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Abstract

Treasuries all over the world sell sovereign bonds through an auction which is
typically conducted by the central bank. When volatility in financial markets is
high, auctions may fail to elicit the true price of the bond. To study the impact of
increased uncertainty on bidder behavior in treasury auctions, we introduce (a) risk
averse preferences and (b) common uncertainty in the valuation of the underlying
security. Using detailed bid-level data on the Indian Treasury Bill market around
the (in)famous episode called taper tantrum, we estimate bidders’ valuations in a
model of multi-unit discriminatory price auction. We find that average bid shad-
ing increases substantially during this period leading to a big loss to the exchequer.
A large part of the increase in bid shade is explained by the rise in uncertainty as
measured by activity in the secondary market. We also uncover systematic hetero-
geneity across bidders. While some bidders bid at low prices because their valuations
are low, others bid less as a strategic response to the increased uncertainty. We eval-
uate two alternative selling mechanisms − uniform price auction and a fixed price
tender. We find that switching the pricing rule to uniform does not reduce bidder
surplus. A fixed price mechanism, on the other hand, can help stabilize the market
without affecting revenue much.
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1 Introduction

Markets do their job well when prices aggregate all possible information associated with
trade. A widely used instrument for price discovery in large markets is auctions. The de-
signer (or auctioneer) could be interested in finding out the right price from the perspec-
tive of direct revenue or efficiency of the downstream market. A necessary condition for
price discovery through auctions is limited bid shading, defined as the difference between
the buyer’s value and bid for the object being sold. In a crisis situation, characterized
informally as increased uncertainty in the price of underlying security, standard auctions
may fail to fulfill the said role. How can we measure the quantity and the quality of this
failure? Should the auctioneer then try something different?

In the summer of 2013, the Federal Reserve Board of the United States of America
(henceforth the Fed) signaled an intent to tighten monetary policy by tempering the so-
called quantitative easing and raising the base interest rate. This, it is largely believed,
sent financial markets in emerging economies into a tizzy.1 Exchange rates appreciated
against the dollar and the domestic bond yields rose rapidly. It is important to note the
Fed eventually did not follow through with this intent, hence the episode is often refer-
eed to as the “taper tantrum”. Understanding what actually happened at the micro level
that led to a significant macro shock is widely regarded as an important question.2 This
paper takes a step in that direction by documenting the tumultuous episode through bid-
ding behavior in the primary auctions for government bonds in India. In the process,
it extends the tool kit of the empirical multi-unit auctions literature to incorporate un-
certainty and addresses the general question of auction design for sovereign debt during
times of crisis.

The empirical facts are as follows. Once the announcement of the Fed was inter-
nalized by monetary policy in India, yields on short-term and long-term paper started
rising, that is the price bidders were willing to pay started to fall. Figure 1 plots the mar-
ket clearing prices in the primary auction for the three month treasury bond around the
taper tantrum period. These auctions are conducted by the central bank- Reserve Bank
of India.3 Forty two weekly held auctions are depicted from April 2013 to January 2014.
The sequence of auctions between the vertical markers will be referred to as "during",

1See Basu, Eichengreen, and Gupta [2015] for an overview of the impact of the Fed’s announcement
on financial markets in India.

2Commenting on the taper tantrum episode, the chairman of the Fed at the time later wrote (Bernanke
[2016]), "This line of research is interesting and important. Given the sometimes severe consequences of
financial instability, we have to take these issues very seriously. Unfortunately, we don’t understand these
phenomena as well as we would like.”

3This is a zero coupon bond. The central bank promises to pay the holder of one bond Rs 100 at the
end of three months. The auction asks them to bid how much they would be willing to pay and how many
pieces of paper they would buy.
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Figure 1: Auction clearing prices for the 3-month T-Bill, April 2013-Jan 2014
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(b) intra day price differential

Figure 2: Aggregate demand in the primary auction became steep and secondary market exhib-
ited greater variance in the price of trades

ones to the left as "before" and the ones to the right as "after".
The bids in the auction were widely dispersed. Figure 2a plots the aggregate sum of

demands at every price point; the slope during the taper tantrum period is excessively
steep relative to the norm. Therefore, the bidders were either speculative and/or their
valuations for the bond were highly varied. After the primary auction these bonds can
be traded on the secondary market. In fact many bidders come to the primary auction
solely as an intermediary to resell their wins. In this paper we use the secondary market
data to quantify uncertainty. The volatility in the secondary market spiked. Figure 2b
reports the intra day difference in transaction prices; these were unusually high during
the episode. The total activity too increased with a large increase in volume of trade.

Why did the prices fall so much? Was it purely a due a shift in fundamentals, that
is, the valuation of the sovereign bond by the market? Why did the price rise up again
so quickly? Did the quality of India’s debt temporarily change by a substantial amount?
There are three plausible reasons for the fall in the market clearing price − (i) decrease
in the valuation of the bond, (ii) increase in uncertainty leading to precautionary bid-
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ding, and (iii) a purely strategic response by some market participants to earn a quick buck
culminating in greater bid shading. We shall refer to them as the valuation effect, uncer-
tainty effect and strategic effect respectively. Documenting the existence and extent of
these effects requires a structural model, which we write down and estimate in this paper.

While the aforementioned uncertainty effect is supported by the data on secondary
market activity, to make the case for the strategic effect, we appeal to the number of par-
ticipants and winners in the primary auction both of which increased significantly during
the taper tantrum period (numbers provided in section 2.2). It is perhaps surprising that
a steep decline in price was concomitant with a sharp increase in the number of bidders
and the number of winners. It points to the fact that strategic considerations on part of
the bidders should definitely be explored as a potential reason for the decline in price.

In order to capture the effects of both uncertainty and strategic bidding, we draw
from the tools developed by the literatures on empirical auctions and financial economics
(see Kastl [2016] for an elucidation of the research agenda). We build on a great body
of work on the empirical analysis of treasury auctions (see Hortaçsu [2002], Kang and
Puller [2008], Hortaçsu and McAdams [2010], Kastl [2011], Hortaçsu and Kastl [2012]
and Cassola, Hortaçsu, and Kastl [2013]).4 In particular we augment the canonical em-
pirical multi-units auction framework with risk averse bidders and introduce aggregate
or common uncertainty into the setup.

We model the bidders as being risk averse for three reasons. First, it ensures that
uncertainty is not just "integrated out" and actually affects bidders’ behavior at the op-
timum. Second, it helps bridge the gap between the literatures on empirical auctions
and financial economics, most leading models in the latter assume market participants to
be risk averse (see for example Kyle [1989], Biais, Glosten, and Spatt [2005] and Vives
[2011]).5 Third, it qualitatively squares with the empirical fact of reduced price and in-
creased entry during the taper tantrum period. A risk-neutral model would not predict
increased entry unless accompanied by a substantial but temporary change in idiosyn-
cratic values for the sovereign bond, whereas the risk averse model provides a direct
reason for entry with increased uncertainty. We expound upon the argument in greater
detail in section 4.4.

4See Paarsch and Hong [2006] for a textbook treatment and Athey and Haile [2007] for an exhaustive
survey on the general state of the art in empirical auctions. Hortaçsu and McAdams [2016] provide a
recent synthesis of the research on empirical analysis of multi-unit auctions.

5On modeling financial institutions as being risk averse Biais, Glosten, and Spatt [2005] eloquently
write "To speak to this issue it could be fruitful to analyze theoretically the internal organization of these
financial institutions. For example, suppose the dealers need to exert costly but unobservable effort to
be efficient and take profitable inventory positions. To incentivize them to exert effort, it is necessary to
compensate them based on the profits they make. In this context, even if diversifiable risk does not enter
the objective function of the financial institution, it plays a role in the objective function of an individual
dealer quoting bid and ask prices."
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The valuation of bidders in our model is driven by both a private idiosyncratic com-
ponent and commonly unknown part, that is vi = z i +A, where each z i is independently
drawn and A is independently distributed and commonly unknown at the time of bid-
ding.6 This too departs from the standard set up in the estimation of multi-unit treasury
auctions which assumes pure independent private values, equivalent to A being deter-
ministic in our setup. We want the reader to think of A as the fundamental value of
the sovereign bond and z i as the private component driven by idiosyncratic demand to
either hold the bond for regulatory requirements or to buy and sell as an intermediary.7

We measure the distribution of A through the set of prices at which trade occurs in the
secondary market, providing a first attempt at incorporating the larger market structure
into the empirical analysis of treasury auctions.

Using this augmented set up, we derive a novel first-order necessary condition that
optimal bids must satisfy in this multi-unit auction framework. The condition pins down
the tradeoff between the marginal benefit and marginal cost of placing a particular bid
step. The tradeoff can be broken down into two components. First is the probability
of winning (marginal benefit) and the payment conditional on winning (marginal cost),
which captures the standard intuition from single unit first price auctions. Second, risk
aversion and common uncertainty introduce another tradeoff - the bidder faces the en-
dogenous risk of the probability of winning (marginal benefit) that makes her bid more
aggressively, but she also faces the pure exogenous risk of the value of A being low ex
post (marginal cost) that makes her bid cautiously. We find that this latter tradeoff is
resolved in favor of excessive precaution.8

Our main empirical result is that bid shading during the taper tantrum period goes
up substantially. The average bid shade across bidders goes from 0.04 price points before
taper tantrum to 0.44 during to 0.12 after it.9 For a typical supply of 7 × 108 pieces of
papers worth Rs 100 each, an extra bid shading of 0.4 price points means a loss of Rs 2.8×
108 (or US$ 4 million) per auction.10 This episode cost the Indian government a large
sum of money, and the primary cause was not a change in the fundamental quality of
debt but, as we will argue below, it was increased uncertainty in the market for sovereign

6The valuation is a downward sloping function of quantities (the true idiosyncratic demand function),
therefore A sets the intercept of the demand and z i its slope: vi (q ) = z i (q ) + A.

7Broadly speaking there are two types of bidders in these auctions. The buy and hold types are primar-
ily banks who need to maintain a certain ratio of their assets in government bonds to satisfy a regulatory
requirement known as the statuary liquidity ratio. The buy and sell types are intermediaries who act as
market makers in the secondary market for sovereign bonds.

8The single unit version of this latter tradeoff is studied in Esö and White [2004] and Gupta, Lamba,
and Muratov [2017].

9A bid shading of 0.04 price points means that a bidder that values the bond at Rs 98 would bid Rs
97.96 and a bid shading of 0.44 means that the bidder would bid at 97.56.

10Typically three to five auctions of varying maturities are conducted by the Reserve Bank of India every
week.
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bond and strategic behavior on part of the bidders.
Next, we set out to explain the decrease in bids and simultaneous increase in bid

shading, seeking to add texture to the aggregate numbers. We take the following three
pronged approach. First, we compare the distribution of valuations across auctions. We
find that the distribution during the taper tantrum period is first-order stochastically
dominated by that before and after. This points to the valuation effect− valuations did
indeed go down, which in turn reduced the level of bids. However, digging a bit further
into the change in valuations, we find that almost all of the change is driven by a shift
in the distribution of the common component, there is almost no change in the private
margin to own the bond. Formally, change in the distribution of vi = z i + A is almost
entirely driven by the change in distribution of A, while the distribution of z i remains
almost the same.

Second, we separately evaluate bid shading in the standard risk neutral model. This
extricates our aggregate numbers from the effect of common uncertainty. If the bidders
were only best responding to a decrease in valuation of other market participants this
exercise would capture the interaction of the valuation and strategic effects. We find then
that the standard model would explain only twenty five percent of the average bid shade.
The rest therefore is driven by the uncertainty effect and its interaction with strategic
effects.11

Third we separately calculate average shading of each bidder that participates in pri-
mary auction in the taper tantrum period. We find significant heterogeneity in these
numbers. It suggests that the ex ante symmetric assumption on bidders may not be a
good one. We follow a creative iterative procedure used by Cassola, Hortaçsu, and Kastl
[2013] and club the bidders into groups on the basis on their bid shades and redo the
estimation. Here we are somewhat limited by the data − a full fledged heterogenous
evaluation of all or even a fine partition of bidders is elusive.12 But, by partitioning the
set of bidders into two or three groups in multiple ways we find the heterogeneity to be
robust. The intermediaries, affected perhaps the most by uncertainty and expected to
gain from it too, bid shade the highest. Moreover, bidders who shade the least are the
ones who enter only during the taper tantrum period, revealing themselves to be fringe
bidders who participate simply because of the significant drop in equilibrium price. This
adds further force to the strategic effect, that some bidders are strategically responding to

11By interaction of valuation and uncertainty effects with strategic effect we mean the change in bidding
behavior of the participants due to a change in the distribution from which their opponents’ types and
common uncertainty respectively are drawn. For example, a pure increase in uncertainty would lead to
greater bid shading in equilibrium.

12The data considered by Cassola, Hortaçsu, and Kastl [2013] has about 300 bidders per auction, so they
are able to create bidder groups without loosing much power, whereas the number of bidders per auction
in our data never exceeds 55.
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valuation and uncertainty effects in trying to make hay during the crisis.
A natural question to ask on absorbing the above analysis is this − can the central

bank tweak the auction design in a way that decreases bid shading, improves price discov-
ery and increases revenue? The commonly held view is that uniform price auctions per-
form better during times of financial stress.13 In fact the Reserve Bank of India changed
the format of the primary auction for long-term government securities from discrimina-
tory to uniform, so in a given week the bidders were participating in a uniform price
auction for long-term bonds and a discriminatory auction for short-term T-bills. Using
bid level data in uniform price auctions, we show that the switch did not help. In fact the
switch itself seems to have spooked the bidders. Bidder surplus increased quite substan-
tially after the switch, suggesting that the tweak in auction design may need to be along
a different dimension.

Inspired from a nascent but growing literature on quantity based (as opposed to price
based) market mechanisms (see, for example, Vives [2010] and Duffie and Zhu [2017]),
we propose such a tweak that can be evaluated using counterfactual calculations. We con-
sider fixed price and flexible quantity tenders, as opposed to the prevalent fixed quantity
and flexible price ones. Vives [2010] suggests that "an optimal demand schedule for the
central bank should be more elastic when the information problem is more severe." We
calculate the counterfactual (ex post) revenue for fixed prices under the marginal value
estimates during the taper period. We find that in most auctions the central bank would
have exhausted the supply set in the original auction and done reasonably well in terms of
revenue by choosing a fixed price equal to the average of secondary market prices during
the previous week plus a markup.

2 The background and data

2.1 The summer of taper tantrum

In May 2013, the then chairman of the Fed spoke about the possibility of tapering off the
purchases of long-term bonds, effectually signaling a withdrawal or at least a tempering of
quantitative easing. The Economist later wrote "the announcement that it [Fed] would
start tapering the pace of its quantitative-easing programme caused money to stampede
for safety."14 It is important to note that foreign institutional investors in India are limited
in the amount of treasury bonds they can buy. This is done precisely to keep the hot

13We learnt this fact through personal conversations with the auctioneers at the Reserve Bank of India.
The underlying reasoning is intuitively plausible − a unique price can help to reduce uncertainty during
crisis episodes. Friedman [1960] offered a similar reasoning to argue for uniform price over discriminatory
price for the primary auctions conducted by the US Fed.

14The Economist [2015]
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money phenomenon in check. However, through large movements in the exchange rate
which translated into a change in the interest rate and a general rise in uncertainty in the
market, the bidder behavior of the domestic actors was affected.

A full recap of the episode is beyond the scope here, we refer the readers to Sahay
et al. [2014] for a detailed analysis of the lessons on emerging market volatility and to
Basu, Eichengreen, and Gupta [2015] for the specific impact on India. Our endeavor is to
use this as an example to explore the general question of auction design by central banks
during times of crisis and in the process provide a revealed preference foundation to the
macro question of volatility in financial securities in emerging economies.

2.2 The primary auction

Sovereign bonds in India are broadly classified into two categories: treasury bills (or T-
Bills) and government securities (or G-Secs); the former are short-term classified into
three distinct maturity baskets- 91, 182 and 364 days and the latter are long-term with
maturities like 5, 10, even 20 years. Given the data we have, and owing to their simpler
structure, we primarily analyze the three months T-Bills, with the exception of Section 6
where also look at the ten years long-term security. The Reserve Bank of India (like most
other central banks over the world) issues new bonds into the market through a primary
auction. The primary auction for the three months T-Bill is held weekly and the auction
calendar is announced well in advance.

T-Bills are zero coupon securities, issued at a discount and redeemed at face value.
For one piece of paper at a face value of Rs. 100, we will typically see a market clearing
price in the set [96, 99] for the three 3-months T-Bill. For example, for the auctions
conducted between April 2013 - Januray 2014, the market clearing prices ranged from
97.09 to 98.22, as can be seen in Figure 1. An auction of Rs. 7 × 1010 bond will involve
selling of 7 × 108 pieces of "paper" (denoted by Q = 7 × 108) each worth Rs. 100. The
bidders can submit multiple bids in the form of price-quantity pairs. A typical bid is of
the form

{
(p1, y1), (p2, y2)

}
with 100 ≥ p1 ≥ p2; it means that the bidder is willing to buy

y1 pieces of paper at a total price p1y1, and y1+ y2 pieces of paper at price p1y1+ p2y2, and
so on. If both bids win, the bidder makes a transfer of p1y1 + p2y2 to the central bank,
and is paid 100(y1 + y2) at the time of maturity.

The main features of the T-Bill auctions are as follows. First, treasury auctions world
over are share auctions −multi unit divisible goods auctions. For a total notified amount
Q , each player can bid for any fraction of Q . Multiple bidders can "win" the auction.
Second, the auction is characterized by a market clearing price. After all the bids are
in they are arranged in descending order of prices. As we go down the list, the price
at which the cumulative quantity demanded exceeds Q is christened the market clearing
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price. Third is the payment rule. For the quantities won, do the bidders pay the price
they bid or the market clearing price? In the example above, if pm ≤ p2 ≤ p1 is the
market clearing price, does the bidder pay p1y1 + p2y2 or pm (y1 + y2)? The former is
called discriminatory price auction and latter uniform price auction. The T-Bill auction
in India is discriminatory.

We use bid level data from April 2013 - January 2014 for the 3-month T-Bill auction.
The auction is held every week on a Wednesday. On the Friday of the week before,
the RBI posts an announcement on its website informing the bidders about the date and
time of the auction, and the total amount on sale. After the auction ends, the market
clearing price, number of bids received and the total amount sold are published. For
all the 42 auctions conducted between April 3rd 2013 − January 15th 2014, our data set
consists of all the bids submitted (including both prices and quantities), and the quantity
won by each bidder. We do not observe the exact identity of the bidder, but can track
it across auctions through a unique identity number. Moreover, each bidder is assigned
a particular category by the central bank which we observe- for example is the bidder a
national bank, foreign bank, pension fund or mutual fund, etc.

Table 1 presents the summary statistics. The total quantity supplied varied during the
forty two auctions, but it remained almost constant during the taper tantrum period (see
Figure 3a), which helps control for an important auction covariant. The market clearing
price as we have already discussed saw a big dip (Figure 1). In lieu of a complete demand
function, bidders submit steps in these multi unit auctions. Figure 3b plots the distribu-
tion of steps submitted by all bidders, the one during the episode first-order stochastically
dominates those before and after. The larger number of steps during taper tantrum po-
tentially exhibits increased uncertainty in the bidders’ evaluation of the market clearing
price. The number of bidders increased significantly as the price was falling. Figures
3c and 3d plot respectively the time series of the number of bidders and the number of
winners across auctions, latter indicates that the market was becoming more fragmented.
Finally, the bid-cover ratio (aggregate quantity demanded as a percentage of total supply)
remained comfortably above one, so aggregate demand was strong.

Mean Median Min Max
Total supply (in Rs 1010) 6.26 7 4 7
Auction clearing price 97.72 97.83 97.09 98.22

# steps 2.44 2 1 19
# bidders 40.19 38 25 55

% Q demanded 3.55 3.43 1.63 7.16

Table 1: Summary statistics of forty two auction between April 2013 to January 2014
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Figure 3: Total supply, CDF of number of steps, and total number of bidders and winner

2.3 The secondary market

There is an active secondary market for Treasury Bills in India, organized through an
anonymous order matching module called Negotiated Dealing System - Order Matching
(NDS-OM). The Reserve Bank of India website describes NDS-OM as “an order driven
electronic system, where participants can trade anonymously by placing orders on the
system or accepting the orders already placed by other participants". After being issued
on a Wednesday, most of the trade of the new T-bills takes pace on Wednesday, Thursday
and Friday of the same week. In addition to the data on primary auctions, we have trade-
level data on the secondary market. We see the price at which trade occurs, the quantity
traded, the date and time of the trade, and the maturity date of the traded security.

Under the broad rubric of empirical market microstructure, a large literature in fi-
nancial economics has furthered our understanding of financial securities through their
trade in secondary markets (see for example Hasbrouck [2007]). However, the secondary
market has not been used much in the structural estimation of treasury auctions. Sec-
ondary markets act as a fair indicator of the market clearing price in the primary auction
and vice-versa.15 We shall use the price of trades in the secondary market as a measure of
the fundamental value of the bond and the common component of the bidders’ demand

15Outside the taper tantrum episode, the maximal difference between the average secondary market
price and the auction clearing price that week for the financial year 2013-14 is only 0.02.
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Figure 4: Secondary market activity spiked

functions.
Large variance in the price of financial securities is often accompanied by an increase

in the aggregate activity in the market- this correlation typically operates through the
mechanism of a rise in speculative trade. Figures 4a reports the total volume traded in the
secondary market and Figure 4b reports the total number of transactions. These along
with Figure 2b clearly point towards a spike in volatility and activity in the secondary
market during the taper tantrum period. It seems natural that this effect be incorporated
in the analysis of the primary auction.

3 Model

In this section we present a model of multi-unit discriminatory auctions and derive a
necessary condition for optimal bids. The necessary condition gives us a mapping from
the data to the fundamentals of the model, which forms the basis for our estimation. We
build on the model in Kastl [2012] with two critical differences: (i) bidders in our model
are risk averse, and (ii) there is both a common component and a private component in
their demand for securities.

3.1 Primitives

Let Q be the total amount of T-bills up for sale, and N = {1, 2, ...,N } be the set of
bidders. Each bidder receives a private signal si ∈ [0, 1] that parameterizes her valuation
function, v i : [0, 1] × [0, 1] → R+. Here v i (q, s) is the marginal value of bidder i for a
share q (or total quantity qQ ) of T-bills when she receives a private signal s .

Assumption M1. S = (si )Ni=1 is distributed on [0, 1]N according to F that admits a con-
tinuous density f , and the signals across bidders are drawn independently.
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Assumption M2. For each i, v i is continuous and weakly decreasing in q , and strictly
increasing in s .

Assumption M3. For each i, v i (q, s) = z i (q, s) + A, where A is an exogenous constant
distributed according to µ on a discrete grid {a1, ..., aM }.

Assumptions M1 and M2, define the independent private values (IPV) part of the
demand function, and ensure that it is downward sloping. Assumption M3 makes it
clear that the marginal valuation of each bidder is additively composed of a pure private
component and a pure common component. The private (and independent) signal si per-
fectly informs agent i about the marginal value function z i (., si ). However, all the agents
are symmetrically (un)informed about A, we assume that it is exogenously distributed.
We call this the parameter of common uncertainty. Note that ours is neither a classical
IPV nor a common values set up.

There are typically two types of bidders in these auctions- the buy and hold types
and the buy and sell and types, the former participate for portfolio reasons or regulatory
requirements whereas the latter are intermediaries who sell to other clients. For each of
them z i represents the idiosyncratic demand. The common component A refers to fun-
damental value of the sovereign bond to which z i is appended as the private margin. The
variance of A measures uncertainty in the bond market. We will rely on the secondary
market prices and trades to estimate A and µ.

Further, bidder i submits a bid b i : [0, 1] × [0, 1] → R+, where b i (q, s) is the price
bidder i with private signal s is willing to pay for qQ units of T-bills. It is restricted to
be weakly decreasing in q . The total payment for share q can be written as:

B i (q, s) =

q∫
0

b i (x, s)dx

Writing V i (q, s) =
q∫
0
v i (x, s)dx to be the total value function, bidder i’s utility from

being allocated q fraction of T-bills when her signal is s is given by

U i (q, s) = u (V i − B i ◦ (q, s))

Assumption M4. u : R+ → R is a von-Neumann-Morgenstern utility function that
satisfies u (0) = 0, u′ > 0 and u′′ < 0.

That is, the bidders evaluate their net surplus (total valuation of the amount won minus
total payment to the seller) according to a strictly concave function. This assumption
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departs from the standard linear utility model used in the literature. Next, we assume, as
is empirically relevant, that bids are steps functions.

Assumption M5. A typical bid is of the form
(
b i
k, q

i
k

)Ki

k=1
, where Ki ∈ {1, 2, ...,K},

b1 > b2 > ... > bKi , and q1 < q2 < ... < qKi ≤ 1.

The share of issue amount demanded at any price p can be succinctly expressed as:
y i (p |si ) = q ik1

(
b ik+1<p≤b

i
k

) . The price at which the market clears then has a simple def-

inition: pc = max
{
p | D (p) = 1

}
where D (p) =

N∑
i=1

y i (p |si ) and the max operator breaks

ties in favor of the auctioneer.16

Assumption M6. The total quantity is randomly distributed on
[
Q,Q

]
with strictly

positive density conditional on si ∀ i.

This assumption is a technical requirement for precluding mass points at any quantity in
the bidder’s demand at the optimum. Economically, it is a tool of equilibrium selection.
Intuitively, one can think of this as the uncertainty faced by the bidder on where to place
her last step. We want the reader to think of the distribution as being tightly centered
around Q , say with support [Q − ε,Q + ε ] and a small variance.

3.2 Bidder behavior

The multi-unit auction model is hard to precisely pin down analytically. General theoret-
ical results are elusive (see Ausubel et al. [2014] for the "solvable" cases). The approach
has therefore been to push the theory to provide a set of necessary conditions that opti-
mizing bidders must satisfy and invoke those to put structure on bid-level data to back
out valuations and its distribution. An added layer of challenge in our framework is the
non-linearity of bidders’ utility function.

Our bidder faces two tradeoffs in placing a particular bid step (bk, qk ). First is the
standard intuition from single unit first price auctions. A higher bid price increases the
probability of winning at that step, but conditional on winning it increases the payments
(see Krishna [2010], Chapter 2). A second tradeoff is introduced by risk aversion and
common uncertainty. The bidder is faced with two "lotteries"- whether she wins at that
step and the ex post value of the bond on winning. Again theoretical results from single
unit auctions tell us that the first will make the bidder bid more aggressively while the

16Note that since aggregate demand is also a step function, it is very likely (in fact with probability one
in equilibrium) that the vertical total supply line intersects the demand function in the horizontal part of
the step rather than at the edge. In such a situation the quantities are rationed. We apply, as is standard in
the literature, the pro-rata rule of rationing, that is, quantities on the last step are allocated according to
the intensity of demand at the step. This is also the methodology used by the Reserve Bank of India.
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second will make her bid conservatively (see Esö and White [2004] and Gupta, Lamba,
and Muratov [2017]).

Both aforementioned tradeoffs are prevalent for each step of the bidder, and since
we are dealing with a multi-unit auction, these are then linked across steps in a bidder’s
strategy. This makes a direct generalization of the theoretical results that generate these
intuitions to multi-unit auctions non-trivial, in fact mostly intractable. However, the
spirit of the intuition carries through to the empirical analysis we do around the first-
order necessary condition that we derive next.

3.3 First-order necessary condition

Using a perturbation approach we can derive a necessary condition that the quantity
demanded at any step of a pure strategy Bayesian Nash equilibrium must satisfy. This
condition will be used to extract the fundamentals (marginal values) from the observable
(bids). In what follows, let v i

m be the marginal value V i
m be the area under the value

curve when the common component is A = am .

Proposition 1. Under Assumptions M1-M6, in any K-step equilibrium of a discriminatory
price auction, for almost all si , every step k < Ki in the equilibrium bid function yi (·|si ) has
to satisfy:

M∑
m=1

µm

{
P

(
bk > pc > bk+1��si

) (
v i
m (qk, si ) − bk

) [
u ′

(
V i
m − B i ◦ (qk, s)

) ����bk > pc > bk+1, si
]}

=

M∑
m=1

µm

{
P

(
bk+1 ≥ pc ��si

) (
bk − bk+1

)
E

[
u ′

(
V i
m − B i ◦ (qk, s)

) ����bk+1 ≥ pc , si
]}

(1)

and at the last step Ki it has to satisfy v (q̄, si ) = bKi where q̄ is the largest quantity allocated
to bidder i of type si is equilibrium.

Proof. See Appendix. �

Equation (1) is derived by perturbing the expected payoff of the bidder i around the
quantity she bids at the k t ℎ step, keeping the price component of the bid fixed. Note that
P

(
bk > pc > bk+1��si

)
refers to the probability of the bidder winning her k t ℎ step but

not the (k + 1)t ℎ step, while P
(
bk+1 ≥ pc ��si

)
refers to the probability that she wins her

(k+1)t ℎ step and maybe more. To fix ideas first consider the thought experiment that the
bidder is risk neutral, then all the u′ terms vanish. The left hand side of equation captures
the expected marginal benefit of v (qk, si )−bk from demanding quantity slightly in excess
of qk at step k. The right hand side measures the expected marginal cost of paying an
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extra bk −bk+1 for the increase in quantity at step k. Then, solving for v (qk, si )−bk gives
us the bid shade of bidder i at step k.17

Now, add to the picture the fact that the bidder is risk-averse. Then, both the marginal
benefit and the marginal cost are scaled by the marginal utility of the bidder at the mon-
etary value generated by the area under the value curve minus bidding curve. The right
hand side has an expectation over marginal utility because perturbation of the k t ℎ step
can change the expected allocation at the optimum- when the market clearing price is
weakly less than the (k + 1)t ℎ bid, the allocation can be different for different values of
pc . Optimality requires equation (1) to hold for all steps individually, and unlike the
risk-neutral case, there is inter-dependence between the equation for each step through
the marginal utility term which is evaluated at the aggregate monetary value. Finally,
both sides are averaged over the common uncertainty term which has a discrete density
given by {µm}

.
If the analyst knows or observes all fundamentals other than the bidder’s marginal

value curve, then with a little more structure, equation (1) allows him to back out valua-
tion of the bidder at each step that she bids at.

4 Estimation

The main question we ask is this- why did prices fall so much during the taper period?
Did the value for T-bills decrease or was the fall precipitated by increased uncertainty and
strategic bidding? To answer this question, in what follows, we estimate the marginal val-
uations of bidders in the primary auctions. Equation (1) gives us a relationship between
the bids we observe in the data and the valuations that rationalize them.

There are three steps in the estimation procedure: (1) estimating the probability dis-
tribution of the market clearing prices, (2) estimating the probability distribution µ of
the common component A, and finally (3) estimating the marginal valuation v (qk, si ) for
every bidder in every auction at the observed quantities. We explain each step in detail
below.

4.1 The distribution of market clearing prices: an algorithm

The first step involves estimating the probability expressions in equation (1) : P
(
bk > pc > bk+1��si

)
and P

(
bk+1 ≥ pc ��si

)
. To estimate these probabilities we employ a standard “resampling”

approach. We partition the set of bidders into three groups, the exact method of the
group formation is explained in section 5.2 and then later in the appendix. Since the

17For the risk neutral case Proposition 1 would simplify to Proposition 1 in Kastl [2012].
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probabilities are specific to a bidder in an auction, for a fixed auction and a fixed bidder i
with N = N1 + N2 + N3 bidders we use the following algorithm.

1. Fix an auction and a bidder with the bid (b i
k, q

i
k )Kk=1. If bidder i belongs to group

1, draw N1 − 1 bids from all the bids of group 1 bidders and N2 and N3 bids from
all the bids of groups 2 and 3 respectively. Symmetrically if bidder i is in group 2,
draw N1, N2 − 1 and N3 bids from the three groups.18

2. The resampled vector of rival bids represents one simulation of the state of the
world from the point of view bidder i. Intersect this vector with the fixed bid to
get one possible realization of the market clearing price.

3. Repeat the first two steps 5000 times to get an empirical distribution of market
clearing price conditional on the fixed bid of bidder i.

We use this simulated distribution of market clearing prices to get empirical estimates
for the probabilities in equation (1). The asymptotic properties of the resulting estima-
tors established in Hortaçsu and Kastl [2012] extend to our setting. A more detailed
explanation is provided in the appendix. The following assumption underlies the resam-
pling procedure.

Assumption E1. The private information of bidders is identically distributed within
their respective groups and independent across bidders and auctions.

4.2 The distribution of common uncertainty

To estimate the support and probability distribution of A, we use data from the sec-
ondary market. The support of A is taken to be set of prices at which trade takes places
all week preceding the primary auction, and probability of each element is the frequency
with which trades take place at that price. Since the data is publicly available, our esti-
mate satisfies the assumption the bidders know the distribution of common uncertainty
when they bid in the auction. We could also measure the support and distribution of A
using the secondary market price for working days after the auction date and before the
next auction, thereby invoking a rational expectations assumption. Our empirical results
are robust to this alternate specification. Suppose the list of prices at which trades take
place in a given week is given by R and it constitutes m distinct values: {a1, a2, ..., aM }.
Then, we assume the following.

18When the number of bidders in one auction is not large enough, following Hortaçsu and Kastl [2012],
we pool the bids from two nearby auctions. We cannot, however, pool data from more auctions because
there is a trend in the auction clearing prices.
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Assumption E2. A ∈ {a1, a2, ..., aM }, and µm := P(am ) = #am∈R
#R , where #am ∈ R is

the number of times aM appears in the set of trades and #R is the total number of
trades.

4.3 Adding structure to the valuation function

Recall that the total valuation term is defined as V i (q, s) =
∫ q
0 v i (x, s)dx . Therefore,

we need to add more structure to V i to be able to back out the valuation curve from
equation (1). We assume that the akin to the bids, the valuations are also decreasing step
functions. make the following functional form assumption:

Assumption E3. There exists a set of values {v1(s), v2(s), ..., vK (s)}s∈[0,1] such that v (q, s) =
v (qk, s) = vk (s) ∀ q ∈ (qk−1, qk ], where q0 = 0.

That is, we assume that the marginal valuation function is a step function which is
constant between the quantities that are observed in a bid, and the constants are given by
the marginal values at exactly the observed quantities. Hence, for a bid (b i

k, q
i
k )Kk=1 in the

data, if we know the vector of marginal values at the observed steps {v1, v2, ..., vK} then
we know the entire marginal value function that generates that bid.19

Note that Assumption E3 actually violates the continuity clause of Assumption M2.
There are two ways of justifying our choice. First, we can consider a downward sloping
continuous valuation function very close to the step function- exactly equal except in
a very small neighborhood of values where the steps change. Informally speaking, this
makes our estimates of marginal values almost equal to those for the continuous function.
Second, for a fixed bid, valuations as step functions give the lowest possible values of bid
shading in the class of all possible downward sloping valuation functions. Since we are
interested in showing an increase bid shading during the taper tantrum period, this choice
gives a lower bound.20

4.4 Risk aversion

The final unknown object in the estimation equation is the utility function of the bidders.
Here we assume that the bidders evaluate their net surplus using the following CRRA
utility function.

Assumption E4. u (V i − B i ) = (V i−B i )1−σ
1−σ

19Since v i = z i + A, technically the Assumption E3 is imposed on the function z i (q, s).
20Through interviews with bidders we also reached the conclusion that it is a good model of how bidders

actually think of their "true demand functions".

17



0
.1

.2
.3

V
ar

ia
nc

e 
of

 A

20 30 40 50 60
TOTAL NUMBER OF BIDDERS IN AN AUCTION

Figure 5: Correlation between uncertainty and number of bidders that participate in the auction

This is, as we mentioned in the introduction, a departure from the literature on empir-
ical analysis of treasury auctions, but very much in line with the literature on financial
economics. The literature on empirical analysis of auctions with risk averse bidders is
sparse, arguably because of the technical difficulty it presents both the theorist and the
econometrician.21 A suggestive test for risk aversion of our bidders in the empirical fact
of increased participation by bidders in the auctions during the taper tantrum period.
Figure 5 presents a scatter plot of the variance in secondary market prices, our proxy for
the level of uncertainty, and the number of bidders that participated in the auction, the
raw correlation coefficient is 0.5.22

For the risk neutral model to predict increased entry, it must be that the valuation
of the frequent bidders goes down substantially whereas the value of the "fringe" bidders
does not change much, which would then lead the latter to enter the auction. However,
the model with risk averse bidders and common uncertainty predicts an increased entry
simply through a rise in common uncertainty. As the variance of the common compo-
nent goes up, the equilibrium price declines, which then encourages the fringe bidders to
enter the auction.

There at least two papers that estimate Bayesian models of auctions with risk averse
bidders. In a lab experiment, Bajari and Hortaçsu [2005] find that the risk averse model
predicts bidder behavior much better than the risk neutral one in standard first price
auction. They use a CRRA utility function and estimate the coefficient of relative risk
aversion to be σ = 0.77. Lu and Perrigne [2008] too invoke the CRRA model and find
σ = 0.35 for bidders in the auctions for timber in California. We estimate our model for

21Standard tools of mechanism design are not easily applicable with risk averse agents, see Maskin and
Riley [1984] for a leading exception to the rule. Moreover, a striking result by Guerre, Perrigne, and Vuong
[2009] shows that simultaneous estimation of risk aversion and distribution of valuations is impossible in
many standard settings.

22Note that there are various other reasons that we do not observe which may influence the marginal or
fringe bidders’ decision on whether to participate in the auction.
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all values of σ ∈ [0, 1] and report the results for σ = 0.3 and σ = 0.8 in section 5.

4.5 Putting it together

Using the CRRA formulation, the first-order condition (equation 1) for bidder i’s k t ℎ

step in the observed bid (b i
k, q

i
k )Kk=1, can be re-written as follows:

M∑
m=1

µm



P

(
bk > pc > bk+1��si

) (
vk − bk

) 

K∑
l=1

(z l + am − bl )(ql − ql−1)


−σ


=

M∑
m=1

µm ·P
(
bk+1 ≥ pc ��si

) (
bk − bk+1

) 

K∑
j=k+1

P
(
b j > pc > b j+1

)
P

(
bk+1 ≥ pc

) *.
,

j∑
l=1

(
z l + am − bl

) (
ql − ql−1

)+/
-

−σ
(2)

If we plug-in our estimated distributions of market clearing prices and common uncer-
tainty, and a numerical value for the risk aversion parameter σ, then for a K -step bid, we
get a set of K simultaneous non-linear equations involving K unknowns {z1, z2, ..., zK}.
Under the assumption of a Bayes optimizing agent, we can numerically solve the sys-
tem of equations to back out the vector of marginal valuations for every bidder in every
auction.

5 Results

We present the results piecemeal, starting with the aggregate numbers across bidders,
followed by the decomposition of the aggregates, and heterogeneity across bidders.

5.1 Averages

Our main empirical result is depicted in Figure 6. It plots the market clearing price and
average marginal value under the standard risk-neutral model and our model with risk
averse bidders and common uncertainty. While three curves follow each other fairly
closely before the dip, they diverge quite a bit during the taper tantrum period. This
wide gulf represents the increase in average bid shading, the associated failure of price
discovery and the consequent loss to the exchequer.

Table 2 presents the average bid shading across bidders before, during and after taper
tantrum period for three different values of σ. Looking at each column individually it
is quite clear that average shading went up significantly during the crisis episode. While
we use σ = 0.3 for our leading estimates, we enlist the value for the risk neutral model
and for higher risk aversion to argue that whether bidders are risk averse or not is more
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Figure 6: Bid shading increases significantly during the taper tantrum period

important up to a first-order for the estimates than how risk averse they are.23

σ = 0 σ = 0.3 σ = 0.8

Before 0.0109 0.0474 0.0537
[0.0074,0.0164] [0.0302,0.772] [0.0244,0.1217]

During 0.1018 0.4434 0.4444
[0.0603,0.1889] [0.3630,0.5770] [0.3367,0.6523]

After 0.0393 0.1091 0.1174
[0.0249,0.0860] [0.0419,0.2338] [0.0509,0.2874]

Table 2: Average bid shading before, during and after the taper tantrum period

As we can see from Figure 6, the risk neutral model, since it integrates out all of the
uncertainty, would predict that most of the drop in price is due to a change in valuations.
There is still significant bid shading (it increases by 900 percent in the first column of
Table 2), but the sudden change in price is majorly attributable to a drop in actual val-
uations or "change in fundamentals". As we show in what follows, our model, because
it allows us to incorporate uncertainty in a nuanced fashion, concludes that the driving
force behind the steep fall and then rise in price is the spike in common uncertainty, and
the strategic effect associated with it.

5.2 Decomposition and heterogeneity

There are broadly three reasons for the increase in bid shading. The distribution of
the bidders’ valuations stochastically declined. There was an increase in common un-
certainty, that is variance of the component component. And, the bidders strategically
responded to the change in the two distributions. We call these three the valuation effect,

23Note that for σ > 0, the marginal value of a bidder is calculated as vi = z i + E[A].
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Figure 7: Density of marginal values before, during and after taper tantrum

uncertainty effect and strategic effect, respectively. While the valuation effect would ex-
ogenously lead to a decline in price, it is the interaction of the valuation and uncertainty
effects with the strategic effect that drives the endogenous decline.

We start the decomposition by evaluating the change in marginal valuations. Figure
7a plots the density of the average marginal values across the three time periods.24 The
values during the taper tantrum period constitute an almost complete leftward shift in
comparison to those before and after. This makes it clear that the aggregate valuation
effect is strong- the value of the bond in the market did go down. Moreover, the bell
becomes fatter, which implies that values also become more dispersed.

However, recollect that vi = z i + A, and Figure 7a makes a statement about the
average value, that is z i +E[A]. What about the distribution of the idiosyncratic compo-
nent, the private margin for the bidders? Figure 7b plots the distribution of the private
idiosyncratic component, z i , across bidders for the three time periods. These are small
numbers (in magnitude) because the private margin most bidders hope to earn in these
auctions are mostly in two decimal points. The change in distribution is minimal at best,
while the mean remains more or less the same, there is a slight increase in variance. The
striking observation then is that yes there was a change in valuations, but it was driven
only by the change in fundamentals through a shift in the distribution of the common
component. From the perspective of private values, the bond did not change much in
value for the bidders.

Next, we want to understand how much of the average bid shade is explained by the
valuation effect. As a proxy, we appeal to estimates of our model for σ = 0. Here the un-
certainty effect is completely shut down. From the numbers in Table 2 we can conclude
that about 25 percent of the total bid shade can be explained by the valuation effect and

24Figure 7a plots the distribution of quantity weighted marginal values. Suppose K = 2 and the quantity
demanded at the two steps is given by y1 and y2. Then, the quantity weighted marginal value is given by
v1y1+v2y2

y1+y2
. This is right notion of average marginal value for a bidder. Similarly in Figure 7b we define

quantity weighted private component as z1y1+z2y2
y1+y2

.
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its interaction with the strategic effect of bidders reacting to a change in the distribution
of fellow bidders’ valuations. Therefore a large component of the bid shading, about
three-fourths, during the taper tantrum period is explained by the uncertainty effect and
its interaction with the strategic effect.

Finally, we want to understand the extent of heterogeneity across bidders. Here we
use the methodology of Cassola, Hortaçsu, and Kastl [2013] of dividing the bidder into
groups. The procedure has to be tailored to our model and data, and as is discussed is the
appendix. We see the bidders split themselves broadly into three categories. A significant
fraction of bidders come to almost every auction, we call them group 1. Another group
of bidders comes reasonably frequently, importantly these bidders appear in all three time
periods − before, during and after taper tantrum, we refer to them as group 2. However,
there is a third groups of bidders that appears only during the taper tantrum period, we
call them group 3.

σ = 0.3 Group 1 Group 2 Group 3

Before 0.05 0.04
[0.02,0.12] [0.01,0.08]

During 0.55 0.35 0.15
[0.37,0.84] [0.25,0.51] [0.11,0.30]

After 0.13 0.07
[0.04,0.28] [0.03,0.16]

Table 3: Average bid shading across the three different bidder groups

Table 3 reports bid shading across groups. It is clear that on average group 1 bidders
shade the most, group 2 intermediate, and group 3 shade the least. The level of bid
shading is inversely proportional to frequency of participation in the auction. Group of
1 consists mostly of the primary dealers that are required, due to a contractual agreement
with the Reserve Bank of India, to appear in every auction. Majority of them act as pure
intermediaries and sell their wins in the secondary market. Group 2 consists mostly of
large non-primary dealers such as big public and private sector banks. Majority of them
are the buy and hold types. And, group 3 mostly consists of small banks and financial
institutions.

The intermediaries are the ones most exposed to the uncertainty, and mostly likely
to benefit from the uncertainty- they bid shade a lot. The large banks can afford to
bid conservatively while the taper tantrum lasts, making sure they bid with the market
sentiment. The "fringe" bidders, those in group 3, not only shade the least, they also
have the lowest marginal values. Figure 8a plots distributions of the fringe and frequent
(groups 1 and 2) bidders during the taper tantrum period. We would miss this stochastic
dominance that we see in marginal values if we just plotted the bids of the fringe and
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Figure 8: Distributions of bids and marginal values of fringe vs frequent bidders during the taper
tantrum period

frequent bidders, as in Figure 8b. Therefore, as the price of the bond is declining, in large
part due a rise in uncertainty, it becomes attractive for those at the margin in terms of
actual valuations to enter the auction and buy some of the bonds.

6 The switch that did not help: uniform price

It is folk wisdom, at least since Friedman [1960] and Friedman [1991], that the uniform
price auction may do better than the discriminatory auction in terms price discovery and
revenue. A majority of sovereigns though still use the discriminatory price auction, the
US being an exception. The theoretical literature does not point towards a clear winner
and the empirical evidence is at best mixed.25

Creating counterfactual estimates for a switched multi unit auction format has so far
been elusive, the state of the art in the literature is to construct the market clearing price
and the associated revenue under the assumption that bidders bid truthfully. The revenue
estimate for the hypothetical auction then gives an upper bound on the revenue that can
be collected in any equilibrium of a uniform price auction.26 In our setup with risk averse
bidders, these estimates are a looser upper bound than in the risk neutral model, since
this exercise does not take into account the risk faced by the bidders. Table 4 enlists the
counterfactual exercise for uniform price auctions.

We find that if the bidders did bid close to being truthful, the uniform price auction
25In a recent survey paper, Hortaçsu and McAdams [2016] conclude that "when bidders have private

information the ranking of the pay-as-bid and uniform-price auction is ambiguous, both in terms of revenue
and efficiency."

26This is the approach used in Hortaçsu and McAdams [2010]. Note however that Kastl [2011] shows
the bidders may actually bid higher than their marginal values in a uniform price auction, so there is no
clear mathematical result that establishes revenue from truthful bidding as an upper bound. But, even in
his sample few bidders actually bid above their marginal value. Based on that, the analysis done in Hortaçsu
and McAdams [2010] and our own conversations with bidders we think this is still a worthwhile number
to analyze.
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Auction Actual auction Uniform auction Revenue as a fraction
clearing price price of actual revenue

16 97.59 97.98 1.0032
17 97.33 97.70 1.1037
18 97.27 97.39 1.0008
19 97.35 97.53 1.0038
20 97.23 97.31 1.0004
21 97.32 97.94 1.0062
22 97.09 97.40 1.0026
23 97.27 98.00 1.0079
24 97.41 97.48 1.0006
25 97.46 97.50 1.0003
26 97.64 97.67 1.0002
27 97.67 97.68 1.0000

Table 4: The uniform price estimates for the 3-month T-Bills under truthful bidding

would have led to better "price discovery" (by definition), and would have done almost
as well in terms of revenue. Of course, we have no systematic way of knowing how the
bidders would actually bid in the auction. But the exercise does provide some credence to
the aforementioned folk wisdom. Luckily, due to a critical decision made by the Reserve
Bank of India during the summer of 2013, we can say a bit more.

At the onset of the taper tantrum crisis, the Reserve Bank of India actually switched
the format of the primary auction for long term securities from discriminatory to uni-
form. Anticipating the impact of announcements by the Fed, the Reserve Bank preemp-
tively tried to lessen the turmoil by changing the format.27 Figure 9 plots the market
clearing prices for the 10 year sovereign bond during the same time period we looked at
before. The auction for the these maturities happen less frequently. The vertical lines
enclose the same calendar weeks as in Figure 1, however, the switch actually happens at
the first dot.

A casual glance at the numbers reveals that the switch perhaps did not work. The
price declined substantially, much more than what the change in interest rate at the time
would suggest. We can again ask the same question we asked for the 3-month T-Bill, did
the valuation for the sovereign bond decline substantially or was the decline driven in
large part by uncertainty and strategic considerations? In order to answer this question,
we rebuild the theoretical and empirical machinery we developed earlier, now for the
uniform price auction. The details are completely analogous and are hence relegated to
the appendix. The fundamental difference to note is that the payment function is now

27In personal conversations with the auctioneers, it was revealed to us that the switch was done in
anticipation of the effect of the Fed announcement. The central bank prefers to have a unique price during
times of stress while in times of normalcy the discriminatory auction potentially earns higher revenue.
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Figure 9: Auction clearing prices for the 10 year bond fresh issues, April 2013-Jan 2014

simpler. The total payment for a share q of the total quantity is given by

B i (q, s) = qQpc

where pc is the ex post market clearing price. We prove an analogous first-order necessary
condition for uniform price auctions with risk averse bidders and common uncertainty.

Proposition 2. Under Assumptions M1-M5 in any K-step equilibrium of a uniform price
auction, for almost all si , every step k in the K-step bid function yi (·|si ) has to satisfy:

M∑
m=1

µmP(bk > pc > bk+1) · E
[
u′

(
V i
m − qkpc

) {v i
m (qk, si ) − pc}����bk > pc > bk+1

]

+
∂

∂q
E

[
u (V i

m − qkpc (q )); bk ≥ pc ≥ bk+1
]
= 0 (3)

The tradeoff faced by the bidder in the uniform price auction is different than that
faced in the discriminatory auction. Here the bidder is only concerned with his expected
position in the winners’ demand schedule relative to the residual supply function she
faces. The risk-neutral version of the equation is analogous to third-degree price discrim-
ination. Our model adjusts for the standard trade-off with risk averse bidders.

The average bidder surpluses for the period we defined as "before", "during" and
"after" are 0.6897, 0.5562 and 0.2837 respectively. This shows that the bidders were
anything but truthful and were "shading" a lot even in the uniform price auction format.
Average bid shading in the discriminatory auction just before the switch was 0.078, which
leads us to conclude that switch just before an impeding crisis could have spooked the
bidders even more increasing the uncertainty effect. This is not to say that uniform price
auction can’t do better in times of crisis, just that we cannot disentangle at the margin
how much the switch actually helped given the general rise in uncertainty in the market,
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the timing of the switch itself and limitations of counterfactual estimates. However, given
the pure decline in price and our estimated numbers for bidder surplus, it seems to fair
to conclude that switch on the ground did not work.

7 Tweaking the design: fixed price tenders

A thought experiment worth exploring is this − what if the central bank simply posted
prices and let the market decide how much to buy? There are at least three reasons why
this simple procedure may be attractive in times of crisis. First, if the central bank knows
"more than the market", it might be in a better position to set prices. The auction might
actually tie its hand in a crisis episode. Second, it could arrest uncertainty by plugging the
speculation channel at least in the primary auction, which may have desired downstream
effects on the secondary market. Third, it is not unusual for the central bank to take
an out of the box policy lever in times of distress; arguably the Fed did the same in the
aftermath of the collapse of Lehman Brothers in 2008-09.

Since the estimation procedure arms us with the marginal value curve of individual
bidders and hence the aggregate market, we can precisely determine how much of the
quantity will be sold and revenue raised at each price point. The exact exercise is as fol-
lows. Fix a posted price. Given this price, we can compute the quantity that maximizes
the expected utility of each bidder. Assume that all bidders who participated in an auc-
tion will be willing to buy their optimum quantity at the posted price. Then, sum up the
individual quantities to compute the counterfactual aggregate demand for the fixed price.

A natural question to ask then is what should this posted price be? How does the
central bank determine this price? We perform the counterfactual calculation using sec-
ondary market prices as our marker. The posted price equals the average of all secondary
market trades in the days leading up to the auction plus a small markup. In Table 5 be-
low, we report the aggregate quantity that the central bank can potentially sell when the
markup is 0.02 price points.28 Only in 3 out of the 12 auctions does aggregate demand
fall significantly below the actual quantity sold in the auction, and in three other auc-
tions much more quantity is sold than the actual supply set by the central bank. In fact,
a simple back of the envelope calculation show that the total quantity sold and revenue
raised in the 12 fixed price sales would be higher than that in the actual auctions.

To come up with a fixed price, this counterfactual calculation takes the secondary
market price as being fixed. But, in reality the secondary market price itself may react
to the fixed price chosen by the central bank and the quantity sold at that price. It is
worthwhile therefore to perform an exercise equivalent to that in section 6 and come

28We use this markup because in our data (outside of the taper period) the maximum difference between
the secondary market price before the auction and market clearing price in the auction is 0.02 price points.
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Auction Actual Q Fixed Q Sold
Sold (108) Price at Fixed Price (108)

16 7 97.77 9.154
17 7 97.92 2.759
18 7 97.46 2.216
19 7 97.50 6.604
20 7 97.33 3.952
21 7 97.21 15.207
22 7 97.33 8.775
23 7 97.31 17.126
24 7 97.47 9.998
25 7 97.49 8.103
26 7 97.65 10.462
27 6 97.69 6.309

Table 5: The fixed price counterfactual

up with the fixed price that would exactly exhaust the total supply originally set by the
central bank, assuming the bidders optimally choose their quantity. The numbers turn
out to be close to those under truthful bidding - the price is always slightly lower than
the third column of Table 4 and the fraction of revenue is slightly lower too, though still
always above one. The exercise is presented in Table 6.29

Auction Actual auction Price which Revenue as a fraction
clearing price exhaust Q of actual revenue

16 97.59 97.98 1.0032
17 97.33 97.69 1.1036
18 97.27 97.33 1.0001
19 97.35 97.49 1.0034
20 97.23 97.29 1.0002
21 97.32 97.92 1.0060
22 97.09 97.35 1.0020
23 97.27 98.00 1.0079
24 97.41 97.48 1.0006
25 97.46 97.50 1.0003
26 97.64 97.65 1.0000
27 97.67 97.68 1.0031

Table 6: The fixed price estimates for the 3-month T-Bills for optimizing bidders

The analysis for uniform price auction and fixed price auction makes us conclude that
29The main difference between Table 6 and Table 4 is that in Table 6 we are assuming that bidders

optimally respond to the price set by the central bank in choosing their quantity, whereas in Table 4 we
assumed that they buy at the their expected marginal value curve, the latter does not take into account the
risk borne by the bidders.
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suitably chosen fixed price tenders could have potentially had the desired effect that the
switch to uniform price could not. By monitoring prices in the secondary market and
quantity sold in the primary sale every week, the Reserve Bank of India, by setting a suit-
able fixed price, could have ensured steady supply of debt and revenue to the exchequer,
while tempering down uncertainty around the value of the bond. Of course, a deeper
analysis into the question would require a richer model and experimental data which is a
good agenda for future research.

8 Final thoughts

Taper tantrum led to what may be regarded as the "spillovers debate"- what effect mone-
tary policy in one country can have on another and what are the channels through which
it propagates? While we take the first as given in starting out from the decline in bond
prices, we provide some explanation to the second question by appealing to the rise of
uncertainty and speculative behavior associated with it. More formally, through bid level
data in the primary auctions for sovereign debt in India, we record a significant rise in
average bid shading and hence bidder surplus. The steep decline in price was not so much
a sign of changing fundamentals but rather a function of the rise of uncertainty about
the true value of the bond and a strategic response of the key financial players in the
domestic market.

We make a technical contribution towards the empirical analysis of multi-unit auc-
tions by introducing risk averse preferences for bidders and common uncertainty in val-
uations. We take both to be natural assumptions for treasury bills. The financial eco-
nomics literature has often invoked risk averse agents to analyze such markets. Risk
aversion also squares better with the empirical facts around the taper tantrum period.
And, given that value of a government bond is linked to quality of the sovereign debt, we
include a common component for all bidders whose variance can spike in times of un-
certainty. We hope these additions to the burgeoning literature on empirical multi-unit
auctions allows us to model crisis episodes well.

With a final look at Figure 6, we emphasize that our model predicts a failure of the
auction only during taper tantrum period, both before and after periods see the marginal
value line follow the market clearing price relatively closely. It is useful for central banks
to perhaps have a flexible schedule of quantity at such times and even take the initiative in
setting prices in the market. Of course, the success of the approach depends critically on
the credibility of the treasury and the central bank, for which it is important that such a
clause of temporarily abandoning the auction and using posted prices not be abused.
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9 Appendix

9.1 Proof of Proposition 1

The result is established through a perturbation argument. For the ease of notation, we
suppress the common uncertainty term in much of the proof, and show how the proof
statement and proof generalize as a last step. We follow the proof style in Kastl [2012]
closely- adjusting at each step for the fact that bidders are risk averse bidders.

For a step k < K , let us perturb the quantity demanded from qk to q′ = qk − ε .
Given the bid price bk of this bidder at the k t ℎ step, depending on the realization of the
random variables (Q, S ) and hence market clearing price, the states of the world can be
partitioned into five subsets:

θ1(qk ) : When the market clearing price is above the bid price at k t ℎ step, the bidder
does not win anything at this step and hence the total share won in equilibrium
(Q c ) is less than the cumulated share demanded at k t ℎ step, i.e.

bk < pc and Q c < qk

θ2(qk ) : When the market clearing price is exactly the same as the price bid at k t ℎ step,
the bidder wins a proportion of the quantity demanded at k t ℎ step and hence the
total share won in equilibrium is still less than the cumulated share demanded at
this step, i.e.

bk = pc and Q c < qk

θ3(qk ) : Market clearing price is between the k t ℎ and the (k+1)t ℎ bid price, so the bidder
wins all the share demanded at k t ℎ step. Thus:

bk ≥ pc > bk+1 and Q c = qk

θ4(qk ) : When the market clearing price is weakly lower the (k+1)t ℎ bid price and there
is no tie at bk+1, so the total share won in equilibrium is more than the cumulated
share demanded at k t ℎ step. That is:

bk+1 ≥ pc and Q c > qk

θ5(qk ) : Now the market clearing price is exactly the (k + 1)t ℎ bid price, and so the total
share won in equilibrium is more than the cumulated share demanded at k t ℎ step.
That is:

bk+1 = pc and qk+1 > Q c > qk
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The difference between θ4 and θ5 is that in the states in θ5 the bidder could be rationed
at the (k + 1)t ℎ step, and so the total share won could potentially be less than qk+1.

Now, when we slightly reduce the quantity demanded at the k t ℎ step, the market
clearing price will either remain the same or decrease. As a result, the probability weights
on the thetas defined above changes. In particular, the states in θ2(qk ) in which price
decreases due to the perturbation now move to θ3(q′). Let us denote these states as
ω2(q′). Similarly, we can define the new partition after perturbation as follows:

θ1(q′) = θ1(qk )

θ2(q′) = θ2(qk ) − ω2(q′) − ω4(q′)

θ3(q′) = θ3(qk ) + ω2(q′) − ω3(q′)

θ4(q′) ∪ θ5(q′) = θ4(qk ) ∪ θ5(qk ) + ω3(q′) + ω4(q′) (4)

where ω3(q′) and ω4(q′) are the states that move from θ3(qk ) and θ2(qk ) to θ4(qk ) ∪

θ5(qk ).
As noted above, the main difference between the states θ4 and θ5 is in the allocation.

Since, there is no tie at bk+1 in θ4, the bidder wins all the quantity demanded at k + 1t ℎ

step. Therefore, when we perturb to q′, the bidder surely wins the ε as well. However,
in state θ5 and in the event of a tie, the bidder might not win all of the ε share.

Expected Utility under qk :

We denote the expected utility in each of the different sets of states of the world θ j (qk )

(where j ∈ {1, 2, 3, 4, 5}) as:

E
[
u

(
Vj − B j

) ����θ j (qk )
]

and we define Vj and B j for each j below.
Let us start with θ1(qk ). In this set, the bidder does not win anything on the k t ℎ step.

So, the expected utility does not change with the perturbation. Thus we can ignore these
states of the world.

When the state is in θ2(qk ), the bidder wins all the quantity demanded at (k − 1)t ℎ

and also some rationed amount of (qk − qk−1), let us call it c2 ∈ (qk−1, qk ]. Then, the
total value and payment can be written as follows:
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V2 =

∫ qk−1+c2

0
v i (x, si )dx

B2 =

k−1∑
m=1

(
qm − qm−1

)
bm + (c2 − qk−1)bk

where q0 = b0 = 0. For example: if k = 2, B2 = q1b1 + (c2 − q1)b2, and if k = 3, then
B2 = q1b1 + (q2 − q1)b2 + (c2 − q2)b3.

Similarly, when state is in θ3(qk ), the bidders wins exactly qk . So the corresponding
total value and payment expressions are:

V3 =

∫ qk

0
v i (x, si )dx

B3 =

k∑
m=1

(
qm − qm−1

)
bm

Now, when the state is in θ4(qk ), the market clearing price is weakly lower than the
price at this bidder’s (k + 1)t ℎ step and there is no tie at the (k + 1)t ℎ step. Therefore, the
bidder wins at least qk+1. If the bidder is rationed at the l t ℎ step where l > (k + 1), then
we have:

V4 =

∫ ql−1+c4

0
v i (x, si )dx

B4 =

l−1∑
m=1

(
qm − qm−1

)
bm + (c4 − ql−1)bl

where c4 ∈ (ql−1, ql ].
For the last case, when state is in θ5(qk ), the bidder wins all the quantity demanded

at (k)t ℎ step and also some rationed amount of (qk − qk+1). Thus:

V5 =

∫ qk+c5

0
v i (x, si )dx

B5 =

k∑
m=1

(
qm − qm−1

)
bm + (c5 − qk )bk+1

where c5 ∈ (qk, qk+1].
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Expected Utility under q′:

With the perturbation some quantity is reduced from k t ℎ step and increased at the (k +
1)t ℎ step. All other demands remain the same. This will affect the allocations (both
rationed and otherwise) and payments in the different state of the world. Again, let us
denote the expected utility as below:

E
[
u

(
Vj − B j

) ����θ j (q
′)

]

where q′ = qk − ε and j ∈ {1, 2, 3, 4, 5}.
For states in θ2(q′) − These are the states in which the bidder is rationed at the k t ℎ

step. The allocation after rationing will reduce because the total amount demanded at
the k t ℎ step is less due to the perturbation, and so:

V ′2 =
∫ qk−1+c ′2

0
v i (x, si )dx

B′2 =
k−1∑
m=1

(
qm − qm−1

)
bm + (c ′2 − qk−1)bk

where c ′2 < c2 and c ′2 ∈ (qk−1, qk ].
For states in θ3(q′) − There is no rationing in this set of states. The bidders wins

everything till the k t ℎ step. But since we are perturbing the demand on the k t ℎ step, the
bidders wins q′ < qk . Hence:

V ′3 =
∫ q ′

0
v i (x, si )dx

B′3 =
k∑

m=1

(
q′m − q′m−1

)
bm

where q′m = qm ∀m < k and q′k = qk − ε .
Now, in θ4(q′) there is no tie at bk+1, so allocations do not change at the k t ℎ and the

k + 1t ℎ step, but the payment on ε will change. Again, if the bidder is rationed at the l t ℎ

step when l > (k + 1), then:
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V ′4 =
∫ q ′l−1+c

′
4

0
v i (x, si )dx

B′4 =
l−1∑
m=1

(
q′m − q′m−1

)
bm + (c ′4 − q′l−1)bl

where :




c ′4 = c4 and c ′4 ∈ (q′l−1, q
′

l ],

q′m = qm ∀ k + 1 < m < k,

q′k = qk − ε, and

q′k+1 = qk+1 + ε .

In states θ5(q′), the bidder is rationed at the (k+1)t ℎ step. Thus, the rationed quantity
changes because the demand on the (k + 1)t ℎ step is now q′k+1 = qk+1 + ε . It is important
to note here that the bidder might not win all of ε . The total value and payments, thus,
are:

V ′5 =
∫ q ′k+c

′
5

0
v i (x, si )dx

B′5 =
k∑

m=1

(
q′m − q′m−1

)
bm + (c ′5 − q′k )bk+1

where :




c ′5 ∈ (q′k, q
′

k+1],

q′m = qm ∀ m < k,

q′k = qk − ε, and

q′k+1 = qk+1 + ε .

Note that when we write the expected utility for θ4(qk ) ∪ θ5(qk ), we will write the
expression using V4 and B4 using l ≥ (k + 1). Now, we have take the difference between
the expected utilities before and after the perturbation.

Difference between the two Expected Utilities:

EV (si ��qk ) = Pr(θ1) · E
[
u (V1 − B1)

����θ1(qk )
]
+ Pr(θ2) · E

[
u (V2 − B2)

����θ2(qk )
]

+Pr(θ3) · [u (V3 − B3)] + Pr(θ4 ∪ θ5) · E
[
u (V4 − B4)

����θ4 ∪ θ5(qk )
]

(5)

and
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EV (si ��q′) = Pr(θ1) · E
[
u

(
V ′1 − B′1

) ����θ1(q′)
]
+ Pr(θ2) · E

[
u

(
V ′2 − B′2

) ����θ2(q′)
]

+Pr(θ3) · E
[
u

(
V ′3 − B′3

) ����θ3(q′)
]
+ Pr(θ4 ∪ θ5) · E

[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5(q′)
]

Using the definitions of the partition for q′, we get:

= Pr(θ1) · E
[
u

(
V ′1 − B′1

) ����θ1(qk )
]
+ Pr(θ2) · E

[
u

(
V ′2 − B′2

) ����θ2(qk )
]

−Pr(ω2) · E
[
u

(
V ′2 − B′2

) ����θ2, ω2

]
− Pr(ω4) · E

[
u

(
V ′2 − B′2

) ����θ2, ω4

]

+Pr(θ3) ·
[
u

(
V ′3 − B′3

)]
+ Pr(ω2) ·

[
u

(
V ′3 − B′3

) ����θ3, ω2

]
− Pr(ω3) ·

[
u

(
V ′3 − B′3

) ����θ3, ω3

]

+Pr(θ4 ∪ θ5) · E
[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5(qk )
]
+ Pr(ω3) · E

[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5, ω3

]

+Pr(ω4) · E
[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5, ω4

]

(6)

Taking the difference:

EV (si ��qk ) − EV (si ��q′) = Pr(θ2) · E
[
u (V2 − B2) − u

(
V ′2 − B′2

) ����θ2
]

+Pr(θ3) ·
[
u (V3 − B3) − u

(
V ′3 − B′3

)]

+Pr(θ4 ∪ θ5) · E
[
u (V4 − B4) − u

(
V ′4 − B′4

) ����θ4 ∪ θ5(qk )
]

+Pr(ω2) ·
{
E

[
u

(
V ′2 − B′2

) ����θ2, ω2

]
− u

(
V ′3 − B′3

)}
+Pr(ω3) ·

{
u

(
V ′3 − B′3

)
− E

[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5, ω3

]}

+Pr(ω4) ·
{
E

[
u

(
V ′2 − B′2

) ����θ2, ω4

]
− E

[
u

(
V ′4 − B′4

) ����θ4 ∪ θ5, ω4

]}
(7)

Taking the Limit:

The next step is to divide the difference EV (si ��qk ) − EV (si ��q′) by qk − q′ and take the
limit q′ → qk . Let us look at each term in equation (5) separately.

The first term on the RHS involves the probability of θ2. This set contains the states
in which the bidders is rationed at the k t ℎ step. So, we can invoke Lemma 1 here and
argue that in equilibrium: Pr(θ2) = 0. Thus, this term vanishes.
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The second term can be re-written as:

Pr(θ3) · lim
q ′→qk



u (V3 − B3) − u
(
V ′3 − B′3

)
qk − q′



= Pr(θ3) ·
d
dqk

{u (V3 − B3)}

= Pr(θ3) · u′ (V3 − B3) ·
d
dqk

(V3 − B3)

Using the definitions of V3 and B3, we get:

= Pr(θ3) · u′ (V3 − B3) ·
(
v i (qk, si ) − bk

)
= Pr

(
bk > pc > bk+1��si

) [
v (qk, si ) − bk

] [
u′

(
V i − B i

) ����bk > pc > bk+1, si
]

(8)

For the third term, following the same steps as above and we get:

Pr(θ4 ∪ θ5) · E
[
u′ (V4 − B4) |θ4 ∪ θ5(qk )

] d
dqk

(V4 − B4)

Since the perturbation does not affect the allocation in these states, the derivative of V
with respect to qk is zero. Thus, we are left with:

Pr(θ4 ∪ θ5) · E
[
u′ (V4 − B4) |θ4 ∪ θ5(qk )

] d
dqk

(−B4)

⇒ Pr
(
bk+1 ≥ pc ��si

)
· E

[
u′

(
V i − B i

) ����bk+1 ≥ pc, si
] [
−

(
bk − bk+1

)]
(9)

Now, we are left with the ω-terms. Define ν j := limq ′→qk ω j , where ∈ {2, 3, 4}. Note
that to generate the movement in states due to the perturbation, it must be that the states
in ν2 are such that the residual supply function is vertical at qk and it goes through bk
but not bk+1. [See Figure 1(a) for an illustration.] Thus, the allocation in state ν2 is q′.

Similarly, for states in ν3 residual supply is vertical at qk , and goes through bk+1 but
not bk , as shown in Fig 1(b). And finally for states in ν4, residual supply is vertical at bk
and goes through both bk and bk+1, as shown in Fig 1(c). As a result, the allocation in
both ν3 and ν4 is qk .

Given these allocations, the utility terms that are subtracted in the ω-terms in equa-
tion (5) are equivalent. Hence, all ω-terms will be 0 in the limit.

The difference between the expected values must be 0 in the limit, which gives us the
necessary condition:
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Figure 10: Illustration of the states in ν2, ν3 and ν4

Pr
(
bk > pc > bk+1��si

) [
v (qk, si ) − bk

] [
u′

(
V i − B i

) ����bk > pc > bk+1, si
]

= Pr
(
bk+1 ≥ pc ��si

)
· E

[
u′

(
V i − B i

) ����bk+1 ≥ pc, si
] (

bk − bk+1
)

This completes the proof for Proposition 1. �

9.2 On the consistency of the estimation procedure

In this section, we show the consistency of the resampling estimator for the distribution
of market clearing prices. To do that we first define a V-statistic below. Recall that given
a K -step bid (b i

k, q
i
k )Kk=1 for bidder i, the share of issue amount demanded by her at any

price p is denoted as y i (p |si ). Now, fix an auction with total supplyQ and the number of
bidders N = N1+N2+N3. Suppose that bidder i belongs to Group 1. Then, conditional
on the bid of bidder i, we define an indicator of excess supply at a price p as:

Φ(y1, ..., yN1−1, ..., yN1+N2−1, ..., yN−1) = 1 *.
,
Q −

N−1∑
j=1

y j (p |s−i ) ≥ y i (p |si )
+/
-

where s−i is the set of signals of all bidders other than i.
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Now consider the following V-statistic:

ξ (Γ̂; p) =
1

(N1T )N1−1
·

1
(N2T )N2

·
1

(N3T )N3

×

(T ,N1)∑
α1=(1,1)

...

(T ,N1)∑
αN1−1=(1,1)

×

(T ,N1+N2)∑
αN1+1=(1,N1+1)

...

(T ,N1+N2)∑
αN1+N2=(1,N1+1)

×

(T ,N )∑
αN1+N2+1=(1,N1+N2+1)

...

(T ,N )∑
αN−1=(1,N1+N2+1)

Φ(yα1, ...yαN−1 ; p)

where αi = {(1, 1), ...(T ,N )} is the index of the bid in the subsample and Γ̂ is the empir-
ical distribution of bids if T is the total number of auctions in our sample. This statistic
represents the probability with which the market clearing price is weakly lower than p in
the data if we draw all possible subsamples (with replacement) of size (N1 − 1) +N2 +N3

from the full sample of N ×T data points.
Let us denote the resampling estimator of P

(
pc ≤ p��si

)
as Ĥ (p). Note that Ĥ B (p)

is a simulator of the statistic ξ (Γ̂; p) in which only B subsamples are randomly drawn
instead of all possible subsamples.

Lemma 1. Suppose that the data is i.i.d across all T auctions and bidders, all bidders are
ex-ante symmetric and N is fixed. Then, as T → ∞ and B

T → ∞, Ĥ
B (p) → ξ (Γ̂; p).

Proof. Analogous to proof of Lemma 2 in Hortaçsu and Kastl [2012] �

This lemma assumes that the bidders are ex-ante symmetric. In our resampling pro-
cedure bidders are symmetric only within the groups but the signals are independent
across groups as well. To prove consistency for within group symmetric bidders, we use
Theorem 8.1 in Hoeffding (1948) which proves the result in Lemma 1 for the case when
the signal for each bidder is drawn from a different distribution.

Proposition 3. Suppose the data is independent across all auctions and all groups, bidders
are symmetric within their groups, and N is fixed. Then, as T → ∞ and B

T → ∞, Ĥ
B (p) →

ξ (Γ̂; p).

Proof. Since Φ(·) is an indicator function, it is uniformly bounded. Therefore, it sat-
isfies all the conditions for Theorem 8.1 in Hoeffding (1948). Hence, our estimator is
consistent. �

The consistency of the resampling estimator of P
(
bk > pc > bk+1��si

)
can be estab-

lished in an analogous analysis where the indicator function Φ(·) is defined with the
appropriate strict inequality.
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9.3 On the iterative procedure to create bidder groups

In the model, bidders are ex-ante symmetric. In the data, however, there are two clear
categories of bidders − those who bid in all the auctions in our sample period (Group
1), and those who enter the auctions intermittently (Group 2). The second group can be
divided further into those who only enter during the “dip” period (Group 3). To account
for this asymmetry, we differentiate between these three categories in the resampling
procedure. We split the total number of bidders in an auction (N = N1 + N2 + N3) into
three groups, and draw a fixed number of bids N j from each group j .

Ideally, we would define the groups only on the basis of how many auctions they
participate in. However, the number of purely new entrants in the 12 auctions during
the dip period is not very high. Hence, we use a second criterion to identify the bidders
in Group 3 − the average bid shade across the 12 auctions in the dip period. Group 3
consists of the bidders that form the (lowest) 20th percentile of the average bid shade
during the taper tantrum period.

To ensure that our definition of Group 3 is robust, we adopt the following iterative
algorithm:

Step 1. We start the algorithm by defining only two groups of bidders: those who appear
in almost every auction form Group 1 and those who appear less frequently form
Group 2. We estimate the model using these groups and obtain the marginal values
of each bidder in every auction.

Step 2. We use the estimates to compute the amount by which each bidder shades her
bid below her true valuation. We find significant heterogeneity among bidders
in Group 2 during the taper tantrum period. This suggests a further division of
Group 2 − we define the set of bidders that belong to the lowest 20th percentile of
average shade in the crisis period as Group 3.

Step 3. The model is re-estimated using three groups.

Step 4. We identify the set of bidders in the lowest 20th percentile of average shading
during the crisis period. If this set coincides with the current definition of Group
3, the algorithm is terminated. Otherwise, we repeat Step 3 with this new set as
Group 3.

In practice, there are always some bidders who switch between Groups 2 and 3. How-
ever, a fixed subset of the new entrants are always among the bidders we identify as Group
3. Note that the composition of Group 1 stays fixed throughout the exercise. The itera-
tion only affects whether a bidder belongs to Group 2 or 3.
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9.4 Proof of Proposition 3

Given a K-step bid vector
(
b i
k, q

i
k

)K
k=1

for bidder i, we want to derive the condition that
ensures that the bidder does not have a profitable local deviation. Consider a perturbation
of qk to q′ = qk − ε such that the rest of the quantity-bid vector remains the same, that
is, q′m = qm∀m , k.

Fix the bid and the quantity demanded at the k-th step as (bk, qk ). Now, the states of
world − the market clearing price and the allocation to this bidder − can be partitioned
into the following different sets:

θ1(qk ) : market clearing price is above bk and the bidder does not win anything on the
k-th step. Hence, the perturbation has no effect on these states.

θ2(qk ) : here the market clearing price is exactly equal to bk and the bidder is rationed
at the k-th step. So, perturbing qk affects her allocation.

θ3(qk ) : This set includes all states of the world such that the market clearing price is in
interval (bk+1, bk ) and the bidders wins her full k-step demand.

θ4(qk ) : Here we have all the states in which the market clearing price is exactly equal to
bk+1, and the bidder is rationed. Again, the perturbation affects her allocation.

θ5(qk ) : Finally, when the market clearing price is weakly less than bk+1 and the bidder is
not rationed on the k + 1-th step, perturbing qk does not affect the bidder’s payoff.
This is because the aggregate share demanded on the k + 1-th step is the same.

Let us denote market clearing price as pc and the share that bidder i wins in equilib-
rium as Q c . Then, the different states can be summarized as follows:

θ1(qk ) → pc > bk and Q c < qk
θ2(qk ) → pc = bk and Q c ≤ qk
θ3(qk ) → bk+1 < pc < bk and Q c = qk
θ4(qk ) → pc = bk+1 and qk < Q c < qk+1
θ5(qk ) → pc ≤ bk+1 and Q c ≥ qk+1

Now, due to the perturbation, the market clearing price might decrease which will
cause some downward movement in the states. We define ωk (q′) as follows:
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ω2(q′) := θ2(qk ) ∩ θ3(q′)

ω3(q′) := θ3(qk ) ∩ θ4(q′)

ω4(q′) := θ2(qk ) ∩ θ4(q′)

The set ω2(q′) includes the states in which bidder i was rationed at price bk and after
perturbing qk to q′ she gets her full demand. ω3(q′) are the states which move from
θ3(qk ) to θ4(q′), that is, the bidder originally received her full demand at k-th step but
now she will be rationed at the k + 1-step and will win a higher quantity. Finally, the set
ω4(q′) is made up of the states in which the bidder was rationed at k-th step, and will
now be rationed at k+1-th step. Hence, we can express the probabilities of the sets θ j (q′)
using the ω j (q′) as follows:

P(θ2(q′)) = P(θ2(qk )) − P(ω2(q′)) − P(ω4(q′))

P(θ3(q′)) = P(θ3(qk )) + P(ω2(q′)) − P(ω3(q′))

P(θ4(q′)) = P(θ4(qk )) + P(ω3(q′)) − P(ω4(q′))

To derive our local optimality condition, we want to compute the following limit:

lim
q ′→qk

Es−iu (si |qk ) − Es−iu (si |q′)
qk − q′

(10)

As discussed above, the perturbation affects the payoff in states θ2, θ3 and θ4. Hence,
we can write the above equation(10) as:

lim
q ′→qk

∑4
j=2

{
Es−i

[
u (V i

j − B i
j ); θ j (qk )

]
− Es−i

[
u (V i

j − B i
j ); θ j (q

′)
]}

qk − q′
(11)

Let us evaluate the different components under the summation of equation (11) one by
one.

State θ3.

Define the gross utilities and payments as follows:

V3 =

∫ qk

0
v i (x, si )dx ; V ′3 =

∫ q ′

0
v i (x, si )dx

B3 = qkpc (qk ), B′3 = q′pc (q′) ; B̄3 = q′pc (qk )
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Then:

E
[
u (V3 − B3) − u (V ′3 − B′3); θ3

]

= E
[
u (V3 − B3) − u (V ′3 − B̄3) + u (V ′3 − B̄3) − u (V ′3 − B′3); θ3

]

Taking the limit q′ → qk :(
1

qk − q′

) {
lim
q ′→qk

E
[
u (V3 − B3) − u (V ′3 − B̄3); θ3

]
+ lim

q ′→qk
E

[
u (V ′3 − B̄3) − u (V ′3 − B′3); θ3

]}

= E
[
u′(V3 − B3) ·

{
v i (qk, si ) − pc (qk )

}
; θ3

]
+

∂

∂q
E

[
u

(
V3 − qkpc (q )

)
; θ3

]
therefore, we have:

= P(bk > pc > bk+1) · E
[
u′

(
V i − qkpc

)
·
{
v i (qk, si ) − pc

} ����bk > pc > bk+1
]

+
∂

∂q
E

[
u

(
V i − qkpc (q )

)
; bk > pc > bk+1

]
(12)

State θ2.

The set θ2(qk ) consists of all the states of world in which the market clearing price is
exactly equal to bidder i’s k t ℎ step bk . Hence, the bidder will win all her demand at the
(k − 1)t ℎ step but could be rationed at the k t ℎ step. Let us denote the amount she wins
as qk−1 + c2 where c2 ∈ (qk−1, qk ]. Then, her gross utility and payment can be written as:

V2 =

∫ qk−1+c2

0
v i (x, si )dx ; V ′2 =

∫ qk−1+c ′2

0
v i (x, si )dx

B2 = (qk−1 + c2)pc (qk ), B′2 = (qk−1 + c ′2)pc (q′) ; B̄2 = (qk−1 + c ′2)pc (qk )

Then:

E
[
u (V2 − B2) − u (V ′2 − B′2); θ2

]

= E
[
u (V2 − B2) − u (V ′2 − B̄2) + u (V ′2 − B̄2) − u (V ′2 − B′2); θ2

]

Taking the limit q′ → qk :(
1

qk − q′

) {
lim
q ′→qk

E
[
u (V2 − B2) − u (V ′2 − B̄2); θ2

]
+ lim

q ′→qk
E

[
u (V ′2 − B̄2) − u (V ′2 − B′2); θ2

]}

(13)
Note that the expression

[
u (V2 − B2) − u (V ′2 − B̄2)

]
in the first term of the equation

above differs only in the amount that is allocated to bidder i in the states that belong to
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the set θ2. It follows from Lemma A1 in Kastl [2012] that whenever a bidder is rationed
it is because she is the marginal bidder. So, the perturbation does not affect the allocation
in state θ2. Thus,

[
u (V2 − B2) − u (V ′2 − B̄2)

]
= 0, and equation (13) simplifies to:

∂

∂q
E

[
u

(
V i − qkpc (q )

)
; bk = pc

]
(14)

State θ4.

The analysis for states in θ4 is analogous to the one for θ2 with the difference that now the
market clearing price is exactly equal to bk+1 and so the bidder is rationed at her (k +1)t ℎ

step. Following the steps exactly as for state θ2 we get:

lim
q ′→qk

(
1

qk − q′

)
E

[
u (V4 − B4) − u (V ′4 − B′4); θ4

]

=
∂

∂q
E

[
u

(
V i − qkpc (q )

)
; bk+1 = pc

]
(15)

This completes the analysis for all the different cases.30 Finally, combining equations
(12), (14) and (15), we conclude that:

lim
q ′→qk

Es−iu (si |qk ) − Es−iu (si |q′)
qk − q′

= 0

⇒ P(bk > pc > bk+1) · E
[
u′

(
V i − qkpc

) {v i (qk, si ) − pc}����bk > pc > bk+1
]

+
∂

∂q
E

[
u (V i − qkpc (q )); bk ≥ pc ≥ bk+1

]
= 0

Hence, proved. �
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