.

=

∫
Gt

∫
RT×D

T∑
t=1

log

∫Gm ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPt (δPt )

 T∏
t=1

ϕ (xt | δt) dx dGPm(δt) (145)

The only interaction between the two terms is xt.

=
T∑
t=1

∫
Gt

∫
RD

log

∫Gm ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPt (δPt )

ϕ (xt | δt) dx dGPm(δt)

 (146)

∫
R(T−1)×D

∏
τ ̸=t

ϕ (xτ | δτ ) dx dGPm(δτ )


The second integrals all equal 1, and so their product does as well.

=
T∑
t=1

∫
Gt

∫
RD

log

 ∫Gm ϕ (xt ∣∣ δPt ) dGPt (δPt )∫
Gm

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )
ϕ (xt | δt) dx dGPm(δt)

 (147)

The term inside the sum is the Kullback-Leibler divergence between the two marginal distributions.

=
T∑
t=1

DKL

(∫
Gm

ϕ
(
xt

∣∣∣ δQt ) dGQm(δQt ) ∣∣∣∣∣∣∣∣ ∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPm(δPt )) (148)
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The marginal distributions does not depend upon T .

= TDKL

(∫
Gm

ϕ
(
xt

∣∣∣ δQt ) dGQm(δQt ) ∣∣∣∣∣∣∣∣ ∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPm(δPt )) (149)

In other words, the distance between the joint densities is at least T times the distance between
the distance marginal densities. Also, by Lemma 6 this is proportional to squared Hellinger distance.

In other words, the difference between the joint densities is at least T times the distance between
the distance between the marginal densities. We know by Theorem 2 that this is bounded above
by CTϵ2. The T arises because we are no longer using the rescaled data, and ∥X∥2 ∝ T .

h2
(∫

Gm

ϕ
(
xt

∣∣∣ δQt ) dGQm(δQt ),∫
Gm

ϕ
(
xt
∣∣ δPt ) dGPm(δPt )) ≤ 1

T
h2(qT , p0,T ) ≤ C

T

T
ϵ2 = Cϵ2 (150)

Corollary 3.1 (Representing the Marginal Density with Markov Data). Theorem 3 continues to
hold when the xt form a uniformly ergodic hidden Markov chain instead of being fully independent.

Proof. Let z1 be a latent variable such that (xt, zt) forms Markov sequence. Consider a reshuffling
(x̃1, z̃1), . . . (x̃T , z̃T ). Now both of these sequences clearly have the same marginal distribution.
(They likely do not have the same joint distribution.) Hence, by Theorem 3 the result follows since
the reshuffled data has a product density.

B.3 Representing the Transition Density

Theorem 4 (Transition Density Representation). Let x1 . . . xT ∈ RT×D be a uniformly ergodic
Markov Gaussian process with density p0,T . Let ϵ > 0 be given. Let K ≥ c log(T )2/ϵ for some
constant c. Let δt be the cluster identity at time t. Then there exists a mixture density qT with K
clusters such that the following holds:

qT (xt |xt−1, δt−1) :=
K∑
k=1

ϕ (βkxt−1,Σk)Pr (δt = k | δt−1) . (14)

We obtain qT

(
xt

∣∣∣FQ
t−1

)
from qT (xt |xt−1, δt−1) by integrating out δt−1 with its posterior distribu-

tion. Then with probability 1− 2δ with respect to the prior

h∞

(
p0,T

(
xt
∣∣FP

t−1

)
, qT

(
xt

∣∣∣FQ
t−1

))
< C

√
log 1

δ
ϵ. (15)

Proof. We need the conditional density of x̃t | x̃t−1, δt−1. By Theorem 2, there exists a generalized
selection matrix ΘT satisfying the statement of the theorem. Conditional on ΘT , the distribution is
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Gaussian. So consider the following where θt is the tth row of ΘT . (Throughout, we will implicitly
prepend a 1 to x̃t−1 to allow for a non-zero mean as is standard in regression notation.)

θtx̃t | x̃t−1, θt, θt−1
L
= θtx̃t | θt−1x̃t−1, θt, θt−1 (151)

By the linearity of Gaussian conditioning in θtx̃t, θt−1x̃t−1 space, for some βk,k′ , Σk,k′ .

L
= ϕ(βk,k′θt−1x̃t−1,Σk,k′) (152)

Then since the elements of θt−1 are in {−1, 0, 1}, we can absorb the θt−1 into the βk,k′ without
increasing the number of clusters more than two-fold. This is because the vectors θt−1 that contain
at most one non-zero element form a convex hull and we will take the weighted averages over them
in the end.

L
= ϕ(βk,k′ x̃t−1,Σk,k′) (153)

In fact, we want the distribution of x̃t given θt−1, x̃t−1. We do not want to condition on θt.
So we can just integrate over θt using its distribution. Its predictive distribution does not depend
upon x̃t−1 because we construct ΘT independently of x̃.

x̃t | θt−1 = k, x̃t−1 ∼
∑
k′

ϕ(βk,k′ x̃t−1,Σk,k′)Pr
(
θt = k′

)
(154)

Define a set of clusters in (x̃t, x̃t−1) space by grouping the ones whose associated β′s are equal.
In other words, take the Cartesian product of the clusters used in Eq. (154) and denote the cluster
identities by δt’s. Integrating out the cluster identities gives

x̃t | x̃t−1, δt−1 ∼
∑
j

ϕ(βj x̃t−1,Σj)Pr (δt = j | δt−1) (155)

Clearly, there are log(T )2 = K2
T different clusters.16

We now make a similar argument to the one we made in the marginal density case. Again, we
must show that the Kullback-Leibler divergence between the joint density is T times an average
Kullback-Leibler divergence. The tricky issue is that we no longer have a product distribution.
Instead, we must show that appropriately constructed conditional densities satisfy the necessary
inequalities.

Again, we start by considering the Kullback-Leibler divergence between the joint distributions.
We assumed that p0,T is a hidden Markov model. That implies there exists a hidden state zt such
that (xt, zt) are jointly Markov. We use capital letters to refer to the entire processes, i.e. ∆P

T is
the vector of cluster identities with respect to P0,T . Consider the supremum of the deviations in

16. The number of clusters used here is of the same asymptotic order as in the prior. Also, this bound may no
longer be tight.
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each period:

sup
t

DKL

(∫
Gt

ϕ
(
xt
∣∣ δPt ) dGPt (δPt ) ∣∣∣∣∣∣∣∣ ∫

Gt

ϕ
(
xt

∣∣∣ δQt ) dGQt (δQt )) . (156)

We can rewrite this as follows by the definition of filtration, since we can condition on only past
events without loss of generality, where we GM to refer to a Markov density:

= sup
FPt−1,F

Q
t−1

sup
t

DKL

(∫
GM

ϕ
(
xt
∣∣ δPt ) dGPM (δPt ∣∣FP

t−1

) ∣∣∣∣∣∣∣∣ ∫
GM

ϕ
(
xt

∣∣∣ δQt ) dGQM (δQt ∣∣∣FQ
t−1

))
.

(157)

The goal is to show that the integral of Eq. (157) with respect to P0,T can be rewritten as thee
the sum of the individual conditionals.

Again, we start by considering the Kullback-Leibler divergence between the joint distributions.
We assumed p0,T is a hidden Markov model. This implies there exists a hidden state zt such that
(xt, zt) are jointly Markov. We use capital letters to refer to the entire processes, i.e. ∆P

T is the
vector of cluster identities with respect to P0,T .

DKL (P0,T ||QT ) = DKL

(
T∏
t=1

p0,T
(
xt
∣∣FP

t−1

) ∣∣∣∣∣
∣∣∣∣∣
T∏
t=1

qT

(
xt

∣∣∣FQ
t−1

))
(158)

Since the Kullback-Leibler divergence of product densities is the sum of the Kullback-Leibler diver-
gences.

=
T∑
t=1

DKL
(
p0,T

(
xt
∣∣FP

t−1

) ∣∣∣∣∣∣ qT (xt ∣∣∣FQ
t−1)

)
(159)

≤ T sup
FPt−1,F

Q
t−1

DKL
(
p0,T

(
xt
∣∣FP

t−1

) ∣∣∣∣∣∣ qT (xt ∣∣∣FQ
t−1)

)
(160)

∫
RT×D

sup
t

log qT (X)

p0,T (X)
dP0,T (161)

We can rewrite the density period-by-period in terms of the transitions, the hidden Markov as-
sumption implies that the Gt from the are constant functions of Ft−1. Since the filtrations are
measurable with respect to x1, . . . xt−1, we can rewrite this as follows.

=

∫
RT×D

 sup
xt,FPt−1,F

Q
t−1

log

∫
GM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GM

ϕ
(
xt
∣∣xt−1, δPt

)
dGP

(
δt
∣∣FP

t−1

)
 dP0,T (162)
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Clearly, the supremum with respect to xt is greater than the average with respect to the xt.

≥
∫
RT×D

 sup
FPt−1,F

Q
t−1

log

∫
GM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GM

ϕ
(
xt
∣∣xt−1, δPt

)
dGP

(
δt
∣∣FP

t−1

)
 dP0,T (163)

Let K
(
dGP (∆P ), dGQ(∆Q)

)
be a coupling between the joint distributions of ∆P and ∆Q. Note,

this a coupling over the entire sequence of δPt and δQt .

=

∫
RT×D

∫
GP×GQ

 sup
FPt−1,F

Q
t−1

log

∫
GM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GM

ϕ
(
xt
∣∣xt−1, δPt

)
dGP

(
δt
∣∣FP

t−1

)
 (164)

dK
(
dGP (∆P ), dGQ(∆Q)

)
dP0,T

Conditional on ∆P ,∆Q, FP
t−1 and FQ

t−1 contain no information regarding δPt and δQt . By the law
of iterated expectations, we can rewrite this as integral with respect to the joint distribution as we
did above.

=

∫
RT×D

∫
GP×GQ

sup
FQt−1,FPt−1

log
ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dK(dGP (∆P ), dGQ(∆Q)

 dP0,T (165)

Factoring K.

=

∫
RT×D

sup
FQt−1,FPt−1

log

 T∏
t=1

∫
GPt ×G

Q
t

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dK (dGPt (δPt ), dGQt (δQt ) ∣∣∣FQ
t−1,F

P
t−1

) dP0,T

(166)

The Markov assumption on xt, zt implies that the δPt and δQt will be Markov as well. In addition
since the δt are almost surely discrete, we can assume without loss of generality that the hidden
state that makes xt be a hidden Markov is almost surely discrete.

=

∫
RT×D

sup
FQt−1,FPt−1

T∑
t=1

log

∫
GPM×GQM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) (167)

dK
(
dGPM (δPt ), dG

Q
M (δQt )

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

))
dP0,T (168)
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We can break the joint distribution into a conditional and a marginal.

=

∫
RT×D

sup
FQt−1,FPt−1

T∑
t=1

log

∫
GQM

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) (169)

dGPM

(
δPt

∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

)
dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

))
dP0,T

Since the logarithm is a concave function, we can use Jensen’s inequality.

≥
∫
RT×D

sup
FQt−1,FPt−1

T∑
t=1

∫
GQM

log

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dGPM (δPt ∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

)
(170)

dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

)
dP0,T

We can distribute the sum into the sum of the groups and the sum within each group.

≥ T

∫
RT×D

sup
FQt−1,FPt−1

1

T

∑
δQk

∫
GQM

∑
t∈δQk

log

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dGPM (δPt ∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

)
(171)

dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

)
dP0,T

Within each group δQK the log of the integral with respect to δPt is a constant. Let TQk be the
number of t in group δQk

= T

∫
RT×D

sup
FQt−1,FPt−1

1

T

∑
δQk

∫
GQM

TQk log

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dGPM (δPt ∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

)
(172)

dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

)
dP0,T

Since multiplication is a convex operation, we can use Jensen’s inequality.

≥ T

∫
RT×D

sup
FQt−1,FPt−1

 1

T

∑
δQk

TQk


∫

GQM

log

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dGPM (δPt ∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

)
(173)

dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

)
dP0,T
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The first sum is the sample size, and the second sum is the integral over all of the periods. Since we
are only considering the supremum over all t− 1 and each t can be in at most cluster with respect
to Q, this mean does not change the value.

= T

∫
RT×D

sup
FQt−1,FPt−1

∫
GQM

log

∫
GPM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dGPM (δPt ∣∣∣ δQt , δQt−1, δ
P
t−1, xt−1, zt−1

) (174)

dGQM

(
δQt

∣∣∣ δQt−1, δ
P
t−1, xt−1, zt−1

)
dP0,T

We can use Jensen’s inequality to pull the logarithm inside the second integral, and then combine
the successive integrals into an integral with respect to the joint.

= T

∫
RT×D

sup
FQt−1,FPt−1

∫
GQM×GPM

log
ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
ϕ
(
xt
∣∣xt−1, δPt

) dK (dGQM (δQt ), dG
Q
M (δQt )

∣∣∣FQ
t−1F

Q
t−1

)
dP0,T

(175)

Then since couplings preserve marginals, and the δt are almost surely discrete by the law of iterated
expectations.

= T

∫
RT×D

sup
FQt−1,FPt−1

log

∫
GQM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GPM

ϕ
(
xt
∣∣xt−1, δPt

)
dGPM

(
δPt
∣∣FP

t−1

) dP0,T (176)

We can factor the P0,T , and pull the supremum outside of the expectation, because we have finitely
many terms.

= T sup
FQt−1,FPt−1

∫
RD

· · ·
∫
RD

log

∫
GQM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GPM

ϕ
(
xt
∣∣xt−1, δPt

)
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) T∏
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p0,T
(
xt
∣∣FP

t−1

)
dxt (177)

Given FP
t−1 and FQ

t−1 the only place where the two terms share a value is xt. The other terms
integrated to one.

= T sup
FQt−1,FPt−1

∫
RD

log

∫
GQM

ϕ
(
xt

∣∣∣xt−1, δ
Q
t

)
dGQM

(
δQt

∣∣∣FQ
t−1

)
∫
GPM

ϕ
(
xt
∣∣xt−1, δPt

)
dGPM

(
δPt
∣∣FP

t−1

) p0,T (xt ∣∣FP
t−1

)
dxt (178)

This is the formula for the Kullback-Leibler divergence between the conditional expectations.

= T sup
FQt−1,FPt−1

DKL
(
qT

(
xt

∣∣∣FQ
t−1

) ∣∣∣∣∣∣ p0,T (xt ∣∣FP
t−1

))
(179)

By Lemma 6 the supremum of the Kullback-Leibler divergences is proportional to squared
Hellinger distance. By Proposition 11 the initial equation is bounded above by CTϵ2. (The T
comes from using non-rescaled data.)
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sup
t
h2
(
qT

(
xt

∣∣∣FQ
t−1

)
, p0,T

(
xt
∣∣FP

t−1

))
≤ sup

t

1

T
h2(qT (X), p0,T (X)) ≤ C

T

T
ϵ2 = Cϵ2 (180)

Appendix C Contraction Rates

C.1 Constructing Exponentially Consistent Tests with Respect toh∞

Lemma 1 (Exponentially consistent tests exist with respect to h∞). There exist tests ΥT and
universal constants C2 > 0, C3 > 0 satisfying for every ϵ > 0 and each ξ1 ∈ Ξ and true parameter
ξ0 with h∞(ξ1, ξ0):

1. Pr
T
(ΥT | ξ0) ≤ exp(−C2Tϵ

2) (24)

2. sup
ξ∈Ξ,en(ξ1,ξ)<ϵC3

Pr
T
(1−ΥT | ξ0) ≤ exp(−C2Tϵ

2) (25)

Then the following two conditions hold with probability 1− 2δT with respect to the prior:

sup
ϵT>ϵ

logN ((ϵ, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ ϵ} , h∞) ≤ Tϵ2T (26)

and
ΠT (BT (ξ0, ϵT , C1) |X) ≥ C exp

(
−C0Tϵ

2
T

)
. (27)

Proof. As done in the proof of the representing the Markov data, we can represent the joint density
as a product density conditionally on a sequence of latent mixing measures Gt. Since we are letting
Gt differ every period, we can do this for both QT and P0,T .

f (X |G1, . . . GT ) =
T∏
t=1

∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ) (181)

We can define a distance between these conditional densities as the sum of the squared Hellinger
distances between each period. This is not the same as the Hellinger distance between the joint
measures.

h2avg

(
f
(
X
∣∣∣ {Gft }) , g (X | {Ggt })

)
:=

1

T

T∑
t=1

h2

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ),∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

)
(182)

Then by (Birgé 2013, Corollary 2), there exists a test ϕT that satisfies the following.17

17. To map his notation into ours, take his z = 0, and take his measure R equal to P . Eq. (183) is obvious then,
and Eq. (184) follows by taking the exponential of both sides in the inequality inside the probability and rearranging.
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Pr
T

(
ϕT (X)

∣∣∣ {Gft , Ggt}) ≤ exp
(
−1

3
Th2avg

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ),∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

))
(183)

Pr
T

(
1− ϕT (X)

∣∣∣ {Gft , Ggt}) ≤ exp
(
−1

3
Th2avg

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ),∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

))
(184)

Now, the issue with these equations is that they are not in terms of h∞ and only hold con-
ditionally. The reason that we can get around this is because they hold for all Gft and for all
Ggt . Consequently, we can take the infimum of both sides, and bound the right hand side by the
following.

T

3
sup

{(Gft ,G
g
t )}
h2avg

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ), ∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

)
(185)

For any length T sequence, this equals the least favorable Gtf and Gtg repeated T times. This joint
distribution exists in our set because we are not placing any restrictions on the dynamics besides
ergodicity but a stationary distribution is clearly ergodic.

=
T

3

1

T

T∑
t=1

h2

(∫
Gfsup

ϕ
(
xt

∣∣∣ δft ) dGfsup(δft ), ∫
Ggsup

ϕ (xt | δgt ) dGgsup(δ
g
t )

)
(186)

The terms inside the sum are all the same.

=
T

3
h2

(∫
Gfsup

ϕ
(
xt

∣∣∣ δft ) dGfsup(δft ), ∫
Ggsup

ϕ (xt | δgt ) dGgsup(δ
g
t )

)
(187)

=
T

3
sup

(Gft ,G
g
t )

h2

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ), ∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

)
(188)

=
T

3
h2∞

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ),∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

)
(189)

Taking the supremum over Gft and Ggt is equivalent to taking supremum over Ff
t−1 and Fg

t−1 because
the Gft and Ggt are measurable functions of the later, and we are taking the supremum outside of
the integral. Essentially, they both span the same sets of information.

=
T

3
h2∞

(∫
Gft

ϕ
(
xt

∣∣∣ δft ) dGft (δft ),∫
Ggt

ϕ (xt | δgt ) dG
g
t (δ

g
t )

)
(190)

Since we can bound the error probabilities in both directions, using exponentially consistent
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tests, we have shown that Item 1 holds.

C.2 Bounding the Posterior Divergence

Proposition 6 (Bounding the Posterior Divergence). Let p0 be a uniformly ergodic Hidden Markov
Gaussian process, i.e. p0 :=

∑
k pkϕ (· |µt,Σt) with finite mean and finite variance. Let ΞT ⊂ Ξ and

T → ∞. Let the following condition hold with probability 1 − 2δ for δ > 0 and constants C and
n ∈ N

sup
t
h
(
qT

(
xt

∣∣∣FQ
t−1

)
, p0,T

(
xt
∣∣FP

t−1

))
< CηT . (28)

Let ϵn,T := log(T )
√
n

√
T

. Then the following two conditions hold with probability 1− 2δ with respect
to the prior

sup
ϵT,n>ϵn

logN ((ϵn, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ ϵn} , h∞) ≤ Tϵ2T,n, (29)

and
ΠT (BT (ξ0, ϵT,n, 2) |X) ≥ C exp

(
−C0Tϵ

2
T,n

)
. (30)

Proof. We are looking at locally asymptotically normal models, as discussed in Lemma 6, and we
bind the Hellinger distance and Kullback-Leibler divergence in terms of (xt − µt)

′Σ−1
t (xt − µt). In

addition, the supremum of the deviations is clearly greater than the average of the deviations, and
so h∞ forms smaller balls than both DKL (f || g) and Vk,0. Consequently, we can replace BT (ξ0, ϵT , 2)
with

{
ξ ∈ Ξ

∣∣h2∞(ξ, ξ0) < Tϵ2T
}

. We use 2 as the last argument of B because we are using V2,0, i.e.
effectively the 2nd moment of the Kullback-Leibler divergence.

To prove the result we need to find a sequence ϵT → 0 that satisfies the following two conditions.

sup
ϵT,n>ϵn

logϕ ((ϵn, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ ϵn} , h∞) ≤ Tϵ2T,n (191)

ΠT
({
ξ ∈ Ξ

∣∣h2∞(ξ, ξ0) < ϵT,n
})

≥ C exp
(
−Tϵ2T,n

)
(192)

These two conditions work in opposite directions. The first criterion is easier to satisfy the
larger η, but to get a fast rate of convergence we want a small ηT in the second condition.

By assumption, there exists a covering with Kn
T

ηT
components such that the following holds.

sup
t
h
(
qT

(
xt

∣∣∣FQ
t−1

)
, p0,T

(
xt
∣∣FP

t−1

))
< C

√
log 1

δ
ηT (193)

Equation (192) is satisfied if η2T ≥ C0
|log δ| exp

(
−Tϵ2T,n

)
.

η2T = exp
(
−T log(T )n

T

)
=

1

Tn
(194)

We need h2∞ to be bounded below and decline exponentially fast. The expressions above hold for
any η∗T ≥ ηT . Let η∗T = log(T )n

Tn . We know there exists a covering with KT = log(T )n
η∗T

components.
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KT =
log(T )n
η∗T

=
log(T )n

log(T )n/Tn = Tn (195)

KT is proportional to the number of terms we are using, and the bracketing number is propor-
tional to the covering number.

N
(
ϵn,
{
ξ ∈ Ξ

∣∣h2∞(ξ, ξ0)
}
≤ ϵn, h

2
∞
)
≤ Tn = exp (log (Tn)) = exp

(
Tϵ2T,n

)
(196)

Taking logarithms of both sides of Eq. (196) finishes the proof.

C.3 Bounding the Hellinger Distance and Kullback-Leibler Divergence

Lemma 7 (van der Vaart and van Zanten (2008) Lemma 3.1). For any measurable functions
v, w : X → R, where X is a metric space we have the following:

1. h(pv, pw) ≤ ∥v − w∥∞ exp
(
1
2∥v − w∥∞

)
2. DKL (pv || pw) ≤ ∥v − w∥2∞ exp (∥v − w∥∞) (1 + ∥v − w∥∞)

3. V2,0(pv, pw) ≤ ∥v − w∥2∞ exp (∥v − w∥∞) (1 + ∥v − w∥∞)2

In particular, we can set X = RT×D, and then the statement relates bounds with respect to the
sup-norm of X to the other divergence measures.

C.4 Contraction Rate of the Marginal Density

Theorem 8 (Contraction Rate of the Marginal Density). Let p0 be a uniformly ergodic Hidden
Markov Gaussian process, i.e. p0 :=

∑
k pkϕ (· |µt,Σt) with finite mean and finite variance. Let

T → ∞, then the following holds with ϵT =

√
log(T )
T with probability 1− 2δ with respect to the prior.

There exists a constant C independent of T such that the posterior over the transition densities
constructed above and the true transition density satisfies

P0 (ΠT (h (p0,T (xt) , qT (xt)) ≥ CϵT |X)) → 0. (32)

Proof. To prove this result, note that the existence of exponentially consistent tests with respect to
the average Hellinger metric for independent data is well-known (Ghosal and van der Vaart 2017,
540). Again, through a sampling argument, we can represent the density as product density by a
resampling argument as we did in the construction of the sieve.

Having done that we can verify the conditions in Proposition 6. If we take n = 1 in Eq. (28),
Theorem 3 implies the necessary bound on the sieve complexity exists. In addition, since h∞ is
bounded above by the normal Hellinger distance h, the conclusions of Proposition 6 trivially go
through in this weaker topology.
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This verifies the three conditions in Theorem 5 on a set with with probability 1−2δ with respect
to the prior. This then gives us the posterior contraction rate ϵT =

√
logT
T .

C.5 Contraction Rate of the Transition Density

Theorem 7 (Contraction Rate of the Transition Density). Let p0 be a uniformly ergodic Hidden
Markov Gaussian process, i.e. p0 :=

∑
k πt,kϕ (· |µt,Σt) with finite mean and finite variance. Let

T → ∞, then the following holds with ϵT =

√
log(T )2
T with probability 1−2δ with respect to the prior.

There exists a constant C independent of T such that the posterior over the transition densities
constructed above and the true transition density satisfies

P0

ΠT

 sup
FPt−1,F

Q
t−1

h
(
p0,T

(
xt
∣∣FP

t−1

)
, qT

(
xt

∣∣∣FQ
t−1

))
≥ CϵT

∣∣∣∣∣∣XT

→ 0. (31)

Proof. The proof of this is essentially identical to the marginal density case mutatis mutandis.
Lemma 1 implies the that h∞ has the required exponentially consistent tests.

Having done that we can verify the conditions in Proposition 6. If we take n = 2 in Eq. (28),
Theorem 4 implies the necessary bound on the sieve complexity exists.

This verifies the three conditions in Theorem 5 on a set with with probability 1−2δ with respect
to the prior. This then gives us the posterior contraction rate ϵT =

√
log(T )2
T .

Appendix D Macroeconomic Empirical Results

Figure 12: Housing Supply
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Figure 13: Industrial Production

(a) Posterior Density
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Figure 14: CPI gInflation

(a) Posterior Density
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Appendix E Financial Empirical Results
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Figure 15: Long-Term Interest Rate

(a) Posterior Density
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Figure 16: M2

(a) Posterior Density
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Figure 17: Personal Consumption Expenditures (PCE) Inflation
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Figure 18: GOLD

(a) Posterior Density
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Figure 19: VFH Volatility
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Figure 20: VIX

(a) Posterior Density
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Figure 21: VNQ Volatility

(a) Posterior Density
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Figure 22: XLF Volatility

(a) Posterior Density
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