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Abstract

We study a model of cheap talk with one substantive assumption: the
sender’s preferences are state-independent. We observe that this setting is
amenable to the belief-based approach familiar from models of persuasion with
commitment. Using this approach, we examine the possibility of valuable com-
munication, assess the value of commitment, and explicitly solve for sender-
optimal equilibria in a large class of examples. A key result is a geometric
characterization of the value of cheap talk, described by the quasiconcave enve-
lope of the sender’s value function. (JEL D83, D82, M37, D86, D72)

Keywords: cheap talk, belief-based approach, securability, quasiconcave
envelope, persuasion, information transmission, information design

1 Introduction

How much can an expert benefit from strategic communication with an uninformed
agent? A large literature starting with Crawford and Sobel (1982) and Green and
Stokey (2007) has focused on the case in which the expert’s preferences are private
information. However, many experts have fixed and transparent motives: salespeople
want to sell products with higher commissions; politicians want to get elected; and job
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candidates want to get hired. This paper analyzes the extent to which such experts
benefit from cheap talk.1

We consider a general cheap talk model with one substantive assumption: the
sender has transparent motives. Thus, we start with a receiver facing a decision
problem with incomplete information. The relevant information is available to an
informed sender who cares only about the receiver’s action. Wanting to influence this
action, the sender communicates with the receiver via cheap talk.

Our main technical insight is that our model is amenable to the belief-based ap-
proach adopted by the Bayesian persuasion literature (e.g., Kamenica and Gentzkow
(2011), Alonso and Câmara (2016), and Ely (2017)). Thus, we summarize communi-
cation via its induced information policy, a distribution over receiver posterior beliefs
that averages back to the prior.

Using the belief-based approach and the language of information policies, we ob-
tain a convenient characterization of the sender’s ability to benefit from cheap talk.
Say that a payoff s is persuasive if it is larger than the sender’s no-information payoff,
and securable if the sender’s lowest ex-post payoff from some information policy is at
least s. Theorem 1 shows that a persuasive payoff s can be obtained in equilibrium
if and only if s is securable. Note that the securing information policy need not itself
arise in equilibrium. Still, Theorem 1 says that the existence of a policy securing s
is sufficient for the sender to obtain a payoff of s in some equilibrium. Intuitively,
the securing policy leads to posteriors that provide too much sender-beneficial infor-
mation to the receiver. By reducing said information posterior-by-posterior, one can
construct an equilibrium information policy that attains the securing policy’s lower
bound on the sender’s payoffs.

Given the sender’s transparent motives, one may be tempted to conjecture that,
in equilibrium, informative communication in general, and persuasion in particular, is
impossible. Chakraborty and Harbaugh (2010) have proven this conjecture false. In

1Other papers have studied cheap talk communication between a sender and a receiver when
the former has state-independent preferences. Chakraborty and Harbaugh (2010) provide sufficient
conditions for existence of influential equilibrium in a static sender-receiver game; we discuss that
paper at some length below. Schnakenberg (2015) characterizes when an expert can convince voters
to implement a proposal, and when this harms the voting population. Margaria and Smolin (2017)
prove a folk theorem for a repeated interaction in which both a sender and a receiver are long-
lived. With a long-lived sender but short-lived receivers, Best and Quigley (2017) show that only
partitional information can be credibly revealed, and that well-chosen mediation protocols can restore
the commitment solution for a patient sender.
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a special case of our model, Chakraborty and Harbaugh (2010) show that the sender
can always communicate information credibly and influence the receiver’s actions by
trading off issues.2 In the further specialization in which the sender strictly likes to
influence the receiver, their result also delivers the possibility of persuasion.

Proposition 1 shows that the possibility of informative communication and persua-
sion extend beyond Chakraborty and Harbaugh’s (2010) specializations. In particular,
the proposition traces failures of persuasion and communication to two examples. For
persuasion, the relevant example is the two-action model, in which credible persua-
sion is clearly impossible. Using Theorem 1, we show that a converse is also true:
persuasion is impossible if and only if the model is effectively a two-action model. The
same is not true for informative communication, which is possible in all two-action
models but for one exception: the two-action, two-state model in which the receiver is
indifferent between the two actions at the prior. Using the belief-based approach, we
adapt Chakraborty and Harbaugh’s (2010) argument to show that this exception is
effectively the unique example without informative equilibria. Beyond this example,
informative communication is always possible.

What is the sender’s benefit from cheap talk, and how does this compare to her
benefit under commitment? Kamenica and Gentzkow (2011) characterize the sender’s
benefit under commitment in terms of her value function—i.e., the highest value the
sender can obtain from the receiver’s optimal behavior given his posterior beliefs.
Specifically, they show that the sender’s maximal commitment value is equal to the
concave envelope of her value function. As we show in Theorem 2, replacing the
concave envelope with the quasiconcave envelope gives the sender’s maximal value
under cheap talk. Thus, the value of commitment in persuasion is the difference
between the concave and quasiconcave envelopes of the sender’s value function.

To illustrate our results, consider a political think tank that advises a lawmaker.
The lawmaker is contemplating whether to pass one of two possible reforms, denoted
by 1 and 2, or to maintain the status quo, denoted by 0. Evaluating each proposal’s
merits requires expertise, which the think tank possesses. Given the think tank’s
political leanings, it is known to prefer certain proposals over others. In particular,
suppose that the status quo is the think tank’s least preferred option and that the
second reform is the think tank’s favorite option. Hence, let a ∈ {0, 1, 2} represent

2See Battaglini (2002) and Chakraborty and Harbaugh (2007) for applications of this idea in the
unknown agenda case.
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Figure 1: A function with its concave (left) and quasiconcave (right) envelopes.

both the lawmaker’s choice and the think tank’s payoff from that choice. Assume that
exactly one reform is good, and that the lawmaker wants to implement a good reform
but cares more about avoiding bad ones. Such preferences arise if we normalize the
lawmaker’s payoff from the status quo to be 0 and have his payoffs be 1 from a good
reform and –3 from a bad one. Thus, the lawmaker willingly implements a reform if
and only if it is the right reform with probability at least 3

4
. Being uninformed, the

lawmaker’s prior assigns a probability of 1
2
to each reform being the right one. Hence,

absent any information, the lawmaker maintains the status quo.
Suppose that the think tank could reveal the state to the lawmaker: that is, the

think tank recommends that the lawmaker implement 1 for sure when the state is 1

and implement 2 for sure when the state is 2. Since it is incentive-compatible for the
lawmaker to follow these recommendations, the think tank’s ex-post payoff would be
1 when sending implement 1 and 2 when sending implement 2. In contrast, under no
information, the think tank’s payoff is 0. Thus, revealing the state secures the think
tank a payoff of 1, which is higher than its payoff under the prior. Notice that 1 is
then the highest payoff that the think tank can secure, since every information policy
must sometimes reduce the probability that the lawmaker assigns to the state being
2.

One can, therefore, apply Theorem 1 to learn two things: (1) 1 is an upper
bound on the think tank’s equilibrium payoffs; and (2) this bound can be acheived
by reducing the informativeness of the abovementioned message protocol. For (2),
consider what happens when the think tank sends the implement 2 message according
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to

P {implement 2 |θ = 1} =
1

3
,

P {implement 2 |θ = 2} = 1,

and sends implement 1 with the complementary probabilities. As with perfect state
revelation, choosing proposal 1 is the lawmaker’s unique best response to implement
1. However, given implement 2, the lawmaker assigns a probability of 3

4
to state

2, making him indifferent between implementing 2 and the status quo. Thus, the
lawmaker can mix between keeping the status quo and implementing 2 with equal
probabilities. Since such mixing results in indifference by the think tank, we have
obtained an equilibrium.

The above example highlights that credible communication may force the receiver
to mix. Such mixing is unnecessary with sender commitment. Given commitment
power, every attainable sender payoff can be attained with a message protocol sat-
isfying two properties:3 (1) the sender’s messages take the form of a recommended
pure action; and (2) the receiver takes the recommended action with probability
one. In contrast, Theorem 3 shows that, under cheap talk, one can always guarantee
either one of these properties, but not necessarily both. Moreover, we show that
commitment is valuable whenever (1) and (2) cannot be simultaneously guaranteed
(Proposition 2). In other words, receiver mixing may be necessary, and this hurts the
sender. Intuitively, mixing generates commitment power for the sender by preventing
her from steering the receiver toward her preferred actions. Such mixing, however,
comes at the cost of the receiver taking the sender’s preferred actions with a lower
probability. One can see this cost in our example: if the think tank were committed
to the information policy from the above equilibrium, the lawmaker could respond to
implement 2 by choosing the second reform instead of mixing, thereby increasing the
think tank’s expected payoff to 5

3
. Thus, eliminating mixed strategies is one channel

through which commitment benefits the sender.
In Section 6, we examine how cheap talk changes persuasive information. Under

cheap talk, information is constrained by the sender’s incentives. Despite this addi-
tional constraint, cheap talk need not change the nature of persuasive information.
Consider the information policy constructed in the simple think tank example above.

3See Kamenica and Gentzkow (2011) and Bergemann and Morris (2016), for example.
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We have described two ways that the lawmaker can respond to this policy: pure and
mixed. With the mixed strategy, the above protocol gives the think tank its best
cheap talk payoff. With the pure strategy, Kamenica and Gentzkow’s (2011) results
imply that the protocol gives the think tank’s best commitment value. Notice that,
under the pure strategy, the lawmaker only ever induces the think tank’s two best
payoffs. This property turns out to be sufficient for the best commitment protocol to
also be best under cheap talk. More precisely, Proposition 3 shows that a most per-
suasive information policy under commitment remains most persuasive under cheap
talk whenever it induces the receiver to take two actions that lead to consecutive
payoffs for the sender.

Section 7 examines a richer version of the above think tank example. In particular,
we allow the lawmaker to choose from any finite number of proposals and the reforms’
values to have any symmetric distribution. We show, as in the simple example above,
that the think tank would benefit from commitment and that one can use Theorem
1 to identify the think tank’s payoff from its most preferred equilibrium. Moreover,
the equilibrium’s structure does not depend on the distribution of reform values.

2 Cheap Talk: The Belief-Based Approach

Our model is an abstract cheap talk model with the substantive restriction that the
sender has state-independent preferences. Thus, we have two players: a sender (S)
and a receiver (R). The game begins with the realization of an unknown state, θ ∈ Θ,
which S observes. After observing the state, S sends R a message, m ∈ M . R then
observes m (but not θ) and decides which action, a ∈ A, to take. While R’s payoffs
depend on θ, S’s payoffs do not.

We impose a few technical restrictions on our model. Both Θ and A are compact
metrizable spaces that contain at least two elements. The state, θ, follows some
full-support distribution µ0 ∈ ∆Θ, which is known to both players.4 Both players’
utility functions are continuous, where we take uS : A → R to be S’s utility5 and
uR : A × Θ → R to be R’s. Finally, we assume that the message space, M , is some
Polish space that contains A, ∆A, and ∆Θ.

4For a Polish space Y , we let ∆Y denote the set of all Borel probability measures over Y , endowed
with the weak* topology. For γ ∈ ∆Y , we let supp γ denote the support of γ. For f : Y → R bounded
and measurable, we let f(γ) :=

´
Y
f dγ.

5In Section 8.1, we consider more general ways of modeling state-independent S preferences.
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A strategy for S maps each state of the world to a distribution over messages. A
strategy for R specifies a mixed action for R conditional on every message that R
may observe. We are interested in studying the game’s equilibria, by which we mean
perfect Bayesian equilibria. Thus, an equilibrium consists of three measurable maps:
a strategy σ : Θ → ∆M for S; a strategy ρ : M → ∆A for R; and a belief system
β : M → ∆Θ for R; such that:

1. β is obtained from µ0, given message policy σ, using Bayes’ rule whenever
possible.6

2. ρ (m) is supported on arg maxa∈A uR (a, β(m)) for all m ∈M .

3. σ (θ) is supported on arg maxm∈M uS(ρ (m)) for all θ ∈ Θ.

Any triple E = (σ, ρ, β) induces a joint distribution, PE , over realized states, messages,
and actions,7 which, in turn, induces (through β and ρ, respectively) distributions
over R’s equilibrium beliefs and chosen mixed action.

We begin our analysis by noting that our model is amenable to the belief-based
approach used in the information design literature. This approach uses the ex-ante
distribution over R’s posterior beliefs, p ∈ ∆∆Θ, as a substitute for both S’s strategy
and the equilibrium belief system. Clearly, every belief system and strategy for S
generate some such distribution over R’s posterior belief. By Bayes’ rule, this posterior
distribution averages to the prior, µ0. That is, p ∈ ∆∆Θ satisfies

´
∆Θ

µ dp (µ) = µ0.
We refer to any p that averages back to the prior as an information policy. Thus,
only information policies can originate from some σ and β. The fundamental result
underlying the belief-based approach is that every information policy can be generated
by some σ and β.8 Let I(µ0) denote the set of all information policies.

The belief-based approach allows us to focus on the game’s equilibrium outcomes.
Formally, an outcome is a pair, (p, s) ∈ ∆∆Θ × R, representing R’s posterior dis-
tribution, p, and S’s ex-ante payoff, s. An outcome is an equilibrium outcome if
it corresponds to an equilibrium.9 In contrast to equilibrium, a triple (σ, ρ, β) is a

6i.e.,
´

Θ̂
σ(M̂ |·) dµ0 =

´
Θ

´
M̂
β(Θ̂|·) dσ(·|θ) dµ0(θ) for every Borel Θ̂ ⊆ Θ and M̂ ⊆M .

7Specifically, E = (σ, ρ, β) induces measure PE ∈ ∆(Θ × M × A), which assigns probability
PE(Θ̂× M̂ × Â) =

´
Θ̂

´
M̂
ρ(Â|·) dσ(·|θ) dµ0(θ) for every Borel Θ̂ ⊆ Θ, M̂ ⊆M, Â ⊆ A.

8For example, see Aumann et al. (1995), Benoît and Dubra (2011) or Kamenica and Gentzkow
(2011).

9That is, if there exists an equilibrium E = (σ, ρ, β) such that p = (margMPE) ◦ β−1 and s =
uS (margAPE).
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commitment protocol if it satisfies the first two of the three equilibrium conditions
above; and (p, s) is a commitment outcome if it corresponds to some commitment
protocol. In other words, commitment outcomes do not require S’s behavior to be
incentive-compatible.

Lemma 1 shows how to describe the game’s equilibrium outcomes using the belief-
based approach. To state the lemma, let V (µ) be S’s possible continuation values
from R having µ as his posterior,10

V : ∆Θ⇒ R

µ 7→ co uS

(
arg max

a∈A
uR(a, µ)

)
.

Notice that V is a Kakutani correspondence.11 Define the value function, v := maxV :

∆Θ→ R, an upper semicontinuous function.

Lemma 1. The outcome (p, s) is an equilibrium outcome if and only if:

1. p ∈ I(µ0), i.e.,
´

∆Θ
µ dp (µ) = µ0; and

2. s ∈
⋂
µ∈supp(p) V (µ).

The above conditions reflect the requirements of perfect Bayesian equilibrium.
The first condition comes from the equivalence between Bayesian updating and p

being an information policy. The second condition combines both players’ incentive-
compatibility constraints. R’s incentive-compatibility constraint implies that V (µ)

must contain S’s continuation value from any message that leaves R at posterior belief
µ. S’s incentive-compatibility requires S’s continuation value to be the same from all
posteriors in p’s support, which implies that her ex-post value is equal to her ex-ante
value. Notice that this condition requires the entire correspondence V and cannot be
expressed in terms of v alone. By contrast, in the literature on optimal information
with commitment (e.g. Kamenica and Gentzkow (2011)), it is without loss to assume
that R breaks indifferences in S’s favor.

If Lemma 1 characterizes equilibrium outcomes, Theorem 1 below characterizes
S’s equilibrium payoffs. This characterization shows that one can relax S’s incentive
constraint by focusing on the least persuasive message in any given information policy.

10In this paper, “co” refers to the convex hull, and “co” refers to the closed convex hull.
11That is, a nonempty-, compact-, and convex-valued, upper hemicontinuous correspondence.
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For concreteness, let p be an information policy, and take s to be some possible S
payoff. Say that policy p secures s if p {v ≥ s} = 1; and that s is securable if
there exists an information policy that secures s—i.e., if µ0 ∈ co {µ : v(µ) ≥ s}. The
following theorem shows that securability characterizes S’s equilibrium values.

Theorem 1. Suppose that s ≥ v(µ0).12 Then, there exists an equilibrium inducing
sender payoff s if and only if s is securable.

The key observation behind Theorem 1 is that one can transform any policy p that
secures s into an equilibrium policy by degrading information. Specifically, whenever
s is strictly below V (µ), one can find a posterior µ′ between µ0 and µ such that s is
in V

(
µ
′). This is possible because (1) s is between S’s no-information value and her

highest µ payoff; and (2) V is a Kakutani correspondence, admitting a form of the
intermediate value theorem. This transformation, therefore, replaces a potentially
incentive-incompatible posterior µ with the incentive-compatible µ′ . Since µ′ is in the
line segment between µ0 and µ, this results in a weakly less informative signal.

3 Effective Communication

This section asks two questions. First, when is communication via cheap talk possible
under transparent motives? And second, when can S benefit from such communica-
tion? Formally, each of these questions corresponds to the existence of a different
kind of equilibrium: the first corresponds to an informative equilibrium, the second
corresponds to a strictly persuasive one. An equilibrium E is informative if R’s
beliefs change on path, i.e., the belief distribution is not equal to δµ0 . For ε > 0, an
equilibrium is ε-persuasive if S’s payoffs are at least ε higher than in any uninfor-
mative equilibrium. Proposition 1 below characterizes the existence of both kinds of
equilibrium.

Proposition 1 traces failures in strictly persuasive and informative equilibria,
respectively, to two simple examples. For persuasion, the relevant example is a
model with two actions over which S has a strict preference: say A = {0, 1} and
uS (1) > uS (0). R’s incentives in such a model are captured by the function UR (θ) =

12Given our focus on S’s benefits from cheap talk, we state the theorem for high S values. For
s ≤ min V (µ0), one replaces the requirement that s is securable with the existence of some p ∈ I (µ0)
such that p {min V ≤ s} = 1.
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uR (1, θ)− uR (0, θ), representing R’s payoff difference between his two actions, given
θ. Note that, in the two-action model, S is better off inducing a belief µ over the
prior only if R views action 1 more favorably under µ than under the prior. Given
this condition, p can be part of an ε-persuasive equilibrium only if it is supported on
the set {UR > UR (µ0)}. But this is impossible, since the hyperplane {UR = UR(µ0)}
separates this set from µ0 by construction. Therefore, persuasion is impossible.

To rule out informative communication, one needs an even more specialized ex-
ample: two actions, two states, and R indifferent between his two actions at the
prior.13 Since there are only two states, any non-degenerate information policy must
sometimes increase and sometimes decrease UR’s value. However, R’s indifference at
the prior means that S strictly prefers to increase UR’s value—i.e., condition 2 below
must hold—leaving no information as the unique equilibrium information policy.

In what follows, let UR be the set of all nonconstant continuous functions from Θ

to R.

Proposition 1. Fix ε > 0. There is no ε-persuasive equilibrium if and only if there
exists UR ∈ UR such that UR(µ0) ≤ 0 and, for all µ ∈ ∆Θ,14

UR (µ) ≤ UR (µ0) =⇒ v (µ) < v (µ0) + ε. (1)

There is no informative equilibrium if and only if |Θ| = 2 and there exists UR ∈ UR
such that UR(µ0) = 0 and, for all µ ∈ ∆Θ,

UR (µ) < UR (µ0) < UR (µ′) =⇒ V (µ)� V (µ′) . (2)

To see why condition 1 is necessary, suppose no ε-persuasive equilibrium exists for
some ε > 0. By Theorem 1, this is equivalent to µ0 being outside co {µ : v(µ) ≥ v (µ0) + ε}.
Condition 1 then follows from a separating hyperplane theorem.

To prove necessity of condition 2, we begin by adapting an ingenious argument
of Chakraborty and Harbaugh (2010) to obtain an informative equilibrium whenever
there are three or more states.15 Chakraborty and Harbaugh (2010) study the spe-

13Note that an informative equilibria need not be influential. In other words, R’s behavior may
be independent of S’s message.

14Recall our convention from footnote 4: here, UR(µ) :=
´

Θ
UR dµ.

15To be precise, Chakraborty and Harbaugh (2010) give conditions for existence of an influential
equilibrium, which is a weaker notion than persuasive equilibrium and, in their setting, stronger
than informative equilibrium.
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cialization of our model in which: both state and action spaces are the same convex,
multidimensional Euclidean set; the prior admits a density; and R’s optimal action is
his expectation of the state. They show that, in their setting, S can credibly convey
information to R by trading off issues.

Chakraborty and Harbaugh’s (2010) proof applies a fixed-point argument, relying
on two important features of their setting: (1) the state is a multidimensional real
vector; and (2) S’s payoff is a single-valued continuous function of R’s beliefs. The
belief-based approach allows us to mirror the structure of the first feature in any
setting with three or more states. For the second feature, we show that a weaker
condition that applies in the general case—S’s possible values form a Kakutani cor-
respondence of R’s beliefs—lets one apply similar fixed-point reasoning. Therefore,
we are left with the two-state case, in which we show that condition 2 must be sat-
isfied. Indeed, whenever the condition is violated, one can construct an informative
equilibrium by finding two payoff-equivalent messages for S, each of which increases
the probability of a different state. Necessity follows.

4 The Value of Commitment

The current section examines the value of commitment in persuasion. Let a most
persuasive equilibrium be an ex-ante S-preferred equilibrium, and take a most
persuasive commitment outcome to be an ex-ante S-preferred commitment out-
come. In this section, we characterize S’s value from a most persuasive equilibrium
and compare it with her value from a most persuasive commitment outcome.

We begin with Theorem 2, which geometrically characterizes S’s value from a
most persuasive equilibrium. Take v̄ : ∆Θ → R and v̂ : ∆Θ → R to denote the
quasiconcave envelope and concave envelope of v, respectively. That is, v̄ (resp.
v̂) is the pointwise lowest quasiconcave (concave) and upper semicontinuous function
that majorizes v.16 Since concavity implies quasiconcavity, the quasiconcave envelope
lies (weakly) below the concave envelope. As described in Kamenica and Gentzkow
(2011), v̂ gives S’s payoff from a most persuasive commitment outcome. Theorem 2
below shows that, under cheap talk, S’s optimal value reduces to v̄.

16In the appendix, we show that v̄ is well-defined in Lemma 6. In the case that Θ is finite, the
qualifier “upper semicontinuous” can be omitted from the definition without change.
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Theorem 2. A most persuasive equilibrium exists, providing value v̄(µ0) to the
sender.

Theorem 2 provides a geometric comparison between persuasion’s value under
cheap talk and under commitment. Figure 2 below graphs v, v̄ and v̂ as a function of
µ for the simple think tank example from the introduction. Since the state is binary,
we can identify each posterior µ with the probability that it assigns to θ being 2.
All figures have the think tank’s value correspondence, V , in light gray. The dashed
black line represents v in the left figure, v’s quasiconcave envelope in the middle figure,
and v’s concave envelope in the right figure. These correspond to the highest value
that S can obtain from uninformative communication, cheap talk, and commitment,
respectively.

1/4 3/4 1

1

2

µ

(a) No information: v

1/4 3/4 1

1

2

µ

(b) Cheap talk: v̄

1/4 3/4 1

1

2

µ

(c) Commitment: v̂

Figure 2: The simple think tank example

As Figure 2 illustrates, the theorem allows us to compare the value of cheap talk
persuasion to two natural benchmarks: uninformative communication and full com-
mitment. Say that cheap talk is costly if no equilibrium gives S a most persuasive
commitment outcome, and that cheap talk is valuable if a most persuasive equilib-
rium is strictly persuasive.17 Then, cheap talk is costly if and only if v̂ (µ0) > v̄ (µ0)

and is valuable if and only if v̄ (µ0) > v (µ0).
Combining Theorem 2 with Theorem 1 gives the following convenient formula for

v̄:

Corollary 1. S’s highest equilibrium value is v̄ (·) = max
p∈I(·)

inf v (supp p).

17If, rather than choosing what to say to the receiver, S were choosing an experiment, then the
appropriate limited commitment model would not be one of cheap talk. Rather, it would be an
informed principal problem, as in Perez-Richet (2014).
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The above formula gives an alternative perspective on the value of commitment.
Specifically, given a most persuasive equilibrium policy p̄ and a most persuasive
commitment outcome p̂, the value of commitment, (v̂ − v̄)(µ0), can be expressed
as
´

∆Θ
v dp̂− inf v (supp(p̄)). This implies that

ˆ
∆Θ

v dp̄− inf v (supp p̄) ≤ (v̂ − v̄)(µ0) ≤
ˆ

∆Θ

v dp̂− inf v (supp p̂) . (3)

Notice that each of the above bounds on commitment’s value can be derived by solving
only one of the cheap talk and commitment models. With only a most persuasive
equilibrium (resp. commitment) information policy in hand, one can deduce a lower
(upper) bound on commitment’s value.

5 Mixed Messages

What kind of messages does S send to R in equilibrium? Kamenica and Gentzkow
(2011) show that any commitment payoff for S can be generated by a commitment
protocol in which S makes a pure action recommendation to R, and R always complies.
The following theorem shows that a similar result holds with cheap talk, with one
important caveat: R must be allowed to mix. To state the theorem, for any S strategy
σ, defineMσ as the set of messages in σ’s support.18

Theorem 3. Fix some S payoff s. Then, the following are equivalent:

1. s is generated by an equilibrium.

2. s is generated by an equilibrium withMσ ⊆ ∆A and ρ (α) = α ∀α ∈Mσ.

3. s is generated by an equilibrium withMσ ⊆ A and ρ (a|a) > 0 ∀a ∈Mσ.

The theorem suggests two ways in which one can implement a payoff of s using
mixed action recommendations. The first way has S giving R a mixed action rec-
ommendation that R always follows. The second way has S giving R a pure action
recommendation that R sometimes follows. Both ways can result in R mixing.

Proving that 1 implies 2 follows an analogous line to similar results in mechanism
design (Myerson (1979)), mediated games (Myerson (1986)), persuasion with com-
mitment (Kamenica and Gentzkow (2011)), and other information design settings

18i.e., letMσ = ∪θ∈Θsuppσ (·|θ).
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(Bergemann and Morris (2016)). One can take any equilibrium and pool all messages
leading to the same mixed action without changing R’s or S’s incentives. However,
unlike the aforementioned similar results, S’s incentives do change if one tries to use
the induced distribution over pure action recommendations to replace a mixed ac-
tion. In particular, if a mixed action includes two actions that give S two different
payoffs, recommending the low-payoff action will never be incentive-compatible. As
such, some equilibrium payoffs may be impossible to implement using pure action
recommendations that are always followed.19

To prove that 1 implies 3, we rely on the construction underlying Theorem 1. Start
with a minimally informative information policy that secures s.20 The transformation
underlying Theorem 1 implies that there is a weakly less informative policy, p′ , such
that

(
p
′
, s
)
is an equilibrium outcome. Since p is minimally informative, it must be

that p is equal to p′ . Thus, it is sufficient to show that one can implement p as in
part 3. Let E be the equilibrium constructed for part 2, and take a (µ) to be some
S-preferred action among all those that R plays in E at belief µ. By minimality of
p, a (·) must be p-essentially one-to-one, as pooling any posteriors that induce the
same a (·) value would yield an even less informative policy that secures s. Thus, a
takes distinct beliefs to distinct (on-path) actions. One can then conclude the proof
by having S recommend a(µ) and R respond to a(µ) as he would have responded to
µ under E .

The equivalence between 1 and 3 echoes an important result of Bester and Strausz
(2001), who study a mechanism design setting with one agent, finitely many types,
and partial commitment by the principal. Applying a graph-theoretic argument, they
show that one can restrict attention to direct mechanisms in which the agent reports
truthfully with positive probability. While the proof techniques are quite different, a
common lesson emerges. Agent mixing helps circumvent limited commitment by the
principal: in Bester and Strausz’s (2001) setting by limiting the principal’s informa-
tion, and in ours by limiting her control.

The necessity of mixing by R can have payoff consequences for S. To see why,
consider the argument in the above paragraph, and suppose that S could commit.
Then, one could increase S’s payoffs by replacing any mixed action recommendation

19This issue would be sidestepped if the players had access to a disinterested mediator, as in Lugo
(2016), where one can apply Myerson’s (1986) revelation principle.

20Here, we use Blackwell’s information ordering. See Subsection 8.3 for a formal definition.
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with S’s most preferred action in the mixture’s support. If doing this is impossible,
then S’s incentive constraint must be binding, which means that S must be losing
value from limited commitment. We formalize this result in Proposition 2 below.

Proposition 2. Suppose that (σ, ρ, β) is a most persuasive equilibrium, and that
(σ, ρ̃, β) is not a most persuasive equilibrium for any receiver strategy ρ̃ without mix-
ing. Then cheap talk is costly, i.e., v̂ (µ0) > v̄ (µ0).

At this stage, the reader may wonder whether the proposition’s hypothesis can
be replaced by a hypothesis on primitives, rather than on a particular equilibrium.
That is, are there cases in which we can directly show that optimal cheap talk per-
suasion requires R to mix? Consider the simple think tank example presented in the
introduction. In this example, the lawmaker can take one of three actions, each of
which leads to a different payoff for the think tank. In other words, the think tank’s
payoffs are a one-to-one function of the investor’s actions. This property turns out
to be sufficient for cheap talk persuasion to require mixing. To see why, consider an
equilibrium in which R never mixes. As S is never indifferent between distinct actions,
R must be choosing the same action after every message. These messages can then
be pooled: R would rationally choose the same action at the prior. Therefore, any
strictly persuasive equilibrium entails some mixing by R. Since such mixing entails a
value loss (Proposition 2), we obtain the corollary below.

Corollary 2. Suppose that uS is one-to-one. Then, one of the following holds:

1. Persuasion is impossible: v̂ (µ0) = v̄ (µ0) = v (µ0).

2. Cheap talk is costly: v̂ (µ0) > v̄ (µ0).

There are two distinct sources of value loss to a sender who lacks commitment.
Mixing is a specific instance of one: R breaks indifference against S’s interests to
provide S with appropriate incentives. The other is a change to the information
revealed in equilibrium. Let (p̄, s) be a most persuasive equilibrium outcome, and p̂
a most persuasive commitment policy. The value of commitment can be decomposed
as:

v̂(µ0)− v̄(µ0) =

ˆ
∆Θ

v d(p̂− p̄)︸ ︷︷ ︸
information distortion

+

ˆ
∆Θ

(v − s) dp̄︸ ︷︷ ︸
incentive cost

. (4)
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The first expression is the difference between S’s payoff when committing to p̂ and
when committing to p̄. This loss comes from S providing R with less persuasive
information. The second expression is the difference (posterior by posterior) between
S’s highest possible payoff given R’s belief and S’s equilibrium payoff from the same.
This represents the loss due to costly incentive provision. Together, these comprise
the loss caused by S’s lack of commitment power.

6 Persuasive Information

Unlike persuasion with full commitment, cheap talk limits the parties to using only
incentive-compatible communication. While incentives clearly constrain what S can
say, they do not always constrain what S wants to say. To illustrate, we consider
the policy identified in the simple example from the introduction. This information
policy is both a most persuasive cheap talk policy and an optimal policy for S under
commitment. A property of this information policy is that it induces two consecutive
payoffs for S. More precisely, say that payoffs s > s

′ are consecutive if uS (A) ∩[
s
′
, s
]

=
{
s, s

′} and that p ∈ I(µ0) is supported on two consecutive payoffs
if there are two consecutive s and s

′ such that p {v = s or s′} = 1. Proposition 3
below shows that a most persuasive commitment policy supported on two consecutive
payoffs must also be a most persuasive cheap talk policy.

Proposition 3. Let p̂ be a most persuasive commitment information policy. If p̂ is
supported on two consecutive payoffs, then p̂ is a most persuasive equilibrium infor-
mation policy.

To understand Proposition 3, consider a most persuasive commitment policy, p̂,
which is supported on two consecutive payoffs, s > s

′ . The proof involves two steps.
The first step is to show that (p̂, s′) is an equilibrium outcome. Since p̂ is optimal,
whenever p̂ induces R to take an s action, R must also be willing to take another action
that gives S a lower payoff. Otherwise, one could increase the weight that p̂ places on
s by replacing s posteriors at which R is not indifferent with other posteriors that are
closer to the prior. But R’s indifference then means that R can replace the s action
with a mixture that yields S a payoff of s′ , thereby making p̂ incentive-compatible for
S.

The second step is to show that p̂ must be a most persuasive equilibrium policy.
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The key observation here is that, s′ and s being consecutive, any policy that secures
S a payoff strictly greater than s′ would secure s, which cannot happen given the
optimality of p̂. Theorem 1 then tells us that p̂ is a most persuasive equilibrium
policy.

The value of commitment is simplified when an optimal commitment policy, p̂, is
also a most persuasive equilibrium policy. Let (p̂, s) be a most persuasive equilibrium
outcome. Then, (3) and (4) yield the following formula for the value of commitment:

v̂(µ0)− v̄(µ0) =

ˆ
∆Θ

v dp̂− inf v (supp p̂) =

ˆ
∆Θ

(v − s) dp̂.

Conceptually, each equality corresponds to a different perspective on commitment’s
value. The first equality comes from S’s most persuasive equilibrium payoff being
the highest payoff that p̂ can secure. The second equality comes from the fact that
cheap talk does not distort information. As such, (4) tells us that commitment’s sole
benefit is the ability to avoid costly incentive provision.

7 Think Tank Example

Consider now a richer version of the introduction’s example. A think tank (S) advises
a lawmaker (R) on whether to pass one of n ∈ N reforms or to pass none. A given
reform i ∈ {1, . . . , n} has uncertain benefit θi ∈ [0, 1] to the lawmaker. From the
lawmaker’s perspective, reforms are ex-ante identical: their benefits are distributed
according to an exchangeable prior µ0 over [0, 1]n, and each entails an implementation
cost of c. The think tank has transparent motives: its payoff is uS(i) from reform
i and uS(0) = 0 from the status quo, where uS : {0, . . . , n} → R is increasing.21

We now use the results of previous sections to characterize the think tank’s most
persuasive equilibrium value and construct a most persuasive equilibrium. In this
section, we proceed informally; see the appendix for further details.

Suppose that p ∈ I(µ0) secures uS (k) for some k ∈ {1, . . . , n}. Then it must be
that for any µ in p’s support, there is some i ∈ {k, . . . , n} such that i ∈ arg maxa∈A uR(a, µ).

21Che et al. (2013) study a similar application with a two important differences. First, they require
the prior to be non-exchangable (see equation (R1) in their Definition 1). Second, they assume that
S has state-dependent preferences that agree with R’s on all but the default option.
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In particular,

c ≤ max
i∈{k,...,n}

ˆ
Θ

θi dµ(θ) ≤
ˆ

Θ

max
i∈{k,...,n}

θi dµ(θ) =

ˆ
Θ

θ
(1)
k,n dµ(θ),

where θ(1)
k,n is the order statistic θ(1)

k,n = maxi∈{k,...,n} θi. Integrating over p then tells
us that

´
Θ
θ

(1)
k,n dµ0(θ) ≥ c, so that the lawmaker is willing to adopt reform i ∈

{k, . . . , n} upon learning that i is the best project among {k, . . . , n}.22 Therefore,
the information policy pk ∈ I(µ0), which reveals the identity of the lawmaker’s most
preferred reform among {k, . . . , n}, secures uS(k), as well.

The above demonstrates that, to secure a high value, the think tank could restrict
attention to a small class of information policies. Picking a small set {k, . . . , n} of
reforms that it most prefers, the think tank could reveal the lawmaker’s best choice
among {k, . . . , n}. This secures uS(k) if and only if this information is precise enough
to offset the cost of a reform. From here, Theorem 1 delivers a full characterization
of the most persuasive equilibrium payoff. Let

K :=

{
k ∈ {1, . . . , n} :

ˆ
Θ

θ
(1)
k,n dµ0(θ) ≥ c

}
.

If K is empty, then no equilibrium is strictly persuasive: the lawmaker never imple-
ments a reform in any equilibrium. Otherwise, letting k∗ := maxK, the think tank’s
best equilibrium value is uS(k∗), as secured by pk∗ . For instance, if θ1, . . . , θn are i.i.d.
uniformly distributed on [0, 1],

k∗ =

⌊
n− c

1− c

⌋
.

The policy pk∗ helps us find the value of persuasion via cheap talk, but it will
typically not be an equilibrium policy. The constructive proof underlying Theorem
1, however, delivers an equilibrium policy that generates a payoff uS(k∗) to the think
tank. In this equilibrium, the think tank either accurately reports the lawmaker’s
best reform from {k∗, . . . , n} or (with probability ε) suggests a uniformly random
reform from {k∗, . . . , n}. Degrading information in this way makes the lawmaker
indifferent between the suggested proposal and no reform. In equilibrium, the law-
maker implements the suggested reform i with probability uS(k∗)

uS(i)
and implements no

22See Claim 1 in the appendix.
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reform with complementary probability. Thus, the think tank enjoys some credibility
endogenously, as it faces a quality-quantity tradeoff: between the value of having its
advice followed and the probability of having its advice followed.

What is the value of commitment in this example? By Proposition 2, and its
Corollary 2, we can immediately deduce, without needing to solve the commitment
case, that either (1) cheap talk is costly, or (2) providing no information is optimal
under both commitment and cheap talk.23 Hence, except for degenerate cases, cheap
talk is always costly in this application. One can bound this cost using the bound in
equation (3). Specifically, the value of commitment is at least

1
n−k∗+1

n∑
i=k∗

uS (i)− uS (k∗) ,

which simplifies to 1
2

(n− k∗) in the special case of uS (a) = a.

8 Discussion and Related Literature

8.1 State-independent Preferences

While S’s objective depends only on R’s action in our model, one can write more gen-
eral models of transparent motives. Fix a continuous S objective, ũS : A × Θ → R.
We say that ũS exhibits cardinally (ordinally) state-independent preferences
if, for any θ, θ′ ∈ Θ and α, α′ ∈ ∆A (a, a′ ∈ A): ũS(α, θ) ≥ ũS(α′, θ) implies
ũS(α, θ′) ≥ ũS(α′, θ′) (ũS(a, θ) ≥ ũS(a′, θ) implies ũS(a, θ′) ≥ ũS(a′, θ′)). Our anal-
ysis often applies even under these more permissive notions of state-independence.

Proposition 4. Fix the action space, state space, and receiver preferences. Then
the game with sender objective ũS and the game with sender objective uS := ũS(·, µ0)

have the same equilibria, and generate the same equilibrium outcomes, if either of the
following conditions holds:

1. ũS exhibits cardinally state-independent preferences.
23Case (2) holds in either of two circumstances: k∗ = n (so that the think tank’s preferred

reform is incentive-compatible under no information) or the status quo is strictly dominant for the
lawmaker. Otherwise, using exchangeability, one can show that full information strictly outperforms
no information. Case (1) then obtains.
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2. ũS exhibits ordinally state-independent preferences, and R has a unique best
response to every posterior belief.

The proof’s intuition is as follows. In each part, we assume that S’s implied
preference relation over all action distributions that can be induced at some belief
is state-independent. Hence, the incentive constraints implied by uS and ũS for S
are the same for all states. This yields two consequences. First, the equilibria under
both utility functions must be the same. Second, S must be indifferent across all
equilibrium messages regardless of the state. As such, any correlation between R’s
mixed action and S’s message must be payoff-irrelevant for S, implying identical ex-
ante S payoff under both ũS and uS.

A remark is in order regarding the second part of Proposition 4. While many of our
results generalize to a model in which R faces preference shocks that are independent
of θ,24 the second part of the above proposition does not. The reason is that such
a generalization may still require S to compare payoffs from non-degenerate action
distributions despite R having a unique best response.

8.2 Fully Revealing Equilibrium

When can S tell R everything she knows? This question has been asked in a vari-
ety of settings. For example, Baliga and Morris (2002) and Hagenbach et al. (2014)
study when players can communicate what they know before a strategic interaction.
Mathis (2008) provides conditions under which a sender can reveal her information
when information is certifiable. Renault et al. (2013), Golosov et al. (2014), and Mar-
garia and Smolin (2017) study, among other things, the possibility of full information
revelation when the interaction between S and R is dynamic.

An equilibrium (σ, ρ, β) is fully revealing if, for every m ∈ M , there is some
θ ∈ Θ such that β(θ|m) = 1. Lemma 1 then implies that a fully revealing equilibrium
exists if and only if

sup
θ∈Θ

min V (δθ) ≤ inf
θ∈Θ

max V (δθ).

The proof is straightforward. Note, first, that, if the above inequality does not hold,
24In such a model, there is a compact metrizable space Z of payoff parameters such that

the joint distribution of (θ, z) ∈ Θ × Z is µ0 ⊗ ζ0 for some ζ0 ∈ ∆Z. R has payoffs given
by uR : A × Z × Θ → R. In this extended model, V : ∆Θ ⇒ R should take the form
V (µ) =

´
Z

co uS (arg maxa∈A uR(a, z, µ)) dζ0(z), a Kakutani correspondence.
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there must be two states such that S necessarily strictly prefers R to be completely
convinced of one rather than the other. Revealing the less beneficial state to R cannot
then be incentive-compatible. Suppose, now, that the above inequality holds. Since
V is a Kakutani correspondence, there is a payoff that S can obtain after revealing
the state to R, regardless of which state it is. The existence of a fully revealing
equilibrium then follows from Lemma 1.

8.3 Receiver Payoffs and Equilibrium Efficiency

While our focus is on credible persuasion, we can also use the belief-based approach to
examine R’s payoffs. There are two ways to do so. The first is to evaluate R’s payoffs
from any (p, s) directly via

´
∆Θ

maxa∈A uR (a, µ) dp (µ). The second is through p’s
informative content. More precisely, say that p is more informative than p

′ if and
only if p is a mean-preserving spread of p′ .25 Then R is always weakly better off under
a more informative policy (Blackwell (1953)).

Knowing that equilibrium outcomes also include information about R’s payoffs
allows one to examine the inefficiencies that arise under cheap talk. One inefficiency
that plagues cheap talk is coordination failure. A case in point is Crawford and
Sobel’s (1982) leading example, which has multiple equilibria, all of which are ex-
ante Pareto ranked. More precisely, given any two distinct equilibria, there is one
that simultaneously has S sending more messages26 and is ex-ante better for both
players. The following proposition says that similar coordination failures also occur
in our model.

Proposition 5. There are equilibrium outcomes {(p∗s, s)}v(µ0)≤s≤v̄(µ0) such that, for
all s, s′ ∈ [v(µ0), v̄(µ0)] with s > s′:

1.
(
p∗
s′
, s
′) is Pareto inferior to (ps, s).

2. p∗
s′
is less informative than ps.

3.
∣∣supp p∗

s′

∣∣ ≤ |supp p∗s|.
25Say that p is a mean-preserving spread of p

′
if there exists a measurable map G : ∆Θ→ ∆∆Θ

such that: (1) G (µ) ∈ I (µ) for all µ; and (2) p (D) =
´

∆Θ
G (D|·) dp

′
for all Borel D ⊆ ∆Θ.

26More precisely, it has S inducing more beliefs with positive probability. The number of messages
sent in equilibrium is indeterminate given the information policy.
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Notice that this result holds for an arbitrary specification of cheap talk with state-
independent S preferences.

The proposition’s proof relies on the transformation behind Theorem 1. To see
this, let (p, s) be an equilibrium outcome for some s strictly above v (µ0). Then, p
secures s, which implies that p also secures any value between s and v (µ0). Letting
s
′ be such a value, we can now apply the transformation of Theorem 1 on p to obtain
a p′ such that

(
p
′
, s
′) is also an equilibrium outcome. Since p′ is obtained by moving

every posterior belief for p to a new belief closer to the prior, it must be that p′ is both
less informative than p and has smaller support. Finally, since p′ is less informative
than p, R is weakly worse off with p′ than with p, so that

(
p
′
, s
′) is Pareto inferior to

(p, s).

8.4 Cheap Talk and Money Burning

In Theorem 1, we show that degrading information can turn a policy that secures
value s into an equilibrium generating the same value. The payoff reduction is similar
to assigning a cost to each message—i.e., money burning. This is more than simply
an analogy. Suppose that S could commit to having some money burned in response
to a given message. S would then be solving the following problem:27

max
p ∈ I (µ0)

c : ∆Θ→ R meas.

ˆ
∆Θ

(v − c)dp

s.t. v(µ)− c(µ) ≥ v(µ′)− c(µ′), ∀µ, µ′ ∈ supp (p) (5)

c(µ) ≥ 0, ∀µ ∈ supp (p). (6)

The above program relaxes the program that defines S’s most persuasive equilibrium
value. Still, Theorem 1 implies that the two programs yield the same value. To
see why, fix an information policy p and consider the problem of finding the best
c : ∆Θ→ R+ for S, subject to c making p incentive-compatible. Note that making p
incentive-compatible fixes the difference c (µ)−c

(
µ
′) for all µ and µ′ in p’s support.28

27Costs could be associated with messages rather than with their induced posterior beliefs with
no essential change.

28Given money burning, it is without loss for S values to have R break any indifferences in S’s
favor.
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As such, c is completely pinned down over p’s support by its minimal value. But this
minimal value must then be zero for the optimal such c, since S always prefers lower
costs to higher ones. As such, the best c that makes p incentive-compatible gives S a
net payoff of infµ∈supp (p) v (µ). Maximizing over p gives the value from Theorem 1.

As the previous paragraph shows, the ability to burn money would not benefit
S. Money burning can, however, benefit R. In particular, it is always possible in our
model to achieve full information revelation with money burning by taking:

c (δθ) = v (δθ)− inf
θ∈Θ

v (δθ)

to be the cost of revealing that the state is θ. Under these costs, it is clearly incentive-
compatible for S to reveal the state. Since R cannot do better than under full infor-
mation, money burning allows R to obtain his first-best. Austen-Smith and Banks
(2000) and Kartik (2007) discuss how money burning expands the set of equilibrium
outcomes in the model of Crawford and Sobel (1982).29 As in our model, they show
that full information revelation is an equilibrium outcome when money burning is
allowed. Kartik (2007) also asks what happens if the value that S can burn is capped
from above. He shows that, as the cap converges to zero, the set of achievable out-
comes converges to what can be achieved via cheap talk. It is straightforward to show
that the same result holds in our model.

One can further describe S’s payoff from a most persuasive commitment outcome
with a similar commitment technology. To do so, one requires that costs are positive
ex-ante rather than ex-post. Formally, this corresponds to replacing (6) with the
constraint that the expected cost is positive—i.e.,

´
∆Θ

c (µ) dp (µ) ≥ 0. This would
be a reasonable assumption if S could place verifiable, actuarially fair bets with a
third party. Note, though, that this ex-ante constraint implies that S’s payoff from
any information policy p, minus transfers, is bounded from above by her expected
fundamental payoff,

´
∆Θ

v dp. Therefore, S’s payoff from having such a commitment
technology is bounded from above by her most persuasive commitment payoff, v̂ (µ0).
But clearly S can achieve this bound by taking a most persuasive commitment policy p
and setting c (µ) = v (µ)−

´
∆Θ

v dp. Thus, from S’s standpoint, the difference between
the two assumptions—that costs are positive ex-ante versus ex-post—is exactly equal

29We allow S to commit for convenience, while Austen-Smith and Banks (2000) and Kartik (2007)
focus on voluntary money burning. Making money burning voluntary in our model does not alter
the equivalence result.
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to the value of commitment.

9 Conclusion

In this paper, we study cheap talk under the assumption that the sender has transpar-
ent motives. Adopting a belief-based approach, we derive a complete characterization
of feasible equilibrium outcomes. One consequence is that any sender value that can
be secured ex-post is consistent with equilibrium play. Our approach further allows
us to trace persuasion and communication failures to a limited class of examples,
to describe the sender-preferred equilibrium value geometrically, and to contrast this
value with that of persuasion with commitment. In particular, the cost of communi-
cating via cheap talk alone can be decomposed into two: an information distortion
cost and a truthtelling incentive cost. Finally, we fully solve a rich class of examples,
and speak to the broader literature on cheap talk communication.
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A Appendix

A.1 Technical Preliminaries

First, we record a useful measurable selection result.

Lemma 2. If D ⊆ ∆Θ is Borel and f : D → R is any measurable selector of V |D,
then there exists a measurable function αf : D → ∆A such that, for all µ ∈ D, the
measure α̂ = αf (·|µ) satisfies:
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1. uS(α̂) = f(µ);

2. α̂ ∈ arg maxα∈∆A uR(α, µ);

3. |supp(α̂)| ≤ 2.

Proof. Below, we use several results from Aliprantis and Border (2006) concerning
measurability of correspondences. Define

A∗ : D ⇒ A

µ 7→ arg max
a∈A

uR(a, µ),

and define A+ := A∗∩ [u−1
S ◦maxV ] and A− := A∗∩ [u−1

S ◦minV ]. As semicontinuous
functions, maxV , minV are both Borel measurable and (viewed as correspondences)
compact-valued. The correspondence u−1

S : uS(A) → A is upper hemicontinuous
and compact-valued. Therefore, by Theorem 18.10, the compositions u−1

S ◦ maxV ,
u−1
S ◦ minV are weakly measurable. Lemma 18.4(3) then tells us that A+, A− are

weakly measurable too, and the Kuratowski & Ryll-Nardzewski selection theorem
(Theorem 18.13) provides measurable selectors a+ ∈ A+, a− ∈ A−. Now, define the
measurable map:

αf : D → ∆A

µ 7→


v(µ)−f(µ)

v(µ)−minV (µ)
δa−(µ) + f(µ)−minV (µ)

v(µ)−minV (µ)
δa+(µ) : f(µ) ∈ V (µ) \ {minV (µ)}

δa−(µ) : minV (µ) = f(µ).

By construction, αf is as desired.

We now prove a variant of the intermediate value theorem which is useful for our
setting. This result is essentially proven in de Clippel (2008), Lemma 2. As the
statement of that lemma is slightly weaker than we need, we provide a proof here for
the sake of completeness.

Lemma 3. If F : [0, 1] ⇒ R is a Kakutani correspondence with minF (0) ≤ 0 ≤
maxF (1), and x̄ = inf {x ∈ [0, 1] : maxF (x) ≥ 0}, then 0 ∈ F (x̄).

Proof. By definition of x̄, there exists some weakly decreasing {x+
n }
∞
n=1 ⊆ [x̄, 1] which

converges to x̄ such that maxF (x+
n ) ≥ 0 for every n ∈ N. Define the sequence
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{x−n }
∞
n=1 ⊆ [0, x̄] to be the constant 0 sequence if x̄ = 0 and to be any strictly

increasing sequence which converges to x̄ otherwise. By definition of x̄ (and, in the
case of x̄ = 0, since minF (0) ≤ 0), it must be that minF (x−n ) ≤ F (x̄) ≤ maxF (x+

n ).
Passing to a subsequence if necessary, we may assume (as a Kakutani corre-

spondence has compact range) that {maxF (x+
n )}∞n=1 converges to some y ∈ R,

which would necessarily be nonnegative. Upper hemicontinuity of F then implies
maxF (x̄) ≥ 0. An analogous argument shows that minF (x̄) ≤ 0. As F is convex-
valued, it follows that 0 ∈ F (x̄).

A.2 Proofs for Section 2

A.2.1 Lemma 1

Proof. First take any equilibrium (σ, ρ, β), and let (p, s) be the induced outcome.
That p ∈ I(µ0) follows directly from the Bayesian property.

Define the interim payoff, ŝ : M → R via ŝ(m) := uS (ρ(m)). S incentive-
compatibility tells us that there exists some M∗ ⊆ M such that

´
Θ
β(M∗|·) dµ0 = 1

and for every m ∈ M∗ and m′ ∈ M , we have ŝ(m) ≥ ŝ(m′). This implies that
ŝ(m) = ŝ(m′) for every m,m′ ∈M∗; that is, there is some ŝ∗ ∈ R such that ŝ|M∗ = ŝ∗.
But then,

s =

ˆ
Θ

ˆ
M∗

uS (ρ(m)) dσ(m|θ) dµ0(θ) =

ˆ
Θ

ˆ
M∗

ŝ∗ dµ0(θ) = ŝ∗,

so that, by receiver incentive-compatibility, s ∈ V (β(·|m)) for everym ∈M∗. By defi-
nition of p, then, s ∈ V (µ) for p-almost every µ ∈ ∆Θ. As V is upper hemicontinuous,
it follows that s ∈

⋂
µ∈supp(p) V (µ).

Now, suppose (p, s) satisfies the three conditions. Define the compact set D :=

supp(p). It is well-known (see Benoît and Dubra (2011) or Kamenica and Gentzkow
(2011)) that p ∈ I(µ0) implies there is some S strategy σ and Bayes-consistent β
that induce distribution p over posterior beliefs.30 Without disrupting the Bayesian
property, we may without loss assume that β(m) ∈ D for all m ∈ M . Now, let
α = αs : D → ∆A be as given by Lemma 2. We can then define the receiver
strategy σ := α ◦ β, which satisfies receiver incentive-compatibility by definition of
α. Finally, by construction,

´
A
uS dρ(·|m) = s for every m ∈ M , so that every

30In particular, there is one with σ(∆Θ|θ) = 1 for all θ ∈ Θ and β(·|µ) = µ for all µ ∈ ∆Θ.
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S strategy is incentive-compatible. Therefore, (σ, ρ, β) is an equilibrium generating
outcome (p, s).

A.2.2 From securability to equilibrium

Below, we prove a lemma which will be the heart of Theorem 1. It constructs an
equilibrium of S value s from an arbitrary information policy securing s. The con-
structed equilibrium policy is less informative than the original policy and requires
fewer messages to implement.

Lemma 4. Suppose p ∈ I(µ0) secures s ≥ v(µ0). Then there exists p∗ ∈ I(µ0) such
that:

1. (p∗, s) is an equilibrium outcome;

2. p∗ is weakly less Blackwell-informative than p, and |supp(p∗)| ≤ |supp(p)|.

Proof. The result is trivial (focusing on S-preferred uninformative equilibrium) for
s = v(µ0), so focus on the case of s > v(µ0). Let p ∈ I(µ0) secure s, andD := supp (p).
Notice that v(µ) ≥ s for every µ ∈ D since v is upper semicontinuous. Define the
measurable function,

λ = λp,s : D → [0, 1]

µ 7→ inf
{
λ̂ ∈ [0, 1] : v

(
(1− λ̂)µ0 + λ̂µ

)
≥ s
}
.

By Lemma 3, it must be that s ∈ V ([1− λ(µ)]µ0 + λ(µ)µ) for every µ ∈ S.
Notice that there is some number ε > 0 such that λ ≥ ε uniformly. If there were

no such ε, then there would be a sequence {µn}n ⊆ D such that λ(µn) converges
to zero. But then, the sequence {([1− λ(µn)]µ0 + λ(µn)µn, s)}n from the graph of
V would converge to (µ0,s). As V is upper hemicontinuous, this would contradict
s > v(µ0). Therefore, such an ε exists, and 1

λ
is a bounded function.

Now, define p∗ = p∗s ∈ ∆∆Θ by letting

p∗(D̂) :=

(ˆ
∆Θ

1
λ
dp
)−1

·
ˆ

∆Θ

1

λ(µ)
1[1−λ(µ)]µ0+λ(µ)µ∈D̂ dp(µ)

for every Borel D̂ ⊆ ∆Θ. Direct computation shows that p∗ ∈ I(µ0). Lemma 1
delivers an equilibrium generating S value s and information policy p∗.
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Lastly, we note that p∗ has the other desired properties. The map µ 7→ [1 −
λ(µ)]µ0 + λ(µ)µ is a surjection from supp(p∗) to supp(p), so that |supp(p∗)| ≤
|supp(p)|. Also by construction, p∗ is weakly less informative than

(
1−
´

∆Θ
λ dp

)
δµ0+(´

∆Θ
λ dp

)
p, which in turn is less informative than p.

A.2.3 Theorem 1

Proof. The “if” direction follows directly from Lemma 1: for any equilibrium out-
come (p, s), information policy p secures payoff s. The “only if” direction is a direct
consequence of Lemma 4.

For convenience, we record an easy consequence of the above theorem.

Corollary 3. The set of sender payoffs s induced by some equilibrium is a compact
interval.

Proof. Let Π∗ be the set of equilibrium S payoffs, Π+ := {s ∈ Π∗ : s ≥ maxV (µ0)},
Π− := {s ∈ Π∗ : s ≤ minV (µ0)}, and Π0 := {s ∈ Π∗ : minV (µ0) ≤ s ≤ maxV (µ0)}.

As V is convex-valued, Π0 = Π∗∩V (µ0). By considering uninformative equilibria,
we see that Π0 = V (µ0) = [minV (µ0),maxV (µ0)].

It follows immediately from Theorem 1 that Π+ is convex. From Theorem 2,
proven below, Π∗ has a maximum value s+. By an identical argument, Π− is convex
and has a minimum value s−.31

Therefore, Π∗ = [s−,minV (µ0)] ∪ [minV (µ0),maxV (µ0)] ∪ [maxV (µ0), s+] =

[s−, s+].

A.3 Proofs for Section 3

In this subsection, we prove Proposition 1. The first part follows from Theorem 1,
given a separation argument. The second part follows from a fixed-point argument.

31Notice that the only property of V used in the proofs—that it is a Kakutani correspondence —
is also true of −V .
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A.3.1 Proposition 1: persuasive equilibrium

Proof. Appealing to Theorem 1 tells us that:

∃ some ε-persuasive equilibrium ⇐⇒ ∃s ≥ v(µ0) + ε which is securable

⇐⇒ v(µ0) + ε is securable

⇐⇒ µ0 ∈ co {v ≥ v(µ0) + ε} .

We must therefore show that µ0 /∈ co {v ≥ v(µ0) + ε} if and only if there exists some
UR ∈ UR as described in the first part of the theorem.

First, suppose that µ0 /∈ co {v ≥ v(µ0) + ε}. Then the strong separating hyper-
plane theorem tells us that there is some continuous linear functional φ : ca(Θ)→ R
such that φ(µ0) < minφ (co {v ≥ v(µ0) + ε}). By the Riesz representation theorem,
there is some UR ∈ UR such that φ(µ) =

´
Θ
UR dµ for all µ ∈ ca(X). Translating, we

may assume UR(µ0) ≤ 0. Clearly, UR then takes the desired form.
Next, suppose that UR is as described in the first part of the theorem. As integra-

tion against UR is continuous, and a continuous function on compact domain attains
a minimum, it follows that U := minUR (co {v ≥ v(µ0) + ε}) exists, and is therefore
strictly greater than UR(µ0). Integration against UR being linear and continuous, it
must be that UR(µ) ≥ U > UR(µ0) for every µ ∈ co {v ≥ v(µ0) + ε}. In particular,
µ0 /∈ co {v ≥ v(µ0) + ε}.

A.3.2 Proposition 1: informative equilibrium

Toward showing that there always exist informative equilibria in the case of |Θ| > 2,
we prove the following fixed-point result, which generalizes the one-dimensional case of
the Borsuk-Ulam theorem to the case of a Kakutani correspondence. The applicability
of such fixed-point reasoning to show the possibility of effective communication is an
important technical insight of Chakraborty and Harbaugh (2010).

Lemma 5. If µ0 =
∑3

i=1 piµi for some µ1, µ2, µ3 ∈ ∆Θ and p1, p2, p3 > 0, then there
exist distinct q, q′ ∈ ∆ {1, 2, 3} and an equilibrium whose generated information policy
is supported on

{∑3
i=1 qiµi,

∑3
i=1 q

′
iµi
}
.

Proof. For small enough ε > 0, we can embed the circle

S =
{

(x, y) ∈ R2 : x2 + y2 = 1
}
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into the space of beliefs via the map

φ : S→ ∆Θ

(x, y) 7→ (p1 + εx)µ1 + (p2 + εy)µ2 + [p3 − ε(x+ y)]µ3.

Next, define the function

f : S→ R

z 7→ maxV (φ(z))−minV (φ(−z)).

Two properties of f are immediate. First, f is upper semicontinuous because V
is upper hemicontinuous. Second, any z ∈ S satisfies f(z) + f(−z) ≥ 0 because
maxV ≥ minV .

We use the above two properties to show that there is some z ∈ S for which
f(z) and f(−z) are both nonnegative. Assume otherwise, for a contradiction. Then
every z ∈ S has the property that one of f(z), f(−z) is strictly negative and (as
f(z)+f(−z) ≥ 0) the other strictly positive; in particular, f is globally nonzero. Since
S is connected, there is some z ∈ S which is a limit point of both f−1((0,∞)) and
f−1((−∞, 0)). But then −z shares this same property. Finally, upper semicontinuity
tells us that both f(z) and f(−z) are nonnegative, a contradiction.

Now, we have z ∈ S with f(z), f(−z) ≥ 0. That is, maxV (φ(z)) ≥ minV (φ(−z))

and maxV (φ(−z)) ≥ minV (φ(z)). Said differently (recall, V is convex-valued),
V (φ(z)) ∩ V (φ(−z)) 6= ∅. Lemma 1 then guarantees existence of an equilibrium
generating information policy 1

2
δφ(z) + 1

2
δφ(−z).

Now, we can prove the second part of Proposition 1

Proof. First, suppose |Θ| > 2. Then, letting E,F ⊆ Θ be sufficiently small disjoint
open neighborhoods around two distinct points in the support of µ0, we may assume
µ0(E), µ0(F ), µ(Θ \ [E ∪ F ]) > 0. Lemma 5 then yields an informative equilibrium.

For the rest of the proof, assume |Θ| = 2. To conserve notation, assume without
loss that Θ = {0, 1}, and identify ∆ {0, 1} with [0, 1].

Suppose now that there is no UR ∈ UR with the property described in the second
part of the theorem. Then (µ, µ′) ∈ [0, µ0)× (µ0, 1] are neither guaranteed to satisfy
V (µ) � V (µ′) nor guaranteed to satisfy V (µ) � V (µ′). Said differently, there
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exist some µ, ν ∈ [0, µ0) and µ̄, ν̄ ∈ (µ0, 1] such that maxV (µ) ≥ minV (µ̄) and
minV (ν) ≤ maxV (ν̄). Define φ : [0, 1] → [0, 1]2 via φ(λ) := (1 − λ)(µ, µ̄) + λ(ν, ν̄),
and define G : [0, 1]⇒ R via G(λ) := V (φ2(λ))− V (φ1(λ)). Notice, G is a Kakutani
correspondence because V is. By assumption, G(0) contains a nonpositive number
and G(1) contains a nonnegative number. By Lemma 3, then, G(λ) 3 0 for some λ ∈
[0, 1]. Therefore, by Lemma 1, there is an equilibrium with support {φ1(λ), φ2(λ)},
which is then informative.

Conversely, suppose UR ∈ UR is as described in the second part of the theorem;
without loss, say UR(0) < UR(1). Any p ∈ I(µ0) \ {δµ0} has some µ ∈ [0, µ0) and
some µ̄ ∈ (µ0, 1] in its support. By hypothesis, UR(µ) < UR(µ0) < UR(µ̄), so that
V (µ) ∩ V (µ̄) = ∅. Lemma 1 then tells us that it cannot be an equilibrium policy.
This completes the proof.

A.4 Proofs for Section 4

A.4.1 The quasiconcave envelope is well-defined

Lemma 6. The function v̄ is well-defined. That is, there exists a pointwise lowest
quasiconcave upper semicontinuous function which majorizes v.

Proof. Let F := {f : ∆Θ→ R : f ≥ v, f is quasiconcave and upper semicontinuous},
and let v̄ be the pointwise infimum of F . By construction, v̄ lies above v and lies
below any f ∈ F . Moreover, any infimum of upper semicontinuous functions is itself
upper semicontinuous, as a union of open sets is open. Thus, all that remains is to
show that v̄ as defined is quasiconcave. Given a function f : ∆Θ→ R,

f is quasiconcave ⇐⇒ {µ ∈ ∆Θ : f(µ) ≥ f(µ̃)} is convex ∀µ̃ ∈ ∆Θ

⇐⇒ {µ ∈ ∆Θ : f(µ) ≥ s} is convex ∀s ∈ f (∆Θ)

⇐⇒ {µ ∈ ∆Θ : f(µ) ≥ s} is convex ∀s ∈ R,

where the last equivalence holds because a union of a chain of convex sets is convex.
Therefore,

v̄ is quasiconcave ⇐⇒ {µ ∈ ∆Θ : v̄(µ) ≥ s} is convex ∀s ∈ R

⇐⇒
⋂
f∈F

{µ ∈ ∆Θ : f(µ) ≥ s} is convex ∀s ∈ R
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The result follows because an intersection of convex sets is convex.

It is worth noting that, in the finite state case (just as in the case with commit-
ment), the qualifier “upper semicontinuous” can be omitted.

Fact 1. If |Θ| < ∞, then v̄ is the pointwise lowest quasiconcave function which
majorizes v.

Proof. Notice that:

v̄(µ) = max

s : p ∈ I(µ), s ∈
⋂

ν∈supp(p)

V (ν)

 (by Theorem 2 and Lemma 1)

= max
{
s : µ ∈ coV −1(s)

}
(by Phelps (2001) Proposition 1.2)

= max
{
s : µ ∈ coV −1(s)

}
(as |Θ| <∞)

= max
{
s : µ ∈ coV −1(s)

}
(as V is upper hemicontinuous).

Suppose ṽ : ∆Θ→ R is a quasiconcave function which majorizes v, and take any µ ∈
∆Θ. By the above, there exists some finite-support p ∈ I(µ) such that v̄(µ) ∈ V (ν) for
every ν ∈ supp(p). Moreover, there exists no ε > 0 such that v̄(µ)+ε ∈ V (ν) for every
ν ∈ supp(p). As V is a Kakutani correspondence, it must be that maxV (ν∗) = v̄(µ)

for some ν∗ ∈ supp(p). In particular, v(ν∗) = v̄(µ) ≤ v|supp(p). Therefore:

ṽ(µ) = ṽ

 ∑
ν∈supp(p)

p(ν)ν

 ≥ min
ν∈supp(p)

ṽ(ν) ≥ min
ν∈supp(p)

v(ν) = v̄(µ).

So, in the finite state world, v̄ is indeed the pointwise lowest quasiconcave function
above v.

A.4.2 Theorem 2

Proof. Let V ∗ : ∆Θ ⇒ R map any given prior to the associated set of equilibrium
values for S, and let v∗ := supV ∗. Our goal is to show that this supremum is attained
and that v∗ = v̄.

First notice that v ∈ V ∗, witnessed by an uninformative equilibrium. Therefore,
V ∗ is a nonempty-valued correspondence, and v∗ ≥ v.
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Now, consider any sequence (µn, sn) n from the graph of V ∗ which converges to
some (µ, s) ∈ (∆Θ)× R. For each n, Theorem 1 delivers some pn ∈ I(µn) such that
v(ν) ≥ sn for pn-almost every ν ∈ ∆Θ. By compactness, some subsequence of (pn)n

converges to some p ∈ ∆∆Θ. The correspondence I is upper hemicontinuous, so that
p ∈ I(µ). Upper semicontinuity of v then tells us that v(ν) ≥ s for p-almost every
ν ∈ ∆Θ. Appealing to Theorem 1 again then tells us that s ∈ V ∗(µ). Therefore,
V ∗ has closed graph: it is an upper hemicontinuous, compact-valued correspondence.
As two immediate by-products, we learn that an optimal information policy exists
for every prior (as V ∗ is compact-valued), and that v∗ is an upper semicontinuous
function.

Next, consider any µ, µ′ ∈ ∆Θ and any λ ∈ (0, 1), Theorem 1 implies that, for
every ν ∈ ∆Θ,

v∗(ν) = max
{
s ∈ R : v|supp(p) ≥ s ∃p ∈ I(ν)

}
= max

p∈I(ν)
inf v(supp(p)).

In particular,

v∗((1− λ)µ′ + λµ) = max
p∗∈I((1−λ)µ′+λµ)

inf v(supp(p∗))

≥ max
p∗∈(1−λ)I(µ′)+λI(µ)

inf v(supp(p∗))

= max
p′∈I(µ′), p∈I(µ)

min {inf v(supp(p′)), inf v(supp(p))}

= min {v∗(µ′), v∗(µ)} .

That is, v∗ is quasiconcave. Therefore, v∗ ≥ v̄.
Finally, take any µ ∈ ∆Θ. By Theorem 1, there is some p ∈ I(µ) such that

v(ν) ≥ v∗(µ) for p-almost every ν ∈ ∆Θ. Therefore, for such ν, we have: v∗(µ) ≤
v(ν) ≤ v̄(ν). Letting D ⊆ ∆Θ denote the support of p, upper semicontinuity of
v̄ implies v∗(µ) ≤ v̄|D. But then, as v̄ is quasiconcave and upper semicontinuous,
v∗(µ) ≤ v̄|coD. As p witnesses µ ∈ coD, we learn that v∗(µ) ≤ v̄(µ).

A.5 Proofs for Section 5

A.5.1 Theorem 3

Proof. As (2) and (3) both immediately imply (1), we show the converses.
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Suppose s is an equilibrium S payoff. Now, take some p ∈ I(µ0) Blackwell-
minimal among all policies securing payoff s, and let D := supp(p) ⊆ ∆Θ.32 Lemma
4 then guarantees that (p, s) is an equilibrium outcome, say witnessed by equilibrium
E1 = (σ1, ρ1, β1). Letting α = αs : D → ∆A be as delivered by Lemma 2, we may
assume that ρ1(·|m) = α(·|β(m)). In particular, ρ1 specifies finite-support play for
every message.

Let M := margMPE1 and X := supp [M ◦ ρ̂−1] ⊆ ∆A, and fix arbitrary (α̂, µ̂) ∈
supp [M ◦ (ρ1, β1)−1]; in particular, α̂ ∈ X. By continuity of uR and receiver incentive-
compatibility, α̂ ∈ arg maxα∈∆A uR(α ⊗ µ̂). Defining ρ′ : M → ∆A (resp. β′ : M →
∆Θ) to agree with ρ1 (β1) on-path and take value α̂ (µ̂) off-path, there is then an
equilibrium E ′ = (σ1, ρ

′, β′) such that PE ′ = PE1 and ρ′(·|m) ∈ X for every m ∈M .
Now, define:

σ2 : Θ → ∆X ⊆ ∆M

θ 7→ σ1(·|θ) ◦ ρ′−1

ρ2 : M → X ⊆ ∆A

m 7→

m : m ∈ X

α̂ : m /∈ X
β2 : M → ∆Θ

m 7→

Em∼M
[
β(m)

∣∣∣∣ρ(m)

]
: m ∈ X

µ̂ : m /∈ X.

By construction, (σ2, ρ2, β2) is an equilibrium generating outcome (p, s),33 proving
that (1) implies (2).

Now, define the (A- and D-valued, respectively) random variables a,µ on 〈D, p〉
by letting a(µ) := max supp [α(µ)] and µ(µ) := µ for µ ∈ D. Next, define the
conditional expectation f := Ep[µ|a] : D → D, which is defined only up to a.e.-p
equivalence. By construction, the distribution of µ is a mean-preserving spread of
the distribution of f . That is, p is weakly more informative than p◦f−1. By hypothesis,
a(µ) is incentive-compatible for R at every µ ∈ D. But D = supp(p ◦ f−1), which

32Some policy secures s if s is an equilibrium payoff. The set of such policies is closed (and
so compact) because v is upper semicontinuous. Therefore, since the Blackwell order is closed-
continuous, a Blackwell-minimal such policy exists.

33It generates (p̃, s) for some garbling p̃ of p. Minimality of p then implies p̃ = p.

36



implies that p ◦ f−1 secures s. But then, minimality of p implies that p ◦ f−1 = p. So
f = Ep[µ|a] and µ have the same distribution, which implies that f = µ a.s.-p. By
definition, f is a-measurable, so that Doob-Dynkin tells us there is some measurable
b : A→ D such that f = b ◦ a.

Summing up, we have some measurable b : A → D such that b ◦ a =a.e.−p µ.
Now, define:

σ3 : Θ → ∆A ⊆ ∆M

θ 7→ σ2(·|θ) ◦ (a ◦ β2)−1

ρ3 : M → X ⊆ ∆A

m 7→

α(b(m)) : m ∈ A

α̂ : m /∈ A
β3 : M → ∆Θ

m 7→

b(m) : m ∈ A

µ̂ : m /∈ A.

By construction, (σ3, ρ3, β3) is an equilibrium generating outcome (p, s), proving
that (1) implies (3).

A.5.2 Proposition 2

Proof. Suppose cheap talk is costless, i.e., v̄(µ0) = v̂(µ0). Letting (p, s) be the out-
come induced by the equilibrium (σ, ρ, β), it must be that

´
∆Θ

v dp = s. This implies
that v(µ) = s for p-almost every µ, and therefore (by upper semicontinuity) for every
µ ∈ D := supp(p). Now, define the measurable function,

f : D → R

µ 7→

s : v(µ) = s

minV (µ) : v(µ) > s.
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Let α = αf : D → ∆A be as given by Lemma 2. By construction, supp(α(µ)) = 1

for every µ ∈ B. Now, define a new receiver strategy,

ρ̃ : M → ∆Θ

m 7→

α(β(m)) : β(m) ∈ D,

ρ(m) : otherwise.

By construction, (σ, ρ̃, β) is an equilibrium with no receiver mixing. Moreover, it
generates value s and is therefore most persuasive.

A.5.3 Corollary 2

Proof. Take uS to be one-to-one.
First, suppose that there is a most persuasive equilibrium (σ, ρ, β) with no mixing,

which induces an outcome (p, s).
Let A∗ := {a ∈ A : δa ∈ supp [marg∆AP]}. By S incentive-compatibility, uS|A∗ is
constant. But then, A∗ = {a} for some action a, as uS is injective. By receiver
incentive-compatibility, a ∈ arg maxâ∈A uR(â, µ) for every p-almost every µ. There-
fore, a ∈ arg maxâ∈A uR(â, µ0) too. This implies that s ∈ V (µ0), so that an uninfor-
mative equilibrium is most persuasive, i.e., cheap talk is not valuable.

Appealing to Proposition 2, if cheap talk is costless, it is not valuable. That is, if
v̂ (µ0) = v̄ (µ0), then v̄ (µ0) = v (µ0). The result follows.

A.6 Proofs for Section 6

A.6.1 Proposition 3

Proof. Suppose p̂ is a most persuasive commitment policy that is supported on two
consecutive actions. Let D = supp (p̂). If v (D) = {s}, then Lemma 1 directly
applies to tell us (p̂, s) is an equilibrium outcome. Now, suppose that v (D) =

{
s, s

′}
for s > s

′ . Let:

D0 = {µ ∈ B : V (µ) = {s}}

D1 =
{
µ ∈ B : s

′ ∈ V (µ)
}
.

As s and s′ are consecutive, s > s′, and V convex-valued, it must be thatD0∪D1 = D.
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Suppose now, for a contradiction, that D0 6= ∅. For every ε ∈ (0, 1), define

Dε : = {µ ∈ D0 : V ((1− ε)µ+ εµ0) ⊆ (s′,∞)}

= {µ ∈ D0 : V ((1− ε)µ+ εµ0) ⊆ [s,∞)} .

Upper hemicontinuity of V implies that p̂ (Dε) > 0 for sufficiently small ε ∈ (0, 1). Let
λ := 1−ε [1− p̄ (Dε)] ∈ (0, 1), and define p := 1

λ
[(1− ε) p̂ (·\Dε) + p̂ (· ∩Dε)] ∈ ∆∆Θ.

Next, let

f : ∆Θ→ ∆Θ

µ 7→ µ+ ε1µ∈Dε (µ0 − µ) .

For g ∈ {v, id∆Θ}, we have

ˆ
∆Θ

g d
[
p ◦ f−1

]
=

ˆ
(∆Θ)\Dε

g dp+

ˆ
Dε

g ((1− ε)µ+ εµ0) dp (µ)

= 1−ε
λ

ˆ
(∆Θ)\Dε

g dp̂+ 1
λ

ˆ
Dε

g ((1− ε)µ+ εµ0) dp̂ (µ)

=⇒ λ
p̄(Dε)

ˆ
∆Θ

g d
(
p ◦ f−1 − dp̂

)
= 1
p̄(Dε)

ˆ
Dε

[g ((1− ε)µ+ εµ0)− (1− ε)g(µ)] dp̂ (µ)

− ε
ˆ

∆Θ

g dp̂.

This yields two by-products. First, it tells us that p ◦ f−1 ∈ I (µ0), as

λ
p̂(Dε)

[ˆ
∆Θ

µ d
[
p ◦ f−1

]
(µ)− µ0

]
= 1

p̂(Dε)

ˆ
Dε

[((1− ε)µ+ εµ0)− (1− ε)µ] dp̂ (µ)

−ε
ˆ

∆Θ

µ dp̂(µ)

= εµ0 − εµ0 = 0.
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Next, it tells us that
´

∆Θ
v d [p ◦ f−1] >

´
∆Θ

v dp̂, as

λ
p̂(Dε)

ˆ
∆Θ

v d
(
p ◦ f−1 − p̂

)
= 1

p̄(Dε)

ˆ
Dε

[v ((1− ε)µ+ εµ0)− (1− ε)v(µ)] dp̂ (µ)

−ε
ˆ

∆Θ

v dp̂

≥ 1
p̂(Dε)

ˆ
Bε

[s− (1− ε)v(µ)] dp̂ (µ)− ε
ˆ

∆Θ

v dp̂

> 1
p̂(Dε)

ˆ
Dε

[s− (1− ε)s] dp̂ (µ)− εs = 0.

This contradicts p̂ being optimal under commitment.
Therefore p(D1) = 1, and so (p̂, s′) is an equilibrium outcome, by Lemma 1.
Now, as v is uS(A)-valued, and s′ and s are consecutive, it follows that any policy

which secures S a payoff strictly greater than s′ must in fact secure s. But no such
policy can exist, since p̂ is a most persuasive commitment policy which generates
a payoff strictly below s. With no payoff strictly greater than s′ being securable,
Theorem 1 tells us that p̂ is a most persuasive equilibrium policy.

A.7 Proofs for Section 7

In this example: A = {0, . . . , n}, Θ = [0, 1]n, µ0 is exchangeable, uS is increasing with
uS(0) = 0, and

uR(a, θ) =

θi − c : a = i ∈ {1, . . . , n}

0 : a = 0.

We now invest in some notation. For θ ∈ Θ and k ∈ {1, . . . , n}, let θ(1)
k,n :=

maxi∈{k,...,n} θi be the first order statistic among reforms better (for S) than k. For
finite M̂ ⊆ M , let U(M̂) ∈ ∆(M̂) ⊆ ∆M be the uniform measure over M̂ . For
k ∈ {1, . . . , n}, let:

σk : Θ → ∆ {k, . . . , n} ⊆ ∆M

θ 7→ U
(

arg max
i∈{k,...,n}

θi

)
be the S strategy which reports the best reform from among those preferred to k by the
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think tank; βk : M → ∆Θ be some belief map such that σk and βk are together Bayes
consistent; and pk ∈ I(µ0) be the associated information policy. For any measurable
f : Θ → [0, 1], let E0f(θ) :=

´
Θ
f dµ0; and for k ∈ {1, . . . , n} and i ∈ {k, . . . , n}, let

Eki f(θ) :=
´

Θ
f dβk(·|i). Finally, for any k ∈ {1, . . . , n}, let θ̂k := E0θ

(1)
k,n.

Claim 1. Fix k ∈ {1, . . . , n} and i ∈ {k, . . . , n}. Then, i ∈ arg maxa∈A uR(a, βk(i)) if
and only if θ̂k ≥ c.

Proof. For a given i ∈ {k, . . . , n}, exchangeability of µ0 implies the following four
facts:

(1) E0θi = E0θj = Eki θj for j ∈ {1, . . . , k − 1}.
(2) E0θi ∈ co

{
Eki θi, Eki θj

}
for j ∈ {k, . . . , n} \ {i}.

(3) Eki θi ≥ E0θi .
(4) Eki θi = θ̂k.
The first three facts collectively tell us that Eki θi ≥ Eki θj for j ∈ {1, . . . , n} \ {i}.

This implies that i ∈ arg maxa∈A uR(a, βk(i)) if and only if Eki θi ≥ c. The fourth fact
completes the proof of the claim.

By Theorem 1 (as described in the main text), the S-optimal equilibrium payoff
is uS(k∗), where

k∗ =

max
{
k ∈ {1, . . . , n} : θ̂k ≥ c

}
: θ̂1 ≥ c

0 : θ̂1 < c.

In fact, more can be said from the constructive proof of Theorem 1. We can
explicitly derive the modification of pk∗ that supports payoff uS(k∗) as an equilibrium
payoff when k∗ > 0. Let ε := θ̂k

∗−c
θ̂k∗−θ̂n , and consider the truth-or-noise signal σ∗ :=

(1− ε)σk∗ + εU {k∗, . . . , n}. That is, among the proposals that the think tank weakly
prefers to k∗, it either reports the best (with probability 1 − ε, independent of the
state) or a random one. Following a recommendation i ∈ {k, . . . , n}, the lawmaker is
indifferent between reform i and no reform at all. He responds with ρ(i|i) = uS(k∗)

uS(i)
and

ρ(0|i) = 1− ρ(i|i). The proof of Lemma 4 shows that such play is in fact equilibrium
play.
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A.8 Proofs for Section 8

A.8.1 Proposition 4

Toward proving Proposition 4, we introduce some notation. For each continuous
f : ∆Θ → R and X ⊆ ∆A, define the induced preferences %f,X on X via α %

α′ ⇐⇒ f(α) ≥ f(α′). The following lemma is the heart of the proposition.

Lemma 7. Fix the action space, state space, and R preferences. Then the game with
S objective ũS and the game with S objective uS := ũS(·, µ0) have the same equilibria,
and generate the same equilibrium outcomes, if the preferences

{
%ũS(·,θ),X

}
θ∈Θ

all
coincide, where X :=

⋃
µ∈∆Θ arg maxα∈∆A ũS(α, µ).

Notice that the lemma applies directly to the two cases of Proposition 4. With
cardinally state-independent preferences, %ũS(·,θ),∆A is the same regardless of θ ∈ Θ.
With ordinally state-independent preferences and unique R best response, one has
that %ũS(·,θ),{δa}a∈A does not depend on θ, and that X ⊆ {δa}a∈A. We now prove the
lemma and, in doing so, complete the proof of the proposition.

Proof. First, consider any α, α′ ∈ X. As {ũS(α, θ)− ũS(α′, θ)}θ∈Θ are all of the
same sign and integration is monotone, uS(α) − uS(α′) is of the same sign. That is,{
%ũS(·,θ),X

}
θ∈Θ

= {%uS ,X}.
Now, take any (σ, ρ, β) satisfying the Bayesian condition and R incentive-compatibility

(the first and second part of the definition of equilibrium, respectively). R incentive-
compatibility implies that ρ(M) ⊆ X. Therefore,

{
%ũS(·,θ),ρ(M)

}
θ∈Θ

=
{
%uS ,ρ(M)

}
.

It follows that S incentive-compatibility (given ρ) is the same under ũS and under
uS. Therefore, the set of equilibrium triples (σ, ρ, β) is the same. All that remains,
then, is to show that an equilibrium (σ, ρ, β) generates the same S payoff under both
models. To that end, fix some α∗ ∈ arg maxα∈ρ(M) uS(α), which is nonempty by S
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incentive-compatibility. Then:
ˆ

Θ

ˆ
M

ũS(ρ(m), θ) dσ(m|θ) dµ0(θ) =

ˆ
Θ

ˆ
M

ũS(α∗, θ) dσ(m|θ) dµ0(θ)

=

ˆ
Θ

ũS(α∗, θ) dµ0(θ)

= uS(α∗)

=

ˆ
Θ

ˆ
M

uS(α∗) dσ(m|θ) dµ0(θ)

=

ˆ
Θ

ˆ
M

uS(ρ(m)) dσ(m|θ) dµ0(θ),

where the first and last equality follow from S incentive-compatibility. Therefore, the
S’s ex-ante payoff is the same under equilibrium (σ, ρ, β) in both models.

A.8.2 Proposition 5

Proof. By Theorem 2, there is an information policy p such that (p, v̄(µ0)) is an
equilibrium outcome.

For any s ∈ [v(µ0), v̄(µ0)], notice that p secures s. Thus we apply Lemma 4 to
arrive at an information policy p∗s such that (p∗s, s) is an equilibrium outcome. Let
λp,s be as described in the proof of Lemma 4. By construction, whenever v(µ0) ≤
s′ ≤ s ≤ v̄(µ0), we have λp,s′(·) = λp,s(·)λp∗s ,s′(·). The second and third point then
follow directly as in Lemma 4. Finally, the first point follows from the second, as a
less informative information policy generates a lower receiver value.
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