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Abstract

Free trials are a common marketing strategy that information goods providers use to facilitate

customer learning-by-using. I develop an empirical model of learning-by-using to evaluate the

profitability of two widely used trial configurations: limited duration of free usage (i.e. “time-

locked trial”) and limited access to certain features (i.e. “feature-limited trial”). The model

accounts for four factors that create trade-offs for the firm in designing trials: (1) the initial

uncertainty around customer-product match value, (2) customer risk aversion, (3) speed of

learning relative to demand depreciation, and (4) learning spill-overs across different features

of the product. I estimate the model using a novel data set of videogame users’ play records.

I find that a time-locked trial with 5 free sessions is the ideal design, which increases the

average willingness to pay post-trial by 9.8%. The revenue implication depends on the rate

of demand depreciation during the trial period. I also find that in this setting, providing a

feature-limited trial is profitable only when combined with time limitations. My model provides

demand predictions for each of the possible trial designs and will help firms design the optimal

free trial.
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1 Introduction

Information goods providers often offer trial versions of their products. For example, Spotify

provides free trial periods of 60 days. Business and computational software such as Microsoft Office

and Stata comes with a 30-day free trial. Videogame companies such as Electronic Arts and Sony

offer several features from each game title for free. Reporting results from 305 software publishers,

Skok (2015) finds that 62 percent of them generate some revenue from converting trial users to

paid users, and 30 percent report that such conversion constitutes more than half of their revenue.

A number of studies find that trial availability is positively associated with downloads of the paid

version (Liu, Au and Choi (2014), Arora, Hofstede and Mahajan (2017)). On the other hand,

conversion rates vary significantly across firms and products. Spotify boasts that its conversion

rate from the free trial to the paid version is around 27 percent, while Dropbox’s conversion rate

is around 4 percent; many other firms’ conversion rates are only around 1 percent (Rekhi (2017)).

Brice (2009) and Turnbull (2013) both report that among the software providers they survey, the

average conversion rate from a visit to the website to purchase is lower with a trial than without

it. Whether and to what extent a free trial boosts revenue therefore appears to depend on factors

specific to each product and market.

In this paper, I develop an empirical framework to identify and estimate demand-side factors

that influence the trade-offs firms face in designing a free trial. Designing the optimal trial is

not a straightforward problem. A trial can be configured by limiting the duration of free usage

(“time-locked trial”) or by limiting access to certain features (“feature-limited trial”).1 If the trial

is time-locked, the firm also needs to determine the duration of free usage. Similarly, choosing a

feature-limited trial requires another decision as to which features are included in the trial. In order

to implement the optimal free trial, the firm needs to take into account trade-offs associated with

each of the alternative designs.

In particular, I focus on one main channel through which the trial impacts firm revenue: cus-

tomer learning-by-using (Cheng and Liu (2012), Wei and Nault (2013), Dey, Lahiri and Liu (2013)).

Information goods are typical examples of experience goods. Advertising or other external infor-

mation alone may not fully inform customers about their match value with the product.2 When

1A “feature” refers to a general concept that encompasses any notion representing “part of the product”, such as
game content, book chapter or news article. Since I consider a videogame, I use “content”, “feature”, and “game
mode” interchangeably.

2“Match value” refers to anything that is specific to each customer-product pair, such as customer preference and
needs, or the time it takes to acquire product-specific skills.
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customers are risk averse, the existence of uncertainty lowers their willingness to pay. A free trial

informs customers about their true match value, and thus helps increase willingness to pay. On the

other hand, trial provision comes with an opportunity cost. The firm gives away part of the product

for free, mechanically reducing the value from adopting the full product. Thus, while providing a

more generous trial product fosters better customer learning, it also increases the opportunity cost.

The costs and benefits of trial provision are associated with various aspects of customer learning.

In this study, I consider four main factors: (1) the initial uncertainty around customer-product

match value, (2) customer risk aversion, (3) speed of learning relative to demand depreciation, and

(4) learning spill-overs across different features of the product. As is evident from the discussion

above, the magnitude of initial uncertainty and risk aversion are key factors. The speed of learning

influences the trade-off in providing a time-locked trial. As customers learn more quickly, shorter

trial durations are necessary to facilitate learning, and demand depreciates less during the trial.

The size of learning spill-overs across different features influences the effectiveness of a feature-

limited trial. Large learning spill-overs imply that fewer features need to be included in the trial

to facilitate learning, incurring smaller opportunity costs.

In order to evaluate the magnitude of each factor, I build and estimate a structural model

of customer adoption and learning-by-using. Specifically, I combine a model of durable goods

adoption with a model of Bayesian learning. In the model of adoption, each customer calculates

her willingness to pay based on her expected utility from future consumption (Ryan and Tucker

(2012), Lee (2013), Goettler and Clay (2011)). The expectation over future utility is conditional

on her belief about the match value. Hence, both the magnitude of uncertainty reflected in the

belief and customer risk aversion impact the willingness to pay.

I update a customer’s belief about her match value through a model of Bayesian learning. In this

model, each user maximizes her expected utility by choosing how often she uses the product, how

long each session lasts, and which feature she uses at each session. Her uncertainty diminishes as

she updates her belief through product experience. Learning spill-overs exist, in that an experience

with a feature may help in updating the belief about her match value for other features. Moreover,

a user considers her own uncertainty and may experiment with the product to resolve it; she

takes into account future informational gains in choosing her actions. In order to capture this,

I define the model as a dynamic programming problem of a forward-looking customer (Erdem

and Keane (1996), Che, Erdem and Öncü (2015)). The solution of this problem provides a value

function, which summarizes the customer’s expected lifetime utility, determining her willingness to
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pay endogenously.

I can describe customers’ behavior under each of the trial designs by ordering the models of

adoption and learning in accordance with the specified trial design. For example, in the case of no

trial, the adoption model precedes the usage model. The willingness to pay is calculated based only

on the prior belief. If a time-locked trial is provided, the usage model with the duration specified by

the trial precedes the adoption model and the willingness to pay is based on the updated posterior

belief.3 If a feature-limited trial is provided, customers can use the features included in the trial

while making a purchase decision. When learning spill-overs exist, they also help customers reduce

their uncertainty about the features not included in the trial.

I also account for other characteristics of durable goods demand. First, customers may have

an incentive to wait for future price drops (Stokey (1979)). In order to capture this, the model of

adoption is defined as a dynamic programming problem. Customers not only choose whether or

not to adopt the product, but also determine the optimal timing of adoption (Nair (2007), Soysal

and Krishnamurthi (2012)). Second, in the model of usage, I account for other channels through

which the usage experience influences utility, such as the novelty effect or boredom, and separately

identify them from the effect of learning. Finally, I model termination — permanent cessation from

product usage — as an endogenous decision. This determines the demand depreciation during the

trial, influencing the trial’s profitability.

I estimate the model using a novel data set of videogame users’ play records. For a set of users,

I observe lifetime play history: hours spent at each session and content selected. Each part of the

product studied is called a “game mode”. The rich data enable the estimation of the mechanism

behind customer learning while also accounting for customer heterogeneity. I find that videogame

users are risk averse, and their product valuation involves significant uncertainty. For example,

consider a customer whose willingness to pay evaluated at the initial belief is $50. The 95 percent

confidence interval of her true willingness to pay is [$21.80, $87.90]. Users learn quickly. One

additional session of a given game mode reduces the uncertainty about the match value with the

mode by up to 63 percent. Meanwhile, learning spill-overs across different game modes are small.

An additional session of a mode merely decreases the match value uncertainty of the remaining

modes by 2 percent. I find that a sizable fraction of users stop using the product early; 29.3 percent

of users terminate within first 5 sessions.

3I also allow users to purchase the full product before the free trial expires by jointly solving the model of adoption
and usage.
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Given the estimated demand model, I evaluate the revenue implications of various trial designs,

thereby providing managerial insights. I find that when it is optimal to provide a free trial, a time-

locked trial with 5 free sessions is the ideal design, increasing willingness to pay by 9.8 percent on

average upon completion of the trial. However, the high termination rate in early periods creates

a large opportunity cost, partly because among the dropouts are users with high willingness to

pay. I find that provision of the ideal time-locked trial increases revenue only if less than 11.1

percent of users terminate during the trial period. If the rate of termination is zero during the

trial — the most favorable case for the firm — the ideal trial increases revenue by 2.5 percent.

This implies that in order to fully benefit from offering a trial, the firm may want to incentivize

users to remain active. On the other hand, I find that any feature-limited trial, without duration

restrictions, does not increase revenue. This is due to a small number of modes in the product

studied and small learning spill-overs. However, adding restrictions on accessible game modes can

boost the performance of the ideal time-locked trial. For example, in the zero-termination case,

limiting access to only one specific mode to the ideal time-locked trial increases revenue by extra

0.7 percentage points over the pure time-locked product.

To my knowledge, this is the first empirical study that explores how the design of a free trial

influences willingness to pay. There is an expansive theoretical literature on optimal trial provision

when consumer learning exists (Lewis and Sapphington (1994), Chellappa and Shivendu (2005),

Johnson and Myatt (2006), Bhargava and Chen (2012)).4 In particular, Dey, Lahiri and Liu (2013)

and Niculescu and Wu (2014) study trade-offs the firm faces in providing time-locked and feature-

limited trials, respectively. In both studies, the optimality condition depends on the aforementioned

demand-side factors, calling for an empirical study to measure the magnitude of such factors. The

methodology I propose does so by using typical data on customer engagement with the product.

Hence, it can help firms design the optimal free trial.

Moreover, the model I develop is a novel application of a Bayesian model of forward-looking

customers to durable goods with multiple features.5 Customers’ willingness to pay is represented as

the sum of their expected future utility from the product. Moreover, at each usage occasion, users

4Trials may impact revenues through other channels. Cheng and Tang (2010) and Cheng, Li and Liu (2015)
discuss the size of the network externality that trial users create. Jing (2016) discusses the influence of trial provision
on competition. Since neither factor is relevant to the product studied, I abstract away from these alternative stories.

5There are numerous applications of Bayesian models to the repeat purchases of perishable goods, such as ketchup
(Erdem, Keane and Sun (2008)), yogurt (Ackerberg (2003)), diapers (Che, Erdem and Öncü (2015)) and detergent
(Osborne (2011)). Among others, physician learning about prescription drugs has a particularly large number of
applications (Crawford and Shum (2005), Coscelli and Shum (2004), Chintagunta, Jiang and Jin (2009), Narayanan,
Manchanda and Chintagunta (2005), Ching (2010), Dickstein (2018)).
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select a feature while taking future informational gains into account. Hence, the uncertainty impacts

both the users’ value and their actions. On the one hand, this means that the firm can influence

willingness to pay by providing a trial. On the other, it requires the firm to predict how forward-

looking users choose actions during the trial in order to find the design that best manipulates post-

trial willingness to pay. Modeling such interactions between the firm policy and customer actions

is a novel extension of the literature of consumer learning in the durable goods setup (Roberts

and Urban (1988), Iyengar, Ansari and Gupta (2007), Grubb and Osborne (2015)). Goettler and

Clay (2011) is the only empirical study to date that considers such interatction between a firm and

forward-looking customers. They study the optimal tariff schedule when customer learning exists.

Meanwhile, the model I develop provides new insights to the optimal product design.

This study also augments existing empirical studies concerning free trials of durable goods.6

Similar to the optimal duration of a time-locked trial, Heiman and Muller (1996) study how the

duration of a product demonstration impacts subsequent adoption. Foubert and Gijsbrechts (2016)

study a situation where a newly launched product is subject to a possible quality issue. They find

that the trial provision may decrease firm revenue due to lower quality perception. My study

greatly expands the literature by providing a general empirical model that allows one to assess the

profitability of both time-locked and feature-limited trials.

The study of optimal trial provision sheds a new light on the rapidly-growing “freemium” busi-

ness model, where the firm offers part of their product for “free” and upsells “premium” components

(Lee, Kumar and Gupta (2017)). One of its main purposes is to facilitate learning from the free

version and induce subsequent upsell: an objective similar to a feature-limited trial. Hence, under-

standing the mechanism of customer learning helps firms determine whether to adopt a freemium

strategy.

This paper is structured as follows. In Section 2, I discuss how the mechanism behind customer

learning affects firm revenue, using a simple demand model. In Section 3, I outline the data of

videogame usage records. I also present supporting evidence for the existence of customer learning

in the environment studied. In Section 4, I build a model of customer learning. I describe the

identification and estimation strategy in Section 5. Estimation results and model fit are discussed

in Section 6. Using the estimated model I consider the optimal trial design in Section 7. Section 8

concludes and discusses possible future research areas.

6More broadly, this study is associated with an empirical literature concerning how consumption experience in
early stages influences future repeat behavior (Fourt and Woodlock (1960)).
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2 An illustrative model of customer learning and firms’ trade-offs

In this section, I introduce a simple model of customer learning and illustrate how each of the four

factors outlined above impacts the optimal trial configuration. Consider a firm selling a videogame

with two features, which provide flow utility v1 and v2, respectively. There is no complementarity

across features and the utility from the full product is simply v1 + v2. For simplicity, I assume

all customers have the same match value and receive the same utility. The product lasts for two

periods. In the second period, the utility from both features decays by δ due to boredom. At the

beginning of the first period, a customer faces uncertainty about her match value with the product.

Her expected utility from each feature under uncertainty is given by E(vi) = αvi, for i = {1, 2}.

α < 1 is a parameter that captures the reduction of the utility due to the uncertainty in a reduced

form way. α is low if a user faces large uncertainty or she is very risk averse. The uncertainty is

resolved once she uses the product. When there is no free trial, the willingness to pay is equal to

ex-ante expected utility from the whole product over two periods.7

UN = E((v1 + v2) + δ(v1 + v2))

= α((v1 + v2) + δ(v1 + v2)).

Aside from not providing trial (N), the firm can either offer a time-locked trial (TL) or a feature-

limited trial (FL). With TL, the customer uses the full product for free for one period and makes

a purchase decision at the end of period 1. At the time of purchase, the customer learns her true

match value but has only one active period remaining. Hence her willingness to pay, which equals

the incremental utility from purchasing the full product, is

UTL = δ(v1 + v2).

With FL, the customer has free access to feature 1 and chooses whether to buy feature 2. Since she

can only try feature 1, she may or may not be able to resolve the uncertainty about feature 2. I

assume that learning occurs with probability γ. γ corresponds to the degree of learning spill-over.

If two features are sufficiently similar, usage experience from one provides more information about

the other and thus γ is high. I also assume that learning occurs well before period 1 ends. In this

7The customer knows that her uncertainty will be resolved in period 2. However, at the beginning she does not
know the realization yet, and hence her period 2 utility is still in the expectation in the expression of UN .
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case, her willingness to pay is

UFL =


v2 + δv2 with probability γ,

α(v2 + δv2) with probability 1− γ.

In order to maximize revenue from this customer, the firm first maximizes the willingness to pay

by choosing the scheme from N, TL and FL, and subsequently sets the price equal to it. When FL

is provided, the price the firm sets is pFL = v2 + δv2 and the customer purchases the full product

only when learning occurs. Setting price pFL = α(v2 +δv2) is dominated by choosing N and setting

pN = UN . In Figure 1, I plot the area in which each of {UTL, UFL, UN} is the maximum of the

three, and hence is the firm’s optimal strategy. The result clearly reflects the trade-offs described

Figure 1: Optimality of trial schemes

Note: Each colored area represents the parameter range where each trial configuration is optimal. The

figure is drawn assuming v1 = 1, v2 = 2 and δ = 0.6.

above. With large α associated with small uncertainty and customer risk neutrality, providing trial

is not optimal. When α is small, the optimal design depends on the relative size of α and γ. If

learning spill-over γ is large, the firm can facilitate learning better by utilizing learning spill-over

and thus providing FL is optimal. On the other hand, if α is sufficiently small, it follows that the

ratio α
δ is also small; the second period utility remains high even after taking the boredom δ into

account, so is the opportunity cost of providing free access in the second period. Providing TL is
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optimal in this case.8

More generally, if we have more than two features, the firm has a stronger incentive to provide a

trial. This is because the increase of the utility due to learning is larger if
∑

i vi is larger. Conditional

on providing a trial, the choice between TL and FL is still influenced by the same trade-off. When

it is optimal to provide FL, the firm chooses trial features that generate high learning spill-overs

to other features and have relatively low vi. vi is the opportunity cost of including feature i in the

trial, for any feature included in the trial no longer contributes to the willingness to pay. This model

abstracts away from many factors at play, such as multi-period learning and customer heterogeneity,

and hence I develop a more realistic model to be estimated in Section 4. Nonetheless, the factors

discussed here remain the key drivers of the firm’s trade-offs in the full model.

3 Data

3.1 Data description

I use a novel data set on usage of a major sport videogame. The sample of users are randomly

selected among those who registered a user account during product activation. For each individual

user, I observe the date of activation, which I assume to be the date of purchase, and the record of

all play sessions. Each session consists of the time of play, the hours spent and the content selected.

The game is playable both online and offline, but the play is always recorded by the firm and hence

I observe the entire history. The game requires purchase of a game disk before it can be played.

I augment my data with the game’s weekly average market price, collected from a major price

comparison website. The market price is the average of the prices listed on four major merchants:

Amazon, Gamestop, Walmart and eBay. I assume that this market price is the purchase price.

The game contains four features called “game modes”. While all game modes feature the same

sport, each mode focuses on its different aspects and provides a distinct gameplay experience. In

mode 1, users build a team by hiring players and coaches, and compete against rivals to win the

championship. In mode 2, users simulate an individual player’s career, in order to become the

MVP. In mode 3, users pick a pre-defined team and play against other teams, skipping any team

management. It is the simplest mode among the four. Finally, mode 4 allows users to compete

online and be ranked against other players.

A session, the unit of observation, is defined as a continuous play of one game mode. Upon

8The model in this section is based on Niculescu and Wu (2014), with extensions to serve the current purpose.
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turning the console on, the menu screen prompts users to select a game mode. Once they select

one, a session starts and the selected game mode is recorded. When they exit the mode and return

to the menu screen, or shut down the console, the session ends and the hours of play of the session

is recorded. By definition of the session, each session consists of only one game mode.

The firm releases a new version of the title annually. I restrict my sample to the set of 4,578

first-time users making a purchase of version 2014. The firm did not offer any free trial to the set

of users I study. As I show below, users learn about the product by playing. Hence, no observation

of trial usage is necessary to identify learning. Between 2012 and 2015 the firm changed its trial

design every year, presumably in order to evaluate the user response. The no trial policy employed

in 2014 is part of such experiment. Unfortunately, it is impossible to conduct a direct comparison

between trial adopters and non-adopters using data from other years; the firm provided a trial in a

quite non-random manner, creating a significant sample selection problem. Hence, I focus on users

where no such issue exists, identify customer learning, and recover the effect of trial provision in a

structural way. More details on the sample selection criteria are provided in the Appendix.

Figure 2: Prices and purchases over time

Note: The prices are weekly average price in the market. The unit of measurement for the purchase is

the number of activations in the data.

In Figure 2, I show the history of purchase and price over 35 weeks from the product release.

Both follow the typical pattern of software sales: the highest price and the sales at the beginning,

followed by a steady decline. In the 14th week, a lower price is offered due to Black Friday and a

corresponding sales spike is observed. The 18th week is Christmas with a clear sales boost.
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Table 1: Summary statistics

Note: Statistics are aggregated over all user-sessions. Choice probability is the number of sessions of

each game mode divided by the total sample size. Its standard deviation is that of a user-session specific

indicator variable, which is one if mode m is selected, around it. Duration between sessions is the number

of calendar days between two consecutive sessions. The termination period is the number of total sessions

each user played.

In Table 1, I present summary statistics of play records. Every mode is selected at roughly the

same rate, indicating that these modes are horizontally differentiated. Each session lasts around

an hour on average. Game mode 3 lasts shorter than the other modes, presumably because of its

simplicity. Duration between sessions is a measure of play frequency; shorter duration between

consecutive sessions indicates more frequent play. On average, users play one session every 2.7

days. The product life is relatively short. On average, users terminate after 31 sessions.

In Figure 3, I show the heterogeneity of game mode selection across customers with different

usage intensity, and its evolution over time. Each of the three bins represents users whose lifetime

hours of play is in the bottom third (light users), middle third (intermediate users), and top third

(heavy users) among those who remain active for at least 10 sessions. For each bin of users,

each bar represents the proportion that each mode is selected in the initial 3 sessions, 4th-10th

sessions, and sessions after that. Two empirical regularities are observed. First, the proportion

varies across users with different intensities. For example, light users tend to play mode 3 more

often than other users. This indicates that the distribution of match value over game modes may

vary across users with different intensity.9 Second, the proportion evolves over time. Mode 1 and

9I can interpret the shorter hours of play for mode 3 in two ways. There may exist ex-ante light users, who play
short sessions and prefer mode 3. The other story is that mode 3 requires less time, and users who like mode 3 tend
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2 gain popularity, while mode 3 shrinks. This is indicative that the perceived match value evolves.

These findings are consistent with customer learning, but also indicate the necessity to introduce

customer heterogeneity to account for the systematic difference across users.

Figure 3: Evolution of game mode choice for each usage intensity

Note: Light, intermediate and heavy users are those whose lifetime hours of play are in the bottom,

middle and top third of users. I exclude users who terminate within 10 sessions, in order to eliminate

sample selection issue in evaluating evolution of user actions. For each bin of users, each of three bars

represents the proportion that each game mode is chosen in the first 3 sessions from the purchase, from

4th to 10th sessions, and 11th session and after.

In Figure 4, I present the evolution of play hours and duration between sessions for the same

bins of usage intensity as in Figure 3. The usage pattern is nonstationary. On the one hand, the

hours of play initially increases. This is consistent with learning; the utility from play increases as

the uncertainty is resolved. However, the pattern is also consistent with other stories, such as skill

acquisition or novelty effects. On the other, usage intensity declines in later sessions, likely due to

boredom.10 The nonstationarity implies that in order to correctly identify customer learning from

the observed usage pattern, I need to account for other channels that influence the utility evolution,

such as novelty effects and boredom. Users are quite heterogeneous both in hours per session and

frequency of play; heavy users exhibit higher usage intensity and a slower decay than others.

to play less hours. The two stories differ in the direction of causality. As long as light users receive lower utility and
exhibit lower willingness to pay, I do not need to separate the two. In the data, users who prefer mode 3 tend to buy
the game further away from the release at lower prices, indicating that they indeed have lower willingness to pay.

10Unlike role-playing game, sport games do not have pre-defined “ending” and users can remain active as long as
they like.
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(a) Hours of play (b) Duration between sessions

Figure 4: Evolution of hours of play and duration between sessions

Note: For a given session, the average of hours and duration is taken across users for each usage intensity

bin. The usage intensity is defined in the same way as in Figure 3. The figure is truncated at the 40th

session.

3.2 Suggestive evidence of consumer learning

In this section, I discuss two data patterns that indicate the existence of customer learning-by-using.

Other supportive evidence is discussed in the Appendix.11

High early termination rate On average, users terminate after 31 sessions. However, there

exist many early dropouts. Figure 5 shows that 8.9 percent of users stop playing after the initial

session, and 29.3 percent of users terminate within 5 sessions. Such a high early termination rate is

also observed among heavy initial users: users whose hours in the initial session is in top third. 6.6

percent of heavy initial users terminate after the initial session, which is three times higher than

the long-run average. Considering that most users purchase the game for around $40 to $50, some

users are likely experiencing dissapointment. Users who have high expectations about the match

value may pay $40, only to realize their true match value is low and terminate early.12

11As shown by Chamberlain (1984), purely nonparametric identification between learning and customer hetero-
geneity is impossible. Hence, the validity of the argument that customer learning exists rests on how much the data
pattern “intuitively makes sense” from the perspective of each story. Reassuringly, the observed patterns fit more
naturally with customer learning. In the model, I impose restrictions on how heterogeneity can affect the evolution
of utility, in order to identify learning. This assumption is often employed in the literature of disentangling state
dependence from heterogeneity (Dubé, Hitsch and Rossi (2010), Ching, Erdem and Keane (2013)).

12Another story that may explain such patterns is heterogeneity in the speed of utility satiation. However, it does
not seem plausible that 9 percent of users have preferences such that their optimal behavior is to pay $40 to play
only one session.
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Figure 5: The evolution of the hazard rate of termination

Note: The hazard rate of termination at the t-th session is the ratio of the number of people terminating

the play after the t-th session among the active users at the t-th session. After 40 sessions, the hazard

rate is stable.

Figure 6: The evolution of the probability of switch

Note: The probability that users switch from mode m at the t-th session is calculated by the number of

users who selected game mode m′ 6= m in the t+1-th session, divided by the number of users who selected

mode m at the t-th session. Switches from modes 1, 2 and 4 follow very similar paths and I aggregate

them for exposition.
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Experimentation across game modes The existence of uncertainty implies that there is

an option value from exploration; there is a possibility that the true match value with a mode is

quite high. This prompts users to experiment with each game mode by switching across modes

more often in early stages of consumption. In Figure 6, I show the evolution of the probability

that users switch game modes after each session. Two different patterns immediately emerge. The

probability that users switch from game modes 1, 2, and 4 to any other mode steadily declines as

users accumulate more experience: a pattern consistent with experimentation. On the other hand,

switching from game mode 3 does not decline. This may be associated with smaller uncertainty

coming from the simplicity of the mode. Indeed, as I show below, that is the story that the

estimated parameters support.13

4 An empirical model of purchase and usage

In the previous sections, I showed that the usage patterns evolve in a way that is consistent with

customer learning: popular game modes change over time; some users terminate very early; and

users initially experiment across different modes. On the other hand, I found that usage experience

may influence utility through other channels, such as boredom and novelty effect. Moreover, the

usage patterns indicate the existence of customer heterogeneity.

In order to evaluate how the nature of learning influences the optimal trial design, I build

and estimate a structural model of customer adoption and learning-by-using. The model serves

two purposes. First, it allows one to identify the learning mechanism, while controlling for other

channels and customer heterogeneity. In particular, four factors that influence learning are explicitly

modeled: magnitude of initial uncertainty, risk aversion, speed of learning, and learning spill-overs

across different game modes. Second, the model is estimable using typical data on usage records

of users without trial experience. Hence, it provides implications for the trial profitability even

without observing trial behavior. The model combines a model of durable goods adoption with a

Bayesian learning model. A user’s willingness to pay at the point of adoption is equal to the sum

of her expected future utility, conditional on her belief about her match value. The future utility

and the evolution of her belief are endogenously determined in the usage model. Because of this

structure, I first describe the usage model. The adoption model then follows.

13An alternative story is that people merely have a taste for variety at the beginning. My standpoint is that
learning and love of variety are not mutually exclusive, but that experimentation is a structural interpretation of
variety seeking.
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Play a session? (A)

Choose mode
& hours of play (B)

Update
beliefs

Terminate? (C)
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repeat

Never
play
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Yes

No

No

Yes

Beginning of the day

Figure 7: Timeline of the choices at each day

Note: Block nodes A through C are decision nodes. Each user follows this decision process at each day

until she terminates.

4.1 The Bayesian learning model of usage

The usage model characterizes how a user plays the game. At each calendar day, a user makes

decisions according to a timeline described in Figure 7. The user first chooses whether or not to

play a session. Conditional on playing, she selects a game mode and chooses hours of play. The

user makes these decisions to maximize her expected utility given the belief about her match value.

After a session, she receives an informative signal of her true match value from the selected mode,

and updates her belief. At this point, the user may decide to permanently quit playing. I refer

to this as termination. Conditional on remaining active, the user again chooses whether to play

another session or move to the next day. She repeats this sequence until she terminates. In what

follows, I first describe the user decisions during a session (Node B), and the decisions of play

frequency and termination (Node A, C) afterward.

4.1.1 Selection of game modes and hours of play (Node B)

At the beginning of each session, users select a game mode and choose hours of play. In order to

allow for experimenting across modes, I assume that users are forward-looking and take into account

future informational gains when selecting a game mode. Meanwhile, I assume that the hours of
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play of a session is determined by a static expected utility maximization problem. This formulation

is based on the premise that the game mode selection is first-order in the experimenting behavior,

not the hours spent; users do not try to learn about the game by playing longer. This assumption

is consistent with the data, where users switch more often at the beginning but sessions do not last

longer.14 This formulation allows one to model the selection of game modes as a discrete choice

dynamic programming problem. The flow utility from each mode is determined by the optimal

decision of the hours of play for that mode.

Choice of hours of play At session t, conditional on having selected game mode m, each

user i chooses the hours of play to maximize her expected utility specified as follows.

Eu(ximt, bit, νimt, ht) = f(bit)ximt −
(c(νimt) + ximt)

2

2(1 + αht)
. (1)

ximt is user i’s hours of play at session t for the selected mode m; bit is i’s belief about her match

value at session t; νimt is the cumulative number of times that i chose mode m in the past t-1

sessions; and ht is weekend indicator, which is one for Saturday, Sunday and holidays. I assume

that the expected utility is a quadratic function of ximt. f and c are functions that represent

how marginal utility from playing an extra hour is affected by the belief bit and the history νimt,

respectively. Accumulation of usage experience influences utility through two channels. First,

due to learning, users update their beliefs and their utility evolves accordingly. This is captured

through f . Second, aside from learning, usage experience may directly influence utility. c controls

for such possible other factors. For example, any deterministic utility decay, such as satiation or

boredom, implies that c is increasing in νimt. Likewise, due to novelty effects or skill acquisition,

c may decrease in νimt for some range of t. Separating learning from other effects that I discussed

earlier corresponds to separately identifying c from learning parameters. Also, c partly captures the

concept of demand depreciation; if the incremental utility from additional sessions decays quickly,

providing initial free sessions incurs a large opportunity cost. Finally, users tend to spend more

hours in weekend, indicating that they may receive higher utility. This is captured by α > 0.

The solution to the static expected utility maximization problem provides the following maxi-

14Moreover, “playing longer to learn” is in general not separately identified from boredom. In either case, hours of
play decline over time.
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mum utility and the optimal hours of play for each game mode m.15

v(bit, νimt, ht) =
f(bit)

2(1 + αht)

2
− f(bit)c(νimt), (2)

x∗(bit, νimt, ht) = f(bit)(1 + αht)− c(νimt). (3)

Henceforth, I parametrize f(bit) as follows.

f(bit) = E[θρim | θim > 0, bit]. (4)

θim denotes the true match value between user i and game mode m. f(bit) is specified as an

expectation of θρim conditional on the belief. Parameter ρ > 0 can be interpreted as the coefficient

of risk aversion. ρ < 1 implies that utility is concave in the true match value θim, lowering the

expectation of θρim. c can be an arbitrary function such that c(0) = 0.

Game mode selection Game mode selection is described by a discrete choice dynamic pro-

gramming problem, where a user chooses a mode that maximizes the sum of her flow utility and

future informational return (Erdem and Keane (1996)). In order to capture the nonstationary

usage pattern presented in Figure 4, I assume that the problem has a finite horizon.16 The optimal

mode selection is summarized by the following value function.

V (Ωit) = E[max
mit

v(bit, νimt, ht) + E[β(Ωi,t+1)V (Ωi,t+1) | Ωit,mit] + εimtσε],

where Ωit = {bit, {νimt}Mm=1, ht}; the state Ωit consists of current beliefs, history of mode selections,

and a weekend indicator. The flow utility from the current session is represented by the utility

v(bit, νimt, ht) obtained above. The future informational gain is summarized by the continuation

payoff E[β(Ωi,t+1)V (Ωi,t+1) | Ωit,mit]. β(Ωi,t+1) is a discount factor between the current session

and the next session. I discuss the definition of β(Ωi,t+1) below. The expectation of the continuation

payoff is taken over the informative signal the user receives after the current session. I assume that

there exists a choice-specific idiosyncratic utility shock εimt, and that εimtσε follows type 1 extreme

15The assumption that users receive a signal after each session implies that users choose hours of play ximt before
playing and commit to it; the signal received from session t only influences their actions from t+1 and not ximt.
While this is at odds with what users do in reality, ignoring the instantaneous effect of learning hardly impacts model
predictions. This is because the incentive for learning in the model is mostly determined by a large option value from
many future sessions. The magnitude of utility increase of the current, single session is small relative to it.

16I assume that at T = 100 session all active users terminate. This is longer than the lifetime number of sessions
of 93.27 percent of the users in the data.
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value distribution with variance σ2
ε .

17 The choice probability of each mode hence follows the logit

form.

Pm(Ωit) =

 exp
(

1
σε

(v(bit, νimt, ht) + E[β(Ωi,t+1)V (Ωi,t+1) | Ωit,mit])
)

∑
m′ exp

(
1
σε

(v(bit, νim′t, ht) + E[β(Ωi,t+1)V (Ωi,t+1) | Ωit,m′it])
)
 . (5)

Experimentation occurs when a user chooses a mode that generates a lower flow utility than her

current best alternative to gain a higher return in the future.18 Since the problem is nonstationary,

all the value functions and the optimal actions are a function of t in addition to the state Ωit, which

I suppress for notational simplicity.

4.1.2 The decisions of play frequency and termination (Nodes A, C)

At nodes A and C, each user makes decisions of play frequency and termination. She compares value

from playing to that from not playing at node A, and compares value from remaining active to that

from terminating at node C. Instead of defining a full maximization problem, I take a reduced form

approach to model them. Specifically, I impose the following two assumptions; (1) users’ decisions

are based only on the state Ωit at nodes located between session t-1 and t, and (2) decisions are

influenced by an idiosyncratic shock, such that the optimal decision is representable by a probability

distribution over each of the available alternatives. This encompasses many specifications of decision

rules that involve an idiosyncratic utility shock, some of which I discuss in the Appendix. I denote

the probability that user i plays her t-th session on a given day by λ(Ωit), and the probability that

user i remains active after session t by δ(Ωi,t+1). I treat these probability distributions as model

primitives.19 For notational simplicity, I suppress the dependence of these policies on the state.

Unless otherwise noted, they depend on Ωi,t+1. From the firm’s perspective, δ is an important

determinant of the opportunity cost of trial provision; if the rate of termination is high, demand

depreciates quickly during the trial, rendering trial provision unprofitable.

17A commonly imposed normalization that σε = 1 is not necessary. The scale normalization is achieved by assuming
that f(bit) has no scaling coefficients. More detailed discussion is provided in the Appendix.

18This trade-off is also found in the literature of Bandit models, and the index solution exists for this class of model
with correlated arms (Dickstein (2018)). I opt to follow a standard dynamic programming approach. This is because
I not only need to calculate the policy function, but also the value function from the dynamic programming problem
in order to use it as an input to the adoption model.

19By treating the optimal policy as a primitive, I require that these policies remain unchanged in the counterfactual
of free trial provision. As I discuss in Section 7, the game modes included in the free trial are identical to the full
product and generate the same flow utility. Hence, any change of the usage pattern from the case of no trial is
attributable to the incentive of learning. Since the frequency and the termination do not influence learning-by-using,
the optimal actions should remain the same in the counterfactual.
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Given the structure of the decisions of frequency and termination, I derive the formula for

β(Ωi,t+1): the discount factor between session t and t+1. Assuming that users discount future

utility by β per one calendar day, β(Ωi,t+1) is obtained as the expected discount factor between the

date that session t is played and the date that session t+1 is played. The expectation is over whether

the user remains active after session t, and when she plays session t+1; because the optimal action

at each node depends on an idiosyncratic shock that only realizes at that node, a user’s future

actions are stochastic to herself. Formally, β(Ωi,t+1) is characterized as follows.

β(Ωi,t+1) = δλ+ δ(1− λ)λβ + δ(1− λ)2λβ2 + ...

= δ
λ

1− (1− λ)β
. (6)

The intuition is as follows. After session t the user remains active with probability δ(Ωi,t+1).

Conditional on staying active she plays session t+1 on the same day with probability λ(Ωi,t+1), on

the next day with probability (1 − λ(Ωi,t+1))λ(Ωi,t+1), incurring the daily discount factor β, and

so on.

4.1.3 State variables and their evolution

Match value and its learning-by-using I denote the true match value of customer i with

the game by a vector θi = {θi1, θi2, ..., θiM}, where M is the number of modes available in the

full product. Users are heterogeneous in their match values. I assume that θi follows multivariate

normal distribution; θi ∼ N(µ,Σ), where µ = {µ1, µ2, ..., µM} is the average match value of the

population and Σ is an arbitrary variance-covariance matrix. Two dimensions of heterogeneity are

captured. Heavy gamers play all modes more extensively than light gamers, generating positive

correlations. On the other hand, users who like mode m tend to play only mode m and not other

modes. This generates negative correlations.

Upon arrival at the market, the customer does not know the realization of θi, and has rational

expectation about it; her prior about the distribution of θi is equal to the distribution of the

match value in the population.20 In addition, the customer receives a vector of initial signals

θ̃i0 = {θ̃i10, θ̃i20, ..., θ̃iM0}. The initial signal represents any information or impression that a user has

about the product ex-ante. It creates heterogeneity in the initial perceived match value. I assume

20This assumption does not allow for possible bias in the initial belief. The bias in the belief, if it exists, is not
separately identified from other deterministic utility evolution, and hence is currently subsumed in c(νimt).
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that the initial signal is independent across game modes, and is normally distributed conditional

on her true match value; θ̃im0 | θim ∼ N(θim, σ̃
2
m). Henceforth, I denote the diagonal matrix of the

variance of the initial signal by Σ̃. The customer forms an initial belief as a weighted average of

the prior distribution and the received signal in a Bayesian manner.

θi | θ̃i0 ∼ N(µi1,Σ1), (7)

where µi1 = µ+ Σ(Σ + Σ̃)−1(θ̃i0 − µ),

Σ1 = Σ− Σ(Σ + Σ̃)−1Σ.

The initial belief is thus represented by bi1 = {µi1,Σ1}.

When a user plays game mode m at each session t, she receives a signal informative about her

true match value for that game mode. I assume that the signal simt is unbiased given the true

match value and normally distributed as follows;

simt | θim ∼ N(θim, σ
2
s).

I assume that the variance of the signal σ2
s remains the same over time. Introducing a time-varying

signal distribution makes the model computationally intensive, and hence I opt to maintain a simple

structure. Given the realized signal, the user updates the belief following the Bayesian formula.

µi,t+1 = µit + ΣitZ
′
it(ZitΣitZ

′
it + σ2

s)
−1(simt − µimt), (8)

Σi,t+1 = Σit − ΣitZ
′
it(ZitΣitZ

′
it + σ2

s)
−1ZitΣit, (9)

where Zit is a 1 by M vector whose m-th element is one and zero elsewhere. The correlations

between match values determine the learning spill-overs across game modes. If the match values

for two game modes are highly correlated, a signal received from one mode helps update the belief

for the other.21 Also, σs determines the speed of learning. When σs is small, the signal is more

precise and hence learning is quick.

In the model, the notion of initial uncertainty discussed earlier is captured by the variance of

the initial belief Σi1. Customers are aware that their belief involves an error and hence they face

a risk of mismatch. When customers are risk averse, ρ < 1 in Equation (4) and the expected

21This Bayesian updating structure of a normal distribution does not require to keep track of Σi,t in the state
space. Instead, it suffices to keep the mean belief µimt and the number of times each option is taken in the past νimt
(Erdem and Keane (1996)). This allows one to reduce the effective state space to Ωit = {{µimt, νimt}Mm=1, ht}.
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utility from each of the future sessions is lowered. This implies that when users calculate her

product valuation in the adoption model, the value diminishes. This is more pronounced when the

magnitude of uncertainty that customers face is large, reflected in large Σ̃. The Bayesian learning

structure ensures that the variance of the belief declines as the user accumulates usage experience.

The willingness to pay is likely to increase as a result of learning when customers are sufficiently

risk averse, learning is quick, and utility does not decay quickly,

Evolution of other state variables νimt evolves deterministically; νim1 = 0 for all m, and

νim,t+1 = νimt + 1 if m is chosen at session t, and νim,t+1 = νimt otherwise. The weekend indicator

is i.i.d, and it is 1 with probability 2/7 and zero with probability 5/7. This stochastic weekend

arrival helps reduce the dimension of state variables; deterministic weekend arrival requires to keep

track of the day of the week in the state.22 This completes the description of the model for usage.

This problem is solvable by backward induction. The solution consists of the optimal decision rule

and the associated value function at each of the states.

4.2 The model of adoption under no free trial

In the adoption model, each customer makes the adoption decision given her expected product

valuation. When there is no free trial, a user’s product valuation is represented by her ex-ante

value function V (Ωi1): the sum of the utility she expects from the product in the future, evaluated

at the initial state Ωi1. In addition, I allow for an incentive to wait for future price drops by

formulating the model as a dynamic programming problem (Nair (2007)).

I assume that the market consists of N customers. They are heterogeneous, in that the initial

belief bi1 is customer-specific. In line with the frequency of the price data, I assume that one

period in the adoption model is one calendar week. At each week τ , a fraction λaτ of the customers

randomly arrive. Each customer makes a purchase decision by comparing the value from buying

to that from waiting for a price drop. If she makes a purchase, she quits the market and moves to

the usage model described above. If she does not make a purchase, she comes back to the market

in the following week and makes the decision again. I assume that the product is available for 52

weeks after the release date, and hence waiting beyond 52 periods generates zero payoff. A new

version of the game is released at week 52, when the sales of older version essentially end.

22Since ht evolves at the calendar day level, the discount factor β(Ωi,t+1) defined in Equation (6) needs to take
that into account. Hence in practice, I replace relevant λ in Equation (6) by its expectation over the realization of
ht+1.
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The value function associated with the purchase problem at week τ is

Vip(Ωi1, pτ ) = E[max{V (Ωi1)− ηipτ + ε1iτσp, βVip(Ωi1, pτ+1) + ε0iτσp}],

where pτ is the current price. If the customer buys the product, she receives the value V (Ωi1)

and pays pτ . If she does not buy at week τ , she receives continuation payoff of staying in the

market Vip(Ωi1, pτ+1). I assume perfect foresight for the future prices.23 εiτσp is i.i.d, and follows

type 1 extreme value distribution with variance σ2
p.

24 This dynamic programming takes a form of

optimal stopping problem, whose solution is obtained by backward induction. I do not model social

learning, and hence the value from purchase V (Ωi1) remains constant over time. In order to account

for heterogeneity in the price elasticity indicated in Figure 2, I assume that ηi follows log-normal

distribution with mean µη and variance σ2
η. For simplicity, I assume that ηi is independent from

θi. The probability that customer i makes a purchase at week τ follows the logit form.

Pip(Ωi1, pτ ) =
exp

(
1
σp

(V (Ωi1)− ηipτ )
)

exp
(

1
σp

(V (Ωi1)− ηipτ )
)

+ exp
(
β
σp
Vip(Ωi1, pτ+1)

) .
The customer’s willingness to pay for the product is defined by V (Ωi1)

ηi
: the value of the product

measured in dollars.

4.3 Multiple segments

The model described above accounts for customer heterogeneity with respect to the true match

value θi, the belief bit, and the price coefficient ηi. However, all the population-level parameters

in the usage model are common across users; heterogeneity of usage patterns are attributed solely

to the variation of match value realization. In order to allow for more flexible representation

of customer heterogeneity, I allow for the existence of multiple segments r = {1, 2, ..., R}. In

particular, I allow the vector of mean match value µ and the variance of utility shock in the mode

choice σε to be heterogeneous. I denote segment-specific parameters with subscript r. I also let the

variance of the initial belief be heterogeneous, denoted by Σ1r = κr(Σ−Σ(Σ+Σ̃)−1Σ) with κ1 = 1.

Heterogeneity in µ allows for the existence of ex-ante heavy and light user segments. Heterogeneity

23The evolution of price follows very similar paths to other versions released in other years. Hence, assuming instead
that customers have rational expectation based on the average of the prices of previous versions hardly changes the
result.

24Since V (Ωi1) is already scale-normalized, I do not need to normalize σ2
p.
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in σε and Σ1 adds flexibility in fitting game mode selection of users with different usage intensity.

The probability that each user belongs to segment r is denoted by ξr.

5 Identification and estimation

5.1 Parameter identification

In this section, I outline the intuition behind identification of the key parameters. In particular,

I address two main challenges: (1) separate identification of learning from other channels that

influence the evolution of the users’ actions, such as boredom, and (2) separate identification of

each of the four factors of learning. A formal identification argument and identification of other

parameters are presented in the Appendix. For simplicity, here I consider a case with a single

segment; R = 1. I denote the states observable to a researcher by Ω̄it = {{νimt}Mm=1, ht}. The

difference from Ωit is that Ω̄it does not include the belief bit, which is unobservable to a researcher.

I first separately identify learning and other channels using observation of x∗imt(Ω̄it): the hours

of play at each state. “Identification of learning” refers to the identification of the distribution

of mean beliefs µimt for each m at each Ω̄it. Once it is identified, learning — how beliefs evolve

across states — is identified immediately. On the other hand, other channels are captured by

c(νimt). Separate identification of the two relies on two features of the model. First, c(νimt) is a

deterministic function of usage history νimt. Hence, users who share the same history νimt face the

same c(νimt). Second, the evolution of µimt due to learning is stochastic, involving initial signal

θ̃i0 and post-session signals simt. Moreover, because of rational expectations, users’ mean beliefs

stay the same on average after receiving an incremental signal: E(µim,t+1|µimt) = µimt. These

conditions imply that conditional on the history of usage up to session t, how the average hours of

play x∗imt evolves from state Ω̄it to Ω̄i,t+1 is solely attributed to the evolution of c(νimt); evolution

of µimt due to learning cannot influence the average behavior because of rational expectation. On

the other hand, how the variance of x∗imt across users evolves is solely attributed to the evolution

of µimt; c(νimt) cannot influence the variance because users sharing the same history has the same

c(νimt). This achieves separate identification of the distribution of µimt due to learning and c(νimt).

In the Appendix, I provide a formal argument of the identification of the distribution of µimt at

each Ω̄it.
25

25This argument assumes away sample truncation due to switching and terminating. In the Appendix I show how
to accomodate these factors.
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Next I consider separate identification of the four factors of learning. Each of the four factors

is captured by parameters {ρ, Σ̃, σ2
s , Σ}: risk aversion by ρ, the magnitude of initial uncertainty

by Σ̃, speed of learning by σ2
s and learning spill-overs by Σ, respectively. The distribution of µit

at each Ω̄it, which I identified in the previous paragraph, is sufficient to identify Σ, Σ̃ and σ2
s .

Specifically, I use the evolution of V ar(µit | Ω̄it). The intuition is as follows. In the initial session,

each user forms the initial belief using her prior and the initial signal; the distribution of beliefs µi1

reflects Σ and Σ̃. As she learns her true match value θi, the distribution of µit converges to that of

θi, which reflects only Σ. Moreover, the speed of convergence is determined by the precision of the

signal σ2
s . Hence, by observing the variance of the belief at the early stage of consumption, that in

the long-run, and the speed of convergence, one can identify Σ, Σ̃ and σ2
s .

Finally, the identification of ρ relies on the intertemporal switching across game modes during

the initial experimenting periods. Since all the other learning parameters and other channels c(νimt)

are identified solely from the observation of the hours of play, the only remaining parameter to fit

the initial switching pattern is ρ. Intuitively, given the belief users experiment with smaller number

of modes if ρ is small. When ρ is small, the customers are risk averse and hence trying a new,

unfamiliar game mode is more costly.

5.2 Estimation

I estimate the model using simulated method of moments. Given a set of candidate parameters, I

solve the dynamic programming problem of adoption and usage for each of the discrete segments

r by backward induction. In solving the value function, I use the discretization and interpolation

scheme introduced by Keane and Wolpin (1994). Once the solution is computed, I simulate se-

quences of actions according to the optimal policy. I draw a set of true match values, initial signals,

and post-session signals and take the assigned actions at each session. This set of samples serves as

pseudo-data. I then calculate the difference between the moments in the data and the pseudo-data.

The estimated parameters are the ones that minimize this difference. Formally, for a vector of

parameters θ the estimator θ̂ is given by the following minimization problem.

θ̂ = arg min
θ

mk(θ)
′V̂ −1mk(θ),

25



where mk(θ) is a vector, with rows containing the difference between the data and model moments.

V̂ is a weighting matrix.26

The set of moments is selected to closely follow my identification strategy. For the model of

usage, at each observed history of play {νimt}Mm=1, I take as moments (1) the probability that each

game mode is selected, (2) the probability that a user switches modes from the previous session,

(3) the mean and variance of the hours of play, (4) the average duration between the current and

the next session and (5) the probability of termination. Since the number of possible paths grows

as t gets larger, there are only 172 states that I have a sufficient number of samples to satisfactorily

compute these moments. Most of them are located at the early stages of usage history.27 In order

to augment the set of moments in later periods, I calculate the same measures at each session t, but

aggregated across the full history of past game mode selections {νimt}Mm=1 and use them as moments.

Also, in order to exploit the variation of usage patterns across users with different usage intensity,

I calculate the above moments with extra conditioning on some measures of past usage intensity.

The set of extra variables to be conditioned on are presented in the Appendix. Finally, I add as an

extra set of moments the difference of the average hours of play between weekdays and weekends,

and the probability that users play multiple sessions within a single day. These extra moments are

designed to aid the identification of α and λ, respectively. I only use the first 30 sessions as the

moments to ease the computational burden. As shown in Section 3, most of consumption dynamics,

and hence the implied customer learning, stabilize within the first 10 sessions. Hence, the variation

from the initial 30 sessions is sufficient to identify both the mechanism behind learning and the

distribution of the true match value.

The data used to identify the model of adoption are the rate of adoption at each calendar

week τ from the release until week 16, which is two weeks before Christmas. The empirical rate

of adoption is equal to the proportion of customers making a purchase at that week in the data,

multiplied by the market share of the product. I do not use data on and after Christmas. This is

because people activating the product on the Christmas may have received it as a gift, and hence

including their activation as a purchase would possibly bias the estimate of the price coefficient.

In total, I have 7,375 moment conditions to estimate 47 parameters. The step-by-step estimation

procedure and construction of all the moments are detailed in the Appendix.

26As a weighting matrix, I use a diagonal matrix, whose {k,k} element corresponds to the inverse of the mean of
the sample moment. This works to equalize the scale of the moments by inflating the moments that have a smaller
scale (e.g. choice probability) while suppressing the moments with a larger scale (e.g. duration between sessions).

27I use the moments from the states with more than 30 observations.
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c(νimt), λ(Ωit) and δ(Ωit) are specified as quadratic functions with respect to the number of

past sessions, where their coefficients are allowed to vary across users with different match values.

The customer arrival process λpτ is specified as a uniform arrival rate λau and the initial mass

of arrival at the release date λa0. I assume that the timing of arrival is independent from the

distribution of initial beliefs. Assuming that N potential customers exist in the market, the number

of customers arriving at each week is represented as [Nλa0, Nλ
a
u, Nλ

a
u, Nλ

a
u...]. Since the number

of total customers arriving at the market equals N , it follows that I can normalize λa0 = 1 and

estimate only λau as the rate of arrival in the later weeks relative to the initial week. While these

assumptions are not very flexible, the data provide only 16 points of observation, from which I

identify both the arrival process and the distribution of price coefficient. Hence, I opt for a simple

process to avoid identification issues. Market size N is calibrated outside the model. I assume that

N is equal to the installed base of consoles, multiplied by the share of all sport games among all

the game sales.

I assume that the variance of the initial signal is proportional to the variance of the true type;

σ̃2
m = κσ2

m. Also, without loss of generality I normalize the mean match value of segment 1

customers for game mode 3 to 30, and define other parameters and the mapping from the belief to

the optimal hours of play relative to it. For the number of discrete segments, I assume R = 2.

6 Estimation Results

In order to conduct model validation exercises, I randomly split 4,578 users into an estimation

sample of 3,778 users and a holdout sample of 800 users. The parameters are estimated using the

estimation sample, and model fit is cross-validated on the holdout sample. In this section, I present

the estimated parameters, and the model fit with all 4,578 users in the data. The model fit of the

holdout sample is provided in the Appendix.

6.1 Parameter estimates of usage model

In Table 2, I present selected parameter estimates for the usage model. The standard errors are

simulated using 1,000 sets of bootstrapped data, each of which is randomly re-sampled from the

original data with replacement. In Table 2a, I show the estimates of the parameters common

across all users. The coefficient of risk aversion is 0.215 < 1, indicating significant risk aversion.

The standard error of the match value distribution is much smaller for game mode 3; because
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Table 2: Parameter estimates

(a) Common parameters

(b) Segment-specific parameters

Note: µ31 and k1 are normalized. Standard error is calculated by 1,000 bootstrap simulations.
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of the simplicity of the mode, match values do not vary much across users. This is an estimate

consistent with the observation of no experimenting for mode 3 presented in Figure 6. Also,

correlation coefficients are all positive. High match value for one game mode implies high match

value for another. However, as I show below, the magnitude of the correlation is not high enough

to generate much learning spill-over. In Table 2b, I present segment-specific parameters. Each of

the two discrete segments respectively captures the behavior of light users and heavy users. All the

parameters for segment 2 are inflated to capture the large gap of usage intensity between light and

heavy users.28

Figure 8: Evolution of estimated c(νimt)

Note: Each line corresponds to the average evolution of c(νimt) of users who belong to each bin of usage

intensity. They are calculated using 50,000 simulated sequences of actions. Bins of usage intensity are

defined as in Figure 3.

In Figure 8, I present the evolution of estimated “other factors” effectc(νimt) for each bin of

usage intensity. Higher c(νimt) implies lower marginal utility from an extra hour of play. Utility

monotonically decays over time; the increase of initial utility due to skill acquisition or novelty effects

does not seem to exist. The utility of heavy users tend to decay slower than others, consistent with

Figure 4. As I detail in the Appendix, all the parameters of c(νimt) are precisely estimated; aside

from learning, usage experience directly influences utility. This indicates the need to control for

such contaminating channels in order to correctly evaluate the mechanism behind learning.

28While the estimated magnitude of initial uncertainty segment 2 faces is disproportionately high, this merely
reflects the tight curvature of the utility due to small ρ. Since the flow utility is quite flat at a high match value, in
order to capture the fact that the uncertainty also reduces heavy users’ initial utility, the variance of the belief needs
to be magnified accordingly.
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6.2 Model fit and implications for usage pattern

Figure 9: Model fit of game mode choice for each usage intensity

Note: The data part is identical to Figure 3. The model counterpart is computed from 50,000 simulation

sequences. Usage intensity is defined as in Figure 3.

Obtaining a good model fit is particularly important in this study. This is because the precision

of the trial revenue predictions relies on that of the estimated willingness to pay. Good fit to the

post-purchase behavior is its necessary condition. In Figure 9 through 12, I present the model fit for

each of the main data variations. Since I only use the observations up to the 30th session to create

moments, each figure represents in-sample fit up until that point, and out-of-sample afterward.

In Figure 9, I show the model fit for the aggregate pattern of game mode selection across users

with different intensity, and its evolution over time. Heterogeneities in both cross-sectional and

intertemporal dimensions are well captured. Light userstend to play mode 3 while heavy users

prefer mode 2. Moreover, users gradually switch from mode 3 to other game modes. The model

slightly overestimates the probability that mode 3 is selected at the beginning, and that mode 4 is

selected in the long-run, but the other parts fit the data quite well.

In Figure 10, I present model prediction hit rate of each individual user’s game mode selection.

The hit rate in this setup is equivalent to the choice probability that the model assigns to the mode

actually selected by each user at each session, conditional on the usage history up until that point.

It is obtained by integrating Equation 5 over the unobservable beliefs: E(Pm(Ωit)|{νimt}Mm=1, ht).

In order to integrate over the distribution of the belief conditional on the past actions, I employ

simulation with importance sampling proposed by Fernandez-Villaverde and Rubio-Ramirez (2007).
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Figure 10: Model prediction hit rate: individual-level game mode selection

Note: The hit rate is the probability that the model assigns to each of the observed mode selections

of each user at each session: E(Pm(Ωit)|{νimt}Mm=1, ht). The figure shows its average across users who

selected each mode at each session.

Details are provided in the Appendix.

Each of the lines in Figure 10 represents the model hit rate for each user at each session, averaged

across users who selected the same mode. Since there is no history available to be conditioned on at

the beginning, the choice probability the model assigns to each individual action is almost identical

to the empirical proportion that each game mode is selected. Over the first few sessions, the

information of past usage pattern significantly improves the hit rate. However, during the period

where the perceived match value and the associated actions evolve due to learning, the past usage

is not a perfect predictor of the future actions. As learning stabilizes around the 10th session, the

prediction hit rate reaches its peak at around 60 to 65 percent. On the other hand, the hit rate

for model 3 remains relatively low. As shown in Figure 6, the play records of mode 3 involve more

switches than the other modes in the long run; predicting future behavior is more difficult when the

user switches her choice more frequently. However, the model still has a certain predictive power

for mode 3; if the model had lost its predictive ability completely, then the hit rate would be equal

to the proportion that mode 3 is chosen in the data, which is 0.243.

The hit rate for the game mode selection, averaged across all the sessions and the modes, is

0.542. The associated positive likelihood ratio (LR+) is 3.557. Thus, the probability that the

model assigns to the mode selected in the data is 3.56 times higher than the probability the model
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(a) The hours of play (b) The duration between sessions

Figure 11: Model fit of the hours and the durations

Note: The data part is identical to Figure 4. The model counterpart is calculated from 50,000 simulation

sequences. The definition of the bin is the same as in Figure 3.

assigns to the modes not selected. Even for the worst-fitting mode 3, the average hit rate is 0.397

and LR+ is 2.56. This is supportive evidence that the model is able to capture individual-level

behavior, and hence correctly calculate each customer’s product valuation.

In Figure 11, I show the model fit of the hours of play and the duration between sessions.

The hours of play are almost perfectly captured in-sample. Furthermore, the out-of-sample fit for

intermediate and heavy users are sufficiently close to the observed pattern. Since the deterministic

part of the utility is monotonically decreasing, the initial increase of the hours of play is attributed

solely to the utility increase due to the reduction of the uncertainty.

The duration is captured reasonably. Since I opt for a simple functional form for λ, the bumpy

pattern of the light and intermediate users are ignored and only the average is matched. The bumpy

pattern of the data, while pronounced even at the aggregate level in Figure 11, is not correlated

with other behaviors in the data. Hence, it is likely to come from factors outside of the model, such

as the idiosyncrasy of the utility from the outside option.29

In Figure 12, I show the probability of termination and the switching pattern. The probability

of termination is underestimated after the 5th session, but the magnitude of the error is very small.

The switching patterns are tracked reasonably. Two different patterns of evolution that I discussed

in Section 3 are both correctly matched. The estimates of other parameters and additional model

29This fluctuation of play frequency indicates that users may bunch sessions. The assumption currently imposed is
that such consumption lumpiness does not influence the initial willingness to pay and hence smoothing it out through
the model does not bias its estimate.
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(a) The probability of termination (b) The probability of switch

Figure 12: Model fit of termination and switching patterns

Note: The data part is identical to Figure 5 and 6. The model counterpart is calculated from 50,000

simulation sequences.

fit check for usage patterns are provided in the Appendix. In particular, there I report the result

of two model validation exercises. I show that the model provides a reasonable fit to (1) holdout

sample of 800 users, and (2) a set of users playing a version released in another year.

6.3 Parameter estimates, model fit and implications for adoption model

Table 3: Parameter estimates (Adoption model)

Note: Standard error is calculated by 1,000 bootstrap simulations.

In Table 3, I show parameter estimates of the adoption model. The reported mean price

coefficient is lognormal; the mean of the price coefficient itself is exp(µη), which is at the order

of 1012. This is reasonable given that a vast majority of potential customers in the market don’t

make a purchase. In Figure 13, I present the estimated distribution of customers’ willingness to

pay, evaluated at the initial belief: V (Ωi1)/ηi. This is the histogram for users whose willingness

to pay is between $1 and $500 and covers 31.1 percent of the whole population. A majority of

people excluded from the figure exhibit willingness to pay lower than $1 and can be considered

as never-buyers. The distribution exhibits a large proportion of low willingness to pay customers
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Figure 13: Distribution of willingness to pay

Note: Willingness to pay is defined as V (Ωi1)/ηi. The histogram is the willingness to pay of 1,991,200

simulated samples. For expositional clarity, I only draw the histogram for users whose willingness to pay

falls within the interval [$1, $500].

and a handful of very high willingness to pay customers: a pattern consistent with our industry

knowledge. In Figure 14, I show the model fit for the weekly rate of adoption: the number of

customers making a purchase at each week divided by the total market size. The fit is almost

perfect. The existence of the initial peak and the second peak corresponding to the lower price is

captured by the heterogeneity of the price coefficient.

6.4 Examining the mechanism behind customer learning

In this section, I illustrate the mechanism behind customer learning. In particular, I outline how

each of the four factors of learning is at play, which in turn provides implications for the optimal

trial design. In Figure 15a, I show the evolution of the magnitude of uncertainty that a user faces.

The uncertainty is measured by the coefficient of variation of the belief: σimt/µimt. Users face

significant initial uncertainty. In particular, the belief of light users has a standard error that is 3.2

times higher than the mean. Reporting this in terms of willingness to pay, if a customer has an

initial willingness to pay of p dollars, then the 95 percent confidence interval of her true willingness

to pay is [0.436p, 1.758p].30 For example, if a customer has a perceived willingness to pay of $50,

then the 95 percent confidence interval is [$21.80, $87.90]. On the other hand, heavy users face

30Since the value function is nonlinear, the confidence interval of the willingness to pay is asymmetric despite the
belief following a normal distribution.
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Figure 14: Pattern of purchase

Note: The data part is identical to Figure 2 except that the scale is now weekly market share. The model

counterpart is calculated from 1,991,200 simulation sequences.

smaller magnitude of uncertainty. This appears reasonable, for users with higher perceived match

value may engage more in pre-purchase information search. The speed of uncertainty reduction is

quite fast, although the uncertainty does not collapse to zero in the short run.

In Figure 15b, I show the evolution of the average product valuation in the market, measured as

a percentile change from the initial value. The inverse U-shape is attributed to risk aversion and fast

reduction of uncertainty in early periods, and the deterministic utility decay presented in Figure

8 in later periods. At the peak after the 4th session, product valuation increases by 8.8 percent

on average across all users. Notably, the light users and heavy users experience more increase

than intermediate users, exhibiting non-monotonicity. For light users, their marginal return from

uncertainty reduction is high because the magnitude of uncertainty they face is quite large. On

the other hand, heavy users expect to play more sessions, and hence the sum of the increase of the

flow utility is larger. Note that for each individual user, learning does not necessarily increase her

product valuation. The error involved in the initial belief makes some customers overly optimistic

about their match value. After updating, customers may be disappointed. If the magnitude of

such negative signal is large enough to offset the gain from lower uncertainty, their willingness to

pay goes down. Figure 8 shows that on average product valuation goes up due to learning.

In Figure 16, I decompose the impact of learning into the effect on the belief of the selected

game mode (own-effect) and that of the modes not selected (spill-over). Each of the lines represents
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(a) Evolution of belief Std error / Mean (b) Evolution of product valuation

Figure 15: Impact of learning-by-using

Note: Both panels are calculated using 50,000 simulation sequences. In Panel (a), I show the evolution of

the coefficient of variation of the belief: σimt/µimt. Intermediate and heavy users exhibit almost identical

patterns and I aggregate them for exposition. In Panel (b), I present the evolution of the product valuation

at each session, measured as a percentile change from the initial value: V (Ωit)−V (Ωi1)
V (Ωi1)

.

a marginal decline in the variance of the belief due to an incremental signal received at each of

the sessions. It is evident that most learning comes from the strong own-effect. One additional

session decreases the variance of the own-belief by up to 63 percent, exhibiting rapid learning. On

the other hand, the spill-overs play little role. The correlation of match values is not large enough

for the informative signal to propagate.31 This indicates that provision of feature-limited trial,

whose profitability relies on the magnitude of learning spill-over, may not contribute to the revenue

increase in the current setup.

7 Managerial implications: the optimal trial design

In this section, based on the estimated demand model, I show how the demand responds to various

trial designs and provide revenue implications. Providing a free trial influences both customers’

adoption and usage decisions. Some of the customers who do not make a purchase without a

free trial may make a purchase with a trial, and vice versa. Usage decisions are influenced by

trial restrictions. A feature-limited trial constrains game modes accessible to users. On the other

hand, on a time-locked trial, users may strategically select modes so as to learn effectively before

the trial expires. In order to evaluate how the demand responds to each of the trial designs. It

31Under a Bayesian learning model with normal distribution, spill-overs are virtually non-existent for correlations
below 0.8 because of the nonlinearity of the spill-over process.
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Figure 16: Marginal variance reduction from each session

Note: The figure is computed from 50,000 simulation sequences. For each i and t, I calculate the percentile

reduction of the variance of the belief from t to t+1, for the mode selected at t:
σ2
im,t+1−σ

2
imt

σ2
imt

. The reported

solid line is its average across the simulated sequences. The dashed line corresponds to the average of

variance reduction for the modes not selected at t, calculated in a similar way.

requires to extend the model of adoption to incorporate such effects. In what follows, I first describe

this extended adoption model. I then simulate firm revenue and compare profitability of different

designs. Henceforth, I refer to the model under no trial scenario as “benchmark”. Also, I refer

as “time-locked trial” to the one where customers have access to the full product up to a certain

number of sessions. Since I assume that learning occurs session by session, the relevant notion of a

time limit is with respect to the number of sessions. Similarly, “feature-limited trial” is referred to

as the one where customers have access to a limited subset of game modes. I assume that all the

modes available in the trial are identical to the full product. I do not consider such strategies as

imposing restrictions within a mode.

7.1 An extended model of adoption

The sequence of customer decisions under trial provision is as follows. Upon arrival at the market,

customers face two options: use the free trial, or buy the full product.32 If a customer buys the full

product, she receives the value specified by her value function, in the same way as in the benchmark

32Since customer utility from playing the game is nonnegative and I assume that trial adoption is costless, “not
buying and not trying” is weakly dominated by “trying and not buying”. Hence, I do not consider the former option
explicitly.
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case. If she adopts the trial, she still chooses the frequency of play, the hours per session and the

game mode in the same way as in the benchmark. However, two factors differ for trial users.

First, the trial imposes a restriction on the user’s choice set. With a time-locked trial, a user can

play the trial only until it expires. With a feature-limited trial, she can only access certain game

modes. Second, she can opt to buy and switch to the full product at any time. I assume that she

visits the purchase decision node at the end of each calendar day that she plays a trial session.

At the purchase decision node, she compares the value from making a purchase and staying with

the trial. Hence, the model of trial users is a dynamic programming problem, where learning and

adoption decisions simultaneously take place. In what follows, I formally specify this extended

model of adoption. Since the restrictions imposed on the user actions depend on which type of trial

is provided, I specify the model for time-locked case and feature-limited case separately.

7.1.1 The model of adoption under a time-locked trial

A time-locked trial allows customers to play the full product up to T̃ sessions for free. The model

is hence similar to the benchmark model of usage up to T̃ , except that the customer visits the

purchase decision node at the end of each day. After T̃ , the trial expires and I assume that the

purchase decisions thereafter are specified by the adoption model under the benchmark, but with

an updated belief.33

Formally, at each session t ≤ T̃ of the trial, a user’s optimal game mode selection is specified

by the following dynamic programming problem.

V TL
it (Ωit, pτ , kt) = E[max

m≤M
v(bit, νimt, ht) + EVit(Ωit, pτ , kt) + εimtσε], t ≤ T̃ ,

where EVit(Ωit, pτ , kt) =


E[δλV TL

i,t+1(Ωi,t+1, pτ , kt) + δ(1− λ)V TL
i,t+1,p(Ωi,t+1, pτ , kt) | Ωit,mit], if t < T̃ .

E[δVip(Ωi,T̃+1, pτ ) | ΩiT̃ ,miT̃ ], if t = T̃ .

The flow utility remains the same as in the benchmark, for the trial product is identical to the

full product. On the other hand, the customer faces different continuation payoffs depending on

whether or not they have reached T̃ . At t < T̃ , the continuation payoff has two components. With

probability δλ, the user plays another trial session on the same day and receives the value from the

33This implies that during the trial, users may visit the purchase decision node on a daily basis, while they only
visit there once a week post-trial. Because the idiosyncratic preference shock affects purchase decisions, frequent visit
during the trial may inflate the probability of adoption by itself. In practice, I find that the number of visits during
the trial plays little role. This is because the variance of the shock is small relative to the distribution of willingness
to pay; the number of customers whose optimal choice flip due to the realization of the shock is small.
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next session V TL
i,t+1. With probability δ(1− λ) the day ends and she moves to the purchase decision

node, whose value function is denoted by V TL
i,t+1,p. I assume that the stochastic termination and

frequency terms δ and λ remain the same as in the benchmark. At t = T̃ , the current session is

the last session playable on the trial and the user goes back to the benchmark model of purchase

afterward. The continuation payoff is hence identical to the value function in the benchmark Vip,

but with product valuation evaluated at state Ωi,T̃+1. In both cases the continuation payoff is in

the expectation over the realization of the signal the user receives from the current session. The

state space involves two new elements. pτ denotes the price in the current calendar week, and

kt ∈ {1, 2, ..., 7} denotes the current day within the week. These extra state variables influence the

decision of the optimal timing of purchase and hence affect V TL
it through the continuation payoff.

Now consider the purchase decision node that a user visits after the t-th session. She chooses

whether or not to buy the full product by comparing the value of buying to that of staying with

the trial. Her value function at the purchase node is

V TL
i,t+1,p(Ωi,t+1, pτ , kt) = E[max{βV (Ωi,t+1)− ηipτ + ε1iτσp, βV̄

TL
i,t+1(Ωi,t+1, pτ , kt) + ε0iτσp}], t < T̃

where V̄ TL
i,t+1(Ωi,t+1, pτ , kt) = λ

∑
k≥1

(β(1− λ))(k−1)V TL
i,t+1(Ωi,t+1, pτ+k̃, kt + k − 7k̃), k̃ =

⌊
kt + k

7

⌋
.

The value from buying is represented by V (Ωit+1): the value updated through the experience in the

past t sessions. Since the purchase occurs at the end of the day, the usage of the full product begins

on the next day and hence the value is multiplied by the daily discount factor β. On the other hand,

the value from staying on the trial, V̄ TL
i,t+1, is characterized by taking an expectation of the value

V TL
it+1 specified above with respect to possible future price level pτ+k̃. k̃ is the number of calendar

weeks between the current and the next purchase decision node. The user takes expectations over

the future price because the date of next visit to the purchase node is stochastic. The next visit

occurs after her next trial session, and hence the expectation is over all possible durations until the

next session: the same logic as the calculation of β(Ωi,t+1) in the benchmark. The price is assumed

to take the same value within each calendar week τ , and exhibits a discrete jump across weeks. kt

records the day of the week at which each session t is played. If the duration between two sessions

is k days, kt evolves such that kt+1 = kt+k−7k̃. This results in the form of V̄ TL
i,t+1. The solution to

this dynamic programming problem provides the optimal action and the associated value function

of a trial user at each state.

Upon arrival at the market, knowing the value of buying the full product and that of adopting
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a trial, the customer chooses whether to adopt the trial or to buy the full product. Assuming that

customers arrive at the market at the first day of each week, the ex-ante value function upon the

arrival at the market is described as the maximum of the two.

V TL
i1,p(Ωi1, pτ , 1, ε) = max{V (Ωi1)− ηipτ + ε1i1σp, V

TL
i1 (Ωi1, pτ , 1) + ε0i1σp}.

This completes the characterization of the customer decisions under a time-locked trial.

Provision of a time-locked trial influences user behaviors in multiple ways. In general, when a

free trial is provided, customers have an incentive to defer the purchase. They can play an extra

trial session and reduce the uncertainty further by deferring the purchase. In particular, in the case

of time-locked trial, the trial product is identical to the full product before it expires. Hence, unless

there is an expected price increase, the customers are always better off by playing as many sessions

as possible in the trial; they receive the same flow utility and better continuation payoff from the

option value of future learning opportunities. Nonetheless, in reality people may purchase the full

product before the trial expiration date. In the model, this is captured by the idiosyncratic utility

shock ε.

Trial provision may also prompt users to experiment more with the product. In the benchmark

case, the option value of experimenting is simply that the user can make a better informed game

mode selection in the future. In the trial, the option value also contains that of better informed

purchase decision. In particular, while playing a time-locked trial, users are aware that there

is a time limit T̃ to receive this extra option value. Hence, they are more likely to engage in

experimentation.

All other aspects of customer behavior not discussed here, such as the customer arrival process,

are assumed to remain the same as in the benchmark. The solution to the customer’s dynamic

programming problem provides the probability that for a given trial restriction T̃ , a customer with

a belief bit and play history {νimt}Mm=1 makes a purchase at price pτ . I denote this probability by

Pr(Ωit, pτ , T̃ ). The aggregate demand at price pτ is equal to the probability that customers who

have not purchased the product as of calendar week τ make a purchase. It is obtained by taking the

sum of Pr(Ωit, pτ , T̃ ) over all possible usage histories that end up with a purchase at price pτ for

all users arriving at different weeks, and taking its integral over the distribution of match values.

DTL(pτ , T̃ | pτ ′ , τ ′ < τ) =

∫ ∑
τ̃

∑
Ωit,t≤T̃

λaτ̃Pr(Ωit, pτ , T̃ )
∑
Ω̃it

∏
Ωit′∈Ω̃it

∏
τ̃≤τ ′<τ

(1− Pr(Ωit′ , pτ ′ , T̃ ))dF (θi),
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where Ω̃it represents the set of all histories that reaches Ωit at period t. Because of the diminishing

pool of customers, the demand at pτ is a function of the sequence of prices that precedes it. For a

given sequence of prices and for each T̃ , one can calculate the firm revenue as

πTL(pτ , T̃ ) =
∑
τ

pτD
TL(pτ , T̃ ).

7.1.2 The model of adoption under a feature-limited trial

Now I turn to the case of feature-limited trial. In this case, the trial contains M̃ game modes,

where M̃ < M .34 The customer’s dynamic programming problem is defined similarly as in the case

of time-locked trial. The value function associated with the optimal game mode selection is

V FL
it (Ωit, pτ , kt) = E[max

m≤M̃
v(bit, νimt, ht)

+ E[δλV FL
i,t+1(Ωi,t+1, pτ , kt) + δ(1− λ)V FL

i,t+1,p(Ωi,t+1, pτ , kt) | Ωit,mit] + εimtσε1].

The difference from the time-locked trial case is that the game modes available for users are now

M̃ instead of M , whereas there is no time constraint T̃ . The limited access to m ≤ M̃ game modes

prevents users from receiving signals for mode m′ > M̃ and impacts the way users can update their

belief. On the other hand, no time limit allows users to receive some utility in every period even

without buying the full product. The value function at the purchase decision node is identical to

the time-locked case, except for minor notational differences.

V FL
i,t+1,p(Ωi,t+1, pτ , kt) = E[max{βV (Ωi,t+1)− ηipτ + ε1iτσp, βE[V̄ FL

i,t+1(Ωi,t+1, pτ+k̃, kt)] + ε0iτσp}],

where V̄ FL
i,t+1(Ωi,t+1, pτ+k̃, kt) = λ

∑
k≥1

(β(1− λ))(k−1)V FL
i,t+1(Ωi,t+1, pτ+k̃, kt + k − 7k̃), k̃ =

⌊
kt + k

7

⌋
.

At period 0, the customer chooses whether to adopt the trial, or to buy the full product.

V FL
i1,p (Ωi1, pτ , 1) = max{V (Ωi1)− ηipτ + ε1i1σp, V

FL
i1 (Ωi1, pτ , 1) + ε0i1σp}.

Unlike the case of time-locked trial, customers with sufficiently high initial belief prefer to buy

the full product from the beginning; the negative impact from not having an access to some of

34In practice, the firm does not only choose the number of game modes but also which game mode is included in
the trial. Since subscript m is just a label and has no cardinal meaning, one can always re-order modes so that the
ones offered in the trial are labeled first.
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the modes on the utility outweighs the option value from the trial. On the other hand, customers

who only want the game modes provided in the trial do not benefit from buying the full product,

and hence are likely to remain with the trial. The solution to the dynamic programming problem

provides the probability that for a given trial restriction M̃ , a customer with a belief and play

history Ωit makes a purchase at price pτ . Denoting this probability Pr(Ωit, pτ , M̃), I characterize

the aggregate demand the firm faces at each calendar week in the same way as in the case of

time-locked trial.

DFL(pτ , M̃ | pτ ′ , τ ′ < τ) =

∫ ∑
τ̃

∑
Ωit

λaτ̃Pr(Ωit, pτ , M̃)
∑
Ω̃it

∏
Ωit′∈Ω̃it

∏
τ̃≤τ ′<τ

(1− Pr(Ωit′ , pτ ′ , M̃))dF (θi).

The firm revenue is determined similarly.

πFL(pτ , M̃) =
∑
τ

pτD
FL(pτ , M̃).

7.2 Simulation results

Since the aggregate demand DTL(pτ , T̃ ) and DFL(pτ , M̃) have no analytical form, I compute firm

revenues at each T̃ and M̃ using 50,000 sequences of simulated customer actions. In order to

highlight the main trade-offs of each trial design discussed earlier, I assume that the price is held

constant at p = 52.1, the launch price.35 This eliminates customer incentive to wait for future price

drops and hence any change in the purchase timing is due to learning.

In Figure 17, I present the impact of time-locked trial provision on the revenue. The horizontal

axis corresponds to T̃ , the number of free sessions the firm provides, and the vertical axis is the

percentile revenue difference from the benchmark. I run several simulations assuming different rates

of termination δ(Ωit) during the trial period; δ(Ωit) corresponds to the speed of demand depreciation

and hence the opportunity cost of providing a free trial. When users terminate during the trial at

the same rate as the full product, the large turnover in the early sessions renders profitability of

any time-locked trial negative. Among users who terminate during the trial sessions, 37.6 percent

have willingness to pay higher than the price, and hence would be likely to make a purchase if

there were not any trial. In order for the provision of a time-locked trial to increase revenue, it

requires that the average rate of termination during the trial to be less than 38 percent of that of

the full product. This threshold corresponds to the cumulative rate of termination over 5 sessions

35Using a different price level hardly influences the results.
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Figure 17: Revenue impact of time-locked trial provision

Note: The revenue from each trial design is calculated using 50,000 simulation sequences of users. Each

line corresponds to the revenue prediction for a situation where the rate of termination δ during the trial

is multiplied by a coefficient between 0 and 1. Revenues are presented as a percentage difference from the

benchmark profit. The price is fixed at p = 52.1.

at 11.1 percent of all users. When the rate of termination is zero, the scenario most favorable for

the firm, the trial provision increases revenue by 2.54 percent. This indicates that in order to fully

benefit from the trial strategy, the firm may want to incentivize users to remain active until the

trial expires. Whenever the provision of a time-locked trial is profitable, providing 5 free sessions

maximizes revenue and hence is an ideal trial design. This design increases post-trial willingness to

pay by 9.8 percent on average. Compared to post-purchase evolution of product valuation presented

in Figure 15, it takes one more session for the willingness to pay to reach the peak of the inverse

U-shape, and the peak is higher. This is because the time limitation provides an extra incentive to

experiment with the product; users learn more from trial sessions than from post-purchase sessions.

In the remainder of this section, I fix δ = 0 during the trial, in order to ease the comparison of the

profitability of different trial designs.

In Figure 18, I show how customers change their adoption behavior in response to the provision

of a time-locked trial with 5 free sessions. Most of the customers whose behavior changes due to

trial have original willingness to pay close to the price p = 52.1. This is reasonable because even a

small change of the perceived match value is likely to flip the optimal action in that range. On the

other hand, the trial hardly impacts the behavior of customers whose original willingness to pay is

more than 10 dollars away from the price. Overall, the increase of the average willingness to pay
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Figure 18: Customer response to trial provision

Note: The figure shows that among the customers whose original willingness to pay lies between 20

and 100 dollars, which user makes a purchase under no trial case and the case of time-locked trial with

T̃=5. The distribution of the original willingness to pay and the users’ actions are calculated from 50,000

simulation sequences. The price is fixed at p = 52.1. I assume δ = 0 during the trial.

due to the uncertainty reduction increases the number of adopters.

Table 4: Revenue implications for feature-limited trials

Note: Each cell represents the revenue from a feature-limited trial with the restriction specified by the

row, measured as a percentile difference from the benchmark. The revenues are calculated from 50,000

simulation sequences. The price is fixed at p = 52.1. I assume δ = 0 during the trial.

I next evaluate the revenue implication of a feature-limited trial. In the first column of Table 4,

I present revenues when the firm restricts user access to only one of the game modes. The revenues

are reported as a percentile difference from the benchmark. I find that the feature-limited trial

without any time limitations will not increase revenue. When multiple game modes are provided

in the trial, the revenue implication is even worse. There are two reasons behind this. First, the

product studied only offers four game modes. Hence, providing just one for free already sacrifices

a significant portion of the product value. As I discussed in Section 2, a feature-limited trial is

more profitable when a product contains more features. Second, this product does not exhibit large

learning spill-overs. Providing one game mode does not facilitate learning of match values with
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other modes.

Finally, I consider a possibility where the firm combines both restrctions on time and feature

access: a “hybrid” trial (Cheng, Li and Liu (2015)). In this case, the customers’ dynamic program-

ming problem is described similarly as the one from the time-locked trial, with an extra restriction

that only M̃ < M modes are accessible during the trial. In column 2 of Table 4, I calculate revenue

from adding a restriction that users can access only one mode, to the ideal time-locked trial. The

best performance is achieved when user access is limited to only mode 1. In this case, revenues

increase by 3.24 percent from the benchmark: 0.7 percentage point of extra revenue increase over

the pure time-locked product. This indicates that while a feature-limited trial in itself does not

make profit, it can help boost revenue from a time-locked trial, if the firm is willing to introduce

restrictions on both dimensions.

8 Concluding remarks

In this paper, I consider the impact of trial design on firm revenue. I develop a model of customer

learning-by-using of a durable good with multiple features and identify the mechanism that influ-

ences trial profitability. I find that customers are risk averse and the magnitude of uncertainty

around customer-product match value is quite large. This implies that trial provision increases

customers’ product valuation even when their utility declines over time due to other factors, such

as boredom. However, the high initial termination rate implies that the trial makes many customers

leave the market before making a purchase.

The comparison across different trial designs offers several managerial insights. In the setting

studied, a free trial is profitable only when the cumulative rate of user termination during the initial

5 sessions is less than 11.1 percent. In this case, a time-locked trial with 5 free sessions maximizes

revenue and hence is the ideal design. Moreover, if the firm is willing to combine both time and

feature restrictions, providing only 5 sessions of game mode 1 boosts revenue even further. On the

other hand, the provision of a feature-limited trial without duration restriction is not profitable.

The result that the rate of user termination during the trial is a key factor indicates that the

firm may want to incentivize users to remain active until the trial expires. This is consistent with

empirical observations that many videogame providers offer so-called “daily rewards” to users: a

user receives a reward, such as in-game currency or items, by merely logging in to the game. The

reward value increases for every consecutive day that the user logs in.
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The methodology presented in this study allows firms to identify the mechanism behind cus-

tomer learning from data on purchase and usage history. It hence helps firms obtain implications

for the profitability of various trial designs. In particular, the structural approach employed does

not require any observation of past trial. My model is applicable to other cases where customer

learning exists and firms offer products with multiple features. Information goods satisfy these cri-

teria: smartphone apps and subscription services. Moreover, other goods can also exhibit similar

attributes. For example, gym memberships typically entail some uncertainty (match with the in-

structor, offered classes, etc.) and multiple services are offered. The model helps determine whether

the trial should be offered as a time-locked or feature-limited (e.g. only access to yoga class).

This study contributes to the literature by offering a novel application of a Bayesian model

of forward-looking customers to a durable goods setup. The model incorporates the environment

specific to durable goods, such as the timing of adoption and the unique representation of a cus-

tomer’s willingness to pay. Moreover, learning is endogenous in this model; the firm can directly

influence how customers learn through the design of the free trial. To my knowledge, this is the

first empirical analysis that considers the firm’s ability to affect customer learning.

The current analysis has certain limitations. First, since I do not have a sharp prediction for

the rate of termination during the trial, the profitability of each trial design is represented only

as a function of this termination rate. In order to obtain a point prediction of the revenue, and

hence to fully benefit from conducting this analysis, the firm needs to know the trial termination

rate from external sources. Second, I assume that all potential customers know the existence of

the product and the free trial influences firm revenue only by shifting their willingness to pay. In

other words, no market expansion arises from trial. This may cause underestimation of the gains

from a trial.36 Finally, by assuming that the customers have rational expectations, I abstract away

from possibilities that there may exist some systematic bias in the customers’ ex-ante belief. As the

extensive signaling literature indicates, users may not simply learn about their own match value,

but they also may have uncertainty about the quality of the product. In that case, the firm may

want to provide a trial to signal their product quality.

In this study, I only focus on the optimal design of the trial, holding the price fixed. This is

for the purpose of exploring customer response to different trial designs for a given price, thereby

highlighting the importance of considering product design as a strategic tool. Based on the result

36However, I believe that the magnitude of the bias is small. Typically the firm posts a free trial on its webpage;
by the time that user finds a free trial, the user already knows the existence of the product. Hence, such effects as
“a free trial informing customers about the product existence” is unlikely to occur.
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from this analysis, however, analyzing the interaction between the optimal trial design and the

subsequent pricing is a natural next step. Although the average willingness to pay in the market

increases by 9.8 percent due to learning, under a fixed price the revenue increases by only 2.54

percent. In particular, one important nature of the trial provision is that the firm can observe

customer usage patterns during the trial period, which provides information to identify each cus-

tomer’s match value; there is a value from information acquisition. This opens up a possibility that

the firm may engage in second-degree price discrimination to increase revenue even further. I leave

this for future research.
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Appendix

A Sample selection criteria

The sample of users used in the current analysis is the set of first-time users who made a purchase

of version 2014 on Sony PlayStation 3, PlayStation 4, or Microsoft Xbox360 console. This is the set

of people who had no trial access. On the other hand, some users who play this game on Microsoft

Xbox One console had access to a trial version; the firm provided a 6-hour time-locked trial to

customers who owned Xbox One console and subscribed to the firm’s loyalty program. I opt not to

use these samples, because the perfect overlap between the trial access and the enrollment to the

loyalty program creates a complicated sample selection problem between the customer match value

and the trial access. Rather, I use a cleanest set of samples where no such issue exists, identify

customer learning and recover the effect of trial provision in a structural way.

A few extra sample restrictions are imposed. First, I restrict my attention to the set of customers

making a purchase within 35 weeks of product release. Since the new version of the title is released

annually, people making a purchase at later weeks may switch to the newer version and terminate

the play of the older version earlier than they would without the newer version. Eliminating the

last 17 weeks from the sample is sufficient, for vast majority of people terminate the play within 17

weeks. Second, in creating the moments for the adoption model I only use the data of purchases up

to 16 weeks from the product release, which is two weeks before the Christmas. People activating

the product on the Christmas are likely to have received it as a gift. Hence, their activation should

not be counted as a purchase when estimating the price coefficient. Since the purchase is made by

the diminishing pool of customers, the number of purchase at each week is a function of the history

of purchases that precedes that week. Hence, dropping Christmas period implies dropping all the

post-Christmas period as well.

B Additional evidence of customer learning in the data

Practice mode as the initial choice Aside from the four main game modes used in the

analysis, the game also features an extra mode called “practice mode”. In practice mode, users

repeatedly conduct tasks necessary to play well in other modes. This helps new users gain an

understanding about the basics of the game, and develop playing skills. On the other hand, practice

mode in itself does not provide much excitement. It neither offers exciting matchups, nor fascinating
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team-building. Since users typically play practice mode only at the very beginning, I do not

explicitly treat the mode as a feature and drop all practice mode sessions from the sample. However,

the play records including practice sessions still exhibit a pattern consistent with customer learning.

In Table 5, I present the proportion of game mode selection in the initial session, with practice

mode inclusive. Among the first-time users, nearly 40 percent of them choose practice mode in

the initial session. Given the nature of practice mode, such observation implies two things. First,

the new users are not familiar with the game, and thus the assumption of match value uncertainty

appears reasonable. Second, users do not choose to dive into one of the main game modes and learn

on the way. Instead, they are willing to incur the cost of forgone flow utility to gain the return,

either informational or skill, in the future. In other words, there is a strong indication that users

are forward-looking.

Table 5: Game mode selection and hours of play in the initial session

Note: The table represents user behaviors in the very first session, aggregated across all users.

Initial increase of the hours of play In Figure 4 in Section 3, I showed that the hours

of play per session increases over time in the initial few sessions. In Figure 11 I showed that the

learning of risk averse customer can capture such pattern quite well; the uncertainty reduction

increases the expected utility and hence users play longer hours. Moreover, I found that such

initial increase of the hours spent is not attributable to novelty effect and skill acquisition. As I

showed in Figure 8, c(νimt) is monotonically increasing.

In this section I introduce three other alternative stories that can cause the initial increase of

hours, and argue that learning still plays a role even after controling for them. The first alternative

story is selection; users with short initial hours tend to drop out earlier, and hence the hours of

users who survive is longer. In Figure 4 I condition on the set of people who remains active for 10

sessions, and hence the initial increase comes from the evolution of actions of a user and not from

selection. The second alternative story is the selection of game mode; people tend to choose the

mode that requires shorter hours, such as mode 3, and switch to more time-consuming modes in
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Figure 19: The average hours of play of each game mode

Note: The average hours of play per game mode is computed by the average of the hours of play of users

who play each of the game modes. In computing this figure I use a subset of users who remain active at

least until the 10th session.

later periods. In order to consider such possibility, in Figure 19, I show the average hours of play

conditional on each game mode for users who remain active until the 10th session. The hours of

play still increases within a mode in first few sessions, indicating that there exists a factor that

increases utility within a mode.

The last alternative is the existence of day-level time constraint. If people have daily time

constraint that is constant across days, and allocate the available hours to more game modes at the

beginning for experimenting purpose, the hours of play per session is naturally shorter. I observe

people tend to play multiple sessions per day in early periods, and hence this story applies to my

data. However, as shown in Figure 20, even after aggregating the usage up to daily level, I still

observe the shorter initial usage. Hence, the story of time constraint alone cannot fully explain the

initial lower usage intensity.

C Model specification in detail

Structural interpretation of frequency choice and termination In the main text I

assumed that the decisions of play frequency and termination are represented in a reduced form

way by a probability denoted by λ(Ωit) and δ(Ωit). In this section I show that a decision process

where customers compare payoffs from each of the options and receive an idiosyncratic utility shock
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Figure 20: Average daily hours of play for each usage intensity

Note: Daily hours of play of a user is obtained as the sum of the hours spent in sessions played in each

calendar day. Presented in the figure is the average of this measure across users for each bin of usage

intensity.

generates policy functions that are consistent with this representation.

Consider a user’s decision at the beginning of the day (node A in Figure 7). She chooses whether

to play a session or not by comparing the value from playing and that of not playing. The value

from playing is simply V (Ωit), the value function defined at node B. On the other hand, the value

of not playing is computed in the following way. Suppose that if the user does not play today, then

starting from tomorrow she follows a policy such that she plays a session with probability λ(Ωit)

on a given day. Then the value from not playing today is the expected discounted sum of playing

V (Ωit), where the expectation is taken over when the user plays the game next time. Denoting

this expected discount factor by β′(Ωit), the value of not playing today is β′(Ωit)V (Ωit), where

β′(Ωit) = βλ
1−(1−λ)β .

Here I assume that the user receives an idiosyncratic utility shock for each of the options.

Denoting the realization of the shock by εf , her optimal policy is defined as

max{V (Ωit) + εf1, β
′(Ωit)V (Ωit) + εf2}. (10)

If we assume that εf1 and εf2 follows type 1 extreme value distribution, then the user’s optimal

policy is represented as λ(Ωit) = exp(V (Ωit))
exp(V (Ωit))+exp(β′(Ωit)V (Ωit))

. On the other hand, if we assume

εf1 follows normal distribution with zero mean and variance σ2 and εf2 = 0, then λ(Ωit) =
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Φ
(
V (Ωit)−β′(Ωit)V (Ωit)

σ

)
. The nonparametric representation of λ(Ωit) employed in this study en-

compasses these as a special case. Similar argument applies to δ(Ωit).
37

An extension of frequency choice In Section 5, I defined λ as the probability that a user

plays the game at each calendar day. There I assumed that λ only depends on Ωit. However, this

also implies that the probability of playing a session in a day does not depend on calendar day, such

as the number of sessions the user already played on the same day. In general we expect that the

probability of playing another session decreases in the number of sessions played in the same day.

Hence, in the empirical analysis I extend the model to take this into account. In particular, I let

the probability that “a user plays one session” and that “the user plays another session conditional

on already playing at least one on the same day” be different. I denote the former as λ1(Ωit) and

the latter as λ2(Ωit). This new policy does depend on the calendar day notion, and it would impact

the representation of the discount factor as follows.

β(Ωi,t+1) = δλ2 + δ(1− λ2)λ1β + δ(1− λ2)(1− λ1)λ1β
2 + ...

= δ

(
λ2 + (1− λ2)

βλ1

1− (1− λ1)β

)
.

Recall that β(Ωi,t+1) is located in the continuation payoff such that a user already played one

session in the day. This implies that in the path of continuation, the probability that she plays

the next session on the same day is always λ2 and that she does not is (1 − λ2). On the other

hand, on the next day and after, any session she may play is the first session of the day, and the

probability that she plays a session is always λ1. During the simulation of sequences to calculate

moment conditions, I use these λ1 and λ2 in accordance with the definition; I calculate a user’s

action using λ1 if she is at the beginning of a day, and using λ2 if she played one session on the

same day.

Note on model normalization Discrete choice problems require two normalizations of util-

ity to control for the indeterminacy of level and scale. In this model the imposed normalizations

are as follows; (1) flow utility from not playing is zero, both before purchase (not purchasing) and

after purchase (not playing a session), and (2) both utility from gameplay and hours of play are

37In these special cases the optimal policy only depends on Ωit through V (Ωit)−β′(Ωit)V (Ωit). The nonparametric
policy is hence consistent with more general representation of payoffs, such as inclusion of arbitrary utility from
choosing outside option.
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influenced by the belief bit only through f(bit), where f is monotone with respect to µimt for a

given σ2
imt and has no scaling parameters.38 The first assumption follows a standard practice in

the literature and normalizes the level of the flow utility v(bit, νimt, ht).
39 The second assumption

normalizes the scale of the flow utility by that of the observed hours of play. Both the hours of play

and the flow utility in the initial period are determined by f(bit) and that it is monotone. Hence,

there is a one-to-one mapping from the hours of play to the associated utility level. Moreover,

f(bit) has no scaling parameter and hence utility has the same scale as the hours of play. Once this

assumption provides a scale of the utility and the value function, no extra normalization on the

variance of the idiosyncratic shocks, both for game mode selection and for purchase, is necessary.

D Identification

Formal identification of V ar(µimt | Ω̄it) at each Ω̄it In order to identify the parame-

ters characterizing learning, {Σ, Σ̃, σ2
s}, I first identify V ar(µimt | Ω̄it) at each observed state

Ω̄it = {{νimt}Mm=1, ht}. As I discussed in the main text, I identify V ar(µimt | Ω̄it) solely from

the observation of V ar(x∗imt | Ω̄it). The argument goes as follows. In general, x∗imt is a function

of bit = {µit,Σit} and νimt through Equation (3). However, since everyone at Ω̄it has the same

usage history, νimt does not influence V ar(x∗imt | Ω̄it). Moreover, Equation (9) indicates that users

who share the same usage history must have the same Σit too; updating of Σit only relies on the

history of choices, and not on the realization of past signals. Hence, the distribution of the hours

among users at Ω̄it solely reflects the distribution of their µit; there is a one-to-one mapping from

V ar(µimt | Ω̄it) to V ar(x∗imt | Ω̄it). Moreover, this mapping is monotone, and hence we can invert

it to identify V ar(µimt | Ω̄it) from V ar(x∗imt | Ω̄it). The monotonicity comes from the fact that

f(bit) is a known function for a given set of parameters and it is monotone in µimt at each Ω̄it.

Note that in practice, I only observe the distribution of the hours of play for the selected game

modes; I observe truncated distributions and not the population-level distribution. However, the

belief follows normal distribution and the point of truncation is determined by a fully parametrized

model. Since normal distribution is recoverable, observation of arbitrarily truncated distribution,

together with the model that specify the point of truncation, is sufficient to identify the population

distribution.

38In other words, if I write f(bit) = c+b∗ (E[θρim | θim > 0, µimt, σ
2
imt]P (θim > 0 | µimt, σ2

imt))
1
ρ , the normalization

is b = 1.
39More precisely, it suffices to assume that for each of the sessions t, the utility from playing is zero at one of the

state realizations.
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Formal identification of Σ, Σ̃, and σ2
s from V ar(µimt | Ω̄it) The identification of V ar(µimt |

Ω̄it) at each observed state Ω̄it implies the identification of the parameters that characterize the

variance of the beliefs: Σ, Σ̃, and σ2
s . In order to see this, consider V ar(µi1), the variance of the

beliefs for all modes at the initial session, and V ar(µim2 | mi1 = m), the variance of the belief for

mode m at t = 2, at the state where mode m was also selected at t = 1.

V ar(µi1) =diag(V ar(µ+ Σ(Σ + Σ̃)−1(θ̃i0 − µ)))

=diag(Σ(Σ + Σ̃)−1Σ). (11)

V ar(µim2 | mi1 = m) =V ar

(
µim1 +

σ2
im1

σ2
im1 + σ2

s

(sim1 − µim1)

)
=

(
σ2
im1

σ2
im1 + σ2

s

)2

(σ2
m + σ2

s) +

(
1−

(
σ2
im1

σ2
im1 + σ2

s

)2
)
V ar(µim1), (12)

where diag(·) denotes diagonal elements of the argument. σ2
im1 is the {m,m} element of Σ1, and

V ar(µim1) is the m-th element of V ar(µi1). Both Equation (11) and (12) consist of {Σ, Σ̃, σ2
s},

and are not mutually collinear with respect to these parameters. Hence, these equations provide

non-overlapping constraints on the relationship among {Σ, Σ̃, σ2
s}. Similarly, the distribution of

hours of play of game mode m at sessions where game mode m′ 6= m is played at the previous

session provides a constraint on the correlation between m and m′. In the same way, the variance

of the belief at each state is not collinear with one another and serves as an individual constraint.

Since the number of possible state realizations grows without bound as t goes up while the number

of parameters is finite, one can pin down {Σ, Σ̃, σ2
s}.40

Formal identification of µ and c(νimt) Identification of µ and c(νimt) comes from the

knowledge of average hours of play E(x∗imt | Ω̄it). Specifically, the average match value of the

population µ is identified from E(x∗im1). At t = 1, c(0) = 0 and hence x∗im1 = f(bi1) from Equation

(3). Since f is monotone in µim1, the average hours of play in the initial session, E(x∗im1), identifies

of E(µim1). The identification of E(µim1) for each m immediately implies the identification of µ.

This is because µi1 = µ + Σ(Σ + Σ̃)−1(θ̃i0 − µ) and hence E(µi1) = µ. Intuitively, under rational

expectation the mean of the initial belief equals that of the true match value. Over time, the average

hours of play evolves due to c(νimt). As I discussed in the main text, learning does not influence the

40There are other variations that helps identify Σ̃. For example, Σ̃ not only determines the variance of the belief,
but also determines the magnitude of the error involved in the initial belief. For example, if disproportionately large
number of users buying the product early at high price play very little, it indicates that the magnitude of the error
involved in the initial belief is large.
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evolution of the average hours. Hence, E(x∗imt | Ω̄it) at each Ω̄it relative to Ω̄i1 identifies c(νimt).

Identification of other parameters Other model parameters to be identified are utility

parameter α, probability of termination and play frequency λ(Ωit), δ(Ωit), the distribution of price

coefficient µη, σ
2
η, customer arrival process λaτ , the variance of idiosyncratic shocks σεr, σp and the

distribution of multiple segments ξr. I set the daily discount factor β at 0.999.41

σε is identified by the difference between relative hours spent on each game mode and the choice

probability of that mode. Consider two game modes A and B, and users on average spend 2 hours

on A and 2.1 hours on B: a situation that implies that utility users receive from these modes are

similar. If utility is not weighted by σε, the choice probability has to be such that B is chosen with

slightly higher probability than A. If B is selected far more often than A in the data, then it follows

that σε is low and that the size of idiosyncratic shock is very small, so that its realization hardly

flips the choice even when the utility difference is modest. λ1(Ωit), λ2(Ωit) and δ(Ωit) are identified

from the distribution of termination probability and play frequency at each observed state Ω̄it. α

is identified by the difference in hours of play between weekdays and weekends.

The identification of the distribution of ηi, µη and σ2
η, comes from the rate of purchase at

periods where the price is on a declining trend. Given that users are forward-looking, heterogeneity

in the timing of adoption identifies the distribution of user patience; some users are willing to wait

for price drops, while others make a purchase even when they know the future price is lower. The

patience in the adoption model comes from ηi. If ηi is low, then the return from future price decline

is low, so is the incentive to wait. Hence, the rate of price decline and the number of purchases

made during that period identifies µη and σ2
η.

Provided that the variations in the timing of purchase under declining price are already used to

identify µη and σ2
η, remaining variations to identify the customer arrival process are limited. The

identification of λau relies on the number of purchases at periods where price is increasing, as well as

the total market share of the product. When the price is increasing, the forward-lookingness does

not play any role; the return from waiting is low. Hence, the purchase rate is solely determined by

the average price coefficient of people who remain in the market. Conditional on the distribution

of price coefficient, this is a function of λau. The market share of the product is also a function of

λau. Hence, I use them to identify λau.42 σp serves as a residual buffer between the model prediction

41Daily discount factor of 0.999 corresponds to annual discount factor of 0.95. The identification of discount factor
is known to be quite difficult (Magnac and Thesmar (2002)). In general it requires an exogenous factor that only
influences future payoffs and not the current payoff, which the current data set does not offer.

42A flexible form of arrival process is not separately identified from the heterogeneity of price coefficient. If I pick
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and the data. If σp = 0, then the timing of purchase is deterministic for a given willingness to

pay. Hence, the proportion of customers making a purchase at each week must match with the

corresponding truncated CDF of the distribution of V (Ωi1)/ηi. Any difference from that identifies

the magnitude of idiosyncratic shock σp. In practice, I did not encounter any issues in identifying

parameters in the model for purchase.

Finally, even when the market consists of multiple segments of customers with different population-

level parameters, the argument provided above remains valid. When multiple discrete segments

exist, the distribution of match value becomes a discrete mixture of normal distributions. For a

given weight ξr, the behavior of users corresponding to the segment assigned by ξr identifies the

parameters for that segment. For example, suppose there exists two segments, one with low mean

utility and the other with high mean utility, and the probability that a customer belongs to high

segment is 0.2. Then I identify parameters associated with high and low segment from the behavior

of top 20 percent and bottom 80 percent of customers, respectively. Having obtained the best fit

between the data and the model prediction for a given ξr, ξr is determined to best match among

them.

E Details of estimation

Step-by-step simulated method of moments Here I lay out the step-by-step process of

conducting simulated method of moments in the current analysis.

1. I first pick a set of candidate parameter values Θ. In ordet to pick the starting value, I

calculate the value of the objective function described in Section 6 at 1 million random

parameter values, and pick the smallest one.

2. Given Θ, I solve the model of usage and purchase described in Section 4 for each segment

r. I solve the value functions by backward induction. In order to ease the computational

burden, I use the discretization and interpolation method (Keane and Wolpin (1994)). For

each session t, I randomly pick 15,000 points from the state and evaluate the value function at

these points. I then interpolate the values at other points by fitting a polynomial of the state

variables. The variables included as regressors are as follows: µimt, νimt, exp(µimt/100), µimt×

νimt, µimt × µim′t, ht, µimt × ht for all m and m′ 6= m.

a sequence of arrival such that “the rate of arrival at τ equals the rate of purchase at τ”, then I can justify all the
variation in the timing of the purchase solely by the arrival process and ηi = 0 for all i; everyone buys at the week of
arrival.
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3. Once I obtain the value function at each state for each segment r, I simulate sequences of

actions and associated beliefs predicted by the model. I first draw 1,992,000 individuals, each

of whom belongs to segment r with probability ξr, which is the proportion of the segment

in the market. I draw their true match value θi following N(µr,Σ) and the initial signal θ̃i0

from N(θi, Σ̃), and create the initial belief µi1 and Σ1r. Using this initial belief, I draw their

purchase decisions following the policy function computed in the model of purchase. This set

of simulated samples is used to create moments of the pattern of purchase.

4. Among the set of simulated individuals that made a purchase, I randomly draw 200,000

individuals. For those users I draw a sequence of usage. For each individual and for each t,

given the drawn state Ωit I draw her actions using the policy function computed in step 2,

and draw a corresponding realization of the informative signal. Using the signal I update her

belief and create the state Ωi,t+1. 200,000 sequences of actions obtained this way are used to

create moments of the usage pattern.

5. I compute moments both in the data and in the simulated data. I update the parameters to

reduce the objective function. I repeat these steps until the convergence is achieved.

6. In order to check if the global minimum is attained, I conduct this exercise for multiple

starting values.

Construction of moments The set of moments used to identify the model of usage is as

follows.

1. The average and the variance of the hours of play, the choice probability of each game mode,

and the probability of termination, evaluated at each history of game mode selection and cu-

mulative hours of play up to the previous session: E(ximt | ν̃it, x̄it), V ar(ximt | ν̃it, x̄it), E(mit |

ν̃it, x̄it) and E(termit | ν̃it, x̄it) where ν̃it = {{νimt′}Mm=1}tt′=1 and x̄it =
∑
t′≤t−1

∑
m ximt′

t−1 .

termit is termination indicator, which equals one if user i terminates after session t. (868

moments)

2. The probability that the game mode selected in the next session is different from the one

at the current session, and the average duration between the current and the next session,

evaluated at each history of game mode selection and cumulative hours of play up to the

current session: Pr(mit+1 6= mit | ν̃it, x̃it) and E(dit | ν̃it, x̃it), where x̃it =
∑
t′≤t

∑
m ximt′

t . dit

denotes a duration between session t and t+1. (188 moments)
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3. The average hours of play, the choice probability of each game mode, and the average duration

between the current and the next session, evaluated at each of the cumulative number of

past sessions and the cumulative lifetime hours of play: E(ximt | t,Xi), E(mit | t,Xi) and

E(dit | t,Xi), where Xi =

∑
t′≤t̃i

∑
m ximt′

t̃i
. t̃i is the number of sessions user i played until she

terminates. (5,250 moments)

4. The probability of termination evaluated at each of the cumulative number of past sessions

and the cumulative hours of play in the initial 5 sessions from purchase: E(termit | t,Xwi),

where Xwi =
∑5
t=1

∑
m ximt

5 . (900 moments)

5. The probability that the game mode selected in the next session is different from the one at

the current session, evaluated at each of the cumulative number of past sessions and the game

mode selected in the current session: Pr(mit+1 6= mit | t,mit). (120 moments)

6. The average hours of play, evaluated at each of the cumulative number of past sessions and

weekend indicator: E(ximt | t, ht). (60 moments)

7. The probability that people play multiple sessions within a day, evaluated at each of the

cumulative number of past sessions: Pr(1{dit = 0} | t). (30 moments)

In order to condition the moments on continuous variables (e.g. cumulative hours of play in the

past sessions), I create 10 bins for each of them and compute conditional expectations in each bin.

In addition, I create moment 3 and 4 for each subset of samples who survived at least 5 sessions,

10 sessions and 20 sessions. For some users at some sessions, the record of the hours of play are

missing. I exclude those sessions from the calculation of moments of the hours of play. The missing

hours of play is simply due to the technical difficulty of keeping track of the timestamp of play,

and no systematic correlation between the pattern of missing data and the pattern of usage was

observed. Hence, it does not introduce any bias in the estimates.

The moments used to identify the adoption model are the rate of adoption at each calendar

week from week 1 through 16. In the model, the rate of adoption is calculated by the number of

simulation paths making a purchase at each week, divided by the number of total simulation paths.

In the data, the rate of adoption corresponds to the proportion of people making a purchase at

each week in the data, multiplied by the market share of the product, whose derivation is described

below.
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Note that the moment conditions closely follow the identification argument provided earlier.

For example, the evolution of belief is identified by the average hours of play in the initial session

and the evolution of the variance of the hours of play. This is accounted for through moment 1.

The identification of the coefficient of risk aversion ρ comes from initial switching pattern, which

is accounted for by moment 2. In general, the evolution of the behaviors across states are the

identifying variations of the parameters, and hence all the moments are conditioned on the finest

possible bins of histories that maintain a certain number of observations in each bin.

Derivation of market share Here I describe the derivation of market share of the product,

which is used in computing the empirical rate of adoption. I assume that the total market size for

the sport games is proportional to the share of sport games among all the videogame software sales.

The average share of sport games between 2007 and 2015 is 16 percent. The total market size of

all games is assumed to be equal to the installed base of PlayStation 3, PlayStation 4 and Xbox

360, which is 99.42 million units.43 Hence, the market size for sport games is 99.42× 0.16 = 15.91

million. This number corresponds to N in the current study. The sales of the focal game that is

compatible to the above consoles are 4.47 million units. Therefore, the market share of this title is

4.47/15.91 = 0.281, which I use as the market share of the game.

Parametrization of f , c and λ In this section, I provide details of parametrization employed

in the current study. In the main text, I assumed that f is parametrized as follows.

f(bit) = E[θρim | θim > 0, bit].

In practice, I find that when ρ is very small, f defined as such is almost flat with respect to

perceived match value, creating significant computational slowdown. In order to address this, I use

a transformed version of it, specified as follows.

f(bit) = (E[θρim | θim > 0, bit]P (θim > 0 | bit))
1
ρ .

This transformation makes the computation faster by an order of magnitude. Since this functional

form does not have a closed form, in practice I compute f(bit) for each ρ, µ and σ2 using Gauss-

Legendre quadrature.

43Xbox One is excluded from the market size because the customers with Xbox One are excluded from the current
analysis.
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c is specified as a quadratic function of the past number of sessions as follows.

c(νimt, bit) = (γ1 − γ2f(bit))νimt + (γ3 − γ4f(bit))t− γ5ν
2
imt.

In order to capture the observed pattern that the the evolution of usage intensity is heterogeneous,

I allow the coefficients to depend on the perceived match value through f(bit). Since allowing c to

be a flexible function of bit introduces an identification issue, I assume that c depends on bit only

through f(bit), thereby maintaining identifiability.44

Similarly, λ1(Ωit), λ2(Ωit) and δ(Ωit) are parametrized as follows.

λ1(Ωit) = φl1 + φl2
(µ̄it − µ̄)

σ̄
−
(
φl3 − φl4

(µ̄it − µ̄)

σ̄

)
t+ φl5t

2,

λ2(Ωit) = λ1(Ωit) + φl6,

δ(Ωit) = φd1 + φd2
(µ̄it − µ̄)

σ̄
− φd3t+ φd4t

2,

where µ̄it =

∑
m µimt
M

, µ̄ =

∑
m µm
M

, σ̄ =

∑
m σm
M

.

Both λ and δ are quadratic with respect to the number of past sessions t, and its intercept and slope

depends on the current belief. The term (µ̄it−µ̄)
σ̄ represents the normalized location of the belief of

user i relative to the average belief of the population. This specification allows for a possibility that

a user with higher perceived match value plays the game more frequently and has lower probability

of termination, and she is increasingly so as she accumulates more experience. λ2, the probability

that a user plays multiple sessions in a day, is different from λ1 only by an additive constant. As

discussed in the previous section, this extra constant term captures that even heavy users do not

often play multiple sessions within a day. In Table 6, I present the parameter estimates of the

functions presented in this section.

F Other figures of model fit

In Figure 21, I show the evolution of the probability that each game mode is selected. Unlike Figure

9, this shows the choice probability at every single session, while not conditional on usage intensity.

The choice pattern is tracked quite well. The choice probability of game mode 2 and 3 (1 and 4)

are slightly underestimated (overestimated), but the magnitude of the error is small. In Figure 22,

44The identification issue arises when both f and c are nonparametric. In practice, I impose a particular parametric
form on f and hence having more flexible c function as a function of bit is likely to maintain identification.
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Table 6: Parameter estimates of c, λ and δ

Note: Standard error is calculated by 1,000 bootstrap simulations.

I show the histogram of the hours of play in the very first session. The first session is chosen merely

for expositional purpose and the fit for the other sessions are similar. Notably, the model tracks

the shape of the distribution flexibly, even though the belief follows normal distribution. This is

because of the existence of multiple types. The low segment creates a mass below 1 hour, and the

high segment creates one around 2 hours.

Figure 21: The model fit of the game mode selection

Note: The choice probability is computed by the number of users who select each game mode at each

session, divided by the number of users who remain active. The model counterpart is calculated using

50,000 simulation sequences.
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Figure 22: The model fit of the distribution of hours of play at the initial session

Note: Users whose initial hours of play is less than 6 minutes are dropped.

G Model validation exercises

Model fit to holdout sample Among 4,578 users in the data, a randomly selected 800 users

are not used in the estimation and serve as holdout sample. In Figure 23, I present the model fit

with this sample. In order to ease comparison, the figures presented here are identical to the ones

presented earlier, except that the data part is replaced by that of the holdout sample. The model

maintains a good graphical fit to most of the data patterns. Adoption pattern presented in Figure

23f fits less well due to the existence of secondary peak around the 5th week that does not exist in

the estimation sample. On the other hand, all usage patterns exhibit a reasonable fit. The average

prediction hit rate for the game mode selection is 0.534, and LR+ is 3.438. Both of them are very

close to corresponding ones from the estimation sample, which is 0.545 and 3.587, respectively. The

model also maintains good out-of-sample predictive power for the hours of play and the duration

between sessions. The ratio of standard error of prediction errors between out-of-sample and in-

sample is 1.041 for the hours of play, and 1.033 for the duration between sessions.45 In other words,

the magnitude of errors involved in the out-of-sample prediction of the hours and the duration is

only 4.1 and 3.3 percent higher. They indicate that the model estimates capture the underlying

mechanism common across all users, rather than merely reflect some particular variation of the

45The prediction error of the hours of play of user i at session t is given by x̃it −E(x∗(Ωit) | {νimt}Mm=1, ht), where
x̃it is the observed hours of play. The error for duration between sessions is defined similarly.
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estimation sample.

Model fit to users from another year Throughout the paper, I use a set of customers

making a purchase of version released in 2014 as an estimation sample. Another model validation

exercise is to ask whether the model estimated as such can predict actions of users from some other

years. While the quality of graphics and the real-league data contained in the game are updated

every year, main features mostly stay the same across versions. Hence, it is reasonable to expect

similar customer behaviors across years. In order to explore this, I compare the model prediction

with a set of first-time customers making a purchase of version 2015. This set of users serves as

an ideal holdout sample. Version 2015 features exactly the same number of game modes with the

same name, allowing one to calculate the same measure as for version 2014. Moreover, the set

of first-time users of version 2014 and that of version 2015 are mutually exclusive, providing an

opportunity for pure out-of-sample fitting exercise.

In Figure 24, I present the model fit with this sample. Overall graphical fit is surprisingly good.

In particular, the fit of the hours of play presented in Figure 24a is almost as good as that of

the estimation sample. The pattern of game mode selection presented in Figure 24c is less ideal.

This is reasonable because specific characteristics of each mode provided in version 2014 and 2015

can be slightly different from each other. It is also notable that the probability of termination

is in general higher in version 2015, as represented in Figure 24d. Although this may indicate

the existence of possible quality issue for version 2015, such speculation is completely outside the

model. Finally, the good fit of adoption pattern presented in Figure 24f is remarkable given that

the model prediction is calculated using the history of prices for version 2014. This indicates both

the demand structure and the price pattern are quite similar between these two years. The average

prediction hit rate for the game mode selection is 0.533, and LR+ is 3.431. These are very close

to the in-sample ones. The ratio of standard errors of the prediction errors between out-of-sample

and in-sample is 1.025 for the hours of play, and 0.977 for the duration between sessions. In other

words, the errors involved in the out-of-sample prediction is 2.5 percent higher for the hours of

play, and 2.3 percent lower for the duration. Overall, these results are indicative that the model

is not merely useful to explain user behaviors from the specific version of the product I study, but

also capture a universal tendency underlying the customer behaviors.
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(a) Hours of play (b) Duration between sessions

(c) Game mode selection (d) Probability of termination

(e) Probability of switching (f) Adoption pattern

Figure 23: Model fit to holdout sample

Note: The data part is calculated using holdout sample of 800 users. The model counterpart is identical

to the figures presented before.
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(a) Hours of play (b) Duration between sessions

(c) Game mode selection (d) Probability of termination

(e) Probability of switching (f) Adoption pattern

Figure 24: Model fit to user actions from another year

Note: The data part is calculated using 5,211 first-time users activating version 2015. The model coun-

terpart is identical to the ones presented in the main text.
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H Importance sampling simulation to forecast individual usage

pattern

In order to evaluate model prediction for each user’s actions, it requires an expectation of the

action specified by the model over the unobserved belief, conditional on usage history. For example,

prediction of a user’s game mode selection is given by E(Pm(Ωit)|{νimt}Mm=1, ht). I calculate this

integral through simulation. In general, simulating a conditional expectation requires a sufficiently

large number of simulation draws that satisfy the conditioning requirement. This is because the

simulated expectation is nothing but the average of such samples. However, as we simulate a

sequence of actions with a long horizon, the number of possible histories increases quickly, making

it difficult to secure sufficient sample size at each state.

In order to deal with this issue, I employ importance sampling approach suggested by Fernandez-

Villaverde and Rubio-Ramirez (2007).46 The idea is that for each i and at each period t, I replace

simulation sequences that do not explain the observed actions at t very well with ones that do it

better. By repeating this replacement at every t, when one evaluates the conditional expectation

at t+1, all sequences in the pool are likely to have the history that user i actually follows. Hence,

the pool consists of more sequences that satisfy the conditioning requirement.

Formally, the simulation proceeds as follows. Suppose that I intend to calculate E(Pm(Ωit)|{νimt}Mm=1, ht)

for all t. For each individual user in the data, I first draw her true type θis from the population

distribution of match value, draw her initial signal θ̃i0s and calculate the initial belief bi0s. Subscript

s denotes each simulation draw. At each session t, given the drawn belief bits and other relevant

state the model provides the probability that the mode user i selected in the data is selected. I

denote this probability by Pm(bits, {νimt}Mm=1, ht | θis). By taking its average over simulation draws,

I have an estimator of E(Pm(Ωit) | {νimt}Mm=1, ht) at t.

Moving on to period t+1, in order to compute Pm(bi,t+1,s, {νim,t+1}Mm=1, ht+1 | θis), it requires

bi,t+1,s: a set of draws corresponding to the belief at period t+1. While crude frequency estimator

suggests that I simply draw a set of signals sits for the chosen action and update bits to get bi,t+1,s,

importance sampling inserts an additional step; I replace sequences that exhibits low likelihood of

explaining the user’s session t action with the ones with high likelihood. Specifically, I first weight

each of the draws bits by
Pm(bits,{νimt}Mm=1,ht|θis)∑
s′ Pm(bθits′ ,{νimt}Mm=1,ht|θis′ )

. This weight corresponds to how well each

draw bits explains the behavior at period t, relative to other draws bθits′ . The draw that fits the

46In the original paper, this method is called “Particle filtering”.
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data well at period t receives higher weight. I then re-draw the set of beliefs from this re-weighted

set of bits in the same way as boot-strapping with replacement. Those with high weight may get

drawn multiple times, while those with low weight may not get drawn at all. This re-draw provides

a re-weighted set of bits, from which I construct bi,t+1,s in the same way as in the crude estimator.47

This additional step guarantees that at each t+1, the belief bi,t+1,s is drawn such that bits explains

the action taken at session t well. Hence, it is more likely that many of those sequences satisfy the

conditioning requirement {{νimt}Mm=1, ht} for all t.

47Once bits is replaced by a new sequence, the corresponding true type θis is replaced as well, so that each re-drawn
bits has a correct corresponding θis.
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