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Abstract

Return predictability in the U.S. stock market is local in time as short periods with signif-

icant predictability (‘pockets’) are interspersed with long periods with little or no evidence of

return predictability. We document this empirically using a flexible non-parametric approach

and explore possible explanations of this finding, including time-varying risk-premia. We find

that short-lived predictability pockets are inconsistent with a broad class of affine asset pric-

ing models. Conversely, pockets of return predictability are more in line with a model with

investors’ incomplete learning about a highly persistent growth component in the underlying

cash flow process which undergoes occasional regime shifts.

Key words: Predictability of stock returns; incomplete learning; Markov switching predictive

systems; cash flows; affine asset pricing models.
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1 Introduction

Are stock market returns predictable and, if so, how often, for how long and by how much? Even

answering the first of these questions has proven surprisingly elusive as illustrated by the overarching

conclusion from many empirical studies that return predictability tends to be highly unstable,

varying greatly across time and across different markets.1

Existing evidence on return predictability has mostly been established using linear, constant-

coefficient regressions which pool information across long historical spans of time and thus are

designed to establish whether stock returns are predictable “on average,” i.e., across potentially

very different economic states. Inference on the resulting coefficients may yield misleading and

unstable results if, in fact, return predictability shifts over time.

To address such concerns, this paper adopts a new estimation strategy capable of identifying

patterns in return predictability that is “local” in time. Unlike conventional methods that impose

tight restrictions on how return predictability evolves over time, we do not need to take a stand on

the return generating process. Instead, our approach lets the data determine both how large any

predictability is at a given point in time and how long it lasts.2

Using this approach, we present new empirical evidence that return predictability is far more

concentrated or “local” in time and tends to fall in certain (contiguous) “pockets.”For example,

using the T-bill rate as a predictor variable over a sixty three year period, our approach identifies

eight pockets whose duration lasts between one month and one and a half years. In total, eleven

percent of the sample–or roughly twice as much as would be expected by random chance for a test

with a size of 5%–is spent inside pockets with return predictability.

To quantify the amount of “local” return predictability and to calibrate what amount of pre-

dictability to expect under conventional asset pricing models, we introduce an integrated R2 (IR2)

measure which is the sum of local R2 estimates within a particular pocket. This measure allows

us to explore if the evidence on return predictability identified by our non-parametric approach is

consistent with random variations generated under the null of no return predictability (constant

expected returns) or under a time-varying risk premium model with constant coefficients. In par-

ticular, we bootstrap stock returns from these types of models and compare the estimated values of

the IR2 measure in the simulations to the values observed in the actual data. We find that both the

constant expected return and the time-varying risk premium models fail to match the amount of

1For early studies, see, e.g., Campbell (1987), Fama and French (1988, 1989), Keim and Stambaugh (1986), and
Pesaran and Timmermann (1995). Lettau and Ludvigsson (2010) and Rapach and Zhou (2013) review the extensive
literature on return predictability. Paye and Timmermann (2006), Rapach and Wohar (2006), and Chen and Hong
(2012) find evidence of model instability for stock market return prediction models, while Henkel, Martin and Nardari
(2011) use regime switching models to capture changes in stock return predictability, while Dangl and Halling (2012)
and Johannes, Korteweg, and Polson (2014) use time-varying parameter models to model predictability in stock
returns.

2Studies such as Henkel et al. (2011), Dangl and Halling (2012), and Johannes et al. (2014) propose models
with time-varying coefficients. However, these studies introduce strong parametric assumptions about changes in the
return generating model using regime switching or time-varying parameter models.
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return predictability observed in the longest pockets identified in the actual return data, although

they can match predictability for the shortest pockets. We conclude from this evidence that the

conventional constant-coefficient linear return predictability model fails to generate time-variation

in expected returns that is consistent with the empirical evidence we observe.

Having quantified return predictability, we next address “why” stock returns appear to be

locally predictable.3 We make two contributions to the debate on what generates predictability in

stock returns. First, we provide a new theoretical result which shows that linear constant-coefficient

return predictability models are consistent with a broad class of affine asset pricing specifications in

common use, including models that allow for time-varying volatility and compound Poisson jumps.

Since our simulations show that this type of model fails to match the empirical evidence, this lends

less support to a time-varying risk premium explanation of local return predictability.

Second, we propose an alternative explanation of return predictability. Stock prices depend

on expected cash flows that occur in the distant future and so are surrounded by considerable

uncertainty. The high sensitivity of aggregate stock prices to even minor variations in investor

beliefs about future cash flow growth rates means that incomplete learning about cash flows could

be an important source of return movements.4 Consistent with this intuition, we show that a

new type of cash flow learning dynamics can generate return predictability patterns that look like

time-varying risk premia in a setting where, by construction, the risk premium is constant.

Building on the predictive systems model of Pastor and Stambaugh (2010), we assume that the

cash flow process can be decomposed into a persistent, unobserved component that tracks expected

cash flows and a temporary shock that is not predictable.5 Although the true expected cash flow

process is unobserved, investors observe a state variable that is correlated with variation in the

persistent component in expected cash flows and thus can be used to predict future cash flows.

Generalizing the predictive systems approach, we allow both the drift in the expected cash flow

process as well as its correlation with the observed state (predictor) variable to undergo discrete

changes captured through a regime switching process. For commonly used predictor variables such

as the T-bill rate and the term spread, it is plausible to expect that the extent to which these

variables are informative over future cash flows will vary over time and depend on the underlying

3Answers to this question face the challenge of the joint hypothesis testing problem, i.e., without positing a
fully specified asset pricing model, it is not possible to determine if return predictability is due to a time-varying
risk premium or due to market inefficiencies. Balvers, Cosimano, and McDonald (1990), Bansal and Yaron (2004),
Campbell and Cochrane (1999), and Cecchetti, Lam, and Mark (1990) present models in which return predictability
is consistent with market efficiency.

4In a model with paradigm shifts, Hong, Stein and Yu (2007) find that investors learning about the underly-
ing model that generates dividends can give rise to predictable variation in returns and help to match volatility
and skewness patterns in returns. In their analysis, investors switch between models that are under-dimensioned
representations of the true dividend generating process.

5A key difference to Pastor and Stambaugh (2010) is that we model the unobserved component in expected cash
flows and use an asset pricing model to study its implications for prices and returns. Instead, Pastor and Stambaugh
directly model the dynamics in expected returns and use economic arguments to constrain the sign of the correlation
between innovations in the predictive system. As these constraints do not apply to the cash flow process, they are
not imposed in our analysis.
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monetary policy regime.

We use our regime switching predictive systems model to compare two scenarios. In the first

“no-learning” scenario investors observe the regime process underlying the cash flow process. In

the second “learning” scenario investors do not observe the underlying regime and so have to

recursively update their estimates of the state probabilities using information on returns and the

predictor variable to track the state of the economy.

Next, we simulate asset prices under the no-learning and learning scenarios. By construction, the

ex-ante risk premium is constant in these simulations. We find that the no-learning model cannot

match the empirical evidence on return predictability pockets in the historical data, particularly

the presence of long-lived pockets with considerable amounts of return predictability. In contrast,

the model with incomplete learning about cash flow growth is capable of generating pockets with

similar return predictability characteristics as those we observe in the actual returns data. These

simulations suggest that investors’ learning about the underlying cash flow process can induce

patterns that look, ex-post, like local return predictability even in a model in which ex-ante expected

returns are constant.

To focus on the effect on return predictability of incomplete learning about cash flow growth,

our simple learning model assumes that risk premia are constant. However, as suggested by authors

such as Veronesi (2000), in practice it can be difficult to distinguish between pure learning and risk

premium stories as investors’ learning may itself command a risk (uncertainty) premium. It is also

likely that such risk premia could compound the learning effects we document here. Hence, our

results should not be interpreted to exclude time-varying risk premia as an explanation of return

predictability that is local in time. Rather, they illustrate the extent to which investors’ learning

about cash flow growth can produce predictability patterns consistent with what we find in the

data.

Authors such as Schwert (2003), Green, Hand, and Soliman (2011), and McLean and Pontiff

(2016) also find evidence that return predictability patterns can be learned away over time. These

papers suggest that the strength of the evidence of return predictability obtained from time series

or cross-sectional regressions tends to weaken as the knowledge of such patterns becomes more

widespread. A plausible mechanism is that investors’ attempts at exploiting predictive patterns

leads to their self-destruction as new money flows into undervalued assets or out of overvalued

assets. Our model offers a mechanism for explaining how these effects unfold. We assume that

investors learn about the cash flow process and the asset price is derived endogenously as a function

of investors’ expectations about discounted cash flows. We use our model to quantify how long

it takes for this cash flow learning mechanism to be completed to the point where no additional

return predictability is detectable and we characterize the amount of return predictability that is

present in the interim.6

6We distinguish between learning about a fixed number of parameters–which eventually (asymptotically) will
reveal the true value of the parameters–and incomplete learning for which agents will never learn the true value. The
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Studies such as Pesaran and Timmermann (1995) and Welch and Goyal (2008) emphasize the

distinction between in-sample and out-of-sample return predictability. In-sample return predictabil-

ity uses full-sample information to estimate model parameters and so could not have been exploited

by investors in “real time”, while out-of-sample return predictability impose the constraint that

only information that was available at a given point in time could be used to generate return

predictions. Along with much of the literature, our main analysis is concerned with in-sample

return predictability but we also analyze out-of-sample return predictability using a one-sided ker-

nel estimator and a simple scheme for identifying pockets of return predictability in “real time”.

We find that our daily out-of-sample return forecasts with time-varying predictors are marginally

more accurate than the simple “prevailing mean” benchmark of Goyal and Welch (2008) inside the

pockets, whereas they perform significantly worse than this benchmark outside the pockets.

It is worth highlighting some key differences between our analysis and earlier studies. Our

analysis uses daily stock market returns. This differs from existing studies of return predictability

which generally use monthly, quarterly, or annual returns. Using daily stock market returns enables

us to more accurately date the timing of pockets with local return predictability which is likely

to be missed by returns sampled at monthly or longer horizons. This also introduces interesting

econometric issues which we further discuss in the paper.

There are also key differences between our findings of local return predictability pockets and

earlier empirical evidence. For example, Henkel et al. (2011), Dangl and Halling (2012), and

Rapach, Strauss, and Zhou (2010) argue that return predictability is closely linked to the economic

cycle. Although there exists a link between economic recessions and return predictability pockets,

we find that this link is weak and the stage of the economic cycle only explains a very small part

of the time-variation in expected returns that we document.

The rest of the paper proceeds as follows. Section 2 discusses conventional approaches to

modeling return predictability, establishes the class of affine asset pricing models consistent with

conventional constant-coefficient return predictability regressions, and introduces our nonparamet-

ric methodology for identifying pockets with return predictability. Section 3 introduces our daily

data and presents empirical evidence on return predictability pockets using a variety of predictor

variables from the literature on return predictability. This section also uses simulations to address

whether the pockets could be generated spuriously as a result of the repeated use of correlated

tests for local return predictability and conducts a variety of robustness tests. Section 4 introduces

our Markov switching predictive systems model for cash flows and presents evidence on the extent

to which incomplete learning about cash flows can generate return predictability pockets that are

similar to those found in the data. Section 5 discusses possible alternative explanations and sources

of return predictability pockets and explores out-of-sample return predictability inside and outside

latter situation arises in settings with a latent state whose dimension increases with the time period. Learning about
an unobserved state variable is an example of incomplete learning since the dimension of the state vector increases
with the sample size and so the current state cannot be consistently estimated.
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of ex-ante identified pockets. Section 6 concludes. Two appendices contain additional technical

material.

2 Prediction Models and Estimation Methodology

In this section we derive a theoretical result that establishes the class of asset pricing models that

is consistent with the benchmark linear regression specification commonly used in empirical studies

of return predictability. Next, we introduce the alternative non-parametric regression methodology

that we use to measure and quantify time variation in return predictability.

2.1 Return Prediction Model with Constant Coefficients

We start by establishing a set of conditions under which the conventional constant-coefficient return

prediction model holds almost exactly within a fairly general endowment economy which nests many

canonical specifications considered in the literature. We parameterize cash flow risks and investor

preferences in the economy, allowing for time variation in either the quantity or the price of risk. To

this end, let zt be an L× 1 vector of state variables capturing the aggregate state of the economy.

We assume that this evolves according to the following law of motion:

Assumption 1 The aggregate state of the economy follows a stationary VAR process:

zt+1 = µ+ Fzt + εt+1, (1)

with z0 given, where the L × L matrix F has all of its eigenvalues inside the unit circle and

E[εt+1] = 0. Moreover, the log of aggregate dividend growth, ∆dt+1, equals S′dzt+1 for some L× 1

vector Sd.

Assumption 1, which is quite standard, states that aggregate dividend growth can be captured

by a linear combination of the elements of a finite-dimensional, stationary vector autoregressive

process, zt. We will place further restrictions on the vector of innovations below.

In addition to the restrictions on the cash flow process in Assumption 1, we put restrictions on

investor preferences. In particular, Assumption 2 will impose that the log risk-free rate and pricing

kernel are “essentially” affine functions of the zt vector that summarizes the aggregate state of the

economy, possibly with time-varying prices of risk.

Assumption 2 The continuously compounded risk-free rate, rf,t+1, satisfies

rf,t+1 = A0,f +A′fzt, (2)
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and the continuously compounded return on any financial asset, ra,t+1, satisfies the Euler equation

1 = Et[exp(−Λ′tεt+1 − logEt exp[Λ′tεt+1] + ra,t+1 − rf,t+1)] (3)

where Λt is an L× 1 vector of risk prices.

A large class of models have risk-free rates and pricing kernels which fit into this class. For

example, Assumption 2 holds approximately in a representative agent model where agents have

Epstein and Zin (1989) preferences when aggregate consumption growth is also an affine function

of the state vector.7 Thus, our results will apply to many of the specifications considered in

the literature on consumption-based asset pricing models with long-run risks and rare disasters.

This property also holds in an incomplete markets setting with state-dependent higher moments

of uninsurable idiosyncratic shocks.8 We also allow, with some restrictions discussed below, for

time-variation in the price of risk, Λt, which enables our results to nest many models which have

been used to characterize the term structure of interest rates as well as the log-linearized stochastic

discount factor of the Campbell-Cochrane habit formation model.

Finally, we provide two alternative sets of restrictions on risk prices and quantities which ensure

that, up to a log-linear approximation, price-dividend ratios and market returns are exponential

affine functions of zt.
9 We also define a partition of the set of state variables zt in a way which will

be useful later.

Assumption 3 Partition the state vector zt = [z′1t, z
′
2t]
′, where dim(z1t) = L1 ≤ L. One of the

following sets of conditions is satisfied:

1. Risk prices are constant: Λt = Λ. In addition, for any γ ∈ RL, the conditional Laplace

transform of εt+1 satisfies

logEt[exp(γ′εt+1)|zt] = f(γ) + g(γ)′z1t, (4)

where f(γ) : RL → R and g(γ) : RL → RL1

2. Risk prices satisfy Λt = Λ0 + Λ1z1t, where Λ1 is an L× L1 matrix, and εt+1
iid∼ MVN(0,Σ),

where Σ is a positive semi-definite matrix.

7See, e.g., Bansal and Yaron (2004), Hansen, Heaton, and Li (2008), Eraker and Shaliastovich (2008) and Drechsler
and Yaron (2011).

8See, e.g., Constantinides and Duffie (1996), Constantinides and Ghosh (2017), Schmidt (2016), and Herskovic et
al (2016).

9Note that we can get exact exponential affine expressions for the price-dividend ratio and returns of dividend
strips–i.e., the value as of time t of a dividend paid at time t + k for any k–and returns. The linearization is only
necessary because the market return is a weighted average of these individual dividend strip returns which is not
exactly affine in the state vector. Some authors, such as Lettau and Wachter (2011), have elected to work with the
exact dividend strip formulas.
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Assumption 3 characterizes two sets of assumptions which are commonly made to get affine

valuation ratios. In the first case, we assume that risk prices are constant but risk quantities

are time-varying. z1t is the subset of variables (e.g., stochastic volatility and/or Poisson jump

intensities) that are useful for predicting the quantity of risk, while z2t contain additional variables

useful for predicting cash flows or the risk-free rate. We have summarized our main restriction

on the distribution of εt+1 in terms of its cumulant generating function, which is the logarithm

of its moment generating function. The affine structure greatly facilitates analytical tractability

and is satisfied for a wide class of distributions used in the theoretical asset pricing literature.10

For instance, suppose that εt+1 ∼ MVN(0, σ2
tΣ) for some positive semi-definite matrix Σ. Then

f(γ) = 0 and g(γ)′z1t = 1
2γ
′Σγ with z1t = σ2

t .

In the second case, we allow for risk prices to be affine in a subset of the state variables, z1t, but

restrict the innovations εt+1 to be homoskedastic and multivariate normally-distributed.11 In this

case, z1t indicates the subset of variables which characterize time-variation in the price of risk Λt.

These assumptions are quite common in the bond pricing literature as well as for models featuring

time-varying risk aversion and are identical to those in Lustig, van Nieuwerburgh, and Verdelhan

(2013), among others.

To solve for asset prices in this economy, we apply the Campbell and Shiller (1988) log-

linearization of the stock market return, rs,t+1, in excess of the risk-free rate, rf,t+1, as a function

of the log-dividend growth rate, ∆dt+1, and the log price-dividend ratios at time t+ 1 and t, pdt+1

and pdt:

rs,t+1 ≈ c+ ∆dt+1 + ρ · pdt+1 − pdt. (5)

Here c and ρ < 1 are linearization constants. Using this linearization and assumptions 1-3, we can

show the following result:

Proposition 1 Suppose Assumptions 1, 2, and 3 are valid and that a solution exists to the log-

linearized asset pricing model. Then, the following properties are satisfied

(i) The market price-dividend ratio is pdt = A0,m +A′mzt;

(ii) The expected excess return is Et[rs,t+1]− rf,t+1 = β0 + β′z2t,

where A0,m, A0,f , β0 are scalars and Am ∈ RL and β ∈ Rd.

Part (i) of Proposition 1 shows that the log price-dividend ratio is an affine function of the

aggregate state vector, which immediately implies that the log-linearized market return is also

10For example, the property holds for affine jump-diffusion models, e.g., Eraker and Shaliastovich (2008) and
Drechsler and Yaron (2011). In these models, εt+1 is the sum of Gaussian and jump components and the variance-
covariance matrix for the Gaussian shocks and the arrival intensities for the jump shocks are affine functions of zt.
See also Bekaert and Engstroem (2017) and Creal and Wu (2016) for alternative stochastic processes with affine
cumulant generating functions.

11Creal and Wu (2016) provide some restrictions which permit both risk prices and quantities to vary while keeping
valuation ratios in the affine class. We do not detail these assumptions here, but note that the constant coefficient
result should obtain for this more general case as well.
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an affine function of z1t and εt+1. Part (ii) of the proposition characterizes the extent of return

predictability. In particular, it shows that risk premia–expected log excess returns–are an affine

function of z2t, variables used to forecast cash flows and the risk free rate. The expressions for β

may be found in Appendix A. For a set of predictors xt chosen to be elements of the underlying

state variables (z2t), Proposition 1 justifies using linear return prediction models of the form

rs,t+1 − rf,t+1 = β0 + x′tβ + εt+1, (6)

where xt is a (d × 1) vector of covariates (predictors), and εt+1 is an unobservable disturbance

with E [εt+1|xt] = 0. Thus, our result can be used to motivate why a large empirical literature

summarized in Goyal and Welch (2008) and Rapach and Zhou (2013) studies predictability of

stock returns using the constant-coefficient model in (6).

Part (ii) of Proposition 1 also indicates the extent to which the theory allows for some degree

of dimension reduction. In principle, one could allow for a very large number of state variables

to predict cash flow growth, each of which could have innovations which may even be priced.

Nonetheless, if these variables do not predict time-variation in the quantity of risk (under the

conditions of Assumption 3, part 1) or the price of risk (under the conditions of Assumption 3,

part 2), they may safely be omitted from the predictive regression. On the other hand, if the true

state variables z1t are not spanned by the choice of predictors, xt, included in the return regression,

as could be the case if there are additional drivers of risk prices or quantities omitted from the

regression, it need not necessarily be the case that the projection of rs,t+1− rf,t+1 on the empirical

proxies would have constant coefficients.

Below, we examine the extent to which β is constant in various return prediction models. As

is the case for many asset pricing tests, we can only test the joint hypothesis that the model is

correctly specified (i.e., we have the correct predictors) and the theoretical restrictions (constant

coefficients). Thus, an important caveat on our results is that any evidence we provide which is

inconsistent with the constant coefficient null could potentially be explained by omitted factors, as

opposed to the learning story we provide below.

2.2 Nonparametric Identification of Pockets

The assumption of constant regression coefficients in the linear return regression (6) has been

challenged in numerous studies such as Paye and Timmermann (2006), Rapach and Wohar (2006),

Chen and Hong (2012), Dangl and Halling (2012), and Johannes, Korteweg, and Polson (2014), all

of which find strong statistical evidence that this assumption is empirically rejected for U.S. stock

returns using standard predictor variables.

Define the excess return of the stock market relative to the risk-free rate as rt+1 ≡ rs,t+1 −
rf,t+1. Following insights from these studies, we generalize (6) to allow for time-varying return
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predictability of the form:

rt+1 = x′tβt + εt+1, (7)

where the regression coefficients βt are now subscripted with t to indicate that they are functions of

time as a means of allowing for time-varying return predictability. We also allow for general forms

of conditional heteroskedasticity σ2
t ≡ E

[
ε2
t |xt

]
= σ2 (xt). The constant coefficient model in (6) is

obtained as a special case of (7) when βt = β for all t. To economize on notation, here and in the

remainder of the paper we let rt+1 denote the log excess market return minus its sample mean and

assume that the predictor variables xt are de-meaned prior to running the regression.

To identify periods with return predictability, we follow the nonparametric estimation strategy

developed in Robinson (1989) and Cai (2007). We want to use an approach that is valid regardless

of whether the linear return prediction model in (6) is correctly specified. Using nonparametric

methods for pocket identification offers the major advantage that we do not need to take a stand

on the dynamics of local return predictability, e.g., whether such predictability is short-lived or

long-lived and whether it disappears slowly or rapidly. Instead, our nonparametric methods allow

us to characterize the “anatomy” of the pockets, e.g., the duration and frequency of pockets and

the amount of return predictability inside the pockets. Such characteristics can provide important

clues about the economic sources of return predictability.

The nonparametric approach views β : [0, 1]→ Rd as a smooth function of time that can have

at most finitely many discontinuities. The problem of estimating βt for t = 1, . . . , T can then be

thought of as estimating the function β at finitely many points βt = β
(
t
T

)
.12

Appendix B provides details on how we implement the nonparametric analysis. Specifically, we

use a local constant model to compute the estimator of βt as

β̂t = arg min
β0∈Rd

T∑
s=1

KhT (s− t)
[
rt+1 − x′sβ0

]2
. (8)

The weights on the local observations get controlled through the kernel KhT (u) ≡ K (u/hT ) / (hT ) ,

where h is the bandwidth. The estimator in (8) can be viewed as a series of weighted least squares

regressions with Taylor expansions of α around each point t/T. The weighting of observations in

(8) can be contrasted with the familiar rolling window estimator which uses a flat kernel that puts

equal weights on observations in a certain neighborhood. For this estimator KhT (s − t) = 1 if

t ∈ [t− bhT c, t+ bhT c], otherwise KhT (s− t) = 0. A weakness of the conventional rolling window

approach is that it assigns the same weight to local observations, making it less suited for picking

up time variation in α if the build-up and disappearance of such patterns is more gradual, as we

might expect a priori.

To identify periods with return predictability (“pockets”), we need a decision rule for determin-

12Because time, t, is normalized by the number of observations T , β is a function whose domain is [0, 1] as opposed
to [0, T ]. This is useful because we need more and more local information to consistently estimate βt as T →∞.
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ing what constitutes significant return predictability. To this end we compute asymptotic standard

errors for the local slope coefficients, β̂t, and evaluate their statistical significance. For the estimator

of a particular ordinate β̂t, the estimated asymptotic variance-covariance matrix is given by

Σ̂β,t =
κ2

hT

(
T∑
s=1

KhT (s− t) ê2
s

)(
T∑
s=1

KhT (s− t)xsx′s

)−1

, (9)

where ês = rs−x′s−1β̂s−1 is the residual at time s obtained from the nonparametric regression and

κ2 ≡
∫ 1

0 K
2 (u) du is an integration constant. The limiting distribution of β̂t is normal and thus a

valid 100γ% pointwise confidence interval for the ith element of β̂t, β̂i,t, is given by[
β̂i,t − q(1−γ)/2Σ̂

1/2
β,t (i, i) , β̂i,t + q(1−γ)/2Σ̂

1/2
β,t (i, i)

]
, (10)

where q(1−γ)/2 is the (1− γ) /2 quantile of the standard normal distribution.

We quantify the degree of local return predictability through the local R2 measured at time t,

R2
t :

R2
t = 1−

∑T
s=1KhT (s− t) ê2

s∑T
s=1KhT (s− t) y2

s

, (11)

To identify local variations in the regression coefficients of our model (7), we use a two-sided

Epanechnikov Kernel and an effective sample size of one year, i.e., six months of data before and

six months after each observation. The Epanechnikov Kernel function has an inverted parabola

shape and takes the form

K(u) =
3

4

(
1− u2

)
1 {|u| ≤ 1} . (12)

Thus, for each day in the sample, we nonparametrically estimate the return prediction model in

(7) after trimming the first and last six months of the data. At each point we test if the local slope

coefficient is significantly different from zero (using a two-sided test), assigning a value of unity to

the pocket indicator It = 1{
∣∣∣β̂t/se(β̂t)∣∣∣ > c}, where c is a cutoff value that determines the size of

the test.

The overlap in adjacent kernel weighting schemes for nearby dates t, t′ yields a sequence of

highly correlated test statistics. Moreover, repeatedly calculating the pocket test statistic multiple

times can be expected to generate false rejections that might identify spurious evidence of return

predictability. We address this concern in Section 3.3 by simulating from different data generating

processes for returns and calculating to what extent different models can match the characteristics

of the pockets of predictability identified by our methodology.
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2.3 Measuring Pocket Characteristics

Pocket characteristics are measured in a variety of ways. At the most basic level, we want to know

how many contiguous pockets our procedure detects. We refer to this as Np and define it as the

number of times we observe a shift in the pocket indicator from zero to one so that, in a sample

with T observations, Np =
∑T−1

t=1 (1−It)It+1. Second, we want to know how long the pockets last.

To this end, let Ijt = 1 for time-series observations inside the jth pocket, while Ijt = 0 outside

pockets. Letting t0j and t1j be the start and end date of the jth pocket, the duration of pocket j,

Durj , is given by

Durj =
T∑
τ=1

Ijτ = t1j − t0j + 1, j = 1, ..., Np. (13)

We characterize the distribution of pocket durations by reporting the mean, minimum, and max-

imum durations and also report the fraction of observations inside a pocket, i.e.,
∑Np

j=1Durj/T .

We would expect it to be easier for investors to detect and exploit long-lived pockets as the power

of tests for the presence of pockets grows with the length of the pocket.

Pocket durations do not quantify the total amount of predictability which accounts for both

the duration and the magnitude of the local predictability. This matters a great deal because

investors are more likely to identify local return predictability if the R2 is high. We capture the

total amount of return predictability inside a pocket by means of the integral R2 measure which,

for the jth pocket, is defined as

IR2
j =

t1j∑
τ=t0j

R2
τ =

T∑
τ=1

IjτR2
τ . (14)

Visually, this measure captures the area marked under a time-series plot of the local R2
τ values in

(11), summed across each of the pocket indicators. We report the mean and maximum values of

IRj computed across the pockets j = 1, ..., Np.

Pockets are more detectable either when the degree of predictability within a pocket is very high,

possibly for a brief period of time, or when a pocket lasts long, even with low average predictability,

or both. By combining the duration of a pocket with the magnitude of the predictability inside

this pocket, the integral R2 measure provides both economic insights into how much predictability

is present as well as the possibility that investors can detect and exploit this predictability.13

13Note the analogy to the integral R2 measure from the literature on breakpoint testing which finds that tests for
breaks cannot easily distinguish between frequent, but small breaks to parameters versus rare, but large breaks that
move the parameters by the same distance over a particular sample, see, e.g., Elliott and Muller (2006).
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3 Empirical Results

This section introduces our data on stock returns and predictor variables, presents empirical evi-

dence from applying the non-parametric approach to identifying local return predictability pockets

and, finally, tests whether this evidence is consistent with the affine class of asset pricing models

described in Section 2.

3.1 Data

Most studies on predictability of stock returns use monthly, quarterly, or annual returns data.

However, since we are concerned with local return predictability which may be of a relatively

short-lived nature, we use daily data on both stock returns and the predictor variables. Data

observed at the standard frequencies are likely to miss episodes with return predictability at times

when the slope coefficients (βt) change relatively quickly and will not allow us to accurately date

the timing of such episodes.

Following studies such as Goyal and Welch (2008), Dangl and Halling (2012), Johannes et al.

(2014), and Pettenuzzo, Timmermann, and Valkanov (2014), our main empirical analysis considers

univariate prediction models that include one time-varying predictor at a time, i.e., rt+1 = xtβt +

εt+1. The univariate approach is well suited to our nonparametric analysis which benefits from

keeping the dimensionality of the set of predictors low. However, it raises issues related to omitted

state variables, so we also discuss multivariate extensions at the end of the section.

In all our return regressions, the dependent variable is the value-weighted CRSP US stock

market return minus the one-day return on a short T-bill rate. Turning to the predictor variables,

we consider four variables that have been used in numerous studies on return predictability and

are included in the list of predictors considered by Goyal and Welch (2008). First, we use the

lagged dividend yield, defined as dividends over the most recent 12-month period divided by the

stock price at close of a given day, t. This predictor has been used in studies such as Keim and

Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988), Fama and French (1988, 1989)

and many others to predict stock returns. Second, we consider the yield on a 3-month Treasury

bill. Campbell (1987) and Ang and Bekaert (2007) use this as a predictor of stock returns. As our

third predictor, we use the term spread, defined as the difference in yields on a 10-year Treasury

bond and a three month Treasury bill.14 Finally, we also consider a realized variance measure,

defined as the realized variance over the previous 60 days. Again, this variable has been used as a

predictor in a number of studies of stock returns.

The final sample date is 12/31/2016 for all series. However, the beginning of the data samples

varies across the four predictor variables. Specifically, it begins in 11/4/1926 for the dividend yield

(23,786 observations), 1/4/1954 for the 3-month T-bill rate (15,860 obs.), 1/2/1962 (13,846 obs.)

for the term spread, and 1/15/1927 (23,727 obs.) for the realized variance.

14See Keim and Stambaugh (1986) and Welch and Goyal (2008) for studies using this predictor.
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The daily predictor variables are highly persistent at the daily frequency, posing challenges

for estimation and inference with daily data. We experimented with detrending the predictors by

subtracting a 6-month moving average which is a common procedure for variables such as the nom-

inal interest rate even at longer horizons such as monthly data, see, e.g., Ang and Bekaert (2007).

However, we found that the results do not change very much due to this type of detrending and so

go with the simpler approach of using the raw data. In practice, we address the issue of how persis-

tence affects inference through bootstrap simulations that incorporate the high persistence of our

daily predictors along with other features of the daily data such as pronounced heteroskedasticity.

On economic grounds, we would expect return predictability to be very weak at the daily

horizon. Table 1 confirms that this is indeed the case. The table shows full-sample coefficient

estimates obtained from the linear regression model in (6) along with t-statistics and R2 values.

Only the regressions that use the T-bill rate (t-statistic of -2.77) and the term spread (t-statistic of

2.32) generate statistically significant slope coefficients. As expected, the average predictability is

extremely low at the daily frequency with in-sample R̄2 values varying from 4.29× 10−4% for the

realized variance measure to a maximum of 0.053% (i.e., 0.00053) for the regression that uses the

T-bill rate as a predictor.

Campbell and Thompson (2008) suggest comparing the R2 of return regressions such as (6) to

the squared Sharpe ratio of returns to get a measure of the economic value of return predictability.

For our daily data, the Sharpe ratio is 0.0255 and so the squared Sharpe ratio is S2 = 0.00065. Using

equations (13) and (14) in Campbell and Thompson (2008), the in-sample R2 value for the dividend

yield regression translates into a gain of 0.27% in the return of a mean-variance investor with a

coefficient of risk aversion of three or, equivalently, a 12% proportional increase in the investor’s

utility.15 Even ignoring the fact that these are in-sample estimates and omit any transaction costs

(and trading limits) associated with exploiting the prediction signals, this shows that there would

not have been great economic benefits to investors from exploiting daily return predictability from

the dividend yield. Notably bigger values are seen for the regression based on the T-bill rate for

which the R2 value of 0.053 translates into an increase in the expected return of 1.8% per annum,

assuming again a coefficient of risk aversion of three. We emphasize again that these are not feasible

gains and instead should be viewed as an upper bound on the economic value of the daily return

predictability signals from the constant coefficient regression model.

For each of the predictor variables, Figures 1-4 provide graphical illustrations of the pockets

identified by our nonparametric procedure. When estimating the time-varying coefficient models,

we standardize the excess returns and the predictor variables by subtracting their respective means

and dividing by their standard deviations. All coefficient magnitudes should therefore be interpreted

in standard deviation units. However, since the standard deviation of daily returns (in percentages)

is very close to 1 already, the y-axis can roughly be interpreted in daily return percentages. The

15These numbers are computed by comparing the expected return of an investor with access to the (in-sample)
predictions relative to the return of the same investor who assumes a constant expected return.
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top panel in each figure plots time series of non-parametric kernel estimates of the local slope

coefficient (β̂t) from regressions of daily excess stock returns on the lagged predictors. Dashed

lines surrounding the solid line represent plus or minus two standard error bands, calculated using

equation (9). The bottom panel in each figure plots the local R2 measure against time. Shaded

areas underneath the local R2 curve represent the integral R2 measure (14) for periods identified

as pockets of predictability at the 5% significance level. Using a bootstrap simulation methodology

described below, areas colored in red represent pockets that have less than a 5% chance of being

spurious, areas colored in orange represent pockets that have between a 5% and a 10% chance of

being spurious, and areas colored in yellow represent pockets with more than a 10% chance of being

spurious. We comment more on this below.

First consider the predictability plots for the dividend yield predictor, shown in Figure 1.

The plots for this variable indicate the existence of 13 separate pockets with significant return

predictability. The two longest pockets occur during the Second World War and around the Korean

War. Moreover, both the frequency and average duration of the pockets has come down over time

with only four pockets appearing after 1970 and no pocket showing up in the last 30 years of our

sample. For all but two short-lived pockets, the coefficient on the dividend yield is positive inside

the pocket. Inside pockets, the R2 goes as high as 0.035 in the pocket in 1954, but mostly hovers

substantially below this level at around 0.01.

For the T-bill rate predictor (Figure 2), we identify eight pockets, only one of which occurs

after 1990. Unlike the plots for the dividend yield–and consistent with existing studies such as Ang

and Bekaert (2007)–the local coefficient estimates for the T-bill rate are mostly negative, the only

exception being the pocket in 1994. The local R2−values exceed 0.02 during two of these episodes,

but are very low during most of the remaining sample, including the period after 2000 which saw

low and downward trending interest rates.

The plots for the term spread (Figure 3) identify three pockets–all with positive coefficients–

in 1969, 1973-74, and in 1981-82. Interestingly, the last pocket coincides with changes to the

Federal Reserve’s operating procedures during the monetarist experiment in 1979-1982 which led

to significantly higher and more volatile interest rates. The local R2 is notably higher during

these three episodes, ranging between 0.015 and 0.025. Finally, the plots for the realized variance

(Figure 4) identify eight pockets. Interestingly, whereas the estimated coefficients on this variable

are negative during the four pockets identified in the first half of the sample up to 1960, they switch

sign and become positive in the three longest pockets identified in the second half of the sample.

The instability in the sign of the coefficient of this predictor is consistent with the difficulty the

finance literature has experienced in establishing a consistently positive risk-return trade-off.
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3.2 Anatomy of Pockets

Having illustrated the presence of pockets with return predictability, we move on to study the

properties of such pockets in more detail for the different predictor variables. To this end, the first

five columns in Table 2 show statistics on the number of pockets identified by our methodology.

This includes the minimum, maximum, and average pocket lengths and the fraction of the total

sample for which a pocket is identified. Results in Panel A use a 5% significance level to identify

pockets, while results in Panel B use a 1% significance level.

The length of the pockets varies significantly, even for a given predictor variable. For example,

using a 5% significance level to identify pockets (Panel A), the model based on the dividend yield

finds a pocket that lasts only 41 days (a little less than two months) while the longest pocket lasts

448 days, or a little less than two years. Similar, if less extreme, variations in pocket length are

observed for the other predictor variables. The average pocket duration varies from 177 days (eight

months) for the dividend yield variable to 385 days (18 months) for the term spread.

Figures 1-4 show that the number of pockets identified by our approach also varies substantially

across predictors–from 13 for the dividend yield model to only three for the term spread. This

translates into differences in the proportion of the sample spent inside pockets. For the dividend

yield and T-bill rate predictors, 10-11 percent of the sample is spent inside pockets while the pocket

frequencies for the term spread (8.5%) and the realized variance (7.7%) predictors are a little lower.

In all cases, these numbers are higher than what we would expect by random chance: Since we use

a 5% test size and repeat the test multiple times, we should expect to find pockets 5% of the time

even under the null of no return predictability.16

Comparing the periods spent inside pockets (columns 1-5) to periods spent outside pockets

(columns 6-10), we find that the average duration of spells outside pockets is far greater than that

spent inside pockets. This is, of course, a reflection of the fact that most of the time (at least 89%

of the sample) is spent outside pockets, but the duration measures for the “out-of-pocket” episodes

show that there are decade-long periods with no significant return predictability.

Panel B repeats the analysis in Panel A, now using a significance level of 1%. The advantage of

using this more stringent level of significance is that it is likely to trigger fewer cases of “spurious”

pockets due to the repeated use of the pocket test statistic. Although the number of pockets,

as well as their average and maximum length decline from the case with a 5% significance level

(Panel A), we see continued strong evidence of pockets even for this more stringent threshold. For

the dividend yield, T-bill rate, term spread and realized variance predictors, pockets occupy 3.0%,

3.9%, 4.9%, and 4.0% of the sample, respectively. This is between three and five times higher than

the frequency (1%) expected due to the repeated use of the pocket test statistic.

16In unreported results that use the default spread, i.e., the difference in the daily yield on BAA and AAA-rated
bonds, we find a lower-than-expected pocket frequency of only 1.1%. This result is established using a substantially
shorter sample than that used for the other predictors and so we do not further pursue the results for this predictor
variable here.
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Panels C and D in Table 2 report sample statistics on the mean, standard deviation, skewness,

kurtosis and persistence of returns inside the predictability pockets identified by our methodology

(left columns) as well as outside the pockets (right columns). Focusing on the results based on the

5% cutoff (Panel C), distributions of stock returns inside versus outside the pockets can differ by

large amounts. For example, the daily mean return inside the pockets identified by the dividend

yield predictor is 6.4 basis points (bps) per day which is more than twice as high as outside the

pockets (2.4 bps). Even larger differences are observed for the pockets identified by the T-bill rate

and the term spread predictors, for which we observe negative mean returns (-3.0 and -2.6 bps,

respectively) in the pockets, but positive means (3.3 and 3.0 bps, respectively) outside the pockets.

Returns inside the pockets also tend to be less volatile (with the exception of pockets identified

by the term spread) with positive skews for three of the four predictors (the exception being

the realized variance). The positive skews inside pockets contrast with the large negative skews

observed outside pockets. Kurtosis is also markedly smaller inside the pockets than outside for

three of four variables. This suggests that returns inside the pockets overall have lower risk than

during non-pocket periods.17

We conclude from these results that return predictability varies significantly over time. Our

nonparametric regression approach detects local pockets of return predictability and the return

distribution appears to be quite different inside versus outside such pockets. Of course, we have

not yet conducted any formal inference on these findings–a topic we turn to next.

3.3 Separating Spurious from Non-spurious Pockets

Because we use a new approach for identifying local return predictability, it is worth further ex-

ploring its statistical properties. For example, we are interested in knowing to what extent our

approach spuriously identifies pockets of return predictability. Since our approach repeatedly com-

putes local (overlapping) test statistics, we are bound to find evidence of some pockets even in the

absence of genuine return predictability. The question is whether we find more pockets than we

would expect by random chance, given a reasonable model for the daily return dynamics. Another

issue is whether shorter pockets are more likely to be spurious than the longer ones and whether

the degree of return predictability (as measured by the local R2) inside pockets is consistent with

standard models for return dynamics. A third issue is the effect of using highly persistent predictor

variables.

To address these questions, we consider two different models for return dynamics. Our simplest

model assumes a random walk with a drift for stock prices and so takes the form

rt+1 = µ+ εt+1. (15)

17This finding may in part be mechanical because periods with higher return volatility are less likely to be identified
as pockets as the test statistic underlying the pocket indicator may have less power to identify return predictability
during such times.
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To allow returns to follow a non-Gaussian distribution, we draw the zero-mean innovations, ε̂t+1 =

rt+1 − µ̂, by means of an i.i.d. bootstrap, where µ̂ is the sample mean of returns. This is clearly

not a very good model for daily stock returns, but it serves as a benchmark that allows us to gauge

the importance of adding more realistic features of return dynamics.

To account for the pronounced time-varying volatility in daily returns, we estimate a GARCH(1,1)

model which has been used extensively to characterize stock market volatility. Moreover, to ac-

count for persistence in the regressors, in addition to allowing for volatility dynamics in returns, we

incorporate (constant) return predictability from a time-varying state variable, xt, whose volatility

is also time-varying, so that the second model we simulate from takes the form

rt+1 = γxt + εrt+1 ≡ γxt +
√
hrturt+1, urt+1 ∼ (0, 1), (16)

hrt+1 = ω + α1ε
2
rt + β1hrt,

xt = ρxt−1 + εxt ≡ ρxt−1 +
√
hxtuxt, uxt+1 ∼ (0, 1),

hxt+1 = ωx + αxε
2
xt + βxhxt,

where urt+1 and uxt+1 are mutually independent. The specification in (16) is very flexible: We allow

for time-varying volatility both in the return shocks and in the predictor variable and shocks to

returns and the predictor variable can be correlated. This constant-coefficient specification nests as

a special case the conventional return prediction model used in the empirical literature. Moreover,

the GARCH(1,1) model in equation (16) allows for the possibility that local pockets of return

predictability could arise due to periods with large variations in the predictor variable, provided

that γ 6= 0.

To simulate from the model in (16), we first estimate the parameters γ, ω, α1, β1, ρ, ωx, αx and

βx by fitting GARCH(1,1) models to daily values of excess returns and the predictors. Using these

estimates, we next construct values of xt as ρ̂xt−1 +
√
ĥxtûxt, where ĥxt is the fitted variance of xt

from a GARCH(1,1) model and ûxt is obtained by bootstrapping (with replacement) from the nor-

malized residuals of the x process. Finally, we construct a series of conditional variances
{
ĥrt+1

}T−1

t=0

and obtain normalized residuals {ûrt+1}T−1
t=0 , where ûrt+1 = (rt+1 − γ̂xt) /

√
ĥrt+1. Specifically, we

construct 1,000 bootstrap samples by first drawing T + 1 bootstrap residuals
{
ûbrt
}T
t=0

at random

from {ûrt+1}T−1
t=0 with replacement, then construct a bootstrap sample of excess returns

{
rbt+1

}T−1

t=0

from (16), with ĥbr0 = ω̂/(1− α̂1 − β̂1).

Our simulations follow the empirical analysis and define pockets as periods where the estimated

coefficient on the lagged predictor variable is found to be significant at the 5% level. For each

bootstrap sample, we record the number of such pockets, along with the minimum, maximum and

average values for the pocket duration (measured in days), the R2 and the integral R2, described

in equations (11) and (14), along with the fraction of time spent inside pockets, measured as a

proportion of the full sample.
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Table 3 shows results for the actual data (first column) and the bootstrapped average, standard

errors and p-values–the latter computed as the proportion of simulations that, for each measure

listed in a given row, generates a value as large as or bigger than that found in the actual data.

Columns two through four assume the simple random walk return generating model in (15), while

columns five through seven present results for the GARCH(1,1) model in (16).

First consider the results for the model that uses the dividend yield as a predictor variable

(Panel A). On average there are 6.5 pockets in the simulations as compared with 13 in the actual

data and this difference is statistically significant: Only 1.5% of the random walk simulations

generate at least 13 pockets. The simulations can match the minimum integral R2 value but, with

p-values of 0.045 and 0.002, fail to match the mean and maximum integral R2 measures. Finally,

the fraction of the sample spent inside pockets is 5% in the simulations (as we would expect) which

is significantly smaller than the 10% observed for the actual data.

For many of the measures of local return predictability, similar patterns are found for the other

predictor variables: Although simulations based on the benchmark specifications in (15) and (16)

can generate the same number of pockets as in the original sample and also match the minimum

IR2, they have a much harder time matching the mean or maximum IR2 values. The evidence is

a bit more mixed for the fraction of time spent inside pockets. For this measure, we get p-values

of 0.013, 0.113, 0.092 for the T-bill rate, term spread and realized variance predictor variables.

Looking across the different benchmark specifications, it makes very little difference to the

results if the random walk with a constant expected return or the GARCH model with a constant

slope coefficient is used in the simulations.18

Two conclusions emerge from these simulations. First, the overall patterns of return predictabil-

ity identified by our nonparametric return regressions cannot be explained by either of the return

generating models considered here. In particular, since the model in equation (16) allows for highly

persistent predictors and time-varying heteroskedasticity, these features of our data do not seem

to give rise to the return predictability pockets that we observe. Second, the shortest predictabil-

ity pockets can be due to “chance” as they are matched in many of our simulations. Conversely,

neither the model with zero coefficients and constant expected returns (15) or the model with a

constant slope coefficient and time-varying volatility (16) comes close to matching the amount of

predictability observed in some of the longer-lived pockets.

18To test if there is evidence of significant time variation in the slope coefficient of the predictors, we also conducted
an analysis that defines pockets relative to a constant-coefficient benchmark. Pockets defined in this manner can
be thought of as contiguous periods with evidence of significant time variation in the slope coefficient. We detect a
similar number of pockets and continue to find that the mean and maximum values of the integral R2 as well as the
fraction of days with a significant pocket indicator, cannot, in most cases, be matched in the simulations. This is
evidence of significant time variation in the regression coefficients of the univariate return prediction models and, as
shown in Proposition 1, evidence against the class of affine asset pricing models.
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3.3.1 Analysis of Individual Pockets

We previously discussed the concern that our local, non-parametric approach may detect spurious

pockets due to the repeated use of pocket detection tests based on overlapping data. This naturally

raises the question whether we can tell if some of the pockets identified by our approach are more or

less likely to be spurious. Table 3 shows that simulations with zero or constant return predictability

can match some properties of the pocket distribution but fail to match others. This suggests that we

can discriminate between spurious and non-spurious pockets by looking at each individual pocket’s

IR2 value–a measure found to be hard to match in the simulations–and computing the percentage

of simulations with at least one pocket matching this value. This produces an odds ratio with small

values indicating how difficult it is to match the total amount of predictability observed for the

individual pockets.

Following this idea, for each of the pockets shown in Figures 1-4, Table 4 reports the associated

IR2 measure and the proportion of simulated pockets that generate a value at least as large. First

consider the 13 pockets identified by the return prediction model that uses the dividend yield as a

predictor (first column). Some of the pockets are highly unlikely to be due to chance–for example,

the fourth and seventh pockets generate very high IR2 values of seven and 11, respectively–with

less than 1% of the simulations being able to match these values. Other pockets, notably the first

three and the last three pockets, are more likely to be spurious as their integral R2 values are

matched in at least ten percent of the simulations. In total, five of the 13 pockets generate p-values

below 5% and so are unlikely to be spurious.

Similarly, six of the eight pockets identified by the T-bill rate regressions generate IR2 values

with p-values less than 10%. Similarly, all three pockets identified by the term spread regressions

and five of eight pockets identified using the realized variance appear to be non-spurious at the 5%

critical level.

Using the analysis in Table 4, Figures 1-4 mark in red the pockets with less than a 5% chance of

being spurious, pockets colored in orange have between a 5% and a 10% chance of being spurious,

while pockets colored in yellow have more than a 10% chance of being spurious. As expected,

pockets that are more short-lived and have lower peaks in the IR2 measure are more likely to be

deemed spurious.

These results suggest that roughly half of the identified pockets are non-spurious in the sense

that the amount of predictability in these pockets cannot be matched by the return prediction

models from which we simulate and so we are more confident that these pockets represent periods

where returns were genuinely predictable.

3.4 Multivariate Predictions

The results reported so far all use univariate prediction models, but it is of economic interest to see

to what extent the pockets identified in this manner are correlated across the different predictors.

20



A strong positive correlation might suggest that the pockets have a common economic source

and represent periods during which the identity of the particular predictor is not too critical.

Conversely, weaker correlations are suggestive that the predictable pockets are variable-specific.

Note that there might be good reasons for the pocket indicators to be only weakly correlated as

the pocket indicators will depend on how informative the individual predictors are for a particular

episode with return predictability.

For each of the predictor variables, Table 5 reports estimates of the pairwise correlations between

pocket indicators (above the main diagonal) and estimates of the pairwise correlation between local

R2 measures. The correlations are all positive with values ranging from 0.10 to 0.54 for the pocket

indicator correlations and values ranging between 0.34 and 0.80 for the local R2 value.

These findings suggest the presence of a sizeable common component in the return predictabil-

ity pockets identified by our approach. In the presence of such a common component, using a

multivariate regression model could help improve the power to identify episodes with local return

predictability. Moreover, our theoretical analysis in Section 2 suggests that the inclusion of more

state variables as predictors can bring benefits such as making our results more robust to omitted

variable biases.

For these reasons we next extend our approach to a multivariate setting. Multivariate kernel

regressions suffer from the curse of dimensionality, so instead of including all four of our predictor

variables we consider a bivariate model that includes the T-bill rate and the term spread as pre-

dictors. Figure 5 reports results from the multivariate estimation. In order to identify a pocket in

the multivariate model, we conduct an F-test of the joint significance of the coefficient vector βt at

every time t. The top panel plots the p-value from this F-test over time with the horizontal black

line representing a cutoff of 5%. The shaded gray regions represent periods in which the p-value is

less than the 5% cutoff. The bottom panel plots the local R2 from these nonparametric regressions

over time.

In total we find evidence of five pockets, four of which are deemed to be significant at the 5%

level using the simulation methodology described earlier. Moreover, the pockets identified by the

multivariate model appear to capture the same three periods in the late 60s through the early 80s

identified by both the T-bill rate and term spread models. Additionally, the pocket in the mid-90s

identified by the T-bill rate model is captured.

3.5 Robustness of Results

We next explore the robustness of our results with regards to our choice of bandwidth, the effect

of persistence in the predictor variables, and autocorrelation in returns.
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3.5.1 Choice of Bandwidth

Our decision to use a one-year kernel bandwidth to identify local pockets of predictability is not

based on any considerations for econometric optimality but reflects our priors for a reasonable

length of a predictive pocket. Nevertheless, one might reasonably have argued for the usage of a

different bandwidth and so it is important to explore how sensitive our results are to this choice.

The trade-offs in choice of the bandwidth are clear: a smaller bandwidth is likely to lead to a more

“noisy” determination of pockets, and hence to an increase in the number of pockets, while a larger

bandwidth will have the reverse effect. It is less clear how the proportion of the sample identified

to be pockets of predictability changes with the bandwidth as the power of our test procedure also

depends on the bandwidth.

To explore how the bandwidth changes our results, we compute results that alternatively use

bandwidths of 6, 18, and 24 months. Table 6 reports the results with each panel capturing a

different predictor variable. For the dividend yield, the number of pockets varies from seven (for a

kernel bandwidth of 24 months) to 21 (for a bandwidth of 6 months) and so this measure is quite

sensitive to the choice of bandwidth. However, the average length of the pockets is shorter, the

smaller the bandwidth. As a consequence, the fraction of the sample spent inside pockets is a far

more robust measure that only fluctuates between 7.9% versus 10.4%, compared to the baseline

case with a 9.8% significance rate. The mean IR2 measure is also quite robust, fluctuating between

2.36 and 2.99 for the longest and shortest bandwidth values, respectively.

For the model that uses the T-bill rate as a predictor, using a six-month bandwidth leads to the

identification of 15 pockets and a fraction of the sample spent inside pockets that equals 10.8%. This

compares with eight pockets and 11% of the sample spent inside pockets for the baseline scenario

with a one-year bandwidth. The chief effect of decreasing the bandwidth is again to break up the

longer pockets identified by the one-year bandwidth into shorter ones. Increasing the bandwidth

to 18 and 24 months has the effect of reducing the number of pockets to seven and five, while the

proportion of the sample spent inside pockets increases to 13.8% and 17.5%, respectively.

Figure 6 plots the local R2 measure along with the pockets identified for the T-bill rate model

using bandwidth values of 12 (top panel), 6, 18, and 24 (bottom panel) months. Across these very

different choices of bandwidth, pockets in 1957, 1970, 1973, and 1995 are identified. Moreover, the

shortest bandwidth (6 months) has a stronger tendency to identify what appears to be spurious,

short-lived pockets compared with the other choice of bandwidth. This clearly illustrates how using

too small a bandwidth can lead to results that are too noisy.

Similar findings emerge for the term spread and realized variance predictors, although the

number of pockets is particularly sensitive to using a short (six month) bandwidth for the term

spread variable.

We conclude from these findings that the shorter the kernel bandwidth, the larger the number

of pockets identified, but the shorter the average pocket length. Conversely, the longer bandwidth
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values tend to identify fewer pockets with a longer duration. While there is a tendency for the

mean IR2 and the fraction of the sample spent inside pockets of predictability to be higher for the

largest bandwidth, these measures are more robust than the noisier “number of pockets” measure.

Reassuringly, our results on the existence of pockets of return predictability appear to be robust

across a wide range of values of the kernel bandwidth and across predictor variables.

3.5.2 Persistence of Predictor Variables

All four of our predictors are highly persistent. This is by no means unique to our setup–our

predictors are in common use in the finance literature–but arguably persistence could be more of a

concern when dealing with daily return regressions as the predictors become even more persistent

at the daily frequency compared with the more common monthly or quarterly frequencies.

To deal with this issue, we explore the robustness of our results by using the first-differenced

value, ∆xt = xt − xt−1, of the predictors. The bottom row of each panel in Table 6 show the

results from using each of the four predictors detrended in this way. If anything, we tend to

identify more pockets and classify a higher fraction of the sample as spent inside the pockets for

the first-differenced data.19

These results again illustrate that the presence of pockets with predictable stock returns does

not reflect the high persistence of the predictors although, of course, the transformation of the

predictor variables and the econometric test used to measure the pockets may affect the exact

location of the pockets.

3.5.3 Autocorrelation in returns

We also explore the sensitivity of our results with regards to the presence of mild autocorrelation

in daily stock market returns which may be induced by nonsynchroneous trading and/or mar-

ket microstructure effects. We emphasize that the serial correlation is very mild–the first-order

autocorrelation in daily stock returns is 0.068 for the full sample. Indeed, when we apply our non-

parametric approach to the stock return series from which we have filtered out the first-order serial

correlation, we find 11, 7, 3, and 7 pockets for the four predictors (dividend-price ratio, T-bill rate,

term spread, and realized variance), as compared to the 13, 8, 3, and 8 pockets we found for the

original returns data. Moreover, the percentage of the sample taken up by pockets of predictability

is very similar to what we find in the original returns.

19We also considered an alternative way of detrending the predictors, namely by subtracting an exponentially
weighted average of past daily values of each predictor, i.e., x̃t = xt − [λ(1 − λ)/(1 − λp)]

∑p
j=1, where λ ranges

between 0.97 and 0.99 and the cutoff, p, is set at one year. This way of detrending the data is appropriate if the
regressor follows an integrated moving average process. Again, we found that the presence of pockets is robust to
detrending the regressors in this manner.
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4 Learning About Cash Flow Growth

This section explores whether the evidence of local pockets with return predictability is consistent

with learning dynamics induced by an asset pricing model where expected returns are constant

but the cash flow process is partially predictable. We propose a new specification for cash flow

dynamics that builds on, and generalizes, the predictive systems approach pioneered by Pastor and

Stambaugh (2009). We assume that cash flows consist of an unobserved expected growth component

that is highly persistent and a temporary “unexpected growth” shock. This unobserved process is

correlated with a set of observable state variables which, through their correlation with expected

growth, gain predictive power over future cash flows.

A novel feature of our approach is that it allows the correlation between expected cash flows

and predictors to be state dependent. This feature is likely to more accurately reflect the time-

varying predictive power of economic state variables over future cash flows. For example, shifts

in correlations between term structure variables and cash flows could result from changes in the

monetary policy regime. Indeed, the predictive content of interest rates or the term spread over

future cash flows is unlikely to be the same under quantitative easing or “zero lower bound” regimes

compared to under a more conventional monetary policy regime. We capture this idea by assuming

that the underlying predictor is correlated with cash flow growth only in one regime while the

correlation is zero in the other regime. These particular assumptions can of course be relaxed, but

make our results easier to interpret.

The following subsection introduces our predictive systems model with regime switching.

4.1 A Predictive Systems Model With Regime Switching

We develop a model for the dividend process that captures a small predictable component in

cash flows. This is consistent with recent empirical findings such as van Binsbergen and Koijen

(2010), Kelly and Pruitt (2013), and Pettenuzzo, Sabbatucci, and Timmermann (2018). Specifically,

let ∆dt+1 = log(Dt+1/Dt) be the growth rate in (log-) dividends and assume that this can be

decomposed into an expected cash flow component, µt, and a purely temporary shock, ut+1 :

∆dt+1 = µt + ut+1. (17)

We capture persistence in daily cash flow growth by means of an autoregressive component in

µt. In addition, the mean of the expected cash flow process, µt, is affected by a state variable,

st, which captures discrete shifts to the process and, thus, also can induce persistence in cash flow

growth.20 Finally, expected cash flows are affected by a transitory shock, wt+1 :

µt+1 = µµ,st+1 + ρµµt + wt+1. (18)

20See also David and Veronesi (2013) for a related asset pricing model with regime switching.
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While investors do not observe the expected cash flow process, they are assumed to observe a

predictor variable, xt+1, that is driven by the same state variable, st+1, and follows a similar

dynamic process:

xt+1 = µx,st+1 + ρxxt + vt+1. (19)

We assume that the innovations to the processes in (17) - (19) are normally distributed with mean

zero, (ut+1, wt+1, vt+1)′ ∼ N(0,Σst+1), where Σst+1 is a state-dependent variance-covariance matrix:

Σst+1 =

 σ2
u σuv σuw

σuv σ2
v,st+1

σvw,st+1

σuw σvw,st+1 σ2
w,st+1

 . (20)

Note that we constrain this covariance matrix to have a particular form since only the variance

of the expected cash flow (σ2
w,st) and predictor variable (σ2

v,st), in addition to their covariance

(σvw,st), are state dependent. In contrast, the variance of the purely temporary shocks to dividend

growth (σ2
u), or their correlation with the other shocks in the model (σuv, σuw), do not depend on

the underlying state variable, st. We impose these constraints to ensure that the identified states

capture changes to how informative the predictor variable, xt+1, is with respect to the expected

value of the cash flow process, µt+1.

We focus on the case with two states so that st ∈ {1, 2} and assume that st follows a first-order

Markov chain with transitions

πii = P(st+1 = i|st = i), i = 1, 2. (21)

Moreover, st is assumed to be independent of all past, current and future values of (ut, wt, vt)
′. We

collect the state transitions in a 2×2 transition probability matrix Πs and define the unconditional

mean, volatility and ergodic state probabilities

µµ,s =

[
µµ,1
1−ρµ
µµ,2
1−ρµ

]
, σw,s =

[
σw,1

σw,2

]
, π̄ =

[
P (st = 1)

P (st = 2)

]
.

Using results from Timmermann (2000), the unconditional mean and variance of the µt process

are given by

E [µt] = π̄′µµ,s, (22)

V ar (µt) = π̄′

(
(µµ,s − µµι)� (µµ,s − µµι) +

σ2
w,s

1− ρ2
µ

)
. (23)

We use these expressions in the simulations and to calibrate the parameters governing dividend

growth. In particular, we ensure that the unconditional mean and variance of µt are matched. For
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any choice of state transition probabilities and the regime 1 mean and conditional variance of µt,

these expressions imply choices for the regime 2 mean and conditional variance. This is explained

in greater detail in section 4.4.

4.2 Filtering of the State Variables

The predictive systems model in (17) - (19) is a nonlinear state space model as it contains a

combination of linear and regime-switching dynamics and thus standard Kalman filtering methods

cannot be used to filter the states and evaluate the likelihood. To address this issue, we approximate

the likelihood function of the model using a discretization of µt as proposed in Farmer (2017). We

briefly explain how this is done.

In the first step, we construct a discrete approximation to the stochastic process governing

the dynamics of the state variables, µt and st. Because the shocks to the measurement and state

equations in (17) - (19) are correlated, the distribution of the state in the next period conditional

on the state in the current period depends on the values of the observables and so the transition

matrix constructed to approximate the dynamics will be time-varying. We handle this issue as

follows. Using properties of correlated normal random variables, we have

wt |ut, vt, st ∼ N
(
µw|t, σ

2
w|t

)
,

where µw|t and σw|t are given by

µw|t =

(
σuwσ

2
v,st − σvw,stσuv

)
ut +

(
σvw,stσ

2
u − σuwσuv

)
vt

σ2
uσ

2
v,st − σ2

uv

,

σ2
w|t = σ2

w,st −
σ2
uwσ

2
v,st + σvw,stσ

2
u

σ2
uσ

2
v,st − σ2

uv

.

Next, define a new random variable µt,M which takes M discrete values
(
µ1, . . . , µM

)
. For

a given choice of M , define a grid from the set of M equally spaced points between E [µt] −√
(M − 1) Var (µt) and E [µt] +

√
(M − 1) Var (µt). Let each point µm be associated with the

interval
[
µm, µm

]
where µ1 = −∞, µM = ∞, and µm = µm+1 = µm+µm+1

2 for m = 1, . . . ,M − 1.

Further, construct the transition probabilities for µt,M at time t as

P

(
µt+1,M = µm

′ |µt,M = µm, ut+1, vt+1, st+1

)
= Φ

(
µm
′ − µµ,st+1 − ρµµm − µcond,t+1

σw|t+1

)

− Φ

(
µm
′ − µµ,st+1 − ρµµm − µcond,t+1

σw|t+1

)
, (24)

where Φ is the standard normal CDF. This way of computing transition probabilities of discrete

approximations to continuous stochastic processes was first proposed by Tauchen (1986).
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In the presence of two variance regimes, we have a total of 2×M states in the discrete chain.

The ordering convention we adopt for the states is

ψ =



µ1 s1

µ2 s1

...
...

µM s1

µ1 s2

...
...

µM s2


(25)

The filtered state probabilities, ξ̂t|t , can therefore be represented by a (2×M) × 1 vector whose

individual entries refer to the probability of being in each of the state pairs listed in the ψ matrix

in (25). Because the innovations to the state and observation equations are correlated, the discrete

Markov chain is non-homogeneous with transition matrix at time t given by Πt. Each element of

Pt is defined as the probability of transitioning between a particular pair of states. For example,

assuming M ≥ 2, the (2, 1) element of Pt corresponds to the probability of transitioning from state

(µ1, s1) at time t to state (µ2, s1) at time t+ 1.

The forecast of next period’s state is given by

ξ̂t+1|t = Ptξ̂t|t , (26)

while the state probabilities are updated recursively according to

ξ̂t+1|t+1 =
ξ̂t+1|t � ηt+1

1′
(
ξ̂t+1|t � ηt+1

) , (27)

where 1 is a (2×M)× 1 vector of ones and ηt+1 denotes the joint conditional densities

ηt+1 =



p
(
ut+1, vt+1

∣∣µt = µ1, st+1 = 1
)

...

p
(
ut+1, vt+1

∣∣µt = µM , st+1 = 1
)

p
(
ut+1, vt+1

∣∣µt = µ1, st+1 = 2
)

...

p
(
ut+1, vt+1

∣∣µt = µM , st+1 = 2
)


.
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From the time series
{
ξ̂t|t

}T
t=1

we can construct filtered estimates of µt as

µ̂t|t = (ψι1)′ ξ̂t|t (28)

where ι1 is the first column of the (2× 2) identity matrix.

4.3 Asset Prices and Returns

We next develop a simple model for pricing stocks under the assumption that dividends follow

the Markov switching predictive systems model in (17) - (19). To this end, we use a simple

log-linearized present value model. Following Campbell and Shiller (1988), the logarithm of the

approximate present value stock price can be written as

pt = dt +
c

1− ρ
+ Et

 ∞∑
j=0

ρj [∆dt+1+j − rt+1+j ]

 , (29)

where pt and dt denote the log of the stock price and dividends, respectively, ∆dt+j and rt+j are

the dividend growth rate and (log-) returns in period t + j, and c, ρ are (linearization) constants

as in equation (5). Under the assumption that expected returns are constant, Et [rt+j ] = r̄ for all

j and so (29) simplifies to

pt = dt +
c− r̄
1− ρ

+ Et

 ∞∑
j=0

ρj∆dt+1+j

 . (30)

Thus, calculating the stock price in (30) only requires us to compute the expected future dividend

growth, ∆dt+1+j for j ≥ 0. Recall from (28) that the filtered state estimate of µt is given by

µ̂t|t = (ψι1)′ ξ̂t|t . To compute an expression for the expected value of future dividend growth, we

assume that the transition matrix remains as Pt, which amounts to assuming that agents do not

account for the effect of their future learning on prices when projecting future cash flows. Under

this assumption, we have

Et [∆dt+1+j ] = (ψι1)′
(
P jt ξ̂t|t

)
. (31)

Using (30), and assuming that (I − ρPt) is invertible for all Pt, we can compute an expression
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for the log stock price

pt = dt +
c− r
1− ρ

+
∞∑
j=0

ρjEt [∆dt+1+j ]

= dt +
c− r
1− ρ

+
∞∑
j=0

ρj (ψι1)′
(
P jt ξ̂t|t

)
= dt +

c− r
1− ρ

+ (ψι1)′
(

(I − ρPt)−1 ξ̂t|t

)
. (32)

From this equation, we obtain an expression for stock returns:

rt+1 = c+ ρ (pt+1 − dt+1) + dt+1 − pt

= c+ ρ
c− r
1− ρ

+ (ψι1)′
(

(I − ρPt)−1 ξ̂t+1|t+1

)
+ ∆dt+1 −

c− r
1− ρ

− (ψι1)′
(

(I − ρPt)−1 ξ̂t|t

)
= r + ∆dt+1 + (ψι1)′ (I − ρPt)−1

[
ξ̂t+1|t+1 − ξ̂t|t

]
(33)

We use equations (32) and (33) along with the dividend process in (17) - (19) to simulate the

state and predictor variable, dividends, stock prices, and stock returns.

4.4 Calibration of Model Parameters

In practice, the daily dividend process is not observed, and so we have to use a proxy for ∆dt+1. To

this end, we use the ADS index proposed by Aruoba, Diebold, and Scotti (2009). This is a daily

business cycle index that is constructed using daily updates to “real” economic variables observed

at different frequencies such as weekly payroll figures, monthly industrial production, and quarterly

GDP growth. The ADS index is updated daily by the Federal Reserve Bank of Philadelphia and

closely tracks the business cycle. The daily ADS time series is highly persistent but is constructed

to revert to a mean of zero. As observed by Rossi and Timmermann (2015), the ADS index is a

good candidate for picking up a slow-moving component in consumption or dividend growth.21 We

rescale the ADS index so that when it is simulated at a daily frequency, the time-aggregated mean

and standard deviation at a yearly frequency are 5.44% and 5.71% respectively. These numbers

are the unconditional mean and standard deviation of annual dividend growth computed using

dividends on the CRSP value-weighted index over the same sample period as the T-bill rate. As

our predictor variable, we use the T-bill yield which, as we saw earlier, captures a number of pockets

with return predictability.

21Rossi and Timmermann (2015) find that the correlation between an economic activity index, constructed using a
similar methodology to that used for the ADS index, and growth in real personal, nondurable consumption is 15.4%
and 39.7% at the quarterly and annual horizons, respectively.
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Values of the calibrated parameters are listed in Table 7. We choose the diagonal elements of

the state transition matrix (π11 = 0.995, π22 = 0.9986) so that the expected duration of the first and

second regimes are 200 and 700 days, respectively. The mean of the observable predictor variable

(the T-bill rate) in the first regime, µx,1 is set so that its expectation in this state equals 2.15%

while its expectation in the second state (µx,2), at 5.86%, is calibrated such that its unconditional

mean across the two states matches the overall sample mean of the 3-month Treasury bill rate.

We choose a value of the autoregressive parameter for the daily expected cash flow growth

process, ρµ = 0.9953, which implies an annualized persistence in cash flows of about 0.3. The level

of persistence chosen in our simulations is quite a bit lower than that assumed in the literature on

“long-run risk”, see, e.g., Bansal and Yaron (2004).22

Given our choice for ρµ, the annualized means of the expected growth process, 8.32% in regime

1 and 4.62% in regime 2, are again calibrated so that the unconditional mean matches the sample

mean of the rescaled ADS series. The same is true for the standard deviation of the innovations

to x. The standard deviation of the innovations to µ are chosen to be equal across regimes. That

is, we impose σw,1 = σw,2. We also impose that σuv = 0 across both regimes, and that σvw,1 = 0.

Lastly, we choose a correlation between shocks to expected cash flows and shocks to the observed

predictor variable to be -0.2 in regime 1 and 0 in regime 2, so that the predictor is informative over

innovations to cash flow growth in the first but not in the second regime. While the sign of the

correlation is not important for the model’s ability to generate return predictability pockets, the

negative correlation can be thought of as reflecting that higher interest rates tend to be associated

with lower real growth.

4.5 Simulation Results

Using the calibrated parameters of the regime switching predictive systems model, we generate

simulated data and run the local, non-parametric regressions exactly as in the empirical specification

to identify pockets and to see if the characteristics of such pockets match the characteristics of the

pockets identified in the actual data. Since we are interested in matching the pocket evidence in

the actual data (Table 2), we generate samples whose length match that of the predictor variable.

We show results for the two significance levels (5% and 1%) considered in our study. We

compare the simulated statistics to the empirical results from the model that uses the T-bill rate as

a predictor variable (second row in Table 2). For the case with no learning, investors are assumed

to know the state of the underlying Markov chain and µt is set equal to the value corresponding to

the interval in which the true continuous value lies. Under incomplete learning, investors do not

observe the state, st, and instead have to form beliefs about the probability that they are in any

22For example, the coefficient on the expected growth rate in Bansal and Yaron (2004) is 0.979 for monthly data
which translates into roughly 0.999 at the daily frequency, assuming 21 days in a month. Similarly, Bansal, Kiku,
and Yaron (2012) analyze a model whose implied persistence of the expected growth rate and of volatility is 0.9988
and 0.99995, respectively, at the daily frequency.
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particular (µt, st) regime.

Before studying the ability of the simulated model to generate predictability pockets, first

consider the overall area under the local R2 curves (R̄2) displayed in Figures 1-4 as well as the

areas above (R̄2
+) and below (R̄2

−) the zero line, labeled “positive” and “negative”, respectively.

Defining indicator variables I+
τ = 1 if R2

τ ≥ 0, and I+
τ = 0 otherwise, while I−τ = 1− I+

τ , we have

R
2

=
1

T

T∑
τ=1

R2
τ ,

R
2
+ =

(
T∑
τ=1

I+
τ

)−1 T∑
τ=1

I+
τ R

2
τ ,

R
2
− =

(
T∑
τ=1

I−τ

)−1 T∑
τ=1

I−τ R
2
τ ,

If a return model does not match the average R2, this suggests that it does not generate much

predictability. Table 8 shows that the average local (R̄2) equals 0.41%. This value cannot be

matched by the simulations with no learning which generate, on average, a local R2 of 0.26%,

whereas the models with learning easily match this measure (average local R2 of 0.50%). The key

reason for the no-learning model’s failure to match the amount of return predictability observed in

the data is that it generates too small positive values of the local R2 (0.30% on average)–something

that is not matched in the actual sample (0.53%) which in turn closely lines up with the learning

model (0.54%).

Turning to the emergence of return predictability pockets, first consider the results based on

the 5% significance level (Panel A in Table 9). The model with no learning generates an average

of only 3.9 pockets as opposed to the eight pockets observed in the actual sample and only 3.8% of

the sample is spent inside pockets compared to 11.0% in the actual data. The no-learning model

also does not get close to matching the values observed in the actual data of the mean or maximum

integral R̄2 statistics or the number of pockets.

In sharp contrast, the model with learning dynamics is capable of matching all sample statistics

based either on the value of the integral R2 measure or the length of the pockets. For example, the

number of pockets is eight in the sample as compared to an average value of 7.1 in the simulations,

and the simulations with learning also match the fraction of the sample spent inside pockets (13.2%

versus 11.0%) quite closely. Even the mean and maximum values of the IR2 are matched in the

simulations with learning effects.

These findings carry over to the results that use the 1% significance level to identify pockets

(Panel B in Table 9). For example, whereas the model with no learning only generates 0.7 pockets

on average, the model with learning generates an average of 3.4 pockets, a number that, while

slightly below the four pockets observed in the data, is within sampling error of that number.

31



The fraction of the sample spent inside pockets with predictability in the actual data (3.9%) is

also matched more closely in the simulations with learning (5.8%) than in the simulations without

learning (0.5%).

To further illustrate these findings, Figure 7 shows the cumulative distribution functions of

the integral R2 measure under no-learning and learning in the cash flow process of the simulated

predictive systems model with regime switching. We also show (as vertical red bars) the IR2 values

identified in the actual data. Clearly the largest values of the IR2 are extremely unlikely under the

no-learning model but much more likely to occur under the model with learning.

We conclude the following from these simulations of our Markov switching predictive systems

model. First, in the absence of learning, a model with discrete changes in how informative the

observed predictor is over the (unobserved) mean of the cash flow process cannot match the local

nature (pockets) of the temporal patterns we observe in return predictability. Second, a model

that introduces learning about the underlying state process driving cash flows is capable of gen-

erating return predictability pockets with similar features as those observed in the actual data.

Significantly, both the number of pockets and the average time spent in pockets is matched by this

model. Third, since our simulations assumed a constant risk premium, the results suggest that

learning about cash flow dynamics could be an alternative explanation to the time-variation in

return predictability that we document in the first part of the paper.

4.6 Learning Effects and Pockets

The simulation results in the previous section show that investor learning in a predictive systems

model with regime switching dynamics is capable of generating the pockets of return predictability

that we find empirically. In particular, contrasting the results in Table 9 under learning and no

learning suggests that investors’ perceptions of the underlying state can be a key driver of return

predictability. To explore if this is indeed the case, we next investigate the ability of an investor’s

misperception of expected growth to explain the rise and fall of pockets. To this end, define the

belief discrepancy measure

∆µ̃t ≡ µ̂t|t − µt, (34)

which is the difference between an agent’s inference about expected growth (µ̂t|t) and the true

value of expected growth at time t, µt. To link local return predictability to this measure of belief

discrepancy, we consider a variety of regression specifications of the following form

ypocketit = α+ x′itβ + γ1 {edgeit}+ 1 {edgeit}x′itδ + εit. (35)

Here the i subscript refers to the simulation number and t refers to the time period within a

simulated sample, from 1 to 15,860 (the sample size for the 3-month Treasury bill). The dummy

variable edgeit takes the value 1 for the first and last 126 (half of the kernel regression bandwidth)

32



periods of the sample, and zero otherwise. The dependent variable ypocketit is chosen to be either an

indicator for whether a pocket is identified at period t in sample i or the local R2 measure from

the kernel regression. The vector xit contains different functions of ∆µ̃it, namely (i) xit = ∆µ̃it,

(ii) xit = ∆µ̃2
it, (iii) xit = |∆µ̃it|, and (iv) xit = [ ∆µ̃+

it ∆µ̃−it ], where ∆µ̃+
it = max(∆µ̃it, 0) and

∆µ̃−it = min(∆µ̃it, 0). In addition to these four discrepancy measures, we also consider a measure

that captures the uncertainty about the underlying regime sit, namely (v) π̂it|t(1− π̂it|t).
To summarize the results across the 1,000 simulations, we report the coefficient estimate as

the average coefficient estimate across simulations. Standard errors of the coefficient estimates are

computed as the standard deviation of the estimates across simulations scaled by the square root of

the number of simulations. These standard errors are then used to compute p-values. We consider

both choices for ypocketit and allow for 5% and 1% significance thresholds for identifying pockets.

Note that the choice of significance threshold does not affect the local R2 results, only the pocket

indicator variable results.

The results, reported in Table 10, show that the belief discrepancy measure, ∆µ̃t, is strongly

negatively correlated with both the pocket indicator and the local R2 measure so that periods

in which investors are overly pessimistic about dividend growth are more likely to coincide with

pockets of return predictability. Moreover, ∆µ̃t explains a fairly high proportion of the variation in

the two pocket measures with R2 values between 13% and 19%. An even stronger result is obtained

when we introduce the squared belief discrepancy, ∆µ̃2
t , which explains between 22% and 30% of

the variation in the two pocket measures.

Figure 8 uses a single simulation to illustrate the relation between the pocket indicator and the

belief discrepancy measure, ∆µ̃it. In this particular simulation there are three instances in which

agents substantially underestimate the true growth rate of cash flows and the figures shows how

each of these episodes is associated with a pocket of predictability.

In unreported results we find that the switching indicator is not significantly correlated with

either measure of return predictability. This happens because regime switches are quite rare in our

sample. Thus, the mere possibility of a regime switch seems to generate local return predictability

even in cases where a regime switch fails to materialize.

This finding is related to the effect of the uncertainty about the current state, π̂t|t(1− π̂t|t) on lo-

cal return predictability. We find that uncertainty about the current state is significantly positively

correlated with both the pocket indicator and the local R2, although at 4-5%, the explanatory

power of this variable is quite low.

We conclude from these findings that variation in investors’ learning about a highly persistent

growth rate of the cash flow process can create pockets of return predictability. It is when the belief

discrepancy measure and uncertainty about the underlying state are largest that the effect tends

to be biggest.
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4.6.1 Difficulty of Investors’ Learning Problem

Our model effectively captures investors’ learning about a persistent risk component in the cash

flow process. The presence of return predictability pockets is directly related to the difficulty of the

learning problem for the investor. If the learning problem is too difficult, investors never detect the

presence of pockets in which the predictor variable is correlated with cash flow growth. Conversely,

if investors can estimate the underlying cash flow growth regime very accurately, cash flow growth

will be predictable while stock returns will not be predictable as the stock price immediately

incorporates any news about an underlying regime switch.

The difficulty of investors’ learning problem seems to most significantly depend on three param-

eters: the persistence of expected cash flows, the relative duration of regime 1 to regime 2, and the

correlation between the predictor variable and expected cash flows in the first regime. In particular,

we find that for a given value of the correlation, the difficulty of the learning problem is similar

to the baseline calibration for a more persistent cash flow process and a relatively more infrequent

regime 1 (higher persistence of regime 2). Similarly, for a given value of the relative duration of the

two regimes, the difficulty of the learning problem is similar to the baseline calibration for a more

persistent cash flow process and a higher value of the correlation between expected cash flows and

the predictor variable in regime 1.

Intuitively, if regime 1 is more infrequent, then for the same persistence in expected cash flows,

the investor will have a more difficult learning problem, because they may more often misattribute

large fluctuations in dividend growth to a regime change as opposed to just noise. Similarly, if

expected cash flows and the observed predictor are more strongly correlated, then for the same

persistence in expected cash flows, the investor will have an easier learning problem because they

can be more confident that unusual fluctuations in dividend growth are due to a regime change.

Fixing the values of all parameters except for the persistence of cash flow growth, values com-

parable to those used by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) lead to

an overidentification of pocket periods. In other words, more persistent cash flow growth all else

equal makes the learning problem ‘too difficult’ and so long periods where there exists genuine

predictability of cash flows through xt go unincorporated into asset prices. This is because it takes

longer for agents to detect a switch to the regime with non-zero correlation. Conversely, if cash flow

growth is even less persistent than in the calibration, the learning problem is ‘too easy.’ Agents are

able to quickly identify switches between regimes and thus information is incorporated into prices

too quickly to see long periods of predictability.

5 Economic Sources of Local Return Predictability

We argued earlier in the paper that the return predictability pockets detected by our analysis

can be used as a diagnostic that helps identify the sources of return predictability. We next use
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this idea to explore whether the evidence of local return predictability is associated with business

cycle movements, changes in variables known to track market sentiment, and shifts in broker-dealer

leverage. Moreover, we also study whether the pockets with return predictability could have been

detected in real time. This is a question with implications for whether investors could have exploited

localized return predictability and hence affects the interpretation of how our findings are related

to market efficiency.

5.1 Pockets and Variation in the Business Cycle

Studies such as Rapach, Strauss, and Zhou (2010), Henkel et al. (2011), and Dangl and Halling

(2012) find a systematic relationship between return predictability in the stock market and economic

recessions. To explore this relationship, we regress the pocket indicator generated by our univariate

linear regressions, Ipockett , on a constant and the NBER recession indicator, NBERt

Ipockett = µ+ βNBERt + εt. (36)

A positive coefficient β suggests that return predictability pockets are more likely to occur during

economic recessions while a negative value of β suggests the opposite.

To see whether the extent of return predictability depends on the state of the economy, we also

regress the local R2 measure on the NBER indicator

R2
t = µ+ βNBERt + εt. (37)

Here a positive coefficient indicates that return predictability tends to be higher during recessions,

while a negative coefficient would indicate the opposite

The results, reported in the top panel of Table 11, show that local predictability of stock returns

is indeed related to the business cycle, with seven of eight coefficients being positive. However,

recession risk does not appear to be the main driver of local pockets of return predictability as the

R2-values of these regressions are very low, less than five percent for all predictors with exception

of the term spread for which the R2 is 17% in either regression.23 Moreover, results from the

regression in (36) are more mixed with a negative estimate of β for the dividend yield predictor

and with only two of the four predictors (T-bill rate and the term spread) generating significantly

positive coefficients at the 5% critical level.

5.2 Pockets and Variation in Sentiment

Our second regression uses the sentiment indicators proposed by Baker and Wurgler (2006, 2007)

as a means to see whether return predictability is correlated with market sentiment. We first

23We find similar results when we project the pocket indicator on an early recession indicator (the three months
after the peak of the cycle) or a late recession indicator (three months before the trough).
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assign to each day within a given month the value of the Baker-Wurgler sentiment indicator, BW ,

of the same month. Then, analogously to the analysis of a business cycle component in return

predictability, we estimate daily regressions

R2
t = µ+ βBWt + εt,

Ipockett = µ+ βBWt + εt. (38)

The second panel in Table 11 shows evidence that large values of the BW index are associated

with a greater degree of local return predictability for the T-bill rate and the realized variance, but

not for the dividend yield and the term spread. Moreover, the R2 from these regressions is quite

low with exception of the realized variance for which it is around 10%.

5.3 Pockets and Variation in Leverage

Our third regression uses seasonally adjusted changes in U.S. broker-dealer leverage as constructed

by Adrian, Etula, and Muir (2014) to see whether return predictability is correlated with the

presence of funding constraints. Their measure is constructed using quarterly Flow of Funds data

on the assets and liabilities of security brokers and dealers. Again, we assign each day within a

given quarter the value of the leverage factor, LF , of that same quarter. We then estimate daily

regressions

R2
t = µ+ βLFt + εt,

Ipockett = µ+ βLFt + εt. (39)

The bottom panel in Table 11 shows that decreases in broker dealer leverage are associated with

a greater degree of local return predictability for the dividend yield and the T-bill rate but not

for the term spread and the realized variance. Because lower leverage is associated with lower

availability of arbitrage capital (tighter funding constraints), the negative sign of the significant

slope coefficients is what we would expect if return predictability is likely to be lower when there

is more arbitrage capital available to exploit such predictability.

Turning to the magnitude of the relations, a one-standard deviation decrease in leverage, which

corresponds to roughly a 14 percentage point drop, is associated with an increase in the local R2 of

up to 0.056 percentage points for the T-bill rate. Despite the economic significance of these results,

the R2 from the regressions is quite low, with the highest being 1.48% for the T-bill rate.

5.4 Out-of-sample Return Predictability

So far our methods for identifying return predictability used two-sided kernels, i.e., windows con-

sisting of data both before and after the point at which local return predictability is being tested. In
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real time, investors only have access to data prior to and including the point at which the forecast

is being generated and so must use a one-sided window to estimate their model.

Assuming that return predictability is not driven by a time-varying risk premium, a one-sided

prediction approach should not be able to generate better return forecasts than a simple model with

a constant equity premium. To test if this implication (absence of one-sided return predictability)

holds, we estimate the same model as in Section 3 but use a one-sided analog of the Epanechnikov

Kernel in (12):

K(u) =
3

2

(
1− u2

)
1 {−1 < u < 0} , (40)

so that only past data are used to estimate the time varying relationship between y and x as

indicated by 1 {−1 < u < 0}.24

We construct two forecasts of excess returns at time t + 1. The first uses the prevailing mean

benchmark of Goyal and Welch (2008):

r̄t+1|t =
1

t

t∑
s=1

rs. (41)

The second forecast is generated by the nonparametric model:25

r̂localt+1|t = r̄t+1|t + x′tβ̂t. (42)

To see if local return predictability could have been exploited in real time, we test the null of

equal predictive accuracy (equal squared forecast errors) for the prevailing mean model in (41) and

the time varying mean model in (42). To this end, we consider values of the test statistic proposed

by Diebold and Mariano (1995) which is based on the difference in squared forecasts errors

∆SEt+1 =
(
rt+1 − r̄t+1|t

)2 − (rt+1 − r̂localt+1|t

)2
. (43)

Positive values of ∆SEt+1 show that the time-varying mean model produced more accurate return

forecasts, while negative values suggest that the constant equity premium (prevailing mean) model

produced the most accurate one-sided forecasts.

Next, we compute the sample mean of ∆SEt+1 across the out-of-sample period, T0,..., T :

µ̂∆MSE =

∑T−1
t=tpre

∆SEt+1

T − T0
,

24Note that the multiplicative factor becomes 3
2

instead of 3
4

in (12) so that the kernel function in (40) still integrates
to one.

25To get a forecast of the level of stock returns, x′tβ̂t is rescaled by the unconditional standard deviation of r.
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and use this to compute the Diebold-Mariano test statistic as

DM =
µ̂∆MSE

SE(µ̂∆MSE)
, (44)

where SE(µ̂∆MSE) is a Newey-West (HAC) estimate of the standard error of µ̂∆MSE .

The first column in Panel A of Table 12 shows that, on average, across all days in the out-of-

sample period, the prevailing mean model (41) outperforms the model with a local time-varying

mean, (42) for all predictor variables. Additionally, all of these test statistics are statistically

significant at conventional levels.

These results show that local return predictability could not have been exploited in real time

to produce return forecasts that “on average” were more accurate than a model that assumes a

constant equity premium. In fact, the one-sided estimates of the regression coefficients in (7) are

notably noisier than their two-sided equivalents. The stark difference between the one-sided and

two-sided results can thus be explained by the latter’s use of more information, and its improved

power to identify local return predictability.26

The results reported in the first panel of Table 12 pertain to the average out-of-sample per-

formance of the local return prediction models. However, it is worth exploring whether the time-

varying mean model outperformed the prevailing mean in periods that were identified, ex-ante, as

pockets using a one-sided window.

To evaluate whether evidence of return predictability pockets could have been used in real time,

we use left-sided kernel estimates of the model parameters in (8) as well as a left-sided estimate

of the local R2 value in (11). We then define a real-time return predictability pocket as a period

in which the left-sided R2, estimated using a backward-looking kernel, exceeds 0.01 for at least

10 days. We use this simpler definition rather than relying on one-sided standard errors of the β

estimates because there is no result establishing consistency for one-sided standard errors of the

form in equation (9). Moreover, an R2 value of 1% broadly corresponds to the pockets identified

in Figures 1-4.27 The requirement that a pocket has lasted 10 days reduces the chance of picking

up very short-lived, spurious pockets, but the results are not sensitive to our choice of the choice

of a 10-day threshold.28

To compute DM tests inside versus outside pockets, let 1{pockett} be an indicator variable for

whether or not time t was identified as belonging to a pocket period in our one-sided estimation

26Lettau and van Nieuwerburgh (2008) report a similar finding for a return predictability model with breaks to the
dividend yield.

27We did not experience with alternative cutoff values for the R2 value, but it is clear what the trade-offs are:
higher cutoff values will reduce the period of time spent inside pockets, which can reduce the power of the CW and
DM test statistics as they are computed on a smaller sample. Lower cutoff values will increase the percentage of the
sample inside pockets but may also lead to the inclusion of periods with spurious return predictability.

28For example, the results are not sensitive to whether a five or a twenty day minimum pocket length is used.
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exercise. We then define in- and out-of-pocket versions of the DM test statistic as

DMin =

∑T−1
t=T0

∆SEt+11{pocket}t+1

Tpocket

SE

(∑T−1
t=T0

∆SEt+11{pocket}t+1

Tpocket

) ,

DMout =

∑T−1
t=T0

∆SEt+1(1−1{pocket}t+1)

T−T0−Tpocket

SE

(∑T−1
t=T0

∆SEt+1(1−1{pocket}t+1)

T−T0−Tpocket

)
,

where Tpocket =
∑T−1

t=T0
1{pocket}t+1 is the number of days spent inside ex-ante identified pockets.

The second and third columns of Table 12 show results for the real-time identified pockets.

Inside the pockets, the DM test statistics are positive for all four predictor variables, though they

fail to be statistically significant. Conversely, outside the return predictability pockets, we see

strong evidence for all four predictors of negative and highly significant DM tests. These results

show that while the backward-looking kernel forecasts are significantly less accurate than forecasts

from the prevailing mean model outside the return pockets, they are actually more accurate inside

the ex-ante identified pockets, though not at a statistically significant level.

We can also test if the relative performance of the prevailing mean and kernel prediction model

is similar inside versus outside pockets. The final column in Table 12 show the results from this

test which compares the MSE performance of the left-sided kernel forecasts to the prevailing mean,

reporting the p-value for a one-sided test with small p-values indicating that the kernel forecasts are

relatively more accurate inside pockets compared to outside the pockets. For the forecasts based

on the dividend yield and the T-bill rate we obtain p-values of 0.06 and 0.04, respectively, while

the p-values for the term spread and realized variance predictors are 0.14 and 0.15, respectively.

These results lend further credibility to the conclusion that the out-of-sample performance of at

least a subset of our prediction models is notably better inside compared to outside pockets that

have been identified using only historically available information.

An issue with using one-sided estimation windows for the out-of-sample forecasts is that they

tend to generate coefficient estimates that are quite noisy. To deal with this, we use the “reflection”

technique proposed by Chen and Hong (2012). Specifically, in order to estimate βt at a given time

t, we set the data (Xt+1, . . . , Xt+hT−1) = (Xt−1, . . . , Xt−hT+1) and similarly set (yt+2, . . . , yt+hT ) =

(yt, . . . , yt−hT+2). That is, we “reflect” the past data around time t to now also be the future data.

We then use the same two-sided Epanechnikov kernel as in our main empirical specification to

estimate βt. Thus, even though we are using a two-sided kernel, we are still only using historical

data and these estimates can be used to construct valid out-of-sample forecasts. This same method

is then used to construct a real-time measure of the local R2 by reflecting the residuals from the

original regression around each time period t. Results from this procedure are shown in panel B of

Table 12.
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The out-of-sample forecasts are now uniformly better compared to the prevailing mean model.

For the full sample, the DM test statistics go from being negative (Panel A) to being positive (Panel

B). While the largest improvements are seen during the out-of-pocket periods, we also see sizeable

improvements in the in-pocket performance which, measured relative to the benchmark, continues

to be statistically better at the 10% level for three of the four predictors, with the fourth (realized

variance) obtaining a p-value of 0.18.

Figure 9 provides a graphical illustration of the difference between our return predictability

results inside versus outside pockets. The figure plots the cumulative sum of squared forecast

errors using the forecasts from the prevailing mean model minus the squared forecast errors from

the nonparametric kernel model:

CSSEDτE =
1
√
τE

τE∑
τ=1

[(
rτ+1 − r̄τ+1|τ

)2 − (rτ+1 − r̂localτ+1|τ

)2
]
1{pocket}t+1,

where 1{pocket}t+1 is again defined using only ex-ante available information, and τE is the length

of a pocket episode. We compute a similar measure for observations spent outside pockets.

For each predictor variable we average this measure across the pockets identified ex-ante in

our sample and plot this against the number of days since a pocket started. Finally, we scale this

measure by the square root of the length of the period over which the difference is being cumulated,

τE , so as to make the variance of the plot comparable across different values of τE . Positive and

rising values of the graph indicate that the kernel forecasts produce smaller squared forecast errors

than the prevailing mean and so are more accurate. Negative values suggest the opposite. In each

case, we find that there is evidence of return predictability inside the pockets (left column) but not

outside the pockets (right column).

We conclude from these results that it would have been difficult in real time to identify local

return predictability pockets and use such information to generate forecasts that were significantly

more accurate than those produced by the prevailing mean model. However, using real-time infor-

mation on the presence of return predictability pockets could, at the very least, have been used to

avoid (out-of-pocket) periods with significantly worse forecasting performance than the prevailing

mean.

6 Conclusion

We develop a robust nonparametric approach to test for the presence of pockets with local pre-

dictability of stock market returns. Empirically, we find evidence that stock returns are predictable

more often than one would expect from a large class of asset pricing models which imply that

expected stock returns are an affine function of economic state variables with constant coefficients.

Such models fail in matching the longer-lived pockets found in our data which account for the

largest amount of return predictability.
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We next develop a new predictive systems model with regime switching that explains the pres-

ence of local return predictability by means of investors’ incomplete learning about a persistent

component in the dividend growth process. Predictability of stock market returns turns out to be

well suited for studying learning effects due to the dependency of stock prices on cash flows expected

to occur in the distant future and the considerable uncertainty surrounding such expectations. The

high sensitivity of aggregate stock prices to even minor variations in beliefs about future cash flow

growth rates means that cash flow learning effects are likely to be an important source of return

movements. Through simulations from our new model, we find that investor learning about cash

flow growth can induce patterns in return predictability that closely resemble those found in the

data.

Our findings contribute to several areas of the finance literature in which a better understanding

of both the patterns of return predictability and the source of such predictability matters. Indeed,

the belief that returns are predictable has influenced key areas of finance such as asset allocation

(e.g., Ait-Sahalia and Brandt (2001), Barberis (2000), Campbell and Viceira (1999), and Kandel

and Stambaugh (1996)), performance evaluation of mutual funds (e.g., Ferson and Schadt (1996),

Avramov and Wermers (2006), and Banegas et al. (2013)), and theoretical asset pricing models

(e.g., Bansal and Yaron (2004)). Our empirical findings that stock return predictability is more

local in time than previously thought and need not represent a time-varying risk premium may lead

to revisions in how investment performance is being benchmarked and how asset pricing models are

being tested. Some of our new measures of local return predictability could be used as diagnostics

for determining whether a particular asset pricing model matches the return predictability patterns

observed in the data.
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Appendix A: Proof of Proposition 1

Proof. To show part (i) of Proposition 1, we conjecture and verify that the price-dividend ratio

is pdt = A0,m +A′mzt.

By Assumption 1, ∆dt = S′dzt. Suppose that 3.1 holds. Using rs,t+1 ≈ k + ρ(pt+1 − dt+1) +

∆dt+1 + dt − pt and plugging the log-linearized return into the Euler equation, we have

1 = exp[−A0,f −A′fzt − logEt exp[Λ′tεt+1] + κ+ (ρ− 1)A0,m −A′mzt]

× Et
[
exp

{
−Λ′εt+1 + [S′d + ρA′m]zt+1

}]
0 = −A0,f −A′fzt + κ+ (ρ− 1)A0,m −A′mzt + [S′d + ρA′m](µ+ Fzt)

+ [f(−Λ′ + S′d + ρA′m)− f(−Λ)] + [g̃(−Λ′ + S′d + ρA′m)′ − g̃(−Λ′)′]zt,

where g̃(u) ≡ [g(u)′,0′]′ and the second line takes logs and applies assumption 1(ii). Rearranging

yields the (L+ 1)-dimensional system of equations in A0,m and Am

f(−Λ + Sd + ρAm)− f(−Λ)−A0,f + κ+ (ρ− 1)A0,m + (S′d + ρA′m)µ = 0, (45)

g̃(−Λ + Sd + ρAm)− g̃(−Λ)−Af − (I − ρF ′)Am + F ′Sd = 0. (46)

This system does not have an analytical solution in the general case; however, it is relatively

straightforward to solve the system numerically. We note that Assumption 3.(2) for the data

generating process is identical to those in Lustig et al. (2013). Therefore, we refer the interested

reader to the proof of their Proposition 1 for full derivations of the A0,m and Am coefficients in

that case.

To show part (ii), we follow a very similar argument to Drechsler and Yaron (2011). We can

write expected returns as follows:

Et[exp(rs,t+1)] = exp[Etrs,t+1]Et[exp([S′d + ρA′m]εt+1)] ≡ exp[Etrs,t+1]Et[exp(B′mεt+1)] (47)

exp(−rf,t+1) ≡ exp[Etmt+1]Et[exp(−Λ′tεt+1)]. (48)

Next, using the Euler equation in (3) and the law of iterated expectations, we have

1 = exp[Etrs,t+1] exp[Etmt+1]Et exp[(−Λ′t +B′m)εt+1] (49)

Et exp[B′mεt+1]Et exp[−Λtεt+1]

Et exp[(−Λ′t +B′m)εt+1]
= exp[Etrs,t+1] exp[Etmt+1]Et exp[B′mεt+1]Et exp[−Λ′tεt+1] (50)

= Et[exp(rs,t+1)] exp(−rf,t+1) (51)
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Taking logs and noting that Etrs,t+1 = logEt exp(rs,t+1)− logEt exp[B′mεt+1], we get

Et[rs,t+1]− rf,t+1 = logEt exp[−Λtεt+1]− logEt exp[(−Λ′t +B′m)εt+1].

Suppose that Assumption 3.1 holds. Then, the expression in (??) simplifies to

Et[rs,t+1]− rf,t+1 = f(−Λ)− f(−Λ +B′m) + [g(−Λ)− g(−Λ +B′m)]′xt,

which establishes the claim. If Assumption 3.2 holds, we can evaluate each one of the expressions

in (??) using the cumulant generating function of the normal distribution:

Et[rs,t+1]− rf,t+1 = −1
2B
′
mΣBm +B′mΣΛt = −1

2B
′
mΣBm +B′mΣ[Λ0 + Λ1xt],

which also establishes the claim. The first term is due to Jensen’s inequality, while the second

captures the covariance between the market return and the priced risk factors. Collecting terms in

front of xt in the two equations above yields the expressions for β under the two sets of assumptions.

Appendix B: Details of Nonparametric Estimation

Robinson (1989) and Cai (2007) consider local constant and local linear approximations of β

respectively, but this approach can easily be generalized to accommodate polynomials of arbitrary

order. In particular, we can approximate the function βt as a pth-order Taylor expansion about the

point t
T (where p ≥ 0). To this end, define the quantities:

Wst =

(
1,
s− t
T

, . . . ,

(
s− t
T

)p)′
, (52)

Kst = K

(
s− t
hT

)
, (53)

Qst = Wst ⊗ xs, (54)

for s, t = 1, . . . , T , where K is a kernel function and h ≡ h (T ) is the bandwidth. More formally,

K : [−1, 1]→ R+ is a function that is symmetric about 0 and integrates to 1, and h ∈ [0, 1] satisfies

h→ 0 and hT →∞ as T →∞.

The local polynomial estimator β =
(
β′0, β

′
1, . . . , β

′
p

)′
is obtained by solving

min
β∈Rpd

t+bhT c∑
s=t−bhT c

Kst

[
rs+1 − β′0xs − β′1

(
s− t
T

)
xs − . . .− β′p

(
s− t
T

)p
xs

]2

=

t+bhT c∑
s=t−bhT c

Kst

(
rs+1 − β′Qst

)2
. (55)

48



Solving this optimization problem for α gives the solution

β̂t =

 t+bThc∑
s=t−bThc

KstQstQ
′
st

−1
t+bThc∑
s=t−bThc

KstQstrs+1, (56)

where our object of interest, β1t, is the first element of βt. That is, the estimator of β1t is given by

β̂1t =
(
e′1 ⊗ Id

)
β̂t, (57)

where e1 is the first standard basis vector of Rp+1, Id is a (d × d) identity matrix, and d is the

dimension of xt. This can also be thought of as the OLS estimator of β0 in the transformed model

K
1/2
st ys+1 = K

1/2
st x

′
s

p∑
q=0

βq + εs+1. (58)

The asymptotic properties of these estimators are studied in Robinson (1989) and Cai (2007).

Under various regularity conditions, it can be shown that the estimator β̂t in (57) is consistent and

asymptotically normal.

Our main empirical results adopt a local constant (Nadarya-Watson) estimation procedure and

so set p = 0. The motivation behind this choice is that the nonparametric procedures require very

large amounts of data to perform well in finite samples and every additional degree of approximation

requires that we estimate dT additional parameters. However, we also repeated the analysis using

local linear models (p = 1) and found very similar results.
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Variables Full sample beta t-statistic R2 (in %) Start date No. of obs.

dy 0.067 1.355 0.008 11/5/1926 23,786

tbl -0.007 -2.765 0.053 1/4/1954 15,860

tsp 0.018 2.316 0.042 1/2/1962 13,846

rvar 6.43× 10−5 0.524 4.29× 10−4 1/15/1927 23,727

Table 1: Full sample regression statistics. This table reports full-sample beta estimates, t-statistics
(computed using Newey-West standard errors), and R2 values for univarate regressions of daily excess
stock returns on the lagged predictor variables listed in the rows. All series run through the end of 2016.



In-pocket Out-of-pocket

Variables Num pockets Min length Max length Avg. length Frac signif Num pockets Min length Max length Avg. length Frac signif

Panel A: 5% pocket statistics

dy 13 41 448 177 0.098 13 142 8,448 1,633 0.902

tbl 8 19 415 214 0.110 8 19 5,357 1,737 0.890

tsp 3 313 498 385 0.085 4 774 8,492 3,109 0.915

rvar 8 32 329 225 0.077 9 726 4,423 2,408 0.923

Panel B: 1% pocket statistics

dy 3 171 320 236 0.030 4 851 14,487 5,706 0.970

tbl 4 56 221 152 0.039 4 839 10,737 3,749 0.961

tsp 3 122 326 221 0.049 4 1,016 8,536 3,232 0.951

rvar 5 78 246 189 0.040 6 894 8,729 3,755 0.960

In-pocket Out-of-pocket

Avg. R2 Mean Std. dev Skew Kurtosis Avg. R2 Mean Std. dev Skew Kurtosis

Panel C: 5% return statistics

dy 0.016 0.064 0.915 0.409 23.153 0.004 0.024 1.090 -0.140 19.148

tbl 0.015 -0.030 0.850 0.127 5.995 0.003 0.033 0.967 -0.594 19.967

tsp 0.018 -0.026 1.049 0.367 4.592 0.003 0.030 0.979 -0.607 20.437

rvar 0.021 0.053 0.816 -0.507 8.080 0.003 0.026 1.093 -0.093 19.498

Panel D: 1% return statistics

dy 0.024 0.115 0.608 -0.950 6.974 0.004 0.025 1.085 -0.100 19.281

tbl 0.020 -0.008 0.828 -0.284 4.020 0.004 0.028 0.960 -0.542 19.369

tsp 0.020 -0.022 1.165 0.365 3.903 0.003 0.027 0.975 -0.581 20.109

rvar 0.026 0.043 0.677 -0.359 4.391 0.004 0.027 1.088 -0.105 19.295

Table 2: Pocket summary statistics. This table reports summary statistics on the number of pockets with significant return predictability from
the predictor variable listed in the left column, using a non-parametric kernel regression approach with significance levels of 5% (Panel A) or 1% (Panel
B) to identify pockets. We show, for each predictor variable, the number of pockets identified, the minimum, maximum and average pocket length (all
measured in days) as well as the fraction of day in the sample identified to have significant local return predictability. Left columns show summary
statistics for periods inside pockets while, for comparison, right columns show summary statistics for periods outside pockets. Panels C and D report
summary statistics for daily excess returns inside (left panels) and outside (right panels) pockets, including the average value of the local R2, the mean,
standard deviation, skewness and kurtosis of daily returns. The sample periods vary across the predictor variables and begin in 11/5/1926 for the
dividend yield (23,786 observations), 1/2/1954 for the 3-month T-bill rate (15,860 obs.), 1/2/1962 (13,846 obs.) for the term spread, and 1/15/1927
(23,727 obs.) for the realized variance.



Random Walk GARCH

Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val

dy

Num pockets 13 6.510 2.471 0.015 6.512 2.464 0.013

Min integral R2 0.237 0.269 0.520 0.319 0.229 0.506 0.282

Mean integral R2 2.784 0.801 1.028 0.045 0.713 0.964 0.048

Max integral R2 11.539 1.391 1.634 0.002 1.254 1.557 0.003

Frac signif 0.098 0.048 0.021 0.019 0.048 0.022 0.019

tbl

Num pockets 8 4.381 1.882 0.057 4.430 1.906 0.059

Min integral R2 0.174 0.295 0.510 0.430 0.287 0.541 0.415

Mean integral R2 3.260 0.738 0.876 0.027 0.746 0.920 0.030

Max integral R2 6.889 1.272 1.517 0.014 1.299 1.501 0.009

Frac signif 0.110 0.047 0.025 0.013 0.049 0.026 0.020

tsp

Num pockets 3 3.743 1.851 0.729 3.887 1.848 0.758

Min integral R2 4.924 0.256 0.541 0.002 0.279 0.679 0.004

Mean integral R2 6.768 0.635 0.938 0.002 0.665 1.024 0.005

Max integral R2 8.632 1.093 1.667 0.004 1.103 1.505 0.006

Frac signif 0.085 0.048 0.029 0.113 0.050 0.028 0.116

rvar

Num pockets 8 6.714 2.421 0.371 6.557 2.423 0.343

Min integral R2 0.367 0.236 0.492 0.183 0.218 0.424 0.200

Mean integral R2 4.738 0.783 0.942 0.007 0.769 0.912 0.008

Max integral R2 8.754 1.451 1.569 0.005 1.418 1.552 0.004

Frac signif 0.077 0.049 0.021 0.092 0.048 0.021 0.090

Table 3: Statistical significance tests for pocket diagnostics (zero coefficient benchmark).
This table reports the outcome of Monte Carlo simulations of daily excess returns using either a random
walk model with constant mean and volatility (columns 2-4) or a model that allows for a time-varying
expected return and time-varying volatility (columns 5-7). Using these respective models, each simulation
draws a sample with the same length as the original sample for the respective predictor variables and
computes the pocket measures listed in each row, including the number of pockets, the minimum,
maximum and average length (in days) of the pockets, the minimum, mean and maximum integral R2,
the fraction of the sample with a significant pocket indicator, the average and maximum values of the R2

inside pockets. The average values, standard errors and p-values for the pocket measures are computed
using 1,000 simulations and are based on a zero coefficient benchmark.



Pocket # dy tbl tsp rvar

1 1.131 2.341 4.924 1.316

(0.207) (0.092) (0.016) (0.203)

2 0.448 4.746 8.632 7.214

(0.427) (0.016) (0.003) (0.004)

3 0.623 6.889 6.747 8.754

(0.348) (0.003) (0.007) (0.001)

4 7.032 0.752 - 3.352

(0.005) (0.327) (0.044)

5 3.464 0.174 - 7.065

(0.032) (0.654) (0.005)

6 1.580 6.438 - 6.958

(0.138) (0.004) (0.005)

7 11.539 2.393 - 0.367

(0.001) (0.088) (0.519)

8 4.103 2.351 - 2.875

(0.025) (0.091) (0.056)

9 0.413 - - -

(0.449)

10 3.756 - - -

(0.029)

11 0.237 - - -

(0.581)

12 0.498 - - -

(0.403)

13 1.370 - - -

(0.165)

Table 4: Integral R2 measure and p-values for individual pockets. This table reports the
integral R2 measure for each of the pockets identified by our nonparametric kernel regression approach,
assuming a 5% cutoff value to define pockets with p-values in brackets. To compute p-values We use
the Monte Carlo simulations in Table 3 to compute the proportion of simulated pockets that have an
integral R2 measure as high as the value associated with a particular pocket identified in the data.



Variable dy tbl tsp rvar

dy 1.000 0.346 0.102 0.290

tbl 0.672 1.000 0.543 0.477

tsp 0.338 0.619 1.000 0.380

rvar 0.662 0.799 0.450 1.000

Table 5: Correlation between different pocket measures. The upper right correlations are the
pairwise correlations between the pocket indicators for the two variables being compared. The bottom
left correlations are the pairwise correlations between the local R2 measures for the two variables being
compared. Each correlation is computed over the longest common subsample available.

Specification Num pockets Mean length Max length Mean integral R2 Max integral R2 Frac signif

dy

12-month kernel 13 177 448 2.784 11.539 0.098

6-month kernel 21 88 356 2.991 15.384 0.079

18-month kernel 9 270 710 2.751 9.174 0.104

24-month kernel 7 314 598 2.361 7.076 0.094

First differencing 12 175 363 2.993 9.194 0.089

tbl

12-month kernel 8 214 415 3.260 6.889 0.110

6-month kernel 15 113 326 3.173 8.755 0.108

18-month kernel 7 305 737 3.243 8.098 0.138

24-month kernel 5 536 933 4.494 9.268 0.175

First differencing 11 261 930 5.401 32.036 0.184

tsp

12-month kernel 3 385 498 6.768 8.632 0.085

6-month kernel 12 86 217 2.185 5.910 0.075

18-month kernel 3 586 779 7.273 10.084 0.131

24-month kernel 3 767 1,020 7.576 11.978 0.173

First differencing 11 261 651 5.068 17.340 0.211

rvar

12-month kernel 8 225 329 4.738 8.754 0.077

6-month kernel 19 112 340 3.763 13.235 0.090

18-month kernel 7 302 589 3.797 6.965 0.091

24-month kernel 5 456 704 3.958 6.711 0.098

First differencing 11 248 476 4.860 15.692 0.116

Table 6: Robustness of pocket statistics across specifications (zero coefficient benchmark).
This table reports a number of statistics, including the number of pockets, the mean and maximum
length of a pocket, the mean and maximum integral R2 across pockets, and the fraction of the sample
that is classified as pockets, across different empirical specifications. The baseline specification uses
the predictor variables in levels with an effective sample size of 12 months. Alternative specifications
considered use the predictors in levels with effective sample sizes of 6, 18, and 24 months. Additionally,
we consider two detrending procedures: subtracting off an exponentially-weighted moving average of the
prior 12 months of data with a λ = 0.99, and first differencing.



Parameter Value Description

π11 0.995
Probability of staying in regime 1

(average duration of 200 days)

π22 0.9986
Probability of staying in regime 2

(average duration of 700 days)

ρx 0.882
Annualized persistence of

observed predictor variable x

µx,1
1−ρx 2.15%

Unconditional mean of observed

predictor variable in regime 1

µx,2
1−ρx 5.86%

Unconditional mean of observed

predictor variable in regime 2

ρµ 0.305
Annualized persistence of

expected cash flows

µµ,1
1−ρµ 8.32%

Annualized unconditional mean of

expected cash flows in regime 1

µµ,2
1−ρµ 4.62%

Annualized unconditional mean of

expected cash flows in regime 2

σv,1√
1−ρ2x

2.75%

Unconditional standard deviation

of observed predictor variable in

regime 1

σv,2√
1−ρ2x

2.55%

Unconditional standard deviation

of observed predictor variable in

regime 2

σw√
1−ρ2µ

0.012%

Annualized unconditional

standard deviation of expected

cash flows

σu 0.66%
Annualized standard deviation of

realized cash flows

σvw,1
σv,1σw,1

-0.2

Correlation between innovations

to observed predictor variable and

expected cash flows in regime 1

Table 7: Calibrated parameters of predictive systems model. This table reports the values and
descriptions for the calibrated parameter values in the predictive systems model.



No learning Learning

Sample Avg. Std. err. p-val Avg. Std. err. p-val

Positive 0.531 0.297 0.070 0.002 0.547 0.217 0.477

Negative -0.122 -0.032 0.030 0.993 -0.044 0.022 0.990

Net 0.414 0.262 0.067 0.017 0.508 0.209 0.634

Table 8: Average integral R2. This table reports the average integral R2 conditional on it being
positive, negative, and over the whole sample. For the “positive” measure, the average of the local
R2 is taken over all periods where it is positive and multiplied by 100. The analogous procedure is
done for the “negative” measure. For the “net” measure, the average of the local R2 is taken over the
whole sample and multiplied by 100. These statistics are computed for the actual data under “Sample,”
and the average, standard error, and one-sided p-values are computed for the predictive systems model
simulations under both the no learning and learning specifications.



No learning Learning

Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val

5% significance results

Num pockets 8 3.878 1.930 0.036 7.066 3.382 0.442

Min pocket length 19 78.442 62.319 0.866 88.903 80.111 0.861

Avg. pocket length 214 144.474 58.192 0.090 276.597 98.915 0.768

Max pocket length 415 231.578 91.663 0.019 591.708 281.226 0.744

Min integral R2 0.174 0.240 0.477 0.339 0.634 1.125 0.545

Mean integral R2 3.260 0.486 0.744 0.016 2.335 3.045 0.225

Max integral R2 6.889 0.752 1.092 0.000 5.026 6.989 0.223

Fraction significant 0.110 0.038 0.021 0.004 0.132 0.077 0.556

1% significance results

Num pockets 4 0.702 0.844 0.007 3.415 2.408 0.410

Min pocket length 56 46.395 65.894 0.330 122.279 116.429 0.687

Avg. pocket length 152.25 50.907 67.793 0.105 231.588 131.291 0.768

Max pocket length 221 57.866 76.654 0.040 388.279 251.471 0.763

Min integral R2 1.057 0.201 0.563 0.056 0.932 1.896 0.240

Mean integral R2 3.127 0.233 0.613 0.010 2.071 3.247 0.188

Max integral R2 4.771 0.265 0.695 0.003 3.601 5.813 0.214

Fraction significant 0.039 0.005 0.007 0.002 0.058 0.048 0.567

Table 9: Simulations from predictive systems learning model. This table presents simulation results from the predictive systems model with
regime switching in the cash flow growth rate. Investors observe a predictor variable that is correlated with the latent process driving the mean
dividend growth rate, but whose correlation is also affected by the regime switching. In the scenario with no learning (columns 2-4), investors are
assumed to observe the latent state variable while in the scenario with learning (columns 5-7), investors update their estimates of the mean dividend
growth rate based on their probability estimates of the underlying state. The reported sample average, standard errors and p-values for the simulated
data are based on 1,000 simulations of the same length as the sample for the T-bill rate and assume a mean dividend-price ratio of 0.038 which is the
historical sample average. Pockets in both the actual and simulated data sample are computed around a zero coefficient benchmark.



Pocket Indicator Local R2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

5% significance results

µ̂t|t − µt
-0.091***

- - - -
-0.225***

- - - -
(< 0.01) (< 0.01)(

µ̂t|t − µt
)2

-
0.094***

- - - -
0.218***

- - -
(< 0.01) (< 0.01)

|µ̂t|t − µt| - -
0.216***

- - - -
0.448***

- -
(< 0.01) (< 0.01)(

µ̂t|t − µt
)+

- - -
0.204***

- - - -
0.448***

-
(< 0.01) (< 0.01)(

µ̂t|t − µt
)−

- - -
-0.251***

- - - -
-0.601***

-
(< 0.01) (< 0.01)

π̂t|t(1− π̂t|t) - - - -
0.038***

- - - -
0.086***

(< 0.01) (< 0.01)

R2 13.47% 22.58% 20.03% 24.55% 4.19% 19.14% 29.93% 27.03% 33.72% 5.58%

1% significance results

µ̂t|t − µt
-0.058***

- - - -
-0.225***

- - - -
(< 0.01) (< 0.01)(

µ̂t|t − µt
)2

-
0.060***

- - - -
0.218***

- - -
(< 0.01) (< 0.01)

|µ̂t|t − µt| - -
0.128***

- - - -
0.448***

- -
(< 0.01) (< 0.01)(

µ̂t|t − µt
)+

- - -
0.101***

- - - -
0.448***

-
(< 0.01) (< 0.01)(

µ̂t|t − µt
)−

- - -
-0.155***

- - - -
-0.601***

-
(< 0.01) (< 0.01)

π̂t|t(1− π̂t|t) - - - -
0.025***

- - - -
0.086***

(< 0.01) (< 0.01)

R2 14.07% 21.33% 17.27% 22.19% 4.83% 19.14% 29.93% 27.03% 33.72% 5.58%

Table 10: Panel regressions of pocket diagnostics on belief discrepancies. This table reports
coefficient estimates and p-values (in brackets) from regressions of the local R2 (in percentage points)
measure for return predictability or the binary pocket indicator that is one inside pockets with return
predictability and is zero otherwise on an intercept, a dummy for being within the first or last 126
(half of the kernel regression bandwidth) periods of the sample, functions of the difference between the
true simulated expected cash flows and the agent’s filtered beliefs about expected cash flows, and their
interactions with the dummy. The last regressor is the variance of the agent’s filtered probability of
being in regime 1. These measures of belief discrepancy and variance are normalized to have standard
deviation 1. All specifications contain the intercept, the dummy, and its interactions with any other
regressors that are included. The coefficient estimate is the average coefficient across simulations, and
the p-values are computed by dividing the average by the standard deviation of the estimates across
samples and multiplying by the square root of the number of simulations. The R2 is computed as the
average R2 across simulations for each regression specification.



Local R2 Pocket Indicator

Variables Slope p-val R2 (in %) Slope p-val R2 (in %)

NBER Recession indicator

dy 0.195*** (0.00) 1.74 -0.030* (0.06) 0.15

tbl 0.306*** (0.00) 4.15 0.141*** (0.00) 2.36

tsp 0.634*** (0.00) 17.03 0.350*** (0.00) 17.58

rvar 0.152*** (0.00) 0.82 0.033* (0.08) 0.22

BW Index

dy 0.001 (0.91) -0.01 -0.022*** (0.00) 1.31

tbl 0.123*** (0.00) 6.29 0.030** (0.04) 0.98

tsp 0.012 (0.62) 0.04 0.010 (0.51) 0.12

rvar 0.193*** (0.00) 11.60 0.081*** (0.00) 9.67

AEM Leverage Factor

dy -0.034*** (0.00) 0.75 -0.024*** (0.00) 1.35

tbl -0.053*** (0.00) 1.04 -0.040*** (0.00) 1.48

tsp -0.012 (0.34) 0.04 -0.011 (0.14) 0.11

rvar 0.003 (0.83) -0.01 -0.005 (0.41) 0.03

Table 11: Regressions of pocket diagnostics on economic indicators. This table reports coeffi-
cient estimates and p-values (in brackets) along with the R2 value from regressions of the local R2 (in %)
measure for return predictability or the binary pocket indicator that is one inside pockets with return
predictability and is zero otherwise on an intercept and either the NBER recession indicator (top panel),
the Baker-Wurgler sentiment index (middle panel), or the Adrian-Etula-Muir leverage factor (bottom
panel). All regressions use daily data with the samples described in the caption to Table 1 intersected
with the samples available for the factors. The data for the BW index goes through the end of 2016,
while the data for the AEM leverage factor goes through the end of 2009. Both the BW index and AEM
leverage factors are normalized to have standard deviation 1 over the regression sample. The p-values
are computed using Newey-West standard errors.



Variables Full sample In-pocket (real time) Out-of-pocket (real time) Difference in MSFE

Panel A: 1-sided Kernel estimates

dy -3.708 1.346 -3.932 0.013* (0.06)

tbl -2.922 0.455 -4.054 0.022** (0.04)

tsp -3.594 0.296 -3.962 0.017 (0.14)

rvar -2.146 0.334 -2.155 0.037 (0.15)

Panel B: 2-sided Kernel estimates with reflected data

dy 1.223 3.452 0.675 0.011* (0.06)

tbl 0.868 1.510 -0.651 0.034*** (< 0.01)

tsp 0.860 1.470 0.301 0.022** (0.04)

rvar 0.705 0.854 0.153 0.019 (0.18)

Table 12: Out-of-sample measures of forecasting performance. This table reports the Diebold
and Mariano (1995) test statistics for out-of-sample return predictability measured relative to a prevailing
mean model that assumes constant expected excess returns. Panel A uses a purely backward-looking
kernel to compute forecasts. Panel B uses a two-sided kernel combined with data reflection as described
in Chen and Hong (2012) (note that this is still a real-time forecast because only historical data is
used). The DM test statistics approximately follow a normal distribution with positive values indicating
more accurate out-of-sample return forecasts than the prevailing mean benchmark and negative values
indicating the opposite. A “real-time” pocket is defined as a period where the local R2 of the time-
varying coefficient model estimated using a backward-looking kernel is above 1% for more than 10 days.
p-values for the difference in mean squared forecast errors (MSFE) are computed using a permutation
test. The differences in forecast errors are randomly permuted 10,000 different ways and the the empirical
distribution of resulting differences in MSFE are computed using the same sample split for in vs. out-of-
pocket periods. The p-values are computed as the fraction of observations in the simulated distribution
of differences that are greater than the actual sample statistic.



Figure 1: Local return predictability from the dividend yield. The top panel in this figure plots non-parametric kernel estimates of the local
slope coefficient from a regression of daily excess stock returns on the lagged dividend yield. Dashed lines represents plus or minus two standard error
bands. The bottom panel plots the local R2 measure with shaded areas tracking periods identified as pockets of return predictability using a 5%
critical value. The shaded areas represent the integrated R2 inside pockets with areas colored in red representing pockets that have less than a 5%
chance of being spurious, areas colored in orange representing pockets that have between a 5% and a 10% chance of being spurious, and areas colored
in yellow representing pockets that have more than 10% chance of being spurious.



Figure 2: Local return predictability from the T-bill rate. The top panel in this figure plots non-parametric kernel estimates of the local slope
coefficient from a regression of daily excess stock returns on the lagged T-bill rate. Dashed lines represents plus or minus two standard error bands.
The bottom panel plots the local R2 measure with shaded areas tracking periods identified as pockets of return predictability using a 5% critical
value. The shaded areas represent the integrated R2 inside pockets with areas colored in red representing pockets that have less than a 5% chance of
being spurious, areas colored in orange representing pockets that have between a 5% and a 10% chance of being spurious, and areas colored in yellow
representing pockets that have more than 10% chance of being spurious.
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Figure 3: Local return predictability from the term spread. The top panel in this figure plots non-parametric kernel estimates of the local
slope coefficient from a regression of daily excess stock returns on the lagged term spread. Dashed lines represents plus or minus two standard error
bands. The bottom panel plots the local R2 measure with shaded areas tracking periods identified as pockets of return predictability using a 5%
critical value. The shaded areas represent the integrated R2 inside pockets with areas colored in red representing pockets that have less than a 5%
chance of being spurious, areas colored in orange representing pockets that have between a 5% and a 10% chance of being spurious, and areas colored
in yellow representing pockets that have more than 10% chance of being spurious.



Figure 4: Local return predictability from the realized variance. The top panel in this figure plots non-parametric kernel estimates of the
local slope coefficient from a regression of daily excess stock returns on the lagged realized variance. Dashed lines represents plus or minus two standard
error bands. The bottom panel plots the local R2 measure with shaded areas tracking periods identified as pockets of return predictability using a 5%
critical value. The shaded areas represent the integrated R2 inside pockets with areas colored in red representing pockets that have less than a 1%
chance of being spurious, areas colored in orange representing pockets that have between a 5% and a 10% chance of being spurious, and areas colored
in yellow representing pockets that have more than 10% chance of being spurious.
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Figure 5: Local return predictability from a bivariate model with the T-bill rate and the term spread. The top panel in this figure plots
the p-value from an F-test of the joint significance of non-parametric kernel estimates of the local slope coefficients from a regression of daily excess
stock returns on the lagged T-bill rate and lagged term spread. The bottom panel plots the local R2 measure with shaded areas tracking periods
identified as pockets of return predictability using a 5% critical value. The shaded areas represent the integrated R2 inside pockets with areas colored
in red representing pockets that have less than a 1% chance of being spurious, areas colored in orange representing pockets that have between a 5%
and a 10% chance of being spurious, and areas colored in yellow representing pockets that have more than 10% chance of being spurious.



Figure 6: Robustness of local R2 measures. The labels refer to different empirical specifications for identifying pockets. The number refers to
the effective sample size (in months) of the kernel used for estimation. The letters refer to whether the T-bill rate was used in levels (ND), or was
detrended using a 12-month trailing average (D). Each line corresponds to the pocket indicator for the corresponding specification.
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Figure 7: Cumulative distribution functions of integral R2 under no-learning and learning in the cash flow process (5% significance).
The figure shows kernel-density estimated cdfs of integral R2 values computed using simulations from the predictive systems model with regime switching
in the cash flow process assuming either observed states and no learning or unobserved states and learning. Pockets are defined using a 5% critical
value.
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Figure 8: Correlation of belief discrepancy with return predictability pockets. This figure plots a particular realization from the learning
model simulations. The top panel plots the belief discrepancy along with the indicator for periods identified as return predictability pockets. The
bottom panel plots the local R2 from the two-sided kernel regression of simulated excess returns on the simulated lagged T-bill rate.
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Figure 9: Cumulative sum of squared forecast errors averaged across pockets of predictability (left column) or periods outside
pockets of predictability (right column). The cumulative sums are normalized by the square root of the number of periods. Pockets are identified
as consecutive periods of more than 10 days with a local R2 greater than 1% computed using a backward-looking kernel. The predictor variables used
in the analysis are listed to the left of each row of panels.


