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ABSTRACT

We examine when and how to reward the bearer of bad news in a dynamic principal-
agent relationship with experimentation. The agent receives flow rents from exper-
imentation, and divides his time between searching for conclusive good news and
conclusive bad news about project quality. The principal commits in advance to
rewards conditional on the type of news. At each instant, the principal observes
the agent’s allocation and news and makes a firing decision. We show that the
principal’s optimal Markov perfect equilibrium features a stark reward structure:
either the principal does not reward the bearer of bad news at all or rewards the
bearer of either news equally.
Keywords: dynamic agency, experimentation

JEL codes: C73, D83, D86, M51.

1. INTRODUCTION

When faced with projects of uncertain feasibility, individuals or organizations engage
in experimentation to acquire information about the prospects of such projects. Typically,
there are multiple ways to acquire information. For example, a researcher with a conjec-
ture in hand may attempt to develop a constructive proof or search for a counterexample
disproving the conjecture. A scientist in a tech firm may look for information that confirms
that a prototype satisfies all requirements to be put to production, or may look for a fatal
flaw in the prototype. That is, different strategies of acquiring information about a project
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may produce different types of news, such as “good news” establishing that the project is
successful or “bad news” establishing that the project will fail. Timely bad news can help
organizations save future costs and better allocate resources to other activities. However,
when the entity performing experimentation is different from the one bearing the costs
of experimentation, as is often the case, the incentives of the two parties may differ. For
example, an R&D department tasked with the development of a new product may not
want to provide bad news to management fearing closure of projects, funding cuts etc.
An obvious remedy—one that is advocated in the literature from economics (Levitt and
Snyder (1997)) and finance (Manso (2011)) to organizational behavior ( Stefflre (1985))—is
to reward the bearer of bad news.

Accepting the idea behind rewarding employees for bearing bad news, the goal of this
paper is to explore when and how much to reward the bearer of bad news in principal-
agent relationships with experimentation.

There are two important issues we need to address in this regard. First, rewarding the
bearer of bad news is costly to the firm. Second, such rewards could, in principle, also
create perverse incentives leading to employees spending an inefficiently large proportion
of their time searching for bad news.1

We develop a simple dynamic principal-agent model to pursue these issues. An agent
performs experimentation to assess the quality of a project while an investor (the principal)
bears the costs of experimentation and can terminate the relationship at will. The agent
allocates his resources across two different sources of information—a good news source
that can produce a signal only if the project is of high quality and a bad news source that
can produce a signal only if the project is of low quality. The principal commits to a news
contingent reward but cannot commit to a termination policy. The model delivers three
main insights. First, we find that the principal should do one of two things—terminate the
relationship with no severance payment upon producing bad news, or reward the agent
the same amount for producing bad news or for producing good news. Second, it may
be optimal to reward the agent for producing bad news if the initial assessment about the
project quality is sufficiently high but not if the initial assessment is low. Moreover, it
will never be optimal to reward the agent for producing bad news if the initial assessment
is low while rewarding him if the initial assessment is high. The intuition behind this,
seemingly counterintuitive, observation is that rewarding for bad news is costly for the
principal and, when the initial assessment about the project quality is low, the costs may
not offset the benefits. The third insight is that, while the above two observations hold
regardless of whether the agent’s action is observable to the principal or not, the principal
may do strictly better if she does not observe the agent’s action.

1There is also the possibility of agent fabricating bad news or sabotaging the project. While these aspects are
important in certain circumstances, they are not the focus of this work.
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More specifically, we study a continuous time principal-agent relationship where the
players seek to learn about a project of unknown quality (state), either high or low. Both
players are equally informed about the quality of the project. In the beginning of the game,
the principal commits to a reward structure, specifying rewards for the agent upon re-
vealing the project quality. After accepting the reward structure, the agent experiments.
At each instant, the principal chooses whether to continue or terminate the relationship
by firing the agent. Conditional on the principal continuing the relationship, the agent
chooses how to allocate his one unit of effort across two arms—a good news arm and a
bad news arm. The agent’s choice is observable to the principal but is not verifiable in an
outside court. Therefore, the parties cannot write contracts contingent on agent’s actions.
The good (bad) news arm produces a conclusive signal—”good (bad) news”—at an arrival
rate proportional to the effort allocated to it if and only if the project quality is high (low).
Hence, a signal on either arm fully resolves all the uncertainty. Good news also provides
the knowledge needed to implement the project which results in a lump-sum payoff to the
principal while bad news is costless in and of itself. Experimentation is costly and the costs
are borne by the principal. The agent earns flow rents while experimenting.

The initial reward structure has two restrictions: First, limited liability, i.e., the agent
cannot be forced to pay the principal under any circumstance. Second, the agent’s reward
upon obtaining good news is bounded from below by the flow rent of the agent. The
motivation behind this assumption arises from our interpretation of good news as the
principal adopting the project and employing the agent to work on it to implement the
project. After having produced good news, the agent continues to receive the flow rent he
receives during experimentation implying that the reward to the agent on producing good
news cannot be less than the flow rent.

Both parties have the same discounting rate and have outside options that are normal-
ized to zero. We study the Markov Perfect Equilibria, henceforth equilibria, of this game
using the natural state variable—the posterior probability that the project quality is high.

An important feature of our model is that the agent’s allocation is perfectly observable
but not verifiable in an outside court. We make two points in this regard. First, in Sec-
tion 5.1, we show that our main results continue to hold even if the agent’s allocation is
not observed by the principal. Second, this is a realistic assumption in relationships of ex-
perimentation such as startups financed by venture capitalists. A wide body of evidence
suggests that venture capitalists closely monitor the firms they invest in by having more
board seats (Lerner and Tåg (2013)) and this leads to an increase in innovation (Bernstein
et al. (2016)).

Should the principal offer a reward upon producing bad news? If yes, how much should
it be relative to the reward upon producing good news? Notice that the absence of a signal
when searching for bad news makes the players more optimistic. Hence, if the principal
chooses to keep the agent employed when her belief is above a cutoff belief—as will be the
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case in our principal-optimal equilibrium—then the agent has an incentive to look for bad
news closer to this belief to ensure that the beliefs do not drift below the cutoff. However,
for this very reason, it may be the case that the agent searches for bad news only to avoid
termination and nothing more.

Lemma 1 shows that this is indeed the case when the reward upon producing bad news
is less than the agent’s flow rent. When the principal does not fire the agent when the
posterior belief is above a cutoff belief, say p, the agent searches for good news everywhere
except at p, where he combines the search for good and bad news in a way that the beliefs
remain at p in the absence of a signal. This choice is called “freezing beliefs”. The intuition
behind this agent behavior is as follows. If project quality is high, bad news can never
arrive and delaying the search for bad news increases the probability of producing good
news and earning a reward. On the other hand, if the project quality is bad, he remains
employed for a longer time as it takes longer for bad news to arrive. When employed, he
collects the flow rent which is larger than the reward for producing bad news. In summary,
regardless of the project quality, it is optimal to delay the search for bad news when the
reward for producing bad news is lower than his flow rent.

When the reward upon producing bad news is higher than the flow rent, the agent may
search for bad news when sufficiently pessimistic because the likelihood of obtaining bad
news, and thereby its associated reward, may be higher than obtaining good news at low
beliefs. As a result, there is a cutoff belief p f such that, the agent searches for bad news
below it and searches for good news above.

With the agent’s behavior fully understood, we turn our attention to the principal’s
value to ask: is it ever optimal to reward bad news? If yes, when, and how? Toward
this answer, we make the following simple, but important, observation. Whenever the
rewards for producing good and bad news are larger than the flow rent, the resulting
agent’s best response can be supported by choosing strictly lower rewards so long as they
are larger than the flow rent. As consequence, we obtain that the optimal reward structure
is stark—either do not reward the agent for producing bad news or reward him equally
for producing good or bad news. In fact, both rewards should be equal to the flow rent.

When the principal rewards the agent for producing both types of news by setting the
rewards equal to the flow rent, the agent’s best response is not unique. In fact, any behavior
of the agent that results in a non-negative drift of beliefs at the cutoff belief below which the
principal fires, is a best response for the agent. Therefore, the principal’s problem reduces
to finding an optimal allocation policy within the set of best responses of the agent. The
resulting optimal policy for the principal is characterized by a switching belief ps such that
the agent looks for bad news below ps, and good news above.

Finally, we find the optimal reward structure by comparing the two values to the princi-
pal at the initial prior about project quality: one by not rewarding the agent for bad news,
and the other where the reward for bad news is equal to the flow rent. Depending on the
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primitives of the model, the optimal reward structure can fall into one of three cases. In
the first case, the agent is rewarded for bad news regardless of the initial prior. Second
case is when the agent is not rewarded for bad news regardless of the initial prior. Unlike
the first two cases, the optimal reward structure is sensitive to the initial prior in the third
case. Here the agent is rewarded for bad news when the initial prior is sufficiently high,
and not rewarded otherwise. The intuition behind this seemingly counterintuitive reward
structure of rewarding for bad news if starting at high priors is related to the observation
we made earlier—rewarding for bad news is costly to the principal. However, when the
initial prior is high, the principal is willing to incur the costs of rewarding bad news, for
he expects that to be a less likely outcome.

In proposition 3, we provide sufficient conditions for the reward structure to be of the
first or the second type. In particular, we show that when the bad news technology is
sufficiently informative and the cost of experimentation is high enough, it is optimal to
reward bad news for all initial priors. In contrast, when the good news technology is
sufficiently informative, it is optimal to not reward bad news for all initial priors.

Lastly, we explore the robustness of our findings. Of particular interest is the case when
the agent’s allocation choice is private—not observed by the principal. Dynamic games
where actions affect learning about the underlying state are often intractable due to the
possibility of the deviating player (agent in this case) possessing persistent private infor-
mation, and thereby private beliefs. However, we find that the main forces that drive the
results when allocation choice is observed continue to apply when allocation choice is pri-
vate. We compute the principal’s optimal policy in this case, and show constructively that
it can be supported in equilibrium by either having the rewards for both good news and
bad news to be equal to the flow rent, or by not rewarding the agent for producing bad
news at all. Interestingly, the principal may strictly benefit when the agent’s action is not
observable to her. The reason is that when there are no rewards for bad news, the agent
will exclusively search for good news until getting fired, a policy that the principal prefers
over one in which the agent searches for a good news until a cutoff belief, where he freezes.
We also prove that the main insights of our model remain unchanged even if the bad news
technology was not fully revealing, i.e., one bad news would not mean that the project
quality is necessarily low.

The paper is organized as follows. We next comment on our connection with the liter-
ature. In Section 2 we present the model and then present results in Section 3. Lastly we
discuss extensions in Section 5. All proofs are relegated to the appendix.

Related Literature: On the problem of rewarding the agent for bad news, the literature
has focused on incentivizing the agent to reveal bad news that he observes privately. For
example, Levitt and Snyder (1997) show that rewarding for bad news may be optimal
when the agent receives a private signal about the project quality. Hidir (2017) and Chade
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and Kovrijnykh (2016)) are examples of dynamic contracting problems where the agent has
the freedom to disclose bad news. We complement this literature by showing that, even
though both actions and signals are public, the inability of the parties to write contracts
contingent on actions can deter the agent from searching for bad news. Note that the
choice of specifically searching for bad news is absent in the above mentioned papers.
Manso (2011) shows in a two period setting with full commitment, that motivating an
agent to innovate may require tolerating or even rewarding early bad news. Like the ones
mentioned above, this model also does not allow for a technology to search for bad news.

Our model builds on the exponential bandit models of Keller et al. (2005) and Keller and
Rady (2015), which study good and bad news arms resepectively. Technically, the paper
closest to ours is Che and Mierendorff (2016). They study a single agent decision problem
(as opposed to a two player game we have) of experimentation where the agent has the
choice to look for good news and bad news. In a related single agent decision problem,
Damiano et al. (2017) introduce an auxiliary learning process that allows for looking for
both good and bad news while experimenting on a one arm bandit in lines of Keller et al.
(2005).

Garfagnini (2011) and Guo (2016) also study a delegation game between a principal and
an agent where the agent carries out experimentation. While the contracting and payoff
environment differs, the key distinction is our focus on how the agent’s incentives shape
the dynamics when the choice of both good and bad news is available. This tradeoff is
absent in both Garfagnini (2011) and Guo (2016). As an agency problem of collective ex-
perimentation, this paper also relates to Kuvalekar and Lipnowski (2018). However, the
efforts there are ranked in the sense of Blackwell (1953) making the agent’s choice, when
not getting fired, straightforward—choose the least informative action. Since the good
news and bad news sources are ranked in the sense of Blackwell (1953), the dynamics are
richer in our environment. Halac et al. (2016), Bergemann and Hege (2005) and Hörner
and Samuelson (2013) are other instances of contracting problems with delegated expeir-
mentation with moral hazard and (or) adverse selection.

Recently, the question of information acquisition in the presence of multiple informa-
tion sources has been pursued among others by Che and Mierendorff (2016), Liang et al.
(2017), Liang and Mu (2018), Fudenberg et al. (2017), and Mayskaya (2017). In contrast, in
this paper we explore information acquisition from multiple sources of information in a
principal-agent setting where the incentives of the two parties differ.

2. MODEL

Players: There are two players, a principal (she) and an agent (he). Time t is continuous
with an infinite horizon. The principal hires the agent to work on a project of unknown
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quality. The quality of the project is high, θ = 1, or low, θ = 0. At time 0 both players have
a common prior on the underlying project quality: E0θ = p0 ∈ (0,1).
Actions: At each instant, the principal chooses whether to fire, s = 0 or not to fire the
agent, s = 1. Firing is irreversible and ends the game.2 Conditional on not firing, the
agent divides a unit of effort between a good news technology and a bad news technology.
The agent’s allocation to the good news technology at time t is at ∈ [0,1], and (1− at) is
the effort devoted to the bad news technology. The agent’s allocation is observable to the
principal but not contractible.
Information: The agent’s allocation affects the arrival rate of two exponentially distributed
signals (news). A realized good (bad) signal is denoted by G(B). The arrival rate of a
G signal is λgatθ, and that of a B signal is λb(1 − at)(1 − θ). Both signals are publicly
observed. Since actions and outcomes are public, there is no private information: players
have the same posterior belief about θ on or off-path. Also, notice that either signal, G or B,
resolves all the uncertainty: the realization of G(B) gives both players the belief p = 1(p =

0). A G signal, apart from confirming that the project is of high quality, also provides the
knowledge needed to implement the project. We denote by yt ∈ {φ,G,B} the news at time
t, where φ denotes no news.
Payoffs: At the beginning of the relationship, the principal commits to a reward structure
which specifies a payment of R to the agent if a G signal arrives and F if a B signal arrives.
When employed, the agent receives an exogenously specified fixed wage w > 0 from the
principal.3 The principal incurs a flow cost of c > w which we interpret as the cost of
carrying out experimentation and the wage paid to the agent. If G arrives, the game ends
with the principal receiving Γ. If B arrives, the game ends with the principal receiving 0.
Both players discount future payoffs at rate r normalized to equal 1.4

The terminal payoffs are:

(1) If principal fires the agent, both players receive 0.
(2) If G obtains, the principal receives Γ− R and the agent receives R.
(3) If B obtains, the principal receives −F and the agent receives F.

Letting τ denote the stochastic time at which either the agent is fired or conclusive news
arrives, the agent’s payoff is given by

u(p0) = Ea,s

[∫ τ

0
e−uwdu + e−τ

[
1yτ=GR + 1yτ=BF

]]
,

and the principal’s payoff is given by

v(p0) = Ea,s

[∫ τ

0
e−u(−c)du + e−τ

[
1yτ=G(Γ− R) + 1yτ=B(−F)

]]
.

2Irreversible firing is not restrictive because in our equilibria, once the principal fires he will never hire again.
3This is w.l.o.g. in that we can allow the principal to choose any fixed wage as long as it is at least equal to w.
4This normalization amounts to merely calculating time in different units.
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By dividing both players’ payoffs by w, we can set, without loss of generality, w = 1.5

Lastly, we assume R ≥ 1. That is, the amount the principal pays to the agent upon ob-
taining a G signal, is no less than the discounted value of the agent’s wage. We interpret
good news as the principal adopting the project and employing the agent to work on it.
The agent should thus continue to receive at least the flow rents he receives during the
experimentation stage.

2.1. STRATEGIES AND EQUILIBRIUM

Let Pt be the posterior probability that θ = 1 at time t conditional on the agent’s allo-
cation history and signal realizations. We restrict attention to Markov Perfect Equilibria
(equilibria or MPE henceforth) using Pt as state variable.

A Markov strategy for the principal is a reward structure (R,F) ∈ [1,∞]× [0,∞] and a
function s : [0,1] → {0,1} that specifies hiring (s = 1) and firing (s = 0) at each belief. A
Markov strategy for the agent is a function a : [0,1]→ [0,1] specifying an allocation at each
belief.

The posterior belief Pt is a stochastic process that takes a value 1(0) for all t > τ such
that yτ = G(B). In the absence of a conclusive signal and when a(·) is continuous, Pt

follows the law of motion given by, 6

dPt

dt
= [(1− a(Pt))λb − a(Pt)λg]Pt(1− Pt). (1)

We make the following assumptions on a : [0,1] → [0,1] to ensure that there exists a
unique continuous function P : [0, ∞)→ [0,1] that satisfies (1) whenever a(·) is continuous.

ASSUMPTION 1. (1) The function a(·) is piecewise continuous.7

(2) Define

a f =
λb

λb + λg
. (2)

For any p̂ where a(·) is discontinuous, if limq↑ p̂ a(q) ≤ a f and limq↓ p̂ a(q) ≥ a f , then
a( p̂) = a f .

Note that using (1) we can show that

dPt

dt
= 0,

5By doing so, the agent’s wage becomes 1, while his terminal payoff becomes S/w and F/w depending on the
signal. For the principal, the flow cost is c/w and the terminal payoffs are Γ/w− S/w and −F/w depending
on the signal.
6Since beliefs are a martingale, we have that λga(Pt)Ptdt + (1− [λga(Pt)Pt + λb(1− a(Pt))(1− Pt)]dt)(Pt +

Ṗtdt) = Pt. Dividing by dt we obtain (1).
7A piecewise continuous function is continuous except at a finite number of points in its domain.
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when a(Pt) = a f . That is, beliefs do not move in the absence of a conclusive signal if the
agent allocates a f to the good news technology. We call a f as the freezing allocation and
when agent chooses a f at some belief p, we say that “the agent freezes beliefs at p”.

Denote the space of Markov strategies for the agent by A and the space of hiring/firing
Markov strategies of the principal by S . Given P0 = p0 and (a,s) ∈ A × S , define the
induced stochastic process {Pt, At, St} by setting At = a(Pt), st = s(Pt) and letting {Pt}t

follow (1).
The value function for the agent is

u(p|a,s,R,F) := Ea,s

[∫ τ

0
e−uwdu + e−τ

[
1yτ=GR + 1yτ=BF

] ∣∣P0 = p
]

,

and for the principal is

v(p|a,s,R,F) := Ea,s

[∫ τ

0
e−u(−c)du + e−τ

[
1yτ=G(Γ− R) + 1yτ=B(−F)

] ∣∣∣P0 = p
]

.

Finally, we define the notion of equilibrium in our setting.

DEFINITION 1. An equilibrium is a collection (a,s,R,F) ∈ A× S × [1,∞]× [0,∞] such that:
(1) Agent optimality. For each p ∈ (0,1),

a ∈ argmaxâ∈A u(p|â,s,R,F).

(2) Principal optimality.
(a) Firing strategy s is optimal at all beliefs p ∈ (0,1) given (R,F).

Given any (R,F), for each p ∈ (0,1),

s ∈ argmaxŝ∈S v(p|a,ŝ, R,F).

(b) Define, E(R,F) := {(a,s) : (a,s) satisfy 1 and 2a respectively for the given (R,F).},
and v∗(p|R,F) := sup(a,s)∈E(R,F) v(p|a,s,R,F).
The initial choice of (R,F) must be optimal.

(R,F) ∈ argmaxR̂,F̂∈[1,∞]×[0,∞] v∗(p0|R̂,F̂).

We assume that the value the principal receives when a G signal arrives is sufficiently
high relative to the cost of experimentation:

ASSUMPTION 2.
λbλg

λb + λg
(Γ− 1)− c > 0.
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3. RESULTS

Given a reward structure, we characterize the principal-optimal equilibrium as follows.
First, we fix a stopping strategy for the principal and find the agent’s best response. There-
after, given the agent’s best response we find the principal’s optimal stopping strategy.
For any reward structure, there is a unique principal-optimal equilibrium. Therefore, we
compare the principal-optimal equilibria across various reward structures to obtain the
optimal reward structure given the initial belief p0.

3.1. AGENT’S BEST RESPONSE

Suppose the principal hires on an interval [p,p̄] ⊆ [0,1], that is,

s(p) =

1 if p ∈ [p,p̄],

0 if p /∈ [p,p̄].

What would the agent do at each belief? He has two choices: look for good news or look
for bad news. If he looks for bad news, the game ends with him receiving F if a B signal
arrives, while the beliefs move up in the absence of news. If he looks for good news, the
game ends with him receiving R if a G signal arrives, while the beliefs move down in the
absence of news. The agent strictly prefers being employed over getting fired, while the
principal wishes to hire the agent when sufficiently optimistic about project quality. If F
is large enough (say F = 1) looking for bad news—even though costly to the principal,
imposes no hazard for the agent. But what about when F is small, say F = 0 e.g.? In that
case, looking for bad news imposes a hazard as a B signal would end the game with the
agent receiving nothing. Alternatively, the agent can look for good news which entails a
possibility of a reward R if a G signal is obtained, however, beliefs move down to the firing
cutoff p in case no signal arrives. As Lemma 1 clarifies, the agent is heavily predisposed
against looking for bad news when F is smaller than 1, the agent’s wage. However, he
makes use of the bad news technology by combining it with the good news technology to
freeze beliefs at p. The observability of the agent’s allocation plays a critical role here. It
allows the agent to continue employment by preventing the principal’s beliefs from falling
any further in the absence of a signal. Above p, he only looks for good news. That is, the
agent delays looking for bad news as much as possible. The remedy, should the principal
want the agent to look for bad news, is to have F ≥ 1. In that case, the agent looks for
bad news below a cutoff belief p f (defined below) and looks for good news above. As
a consequence, if the beliefs reach p f , they remain frozen there until the uncertainty is
resolved. We discuss the intuition behind how p f is calculated in the discussion following
Lemma 1 which characterizes the best response of the agent. All the proofs are presented
in the appendix.
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p f :=
λb(F− 1)

λb(F− 1) + λg(R− 1)
. (3)

LEMMA 1. Suppose the principal hires the agent when p ∈ [p,p̄] ⊂ [0,1] and fires otherwise. The
best response of the agent, for any p ∈ [p,p̄], is the following:8

If (R,F) 6= (1,1), and

(1) if F < 1, then

a(p) =

a f if p = p,

1 if p ∈ (p,p̄];

(2) if F ≥ 1 and p f ≥ p̄, then

a(p) =

a f if p = p̄,

0 if p ∈ [p,p̄);

(3) if F ≥ 1 and p f ≤ p, then

a(p) =

a f if p = p,

1 if p ∈ (p,p̄];

(4) if F ≥ 1 and p f ∈ (p,p̄)

a(p) =


0 if p ∈ (p,p f ),

a f if p = p f ,

1 if p ∈ (p f ,p̄].

If (R,F) = (1,1), the agent’s best response is any a ∈ A such that a(p) ≤ a f and a( p̄) ≥ a f .

To gain some intuition assume the agent has only three choices at any belief: look for
good news alone, bad news alone or freeze beliefs, and that the hiring interval is of the
form [p,1]. Qualitatively, the agent’s best response has two forms: one when F < 1 and
another when F ≥ 1.

We first consider F < 1. Suppose R ≥ 1 and F < 1, and the hiring interval is of the
form [p,1]. Notice that the agent can choose to freeze beliefs at any p ∈ [p,1], giving us a
lower bound on his value function. Starting at some p0 ≥ p, consider the following two
Markovian strategies:

(1) Look for good news until beliefs reach q ∈ (p,p0) in the absence of signal and freeze
at q.

8Outside the hiring region [p,p̄], the agent is indifferent across any allocation.
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(2) Look for good news until beliefs reach q− ε ∈ (p,p0) in the absence of signal and
freeze at q− ε, for a small ε > 0.

It is easy to see that (2) performs strictly better than (1). If θ = 0, a B signal will arrive
after the agent switches to freezing and the agent receives 0 eventually with either policy.
However, in (2), a B signal is delayed because the agent freezes beliefs later. If θ = 1, the
agent will receive 1 until a G signal arrives, in which case the agent receives R ≥ 1. In (2),
the agent spends strictly larger time looking for a G signal and therefore, is expected to
receive R earlier. Therefore, regardless of the state, the agent does better.

The above argument suggests that if the agent switches from good news to freezing at
some point, he would postpone it as much as possible. Therefore, freezing at any belief
except at p cannot be optimal. At p, the agent will not choose an allocation a(p) > a f as,
in the absence of a signal, the beliefs drift downward yielding a continuation payoff of 0.
Therefore, the agent must either freeze beliefs at p, or look for bad news at p, which has an
identical effect of freezing beliefs at p, since the agent switches back to using the good news
arm once beliefs are higher than p. Also, It is easy to see that looking for bad news forever
is worse than freezing beliefs for analogous reasoning as in the previous discussion.

Therefore, if the agent does in fact use a = 0 (look for bad news) then, he must eventually
shift to looking for good news at some belief p ∈ (p,1). However, at such a switching
belief p—a belief such that to its left the agent looks for bad news and to its right the agent
looks for good news—the beliefs remain frozen conditional on reaching there. As argued
previously, freezing at p ∈ (p,1) is strictly suboptimal. Therefore, we have a candidate for
the optimal policy when R ≥ 1 and F < 1—Look for good news on (p,1) and freeze at p.
Its optimality is then established using the usual verification arguments, more importantly,
by not imposing the restriction that a(p) ∈ {0,a f ,1}.

The only way to incentivize the agent to look for bad news is by offering a reward
F ≥ 1. To this end, suppose (R,F) 6= (1,1) and F ≥ 1. Notice that the agent can guarantee
himself a payoff of at least 1 by freezing beliefs. Therefore, we could focus on the excess
payoff the agent receives over 1. If G obtains, the excess payoff is R − 1 and for B it is
F− 1. At some belief p, by looking for good news for a small time dt, the agent’s expected
myopic payoff is λg p(R − 1)dt, which is increasing in p. Similarly, the expected myopic
payoff by looking for bad news is λb(1 − p)(F − 1)dt, which is decreasing in p. At p f ,
the switching belief such that the agent looks for bad news to its left and good news to its
right, the two expected myopic payoffs are equal. We would like to emphasize though, that
reasoning based on the myopic payoff comparison for the two kind of news is illustrative
but incomplete. Dynamic considerations should play a role in deciding what news to
look for. By looking for bad news, the beliefs move upwards and good news drives them
downwards, and in amounts proportional to λb and λg. Therefore, the agent’s choice is an

12
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outcome of both the myopic payoff comparisons and the curvature of the optimal value
function that determines the spread of continuation values.

3.2. PRINCIPAL’S PROBLEM

In light of Lemma 1, we first argue that we have two cases to consider insofar as the
principal’s optimal choice of reward structure is concerned: F = 0 and F ≥ 1. To see this,
note that for any F ∈ [0,1), the agent’s behavior is unchanged while the costs increase in
F for the principal. Therefore, the principal would either set F ≥ 1 to induce the agent
to look for bad news on an interval or would set F = 0. Also, it is easy to see that in the
principal’s optimal equilibrium, the higher endpoint of the hiring interval p̄, is equal to 1.
Therefore, in the principal’s optimal equilibrium, the principal’s strategy is simple: fire if
p < p, and hire otherwise.

Suppose, in the principal’s optimal equilibrium R > 1 and F > 1. Lemma 8 in the
appendix shows that we could then lower R and F to keep the agent behavior unchanged
while increasing the principal’s payoffs. The logic is straightforward. If (R,F) >> (1,1),
the agent looks for bad news when beliefs are below p f and good news when the beliefs
are above p f , where p f is given by (3). It is clear that for any (R,F) >> (1,1), we can choose
(R′,F′) such that 1 < R′ < R, 1 < F′ < F to obtain the same p f . Therefore (R,F) > (1,1)
cannot be optimal for the principal. Lastly, it is easy to see that R = 1, F > 1 or R > 1, F = 1
is suboptimal for similar reasons: lowering F or R (whichever is larger than 1) keeps p f

the same (0 or 1) and so keeps the agent’s behavior unchanged. Therefore, we have either
R = F = 1 or R = 1 and F = 0. As a result, we can reduce the principal’s problem of
finding the optimal reward structure to simply choosing between F = 1 or F = 0. That
is, the principal either does not reward bad news at all or rewards it the same as the good
news. The above discussion motivates the following proposition whose detailed proof can
be found in the appendix.

PROPOSITION 1. Reduction of the Principal’s Problem. In a principal-optimal equilibrium,
R = 1 and F ∈ {0,1}.

Finally we compare the principal’s optimal values for two cases: (R,F) = (1,0) and
(R,F) = (1,1). Notice that in case (R,F) = (1,1), the agent’s best response is not unique. In
fact, any allocation policy of the agent that results in a non-negative drift of beliefs at the
cutoff belief below which the principal fires i.e. a(p) ≤ a f , is a best response for the agent.
Therefore, we are left with the following questions:

(1) Given the agent’s indifference when (R,F) = (1,1), what is the principal’s preferred
behavior for the agent?

(2) What is the optimal p when (R,F) = (1,0) and when (R,F) = (1,1)?
13
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(3) What is the optimal reward structure for the principal? In particular, is it ever
optimal to have F = 1? Conversely, is it ever optimal to have F = 0?

We answer (1) in the appendix, Section A.7. For an exogenously specified firing cutoff p,
we show that the principal’s preferred behavior for the agent under the constraint that
a(p) ≤ a f is simple: if p < ps (defined in (4) below), look for bad news when p < ps, look
for good news when p > ps and freeze beliefs at ps. If p ≥ ps, look for good news when
p > p, and freeze beliefs at p.

ps =
λb(c− F)

λg(Γ− R + c) + λb(c− F)
=

λb(c− 1)
λg(Γ− 1 + c) + λb(c− 1)

. (4)

In light of the reduction of the principal’s problem, we are left with the following two
candidate agent strategies for the principal hiring region of the form [p,1]. a∗0 is the strategy
when F = 0 while a∗1 is the strategy when F = 1.

a∗0(p) =


1 if p > p,

a f if p = p,

0 if p < p.

(5) a∗1(p) =


1 if p > max{ps, p},
a f if p = max{ps, p},
0 if p < max{ps, p}.

(6)

Now we turn to answer (2). For a given reward structure and the agent behavior, the
principal chooses an optimal stopping belief p. Let the optimal stopping beliefs for F = 0
and F = 1 be p∗0 and p∗1 respectively.9 A natural candidate for p∗0 is the belief at which the
principal’s value is 0, given that the agent freezes beliefs at that belief. Lemma 11 in Section
A.6 shows that indeed such a belief is the optimal stopping belief. In the case when when
F = 1 and p ≥ ps, note that the agent’s behavior is identical to the case when F = 0 for a
given stopping belief. Hence, in this case p∗1 is calculated in an identical way as above. In
the case when F = 1 and p < ps, the optimal stopping belief p∗1 is set to the belief at which
the principal’s value is 0, given that the agent is following the strategy given by (5).

We finally answer (3). Let the associated optimal value functions for the principal be
given by vF=0

∗ (·) and vF=1
∗ (·) for the case F = 0 and F = 1 respectively. The explicit

expressions are given in the appendix, (23) and (33) respectively.
Insofar as the principal’s optimal reward structure is concerned, what remains now is

to compare vF=0
∗ (p0) and vF=1

∗ (p0), where p0 is the prior at time 0. We formally state this
comparison in the proposition below. Let the principal’s optimal value function in the
game with P0 = p0 (recall that Pt is the belief at time t) be denoted by vp0(·).

9More details about these beliefs can be found in the appendix, (21) and (32).
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PROPOSITION 2. For any initial prior p0, the principal’s optimal value function, vp0(p) is the
following:

vp0(·) =

vF=0
∗ (·) if vF=0

∗ (p0) ≥ vF=1
∗ (p0),

vF=1
∗ (·) if vF=1

∗ (p0) > vF=0
∗ (p0).

Proposition 2 answers when to reward bad news by setting F = 1. The principal com-
pares the two value function for F = 0 and F = 1 at time 0 and chooses the maximum.
However, it does not answer the question of whether F = 1 ever obtains and, conversely,
is F = 0 ever optimal? The following proposition answers these question. Before we state
the proposition, define, Λ := λbλg

λb+λg
.

PROPOSITION 3. Suppose

c > (1 + λg). (7)

There exists λb such that for all initial beliefs, λb > λb implies that F = 1 is optimal, and in
particular, strictly optimal when vF=1

∗ (·) > 0. On the other hand, if

c + Λ
ΛΓ

>
λb(c− 1)

λg(Γ− 1 + c) + λb(c− 1)
, (8)

then F = 0 is optimal for all initial beliefs, and in particular, strictly optimal when vF=0
∗ (·) > 0.

The sufficient condition for optimality of F = 1 is derived by simply asking, when is it
the case that p∗1 < p∗0? In that case, since the stopping cutoff with F = 1 is strictly lower
than the cutoff for F = 0, it is at least optimal to have F = 1 when p ∈ (p∗1 ,p∗0). However,
it turns out that whenever p∗1 < p∗0 , vF=1

∗ (p) > vF=0
∗ (p) for all p > p∗1 . That is, it is optimal

to set F = 0 for all prior beliefs when the principal does not fire the agent right away.
The sufficient condition for optimality of F = 0 is straightforward. Consider the case

when F = 1 and set p < ps. Look at the principal’s value function when the agent looks
for bad news below ps and good news above it. If this value is negative at ps, then it will
not be optimal for the principal to hire at ps. In that case, we will have p∗1 > ps, and the
agent behavior (on path) would be to look for good news at all beliefs above p∗1 , and freeze
beliefs at p∗1 . This behavior, qualitatively, is identical to the agent behavior with F = 0.
Therefore, since the principal’s costs are higher when F = 1, we will have p∗1 > p∗0 , and
vF=0
∗ (p) > vF=1

∗ (p) for all p > p∗0 .
While our sufficient conditions establish that we can have either F = 0 or F = 1 as the

optimal reward for all initial priors, what happens when the two conditions are violated? It
will still be the case that optimally F ∈ {0,1}, but the answer will depend on the prior belief
p0 as well. As Figure 1 shows, it is possible to have p∗1 > p∗0 and yet, vF=0

∗ (·) and vF=1
∗ (·)

not being globally ranked. In fact, vF=0
∗ (·) and vF=1

∗ (·) cross at most once. Moreover, if
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they cross, they cross in a way that vF=1
∗ (·) dominates vF=0

∗ (·) above a certain p̂, and the
other way below it. That is, whenever it is optimal for the principal to reward bad news
for some prior p0, it is optimal to reward bad news for all priors larger than p0. On the
other hand, whenever it is optimal to not reward bad news for some prior p0, it is optimal
to do so for all the lower priors. This observation is summarized in Proposition 4 below.
The proofs can be found in Lemma 28 and the lemmata before it in the appendix.

PROPOSITION 4. If vF=0
∗ (p∗1) > 0 and vF=0

∗ (ps) < vF=1
∗ (ps) then ∃ p̂ such that, vF=1

∗ (p) >

vF=0
∗ (p) whenever p ∈ ( p̂,1) and vF=1

∗ (p) < vF=0
∗ (p) whenever p ∈ (p∗0 , p̂).

The intuition behind this, perhaps counter-intuitive reward structure relates to the ob-
servation we made earlier: rewarding the agent for producing bad news is costly. If initial
prior is high, then the expected revenue from the project is also high which implies that the
principal is willing to bear the cost of rewarding for producing bad news, for she expects
that to be a less likely outcome.
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3.3. WHEN AND HOW TO REWARD BAD NEWS

Observations from Propositions 2, 3, and 4, lead to two important takeaways. First, it
may indeed be optimal to reward the bearer of bad news. But always rewarding for bad
news is not necessarily optimal. Second, the answer can also depend on the initial prior.
If the bad news technolgy is sufficiently informative (λb > λb) and if experimentation is
sufficiently costly (7), then it is optimal to reward bad news. This may explain why, in
the technology sector, there is a growing push towards rewarding reporting bad news,
since it is relatively easier to find bugs in softwares.10 At the same time, if the good news
technology is extremely informative (λg → ∞ e.g.) then it is not optimal to provide in-
centives to look for bad news (Inequality (8) holds). Some explanations suggest that the
employees fear the negative consequences of being the bearer of bad news. Hence, bad
news is not transmitted efficiently to the management.11 We view our explanation as an
alternate one—it is perhaps not fear but rather the reward structure that disincentivizes
the employees from acquiring such information. That is, it is not that the employees hide
negative information, but rather that they choose not to acquire it. In a software company,
this would mean that employees do not look for bugs in their products in the absence of
adequate incentives. Widely adopted use of the “bug bounty programs” in the recent times
is consistent with this explanation.

4. BEYOND MARKOV PERFECT EQUILIBRIA

The following strategy profile (σ∗) is an MPE: The agent always looks for bad news
and the principal always fires. In σ∗, both players are simultaneously min-maxed, and
therefore, σ∗ is the worst threat to both players. Using σ∗ as punishment, intuitively, we
can implement any behavior from either players in a non-MPE, in particular the first best.12

To see this, suppose the principal wants to implement any allocation ã(t) starting at time
0. The grim-trigger strategy profile where the principal hires as long as the agent follows
the allocation policy ã(t) and reverts to σ∗ following any deviation from the agent is an
equilibrium. The agent is willing to follow ã(t) because it guarantees him wages and any
deviation leads to firing.

10For example, Keil and Mähring (2010) and Tan et al. (2003) document the importance of rewarding bad news
in project management in the technology sector.
11As documented by Smith and Keil (2003), and to quote Barry M. Staw and Jerry Ross, ”Because no one wants to
be the conveyor of bad news, information is filtered as it goes up the hierarchy.” https://hbr.org/1987/03/knowing-
when-to-pull-the-plug
12Formalizing this discussion involves handling the well known issues in continuous time games described
in Simon and Stinchcombe (1989) and Bergin and MacLeod (1993). For our purposes, an illustration suffices.
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This grim-trigger equilibrium relies heavily on the presence of a severe threat. We im-
pose a simple requirement of weak renegotiation-proofness due to Farrell and Maskin
(1989), adapted to dynamic games by Bergemann and Hege (2005).13

DEFINITION 2. In the subgame after choosing a reward structure (R,F), a subgame perfect equi-
librium {a,s} is weakly renegotiation-proof if there do not exist continuation equilibria at some
ht and ht′ with P(ht) = P(ht′) and ht 6= ht′ such that u(ht) ≥ u(ht′) and v(ht) ≥ v(ht′) with at
least one strict inequality.

The above definition, viewed as an internal consistency requirement, requires that after
any two histories such that the beliefs are the same after the two histories, the continuation
play must not be Pareto ranked. It is easy to see that the grim-trigger equilibrium is not
weakly renegotiation-proof. On the other hand, any MPE is weakly renegotiation-proof
because, the continuation play is the same after any two histories such that the beliefs are
the same. This straightforward observation is summarized below.

PROPOSITION 5. All MPEs are weakly renegotiation proof.

Since we are interested in the principal-optimal equilibria, the question remaining is
whether there are weakly renegotiation-proof equilibria that deliver higher payoff to the
principal compared to the principal-optimal MPE. We are not aware of any such equilib-
rium and leave this issue to be resolved in future research.

5. EXTENSIONS

5.1. UNOBSERVABLE ALLOCATION CHOICE

A key feature of our model is that the agent’s allocation is observable to the principal.
However, it is natural to explore what would happen if the agent’s actions were not ob-
servable to the principal. We show that main insights of our model remain unchanged in
this environment.

We modify the model presented in Section 2 by assuming that the allocation choice of
the agent is not observed by the principal, however any signal (good news or bad news)
is observed by both parties. Because allocation choice is privately observed by the agent,
the principal’s strategy cannot depend on the belief about the state which is known only to
the agent once the game commences. Hence the notion of MPE in beliefs is not applicable
in this setting.

Given a reward structure (R.F), a pure strategy for the principal is a stopping time
T ∈ [0, ∞] such that the principal hires the agent when t < T and fires the agent when
t ≥ T, in the absence of a conclusive signal. The agent’s history at any point where no

13Formal details on defining strategies and histories in our setting can be provided if needed.
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conclusive news has arrived is ht := (at)t where at is the allocation at time t. Any private
history maps into a belief P̃t for the agent which evolves according to the law of motion
given by (1). The set strategies for the agent is the set of functions a : [0,1]× [0,∞) → [0,1]
which specifies an allocation at time t when belief is P̃t. Given a reward structure (R,F), an
equilibrium is a tuple (T,a), such that each player best responds to the other.

We first consider the case when R = 1 and F = 0. In this case, the agent has no incentive
to look for bad news. This is because a bad news leads to termination without any reward
to the agent. Given that the agent looks for good news exclusively, the principal’s optimal
behavior is simply to fire the agent when beliefs drift down sufficiently in the absence of a
signal. Suppose that the initial belief is p0, and define

p̂0 =
c

λg(Γ− 1)
, (9)

then the principal-optimal equilibrium is established by the following lemma.

LEMMA 2. When R = 1,F = 0, the principal-optimal equilibrium is given by (τ∗,a∗) such that

(1) Agent’s allocation: a∗(p,t) = 1 for all t ≤ τ∗

(2) If p0 ≤ p̂0, then τ∗ = 0.
(3) If p0 > p̂0, then τ∗ = inf{t : Pa

t = p̂0}, where Pa
t denotes the Principal’s posterior

probability that θ = 1 calculated assuming au = 1 for all u ≤ t.

When F < 1, given any stopping time T of the principal, the agent prefers to delay
the search for bad news as much as he can. The intuition is the following. Suppose the
principal hires follows a finite stopping time policy, i.e. fires the agent if no signal arrives
by time T. Take a strategy (at)t such that the agent devotes Tg :=

∫ T
0 atdt time to look for

good news and the remaining for bad news. Now, define another strategy (ât)t where, the
agent searches sets ât = 1 when t ≤ Tg and sets ât = 0 thereafter. Note that if θ = 1,
the payoff of the agent is the same under both strategies since a B signal never arrives.
However, if θ = 0, bad news arrives earlier in expectation under a compared to â. Since,
F < 1, the agent prefers â to a since he can collect a flow wage of 1 for longer in expectation.
Therefore, in any best response, the agent will search for good news up to some time T1

and may search for bad news thereafter. Note that the principal has a profitable deviation
in case the agent searches for bad news. She can simply lower her stopping time to T1

and be better off since she knows that after T1, the agent can only produce a B signal that
leads to the abandonment of the project and she can save the cost of experimentation by
abandoning the project herself. Notice that given this equilibrium behavior of the agent,
the principal is might as well set R = 1 and F = 0. Hence R = 1 and F ∈ (0,1) does
not improve upon R = 1 and F ∈ (0,1). The above discussion is summarized the lemma
below.
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LEMMA 3. In the principal-optimal equilibrium, either F = 0 or F ≥ 1.

Next, we look at the case when R = F = 1. We ask the following question: If the
principal could choose a policy for the agent ignoring the incentive constraints of the agent,
what policy would she choose? Lemma 30 shows us that there are three possibilities.

(1) G policy: Search for good news when p ∈ [ p̂0,1].
(2) G− B− G policy: There exists a cutoff p̃ with p̂0 < p̃ < ps such that

• Search for good news when p ∈ [ p̂0,p̃] ∪ [ps,1].
• Search for bad news when p ∈ ( p̃,ps).

(3) B− G policy:
• Search for good news when p ∈ [ps,1].
• Search for bad news when p ∈ [p∗1 ,ps).

Note that desired behavior of the agent in case (1) can be implemented by setting R =

1,F = 0 as we have shown in preceding discussion. In case (2), when initial prior p0 < p̂
the desired agent behavior can be implemented similarly. When in case (2) with p0 > p̂
and case(3), the principal can implement the desired agent behavior as follows. Set the
stopping time T = ∞, i.e. never fire the agent. The agent now is indifferent between any
policy and in particular is willing to follow the policy desired by the principal. We have
shown that we can implement principal’s optimal policy when R = F = 1, which implies
that the principal cannot do any better by setting higher rewards. The above discussion is
summarized in the proposition below.

PROPOSITION 6. When allocation is unobservable, the optimal reward structure is either R =

F = 1 or R = 1,F = 0.

The question on when to reward bad news also carries over from the case when alloca-
tion is observable. In particular, the sufficient conditions shown in proposition 3 hold in
the case of unobserved allocation as well. When the principal does not reward bad news,
observe that the (implied) belief at which the principal fires the agent is p̂0, which is strictly
lower than p∗0 , the firing belief in the optimal MPE when F = 0. A lower cutoff belief also
results in the principal attaining a strictly higher value when the agent’s actions are not ob-
served. When the principal optimally chooses F = 1, the value of the principal is identical
under both unobserved actions and MPE, since the behavior of the agent is identical on-
path. We summarize this in the proposition below, letting vobs

∗ (·) (vunobs
∗ (·)) stand for the

principal-optimal value function when the agent’s action is observable (not observable).

PROPOSITION 7. vuobs
∗ (p) ≥ vobs

∗ (p) for all p. Moreover, the inequality is strict whenever
vunobs
∗ (p) > 0 if F = 0 is optimal for the principal when the agent’s action is observable to her.
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5.2. SIGNALS NOT FULLY REVEALING

Throughout the paper, we have assumed that both the good news and the bad news
arm are fully revealing. We now argue that even without fully revealing arms, our main
result—either do not reward the bad news at all or reward it as much as the good news—is
preserved. We continue to maintain that the good news arm is fully revealing, i.e. the rate
of arrival conditional on a = 1, are λgθ. This is in line with our interpretation that good
news apart from revealing that the state is high, results in a direct payoff i.e. the project can
be implemented. However, we now assume that the bad news arm is not fully revealing.
In particular, the rate of arrival of a B signal when θ = 1 is λ1

b < λ0
b, the rate of arrival for

the bad signal when θ = 0. As before, starting at a prior p, a G signal takes the posterior to
1, while a B signal takes the posterior to p′ ∈ (0,p). In particular, the law of motion is:

dPt = [(λ0
b − λ1

b)(1− at)− λgat]Pt(1− Pt)dt.

A natural analog of our (R,F) in this environment would be an amount R upon a con-
clusive G signal, while an amount F upon a B signal after which the principal terminates
the relationship. An important observation is the following: Even in this environment, the
agent can ensure that he does not get fired without a B signal. The idea is very intuitive.
Suppose there is a cutoff belief p below which the principal fires the agent. As before, the

agent can set a =
λ0

b−λ1
b

λg+λ0
b−λ1

b
in order to ensure that the beliefs do not move from p in the

absence of a signal. Therefore, for any F ∈ [0,1), the agent faces the same problem: delay
the time at which the beliefs move below p as much as possible. This is because the agent
receives his flow wage while employed, and can receive more if a G signal arrives, while
his outside option is strictly inferior. Therefore, if the principal wishes to set F ∈ (0,1), she
might as well set F = 0.

To see why, if F ≥ 1, it is optimal to have R,F = 1, notice that the agent’s payoff is the
following.

v(p) = sup
a∈A

Ea [(1− e−τ)1 + e−τ[1yτ=GR + 1yτ=BF]
]

,

where τ is the smallest time such that either G obtains or where the posterior belief upon
a B signal goes into the firing region. Subtracting 1 from either side, and dividing by
F − 1, the agent’s problem now, depends only on the ratio R−1

F−1 , and its comparison to 1.
Therefore, for any (R, F) >> (1,1), we can choose a lower (R′, F′) as in Proposition 1, to
keep the agent behavior unchanged while improving the principal profits. Therefore, if
F ≥ 1, it must be optimal to have R = F = 1.
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6. CONCLUSION

In this paper, we studied a simple model of a principal-agent relationship with exper-
imentation and limits to contractibility. The main focus of the paper was to determine
whether and when the principal should reward the agent for bearing bad news, and how
the optimal reward scheme should be structured. Our main takeaway is that either the
principal should offer no reward to the agent for bearing bad news, or she should offer the
same reward regardless of the type of news, good or bad. Given that rewarding bad news
is costly, the sole reason for offering such a reward is to incentivize the agent to search
for bad news, thereby potentially saving future experimentation costs. Prior to this paper,
most research that prescribed rewarding bad news has focused on providing incentives to
the agent to disclose bad news. In contrast, we show that even when such concerns are
absent, i.e. the news is public, a fundamental source of conflict arises due to the agent’s
aversion to searching for bad news because its arrival triggers his termination. In addition,
we also show that despite the simplicity of our framework, the above message also holds
if the agent’s action is not observed by the principal.

A key feature of our model—viewing experimentation as acquiring information from
multiple sources—brings out novel dynamics. Our model predicts that rewarding for bad
news may be more common in experimentation environments where the informativeness
of the bad news source is high. Our results may also provide an alternative explanation
to why bad news is not transmitted efficiently to management in organizations—it is not
that the employees hide negative information, but rather that they choose not to acquire it
when there is no reward for finding negative information.
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A. APPENDIX

A.1. NOTATION

NOTATION 1. Let u(·|s,a) be the agent’s value function given s and a. And u(·|s) be the optimal
value function. Similarly, v(·|s,a) be the principal’s value function and v(·|a) be his optimal value
function given a. Lastly, let v(·) be the principal’s optimal value function.

DEFINITION 3. Let A denote the space of piecewise continuous functions from [0,1] to [0,1]

A is our space of admissible strategies for the agent.

REMARK 1. The optimal control a, for a fixed Markovian s is Markovian in p, since the evolution
of state is Markovian.

There are two Hamilton-Bellman-Jacobi (HJB) equations that underlie most of our anal-
ysis, one for the agent and one for the principal.

A.2. AGENT’S HJB EQUATION AND ITS SOLUTIONS

The Agent’s HJB equation is given by

u(p) =1− λb(1− p)u(p) + λb p(1− p)u′(p) + λb(1− p)F

+ max
a∈[0,1]

a
{

λb(1− p)
[
u(p)− pu′(p)

]
+ λg p

[
R− u(p)− (1− p)u′(p)

]
− λb(1− p)F

}
.

(10)

Define:

∆(p) :=λb(1− p)
[
u− pu′

]
+ λg p

[
R− u− (1− p)u′

]
− λb(1− p)F. (11)

If the agent uses a = 1, the equation becomes,

u(p) = 1− λg pu + λg pR− λg p(1− p)u′.

Its solution is,

u1(p) = 1 +
λg p(R− 1)

1 + λg
+ c1(1− p)

(
1− p

p

) 1
λg

. (12)

If the agent uses a = 0, the equation becomes,

u(p) = 1− λb(1− p)u + λb p(1− p)u′ + λb(1− p)F.

Its solution is,

u0(p) =
1 + λb p + Fλb(1− p)

1 + λb
+ c0 p

(
p

1− p

) 1
λb

. (13)
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A.3. PRINCIPAL’S HJB EQUATION AND ITS SOLUTIONS

The principal’s HJB equation is given by

v(p) =− c− λb(1− p)F + λb p(1− p)v′(p)− λb(1− p)v(p)

+ max
a∈[0,1]

a
[
λg p(Γ− R) + λb(1− p)F− (λb + λg)p(1− p)v′(p)− (λg p + λb(1− p))v(p)

]
.

(14)

When a = 1, the solution is given by

v1(p) =
pλg(Γ− R + c)

1 + λg
− c + C1(1− p)

[
1− p

p

] 1
λg

, (15)

where C1 is the constant of integration.
When a = 0,the solution is given by,

v0(p) = − pλbc + c + λbF(1− p)
λb + 1

+ C0 p
[

p
1− p

] 1
λb

, (16)

where C0 is the constant of integration.

NOTATION 2. We denote by u0(·; C) the solution to the agent HJB with a = 0 given by(13) with
C0 = C. Similar, notations apply for u1,v0 and v1.

Two other value functions that will prove to be useful is the value that the players re-
ceive (v f for the principal and u f for the agent) if the agent chooses a = a f (defined below)
everywhere. When the agent chooses a f , the beliefs do not move in the absence of news.
We define

a f =
λb

λb + λg
, (17)

v f (p) =
−c + Λp(Γ− R)−Λ(1− p)F

1 + Λ
, and (18)

u f (p) =
λg + λb + λbλg[pR + (1− p)F]

λg + λb + λbλg
, (19)

where Λ := λbλg
λb+λg

. Also, the following beliefs will turn out to be useful for later analysis.
We define

pR
m =

c
λg(Γ− R)

, (20)

p∗0 =
c

Λ(Γ− R)
, and (21)

p∗f =
c + ΛF

Λ[Γ− R + F]
. (22)
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pR
m is the myopic experimentation cutoff, i.e., if the agent used a = 1 then the flow profit

to the principal is 0 at pR
m. p∗0 and p∗f are the beliefs where v f (p) is zero with F = 0 and 1

respectively.

A.4. AGENT’S BEST RESPONSE

DEFINITION 4. For any reward structure (R,F) 6= (1,1), define the following sets of beliefs:

P̄ =
{

p : λg p(R− 1) > λb(1− p)(F− 1)
}

, and

P =
{

p : λg p(R− 1) < λb(1− p)(F− 1)
}

.

Using P̄ and P we then define

p f =


inf P̄ = sup P if P̄ 6= ∅ and P 6= ∅,

1 if P̄ = ∅ and P 6= ∅,

0 if P = ∅ and P̄ 6= ∅.

Notice that if p ∈ P̄⇒ [p,1] ⊂ P̄ and, if p ∈ P⇒ [0,p] ⊂ P.

PROOF OF LEMMA 1: When (R,F) 6= (1,1), we show case by case.

(1) If p f ≤ p: By Lemma 4, for any value larger than the freezing value given by (19)
at p, the agent’s best response is to use the good arm on the interior. So, the only
question is can the agent receive a value strictly higher than the freezing value at p.
The drift of beliefs, conditional on no news must be non-negative at p. But, since
the agent is using the good arm to the right of p, the only admissible policy with
a non-negative drift is to use the freezing policy. Therefore, his value at p is u f (p)
and his optimal policy at p is a(p) = λb

λb+λb
.

(2) If p f ≥ p̄: By Lemma 6, for any value larger than the freezing value given by (19)
at p̄, the agent’s best response is to use the bad arm on the interior. So, the only
question is can the agent receive a value strictly higher than the freezing value at
p̄. The drift of beliefs, conditional on no news must be non-positive at p̄. But, since
the agent is using the bad arm to the left of p̄, the only admissible policy with a
non-positive drift is to use the freezing policy. Therefore, his value at p̄ is u f ( p̄)
and his optimal policy at p̄ is a( p̄) = λb

λb+λb
.

(3) If p f ∈ (p,p̄): This case is a combination of the above two cases. We set p = p f in
case (1) and set p̄ = p f in case (2).

When (R,F) = (1,1), consider the class of policies for the agent where he has the follow-
ing allocation

a(p) =

[0, λb
λb+λg

] if p = p,

[ λb
λb+λg

,1] if p = p̄.
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Note that under any policy in this class, the drift of belief in the absence of a signal is non-
negative when p = p and non-positive when p = p̄. This implies that if the agent follows
a policy in this class, she is never fired in the absence of a signal. (R,F) = (1,1) implies
that the value of the agent under a policy in this class at any belief p ∈ [p,p̄] is equal to 1,
since the flow payoff is equal to the continuation payoff in case of a signal. Also observe
that when hired, the value of the agent can never exceed 1, which implies that the agent
cannot do better than any policy in this class. This establishes the best response when
(R,F) = (1,1). �

DEFINITION 5. Suppose p f ≤ p and the agent is guaranteed to not be fired for [p,p̄]. And, at p he
receives an exogenously specified value u∗ ≥ u f (p). We call the agent’s problem as the auxiliary
problem (a) and denote his best response as ã.

LEMMA 4. In the auxiliary problem (a), ã(p) = 1 ∀p ∈ (p,p̄).

PROOF. For any fixed p ≥ p f , let u p̄ denote the value function for the agent for the aux-
iliary problem (a) [p, p̄]. It is obvious that u p̄2 ≥ u p̄1 pointwise if p̄2 ≥ p̄1.14 Therefore, we
will first solve the auxiliary problem (a) [p,1]. Then, it is straightforward to see that for any
auxiliary problem (a) [p,p̄], u p̄ = u1 on [p,p̄].

To this end, consider the auxiliary problem (a) [p,1]. The HJB equation for the agent is,

u(p) =1− λb(1− p)u(p) + λb p(1− p)u′(p)

+ max
a∈[0,1]

a
[
(λb(1− p)− λg p)u(p)− u′(p)p(1− p)[λb + λg] + λg pR− λb(1− p)F

]
.

Our candidate value function is obtained by using a = 1 on the interval (p,1]. So, the value
function is,

u1(p) = 1 +
λg p(R− 1)

1 + λg
+ c1(1− p)

(
1− p

p

) 1
λg

,

where the constant is determined by the boundary condition u(p) = u∗.
To prove that this is indeed the optimal value function, we need to prove that the above

function satisfies the HJB equation. The key object that determines whether a = 1 or 0 is,

∆(p) =(λb(1− p)− λg p)u(p)− u′(p)p(1− p)[λb + λg] + λg pR− λb(1− p)F.

Lemma 5 establishes that if ∆(p) ≥ 0 for some p ≥ p f , for our candidate value function,
then it is strictly positive for all higher beliefs. Therefore, we only need to prove that

14This is trivially true for any p ∈ ( p̄1, p̄2). For other beliefs, a candidate policy for the agent is to use the good
arm for any such belief until the beliefs hit p̄1, and thereafter follow the policy in the auxiliary problem (a)
[p,p̄1).
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∆(p) ≥ 0. By our boundary condition,

u∗ = u(p) = 1 +
λg p(R− 1)

1 + λg
+ c1(1− p)

(
1− p

p

) 1
λg

⇒ c1(1− p)

(
1− p

p

)1/λg

= u∗ − 1−
λg p(R− 1)

1 + λg
.

∆(p) = λb(1− p)(1− F) + c1(1− p)
(

1− p
p

) 1
λg
[

λb + λg + λbλg

λg

]
+

λg p(R− 1)
1 + λg

.

∆(p) = λb(1− p)(1− F) +

[
u∗ − 1−

λg p(R− 1)

1 + λg

] [
λb + λg + λbλg

λg

]
+

λg p(R− 1)

1 + λg

= 0 if u∗ = u f (p).

Therefore, for any terminal u∗ ≥ u f (p), ∆ ≥ 0, and therefore, it is strictly positive on
(p,1). That is, our candidate value function satisfies the HJB equation and the boundary
condition and, therefore, is the optimal value function for the problem [p,p̄]. Moreover,
the constructed value function does not depend on p̄, and therefore, is the optimal value
function for all p̄ > p. �

Define,

∆1(p) := λb(1− p)
[
u1 − pu′1

]
+ λg p

[
R− u1 − (1− p)u′1

]
− λb(1− p)F,

where u1 is defined in (12).

LEMMA 5. If p̂ ∈ P̄ and ∆( p̂) = ∆1( p̂) = 0 then ∆(p) > 0 ∀p > p̂.

PROOF. Plugging in u1 and u′1 we get

∆1(p) =λb(1− p)

[
1 +

λg p(R− 1)
1 + λg

+ c1(1− p)
(

1− p
p

) 1
λg
−

λg p(R− 1)
1 + λg

+ c1

(
1− p

p

) 1
λg 1 + λg p

λg

]

+ λg p

[
R− 1−

λg p(R− 1)
1 + λg

− c1(1− p)
(

1− p
p

) 1
λg

]

− λg p(1− p)

[
λg(R− 1)

1 + λg
− c1

[(
1− p

p

) 1
λg 1 + λg p

λg p

]]
− λb(1− p)F

=λb(1− p)(1− F) + c1(1− p)
(

1− p
p

) 1
λg
[

λb + λg + λbλg

λg

]
+

λg p(R− 1)
1 + λg

.
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Therefore,

∆′1(p) = −λb(1− F)− c1

(
1− p

p

) 1
λg
[

λb + λg + λbλg

λg

] [
1 + λg p

λg p

]
+

λg(R− 1)
1 + λg

.

Consider a p1 ∈ P̄ such that ∆1(p1) = 0, Then we have

∆1(p1) = 0 =λb(1− p1)(1− F) + c1(1− p1)

(
1− p1

p1

) 1
λg
[

λb + λg + λbλg

λg

]
+

λg p1(R− 1)
1 + λg

⇒c1

(
1− p1

p1

) 1
λg
[

λb + λg + λbλg

λg

]
= −λb(1− F)−

λg p1(R− 1)
(1 + λg)(1− p1)

.

Therefore,

∆′1(p1) = −λb(1− F) +
[

λb(1− F) +
λg p1(R− 1)

(1 + λg)(1− p1)

] [
1 + λg p1

λg p1

]
+

λg(R− 1)
1 + λg

=
λb(1− F)

λg p1
+

R− 1
1− p1

> 0 since p1 ∈ P̄.

This shows that ∆1(p) is strictly increasing at p1. By continuity of ∆′1(p), we have that
∆1(p) is strictly increasing in some ε neighborhood of p1. Note that for all p > p1, p ∈ P̄,
which concludes the proof. �

DEFINITION 6. Suppose p f ≥ p̄ and the agent is guaranteed to not be fired for [p,p̄]. And, at p̄ he
receives an exogenously specified value u∗ ≥ u f ( p̄). We call the agent’s problem as the auxiliary
problem (b) and denote his best response as ã.

LEMMA 6. In the auxiliary problem (b), ã(p) = 0 ∀p ∈ (p,p̄).

PROOF. For any fixed p̄ ≤ p f , let up denote the value function for the agent for the aux-
iliary problem (b) [p, p̄]. It is obvious that up

1 ≥ up
2 pointwise if p̄1 ≤ p̄2.15 Therefore, we

will first solve the auxiliary problem (b)[0,p̄]. Then, it is straightforward to see that for any
auxiliary problem (b)[p,p̄], up = u0 on [p,p̄].

To this end, consider the auxiliary problem (a) [0,p̄]. The HJB equation for the agent is,

u(p) =1− λb(1− p)u(p) + λb p(1− p)u′(p)

+ max
a∈[0,1]

a
[
(λb(1− p)− λg p)u(p)− u′(p)p(1− p)[λb + λg] + λg pR− λb(1− p)F

]
.

15This is trivially true for any p ∈ (p
1
, p

2
). For other beliefs, a candidate policy for the agent is to use the bad

arm for any such belief until the beliefs hit p
2
, and thereafter follow the policy in the auxiliary problem (b)

(p
2
,p̄].
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Our candidate value function is obtained by using a = 0 on the interval [0,p̄). So, the
value function is,

u0(p) =
1 + λb p + Fλb(1− p)

1 + λb
+ c0 p

(
p

1− p

) 1
λb

,

where the constant is determined by the boundary condition u( p̄) = u∗.
To prove that this is indeed the optimal value function, we need to prove that the above

function satisfies the HJB equation. The key object that determines whether a = 1 or 0 is,

∆(p) =(λb(1− p)− λg p)u(p)− u′(p)p(1− p)[λb + λg] + λg pR− λb(1− p)F.

Lemma 7 establishes that if ∆(p) ≤ 0 for some p ≤ p f , for our candidate value function,
then it is strictly negative for all lower beliefs. Therefore, we only need to prove that
∆( p̄) ≤ 0. By our boundary condition,

u∗ = u( p̄) =
1 + λb p̄ + Fλb(1− p̄)

1 + λb
+ c0 p

(
p̄

1− p̄

) 1
λb

⇒ c0 p
(

p̄
1− p̄

) 1
λb

= u∗ − 1 + λb p̄ + Fλb(1− p̄)
1 + λb

.

∆(p) =
λb(1− p)(1− F)

1 + λb
+ λg p(R− 1)− c0 p

(
p

1− p

) 1
λb
[

λg + λb + λgλb

λb

]
.

∆( p̄) =
λb(1− p̄)(1− F)

1 + λb
+ λg p(R− 1)−

[
u∗ − 1 + λb p̄ + Fλb(1− p̄)

1 + λb

] [
λb + λg + λbλg

λg

]
= 0 if u∗ = u f ( p̄).

Therefore, for any terminal u∗ ≥ u f ( p̄), ∆ ≤ 0, and therefore, it is strictly negative on (0,p̄).
That is, our candidate value function satisfies the HJB equation and the boundary con-

dition and, therefore, is the optimal value function for the problem [p,p̄]. Moreover, the
constructed value function does not depend on p, and therefore, is the optimal value func-
tion for all p < p̄. �

Define:

∆0(p) := λb(1− p)
[
u0 − pu′0

]
+ λg p

[
R− u0 − (1− p)u′0

]
− λb(1− p)F,

where u0 is defined in (13).

LEMMA 7. If p̂ ∈ P and ∆( p̂) = ∆0( p̂) = 0 then ∆(p) < 0 ∀p < p̂.

PROOF. Plugging in u0 and u′0 we get
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∆0(p) =λb(1− p)

[
1 + λb p + Fλb(1− p)

1 + λb
+ c0 p

(
p

1− p

) 1
λb

]

− λb(1− p)p

[
λb(1− F)

1 + λb
− c0

(
p

1− p

) 1
λb
[

1 + λb(1− p)
λb(1− p)

]]

+ λg p

[
R− 1 + λb p + Fλb(1− p)

1 + λb
− c0 p

(
p

1− p

) 1
λb

]

− λg p(1− p)

[
λb(1− F)

1 + λb
+ c0

(
p

1− p

) 1
λb
[

1 + λb(1− p)
λb(1− p)

]]
− λb(1− p)F.

This can be simplified to

∆0(p) =
λb(1− p)(1− F)

1 + λb
+ λg p(R− 1)− c0 p

(
p

1− p

) 1
λb
[

λg + λb + λgλb

λb

]
.

And we differentiate ∆0(p) to obtain

∆′0(p) = −λb(1− F)
1 + λb

+ λg(R− 1)− c0

(
p

1− p

) 1
λb
[

λb + λg + λbλg

λb

] [
1 + λb(1− p)

λb(1− p)

]
.

Consider p0 ∈ P such that ∆0(p0) = 0, Then we have

∆0(p0) = 0 =
λb(1− p0)(1− F)

1 + λb
+ λg p0(R− 1)− c0 p0

(
p0

1− p0

) 1
λb
[

λg + λb + λgλb

λb

]
,

which gives

c0

(
p0

1− p0

) 1
λb
[

λg + λb + λgλb

λb

]
= λg(R− 1) +

λb(1− p0)(1− F)
p0(1 + λb)

.

Now we evaluate ∆′0(p0) by plugging in the above expression

∆′0(p0) = −
λb(1− F)

1 + λb
+ λg(R− 1)−

[
λg(R− 1) +

λb(1− p0)(1− F)
p0(1 + λb)

] [
1 + λb(1− p0)

λb(1− p0)

]
= −

λg

λb

[
λb(1− F)

λg p
+

R− 1
1− p

]
> 0 since p0 ∈ P.

This shows that ∆0(p) is strictly increasing at p0 which then by continuity of ∆′0(p) implies
that ∆0(p) is strictly increasing in some ε neighborhood of p0. Note that for all p < p0,
p ∈ P, which concludes the proof.

�
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A.5. REDUCTION OF PRINCIPAL’S PROBLEM

Now, we focus on the case where the agent receives a reward R ≥ 1 upon producing a
success and F ≥ 0 upon producing a failure. For most of this part, we will describe the
principal’s policies by a triple ( p̂, R,F) where p̂ denotes the firing cutoff.16 Let v(·|R,F) de-
note the principal’s optimal value function for a fixed R,F. Lemma 1 provided the agent’s
best response in this case. Notice that, for any R, F > 1, qualitatively, the best response for
the agent takes the following form: Bad news arm below a certain cutoff and good news
arm above it. Recall (Definition 4) that the switching belief, p f , was determined by the
objects below.

P̄ :=
{

p : λg p(R− 1) > λb(1− p)(F− 1)
}

.

P :=
{

p : λg p(R− 1) < λb(1− p)(F− 1)
}

.

p f :=


inf P̄ = sup P if P̄ 6= ∅ and P 6= ∅,

1 if P̄ = ∅ and P 6= ∅,

0 if P = ∅ and P̄ 6= ∅.

Notice that since R ≥ 1, P̄ is always non-empty. Moreover, if F < 1, then P is always
empty. Therefore, the switching belief is given by,

p f :=

0 if F < 1,
λb(F−1)

λg(R−1)+λb(F−1) if λb(F−1)
λg(R−1)+λb(F−1) ∈ (0,1).

A key observation from the agent’s best response, therefore, is the following: For any
R,F such that (R, F > 1), we can choose an 1 < R′ < R,1 < F′ < R while keeping the
agent’s behavior unchanged. Obviously, this increases the principal’s profits for any belief
p. This observation is summarized below.

LEMMA 8. For any principal policy ( p̂, R,F) with (R,F) > (1,1), we can choose (R′,F′) such that

(i) (R,F) > (R′,F′) > (1,1),
(ii) The agent’s behavior is unchanged,

(iii) v(p|R′F′) > v(p|R,F) whenever v(·|R,F) > 0. Moreover,

{p : v(p|R,F) > 0} ⊂ {p : v(p|R′,F′) > 0}.

16We can also consider more general hiring policies as in the previous section but we focus on the principal-
optimal policies for the sake of exposition. It is straightforward to extended results like the connectedness of
the hiring interval to this setting.
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PROOF. It is obvious that we can choose (R′,F′) such that (R,F) > (R′,F′) > (1,1) such
that

λb(F− 1)
λg(R− 1) + λb(F− 1)

=
λb(F′ − 1)

λg(R′ − 1) + λb(F′ − 1)
.

Therefore, preserving the agent’s behavior by choosing a lower value of R and F is
straightforward. Obviously, this unambiguously helps the principal (since both are costs
for the principal) in increasing his profits and (iii) follows.

�

The only remaining case is when F < 1. Here, the agent’s best response, by Lemma 1,
is to use the good news arm at all beliefs except p̂, where the agent uses a f . By the exact
same arguments as above, we can reduce F to 0 in particular, to keep the agent behav-
ior unchanged while strictly improving upon the principal’s profits. This observation is
summarized in Lemma 9, whose proof we omit.

LEMMA 9. For any principal policy ( p̂, R,F) such that R ≥ 1, F ∈ (0,1), we can choose an (R′,F′)
such that,

(i) R′ ≤ R, 0 = F′ < F,
(ii) The agent’s behavior is unchanged.

(iii) v(p|R′F′) > v(p|R,F) whenever v(·|R,F) > 0. Moreover,

{p : v(p|R,F) > 0} ⊂ {p : v(p|R′,F′) > 0}.

PROOF OF PROPOSITION 1: Lemma 8 and lemma 9 together imply that in any principal-
optimal equilibrium, we must have R = 1 and F ∈ {0,1}. �

A.6. PRINCIPAL’S PROBLEM WHEN R=1, F=0

If R = 1, F = 0, then p f = 0. We obtain the agent’s best response as a corollary of
Lemma 1.

PROPOSITION 8. Suppose the principal hires the agent when p ∈ [p,p̄] ⊂ [0,1] and fires other-
wise. Then the best response of the agent is given as:

a(p) =


[0,1] if p /∈ [p,p̄],

λb
λb+λg

if p = p,

1 if p ∈ (p,p̄].

A.6.1. Characterization of equilibrium when R=1,F=0.
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DEFINITION 7. Given a strategy for the principal s, define H as the set of beliefs at which the
principal hires, i.e. H = {p : s(p) = 0}.

LEMMA 10. In any equilibrium, H is a connected set.

PROOF. Suppose H = [p
1
,p̄1]∪ [p2

,p̄2] with p
2
> p̄1. Suppose that the best response of the

agent is a. We know that

a(p) =


λb

λb+λg
if p ∈ {p

1
,p

2
},

1 if p ∈ (p
1
,p̄1] ∪ (p

2
,p̄2].

However the best response of the agent in the interval ( p̄1,p
2
) can be any function satisfy-

ing Assumption 1. Also, note that the value of the principal from this strategy profile at
p̄1 is V( p̄1) > Vf ( p̄1) > 0, and the value of the principal from this strategy profile at p

2
is

V(p
2
) = Vf (p

2
) > 0.

We now show that for any behavior of the agent in the interval ( p̄1,p
2
), satisfying As-

sumption 1, the principal has an incentive to deviate. Notice that V f (p) > 0 for all p > p
1
,

where V f is the value to the principal if the agent were to freeze beliefs everywhere. There-
fore, for us to have an equilibrium where the principal hires on two disjoint intervals,
ia(p) 6= a f for any p ∈ ( p̄1, p

2
). We will consider three cases regarding the limit of the

strategy on the firing interval at p̄1 and p
2
.17

Case 1: limp↓ p̄1 a(p) < a f and limp↑p
2

a(p) > a f . In this case, the drift of beliefs is positive
on ( p̄1, p) for some p > p̄1 and is negative (p, p

2
) for some p < p

2
. Therefore, it

must be 0 for some p̃ ∈ ( p̄1, p
2
), i.e. a( p̃) = a f . Since p̃ > p

1
where the principal

obtains a non-negative value with agent using a f , therefore, the principal obtains
a strictly positive value at p̃ if he were to deviate not fire. A contradiction.

Case 2: limp↓ p̄1 a(p) > a f or limp↑p
2

a(p) < a f . We will argue only for the case â :=

limp↓ p̄1 a(p) > a f , as the argument for the other case is similar. Notice that â >

a f ⇒ p[λga(p)− λb(1− a(p))] > ε for some ε > 0 for p ∈ ( p̄1, p̄1 + δ] for some
δ > 0. That is, the drift of beliefs, in the absence of news, is strictly negative and
bounded from above by −ε. Define, τ(p) := inf{t > 0 : Pt ∈ {0,p̄1,1}}. Since the
drift is bounded away from 0, limp↓ p̄1 τ(p) = 0 a.s and P(Pτ(p) = p̄1|P0 = p) = 1.
If the principal deviates to continue until the beliefs hit either 0, 1 or p̄1, where he
collects V( p̄1), then his payoff from such a policy is,

V(p) = E
[
(1− e−τ(p))(−c) + e−τ(p)

(
P(Pτ(p) = 1)V(1) + P(Pτ(p) = p̄1)V( p̄1)

)]
.

As p ↓ p̄1, V(p) → V( p̄1) > 0. Therefore, the principal would strictly prefer
continuing and not firing just above p̄1, a contradiction.

17Since a is piecewie continuous, these limits exist.
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Case 3: limp↓ p̄1 a(p) = a f or limp↑p
2

a(p) = a f We will argue for the case limp↑p
2

a(p) = a f ,

as the other case is straightforward. First of all, if a(p) = a f for any p ∈ ( p̄1, p
2
), we

are done. So, assume wlog that a(p) < a f for all p( p̄1, p
2
) with limp↑p

2
a(p) = a f .

Therefore, for any ε > 0, ∃δ > 0 such that, a f > a(p) > a f − ε for all p ∈ (p
2
− δ, p).

For any such p, if the principal were to deviate and not fire until the belief hits 0, 1
or p

2
where he receives V f ( p̄2) > 0, his payoff is,

V(p) = E
[
(1− e−τ)(−c) + e−τV(Pτ)

]
,

where τ := inf{t : Pt ∈ {0,1,p
2
}}. Notice that, in the absence of a signal, the law

of motion for beliefs is,

dPt = Pt(1− Pt)[λb(1− at)− λgat]dt

⇒ log
(

Pt

1− Pt

)
− log

(
P0

1− P0

)
=
∫ t

0
[λb(1− at)− λgat]dt.

Notice that [λb(1 − at) − λgat] > 0. for all t ≤ τ. Therefore, there is a unique
time t∗ where the beliefs will reach p

2
conditional on no signal. Moreover, τ ≤ t∗

almost surely. Therefore,

Ee−τV(Pτ) =
∫ t∗

0
P(τ = t ∩ Pτ = 1)e−tV(1)dt + P(τ = t∗)e−t∗V(p

2
).

P(τ = t ∩ Pτ = 1) = pλgat exp
(
−
∫ t

0
λgaudu

)
if τ < t∗.

P(τ = t∗) = p exp
(
−
∫ t∗

0
λgaudu

)
+ (1− p) exp

(
−
∫ t∗

0
λb(1− au)du

)
.

Since |au − a f | < ε for all u ≤ τ, and since all the integrals are bounded, it is
easy to see that all the quantities above are at most Kε away, for some positive con-
stant K, (ignoring the higher order terms) from using au = a f for all u. Therefore,
|V(p)−V f (p)| < Mε for some constant M. For a small enough ε, this implies that
V(p) > 0 since V f (p) > 0 for all p ∈ (p

1
,1]. Therefore, the principal would strictly

prefer hiring for some p ∈ (p
2
− δ, p

2
), a contradiction.

�

Now, we prove that p∗0 ( defined in (21)) is the unique candidate for the lower cutoff in
equilibrium.

LEMMA 11. In any equilibrium, p = p∗0 .

PROOF. Suppose the principal hires on [p, p̄] and the agent’s best response to this hiring
strategy is a. The agent chooses a = a f at p. Therefore, p ≥ p∗0 . If not, the principal receives

34



WHEN AND HOW TO REWARD BAD NEWS

a strictly negative value at p, a contradiction. Suppose p > p∗0 . ⇒ v(p|a) > 0. If a(p) = a f

for any p ∈ (p∗0 , p), the principal would strictly prefer hiring at such a p, contradicting that
the hiring region is [p,p̄]. Since a(·) is piecewise continuous, it is continuous on (p− ε, p)
for some ε > 0. Suppose a(p) < a f when p ∈ (p − ε, p). By an argument analogous to
Case 2 and 3 in Lemma 10, the principal would strictly benefit by lowering the firing cutoff
from p. Therefore, it cannot be an equilibrium. On the other hand, suppose a(p) > a f

when p ∈ (p− ε, p). Choose a p ∈ (p− ε, p) such that, a(q) > a f + δ for some δ > 0 for
all q in the neighborhood of p. Suppose the principal deviates to hire on a small interval
(p− η, p]. Given the agent’s strategy, the principal’s payoff is,

v(p|a) = −c(1− exp(−τ)) + exp(−τ))p(1− exp
(
−
∫ τ

0
λga(Pt)dt

)
(Γ− R),

where τ = inf{t : Pp
t /∈ (p− η,p)} where Pp

t denotes the stochastic process with the initial
state as p. As η → 0, τ → 0 a.s. and, we have,

v(p|a) ≈ −cτ + λg pa(p)(Γ− R)τ > 0 when p > p∗0 and a(p) > a f .

Therefore, the principal would prefer hiring on (p− η, p), a contradiction. �

LEMMA 12. All equilibria where the agent uses a = 0 in the firing region are characterized by a
belief p̄, p̄ ∈ [p∗0 ,1]. The players’ strategies are given by:

a(p) =


0 if p ∈ [0,p∗0) ∪ ( p̄,1],

a f if p = p∗0 ,

1, if p ∈ (p∗0 ,p̄].

s(p) =

1, if p ∈ [0,p∗0) ∪ ( p̄,1],

0, if p ∈ [p∗0 ,p̄].

When λb < λ̂b there does not exist an equilibrium where the agent is hired at any interior belief.

PROOF. In any equilibrium the hiring region is of the form [p,p̄] by Lemma 10. Agent’s
best response is given by Proposition 8. For the lower firing cutoff, p ≥ p∗0 because oth-
erwise the principal receives a strictly negative value at p. Strict inequality is not possible
because the agent uses the bad arm below p, and therefore, the principal would like to
lower the cutoff if p > p∗0 . That the principal would continue hiring above p∗0 is immediate
from Lemma 13 and that v(p) is increasing. �

PROPOSITION 9. The principal-optimal equilibrium, which features the same on path behavior, is
the following:

a(p) =


[0,a f ] if p ∈ [0,p∗0),

a f if p = p∗0 ,

1 if p ∈ (p∗0 ,1].

s(p) =

1 if p ∈ [0,p∗0),

0 if p ∈ [p∗0 ,1].
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PROOF. By Lemma 11, the lower cutoff is uniquely pinned down. Therefore, the principal-
optimal equilibrium, and also the unique Pareto optimal equilibrium, would be one with
the largest hiring region, i.e. p̄ = 1. Therefore, all we need to prove is that the above
strategy is in fact an equilibrium. Proposition 8 shows that the agent’s strategy in the
candidate equilibrium is indeed the best response to the principal’s strategy. We need to
show that principal’s strategy is the best response to the agent’s strategy in the candidate
equilibrium. We split the proof in two cases:

Suppose, p ∈ (p∗0 ,1]: In this region the agent uses the good news arm exclusively. The
principal’s value function is given by:

v(p) = λgγp− c + C1(1− p)
[

1− p
p

] 1
λg

.

Where C1 is the constant of integration that is determined using v(p∗0) = 0.

λgγp∗0 − c + C1(1− p∗0)
[

1− p∗0
p∗0

] 1
λg

= 0.

Lemma 13 tells us that v′+(p∗0) > 0 and v′(p) > 0 when p ∈ (p∗0 ,1]. This implies that
v(p) > 0 for all p > p∗0 . This establishes that s(p) = 0 is the best response for all p > p∗0 .

�

LEMMA 13. Denote by v′+(p∗0) the right hand derivative of v(p) at p∗0 . Then v′+(p∗0) > 0 and
v′(p) > 0 when p ∈ (p∗0 ,p̄].

PROOF. When the good news arm is used (a = 1), the differential equation governing the
value of the principal is given by

v1(p) = λg p(Γ− 1)− c− λg pv1(p)− λg p(1− p)v′1(p).

Since the boundary condition at p∗0 dictates that v(p∗0) = 0, we have v(p) = v1(p; C∗1 ) when
p ∈ [p∗0 ,1] where C∗1 is determined by setting v1(p∗0) = 0.18 Next, note that the right hand
derivative v′+(p∗0) is given by

v′+(p∗0) = v′1(p∗0) =
λg p∗0(Γ− 1)− c

λg p∗0(1− p∗0)
.

Note that

λg p∗0(Γ− 1)− c =
λgc(Γ− 1)
Λ(Γ− 1)

− c = c
[

λg

Λ
− 1
]
> 0,

18The function v1(p; C) denotes the value function v1 with C1 = C, as defined in Notation 2.
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which implies that v′+(p∗0) > 0. The principal’s value function when p ∈ [p∗0 ,p̄] is given by
(15) is as follows

v(p) = v1(p) =
pλg(Γ− R + c)

1 + λg
− c + C∗1 (1− p)

[
1− p

p

] 1
λg

.

We differentiate once to get

v′1(p) =
λg(Γ− 1 + c)

1 + λg
− C∗1

[
1− p

p

] 1
λg

[ 1
λg

+ p

p

]
,

and twice to get

v′′1 (p) = C∗1

[
1 + λg

λ2
g p2(1− p)

(
1− p

p

) 1
λg

]
.

Now suppose C∗1 ≤ 0, clearly this means that v′1(p) > 0 since Γ − 1 + c > 0. On the
contrary, if C∗1 > 0, we know that v′′1 (p) > 0, and since v′1(p∗0) > 0, v′1(p) > 0 for p ∈ (p∗0 ,1].
Since v(p) = v1(p) for p ∈ (p∗0 ,p̄], we have v′(p) > 0 when p ∈ (p∗0 ,p̄] and v′+(p∗0) > 0. �

Going forward, to keep track of the principal value function for the case of F = 0, we
will denote it by vF=0

∗ (·). That is,

vF=0
∗ (p) = λgγp− c + C1(1− p)

[
1− p

p

] 1
λg

, (23)

where C1 is the constant of integration that is determined using vF=0
∗ (p∗0) = 0.

A.7. PRINCIPAL’S PROBLEM WHEN R=F=1

When R = F = 1, the agent is indifferent across all policies with the only restriction
being that at the left (right) endpoint of the hiring interval the drift of beliefs must be
non-negative (non-positive). So, supposing that the hiring interval is of the form [ p̂,1], we
want to find the optimal firing cutoff and the agent policy for the principal satisfying the
following two:

(1) a(p) is piecewise continuous.
(2) a( p̂) ≤ a f .

Principal’s problem is,

v∗(p) = sup
{a,p̂}

Ea [(1− e−τ)(−c) + e−τv(Pτ)|P0 = p
]

,

subject to a( p̂) ≤ a f and a is piecewise continuous,

such that, τ := inf{t : Pt /∈ [ p̂, 1)}, v(0) = −F = −1, v(1) = Γ− R = Γ− 1 and v( p̂) = 0.
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Let the optimal stopping belief be p̂∗ and the associated optimal policy in the continue
region be denoted by a∗. We will first conjecture that the optimal policy is to use the bad
news arm on [ p̂∗, ps]19 and good news arm for higher beliefs.

To this end, let us suppose that the firing cutoff is exogenously specified to be some p̂
and the associated optimal policy be denoted by a p̂ and the associated value function be
v p̂. We conjecture that the optimal policy is to use the bad news arm below some ps and
good news arm above it. We will find the optimal ps within such policies and then argue
that it is indeed optimal across all the policies. The optimal ps for the principal is calculated
using the value matching and smoothpasting conditions for v f and v1 (or equivalently v f

and v0).
So, the conjectured value function is (where R = F = 1),

v(p) =


v0(p) = − pλbc+c+λb F(1−p)

λb+1 + Cs
0 p
[

p
1−p

] 1
λb if p ∈ [ p̂, ps],

v f (p) = −c−ΛF+pλ[Γ−R+F]
1+Λ if p = ps,

v1(p) = pλg(Γ−R+c)
1+λg

− c + Cs
1(1− p)

[
1−p

p

] 1
λg if p > ps,

where v0(p), v f (p) and v1(p) are obtained from (16), (18) and (12) respectively.
Conjecturing, continuity and smooth pasting, we have the following equations: v0(ps) =

v f (ps) = v1(ps) and v′0(ps) = v′f (ps) = v′1(ps). We pin down Cs
0, Cs

1 and ps given by,

ps =
λb(c− F)

λg(Γ− R + c) + λb(c− F)
, (24)

Cs
0 =

[
λg(Γ− R + c)

λb(c− F)

] 1
λb
[

λb

1 + λb

] [
Λ

1 + Λ

]
(Γ− R + c), (25)

Cs
1 =

[
λb(c− F)

λg(Γ− R + c)

] 1
λg
[

λg

1 + λg

] [
Λ

1 + Λ

]
(c− F). (26)

Note that we need c ≥ F for ps to be interior and well defined. This is also the interesting
case since if c < F, the principal would rather incur the costs of experimentation forever
than give out a reward for bringing in bad news. Hence we assume c ≥ F for this section.
Let us denote the value functions obtained by using the above constants as v0(ps; Cs

0) and
v1(p; Cs

1). Our conjectured optimal policy for any exogenusly specified firing cutoff p̂ ≤
ps20 and the conjectured optimal value function of the principal are,

19 We deal with the case when p̂∗ > ps in the proof of proposition 3 given in section A.8.
20As we will see, the only situation when p̂ > ps would be optimal is when v(ps) < 0, in which case it is
optimal to use F = 0.
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a∗(p) =


0 if p ∈ [ p̂, ps),

a f if p = ps,

1 if p > ps,

and,

v p̂
∗(p) =


v0(p; Cs

0) if p ∈ [ p̂, ps),

v f (ps) = v0(ps; Cs
0) = v1(ps; Cs

1) if p = ps,

v1(p; Cs
1) if p > ps.

(27)

We now prove the optimality of the above policy in steps. In Lemma 14 we prove that
for any piecewise continuous control, the principal value function is differentiable. Lemma
15, 16 and 17 combine to reduce the candidate policies a′ � a∗ to those where we can have
at most one switch from the bad news arm to the good news arm. Optimality of a∗ is
proved in Lemma 19.

DEFINITION 8. Given a,a′ ∈ A, we say that a′ � a iff v(p|a′) ≥ v(p|a) ∀p with the inequality
being strict for some p.

DEFINITION 9. Define,

η(a) := λb(1− a)− λga.

LEMMA 14. If a(p) is continuous on [p1,p2] such that η(a(p)) 6= 0 on [p1,p2], then v(·|a),
denoted by v(·) in this lemma, is C1 on (p1,p2), right differentiable at p1 and left continuous at p2.
Moreover, on (p1,p2),

v′(p) =
c + [1 + pλga(p) + (1− p)λb(1− a(p))]v(p)− pλga(p)(Γ− 1) + (1− p)λb(1− a(p))

η(a(p))p(1− p)
.

(28)

PROOF. There are two cases: η(a(p)) > 0 on [p1,p2] and η(a(p)) < 0 on [p1,p2]. We will
assume that η(a(p)) > 0 on [p1,p2] and leave the other case to the reader.

For any p ∈ (p1,p2), notice that, for any δ > 0,

v(p) = E(1− e−τ)(−c) + e−τv(pτ),

where τ := inf{t : Pt /∈ (p, p + δ)}. Since (1− p)λb(1− a(p))− pλga(p) > 0, τ → 0 a.s. as
δ→ 0 and pτ → p a.s. Therefore, for any sequence pn ↓ p,

v(p)− v(pn) = E(1− e−τn)(−c) + e−τn v(pτn)− v(pn)→ 0

as n→ ∞. For pn ↑ p, define τn := inf{t : Pt /∈ (pn, p)} and repeat the argument above.
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Therefore, v is continuous on (p1, p2), right(left) continuous at p1(p2). For right differ-
entiability, we need to show,

lim
h↓0

v(p + h)− v(p)
h

exists. For a small h, define τ as before and recall, due to the continuity of a(·),∫ p+h

p

1
η(a(p))p(1− p)

dp = ∆.

By mean value theorem and continuity of a, we have,

h ≈ η(a(p))p(1− p)∆

for a small ∆. ignoring the second order terms. Therefore, τ ≤ t̂ := h
η(a(p))p(1−p) . We know

that,

v(p) = E(1− e−τ)(−c) + e−τv(Pτ).

Ee−τ =
∫ t̂

0
[pλga(Pt)e−

∫ t
o λga(Pu)du + (1− p)λb(1− a(Pt))e−

∫ t
o λb(1−a(Pu))du]e−tdt

+ [pe−
∫ t̂

0 λga(Pu)du + (1− p)e−
∫ t̂

0 λb(1−a(Pu))du]e−t̂.

For a sufficiently small h, using continuity of a and first order approximations, we get,

Ee−τ = 1− t̂.

Similar calculations show that,

Ee−τv(Pτ) = (1− t̂)(1− [pλga(p) + (1− p)λb(1− a(p)]t̂)v(p + h)

+ pλga(p)t̂(Γ− 1) + (1− p)λb(1− a(p)t̂(−1).

Therefore,

v(p + h)− v(p)
h

=
ct̂ + (1 + pλga(p) + (1− p)λb(1− p)v(p + h)t̂

h

+
−pλga(p)(Γ− 1)t̂ + (1− p)λb(1− a(p))t̂

h
.

Therefore, it is easy to see that limh↓0
v(p+h)−v(p)

h exists and is equal to

c + [1 + pλga(p) + (1− p)λb(1− a(p))]v(p)− pλga(p)(Γ− 1) + (1− p)λb(1− a(p))
η(a(p))p(1− p)

.

Therefore, v is right differentiable on (p1,p2), and its right derivative is continuous, and
bounded for any interval [p1,p2]. Standard results in analysis show that if a continuous
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function has continuous right derivatives at each point in an interval, and the right deriva-
tives are continuous, then the function is differentiable on the interval.21 Therefore, v is
differentiable on (p1,p2) with the derivative given by (28).

�

First, for any continuous a such that a 6= a f on the interval, we also have η(a,p) > 0.
By Lemma 14, we know that v(·|a) is differentiable and satisfies the following differential
equation:

v(p) = λg pa(p)(Γ− 1) + λb(1− p)(1− a(p))(−1)− c

+ [λb(1− a(p))− λga(p)]p(1− p)v′(p)− [λg pa(p) + λb(1− p)(1− a(p))]v(p),

where, with some abuse of notation, we denote v(·|a) by v(·). Rearranging the above,

v(p) = −λb(1− p)− c + λb p(1− p)v′(p)− λb(1− p)v(p) + a(p)H(p,v(p),v′(p)), (29)

where H(x,y,z) :=λgx(Γ− 1) + λb(1− x)− (λb + λg)x(1− x)z− (λgx− λb(1− x)y).
(30)

Notice that H is continuous in each of its argument.

LEMMA 15. Suppose, a ∈ A is continuous on [p1,p2] ⊂ ( p̂, 1). Suppose, for some p ∈ (p1,p2),
a(p) /∈ {0,a f , 1} and H(p, v(p), v′(p) 6= 0. Then, there is an a′ ∈ A and an ε > 0 such that,
either, a′(q) ∈ {0,1} for all q ∈ [p− ε, p] or for all q ∈ [p,p + ε] and v(·|a′) ≥ v(·|a).

PROOF. There are two possible cases:

(1) H(p,v,v′) > 0,
(2) H(p, v, v′) < 0.

Case 1: Suppose, H(p,v(p),v′(p)) > 0.
By continuity of a and H, a(q) /∈ {0,1} and H(q,v(q),v′(q) > 0 for all q ∈ Bε(p)

for some ε > 0. Consider an alternative control a′ such that a′(q) = 1 for q ∈
(p, p + ε]. Moreover, we assume that as soon as the beliefs hit either p, we switch
to a, i.e., the control is non-markovian. However, due the markovian structure of
the underlying problem, if a′ outperforms a, then there is a Markovian control that
also outperforms a. Therefore, for any q ∈ (p, p + ε), the value function v(·|a′)
(denoted by ṽ henceforth) satisfies the following differential equation:

ṽ(q) =− λb(1− q)− c + λbq(1− q)ṽ′(q)− λb(1− q)ṽ(q) + H(q,ṽ(q),ṽ′(q))

and v(q) =− λb(1− q)− c + λbq(1− q)v′(q)− λb(1− q)v(q) + H(q,v(q),v′(q)).

21For example, https://math.stackexchange.com/questions/418737/continuous-right-derivative-implies-
differentiability
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Moreover, ṽ(p) = v(p). Therefore,

ṽ(q)− v(q) =λbq(1− q)(ṽ′(q)− v′(q))− λb(1− q)(ṽ(q)− v(q)

+ H(q,ṽ(q), ṽ′(q))− a(q)H(q,v(q),v′(q)),

which implies

ṽ(q)− v(q)− (1− a)H(q,v(q),v′(q)) =λbq(1− q)(ṽ′(q)− v′(q))

+ [H(q,ṽ(q), ṽ′(q))− H(q,v(q),v′(q))]

− λb(1− q)(ṽ(q)− v(q)),

=− λgq(1− q)[ṽ′(q)− v′(q)]− λgq(ṽ(q)− v(q)).

where the last equality uses the expression for H defined in (30). Notice that as
q ↓ p, ṽ(q) − v(q) → 0. However, H(q,v(q),v′(q)) > 0. Therefore, −λgq(1 −
q)[ṽ′(q)− v′(q)] < 0 as q ↓ p. Therefore, in the neighborhood of p, ṽ′(q) > v′(p),
i.e. ṽ(q) > v(q) for all q ∈ (p, p + ε1) for some ε1 > 0.

Case 2: Suppose, H(p,v(p),v′(p)) < 0. The argument is exactly as above with a′ = 0 on
some interval (p − ε, p) and following the policy at p thereafter. Similar calcula-
tions as before yield, for any q ∈ (p− ε,p),

ṽ(q)− v(q) + aH(q,v(q),v′(q)) = λbq(1− q)[ṽ′(q)− v′(q)] + λb(1− q)(ṽ(q)− v(q)).

Again, taking limits as q ↑ p, and since H(q,v(q),v′(q)) < 0, we must have ṽ′(q) <
v′(q). Therefore, some ε1 ṽ(q) > v(q) for all q ∈ (p− ε1,p).

Notice that even though a′ maybe non-Markovian, due the Markovian structure of the
problem, if a non-Markovian control does strictly better than a, there exists a Markovian
control that does strictly better than a. Therefore, in general, there exists a Markovian
control a′ � a and, has a′(q) = 1(0) for all q ∈ (p, p + ε1) if H(p,v(p), v′(p)) > (<)0. �

LEMMA 16. Suppose, a ∈ A is continuous on [p1,p2] ⊂ ( p̂, 1). Suppose, for some p ∈ (p1,p2),
a(p) /∈ {0,a f , 1} and H(p, v(p), v′(p)) = 0. Then, at least one of the following hold:

(1) There is an a′ ∈ A and an ε > 0 such that, either, a′(q) ∈ {0,1} for all q ∈ [p− ε, p] or
for all q ∈ [p,p + ε] and v(·|a′) ≥ v(·|a).

(2) ∃q such that v(q|a∗) > v(q|a).

PROOF. There are four cases:

Case 1: For some ε > 0, H(q,v(q),v′(q)) = 0 for all q ∈ [p− ε,p] or [p,p + ε]. Notice that
v must satisfy (29) and (30) where we set H(q,v(q)v′(q)) = 0. It is easy to check
that the two imply that v must be linear. However, It is straightforward to see that
there is no v of the form K1 p + K2 for some constants K1 and K2 that satisfies both
the equations.
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Case 2: ∃ε > 0 such that. {q : H(q,v(q),v′(q) = 0, q ∈ Bε(p)} = {p}. By Lemma 15, since
H is signed on (p, p + ε), we can find a control a′ that is valued in {0,1} that does
strictly better than a. Moreover, setting a′(p) = 1 if a(p) > a f and 0 otherwise
leaves the value at p unchanged.

Case 3: ∃ε > 0 such that both of the following hold:
(a) H(q,v(q),v′(q)) ≥ 0 or H(q,v(q),v′(q)) ≤ 0 for all q ∈ (p, p + ε).
(b) H(q,v(q),v′(q)) ≥ 0 or H(q,v(q),v′(q)) ≤ 0 for all q ∈ (p− ε, p).

That is, H(q,v(q),v′(q)) does not change sign on either side of p for some open
interval. Here, again, we can set a′(q) = 1 or 0 depending on whether H ≥ 0 or
≤ 0, for any q ∈ Bε(p)\p. At p, we can set a′(p) = 1 if a(p) > a f and 0 otherwise
as before.

Case 4: At least one of the following holds:
(a) For any ε > 0, ∃q1,q2 ∈ (p − ε,p) such that H(q1,v(q1),v′(q1)) > 0 and

H(q2,v(q2),v′(q2)) < 0.
(b) For any ε > 0, ∃q1,q2 ∈ (p − ε,p) such that H(q1,v(q1),v′(q1)) > 0 and

H(q2,v(q2),v′(q2)) < 0.
We will argue only for case 4a. For any ε > 0, ∃q ∈ (p,p+ ε) such that H(q,v(q),v′(q)) >
0. Define,

e := sup{w ∈ (p,q) : H(w,v(w),v′(w)) < 0} = inf{w ∈ (p,q) : H(x,v(x),v′(x)) ≥ 0∀x ∈ (w,q)}.

The equality is obvious and, it is also easy to see, due to continuity, that e ∈ (p,q).
Therefore, we can define a control, a′′ that takes the value 1 on (e,q) such that
a′′ � a by Lemma 15. Moreover, by definition of e, ∃ a sequence qn ↑ e such that
H(qn, v(qn),v′(qn)) < 0. By continuity, for every such qn, ∃ an interval (pn,qn) such
that H < 0 on the entire interval. Therefore, we can define a control a′ modifying
a′′ by setting a(w) = −1 on (pn, qn) such that a′ � a′′ � a.22 Lastly, notice that
a(qn) = 0 and qn → e and a(w) = 1 for w ∈ (e,q). Therefore, v(e|a′) = v f (e), value
by freezing at e. We can repeat this construction to obtain another point, say e′ in
(p,e) where the value obtained is the value by freezing. By Lemma 18, v(·|a∗) >

v f (·) for all p except ps. Therefore, ∃ a w ∈ {e,e′} such that v(w|a∗) > v(w|a).

�

DEFINITION 10. We say, H is signed on an interval (x,y) if, for all z ∈ (x,y) either H(z,v(z),v′(z) ≥
0 or ≤ 0. If H(z,v(z),v′(z) ≥ 0 we say H is + and if H(z,v(z),v′(z) ≤ 0 we say H is −. If for
some point z, H(z,v(z),v′(z) has different signs on either side of z, we say that H changes sign at
z.

22Notice that this control may not be piecewise is continuous but, the argument goes through by choosing a
finite number of intervals (pn,qn) close to e.
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LEMMA 17. If a ∈ A such that a � a∗, then H changes sign at most once.

PROOF. By Lemma 16, we know that if a � a∗, for every p such that H(p,v(p|a), v′(p|a)) =
0, we are in Case 2 or 3 in Lemma 16. That is, for every p such that H is 0, ∃ε(p) such that
H is signed on for q ∈ [p, p + ε(p)] and on [p− ε(p),p]. Let I be the set of points where H
changes sign. If |I| > 1, we must have at least one point, say p, where the sign changes
from − to +. Replacing a by 0 to the left of p and 1 to its right, we know that we achieve
a strictly higher payoff. Moreover, at p, the value is equal to v f (p). Therefore, if p 6= ps,
a � a∗ is not possible, as v(p|a∗) > v f (p).

Therefore, if there is a p > ps where H changes sign, it must be from + to −, and,
more importantly, H stays negative on (p,1). In that case, we can set a′(q) = 0 on (p,1) so
that a′ � a � a∗. It is straightforward to see that using the bad news arm on (1− ε,1) is
strictly dominated by using the good news arm on (1− ε,1) for a sufficiently small ε > 0.
Therefore, a′ � a∗ is not possible.

Hence, H cannot change its sign at p > ps, must be + on (ps,1) and a sign change from
− to +, if present, must occur only at ps. Therefore, the only possibilities are, H stays +

throughout or changes from − to + at ps.
�

LEMMA 18. v(ps|a∗) = v f (ps) and v(p|a∗) > v f (p) for all p 6= ps.

PROOF. Recall, by definition of a∗, v(ps|a∗) = v f (ps) and v′(ps|a∗) = v f ′(ps). It is easy
to see that v′(p|a∗) is increasing. Since v f (·) is linear and v′(p|a∗) is increasing, v(p|a∗) >
v f (p) for all p 6= ps. �

LEMMA 19. Suppose the principal hires in the interval [ p̂, 1] such that p̂ ≤ ps, then the policy a∗

described in equation 27 is optimal for the principal.

PROOF. Lemma 17 tells us that there can be at most one switch from bad news arm to
good news arm in [ p̂, 1]. Suppose the belief at which switching occurs is p̃ > ps. Then in
this case, the value function of the principal is given by

ṽ p̂(p) :=


v0(p; C̃0) if p ∈ [ p̂, p̃),

v f ( p̃) = v0( p̃; C̃0) = v1( p̃; Ĉ1) if p = p̃,

v1(p; Ĉ1) if p ∈ ( p̃,1],

(31)

where C̃0 and C̃1 are computed by invoking continuity at p̃. Note that since v1(p; Cs
1) is

convex, tangent to v f (·) at ps, and v1(p; Cs
1) ≥ v f (p), it must be the case that v1( p̃; Cs

1) >

v f ( p̃) = v1( p̃; C̃1). This implies that Cs
1 > C̃1 and consequently v1(p; Cs

1) > v1(p; C̃1) for all
p ∈ [ p̃,1]. This results in v p̂

∗(p) > ṽ p̂(p) for all p ∈ [ p̃,1].
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We now claim that C̃0 > 0. To see this note that v f ( p̃) = v0( p̃; C̃0) > 0. Equation 16
implies that v0( p̃; C̃0) > 0 =⇒ C̃0 > 0, which implies that v0(p; C̃0) is convex. Next
note that since v0(p; Cs

0) is convex, tangent to v f (·) at ps and v0(p; Cs
0) ≥ v f (p), it must

be the case that v0( p̃; Cs
1) > v f ( p̃) = v0( p̃; C̃0). The fact that v0(p; Cs

0) and v0(p; C̃0) do
not intersect, together with the convexity of v0(p; C̃0) implies that v0(p1; C̃0) = v f (p1) for
some p1 < ps. This implies that it must be the case that v0(p; C̃0) < v f (p) for p ∈ (p1,p̃),
implying that v p̂

∗(p) > ṽ p̂(p) for all p ∈ (p1,p̃). Next note that since v0(p; Cs
1) > v0(p; C̃0)

we have v p̂
∗(p) > ṽ p̂(p) for all p ∈ [ p̂,p1] This shows that v p̂

∗(p) > ṽ p̂(p) for all p ∈ [ p̂,1].
With a mirror argument as above (left to the reader) we can show that we have the same
result as above when p̃ < ps. This implies that ps is the optimal switching belief. Hence a∗

is the optimal policy for the principal. �

Since a∗ is optimal for any exogenously specified stopping cutoff p̂, the optimal stopping
cutoff is the following:

DEFINITION 11. The optimal stopping cutoff is given by

p∗1 := {p : v(p|a∗) = 0}. (32)

Here, we have extended a∗ on [0,1] by assuming that a∗(p) = 0 ∀p < ps.

NOTATION 3. As before, to keep track of the principal value function for the case of F = 1, we will
denote it by vF=1

∗ (·).

Define,

vF=1
∗ (p) :=

0 if p ≤ p∗1 ,

vp∗1∗ (p) otherwise,
(33)

where vp∗1∗ (p) is defined in Equation 27.

A.8. COMPARISON BETWEEN F=1 AND F=0 CASES

PROOF OF PROPOSITION 3: Lemma 23 establishes that if c > F(1 + λg) then there exists
λb such that when λb > λb we have p∗1(λb) < p∗0(λb). Lemma 24 shows that if p∗1 < p∗0
then R = 1,F = 1 dominates R = 1,F = 0 for all prior belief p0 ∈ (0,1) which concludes
the proof of the first part.

Lemma 20 shows that in the case when R = 1,F = 1,

p∗f > ps ⇐⇒ c + Λ
Λ(Γ− R + 1)

>
λb(c− 1)

λg(Γ− R + c) + λb(c− 1)
,

where p∗f is the belief at which the value of the principal equals 0 when the agent uses the
policy a = a f . This implies that when R = 1,F = 1 and p∗f > ps the principal’s value at
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ps is negative under the policy a∗ as defined in (27). We claim that in this case the optimal
hiring region of the principal is [p∗f ,1] and the principal-optimal policy of the agent is given
by

ã(p) =

1 if p ∈ [p∗f ,1],

a f if p = p∗f .

To see this, recall that the principal-optimal policy of the agent features at most one
switch from the bad news arm to the good news arm (Lemma 17). Fixing the lower end
of the hiring interval at p∗f , in the candidate policy ã the agent uses the good news arm
everywhere above p∗f and freezes the belief at p∗f . It is easy to see that ã dominates the
policy where the agent uses a = 0 for all p ≥ p∗f since the value of the principal is strictly
negative under such a policy. All we need to show is that ã dominates any other policy
where there is a switch from the bad news arm to the good news arm at a belief p̃ > p∗f .
From lemma 19 we know that since p̃ > ps, lowering the belief at which switching occurs,
improves the value of the principal. This implies that in the optimal policy given the
lowering firing cutoff p∗f , switching must occur at p∗f , which implies that in the optimal
policy, the agent must be freezing belief at p∗f . To see that p∗f is an optimal choice of lower
end of hiring interval, simply note that v f (p∗f ) = 0. If the principal chooses a cutoff p̂
strictly lower than p∗f , principal’s value at p̂ is strictly negative and hence cannot be an
equilibrium. If the principal chooses a cutoff p̂ strictly higher than p∗f , principal’s value is
strictly lower at all beliefs in (p∗f ,1] compared to ã. Hence p∗f is the optimal choice of lower
end of the hiring interval.

Note that in this case the principal can achieve an identical behavior from the agent by
setting F = 0 instead. Additionally, this improves the payoff of the principal since the
agent does not have to be paid anything if a bad news is obtained. Hence, in this case the
optimal reward structure is to set R = 1,F = 0. �

In comparing the optimality of F = 1 vs F = 0, an obvious case when F = 0 would
dominate F = 1 is one when p∗1 > ps (or equivalently p∗f > ps). The following lemma
gives the condition when that can happen.

LEMMA 20.

p∗f > ps ⇐⇒ c + ΛF
Λ(Γ− R + F)

>
λb(c− F)

λg(Γ− R + c) + λb(c− F)
.

PROOF. Proof follows from the definitions of p∗f and ps defined in (22) and (24) respec-
tively. �

Similarly, a natural case where F = 1 would dominate F = 0 (at least for some prior
beliefs) is one where p∗1 < p∗0 where p∗0 is defined in (21).
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LEMMA 21. p∗1 is decreasing in λb
23.

PROOF. Suppose the agent uses the bad news arm in the interval [p0, p1] with p0 6= p1 and
at p1, the principal gets specified value V̄(p1) ≥ 0 at p1 . We calculate the value of the
principal under the given experimentation strategy of the agent for a given value of λb.
We call this value as V̄(p0; λb). To calculate this value we first define t̄ as the time it takes
for beliefs to drift from p0 to p1 in the absence of a signal. Note that

t̄ =
1

λb

∫ p1

p0

dp
p(1− p)

=
1

λb
ln
[

p1

1− p1

1− p0

p0

]
.

We can write

V̄(p0; λb) = (1− p0)
∫ t̄

0
λbe−λbs [−c(1− e−s)− Fe−s]︸ ︷︷ ︸

Value when signal arrives at s

ds

+
[

p0 + (1− p0)e−λb t̄
]

︸ ︷︷ ︸
Prob. of no signal until t̄

[
e−t̄V̄(p1)− c[1− e−t̄]

]
.

The integral can be evaluated to give:

V̄(p0; λb) = (1− p0)

[
−c(1− K) + (c− F)

λb

1 + λb
(1− K

1+λb
λb )

]
+ [p0 + (1− p0)K]

[
K

1
λb (V̄(p1) + c)− c

]
.

where K is given by

K =

[
p0

1− p0

1− p1

p1

]
< 1.

We then claim that V̄(p0; λb) is strictly increasing in λb. To see this first note that the second

term term [p0 + (1− p0)K]
[
K

1
λb (V̄(p1) + c)− c

]
is strictly increasing in λb since K < 1. We

just need to check for the first term. Taking the derivative we get

d
dλb

[
λb

1 + λb
(1− K

1+λb
λb )

]
=

1
(1 + λb)2

[
1 + K

1+λb
λb

[
1 + λb

λb
ln K− 1

]]
.

Define the function f (m) = 1+Km(m ln K− 1), where m = 1+λb
λb

. Note that m is decreasing
in λb and when λb = 0, m = ∞ and when λb = ∞, m = 1. Note that

f ′(m) = mKm(ln K)2 > 0 for all K > 0,

and
f (1) = 1− K + K ln K ≥ 0 for all K > 0.

This implies that V̄(p0; λb) is strictly increasing in λb.

23 p∗1 is a function on several variables including λb. Here we study the behavior of p∗1 as a function of λb
ceterus paribus.
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Now, assume λ′b > λ′′b and consider V0(p; λ′′b ). Call p† the optimal belief at which switch
from bad arm to good arm happens. Note that we must have V0(p†; λ′′b ) ≥ 0. Suppose the
principal chooses the same cut off p† to switch from bad arm to good arm when the arrival
rate of the bad news arm is λ′b. Let’s call the value function under this policy to the left of
p† as Ṽ0(p; λ′b). Consider a belief p1 ≤ p†. We now show that Ṽ0(p1; λ′b) > V0(p1; λ′′b ). First
we observe that Ṽ0(p†; λ′b) > V0(p†; λ′′b ). This is because

Ṽ0(p†; λ′b) = V f (p†; λ′b) > V f (p†; λ′′b ) = V0(p†; λ′′b ),

since V f (p; λb) is increasing in λb. Now, we can write

V0(p1; λ′′b ) = (1− p1)

[
−c(1− K) + (c− F)

λ′′b
1 + λ′′b

(1− K
1+λ′′b

λ′′b )

]

+ [p1 + (1− p1)K]
[

K
1

λ′′b (V0(p†; λ′′b ) + c)− c
]

and

Ṽ0(p1; λ′b) = (1− p1)

[
−c(1− K) + (c− F)

λ′b
1 + λ′b

(1− K
1+λ′b

λ′b )

]

+ [p1 + (1− p1)K]
[

K
1

λ′b (V̄0(p†; λ′′b ) + c)− c
]

,

where K =
[

p1
1−p1

1−p†

p†

]
< 1. Since we have shown above that V̄(p0; λb) is strictly increasing

in λb, we have Ṽ0(p f ; λ′b) > V0(p; λ′′b ). Next note that p† may or may not be the optimal
cutoff choice when the arrival rate is λ′b. Hence we must have V0(p; λ′b) > V0(p; λb) when
p < p† which in turn implies that p∗1(λ

′
b) < p∗1(λ

′′
b ) since V ′0(p,λb) > 0 when p ≥ p∗1(λb).

�

LEMMA 22. limλb→∞ p∗1(λb) =
F(1 + λg)

F(1 + λg) + λg(Γ− R)− c
and limλb→∞ p∗0(λb) =

c
λg(Γ− R)

.

PROOF. Taking limit of 25 as λb → ∞ gives us

C f
0 =

λg

1 + λg
(Γ− R + c).

This gives us

lim
λb→∞

V0(p; λb) = −pc− (1− p)F +
λg

1 + λg
(Γ− R + c)p

= −F + p
[

F(1 + λg) + λg(Γ− R)− c
1 + λg

]
.
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which yields

lim
λb→∞

p∗1(λb) =
F(1 + λg)

F(1 + λg) + λg(Γ− R)− c
.

Also note that
lim

λb→∞
p∗0(λb) = lim

λb→∞

c
Λ(Γ− R)

=
c

λg(Γ− R)
.

�

LEMMA 23. If c > F(1 + λg) then there exists λb such that when λb > λb we have p∗1(λb) <

p∗0(λb).

PROOF. First we note that

c > F(1 + λg) ⇐⇒
F(1 + λg)

F(1 + λg) + λg(Γ− R)− c
<

c
λg(Γ− R)

.

Next, note that p∗1(λb) is continuous in λb. Lemma 21 establishes that p∗1(λb) is decreasing

in λb. Also lemma 22 establishes that limλb→∞ p∗1(λb) =
F(1 + λg)

F(1 + λg) + λg(Γ− R)− c
and

limλb→∞ p∗0(λb) =
c

λg(Γ− R)
. Therefore, since

lim
λb→∞

p∗1(λb) =
F(1 + λg)

F(1 + λg) + λg(Γ− R)− c
<

c
λg(Γ− R)

= lim
λb→∞

p∗0(λb),

there must exist λb such that p∗1(λb) <
c

λg(Γ− R)
when λb > λb. Note that p∗0 ≥

c
λg(Γ− R)

for all λb, which implies that p∗1(λb) < p∗0(λb) when λb > λb. �

LEMMA 24. If p∗1 < p∗0 then R = 1,F = 1 dominates R = 1,F = 0 for all prior belief p0 ∈ (0,1).

PROOF. Recall the principal’s value function when R = F = 1 given by (27)

vF=1
∗ (p) :=


0 if p ∈ [0,p∗1),

v0(p; Cs
0) if p ∈ [p∗1 , ps),

v f (ps) = v0(p f ; Cs
0) = v1(p f ; Cs

1) if p = ps,

v1(p; Cs
1) if p > ps,

and when R = 1,F = 0 is given by

vF=0
∗ (p) :=

0 if p ∈ [0,p∗0),

v0(p; C∗0 ) if p ∈ [p∗0 , 1].

From lemma 26, we know that if p∗1 < p∗0 then v1(p; Cs
1) > v1(p; C∗1 ) for all p ∈ [ps,1]

which implies that vF=1
∗ (p) > vF=0

∗ (p) for all p ∈ [ps,1]. We are left to show that vF=1
∗ (p) >

vF=0
∗ (p) for all p ∈ [p∗0 ,ps]. To that end, first note that vF=1

∗ (p∗0) = v0(p∗0 ; Cs
0) > v1(p∗0 ; C∗1 ) =
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0. From lemma 27 we know that v′1(p; C∗1 ) − v′0(p; Cs
0) is single peaked and v′1(ps; C∗1 ) −

v′0(ps; Cs
0) > 0, which implies that v1(p; C∗1 ) − v0(p; Cs

0) attains it’s maximum value in
[p∗0 ,ps] at either p∗0 or ps. Note that v0(ps; Cs

0) = v1(ps; Cs
1) > v1(ps; C∗1 ). Hence v1(p; C∗1 )−

v0(p; Cs
0) < 0 when p ∈ [p∗0 ,ps] and we are done. �

LEMMA 25. v0(p; Cs
0) < v1(p; Cs

1) if p ∈ [0, ps) and v0(p; Cs
0) > v1(p; Cs

1) if p ∈ (ps,1].

PROOF. We note that Cs
1 and Cs

0 are both positive. We evaluate v′′1 (p; Cs
1)− v′′0 (p; Cs

0) which
is given by

Cs
1

[
1 + λg

λ2
g p2(1− p)

(
1− p

p

) 1
λg

]
− Cs

0

[
1 + λb

λ2
b p(1− p)2

(
p

1− p

) 1
λb

]

=
1

p(1− p)

[
C f

1 (1 + λg)

λ2
g p

(
1− p

p

) 1
λg
−

C f
0 (1 + λb)

λ2
b(1− p)

(
p

1− p

) 1
λb

]
︸ ︷︷ ︸

=Φ(p)

.

Since Cs
1 and Cs

0 are both positive, Φ(p) is strictly decreasing. Also note that limp↓0 Φ(p) =
∞ = − limp↑1 Φ(p) which implies that there exists a unique pd such that Φ(pd) = 0.
We next show that v′′1 (ps; Cs

1) − v′′0 (ps; Cs
0) = 0 by plugging in ps as defined in (24) (al-

gebra left to the reader) implying that pd = ps. Therefore v′′1 (p; Cs
1) − v′′0 (p; Cs

0) > 0
when p < ps and v′′1 (p; Cs

1) − v′′0 (p; Cs
0) < 0 when p > ps. Now we know that at ps,

v1(ps; Cs
1) = v0(ps; Cs

0) and v′1(ps; Cs
1) = v′0(ps; Cs

0). Hence we get v0(p; Cs
0) < v1(p; Cs

1) if
p ∈ [0, ps) and v0(p; Cs

0) > v1(p; Cs
1) if p ∈ (ps,1]. �

LEMMA 26. If p∗1 < p∗0 , then v1(p; Cs
1) > v1(p; C∗1 ) for all p.

PROOF. Recall that v1(p; C∗1 ) is the value function of the principal when p ∈ [p∗0 ,1] in the
case when F = 0. Since p∗1 < p∗0 , we have vF=1

∗ (p∗0) > vF=0
∗ (p∗0) = 0. If p∗0 < ps, then

v0(p∗0 ; Cs
0) > v1(p∗0 ; C∗1 ) = 0. We know from lemma 25 that v1(p∗0 ; Cs

1) > v0(p∗0 ; Cs
0) which

implies that v1(p∗0 ; Cs
1) > v1(p∗0 ; C∗1 ). If p∗0 ≥ p f , then v1(p∗0 ; Cs

0) > v1(p∗0 ; C∗1 ) = 0, since
ps > p∗1 .

This implies that v1(p; Cs
1) > v1(p; C∗1 ) for all p, since if C 6= C′ then v1(p; C) 6= v1(p; C′)

for any p. �

LEMMA 27. v′1(p; C∗1 )− v′0(p; Cs
0) is single peaked and moreover if C f

1 > C∗1 then v′1(ps; C∗1 )−
v′0(ps; Cs

0) > 0.

PROOF. To see that v′1(p; C∗1 ) − v′0(p; Cs
0) is single peaked, following identical steps in

lemma 25 we can show that v′′1 (p; C∗1 )− v′′0 (p; Cs
0) is strictly decreasing and is positive be-

low a cutoff and negative above it, establishing that v′1(p; C∗1 )− v′0(p; Cs
0) is single peaked.
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Note that v′0(ps; Cs
0) = v′1(ps; Cs

1) by the definition of ps. Also note from lemma 26 that
Cs

1 > C∗1 . v′1(ps; C∗1 )− v′0(ps; Cs
0)is given by

[
λg(Γ− R + c)

1 + λg
− C∗1

[
1− ps

ps

] 1
λg

[ 1
λg

+ ps

ps

]]
−
[
−λb(c− F)

λb + 1
+ Cs

0

[
ps

1− ps

] 1
λb

[ 1
λb

+ 1− ps

1− ps

]]
.

Since Cs
1 > C∗1 we must have v′0(ps; Cs

0)− v′1(ps; C∗1 ) > 0.
�

LEMMA 28. Suppose p∗1 ≥ p∗0 .

(1) If vF=0
∗ (ps) > vF=1

∗ (ps), then vF=0
∗ (p) > vF=1

∗ (p) for all p ∈ [p∗0 ,1].
(2) If vF=0

∗ (ps) < vF=1
∗ (ps), then there exists p̂ ∈ [p∗1 ,ps] such that vF=1

∗ (p) > vF=0
∗ (p) when

p > p̂, vF=1
∗ (p) < vF=0

∗ (p) when p ∈ (p∗0 ,p̂), and vF=1
∗ ( p̂) = vF=0

∗ ( p̂).
(3) If vF=0

∗ (ps) = vF=1
∗ (ps), then vF=1

∗ (p) = vF=0
∗ (p) when p ≥ ps, and vF=1

∗ (p) < vF=0
∗ (p)

when p ∈ (p∗0 ,ps).

In particular, if vF=0
∗ (·) and vF=1

∗ (·) cross, they cross exactly once.

PROOF. We prove case by case.

(1) vF=0
∗ (ps) > vF=1

∗ (ps): In this case C∗1 > Cs
1. This implies that vF=0

∗ (p) > vF=1
∗ (p)

when p ≥ ps. Also know from lemma 25 that vF=1
∗ (p) = v0(p; Cs

0) < v1(p; Cs
1) =

vF=0
∗ (p) when p < ps. This implies that vF=1

∗ (·) and vF=0
∗ (·) never cross.

(2) vF=0
∗ (ps) < vF=1

∗ (ps): In this case we have C∗1 < Cs
1. We know from lemma 27 that

v′1(ps; C∗1 )− v′0(ps; Cs
0) > 0 and v′1(p; C∗1 )− v′0(p; Cs

0) is single peaked. It is easy to
see that limp↓0 v′1(p; C∗1 )− v′0(p; Cs

0) = −∞. Also note that v1(ps; C∗1 )− v0(ps; Cs
0) <

0 and v1(p∗1 ; C∗1 )− v0(p∗1 ; Cs
0) > 0. This implies that v1(p; C∗1 )− v0(p; Cs

0) must be
decreasing in some subset of [p∗1 ,ps]. Since v′1(p; C∗1 ) − v′0(p; Cs

0) is single peaked,
limp↓0 v′1(p; C∗1 ) − v′0(p; Cs

0) = −∞ and v′1(ps; C∗1 ) − v′0(ps; Cs
0) > 0, it must be the

case that v1(p; C∗1 )− v0(p; Cs
0) is decreasing in [p∗1 ,p†] where p† < ps. This implies

that v1(p; C∗1 ) and v0(p; Cs
0) cross exactly once at p̂ ∈ [p∗1 ,ps] implying that vF=0

∗ (·)
and vF=1

∗ (·) cross exactly once in [p∗1 ,ps]. It is easy to see that vF=0
∗ (·) and vF=1

∗ (·)
do not cross in [ps,1].

(3) vF=0
∗ (ps) = vF=1

∗ (ps): In this case we have C∗1 = Cs
1, hence vF=1

∗ (p) = vF=0
∗ (p) when

p ≥ ps. Also from we know from lemma 25 that vF=1
∗ (p) = v0(p; Cs

0) < v1(p; Cs
1) =

vF=0
∗ (p) when p < ps. Hence vF=1

∗ (p) < vF=0
∗ (p) when p ∈ (p∗0 ,ps).

�

The following corollary to the above lemma is useful.

COROLLARY 1. If p∗1 ≥ p∗0 and vF=0
∗ (ps) < vF=1

∗ (ps), then vF=0
∗ (·) and vF=1

∗ (·) cross exactly
once.
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A.9. UNOBSERVED ALLOCATION

PROOF OF LEMMA 2: Since R = 1 and F = 0, the agent has no incentives to look for bad
news on and off path and hence, a(p,t) = 1 is optimal.

Given that a(p,t) = 1, note that the principal’s belief drifts down in the absence of a
signal. The principal’s value function at any belief p is given by (15) restated below.

v(p) =
pλg(Γ− 1 + c)

1 + λg
− c + C1(1− p)

[
1− p

p

] 1
λg

,

C1 and the stopping belief p̂0 (belief at which principal’s value is zero) are jointly deter-
mined by imposing smooth-pasting and value matching with the function f (p) = 0 at p̂0.
After some algebra we find that p̂0 = c

λg(Γ−1) . The principal’s optimal stopping time is
simply the time t at which belief reach p̂0. If initial prior is less than or equal to p̂0, then it
is optimal to choose T∗ = 0.

�

PROOF OF LEMMA 3: Suppose R = 1 and F ∈ (0,1) and fix a stopping time for the princi-
pal T. We know from lemma 29 that if the agent searches for bad news at some time t̄ < T,
he must be looking exclusively for bad news when t ∈ [t̄,T]. Note that in this case the prin-
cipal has a profitable deviation. She can simply lower her stopping time to t̄ and be better
off since she knows that after t̄, the agent can only bring her bad news that leads to the
abandonment of the project and she can save the cost of experimentation by abandoning
the project herself at t̄. Therefore in any equilibrium when R = 1 and F ∈ (0,1), it must be
the case that the agent using the good news arm solely before the stopping time is reached.
Notice that given this equilibrium behavior of the agent, the principal is equally better off
by setting R = 1 and F = 0. Hence R = 1 and F ∈ (0,1) does not improve upon R = 1 and
F ∈ (0,1). �

LEMMA 29. Suppose R = 1 and F ∈ (0,1). Fix a stopping time for the principal T. Fix a strategy
of the agent a such that T0 =

∫ T
0 (1− a(p,t))dt > 0. Consider another strategy for the agent ā

such that ā(p,t) = 1 when t ∈ [0,T − T0] and ā(p,t) = 0 when t ∈ (T0,T]. The agent strictly
prefers ā to a.

PROOF. When θ = 1. B signal never arrives under both strategies. The ex ante probability
of arrival of G signal by T is the same under both strategies since the amount of time
allocated to search for good news is T − T0 under both strategies. If G signal arrives, the
value of the agent is 1 under either strategy. If no signal arrives by T, then the value of the
agent is equal to 1− e−T under both strategies. Hence when θ = 1, both policies yield the
same ex ante payoff to the agent.
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When θ = 0. G signal never arrives under both strategies. If no signal arrives by T, then
the value of the agent is equal to 1− e−T under both strategies. The ex ante probability
of arrival of a B signal by T is the same under both strategies since the amount of time
allocated to search for bad news is T0 under both strategies. However, note that B signal
arrives later in expectation in strategy ā compared to a since the agent has delayed the use
of bad news arm in ā. Since F < 1, the agent strictly prefers ā to a, since the agent can
collect a flow wage of 1 for longer in expectation under ā.

�

LEMMA 30. Suppose R = F = 1, then the principals optimal policy is one of the following

(1) G policy: Search for good news when p ∈ [ p̂0,1].
(2) G− B− G policy: There exists cutoff p̃ with p̂0 < p̃ < ps such that

• Search for good news when p ∈ [ p̂0,p̃] ∪ [ps,1].
• Search for bad news when p ∈ ( p̃,ps).

(3) B− G policy:
• Search for good news when p ∈ [ps,1].
• Search for bad news when p ∈ [p∗1 ,ps).

PROOF. Lemma 17 establishes that in the optimal policy there can be at most one switch
from bad new arm to good news arm in any experimentation region [p†, 1]. Suppose there
is no switch, then it is easy to see that the optimal policy must be to use the good news arm
in the hiring region and thereby, the optimal lower cutoff of experimentation must be p̂0

as defined in lemma 2. If there is a switch then we have cases (2) and (3) as possibilities.
Using a similar argument as in lemma 19 we can show that if there is a switch from bad
news arm it must be at ps defined in (4). In the B− G policy, the optimal stopping belief
is equal to p∗1 as in the case of observed allocation. In the G − B − G policy, the optimal
stopping belief is p̂0 by the same argument as in lemma 2. If p∗1 < p̂0 then the optimal
policy is the B − G policy. The proof is delivered by by following identical steps as in
lemma 24. If p∗1 < p̂0 then the optimal policy must be G − B − G since there is switch
from bad news arm to good news arm at ps. We denote the belief at which optimal policy
switches from good news arm to bad news arm in the G− B− G policy as p̃. �
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