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Abstract

I study a general equilibrium menu cost model with a continuum of sectors, each consisting of strategi-

cally engaged firms. Compared to an economy with monopolistically competitive sectors parameterized

to match the same data on good-level price flexibility, the duopoly economy features a smaller inflation re-

sponse to monetary shocks and output responses that are more than twice as large. The model (i) requires

smaller menu costs and idiosyncratic shocks to match the data, addressing a challenge for mechanisms

that generate non-neutrality via micro-complementarities, (ii) implies four times larger welfare losses from

nominal rigidities, and (iii) rationalizes small, positive, menu-costs: firms prefer a small degree of nominal

rigidity. When evaluated under the same parameters, output responses are four times larger in the duopoly

economy, and prices adjust half as much. Barcode-level data supports this finding, exhibiting a negative

within-good, across-region relationship between wholesale-firm market concentration and price flexibility.
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1 Introduction

Golosov and Lucas (2007) demonstrate that an equilibrium version of the menu cost model of

Barro (1972) implies approximate monetary neutrality when confronted with microdata. While

a number of papers have since modified the framework to generate a smaller elasticity of infla-

tion to real marginal cost following a monetary shock, these elasticities are still much larger than

that implied by the estimated slope of the Phillips curve in New Keynesian models.1 Further,

complementary, mechanisms are therefore required in order to generate realistic monetary non-

neutrality. This paper presents one such mechanism that is grounded in a prominent feature of the

data: goods markets are concentrated. I show that integrating an oligopolistic market structure a

la Atkeson and Burstein (2008) into the Golosov and Lucas (2007) model (henceforth GL), implies

monetary business cycles that are two and a half times as large.2

The motivation for investigating the macroeconomic implications of oligopolistic markets is

simple: product markets are highly concentrated. Figure 1 documents this fact for a broad range

of narrowly defined markets: a product category (e.g., ketchup) within a state in a particular

month.3 The median effective number of wholesale firms—a measure of market concentration

given by the inverse Herfindahl index—is only 3.7, and the median revenue share of the two

largest firms is over two-thirds.4 The number of firms setting prices in each market may be large,

but most revenues accrue to a few. If these firms with market power set prices strategically what

are the implications for monetary nonneutrality?

To answer this question I study an equilibrium menu cost model of price adjustment that

accommodates a duopoly within each sector. Firms face persistent, idiosyncratic shocks, must pay

a cost to change their price, and compete strategically under a Markov perfect equilibrium (MPE)

concept. Aggregating a continuum of oligopolistic sectors reveals how the strategic behavior of

firms affects the equilibrium response of output to monetary shocks.

1Table A1 presents a meta-study of these results, showing that the implied slope of the Phillips curve λ in extensions
of the menu cost model are significantly smaller than the baseline model, but still significantly larger than those required
to generate monetary business cycles of the magnitude required in estimated New Keynesian models.

2The implied response of inflation to an increase in real marginal cost due to a monetary shock—the slope of the
New-Keynesian Phillips curve—is one fourth as large (Table A1).

3IRI data are used to construct measures of wholesale-firm-level revenue, which are then used to construct mea-
sures of concentration. The IRI data are weekly good-level data for the universe of goods in a panel of over 5,000
supermarkets in the US from 2001 to 2011. Wholesale firms, like Kraft in the market for ketchup, are identified from
the first six digits of a barcode. For a detailed description of how these measures are constructed see Appendix A.

4The inverse Herfindahl index (IHI) admits an interpretation of “effective number of firms” as follows. The IHI of
a sector with n equally sized firms is n. Therefore, if a sector has an IHI of 2.4, then it has a Herfindahl index between
that of a market with 2 and 3 equally sized firms. For more on this interpretation, see Adelman (1969). For a recent
paper that uses this measure of market concentration, see Edmond, Midrigan, and Xu (2015).
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I compare the dynamic oligopoly economy to a benchmark economy with a monopolistically

competitive market structure in which each sector is populated with a continuum of non-strategic

firms. Both models are calibrated to the same microdata on price changes and the same average

markup. In these two economies with different competitive structures, but identical idiosyncratic

price flexibility, the aggregate price level is less flexible under oligopoly. As a consequence, output

fluctuations in response to monetary shocks are around two and half times as large.5

Micro- and macro-complementarities The mechanism in the oligopoly model is based on com-

plementarities in price setting that are unique to a dynamic Bertrand oligopoly model under costly

price adjustment. Before detailing how this dynamic complementarity arises, it is worth noting that

in general, complementarities have long been understood as crucial for monetary nonneutral-

ity. Such complementarities come in two forms, those that introduce variable desired markups

through changes to the microeconomic environment facing firms: micro-complementarities. Oth-

ers include nominal wage rigidity, and sticky prices for intermediate inputs that slow the pass-

through of monetary shock to nominal marginal costs: macro-complementarities. In time-dependent

models, both have been successful, but in state-dependent models, only the latter have.6 The

oligopoly model presents a successful micro-complementarity.

Success is measured obliquely by the fact that the oligopoly model achieves significant non-

neutrality with smaller menu costs and idiosyncratic shocks than the monopolistically compet-

itive model. The addition of non-CES preferences (Klenow and Willis, 2016), or decreasing re-

turns to scale (Burstein and Hellwig, 2007) to state-dependent models have been found to mod-

erately flatten the implied Phillips curve (Table A1), but lead firms to over respond to idiosyn-

cratic shocks. Counter-factually large firm-level shocks and menu costs are then required for firm

adjustment to be consistent with the data.7 On this basis, the consensus has formed that such

5The real effects of monetary shocks are measured as the time series standard deviation of output in an economy
with only monetary shocks. For technical reasons, in both models I assume that menu costs are random. Output
fluctuations in the duopoly model are five times larger than the monopolistically competitive model with fixed menu
costs.

6Woodford (2003, chap. 3) compares the effect of many such sources of complementarity in the New-Keynesian
literature (time dependent adjustment and no idiosyncratic shocks). These include micro-complementarities such
as non-CES preferences in Kimball (1995) and firm-level decreasing returns to scale in Sbordone (2002), and macro-
complementarities such as round-a-bout production in Basu (1995).

7As well as the papers themselves, Nakamura and Steinsson (2010) and Gopinath and Itskhoki (2011) provide
extensive summaries of these issues. Beck and Lein (2015) provide an exhaustive study that extends Klenow and Willis
(2016) and find that even under the small departures from CES they estimate in micro-data, monthly shocks of around
22 percent are required to bring the average size of price changes back up to its value in the data. Burstein and Hellwig
(2007) find that menu costs equivalent to around three percent of output are required in the decreasing returns model
to bring the average frequency of price change back down to its value in the data. Like Burstein and Hellwig (2007),
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micro-complementarities between firm and aggregate price cannot be a source of propagation.

The duopoly model resolves the core quantitative issue that lead to over responsiveness in the

presence of micro-complementarities. Note that complementarities between the firm and aggre-

gate price operate by small changes in the aggregate price depressing firm adjustment. Aggregate

shocks are small, so these aggregate price movements are small. More pressing for the firm is

the major determinant of price changes: large idiosyncratic shocks. A large positive idiosyncratic

shock to costs will wash out any small aggregate shock, and, as the complementarity works in re-

verse, pushes the firm to adjust. But because idiosyncratic shocks are large, in the duopoly model,

a firm’s competitor’s price movements are also large. A large positive idiosyncratic shock to costs

no longer necessarily implies that the firm’s adjustment probability increases. Its competitor may

receive a large shock that reduces this incentive. The link between complementarity and over-

responsiveness is broken, and no larger menu costs are required to get firm-level price dynamics

correct. I go through this in detail in Section 5.3.

That smaller menu costs and shocks are required under oligopoly, but amplification still occurs

through a form of micro-complementarity is, therefore, significant. Just as importantly, my mech-

anism neither relies on nor excludes macro-complementarities. To make this point most cleanly

the macroeconomic structure of both economies are the same, and the pass-through of monetary

shocks to nominal marginal costs is complete. Sticky intermediate prices and round-a-bout pro-

duction as in Nakamura and Steinsson (2010), or nominal wage rigidity (also studied by Burstein

and Hellwig (2007) and Klenow and Willis (2016)) could therefore be added to the model. The

meta-study in Table A1 shows that such macro-complementarities get us part of the way to real-

istic monetary business cycles in state-dependent models, but that complementary mechanisms

that are also consistent with microdata are needed. The duopoly model is one such mechanism.

Dynamic complementarity Before describing other results, I briefly describe the particular way

complementarity in prices arises in the model, and how this dampens the inflation response to a

monetary shock. Crucially, I distinguish between static complementarity, and dynamic complemen-

tarity, which I explain in turn.8

Static complementarity arises from the fact that oligopolists understand how their price affects

the model of Gertler and Leahy (2008) also features complementarity through increasing marginal costs, but modelled
through an increasing sectoral labor supply curve.

8Throughout I drop the term strategic when discussing strategic complementarity, and reserve the term to distinguish
between the two models: under oligopoly firms behave strategically, and under monopolistic competition firms behave
competitively, or non-strategically.
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household demand across sectors. In terms of the profit function of the firm, this is embodied

in the fact that a firm’s optimal price is increasing in the price of its direct competitor. Absent

adjustment frictions, however, the Nash equilibrium price, p∗, would obtain, which is a constant

markup over nominal cost. In equilibrium, absent macro-complementarities, a monetary expan-

sion increases nominal costs one for one, causing all prices to increase one for one.

Dynamic complementarity, arises from the interaction of static complementarity with menu costs

in the dynamic model, breaks the neutrality of money.9 This is seen in the following example.

Suppose two competitors—Firm A and Firm B—begin the period with prices pA ≫ pB > p∗.

Consider these actions: Firm A keeps its price fixed, Firm B pays the menu cost and increases

its price but undercuts firm A: p′B ∈ (pB, pA). Given Firm A’s inertia, static complementarity

means that a price just undercutting pA is Firm B’s best response, and profitable net of the menu

cost. Given Firm B’s price change, the menu costs ensures that inaction is Firm A’s best response.

Prices are dynamic (or intertemporal) complements in that a higher (lower) pA yields a higher

(lower) p′B and a higher (lower) value of a price increase on the equilibrium path.

How does this dynamic complementarity dampen the response of inflation to a positive mon-

etary shock? Since households use nominal wage payments to buy goods, the complementarity

will be in prices relative to the wage: p̂A = pA/W and p̂B = pB/W. In equilibrium, a monetary

expansion increases nominal wages W, reducing p̂A and p̂B. This selects more firms like Firm

B, with an initially low price, to increase their price, and increase it by more to compensate for

the increase in cost. These extensive and intensive margin responses are large when—as they are

in the data—the average size and frequency of price adjustment are large.10 Under monopolistic

competition, Firm B contributes substantially to both margins, driving the response of inflation.

Dynamic complementarity dampens the response of Firm B on both margins. The increase

in the wage brings Firm A’s high price into line with its costs, reducing its probability of a price

cut. From Firm B’s perspective, the falling relative price of its competitor p̂A, dampens Firm B’s

impulse toward a price increase. Its optimal price increase is dampened, weakening intensive

margin adjustment. Its value of a price change is dampened, weakening extensive margin adjust-

ment. A statistical decomposition of movements in inflation into intensive and extensive margin

9I take the terminology of static and dynamic complementarity from Jun and Vives (2004), who study a dynamic
Bertrand game with two firms and convex costs of price adjustment.

10This decomposition into extensive and intensive margin components in the spirit of Caballero and Engel (2007) has
provided an accounting tool for this class of models and has been used by Midrigan (2011), Alvarez and Lippi (2014),
and others. In Figure A1 I replicate the canonical diagrammatic representation of these margins in a monopolistically
competitive fixed menu cost model.
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components reveals that—relative to the competitive model—both are weakened equally in the

duopoly model.

The presence of menu costs is crucial for this mechanism. Firm B’s desired price, and its de-

crease following the monetary shock, takes into account the cost Firm A would incur in order

to later cut its price. For a given degree of static complementarity, the pricing setting technology

determines the degree of dynamic complementarity, and the latter determines output fluctuations.

If instead firms reprice at random, then the incentive of a firm to reprice near its competitor is

weaker. This delivers the novel result that in a Calvo model the size of output fluctuations are

approximately the same in both economies. This implies that (i) standard fixes to monetary neu-

trality that include adding Calvo-like elements to a menu-cost model may not be successful when

firms behave strategically, (ii) we might not expect integrating oligopolistic markets into a stan-

dard New Keynesian model to generate larger output effects.

Other results First, as in the baseline New Keynesian model, sticky prices distort output relative

to a frictionless benchmark economy. In the oligopoly economy, these distortions are four times

larger than the monopolistically competitive economy. Moreover, the distortion due to the disper-

sion in prices—the elimination of which is the focus of optimal monetary policy in the New Key-

nesian model—are the same. Nominal rigidity enables strategic firms to achieve higher markups

in equilibrium, creating first order output losses that are three times larger than those due to price

dispersion. Market structure therefore has implications both for the dynamics of output and its

level, and the dynamic complementarity which drives these distortions markups is potentially

responsive to policy.

Second, and related, the model rationalizes non-zero menu costs: the value of the firm is non-

monotonic in the menu cost. Small menu costs increase dynamic complementarity, thereby in-

creasing markups and increasing value. Large menu costs render firms unresponsive to the large

idiosyncratic shocks they face, reducing value. From the firms’ perspective, a value-maximizing,

positive menu cost exists. The model therefore provides a novel rationale for actions that increase

the cost of price adjustment, such as prices widely advertised as fixed for some period.11

Third, the strategic behavior of firms in the presence of menu costs generates endogenous

stickiness in prices. Low-priced firms sell more, face a lower elasticity of demand, and understand

this demand elasticity will increase if they raise their price. High-priced firms are reluctant to cut

11For example on September 24, 2017, the price of Apple’s iPhone X ($999)—a product in a clearly oligopolistic
market—was available on its website. The product was not available for purchase until November 3, 2017.
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prices, since a high price softens competition within the sector, and encourages their competitor

to choose a high price. The oligopoly model therefore requires 25 percent smaller menu costs as

a fraction of revenue, and slightly smaller idiosyncratic shocks, in order to match the same data

on price adjustment. When comparing market structures under the same parameters, I find that

prices are twice as sticky under duopoly.

Finally, I provide some empirical support for this prediction using variation across markets

that plausibly have similar primitives. I exploit variation in market concentration and price flex-

ibility that exists across US states, within narrow product-categories, controlling for market rev-

enue. Using barcode level revenue from the IRI data, I compute wholesale firm market concen-

tration and price flexibility in each product-state-quarter (see footnote to Figure 1).12 The within-

product-quarter, across-region correlation between price flexibility and wholesale firm concen-

tration is consistent with the causal implications of the model. In relative terms, prices are less

flexible in markets with a lower concentration.13

Further related literature The model is situated in two distinct literatures: (i) papers following

Golosov and Lucas (2007) that have studied whether menu cost models of price adjustment can

explain monetary non-neutrality, and (ii) dynamic games of price setting with adjustment fric-

tions.

I have already discussed the existing literature that introduces complementarity into the GL

framework. A prominent alternative is presented by Midrigan (2011) and Alvarez and Lippi

(2014), who show that once the model accounts for small price changes, output responses similar

to a Calvo model of price adjustment can be obtained.14 I show that the oligopoly model can-

not be operating through this channel, by simply observing that the distribution of desired and

realized price changes under both market structures are nearly identical.15 Section 5.4 carefully

12Goldberg and Hellerstein (2013), Eichenbaum, Jaimovich, and Rebelo (2011) and Nakamura and Zerom (2010)
study retail and wholesale prices, and find that pass-through is almost complete from wholesale to retail. This implies
that price flexibility computed using retail data should reflect price flexibility in the unobserved wholesale prices. It also
implies that the correct measure of market concentration is among wholesalers (e.g. Kraft vs Hellmans in Mayonnaise
in Ohio) instead retailers (e.g. WholeFoods vs Wegmans).

13This is consistent with Barro and Tenreyo (2006), who find that within manufacturing, relative output prices, a
measure of markups, are more counter-cyclical in more concentrated sectors.

14Midrigan (2011) and Alvarez and Lippi (2014) achieve this through multiproduct firms with economies of scope in
price changes. However Midrigan (2011) shows that the precise mechanism used to account for small price changes is
inconsequential: a single-product model with random menu costs that matches the same distribution of price changes
as the multi-product model can also deliver large output responses.

15Both models therefore share the same sufficient statistics for an output response to a monetary shock as derived by
Alvarez, LeBehin, and Lippi (2016). That they in fact generate very different output responses reinforces that models
with complementarity, with variable desired markups, are not a subject of these sufficient statistics.
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differentiates the model from those cited here and above.

The industrial organization literature established that nominal rigidities induce dynamic com-

plementarity in prices when markets are oligopolistic. Maskin and Tirole (1988b) first make this

point. They show that in an environment with exogenous short-run commitment to prices, MPE

strategies can accommodate prices above the frictionless equilibrium. Lapham and Ware (1994)

extend this result to a quadratic game and Jun and Vives (2004) to a differential game with general

convex costs of adjustment. These papers establish the difference between static complementarity—

due to the static profit function—and dynamic complementarity due to the combination of static

complementarity and pricing frictions.16 Future menu costs commit a firm to a high price once

they increase it, and a higher price softens conditions for its competitor, eliciting a similarly high

price.

These papers provide a theoretical foundation for dynamic complementarity, but abstract from

the elements common to quantitative general equilibrium macroeconomic models of price setting.

In particular, firms face large idiosyncratic costs and small fixed costs of adjustment, such that—as

opposed to convex costs—large price cuts are not more costly. In such an uncertain environment

is there room for dynamic complementarity to play a significant role in pricing decisions, and in a

way that impacts macroeconomic outcomes? The answer provided by this paper is, yes.

The most closely related papers at the microeconomic level are Nakamura and Zerom (2010)

and Neiman (2011). Both study single sector, partial equilibrium, oligopolistic models of price

setting under menu costs. The former studies three firms subject to a sectoral shock to the cost

of inputs, but no idiosyncratic cost shocks. I show that idiosyncratic shocks are important for

creating the types of sectors—with initially dispersed markups—that most depress the response

of the aggregate price level.17 The latter studies two firms subject only to idiosyncratic shocks, and

focuses on how one firm responds to a shock to its competitor, instead of how both firms respond

to a common shock, like a monetary shock.

This paper complements and significantly expands on the applicability of these papers. First,

by integrating the standard elements of a macroeconomic equilibrium menu cost model: a con-

tinuum of sectors, large idiosyncratic shocks, aggregate uncertainty. Second, by providing an

exhaustive comparison of the model to the monopolistically competitive benchmark, and study-

16Note that dynamic complementarity is sometimes referred to as intertemporal strategic complementarity.
17Additionally, sectors with initially very similar markups either over-respond (when their markups are low) or do

not respond at all (when their markups are high). Adding only these sectors together would result in a response similar
to the monopolistically competitive model.
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ing the model under alternative price-setting technologies. Third, by assessing the consequences

of the interaction of strategic firms and pricing frictions for output and firm value.

More generally, this paper demonstrates that the strategic interaction of firms can be quantita-

tively important for the cyclicality of macroeconomic aggregates. This should be of broad interest

given increasing concentration in many sectors of the US economy, which recent empirical work

has associated with numerous trends.18

Outline Section 2 presents the model. Section 3 describes the main mechanism using simula-

tions of the model. Section 4 presents the calibration. Section 5 presents the main results, de-

composition exercise, robustness, and distinguishes the results from the papers discussed above.

Section 6 shows how nominal rigidities distort output. Section 7 presents the empirical results.

Section 8 concludes. An Appendix contains—among other details—further discussion of model

assumptions, and theoretical results for a simple one-period duopoly price-setting game under

menu costs.

2 Model

Time is discrete. There are two types of agents: households and firms. Households are identical,

consume goods, supply labor, and buy shares in a portfolio of all firms in the economy. Firms are

organized in a continuum of sectors indexed j ∈ [0, 1]. Each sector contains two firms indexed

i ∈ {1, 2}. Goods are differentiated first across, then within sectors. Good ij is produced by a

single firm operating a technology with constant returns to scale in labor. Aggregate uncertainty

arises from shocks to the growth rate gt of the money supply Mt, and idiosyncratic uncertainty

arises from shocks to preferences for each good zijt . Each period every firm draws a menu cost

ξijt ∼ H (ξ) and may change their price pijt conditional on paying ξijt .

I write agents’ problems recursively, such that the time subscript t is redundant. The aggregate

state is denoted S ∈ S . The sectoral state is denoted s ∈ S. The measure of sectors with state s is

given by λ(s, S). When integrating over sectors, I integrate s over λ(s, S) rather than j over U[0, 1].

18Autor, Dorn, Katz, Patterson, and Reenen (2017) show that across sectors, declines in the labor share are correlated
with increases in concentration. Gutierrez and Philippon (2016) show that the decline in the predictive power of Tobin’s
Q for aggregate investment is due to sectors that have experienced large increases in concentration. de Loecker and
Eeckhout (2017) provide evidence for increasing average markups, which may also be linked to increasing concentra-
tion.
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2.1 Household

Given prices for all goods in all sectors pi(s, S), wage W(S), price of shares Ω(S), aggregate

dividends Π(S), the distribution of sectors λ(s, S), and law of motion for the aggregate state

S′ ∼ Γ(S′|S), households’ policies for consumption demand for each good in each sector ci(s, S),

labor supply N (S), and share demand X′ (S), solve

W
(
S, X

)
= max

ci(s),N,X′
log C − N + βE

[
W
(
S′, X′

)]
,

where C =

[
ˆ

S
c(s)

θ−1
θ dλ(s, S)

] θ
θ−1

,

c(s) =

[(
z1(s)c1(s)

) η−1
η
+
(

z2(s)c2(s)
) η−1

η

] η−1
η

,

subject to the nominal budget constraint
ˆ

S

[
p1(s, S)c1(s) + p2(s, S)c2(s)

]
dλ(s, S) + Ω(S)X′ ≤ W(S)N +

(
Ω(S) + Π(S)

)
X.

Households discount the future at rate β, have time-separable utility, and derive period utility

from consumption adjusted for the disutility of work, which is linear in labor.19 Utility from

consumption is logarithmic in a CES aggregator of consumption utility from the continuum of

sectors. The cross-sector elasticity of demand is denoted θ > 1. As in Atkeson and Burstein

(2008), utility from sector j goods is given by a CES utility function over the two firms’ goods.

The within-sector elasticity of demand is denoted η > 1. These elasticities are ranked η > θ. The

household is more willing to substitute goods within a sector (Pepsi vs. Coke) than across sectors

(soda vs. laundry detergent). Finally, household preference for each good is subject to a shifter

zi(s) that evolves according to a random walk,

log z′i(s
′) = log zi(s) + σzε′i, ε i ∼ N (0, 1). (1)

The shock ε′i is independent over firms, sectors, and time.

The solution to the household problem consists of demand functions for each firm’s output

ci(s, S), a labor supply function N(S), and an equilibrium share price Ω(S) which will be used to

price nominal firm payoffs. Demand functions are given by

19A parameter controlling the utility cost of labor can be normalized to one, so is not included.
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ci(s, S) = zi(s)
η−1
(

pi(s, S)

p(s, S)

)−η(
p(s, S)

P(S)

)−θ

C(S), (2)

where p(s, S) =

[(
p1(s, S)

z1(s)

)1−η

+

(
p2(s, S)

z2(s)

)1−η
] 1

1−η

,

P(S) =

[
ˆ

S
p(s, S)1−θ

dλ(s, S)

] 1
1−θ

.

Aggregate real consumption is C(S). The allocation of C(S) to sector s depends on the level of the

sectoral price p(s, S) relative to the aggregate price P(S). The allocation of expenditure to firm i is

then determined by zi(s) and the level of firm i’s price relative to p(s, S).

The aggregate price index satisfies P(S)C(S) =
´

S [p1(s, S)c1(s, S) + p2(s, S)c2(s, S)] dλ(s, S),

such that P(S)C(S) is equal to aggregate nominal consumption. I assume that aggregate nominal

consumption must be paid for using money M(S) such that M(S) = P(S)C(S) in equilibrium.20

Nominal money supply is exogenous. Its growth rate g′ = M′/M evolves as follows:

log g′(S′) = (1 − ρg) log ḡ + ρg log g(S′) + σgε′g, ε′g ∼ N (0, 1) . (3)

Hence, the nominal economy is trend stationary around ḡ. An intratemporal condition determines

labor supply and Euler equation prices shares under the nominal discount factor Q(S, S′):

W(S) = P(S)C(S), (4)

Ω(S) = E
[
Q(S, S′)

(
Ω(S′) + Π(S′)

)
|S
]

, Q(S, S′) = β
P(S)C(S)

P(S′)C(S′)
. (5)

2.2 Firms

I consider the problem for firm i, denoting its direct competitor −i. The sectoral state vector s

consists of previous prices pi, p−i and current preferences zi, z−i. Within a period, information and

timing are as follows. After these states are revealed, both firms, independently, draw a menu cost

for the period ξij from the known distribution H(ξ). I make the additional assumption, discussed

below, that these draws are private information. At the same time as its competitor, firm i then

chooses whether to adjust its price, φi ∈ {0, 1}, and if changing its price, changes it to p∗i . Prices

are then revealed, firms produce the quantity demanded by households, and preference shocks

evolve (zi, z−i) to (z′i, z′−i). Within a period, all moves are simultaneous, and firms do not respond

to each other’s new price: p′i = φi p
∗
i + (1 − φi)pi.

20An alternative assumption is that money enters the utility function as in Golosov and Lucas (2007). As noted in
that paper, if utility is separable, the disutility of labor is linear, and the utility of money is logarithmic, one obtains the
same equilibrium conditions studied here.
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When determining its actions, firm i takes as given the policies of its direct competitor: φ−i (s, S, ξ−i),

and p∗−i(s, S). Since menu costs are sunk, p∗−i(s, S) is independent of ξ−i. This description of the

environment explicitly restricts firm policies to depend only on payoff relevant information (s, S),

that is, they are Markov strategies. A richer dependency of policies on the history of firm behavior

is beyond the scope of this paper.21

Let Vi (s, S, ξi) denote the present discounted expected value of nominal profits of firm i after

the realization of the sectoral and aggregate states (s, S) and its menu cost ξi. Then Vi (s, S, ξi)

satisfies the following recursion:

Vi (s, S, ξi) = max
φi∈{0,1}

φi

[
V

adj
i (s, S)− W(S)ξi

]
+ (1 − φi)V

stay
i (s, S) , (6)

V
adj
i (s, S) = max

p∗i

ˆ

[
φ−i(s, S, ξ−i)

{
πi

(
p∗i , p∗−i(s, S), s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′, ξ′i

) ]}

+
(

1 − φ−i(s, S, ξ−i)
){

πi

(
p∗i , p−i, s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′, ξ′i

) ]} ]
dH(ξ−i),

πi

(
pi, p−i, s, S

)
= di

(
pi, p−i, s, S

)(
pi − zi(s)W(S)

)
,

s′adj = φ−i(s, S, ξ−i)×
(

p∗i , p∗−i(s, S), z′i, z′−i

)
+
(

1 − φ−i(s, S, ξ−i)
)
×
(

p∗i , p−i, z′i, z′−i

)

S′ ∼ Γ
(
S′|S

)
.

The first line states the extensive margin problem, where adjustment requires a payment of menu

cost ξi in units of labor. The value of adjustment is independent of the menu cost and requires

choosing a new price p∗i . The firm integrates out the unobserved state of its competitor—the menu

cost ξ−i—and takes as given the effect of its competitor’s pricing decisions on current payoffs and

future states. The term in braces on the second (third) line gives the flow nominal profits plus

continuation value of the firm if its competitor does (does not) adjust its price. Non-adjustment

value V
stay
i (s, S) and state s′stay are identical, up to p∗i = pi.

The above flow payoff introduces a role for zi(s) in costs. As in Midrigan (2011) and Alvarez

and Lippi (2014), I assume that zi(s)— which increases demand for the good with an elasticity

of (η − 1) — also increases total costs with a unit elasticity. This technical assumption, discussed

below, will enable me to reduce the state space of the firm’s problem, a crucial step to maintain

21In the words off Maskin and Tirole (1988a), “Markov strategies...depend on as little as possible, while still being
consistent with rationality.” Rotemberg and Woodford (1992) study an oligopoly with arbitrary history dependence of
policies but no nominal rigidity or idiosyncratic shocks. Implicit collusion leads to countercyclical markups: the value
of deviating from collusion increases when demand is high, reducing the level of the markup that the trigger strategies
can sustain.
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computational tractability of the model.22

The household’s nominal discount factor Q(S, S′) is used to discount future nominal profits,

and expectations are taken with respect to both the equilibrium transition density Γ(S′|S) and

firm-level shocks. Through the household’s demand functions di(pi, p−i, s, S), nominal profit de-

pends on aggregate consumption C(S) and the aggregate price index P(S), which the firm takes

as given.

That menu costs are sunk and iid allows for a number of simplifications. Since p∗−i is in-

dependent of ξ−i, firm i need only know the probability that its competitor changes its price:

γ−i(s, S) =
´

φ−i(s, S, ξ−i)dH(ξ−i). Since ξi is iid, it can be integrated out of firm i’s Bellman

equation. These observations imply that ξi is not a state:

Vi (s, S) =

ˆ

max
{

V
adj
i (s, S)− W(S)ξi, V

stay
i (s, S)

}
dH(ξi), (7)

V
adj
i (s, S) = max

p∗i

γ−i(s, S)
{

πi

(
p∗i , p∗−i(s, S), s, S

)
+ E

[
Q(S, S′)Vi

(
s′, S′

) ]}

+
(

1 − γ−i(s, S)
){

πi

(
p∗i , p−i, s, S

)
+ E

[
Q(S, S′)Vi

(
s′, S′) ]}.

Given p∗−i(s, S) and γ−i(s, S), the solution to this problem delivers firm i’s optimal price adjust-

ment p∗i (s, S) and probability of price adjustment γi(s, S) = H[(V i
adj(s, S)− V i

stay(s, S))/W(S)].

2.3 Equilibrium

Given the above, the aggregate state vector S must contain the level of nominal demand M, its

growth rate g, and distribution of sectors over sectoral state variables λ. A recursive equilibrium is

(i) Household demand functions di(pi, p−i, s, S)

(ii) Functions of the aggregate state: W(S), N(S), P(S), C(S), Q(S, S′)

(iii) Law of motion Γ(S, S′) for the aggregate state S = (g, M, λ)

(iv) Firm value functions Vi(s, S) and policies p∗i (s, S), γi(s, S)

such that

(a) Demand functions in (i) are consistent with household optimality conditions (2).

(b) The functions in (ii) are consistent with household optimality conditions (4).

22This assumption does not change the underlying economics of the problem. In reality, idiosyncratic demand or
productivity shocks may lead firms to change prices. In the model, under constant returns to scale and homothetic
preferences, the two enter symmetrically. The fundamental idea that a firm increases (decreases) its price when its price
is too low (high) relative to some benchmark, holds under either demand or productivity shocks. Importantly, the
aggregate shock is only to nominal demand.
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(c) Given functions (i), (ii), (iv), and competitor policies; p∗i , γi, and Vi are consistent with firm i

optimization and Bellman equation (7).

(d) Aggregate price P(S) equals the household price index under λ(s, S), p∗i (s, S) and γi(s, S).

(e) Nominal aggregate demand satisfies P(S)C(S) = M(S).

(f) The household holds all shares (X(S) = 1) and the price of shares is consistent with (4).

(g) The law of motion for g and path for M are determined by (3).

(h) The law of motion for λ is consistent with firm policies and (1). Let X = P1 × P2 × Z × Z ∈

R
4
+, and the corresponding set of Borel sigma algebras on X be given by X = P1 × P2 ×

Z1 ×Z2. Then λ : X → [0, 1] and obeys the following law of motion for all subsets of X :23

λ′ (X ) =

ˆ

X
Eγ1(s,S),γ2(s,S)1 {(p∗1(s, S), p∗2(s, S)) ∈ P1 ×P2}P

[
z′1 ∈ Z1|z1

]
P
[
z′2 ∈ Z2|z2

]
dλ(s, S).

This contributes an extension of the standard definition of a recursive competitive equilibrium:

firms are competitive with respect to firms in other sectors of the economy, but strategic with

respect to firms in their own sector. Condition (c) requires that these strategies constitute an MPE.

2.4 Monopolistic competition and monopoly

The monopolistically competitive model is identical to the above, but where firm i belongs to

a continuum of firms i ∈ [0, 1] in sector j. The demand system is identical to (2), but where

pj(S) = [
´

(p(s, S)/z(s))1−η
dλj(s, S)]1/(1−η). Since firms are competitive, they take pj(S) as given.

The idiosyncratic state of the firm is therefore its own zi and past price pi. Moreover, since sectors

are homogeneous in parameters, and the law of large numbers applies for each sector, then the

distribution of firms λj is the same in all sectors. Therefore pj(S) = pk(S) for all j and k, and

P(S) = pj(S). The cross-sector elasticity of demand θ is therefore absent from the firm problem

and all equilibrium conditions.

Note the connection between monopolistic competition and another market structure: sectoral

monopoly. Under monopoly, the sectoral price index is the monopolist’s price, and the within-

sector elasticity of demand η is redundant. Sectoral monopolistic competition under (θ, η) =

(θmc, x) will therefore be identical in firm and aggregate dynamics to sectoral monopoly with

(θ, η) = (x, ηm) for any values of θmc and ηm.

23In this definition, Eγ1(s,S),γ2(s,S) [ f (s, S)] is the expectation of f under the sector s probabilities of price adjustment.
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2.5 Markups

A sectoral MPE, nested in a macroeconomic equilibrium, is computationally infeasible with four

continuous state variables. However, under my assumptions regarding idiosyncratic shocks, it

may be restated in terms of markups, which are the ratio of nominal price to nominal marginal

cost: µij = pij/(zijW). Similarly, I define the sectoral markup µj = pj/W and aggregate markup

µ = P/W. Along with (2), these definitions imply µj = [µ
1−η
1j +µ

1−η
2j ]1/(1−η), and µ = [

´ 1
0 µ1−θ

j dj]1/(1−θ).

Expressed in markups and normalized by the wage, the profit of the firm is

πi

(
µi, µ−i, S

)
/W(S) = π̃i

(
µi, µ−i

)
µ(S)θ−1, π̃i

(
µi, µ−i

)
= µ

−η
i µj (µi, µ−i)

η−θ (µi − 1) , (8)

which implies that complementarity in prices carries over to complementarity in markups.24 Value

functions can also be normalized. Let v(s, S) = V(s, S)/W(S), then

vi (µi, µ−i, S) =

ˆ

max
{

v
adj
i (µi, µ−i, S)− ξi, v

stay
i (s, S)

}
dH(ξi), (9)

v
adj
i (µi, µ−i, S) = max

µ∗
i

γ−i(µi, µ−i, S)

{
π̃i

(
µ∗

i , µ∗
−i(µi, µ−i, S)

)
µ (S)θ−1 + βE

[
vi

(
µ∗

i

g′eε′i
,

µ∗
−i(µi, µ−i, S)

g′eε′−i

, S′

)]}

+
(

1 − γ−i(µi, µ−i, S)
){

π̃i

(
µ∗

i , µ−i

)
µ (S)θ−1 + βE

[
vi

(
µ∗

i

g′eε′i
,

µ−i

g′eε′−i

, S′

)]}
.

This renders the firm problem stationary and clarifies the mechanics of the shocks. A random

walk idiosyncratic shock ε′i is a permanent iid shock to the markup of firm i should the firm

not adjust its price. A single positive innovation to money growth causes equilibrium nominal

marginal cost to increase, which reduces both firms’ markups. As money growth returns to ḡ at

rate ρg, the markup continues to decline. Firm i pays a real cost ξi to adjust its markup.

In this way, all equilibrium conditions can be stated in markups. Note that aggregate con-

sumption is C(S) = 1/µ(S). An increase in the money supply causes an equilibrium increase in

wages, reducing all firms’ markups. If all prices do not increase one for one with wages, the real

wage increases, labor supply increases, and output increases.

A solution for the equilibrium involves the function µ(S), requiring the infinite dimensional

distribution λ (µi, µ−i) as a state variable. To make the problem tractable, I follow the lead of

Krusell and Smith (1998). Since I already need to specify a price function for µ, a convenient

choice of moment to characterize λ is last period’s aggregate markup, µ−1. The following then

serves as both pricing function and law of motion for the approximate aggregate state:

24When µ−i is large, the effect of a change in µi on µj(µi, µ−i) is larger: ∂µj/∂µi = (µj/µi)
η . Since η > θ, then π̃i is

increasing in µj. Combined, these imply that the cross-partial derivative of π̃i is positive.
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µ (µ−1, g) = exp (µ̄ + β1(log µ−1 − log µ̄) + β2(log g − log ḡ)) .

Applying this to (9) verifies that the approximate aggregate state consists of S = (µ−1, g). Ap-

pendix B provides more details on the solution of the firm problem and equilibrium.

Appendix D discusses a number of modeling assumptions: CES preferences, structure of id-

iosyncratic shocks, and random menu costs and their information structure. Following the insight

of Doraszelski and Satterthwaite (2010), this last assumption is made to accommodate a solution

in pure strategies. A model with fixed costs would yield mixed strategy equilibria, becoming

computationally infeasible. In Appendix C, I prove a number of results for a one-period game of

price adjustment with a fixed menu cost, equal initial prices, and a general profit function with

complementarity. For any menu cost, even in this simple setting, there is always a range of initial

prices for which multiple equilibria exist (see Figure A2).

3 Illustrating the mechanism

To understand the dynamics of markups in the two models of market structure, I consider an

exercise that corresponds to the central experiment in Golosov and Lucas (2007). Idiosyncratic

shocks are present, but inflation and aggregate shocks are zero, and I study the response to a one-

time unforeseen increase in money in period τ (gτ > 0, ρg = 0). Firms assume that the aggregate

markup remains at its steady-state level.

Both models are solved under full idiosyncratic risk, and then simulated under particular

paths of shocks chosen for illustrative purposes. The parameters of each model are those esti-

mated in Section 4, Table 1.

3.1 Monopolistic competition

Figure 2 describes the behavior of firms in the monopolistically competitive model. Black (grey)

lines describe a firm that, from period five onward, has received a string of positive (negative)

idiosyncratic shocks. For t < 5, firms draw zero menu costs, and for t ≥ 5, both firms draw large

menu costs such that their prices do not adjust.25 Thin solid lines in panel A plot the evolution

25Specifically, I set µi0 = µ−i0 to some arbitrary initial markup. I then set ξit = ξ−it = 0 and ε it = ε−it = 0 for
t ≤ 5 and use the firms’ policies to evolve (µit, µ−it), this means firms quickly adjust to µ̄ that satisfies µ̄ = µ∗

i (µ̄, µ̄).
From t = 6 onwards I choose the realizations of the menu cost ξit = ξ−it = ξ̄ such that prices do not adjust. I choose
the realizations of the idiosyncratic shocks ε it = ε̄ and ε−it = −ε̄, such that one firms markup steadily increases,
and the other decreases. I then plot µ∗

i (µit, µ−it) and γi(µit, µ−it). This should make clear that the firms policies are
solved under full idiosyncratic uncertainty, and—for illustrative purposes—I am only choosing the realized path for
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of each firm’s markup absent the increase in money supply. Dashed lines in panel A describe the

optimal reset markup of each firm µ∗
it. Since µit is payoff irrelevant once the firm decides to change

its price, the reset markup is constant and the same for both firms. Thin lines in panel B plot the

firm’s probability of adjustment γit = γ(µit).

The thick lines in Figure 2 describe the response to a permanent increase in the money supply

in period 40 which, absent adjustment, reduces both firms’ markups. The low-markup firm’s

probability of adjustment increases as its markup moves away from its reset value. The size of

its optimal adjustment increases by ∆M, accommodating the entire increase in aggregate nominal

cost. The high-markup firm moves closer to its reset value, its probability of adjustment falls, and

its size of adjustment falls by ∆M. The firms’ optimal markups are unaffected by the shock.26

As detailed by Golosov and Lucas (2007), this behavior sharply curtails the real effects of the

monetary expansion. The distribution of adjusting firms shifts toward those with already low

prices. These are firms that are increasing their prices and now by larger amounts. Monetary neu-

trality owes to the behavior of these firms with low markups and a high probability of adjustment

that are marginal with respect to the shock.

3.2 Duopoly

I now repeat this exercise in the duopoly model for two firms in the same sector. The firms differ

both in their policies absent the shock and in their response to the shock. These differences are due

to the interaction of menu costs and complementarity in prices that arise in the duopoly model.

Static complementarity Prices are static complements when the cross-partial derivative of a firm’s

profit function (π̃12 > 0) is positive. Economically, this is the case for two reasons: (i) firms are

strategic, so they understand how their price affects the sectoral price, and (ii) the household has

a lower ability to substitute across sectors than within sectors. As µ2 increases, firm 1 sells to more

of the market. Because of (i), firm 1 understands that this changes its demand elasticity. Because

of (ii), the elasticity it faces falls, encouraging a higher markup. A high µ2 encourages a high µ1

and vica-versa, yet if both firms had identical high markups, then absent a cost of downward

adjustment, both undercut each other such that only the frictionless Nash equilibrium µ1 = µ2 =

the simulation.
26Since the shock to money growth is not persistent, the optimal markup of the firm does not change. If ρg > 0, then

the optimal markup would itself increase, as the firm understands that knowing that future positive money growth
will wear down its markup in consecutive periods.
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µ∗ would be attainable. Figure 3A plots the static best response function of firm 1: µ∗
1(µ2).27

Dynamic complementarity In an MPE with zero menu costs, static complementarity does not

imply monetary non-neutrality. The best-response function may be upward sloping but µ∗
1(µ1, µ2) =

µ∗, is independent of µ1 and µ2. An increase in money supply which reduces µ′
i < µi for both firms

at the start of the period, will be complete offset as both firms jump back to µ∗.

In the presence of menu costs, however, properties of the static upward sloping best-response

function surface in the MPE policies of the firm. In particular, µ∗
1 is not independent of (µ1, µ2).

As we will see in Figure 4, a high µ2 at the start of the period—due to either past actions or the

accumulation of current and past idiosyncratic and aggregate shocks—elicits a high equilibrium

response of firm 1 within the period. Just like the static best response, a low-priced firm adjusts

to a price that is below but close to its high-priced competitor. Prices are dynamic complements in

that, in equilibrium, increases in the pre-determined state-variable of one firm elicits an increasing

response from its competitor.28

Menu costs, are small though—in my model they will represent around 0.1 percent of revenue—

Figure 3 uses static profit functions to provide an intuition for why even small menu costs may

sustain such strategies. While the static best response µ∗
1(µ2) is to undercut µ2 (Panel A), it does

not substantially increase firm 1’s profit above what is obtained if it could only commit to µ1 = µ2

(Panel B). Small values of menu costs punish downward deviations from high prices, and since

both firms want high prices conditional on their competitor having a high price (π12 > 0), this

is enough to sustain markups and profits that are higher than those that occur at the frictionless

Nash equilibrium µ∗. Figure 4 uses a simulation to draw out the policy functions in the dynamic

model that achieve this.

Appendix C provides a number of theoretical results for a one-period game with a fixed menu

cost where (µ1, µ2) are given. For any menu cost and general profit function with π12 > 0, I show

that (i) there exists a set of initial markups µ1 = µ2 > µ∗, such that the Nash equilibrium involves

no adjustment, and (ii) for initial markups that are very high, the only equilibrium involves both

firms paying the menu cost and choosing µ∗. Thus positive menu costs can only sustain limited

27In Appendix C I show that the best response function in a static, frictionless model under CES preferences with
η > θ is upward sloping with a slope less than one. This implies that if µ−i is greater than the frictionless Nash
equilibrium markup µ∗, then the static best response of firm i is to undercut: µ∗

i (µ−i) ∈ (µ∗, µj). Figure A6 provides—
around the calibrated values of θ and η—comparative statics of the best response function with respect to η, and other
features of the profit function.

28I take this language from Jun and Vives (2004), who differentiate between static and dynamic complementarity in
the MPE of dynamic oligopoly models of Cournot and Bertrand competition with convex costs of adjustment.
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deviations from the equilibrium under no menu costs. This will also be a feature of the dynamic

model.

Steady-state policies Returning to the simulation exercise, Figure 4 confirms that the reset markups

µ∗
i (µi, µj) are no longer equal, and the low-markup (grey) firm sets µ∗

it to below, but near, that of its

competitor. Choosing a high reset markup and high probability of adjustment discourages under-

cutting by the high markup (black) firm. This maintain’s the grey firm’s market share in the short

run while supporting a high sectoral price in the long run. The menu costs faced by the black firm

rationalizes its low probability of a price cut as a best response to the grey firm’s policy.

In this way, the firms’ policies in the non-cooperative MPE sustain markups substantially

above the frictionless Bertrand-Nash equilibrium, even in the presence of large idiosyncratic shocks.

Note, however, that the size of this wedge is limited. Figure 3B shows that in terms of flow profits,

higher initial markups increasingly invite undercutting: π̃1(µ
∗
1(µ2), µ2))− π̃1(µ2, µ2) increases as

µ2 exceeds µ∗. In Figure 4A, this is reflected in the flattening out of the grey firm’s reset markup. If

the grey firm adjusted to an even higher markup, the menu cost would be insufficient to dissuade

the black firm from cutting its price.

The fact that firms know the distribution of costs of price change faced by their competitor, is

key to these policies. In a Calvo model, firm adjusts at random. As I show below, the MPE of a

Calvo model features less dynamic complementarity: when the price adjustment of its competitor

is random the grey firm’s optimal markup is less dependent on the black firm’s. This will lead the

duopoly model to generate similar output responses under menu costs and Calvo.

Response to monetary shock Dynamic complementarity leads the duopoly model to respond

differently to the monopolistically competitive model following a monetary shock. The desired

price increase at the low-markup firm still jumps to cover the increase in aggregate nominal cost,

but this is tempered by the decline in its competitor’s markup. The equilibrium best response of

the marginal firm is increasing in the initial markup of the inframarginal firm, so with a lower

markup at the inframarginal firm, the optimal markup of the marginal firm falls. With a lower

markup at its competitor, the increase in the value of a price change is also dampened since any

price increase will be met with lower, more elastic demand.29 In the example of Figure 4, the

29For completeness, consider the symmetric case of a negative money supply shock. The nominal wage falls and—
conditional on non-adjustment—markups increase. The marginal firm now has the high markup and considers decreas-
ing its markup, while the shock has increased the markup of its competitor. The increasing markup at its competitor
shifts the marginal firm’s demand curve out and lowers its elasticity, reducing the value of a price decrease and its
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probability and size of price adjustment at the marginal firm increase by half as much as they do

in Figure 2.30

Monetary non-neutrality occurs because price adjustment at marginal firms is weakened by

the falling relative price at inframarginal firms. Figure 4 provides a stark example, considering

firms with markups below and above their reset markups. In Section 5.2 I show that these are

exactly the types of sectors that drive the slow response of inflation. Figures A3 and A4 repeat

the above experiment for sectors with two initially low markups. Here duopolists over respond

relative to two monopolistically competitive firms with low prices. With both firms’ probability

of adjustment increasing, the firms increase their prices by more than ∆M in order to encourage a

high price from their competitor. A full understanding of the real effects of monetary shocks in a

model with oligopolistic sectors therefore requires two key features of my model: (i) many sectors

and (ii) idiosyncratic shocks (which generate within sector markup dispersion).

4 Calibration

Both models are calibrated at a monthly frequency with β = 0.951/12. I follow the same procedure

as Midrigan (2011) for calibrating the persistence and size of shocks to the growth rate of money:

ρg = 0.61, σg = 0.0019.31 I set log ḡ = 0.0021 to replicate 2.5 percent average inflation in the

US from 1985 to 2016. The final parameter set externally is the cross-sector elasticity θ which I

set to 1.5, consistent with Nechio and Hobijn (2017), one of the few studies to provide empirical

estimates of upper-level demand elasticities.32

The same set of parameters remain in both models: (i) within-sector elasticity of substitution

η, (ii) size of idiosyncratic shocks σz, (iii) distribution of menu costs. I assume menu costs are

uniformly distributed ξijt ∼ U
[
0, ξ̄
]

and refer to ξ̄ as the menu cost. These parameters are chosen

to match the average absolute size and frequency of price change in the IRI data, as well as a

optimal size.
30Note the small increase in µ∗

it at the high markup firm. Increasing µ∗
it encourages its competitor to choose a high

markup conditional on adjustment, which is now a more likely event.
31Specifically, I take monthly time series for M1 and regress ∆ log M1t on current and 24 lagged values of the mon-

etary shock series constructed by Romer and Romer (2004). I then estimate an AR(1) process on the predicted values.
The coefficient on lagged money growth is ρg = 0.608, with standard error 0.045. The standard deviation of residuals
gives σg.

32 Edmond, Midrigan, and Xu (2015) estimate θ = 1.24 and η = 10.5 in a static oligopoly model with trade. In
their quantitative application Atkeson and Burstein (2008) choose θ “close to one” and η = 10. When estimating
within-sector elasticities of substitution, it is common practice in industrial organization to assume that θ = 1 such that
preferences are Cobb-Douglas across sectors (for an example, see Hottman, Redding, and Weinstein (2014)). Meanwhile
Cobb-Douglas preferences across sectors (θ = 1) are commonly used in trade models, for example Gaubert and Itskhoki
(2016) and references therein.
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measure of the average markup.33

As shown by Golosov and Lucas (2007), matching these first two moments severely constrains

the ability of the monopolistically competitive menu cost model to generate sizeable output fluctu-

ations. A large average size of price change implies that the additional low-markup firms adjust-

ing after a monetary shock will have large positive price changes. If prices change frequently, then

the increase in nominal cost is quickly incorporated into the aggregate price index. The average

absolute log size of price change (conditional on price change) is 0.10, and the average frequency

of price change is 0.13.34 Below, in Table 4, I show that second, third, and fourth moments of the

distributions of price changes in both models are also similar.

The third moment, the average markup, is motivated two ways. First, note that the duopolist

faces an overall elasticity of demand between θ and η, since it does not take the sectoral markup as

given. Therefore, if η and θ were the same in both models, then the lower demand elasticity facing

the duopolist would be a force toward less frequent price adjustment, requiring a significantly

lower menu cost to match the data. Calibrating to the same average markup means the elasticity

of demand faced by firms in both models is approximately the same. Below in Figure 8, I show

that the shape of the profit functions in both models are essentially the same when fixing other

prices.

Second, equating average markups equates average profits. A ranking of calibrated menu

costs is therefore preserved when transformed into the ratio of menu costs to profits, which is

an economically more meaningful measure. I can therefore make statements regarding the price

stickiness endogenously generated by each model by simply comparing the calibrated menu costs.

Note that by calibrating both models to match the same frequency of price change, there is no role

for any such endogenous price stickiness in the comparison of aggregate dynamics. The spirit of

the experiment is to control for price flexibility with respect to idiosyncratic shocks and examine

the differential response to aggregate shocks.

I target an average markup of E[µit ] = 1.30, which forms the consensus of a range of stud-

33The parameter η has an overwhelming effect on the average markup. Given a value of η, one can match the size
and frequency of price change by changing ξ̄ and σz. Conditional on η, the argument for identification of σz and ξ̄ is
the same as Vavra (2014), Berger and Vavra (2013), and others. Let xit =

∣∣log
(
µ∗

it/µit

)∣∣. Increasing ξ̄ lowers adjustment
probabilities for any xit, lowering frequency of price change. The average size of price change increases since xit will
on average be larger by the time the firm adjusts. Increasing σz increases frequency of price change, since any large
value of xit now occurs more often. The average size of price change increases since more frequent adjustment is costly,
leading the firm to wait until xit is larger before adjusting. As shown by Barro (1972), this argument leads to exact
identification in a continuous time, fixed menu cost model.

34Appendix A details the construction of these measures from IRI data, noting here that I exclude sales and small
price changes that may be deemed measurement error.
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ies using various techniques. In their estimation of markups across 50 sectors, Christopoulou

and Vermeulen (2008) find an average markup in the US of 1.32. For the US auto industry, Berry,

Levinsohn, and Pakes (1995) estimate an average markup of 1.31. For retail goods, Hottman (2016)

estimates an average markup between 1.29 and 1.33. For Compustat firms, de Loecker and Eeck-

hout (2017) estimate an average markup between 1.20 and 1.30 for the pre-1990 period.

The choices of θ and E[µit] are designed to be conservative with respect to the degree of com-

plementarity in the model. Macroeconomic models with monopolistic competition are commonly

calibrated to a lower average markup around 1.20. Since θ is already above the value used in

most multi-sector models, this would require a higher η, implying stronger complementarities

and larger output fluctuations.35 Lowering θ toward values commonly used θ ≈ 1 in multi-sector

models would increase the average markup, requiring a further increase in η, increasing η − θ,

and again implying stronger complementarities.

The first two columns of Table 1 provide baseline calibrations DuoI and MCI . The calibration

exercise successfully delivers two models that have the same good-level price dynamics. The

remaining columns provide alternative calibrations of the monopolistically competitive model,

which are referred to below.

Menu costs are lower in the duopoly model. The upper bound ξ̄ is lower, and given that

average markups are the same and H(ξi) is uniform, the average menu cost draw is also lower

as a fraction of profits which is the economically meaningful measure when thinking about firm

pricing decisions. As a further benchmark, total menu costs paid are 0.105 (0.076) percent of total

revenue in MCI (DuoI), which are a little more than the 0.04 percent average Physical cost as a

fraction of revenue reported in Zbracki et. al. (2004).36

Before moving on to comparing aggregate-price dynamics, I first compare the MCI and MCI I

parameterizations of the monopolistically competitive model to demonstrate the importance of

ensuring that DuoI and MCI match the same microdata on price adjustment. In MCI I the monop-

olistically competitive model is evaluated at the DuoI parameters. MCI I , with a higher η, lower ξ̄

and smaller σz, features more frequent and smaller price adjustments than MCI . With more flexi-

ble firm-level prices, output fluctuations—as measured by the standard deviation of log aggregate

35See references in previous footnote 32.
36See their Table 5. When including Managerial costs and Physical costs, total costs amount to 1.22 percent of revenue.

This latter statistic is widely used to benchmark menu cost models. Total menu costs paid are 0.522 (0.455) percent of
total profits in MCI (DuoI), which are a little less than the Physical cost as a percentage of Net margin in Zbracki et. al.
(2004) Table 5.
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consumption σ(log Ct)—are half as large (0.06 vs. 0.13).37 The calibration strategy therefore works

toward comparatively less, rather than more, amplification in the duopoly model. This predicts

that when comparing markets with similar parameters but different market concentration, prices

should be far more flexible when there are many similarly sized firms. In Section 7 I verify this

prediction using across-region variation in price-flexibility within the same wholesale goods cate-

gory.

5 Aggregate dynamics

Table 1 delivers the main result of the paper, which is that fluctuations in output are around 2.4

times larger in the duopoly model (0.31 vs. 0.13).38 Figure 5A plots the impulse response of

aggregate consumption to a one standard deviation shock to money growth, computed via local

projection.39 Panel B shows that the cumulative response is also more than twice as large in the

duopoly model (0.83 vs. 0.36).

These results can be compared with other papers that study the neutrality of money in exten-

sions of the Golosov and Lucas (2007) model. Output fluctuations are slightly larger than in the

multiproduct model of Midrigan (2011) (σ(log Ct) = 0.29). The ratio of σ(log Ct) under duopoly

to monopolistic competition is also larger than what Nakamura and Steinsson (2010) find when

comparing single and multisector menu cost models (a ratio of 1.82 compared to 2.38 here).40 I

37The standard deviation of log consumption is a common summary statistic for the output effects of monetary
shocks in the menu cost models cited in Section 1. Specifically, σ(log Ct) is equal to the standard deviation of HP-
filtered deviations of log of consumption from its value in an economy in which gt = ḡ.

38The monopolistically competitive model under random menu costs generates larger output fluctuations than un-
der a fixed menu cost. Calibrated to the same data, a fixed menu cost model delivers σ(log Ct) = 0.06 This difference
is for the reason discussed extensively in Midrigan (2011): random menu costs generate some small price changes,
dampening the extensive margin response of inflation—or selection effect—following a monetary shock.

39Impulse response functions in this section are computed as follows, an approach that is econometrically equivalent
to the approach used by Jorda (2005). The economy is simulated for 5,000 periods with aggregate and idiosyncratic
shocks. Given the known time series of aggregate shocks to money growth ε

g
t , the horizon τ IRF is IRFτ = ∑

τ
s=0 β̂τ ,

where β̂τ is estimated from OLS on ∆ log Ct = α + βτε
g
t−τ + ηt. The benefits of computing the IRF in this manner are (i)

it is exactly what one would compute in the data if the realized path of monetary shocks was known, which is consistent
with the approach that uses identified monetary shocks from either a narrative or high-frequency approach (Gertler and
Karadi, 2015); (ii) it avoids the time-consuming approach of simulating the model many times, as is usually done in
heterogeneous agents models with aggregate shocks; and (iii) it averages out any state dependence which might bias
the results from computing an IRF from a specific state, as well as any non-linearity in the size of the response following
positive / negative and small / large shocks; (iv) Berger, Caballero, and Engel (2017) extensively assess the benefits of
this approach in accurately capturing the persistence of aggregate dynamics in lumpy adjustment models. To the best of
my knowledge this is the first paper to consider this as the baseline computational approach for the impulse response.

40See their Table VI (first row, first two columns). On the lower end, this ratio is 1.63 when comparing single and
multisector versions of the Calvo+ model (a menu cost model where ξ > 0 with probability α and ξ = 0 with probability
(1 − α). On the high end, this ratio is 2.00 when comparing single and multisector versions of the standard menu cost
model. In general, the Calvo+ framework increases output responses but does not further amplify the effect of the
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therefore add a new and realistic feature to the class of models with menu costs and idiosyncratic

shocks—markets are concentrated—and move the model toward the large real effects of monetary

shocks found in the data, and does so without deviating away from estimates of the empirical size

of menu costs or idiosyncratic shocks.

Importantly, the duopoly mechanism does not exclude existing approaches. So while no ex-

isting approach alone generates the real effects of monetary shocks observed in the data, they

may be combined in ways that could. For example, the macro-complementarity—that slows the

pass-through of monetary shocks to aggregate marginal cost—studied in Nakamura and Steins-

son (2010) would operate independently of the micro-complementarity studied here. See Table A1

for further comparisons and the model’s implied slope of the Phillips curve.

5.1 Verifying the mechanism I: Impulse responses

To check whether the intuition from Section 3 holds in the full model, I study the response of the

average absolute size and frequency of price change for low- and high-markup firms following a

positive monetary shock. Figure 6 shows that the broad dynamics of both models are the same.

Low-markup firms adjust more (panel A), and the size of their price change increases (panel B).

High-markup firms adjust less, and the size of their price change falls. However, both the fre-

quency and size of price change of low-markup firms respond by less in the duopoly model.

Idiosyncratic shocks may increase or decrease their competitor’s markup but the aggregate shock

implies that on average their competitor’s markup falls, reducing the value of a price increase and

the optimal price conditional on adjustment.

Observe that the average size of price changes at high-markup firms falls by less in the duopoly

model. The increase in probability of upward adjustment by their low-markup competitor, re-

duces the incentive for high-markup firms to decrease their price. This would be a force toward

a larger increase in inflation response in the duopoly model. However, the falling probability of

adjustment for high markup firms implies that this reduction in the size of optimal downward

adjustment is rarely incorporated into the aggregate price index.

5.2 Verifying the mechanism II: Decomposing inflation

The response of inflation can be more formally decomposed into an extensive and intensive mar-

gin response, and these margins compared across sectors of the economy. I follow the spirit of the

macro-complementarity.
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theoretical decomposition in Caballero and Engel (2007), which can be applied to a wide class of

lumpy adjustment models.41

Consider two simulations of the model, where the model has been solved in the presence of

aggregate shocks. In one simulation, aggregate shocks are set to zero leaving only trend inflation.

A second simulation features identical draws of idiosyncratic shocks, but includes a single shock

to the money growth at date t. Denote by ∆p̄t the log change in the aggregate price index in the

first simulation and by ∆p̂t the same statistic in the simulation with the shock. Inflation due to

the shock is πt = ∆p̂t − ∆p̄t. Let xit = log p∗it − log pit−1 denote the desired log price change of

firm i, and γit denote the probability of price change. Then ∆pt ≈ N−1 ∑
N
i=1 γitxit. This implies the

following decomposition of inflation:

πt ≈ N−1
N

∑
i=1

γ̄it (x̂it − x̄it)
︸ ︷︷ ︸

1. Intensive

+ x̄it (γ̂it − γ̄it)
︸ ︷︷ ︸

2. Extensive

+ (γ̂it − γ̄it) (x̂it − x̄it)
︸ ︷︷ ︸

3. Covariance

. (10)

Panel A of Table 2 provides this decomposition for each of the two models. The first two lines

show that in both models, inflation is generated roughly equally by adjustment on the intensive

and extensive margins. The main result from the previous section was that inflation responds

by more in the monopolistically competitive model, producing smaller output effects. Panel B

shows that the difference in inflation is roughly equally accounted for by decreases in all margins

of adjustment.

Panel C accounts for these differences across the distribution of sectors. For example, the

bottom left entry states that 9 percent of the difference in the intensive margin of adjustment can

be accounted for by sectors in which both firms have markups above the median markup.42

Panel C quantifies the earlier claim that sectors with dispersed markups due to accumulated

large idiosyncratic shocks account for the difference between the two models (this ex-post fact mo-

tivated the simulations studied in Section 3). By extension, this implies that the presence of inde-

pendent idiosyncratic shocks—a key feature of the menu-cost literature in monetary economics—

is important. Beyond the study of general equilibrium, comparison of oligopoly and monopolistic

41See Figure A1 for a diagrammatic representation of this decomposition in a monopolistically competitive model
with fixed menu costs.

42In these experiments, the realizations of random numbers used to generate the simulations are the same across
models. Two firms in one sector in the duopoly model therefore have two corresponding, but unrelated, firms in
the monopolistically competitive model. The different parameters of each model map random numbers into different
idiosyncratic shocks and menu costs, but the underlying random numbers are the same for each of these pairs. In each
model, these pairs of firms are then assigned to quadrants of the distribution of markups according to their markups
relative to the median markup.
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competition, and welfare results, idiosyncratic shocks differentiate the sectoral model from Naka-

mura and Zerom (2010).

Since this is central to the results, Appendix D provides some support for the importance of

these shocks. For large firms (e.g. Kraft in the Mayonnaise market in Ohio), changes in revenue

are mostly due to changes in their revenue share within their sector, as opposed to changes in the

revenue share of the sector within the region—as would be the case with sectoral shocks—or total

regional spending—as would be the case with regional shocks.

Panel C also shows that sectors with low markups contribute substantially toward greater ag-

gregate price flexibility (recall Figure A4). In the oligopoly model with menu costs the presence of

static complementarity does not uniformly imply more aggregate price stickiness, and leads some

sectors to over adjust. Quantitatively, however, the dispersed markup sectors shape the aggregate

inflation response for two reasons. First, there are simply twice as many sectors with low-and-high

markups than low-and-low markups. Second, there is little difference in the behavior of sectors

with two initially high markups.

5.3 Robustness

State-dependent price setting The central result of Golosov and Lucas (2007) is that a monopo-

listically competitive menu cost model exhibits far greater neutrality under menu costs than Calvo.

Table 3 verifies this remains the case under random menu costs. Under a Calvo price setting tech-

nology where the exogenous frequency of price adjustment α and σz are calibrated to match the

size and frequency of adjustment, output fluctuations in the monopolistically competitive model

are nearly three times larger under Calvo (0.38 vs 0.13). However, this is not the case for the

duopoly model: output fluctuations are only 30 percent larger under Calvo (0.41 vs. 0.31).43

This has two significant implications. First, adding Calvo-like elements to amplify the real

effects of monetary shocks is not a solution to monetary non-neutrality when firms behave strate-

gically. Second, changing market structures within the Calvo model will have negligible effects

(0.41 vs. 0.38).

43Table 3 also reveals that the duopoly model accounts for around three-quarters of the difference between monopo-
listically competitive Calvo and menu cost models. This comparison may seem unwarranted. However, a feature of the
literature has been to ask whether state-dependent models can deliver output fluctuations as large as time-dependent
models. For example, in Midrigan (2011), a Golosov-Lucas model delivers σ(Ct) = 0.07, a Calvo model σ(Ct) = 0.35,
and the author’s benchmark multiproduct model σ(Ct) = 0.29. The main result is that the multiproduct model gener-
ates real effects of monetary shocks that are 78 percent as large as a Calvo model. In my case this number is around 75
percent.
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What drives this result? Monetary non-neutrality in the menu-cost duopoly model is due

to the amount of dynamic complementarity that the pricing friction generates. When a firms

know—even imperfectly—the cost their competitor must pay to change their price, in equilibrium

it reprices close to its competitor (recall Figure 4). When a firm knows that its competitor will

change their price at random—as under Calvo—, the incentive of a low-priced firm to reprice close

to its competitor is weakened. The attenuation of the intensive margin response to a monetary

shock is therefore no longer as powerful as under time-dependent pricing.

This raises a general point that should broaden the interest in this class of pricing complemen-

tarity. As opposed to other popular forms of micro-complementarity, which I describe next, the

amount of dynamic complementarity depends not on one parameter but on the whole environ-

ment. In particular, it is not invariant to changes in policy or technologies. Table 3 provides one

relevant example, and leaves open how changes in trend inflation, size of monetary shocks, and

other features may weaken or strengthen the amount of complementarity.

Demand elasticity An alternative strategy for calibrating the elasticity of demand would have

been to choose η such that markups in a frictionless economy coincided exactly.44 In Appendix C

I derive the familiar frictionless markups in each model under Bertrand competition:

µ∗
Duo =

1
2 (ηDuo + θ)

1
2 (ηDuo + θ)− 1

, µ∗
MC =

ηMC

ηMC − 1
.

Under the baseline calibration ηDuoI
= 10.5, which implies µ∗

DuoI
= 1.20 (Table 1, DuoI). This is

substantially less than the observed average markup, a point I return to below. Setting µ∗
MC =

µ∗
DuoI

, therefore requires ηMC = 6. Calibration MCI I I in Table 1 uses ηMCI I I
= 6 and a higher value

of the menu cost in order to match the same moments. The real effects of monetary shocks are the

same as in the baseline MCI . Calibration MCIV considers the extreme case of ηMCIV
= ηDuoI

=

10.5, but even then, after recalibrating parameters, σ(log Ct) is unaffected.

Figure 7 shows that this holds across ηMC ∈ [2, 10], or equivalently, µ∗
MC ∈ [1.11, 2.00]. Solid

lines describe the monopolistically competitive model under different values of ηMC, each time

recalibrating the menu cost (panel A) to best match the data (panel B).45 Dashed lines describe the

44Such an approach is appealing. Benchmarking models in the absence of nominal rigidity is better situated to ask
“How do the affects of nominal rigidity depend on market structure?” This is closer to the spirit of Maskin and Tirole (1988b),
Jun and Vives (2004) and Lapham and Ware (1994), who—in models without shocks—ask how introducing exogenous
price stickiness may affect the pricing of oligopolists.

45This is imperfect, but very close, since for Figure 7 I leave σz fixed at its value under MCI .
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same economies but with the menu cost fixed at ηMCI I I
= 0.29. In all cases, σ(log Ct) ≈ 0.13. It

does not matter which monopolistically competitive economy—indexed by ηmc—I compare the

duopoly model to, so long as it is calibrated to match the same moments. Put differently, larger

output fluctuations can not obtained by simply giving more market power to monopolistically compet-

itive firms.46

5.4 Alternative extensions of Golosov and Lucas (2007)

Previous extensions of Golosov and Lucas (2007) aim to reduce monetary neutrality by (i) chang-

ing the macroeconomic environment to introduce complementarities between aggregate nominal

cost and the aggregate price level, (ii) changing the microeconomic environment to introduce com-

plementarities between the firm’s price and the aggregate price level, a category this paper fits

into, (iii) increasing the kurtosis in the distribution of desired price changes. Significantly, (i) and

(iii) are complements, not substitutes to the duopoly mechanism, while, as I discuss, efforts so far

toward (ii) have been unsuccessful. Below I verify that the difference between the monopolisti-

cally competitive model and the duopoly model is not some form of existing extension.

(i) Macro-complementarity First, and most simply, the macroeconomic environment of the duopoly

and monopolistically competitive model are the same: pass-through of Mt to aggregate nominal

cost Wt is immediate in both cases. Since this is the case, I do not compare the model to those

that reduce aggregate price flexibility by altering the macroeconomics of the model in order to

slow the pass-through of Mt to nominal marginal costs. Features such as nominal wage rigid-

ity (Klenow and Willis, 2016) or round-a-bout production—in which nominal cost depends on

prices in other sectors which themselves are sticky (Nakamura and Steinsson, 2010)—would slow

this pass-through and lead to larger output responses in both the monopolistically competitive

and duopoly models. Quantitatively, such macroeconomic complementarities have been shown to

significantly reduce monetary neutrality, but for reasonable calibrations still imply a steep Phillips

Curve.47 The finding of significant monetary non-neutrality from the duopoly model therefore

46Alvarez, LeBehin, and Lippi (2016) prove that to a second order approximation, the real effects of small monetary
shocks in monopolistically competitive menu cost models will be equal provided they match the same frequency, av-
erage absolute size, and kurtosis of price changes. Changing the elasticity of demand while recalibrating the model
ensures that these statistics are the same. One can therefore interpret Figure 7 as demonstrating that their theorems
hold in a model without any such approximations, and under the empirical size of monetary shocks.

47For example, Nakamura and Steinsson (2010) find that the integration of the Basu (1995) round-a-bout production
model into a Golosov and Lucas (2007) framework yields a 1.8 times large standard deviation of log Ct. Burstein
and Hellwig (2007) find that reduced form wage rigidity of the form Wt = Y

γ
t Mt, with γ = 0.8, can double the
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complements, rather than substitutes, these studies. Importantly my results give pause to the

prior conclusion of Nakamura and Steinsson (2010), Klenow and Willis (2016) and Burstein and

Hellwig (2007) that macro-complementarities are the only type of complementarity able to both (i)

generate significant monetary non-neutrality in a menu cost model, (ii) be consistent with micro-

data on price adjustment for reasonable parameter values. I turn to this next.

(ii) Micro-complementarity As noted by Nakamura and Steinsson (2010), “monetary economists

have long relied heavily on complementarity in price setting to amplify monetary non-neutrality generated

by nominal rigidities.” Indeed this is the conclusion of Woodford (2003, chap. 3). In a monopo-

listically competitive menu cost model, such complementarity may be introduced between the

firm’s price and the aggregate price level through alternative preferences or technology.48 Yet as

they summarize, these approaches “render the [menu-cost] model unable to match the average size of

micro-level price changes for plausible parameter values”, and “cast doubt on [micro-]complementarity as

a source of amplification.”49 The duopoly model is an alteration of the micro-economic environment

so fits under this categorization of micro-complementarity. It amplifies output responses to the

same order as the macro-complementarities mentioned above. It does so at smaller menu costs

and smaller idiosyncratic shocks. To understand the simple way that the model avoids these is-

sues, I first discuss these existing approaches, how they slow inflation, why they require large

menu costs and shocks, and then how my model differs.

Features What are these features that deliver complementarity? First, Kimball (1995) prefer-

ences, as studied by Klenow and Willis (2016) and Beck and Lein (2015), imply variable marginal

revenue. When the quantity a firm sells decreases, its elasticity of demand increases, as one could

understand from the following reduced form demand function:

yi

Y
=

(
µi

µ

)−η exp
(

χ log
(

µi
µ

))

, χ ≥ 0. (11)

Second, a decreasing returns to scale technology (DRS), as studied by Burstein and Hellwig (2007),

implies variable marginal cost. When the quantity a firm sells decreases, its marginal cost de-

size of the output response to a monetary shock. These and others, including Gertler and Leahy (2008) who study
complementarity in a model without idiosyncratic shocks, are included in Table A1.

48The sufficient statistics of ABL, which I discuss next, do not apply to these models, since, due to complementarity,
the aggregate price has a first order effect on firm profits.

49For a similar discussion and summary see Gopinath and Itskhoki (2011) p.270, who refer to these complementar-
ities as real rigdities: “[These studies] conclude that the levels of real rigidity sufficient to generate significant monetary nonneu-
trality have implausible implications for the required size of menu costs and idiosyncratic productivity shocks”.

28



creases:50

mci = Ω
y

χ
i

ziW
, χ ≥ 0. (12)

In both cases, χ controls the degree of complementarity, and a decrease in yit decreases desired

price through either a higher demand elasticity, or lower marginal cost.

Amplification These models of variable markups amplify a positive monetary shock as fol-

lows. Consider a firm with a relatively low markup of µit and an optimal markup of µ∗
it > µit.

Since prices are sticky, an increase in the money supply leads to a decline in the aggregate markup:

µt falls to µ′
t < µt. Is µ∗

it still the firm’s optimal markup? With (µ∗
it/µ′

t) > (µ∗
it/µt), the firm would

sell a lower quantity at µ∗
it under µ′

t. In the Kimball (DRS) model, this increases the elasticity of

demand (decreases marginal cost) at µ∗
it, implying a lower optimal markup µ∗′

it < µ∗
it. So as χ is in-

creased, low-priced firms reduce their desired markup following a monetary expansion, slowing

inflation. Large departures from monetary neutrality can be achieved by increasing χ.

Issue But increasing χ also affects firm responsiveness to idiosyncratic shocks. Consider the

same firm’s response to a decrease in zit to z′it < zit, decreasing (µit/µt), which increases output.

In the Kimball (DRS) model, this decreases the elasticity of demand (increases marginal cost) at

µit, increasing the value of a price increase. As χ is increased, low-priced firms become more

responsive to negative idiosyncratic shocks.

Quantitatively, most price changes are due to idiosyncratic shocks, which are large, not ag-

gregate shocks, which are small, which makes this over-responsiveness to idiosyncratic shocks a

serious issue for the calibration of the model. Specifically, Klenow and Willis (2016) and Burstein

and Hellwig (2007) find that values of χ that reduce monetary neutrality, require large menu costs

and idiosyncratic shocks in order to match the same data on good-level price adjustment.51 This

leads to the previously quoted conclusion of Nakamura and Steinsson (2010).

Solution In the duopoly model amplification occurs due to complementarity, but at even

lower ξ̄ and σz than the monopolistically competitive model. Why does the model avoid the issues

in the existing literature? Under DRS or Kimball and monopolistic competition, a large negative

shock to µit will almost always cause (µit/µt) to fall sharply, since shocks to µt are small. In my

model, a large negative shock to µit may cause (µit/µ−it) to rise or fall, depending on the shock to

50If yi = zα
i nα

i , then χ = (1 − α)/α, and Ω = 1/α.
51Klenow and Willis (2016) find that the standard deviation of shocks at a monthly frequency would need to be 28

percent to accommodate χ = 10, which delivers amplification similar to my main result. In an exhaustive study of the
menu-cost model under Kimball preferences, Beck and Lein (2015) reach the same conclusion. Burstein and Hellwig
(2007) conclude that with DRS, matching the observed magnitude of price changes “requires menu costs that are much
higher than existing estimates”, in their case around three percent of revenue.
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µ−it. The shock to µ−it is independent and potentially large. The complementarity therefore does

not hamper the ability of the model to generate large idiosyncratic price changes for small menu

costs and shocks. Meanwhile, the fact that on average µ−it falls at high-markup firms in response

to an increase in the money supply is enough to make their low-markup competitors on average

less likely to adjust.

Figure 8 makes this clear. As is well known, the Kimball profit function under χ = 10 as in

Klenow and Willis (2016) is sharply concave; the undesirable by-product of having small declines

in µt strongly depress the desired adjustment from low µit firms. With no complementarities with

the aggregate markup, the duopoly profit function is not so concave, and—for a fixed µ−it—is

only very slightly more concave that under monopolistic competition.52 Its curvature, and level,

however, are constantly fluctuating, due to large changes in µ−it, whereas under Kimball or DRS

it remains tightly concave as µt moves in a tiny interval. Hence similar parameters achieve the

same observed price flexibility.53

Summary Existing forms of micro-complementarity by definition couple the responses of firms

to idiosyncratic and aggregate shocks. Since aggregate shocks are small, the complementarity

that is needed makes firms over respond to idiosyncratic shocks. The duopoly model succeeds

in decoupling these responses while still presenting a mechanism based on complementarity in

price setting.

Finally, note that the amount of complementarity in the duopoly model is not governed by an

additional parameter like χ, and is instead an endogenous feature of the environment, so unlike χ

responds to shocks and policy.54 This should be of interest given recent evidence that the respon-

siveness of firms to shocks is counter-cyclical (Berger and Vavra, 2013) and decreased over time

(Decker, Haltiwanger, Jarmin, and Miranda, 2017).

(iii) Kurtosis Holding the average size of price changes fixed, the size of the extensive margin

response in the Golosov-Lucas model is determined by the new mass of firms increasing their

52This additional curvature is small and roughly equivalent to that which occurs under Kimball with χ ≈ 0.7. Beck
and Lein (2015) estimate χ ≈ 1 using European retail goods, and Gopinath and Itskhoki (2011) estimate χ ≈ 1.5
using evidence on pass-through of exchange rate shocks. Hence, the variation in the demand elasticity that occurs
naturally under oligopoly with nested CES preferences and reasonable (θ, η) is consistent with empirical evidence on
the curvature of demand functions.

53The fact ξ̄ and σz are even slightly lower in the duopoly model owes to the additional rigidity in prices in the
oligopoly model due to strategic interactions. This is not related to the main point here, which is that the duopoly
places complementarity in the ‘right’ place: between prices that change a lot, rather than between a price that changes
a lot and one that changes a little.

54For example, Section 5.3 showed that there was less complementarity in the Calvo model than in the menu-cost
model.
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prices following a positive monetary shock (see Figure A1). This is determined by the gradient of

the distribution of firms near the adjustment thresholds. In a model with Gaussian shocks, this

gradient is steep. More kurtosis in this distribution reduces the gradient, leading to less monetary

neutrality.

In Midrigan (2011) and further work by Alvarez and Lippi (2014), additional kurtosis stems

from multiproduct firms with economy of scope in price changes. When the markup of one good

hits an adjustment threshold, a firm reprices all of its goods, despite having some goods with

prices close to their optimum. In Gertler and Leahy (2008), infrequent fat-tailed shocks throw the

firm’s markup conditional on non-adjustment far beyond the adjustment threshold, forcing the

firm to adjust while its previous markup has not moved far from its reset value. Alvarez, LeBehin,

and Lippi (2016) (hereafter, ABL) formalize these types of results by showing that—within a class

of models—the frequency and kurtosis of price changes are sufficient statistics for the real effects

of small monetary shocks.

Figure 9A and Table 4 shows that the distribution of price changes are almost identical in both

models, and kurtosis of the distribution is in fact slightly less under duopoly.55 Some additional

right skewness and a larger fraction of price increases arises under monopolistic competition due

to the asymmetry of the CES profit function (see Figure 8). Under duopoly, low priced firms

produce more and so face a lower elasticity of demand, reducing the incentive to increase prices,

leading to a more symmetric profit function. Table 4 also shows that the tails of the distribution of

price changes are also similar.

In summary, the duopoly model has the same frequency, standard deviation and kurtosis of

price changes as the mononpolistically competitive model, and no thicker tails to the price change

distribution. That the duopoly model generates larger output effects only confirms that it does

not belong to the class of models for which the sufficient statistics of ABL apply.56

Finally, note that the random menu cost model generates a bimodal distribution of price

changes. This explains the low kurtosis, and is consistent with recent data on price changes com-

piled by Cavallo (2018) using online prices.57 Cavallo and Rigobon (2012) test for bimodality in

55Recall that the calibration target was the mean size of absolute price change. Therefore the fact that the standard
deviation of price changes is the same is not surprising.

56The reason the duopoly model—and those discussed in the last section—are outside the class of models studied
by ABL is due to complementarity. The derivations of ABL require that—to a first order—a firm’s profit function is
independent of all other prices. In the duopoly model (Kimball, DRS) a competitor’s price (aggregate price) enters the
first order conditions of the firm, breaking the application of these sufficient statistics.

57The empirical distribution of price changes in Figure 9 is computed using data available from the companion
website for Cavallo (2018): http://www.mit.edu/ afc/data/data-page-scraped.html. The exact data used in Figure 9B
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the distribution of price changes at 30 retailers across more than 15 countries and reject the null

of a unimodel distribution in over 80 percent of the retailers (see their Table 2). Therefore the

random menu cost model—although primarily employed for computational tractability in the so-

lution of the MPE problem—produces a price change distribution that is not inconsistent with

recent evidence.

6 Welfare implications of nominal rigidity

The oligopoly model has new implications for the welfare costs of nominal rigidity. Studying these

are important, especially when we recall that optimal policy in the benchmark New-Keynesian

model seeks to close the gap between a corresponding flexible price economy—an RBC model

under which output fluctuations due to aggregate shocks are efficient—and the economy with

nominal rigidity. As summarized in Gali (2008, chap. 4), the distortions due to sticky prices in

that model neatly separate into those due to (a) the presence of market power in goods markets,

which effect the average markup, and (b) markup distortion. In that model, as well as the menu

cost model, the distortion due to market power under monopolistic competition is unrelated to

the presence of sticky prices.58 In the oligopoly model this is not the case. The distortion due to

market power is amplified by the presence of nominal rigidity.

Table 1 revealed that in the presence of menu costs, strategic firms are able to sustain markups

that are higher than the frictionless markup: E[µit] = 1.30 > 1.20 = µ∗
DuoI

. Similar to the stylized

model of Maskin and Tirole (1988b), or models with convex adjustment costs like Jun and Vives

(2004), price frictions bestow commitment to high prices, which may be leveraged when prices are

static complements. My contribution is to quantify this wedge, and its output consequences, in a

model that matches the salient features of firm level data: large, frequent adjustment.

Quantitatively, what are the consequences of this wedge for welfare? Recall that under no

nominal rigidity, µit = µ∗, which we can compute directly from η and θ in Table 1. Output ab-

sent nominal rigidity is then simply Y∗ = 1/µ∗. To compute the effect of the level of markups

on output (distortion (a)), while controlling for markup dispersion (distortion (b)) set µit = E[µit]

in both models. Output losses due to the level of the markup are then (E[µit] − µ∗)/µ∗. Given

E[µit] = 1.30 from Table 1, under monopolistic competition (duopoly) these output losses are 1.1

excludes price changes due to sales and comes from an unspecified US retailer. He studies five retailers, this is data
from USA5.

58The distortion of E [µit] > µ∗
MC in this paper is only due to the third order properties of the CES profit function,

and small.

32



(8.3) percent. Computing actual output from the model, we can calculate the additional output

loss due to markup dispersion. Table 5 summarizes these results, showing that (i) total output

losses due to nominal rigidity are four times larger under duopoly, (ii) in contrast to the monop-

olistic competition economy, this is driven by the level rather than dispersion of markups. Sticky

prices make distortion (a) worse, while in the monopolistically competitive model the effect of

sticky prices on the level of the markup are minimal and the independence summarized in Gali

(2008, chap. 4) holds.

Figure 10 quantifies a related result: the value of the firm is non-monotonic in the size of the

adjustment friction. On the one hand, greater frictions lead to greater dynamic complementarity,

accommodating higher markups and increasing firm value. On the other hand, greater frictions

reduce price flexibility, reducing firm value. The resulting non-monotonic relationship is clear in

both the menu cost and Calvo models. While monopolistically competitive firms always prefer

smaller frictions and more adjustment, for duopolists, there is value is maximized with ξ̄ > 0.

Compared to the baseline menu cost model (ξ̄DuoI
= 0.17), at ξ̄∗DuoI

= 0.29, prices change 3ppt

less often, but the real value of the firm is 9 percent larger. In the Calvo model, where dynamic

complementarity is weaker, smaller frictions would be preferred.

Four potentially interesting paths for future research arise. First, the fact that firms desire

some, but not too much, nominal rigidity may rationalize why firms engage in investments that

increase the cost of price changes.59 Second, policies such as higher trend inflation will force firms

to adjust prices more frequently, which may reduce the degree of dynamic complementarity. If so,

then such policies would have first order output effects.60 Third, these results imply a systematic

downward bias in markups that are estimated from static models of oligopoly. Given unbiased

estimates of preference parameters, from a static model one would infer µ∗
Duo, which may be sub-

stantially less than E [µit]. Finally, these results distort the usual welfare implications of frictions in

macroeconomics. The standard intuition holds in the monopolistically competitive model: firms

and households both dislike frictions. In an oligopoly, there is a range over which higher frictions

are redistributive, causing profits to increase but real wages to fall.61

59For example, firms print brochures with prices fixed for some period of time.
60This is certainly true in the limit. High trend inflation would cause firms to reset their prices every period, yielding

the frictionless Nash equilibrium. This would eliminate the first order welfare losses of nominal rigidity but also
eliminate any stimulative role for monetary policy, presenting a trade-off for policy.

61For example, one could ask whether regulations that create fixed costs of investment may be valuable to
oligopolists that would prefer to to under-invest relative to a frictionless benchmark.
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7 Endogenous price stickiness and market concentration

In duopoly, prices are endogenously stickier than under monopolistic competition. Price decreases

are less valuable as high prices provide an incentive for a firm’s competitor to also choose a high

price. Price increases are less valuable since they increase a firm’s elasticity of demand. Nominal

prices therefore change less often, and by smaller amounts, for any ξ̄, and so a lower ξ̄ is required

to match the data.

An alternative way to see this is to compare models DuoI and MCI I in Table 1. When evaluated

at the same parameters, price changes in the monopolistically competitive model occur with a

much higher frequency (0.19 vs. 0.13) and small average magnitude (0.05 vs. 0.10). This has

the empirical prediction that among markets with plausibly similar parameters, less concentrated

markets should have more flexible prices.

Using the IRI data I am able to measure the moments required to assess this prediction.62 It is

straight-forward to use bar-code level data to compute average frequency and magnitude of price

changes within a given region-period. As the data contain product revenue and the universe of

goods within stores, I can also allow construct measures of revenue based market concentration

across the retail stores in the data. The first six-digits of a product bar-code identify the whole-

sale firm (for example, Kraft or Hellman’s in the mayonnaise market), which I use to aggregate

revenues for a firm within a region. The literature has determined that most markup adjustment

occurs at the wholesale level and pass-through is essentially complete at the retail level, hence

measuring market concentration among wholesale firms, rather than retail firms is appropriate.63

To capture the notion of parameters being plausibly the same across markets, I use only within

product-time, across region variation in market concentration. It turns out that this variation is

substantial. Let p denote a product category, s a state, and t a quarter, and the intersection of these

denote a market. I then compute the inverse Herfindahl index iher fpst for all markets in the IRI

data (31 product categories, 46 states, 44 quarters from 2001 to 2011). Figure 11 provides examples

of the variation that I exploit. For both Mayonnaise and Coffee, market concentration is persistent

within regions, and heterogeneous across regions.64 Moreover, concentration is not region spe-

62For more details on the data see Appendix A. In terms of content, the data are comparable to the Kilts-Nielsen
Retail Scanner Data. In terms of scope, the IRI data is limited to grocery and drug stores, and so lacks categories such as
cookware and electronics. Expanding this study to the Kilts-Nielsen Retail Scanner Data will be possible for those with
better data access.

63See Goldberg and Hellerstein (2013), Eichenbaum, Jaimovich, and Rebelo (2011) and Nakamura and Zerom (2010).
64This variation in market concentration has been studied using the same data by Bronnenberg, Dhar, and Dubé

(2009) and Bronnenberg, Dube, and Gentzkow (2012). The latter points to the migration of individuals—who carry
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cific. In relative terms Mayonnaise is less concentrated in MD than NJ, while the opposite is true

for Coffee. Cases like this should allay concerns that using within-good, across-region variation

merely captures across-region differences that are common to all products.

There is also significant variation in price flexibility across regions, even within these narrow

goods categories. In fact, within the IRI data—which is admittedly narrow itself—only a small

component of the dispersion in price flexibility is driven by differences across goods. Removing

quarter-t fixed effect in a revenue-weighted regression, the standard deviation of residual dis-

persion in log frequency (size) of price change across products and states is 0.65 (0.41). Adding

product-quarter-pt fixed effects causes these to decrease only slightly 0.54 (0.33). Hence around

three-quarters as much variation exists within-product-quarters, across-regions as does within-

quarters across-product-regions.

I use this variation in the data to assess whether there is a correlation between market concen-

tration and price flexibility. The core data are 61, 884 measures of concentration iher fprt , average

frequency of price change f reqprt , and average size of price change sizeprt. I first remove product-

time fixed effects as well as controls for market revenue and the number of firms operating in the

market:

yprt = γpt + β0Firmsprt + β1Revenueprt + εprt.

The residual ỹprt is then scaled by its within product-quarter-pt standard deviation. I compute

averages of ĩher f prt, f̃ reqprt, and s̃izeprt within percentile bins of ĩher f prt, and plot these in Figure

12.65 For state markets that are relatively more competitive (a higher ĩher f prt) than other states,

within the same goods category and quarter, the average flexibility of prices is greater.

This brief exercise shows that a large component of good level price flexibility is not good, but

good-region specific, and a component of this is associated with good-region market concentra-

tion. The latter is qualitatively consistent with the results from the model in Table 1. It is beyond

the scope of this paper to isolate a causal claim.

with them brand preferences—as a major determinant of market shares. Exploiting this variation innovates on Bils and
Klenow (2004), who also study the relationship between concentration and price flexibility. However, since they use
CPI microdata—which takes small samples of goods from stores—they cannot compute concentration measures locally.
They instead project national price flexibility for a good, on national market concentration, and find no significant
relationship. The latter can be a misleading measure of product market competition if, for example, there are 50 different
monopolists operating in 50 states.

65A regression of f reqprt (sizeprt) on product-quarter dummies with all interactions of iher fprt, Revenuevprt, Firmsprt,
yields statistically significant positive (negative) coefficients on iher fprt.
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8 Conclusion

This paper establishes that the competitive structure of markets can be quantitatively important

for the transmission of macroeconomic shocks. In particular, in a menu cost model of firm-level

price setting—which aggregates to a monetary business cycle model—a monopolistically com-

petitive market structure and a duopoly market structure generate different levels of monetary

non-neutrality. Even when calibrated to match the same salient features of price flexibility in the

data, the duopoly model generates larger output responses. Following a monetary expansion, the

incentive for low-priced firms to respond to the shock increases less sharply as a lower sectoral

price reduces the incentive to adjust. Idiosyncratic shocks—which create within-sector markup

dispersion—and state-dependent frictions—which make repricing predictable—are key for this

mechanism.

The duopoly model does not exclude other mechanisms that have been found to be successful

in generating monetary nonneutrality in a menu cost model, while also being consistent with the

microdata. Future research that tries to understand how combining these may generate empiri-

cally plausible monetary business cycles is a topic for future research.

More broadly, this paper expands the set of general equilibrium macroeconomic models that

may be used to interpret microdata. A pervasive feature of many microdata sets on investment,

employment, and so on, are fat-tailed size distributions, even within narrow industries. Having

quantitative models that might accommodate strategic interaction between these large agents is

therefore important.
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APPENDIX

This Appendix is organized as follows. Section A describes the IRI data and their treatment in the

paper. Section B describes the computational methods used to solve the model in Section 2. Section

C proves the results for a static game with menu costs and exogenously specified initial markups.

I also derive properties of the firm’s frictionless best response function and profit functions under

general complementarity in pricing and for CES preferences. Section D discusses some of the

assumptions of the model.

A Data description

The data used throughout this paper come from the IRI Symphony data. Details can be found

in the summary paper by Bronnenberg, Kruger, and Mela (2008).66 The data are at a weekly fre-

quency from 2001 to 2011 and contain revenue and quantity data at the good level, where a good

is defined by a unique bar code number (Universal Product Code—UPC). Data are collected in

over 5,000 stores covering 50 metropolitan areas.67 For each store, data are recorded for all UPCs

within each of 31 different product categories. Product categories—for example toothpaste—are

determined by IRI and were designed such that the vendor could sell data, by product category,

to interested firms.68 This therefore provides an economically meaningful way to separate goods

categories, since firms presumedly would be interested in purchasing data relevant to their prod-

uct market. The measures that I construct from these data and use in the paper relate to (i) market

concentration, and (ii) price changes. In both cases I define a market by product category p, state

s and month t.

Constructing measures of market concentration requires market-level sales for each firm. To

identify a firm, I use the first five digits of a good’s UPC. This uniquely identifies a company. For

example, the five digits 00012 in the bar code 00012100064595 identify Kraft within a market for

mayonnaise; 48001 would identify Hellman’s. As my measures are constructed within a market

66Other recent papers to use these data include Stroebel and Vavra (2014) and Coibion, Gorodnichenko, and Hong
(2015). See http://www.iriworldwide.com/en-US/solutions/Academic-Data-Set.

67Details on the identification of stores are removed from the data and replaced with a unique identifying number.
Walmart is not included in the data.

68For completeness, the categories are: beer, razor blades, carbonated beverages, cigarettes, coffee, cold foods, de-
odorant, diapers, facial tissues, frozen dinner entrees, frozen pizza, household cleaning goods, hot dogs, laundry de-
tergent, margarine and butter, mayonnaise, milk, mustard and ketchup, paper towels, peanut butter, photo products,
razors, salted snacks, shampoo, soup, pasta sauces, sugar and substitutes, toilet tissue, toothbrushes, toothpaste, and
yogurt.
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pst, I consider Kraft within the mayonnaise market in Ohio as a different firm from Kraft within

the margarine market in Ohio. Revenue r f pst for each firm f in market pst is the sum of weekly

revenue from all UPCs at all stores within pst. The preferred concentration measure in the paper

is the effective number of firms, as measured by the inverse Herfindahl index, which is hpst =

∑ f∈pst(r f pst/rpst)2.

Computing measures of price changes first requires a measure of price. To obtain weekly prices

for each good, I simply divide revenue by quantity. I compute price change statistics monthly and

measure prices in the third week of each month. I focus only on regular price changes and deem

a price to have been changed between month t − 1 and t if it (i) changes by more than 0.1 percent,

considering price changes smaller than this to be due to rounding error from the construction of

the price, and (ii) was on promotion neither in month t − 1, nor in month t. The IRI data include

indicators for whether a good is on promotion, and so I use this information directly rather than

using a sales filter. This second requirement means that I exclude both goods that go on promotion

and come off promotion. The frequency of price change in market pst is the fraction of goods that

change price in market pst between t − 1 and t. The size of price change in market pst is the

average absolute log change in prices for all price changes in market pst between t − 1 and t.

When computing moments for use in the calibration of the model, I first take a simple av-

erage over s and t for each product p. I then take a revenue-weighted average across prod-

ucts, where revenue weights are computed using average national revenue for product p: rp =

T−1 ∑
T
t=1

(
∑

S
s=1 rpst

)
.

B Computation

First I show that Bellman equation (7) corresponds to the Bellman equation in markups under the

equilibrium conditions of the model (9), as the latter is used in computation. Second, I describe

the numerical methods used in computing the equilibrium of the model.

Price indices Denote the first firm’s markup µij = pij/zijW. Using this, the sectoral price index

pj can be written

pj =

[(
p1j

z1j

)1−η

+

(
p2j

z2j

)1−η
] 1

1−η

. = W

[
µ1j

1−η + µ2j
1−η

] 1
1−η
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Define the sectoral markup µj = pj/W, which implies that µj =
[
µ

1−η
1j + µ

1−η
2j

]1/(1−η)
. Using the

sectoral markup, the aggregate price index P can be written

P =

[
ˆ 1

0
p1−θ

j dj

] 1
1−θ

=

[
ˆ 1

0
µ1−θ

j dj

] 1
1−θ

W.

Define the aggregate markup µ = P/W, which implies that µ =
[
´ 1

0 µ1−θ
j dj

]1/(1−θ)
.

Profits The expressions for markups can be used to rewrite the firm’s profit function. Start with

the baseline case

πij = z
η−1
ij

(
pij

pj

)−η(
pj

P

)−θ(
pij − zijW

)
C.

The equilibrium household labor supply condition requires PC = W. The the definition of the

aggregate markup, therefore implies that C = 1/µ. This, along with pij = µijzijW, pj = µjW, and

P = µW, gives

πij =

(
µij

µj

)−η(
µj

µ

)−θ(
µij − 1

)W

µ
= π̃

(
µij, µ−ij

)
µθ−1W.

The function π̃ depends on the aggregate state only indirectly through the policies of each firm

within the sector. This makes clear the use of the technical assumption that the demand shifter zij

also increases average cost, allowing profits to be expressed only in markups.

Markup dynamics Suppose that a firm sells at a markup of µij this month. The relevant state

next month is the markup that it will sell at if it does not change its price µ′
ij = pij/z′ijW

′. Replacing

pij with µij, we can write µ′
ij in terms of this month’s markup, the equilibrium growth of the

nominal wage, and the growth rate of idiosyncratic demand:

µ′
ij = µij

zij

z′ij

W

W ′
= µij

1

g′e
ε′ij

.

The random walk assumption for zij implies that z′ij/zij = exp(ε′ij). The equilibrium condition on

nominal expenditure PC = M, combined with the equilibrium household labor supply condition

PC = W, implies that in equilibrium W = M. The stochastic process for money growth then

implies that W ′/W = g′.
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Bellman equation Using these results in the firm’s Bellman equation reduces the value of ad-

justment from (7) to the following (here for clarity I assume that the competitor’s markup µ−i is

fixed):

V
adj
i

(
µi, µ−i, S

)
= max

µ∗
i

π̃
(

µ∗
i , µ−i

)
µ(S)θ−1W(S) + E

[
Q(S, S′)Vi

(
µ∗

i

g′eε′i
,

µ−i

g′eε′−i

, S′

)]
.

The equilibrium discount factor is Q(S, S′) = βW(S)/W(S′). This implies that all values can be

normalized by the wage, where vi = Vi/W:

v
adj
i

(
µi, µ−i, S

)
= max

µ∗
i

π̃
(

µ∗
i , µ−i

)
µ(S)θ−1 + βE

[
vi

(
µ∗

i

g′eε′i
,

µ−i

g′eε′−i

, S′

)]
.

Replacing the aggregate state S = (g, λ) with that used in the approximation S = (g, µ−1), we

have the following:

v
adj
i

(
µi, µ−i, g, µ−1

)
= max

µ∗
i

π̃
(

µ∗
i , µ−i

)
µ̂
(

g, µ−1

)θ−1
+ βE

[
vi

(
µ∗

i

g′eε′i
,

µ−i

g′eε′−i

, g′, µ̂
(

g, µ−1

))]
,

where µ̂ is given by the assumed log-linear function: log µ̂ = α0 + α1g + α2 log µ−1.

The equilibrium condition requiring the price index be consistent with firm prices has also

been restated in terms of markups, which implies the entire equilibrium is now restated in terms

of markups. To simulate changes in prices, it is sufficient to know a path for markups µijt, innova-

tions ε ijt, and money growth gt. To determine quantities I need to also simulate paths for Mt and

zijt.

B.1 Price changes

In the footnote of Figure 9 I note that mark-up gaps are equal to price changes for firms changing

their prices. The markup gap is the gap between the firm’s markup that would occur should the

firm not change its price, which is its state-variable and depends on pijt−1, and its desired markup,

which depends on p∗ijt :

µ̄ijt =
pijt−1

zijtWt
, µ∗

ijt =
p∗ijt

zijtWt

.
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Therefore the firm’s desired price change and its markup gap are equivalent:

log
p∗ijt

pijt−1
= log

µ∗
ijt

µ̄ijt
.

B.2 Solving the MPE

First, for simplicity, suppose that θ = 1 such that no function of the aggregate state enters the firm’s

problem. Suppose also that shocks to the growth rate of money supply are entirely transitory

(ρg = 0). In this case, the state variables of the firm’s problem are only µi and µ−i. Since the

parameters associated with each firm in each sector are symmetric, I only consider solutions in

symmetric policies µ(µi, µ−i) and γ(µi, µ−i). Suppose that these functions are known; then solving

the firm’s problem amounts to solving a simple Bellman equation. Define the firm’s expected

value function ve
i (µ

′
i, µ′

j) = E

[
vi

(
µ′

i

g′e
ε′
i
, µ′

−i

g′e
ε′−i

)]
. I can approximate ve

i with a cubic spline and,

given a starting guess, use standard collocation tools to solve the firm’s Bellman equation. This

requires specifying a grid of collocation nodes for µi and µ−i, and then solving for splines with

as many coefficients as collocation nodes. Given an approximation of ve
i , the choices of a firm on

these nodes can be solved for, and the values on these nodes used to update the approximation

using Newton’s method (see Miranda and Fackler (2002)). An alternative approach is to iterate on

the Bellman equation.

When solving the MPE, the competitor policies are not initially known. In solving the model,

I take a number of approaches, each of which yields the same equilibrium policies. In all cases, I

approximate the optimal markup and probability of adjustment policies using cubic splines. The

first approach is to consider some large T and assume that from this period onward, prices are

perfectly flexible such that the unique frictionless Nash equilibrium is obtained. This determines

a starting guess for the policies and value function. Random menu costs imply that each stage

game has a unique equilibrium for each point in the state space, which implies that this long

subgame perfect Nash equilibrium is unique. One can then iterate backward to t = 0, or truncate

iterations once the policy functions and values of the firm converge. The second approach is to

fix a competitor’s policies, solve a firm’s Bellman equation, use this to compute new policies, and

then continue to iterate in this manner until all objects converge. In practice, both approaches

were found to lead to the same policy and value functions. The second approach is faster, since

collocation methods can be used to quickly solve the Bellman equation, keeping the competitor

policies fixed.
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Under θ > 1 and persistent shocks to money growth, then the approximate aggregate state

(g, µ−1) also enters the firm’s state vector. The solution algorithms for the MPE, however, do

not change. I approximate the firm’s policies using linear splines in each of these additional di-

mensions. Policy and value functions are approximated using 25 evenly spaced nodes, and the

aggregate states are approximated using 7 evenly spaced nodes.69 Approximating the expected

value function implies that expectations are only taken once in each iterative step while solving

the value function, rather than on every step of the solver for the optimal µ∗
i . This, along with the

use of a continuous approximation to the value function, allows for a high degree of precision in

updating the expected value function. Given an expected value function, an optimal policy can

be computed, delivering a new value function, which is then integrated over 100 points in both ε′i

and ε′−i in order to compute a new expected value function.70

Issues for high and low menu costs For a fixed set of collocation nodes, issues arise when trying

to solve the model for very low or very high menu costs. For very low menu costs, the adjustment

probabilities of the firm take on a steep V-shape, and small deviations in markups lead to a sharp

increase in the probability of adjustment. Approximating such functions is difficult with a conser-

vative number of nodes for the approximant of γ(µi, µ−i). When menu costs are very large, the

adjustment probabilities take on a very shallow U-shape, and markups deviate more widely. This

also is hard to approximate with a conservative number of nodes for the approximants.

Figure 10 is symptomatic of this issue. Note that in the Calvo model of adjustment these

issues do not arise, since I no longer have to approximate the probability of adjustment function.

Therefore the Calvo model can be solved at a very high frequency of adjustment. Figure 10 verifies

that as α tends towards one, the value of the firm in the duopoly model smoothly approaches the

value of the firm in the monopolistically competitive model, since both models are calibrated to

the same frictionless markup.

Krusell-Smith algorithm I first solve the economy under µt = µ∗, where µ∗ is the frictionless

Nash equilibrium markup. I then proceed with the Krusell-Smith algorithm, refining the firm’s

forecast. Solving the model under the initial forecasting rule, I can then simulate the economy.

69Note that when solving the problem for a firm, a competitor’s policy is never evaluated off the collocation nodes.
The only computations that involve the splines are evaluating the expected value function for proposed µ∗

i values in
the maximization step, and the simulation of sectors.

70“Quadrature” methods, by contrast, only use a small handful of points in the approximation of the integral. Work-
ing with continuous splines and iterating on the expected value function allow a much more precise computation of
the integral.
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Since firm-level shocks are large, then even for large numbers of simulated sectors, there will be

small fluctuations in aggregates. In implementing the Krusell-Smith algorithm I therefore proceed

as follows. Let {Et}T
t=0 be a sequence of matrices of idiosyncratic shocks—to both productivity

and menu costs—to all firms in all sectors, and consider some simulated path of money growth

{ε
g
t }

T
t=0. I simulate two economies, both under {Et}T

t=0 and with the same initial distribution of

markups, but one under {ε
g
t }

T
t=0 and the other under gt = ḡ for all t. From the second simulation,

I then compute the sequence of aggregate markups and call this µ̄t, with corresponding µt from

the first simulation. I then run the following regression on simulated data from T to T:

(log µt − log µ̄t) = α1 (log gt − log ḡ) + α2 (log µt−1 − log µ̄t−1) + ηt.

I also compute the average aggregate markup µ̄ = 1/(T − T)∑
T
t=T µt. When solving the model

on the next iteration, I renormalize the aggregate state space to S = (log g − log ḡ, log µ−1 − log µ̄)

and provide firms with the forecasting rule

log µ(S) = log µ̄ + α̂1S1 + α̂2S2.

In practice, I simulate 10, 000 sectors, set T = 2, 000, and T = 500, and iterate to convergence on

{µ̄, α1, α2}. In the monopolistically competitive model, I simulate a single sector with 20,000 firms.

This approach controls for simulation error, and allows me to keep the nodes of the state space

for S2 the same across solutions of the model, while incorporating changes in the forecast of the

average markup.

The algorithm converges quickly and the rule provides a high R2 in simulation. This works

especially well in the context of this model for a number of reasons, which all relate to the role of

µt in the firm’s problem. First, µt simply shifts the level of the firm’s profit function, which implies

that in a static model, it only affects the value of a price change, not the firm’s optimal markup.

Second, if θ is close to one, then this movement in the profit function is small for any given fluc-

tuations in µt. Third, these fluctuations in µt are in fact small, given the empirical magnitude of

money growth shocks. From a robustness perspective, this is reassuring: if the rule used by firms

was incorrect, then this misspecification would have little impact on the policies of the firm. In

practice, this means that the coefficients for {µ̄, α1, α2} from the first solution of the model under

the rule µt = µ∗, are very close to the final coefficients.
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Computing aggregate fluctuations I also correct the computation of other moments for simu-

lation error which might otherwise bias one toward finding larger time-series fluctuations. For

example, the key statistic of σ(Ct) is computed using std [log Ct − log C̄t], where C̄t is aggregate

consumption computed under the simulation with aggregate money growth equal to ḡ in all pe-

riods. In this “steady-state” economy, there are still fluctuations in aggregate consumption, but

these are due only to large shocks to firms not washing out in a simulation of finitely many firms.

The same approach is taken when computing impulse response functions for moments such as

the frequency of price adjustment of low-markup firms in Figure 6.

C Static game

In this appendix, I study a two-player price-setting game in which the profit function of the firm

displays complementarities in prices, firms face a fixed cost of changing prices, and initial prices

are above the frictionless Nash equilibrium price. I establish that (i) the frictionless best response

function of the firm has a positive gradient bounded between zero and one, (ii) menu costs can

sustain higher prices than obtain in a frictionless setting, (iii) the only pure strategy equilibria that

exist are ones in which both firms change their price or both keep them fixed, (iv) for any given

menu cost, there is always a range of initial prices for which both equilibria exist. I then show that

the profit functions—derived from nested CES preferences—in the body of the paper satisfy the

necessary assumptions for these results.

Environment Consider two firms with symmetric profit functions π1(p1, p2) = π2(p2, p1). In

what follows, I drop the superscripts on the profit function and prices, with the second argument

always referring to the competitor’s price. Assume that π is twice continuously differentiable and

that the derivatives of π have the following properties: π11 < 0, π12 > 0. The second assumption

is the definition of complementarity in prices.

There is one period. Firms begin the period with initial price p̄, which is larger than the fric-

tionless Nash equilibrium price p∗. To deviate from this price, a firm must pay a cost ξ. The

objective function of firm i is therefore v(pi, pj) = π(pi, pj)− 1 [pi 6= p̄] ξ.

Static best response function The frictionless best response function p∗(p) is the best response of

a firm to its competitor’s price p when ξ = 0. The key property of the static best response which

is discussed in the text is that it has a positive gradient between zero and one. To prove this, take
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the firm’s first order condition: π1(p∗(p), p) = 0. By the implicit function theorem, the derivative

of p∗(p) can be obtained by rearranging the total derivative of the first order condition:

∂p∗(p)

∂p
= −

π12(p∗(p), p)

π11(p∗(p), p)
.

The frictionless Nash equilibrium price p∗ = p∗(p∗) solves both firms’ first order conditions si-

multaneously. The second order conditions must hold at (p∗, p∗), requiring that the principal

minors of the Hessian—evaluated at p∗ = p∗(p∗)—alternate in sign:

π11(p∗, p∗) < 0, and π12(p∗, p∗)2
< π11(p∗, p∗)2.

The first condition holds by assumption. The second condition, jointly with the assumption of

complementarity (π12 > 0), gives the result that any Nash equilibrium

∂p∗(p)

∂p

∣∣∣
p=p∗

= −
π12(p∗, p∗)

π11(p∗, p∗)
∈ (0, 1).

Multiple equilibria would require p∗′(p∗) have a slope greater than one at some other equilibria,

so clearly the equilibrium is also unique. Note that p∗(p) ∈ (p∗, p) for p > p∗, that is, the best

response function exhibits “undercutting.”

Equilibria of the menu cost game Categorize possible pure strategy equilibria into three types :

(I) neither firm changes its price, (II) both firms change their price, (III) one firm changes its price.

A necessary and sufficient condition for a Type-I equilibrium is

π( p̄, p̄) ≥ max
p

π(p, p̄)− ξ, (C1)

or equivalently

ξ ≥ ∆I( p̄) = π (p∗( p̄), p̄)− π ( p̄, p̄) . (C2)

This condition for a Type-I equilibrium holds when (i) ξ is very large or (ii) p̄ is small. To show

that ∆I( p̄) is increasing in p̄, it is useful to represent ∆I( p̄) as an integral. The derivative is then

∂∆I( p̄)

∂p̄
=

∂

∂p̄

[
−

ˆ p̄

p∗( p̄)
π1(u, p̄)du

]
=

ˆ p̄

p∗( p̄)
π12(u, p̄)du + π1(p∗( p̄), p̄)− π1( p̄, p̄) > 0. (C3)

This is positive due to complementarity (π12 > 0), the definition of p∗( p̄) implies the second

term is zero, and π1( p̄, p̄) < 0 since p̄ > p∗( p̄). The change in value that accompanies the opti-
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mal deviation from p∗( p̄) increases in p̄. Sustaining initial deviations from the frictionless Nash

equilibrium requires the initial deviation to be not too large or menu costs to be not too small.

In a Type-II equilibrium, in which both firms change their price, it must be that the prices

chosen are (p∗, p∗). Given that both firms are changing their prices, then the price chosen by each

firm must be a best response to its competitor. We then need to check that it is not optimal for a

firm to leave its price at p̄, which requires

ξ ≤ π (p∗, p∗)− π ( p̄, p∗) (= ∆I I( p̄)) . (C4)

This condition for a Type-II equilibrium holds when (i) ξ is small or (ii) p̄ is large. To see that ∆I I( p̄)

is increasing in p̄, note that π( p̄, p∗) is decreasing in p̄ for all p̄ > p∗. The frictionless equilibrium

will still obtain when p̄ is large relative to the menu cost.

Type-III equilibria do not exist. Observe that a Type-III equilibrium requires that the firm that

changes its price, changes it to p∗( p̄). There are therefore two necessary conditions for a Type-III

equilibrium. First, firm 2 must find it profitable to change its price given that firm 1’s price remains

at p̄:
π (p∗( p̄), p̄)− ξ ≥ π ( p̄, p̄) . (C5)

This holds when (i) ξ is small or (ii) p̄ is large. Second, the frictionless best response of firm 1 to

firm 2’s price must not be a best response under a positive menu cost. Letting p∗∗( p̄) denote the

frictionless best response to p∗( p̄), we then require

π (p∗∗( p̄), p∗( p̄))− ξ ≤ π ( p̄, p∗( p̄)) . (C6)

This holds when (i) ξ is large or (ii) p̄ is small. Intuitively, it seems that these conditions should not

simultaneously hold. If one firm finds it valuable to undercut its competitor, then its competitor

should find it valuable to respond. Indeed, this can be proven, with the proof found at the end of

this appendix.

Having asserted that the only pure strategy equilbria are of Type-I and Type-II, we can also

show that for any value of ξ, there exist an interval of p̄ for which both Type-I equilibria and Type-

II equilibria may exist. First note that ∆I(p∗) = ∆I I(p∗) = 0. That is, both equilibria trivially exist

for zero menu costs at p̄ = p∗. A sufficient condition for both equilibria to exist for any value of ξ

is to show that ∆I I( p̄) > ∆I( p̄):

π(p∗, p∗)− π( p̄, p∗) > π(p∗( p̄), p̄)− π( p̄, p̄). (C7)

Since p∗ is the best response to p∗ then π(p∗, p∗) > π(p∗( p̄), p∗), so showing the following is
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sufficient:
π(p∗( p̄), p∗)− π( p̄, p∗) > π(p∗( p̄), p̄)− π( p̄, p̄). (C8)

If π displays complementarity, then this holds.71

These results characterize equilibria in ( p̄, ξ)-space as follows. Consider fixing p̄ and starting

at a high value of ξ. In this region, only the Type-I equilibrium exists. Menu costs are sufficiently

high that the best response of each firm to the initially high price of its competitor is to keep a high

price. As ξ decreases, we reach a point at which Type-II equilibria are also feasible. In this region,

if firm 2 changes its price, then the best response of firm 1 is to also change its price (Type-II), but

if firm 2 leaves its price fixed, then the best response of firm 1 is to also leave its price fixed (Type-

I). As ξ decreases further, the Type-I equilibrium can no longer be sustained as the menu cost is

insufficient to commit firms not to respond to a price decrease at their competitor. Alternatively,

fixing ξ and increasing p̄, first only the Type-I equilibrium exists, then both, then as the value of

a price decrease becomes large, only the Type-II equilibrium exists. Figure A2 plots these regions

for a profit function discussed below.

In the case of the existence of multiple equilibria, the equilibria are ranked as we would expect:

the fixed price Type-I equilibrium is preferred. This requires that π( p̄, p̄) > π(p∗, p∗)− ξ. Since

the Type-I equilibrium exists, then ξ ≥ π(p∗( p̄), p̄)− π( p̄, p̄), and therefore this ranking holds if

π(p∗( p̄), p̄) > π(p∗, p∗). Since prices are complements, this is true: the best response to a high

price yields a larger profit than the best response to a low price.

From this static game we learn that for a given menu cost ξ, high prices p̄ can be sustained so

long as they are not too far from the frictionless Nash equilibrium. If the initial price is too high,

one firm has a profitable deviation even it pays the menu cost. If the value of one firm’s deviation

exceeds the menu cost, then the value of an iterative undercutting strategy from its competitor

must also exceed the menu cost. Both firms change their prices, and only the frictionless Nash

equilibrium price is attainable. If initial prices are not too high, then the menu cost is enough

to negate the small value of the optimal frictionless downward deviation in price, making the

high-priced strategy credible. We also learn that the equilibrium is not unique for certain combi-

nations of ξ and p̄, while these equilibria are clearly Pareto ranked: if firms could coordinate on

71To see this, rearrange the condition and then express both sides as integrals:

π( p̄, p∗)− π(p∗( p̄), p∗) < π( p̄, p̄)− π(p∗( p̄), p̄),
ˆ p̄

p∗( p̄)
π1(u, p∗)du <

ˆ p̄

p∗( p̄)
π1(u, p̄)du.

Due to complementarity, p̄ > p∗ implies π1(u, p̄) > π1(u, p∗). Since both integrals are over the same support, then the
inequality must always hold.
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an equilibrium, they would choose not to change their prices.

Getting to p̄ Consider the game when the firms prices are initially at p∗. Regardless of the

size of ξ, the only equilibrium that can exist is (p∗, p∗). One firm increasing its price is not an

equilibrium, since p∗ is already the best response to p∗. Both firms raising prices to the same price

p̄ is not an equilibrium since conditional on changing price p̄(p∗) ∈ (p∗, p̄) is the best response. In

a dynamic game, firm 2 may “take the high road” by posting p̄2 today. Its competitor may choose

p′1 ∈ (p∗( p̄2), p̄2) next period, knowing that at (p′1, p̄2), the menu cost faced by firm 2 will make a

downward response unprofitable. In this way, firms can constructively distribute gains and losses

from policies across periods and achieve prices above p∗.

Numerical example In the main text, the profit function of the firm is

π1(p1, p2) =

(
p1

p(p1, p2)

)−η ( p(p1, p2)

P

)−θ

(p1 − 1)C,

p(p1, p2) =
[

p
1−η
1 + p

1−η
2

]1/1−η
.

To be consistent with notation in this appendix, I have replaced markups with prices and a unit

marginal cost. From this profit function we can solve in closed form for the Nash equilibrium

price as follows.

The first order condition of the firm’s problem is
[

p
−η
1 − ηp

−η−1
1 (p1 − 1)

]
pη−θ + (η − θ)p

−η
1 pη−θ−1(p1 − 1)

∂p

∂p1
= 0,

where the term in square brackets gives the first order condition of a monopolistically competitive

firm facing elasticity of demand η. The second term gives the marginal profit due to the firm

increasing the sectoral price. Since η > θ, this second term is positive, implying that the term

in brackets is negative, and so the equilibrium price must be larger than the monopolistically

competitive price under η.

Two additional results for a CES demand system allow us to solve the first order condition in

closed form. First,
∂p

∂p1
=
[

p
1−η
1 + p

1−η
2

] 1
1−η −1

p
−η
1 =

(
p1

p

)−η

.

Second, the revenue of the firm is r1 = p1(p1/p)−η(p/P)−θC, which gives the following revenue

share:
s1 =

r1

r1 + r2
=

p
1−η
1

p
1−η
1 + p

1−η
2

=

(
p1

p

)−η p1

p
=

∂p

∂p1

p1

p
.
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Using these results in the first order condition we obtain

p1 − η(p1 − 1) + (η − θ)(p1 − 1)s1 = 0.

Since firms are symmetric, the equilibrium will yield equal revenue shares s1 = 0.5, and p∗ =

ε/(ε − 1), where ε is an average of the within- and across-sector demand elasticities ε = 0.5 ×

(η + θ). The form of the solution implies that markups are consistent with those chosen by a

monopolistically competitive firm facing an elasticity of demand equal to ε. Note that since P

and C are first order terms in the firm’s profit function, they do not affect the Nash equilibrium

markup.

Calibration The calibration of the dynamic duopoly model yielded θ = 1.5 and η = 10.5 (see

Table 1). For these values, ε = 6 and p∗ = 1.2.72 I apply these values to the equilibrium profit func-

tion from the text (8), in which Pθ−1 would multiply the profit function instead of PC−θ. Setting

P to the average markup 1.30, Figure A2 shows how (ξ, p̄)-space separates across different equi-

libria. It is entirely consistent with the theoretical results. Recall that the model was calibrated to

the average size and frequency of price change, so the menu cost was not chosen with a particular

equilibrium in mind. Note that the average markup in the model is p̄ = 1.3, and the upper bound

on the menu cost is ξ̄ = 0.17 (marked with an x in the figure). Zbaracki, Ritson, Levy, Dutta, and

Bergen (2004) find that price adjustment costs make up 1.2 percent of firm revenue. As a bench-

mark, ∆I I( p̄)/rev( p̄, p̄) = 0.012 at p̄ = 1.27, so a menu cost around empirical estimates as a share

of revenue would, in this static game under the calibrated parameters of the model, guarantee a

Type-I equilibrium.

Figure A6 plots various features of this profit function, varying p2. Under the profit function

derived from CES preferences, it is not true that π12 > 0 everywhere, but this is true at (p1, p2) =

(1.3, 1.3), so around the average markup in the calibrated model.73

Summary From this exercise, the following is a heuristic understanding of the dynamic model.

Nominal rigidity allows firms to fluctuate around a markup which is larger than the frictionless

Nash equilibrium. However, this is constrained by the size of the menu cost, which is pinned

down by the average frequency of price change. Given a menu cost ξ, firms choose reset prices

72Recall that the Alt III calibration of the monopolistically competitive model set η = 6 to deliver this as a frictionless
markup.

73An unusual property of the CES profit function is that profits are always positive for p > 1, regardless of price.
This implies, as shown in Panel C, that the second derivative must, for high prices, become positive.

49



around a real price p̄ that supports a Type-I equilibrium, but not so high as to risk a Type-II equilib-

rium. Idiosyncratic shocks force the firms’ real prices apart, but the firms keep on adjusting their

prices so as to not let them get too far away from p̄. Prices that are too high invite undercutting,

and prices that are too low reduce profitability. Menu costs in the range of empirical estimates can

sustain markups in the range of empirical estimates. Finally, getting to these high prices requires

firms to reduce profit in the short run in order to lay the incentives for their competitor to choose

a price that maintains high long run profits for the sector.

Calvo model Finally, consider a Calvo version of the static model, where each firm changes its

price with probability α. Let p̃ be the optimal reset price of the firm. Then a Nash equilibrium

requires that each firm’s first order condition be satisfied at p̃:

απ1( p̃, p̃) + (1 − α)π1( p̃, p̄) = 0.

It is straightforward to show that p̃ < p∗( p̄). A sufficient condition is that π1( p̃, p̄) < 0, since

π1(p∗( p̄), p̄) = 0. The first order condition implies that this is true if π1( p̃, p̄) > π1( p̃, p̃), which is

true due to complementarity and p̄ > p̃. Note that as α → 1, then p̃ → p∗.

Proof For the Type-III equilibrium to exist, conditions (C5) and (C6) must hold simultaneously,

requiring that

π(p∗∗( p̄), p∗( p̄))− π( p̄, p∗( p̄)) ≤ π(p∗( p̄), p̄)− π( p̄, p̄).

I prove that the negation of this inequality always holds. Note that the expression on the left hand

side can be decomposed as follows:

π(p∗∗( p̄), p∗( p̄))− π( p̄, p∗( p̄)) = [π(p∗∗( p̄), p∗( p̄))− π(p∗( p̄), p∗( p̄))]

+ [π(p∗( p̄), p∗( p̄))− π( p̄, p∗( p̄))] .

Since the best response function is upward sloping, then p∗∗( p̄) < p∗( p̄) < p̄, and the profit

function π(p, p∗(p)) is downward sloping for p > p∗∗( p̄). This implies that each of the two

terms on the right-hand side is positive. A sufficient condition for the non-existence of a Type-III

equilibrium is therefore

π(p∗( p̄), p∗( p̄))− π( p̄, p∗( p̄)) ≥ π(p∗( p̄), p̄)− π( p̄, p̄).
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Noting that p∗( p̄) < p̄, then the fundamental theorem of calculus can be used to express this

condition as
ˆ p̄

p∗( p̄)
π1(u, p∗( p̄)) du ≤

ˆ p̄

p∗( p̄)
π1(u, p̄) du.

Since p∗( p̄) < p̄ and the firms’ prices are complements, then π1(u, p∗( p̄)) ≤ π1(u, p̄) for all u ∈

[p∗( p̄), p̄], so this condition holds.

D Discussion of model assumptions

1. CES demand structure An alternative formulation of the demand system could have been

chosen. A pertinent example is a nested logit system commonly used in structural estimation of

demand systems. However, as shown by Anderson, de Palma, and Thisse (1992), the nested CES

structure is isomorphic to a nested logit with a population of consumers that each choose a single

option at each stage.74 That is, consumers may have identical preferences for Kraft and Hellman’s

mayonnaise, up to an iid taste shock that shifts each consumer’s tastes toward one or the other

each period. A CES structure with equal weights will deliver the same market demand functions

under an elasticity of substitution that reflects the distribution of taste shocks and reduced form

elasticity of indirect utility to price.75

2. Random menu costs Random menu costs serve two purposes in the model. First, they gener-

ate some small price changes. Some firms, having recently changed their price and accumulating

little change in sectoral productivity, draw a small menu cost and again adjust their price. Figure

9 shows that a monopolistically competitive model with random menu costs gives a distribution

of price changes that appear as smoothed versions of the bimodal spikes of Golosov and Lucas

(2007). Midrigan (2011) explicitly models multiproduct firms and shows that the implications for

aggregate price and quantity dynamics are—when calibrated to the same price-change data—the

same as in a model with random menu costs. What is important for these dynamics is that the

model generates small price changes—which dampen the extensive margin effect—leading to the

statement that the conclusions drawn are not sensitive to the exact mechanism used to generate

small price changes. In this sense, one can think of the random menu costs in my model as stand-

74I thank Colin Hottman for making this point and take its presentation from Hottman (2016).
75For estimation of alternative static demand systems using scanner data similar to that used in this paper see Beck

and Lein (2015) (nested logit), Dossche, Heylen, and den Poel (2010) (AIDS), and Hottman, Redding, and Weinstein
(2014) (nested CES). Only the latter studies an equilibrium, imperfectly competitive model.
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ing in for an unmodeled multiproduct pricing problem.

Second, and most important, random menu costs that are private information allow me to

avoid solving for mixed-strategy equilibria. This technique I borrow from Doraszelski and Sat-

terthwaite (2010), who use it to address the computational infeasibility of solving the model of

Ericson and Pakes (1995), which has potential equilibria in mixed strategies as well as issues with

existence of any kind of equilibrium.76 One could imagine solving the model under mixed strate-

gies with fixed menu costs. Given the values of adjustment and non-adjustment and a fixed menu

cost ξ, the firm may choose its probability of adjustment

γi(s, S) = arg max
γi∈[0,1]

γi

[
v

adj
i (s, S)− ξ

]
+ (1 − γi) v

stay
i (s, S).

If firm −i follows a mixed strategy such that v
adj
i (s, S)− ξ = v

stay
i (s, S), then a mixed strategy is a

best-response of firm i. If one believes that menu costs are fixed, then this provides an alternative

rationale for small price changes. Some firms may not wish to adjust prices this period, yet their

mixed strategy over adjustment leads them to change prices nonetheless. However, the solution

of this model would be vastly more complicated and at this stage infeasible. Appendix C proves

that even in a simple static game of price adjustment with menu costs, such multiple equilibria

may arise.

3. Information I assume that the evolution of product demand within the sector (z1j, z2j) is

known by both firms at the beginning of the period and only menu costs are private informa-

tion. An alternative case is that menu costs are fixed, but firms know only their own productivity

and the past prices of both firms. This would add significant complexity to the problem. First,

if productivity is persistent, then firms would face a filtering problem and a state vector that in-

cludes a prior over their competitor’s productivity. Second, computation is still complicated even

if productivity is iid. From firm 1’s perspective z2j would be given by a known distribution, which

firm 1 must integrate over when computing expected payoffs. Integrating over firm 2’s policy

functions—which depend on z2j—would be computationally costly. Since the menu cost is sunk,

I avoid these issues.

4. Idiosyncratic shocks Three key assumptions are made regarding idiosyncratic shocks, they

(i) follow a random walk, (ii) move both marginal revenue and marginal productivity schedules

76This technique is also used by Nakamura and Zerom (2010) and Neiman (2011) in menu cost models.
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of the firm, and (iii) are idiosyncratic rather than sectoral. These are made for tractability but are

not unrealistic.

The first is plausible given that the model is solved monthly. It achieves tractability in that

future states depend on growth rates of zij, which are iid. An alternative assumption deployed in

similar studies is a random walk in money growth and AR(1) in firm-level shocks, which reduces

the aggregate state variables of a monopolistically competitive model in the same way.77 In the

duopoly model, this would leave the overall state vector with five elements

sijt =
(

pijt−1, p−ijt−1, zijt, z−ijt, µt

)
,

with four state variables in the sectoral problem which is infeasbible. The random walk assump-

tions on zijt and AR(1) in money growth implies sijt =
(
µijt, µ−ijt, gt, µt

)
, with two state variables

in the sectoral problem which is feasbible. Additionally, since at a monthly frequency the esti-

mated persistence of money growth is significantly less than one (ρg = 0.61, see Section 4), this is

preferred.

The second seems acceptable if one does not hold a strong view on whether demand or produc-

tivity shocks drive firm price changes, a reasonable stance given that only revenue productivity

is observed in the data for all but a small number of sectors. Midrigan (2011) interprets ε ij’s as

shocks to “quality”: the good has higher demand but is more costly to produce. This assumption

is necessary—along with random walk shocks—to express the sectoral state vector in two rather

than four states.

The third assumption is not for tractability of the duopoly model but the monopolistically

competitive model. The latter with sectoral shocks would introduce two additional state variables

to the firm’s problem: the sectoral markup and sectoral shock. Firms would require forecasting

rules for both of these on top of forecasting rules for the aggregate markup. This would render the

problem infeasible. In addition, the existing literature does not take this approach.

Empirically, I offer some new evidence from a decomposition of firm revenue in the IRI data

that suggests this is also a good approximation. Changes in firm f revenue r f pst can expressed as:

∆log r f pst = ∆log
(

r f pst

rpst

)
+ ∆log

(
rpst

rst

)
+ ∆log rst. (D1)

77Specifically, such an assumption would allow the aggregate state—following the Krusell-Smith approximation—to
be captured by only the aggregate markup.
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The first component is the change in expenditure on firm f relative to the market, the second

component is the change in expenditure on product p relative to total expenditure in the region,

and the final term is due to changes in total expenditure in the region. Taking the time series

variance of this equation admits the following identity for each pair of product p and state s:

1 =
var

(
∆log

(
r f pst

rpst

))

var
(
∆log r f pst

)
︸ ︷︷ ︸
(1) Firm share in market

+
var

(
∆log

(
rpst

rst

))

var
(
∆log r f pst

)
︸ ︷︷ ︸
(2) Market share in state

+
var (∆log rst)

var
(
∆log r f pst

)
︸ ︷︷ ︸
(3) State expenditure

+
Cov. terms

var
(
∆log r f pst

)
︸ ︷︷ ︸
(4) Covariance terms

. (D2)

I compute this decomposition for the largest firm in each market. Figure A5 plots the first three

elements of equation (D2) against each other. Table A2 provides the average for each of these

elements. The first column is a simple average across all pairs ps, and the second is weighted

by average revenue r̄pr. Both point to fluctuations in the revenue share of the firm within the

market as the most important in accounting for fluctuations in firm-level revenues, followed by

fluctuations in the revenue share of the product within the state and finally fluctuations in total

state expenditure.

The majority of fluctuations in the revenue of large firms are due to changes in the firm’s share

of expenditures within their product-state market, and not changes in the product’s share of state

expenditure or changes in the state’s share of national expenditure. These results are robust to

whether the second, third, or fourth largest firm in a market is used in the computation. As an

initial approximation, firm rather than sectoral shocks seems satisfactory.
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Tables

Table 1: Parameters in the duopoly (Duo) and monopolistically competitive (MC) models

Baseline Alternative MC models

DuoI MCI MCI I MCI I I MCIV

A. Parameters

Within-sector elasticity of demand η 10.5 4.5 10.5 6 10.5
Upper bound of menu cost distribution ξ ∼ U[0, ξ̄] 0.17 0.21 0.17 0.29 0.42
Size of shocks (percent) σz 3.8 4.0 3.8 4.1 4.3

B. Moments

Markup E [µit] 1.30 1.30 1.12 1.22 1.13
Frequency of price change E [1{pit 6= pit−1}] 0.13 0.13 0.19 0.13 0.13
Log abs. price change E [| log(pit/pit−1)|] 0.10 0.10 0.05 0.10 0.10

C. Results

Std. deviation consumption (percent) σ (log Ct) 0.31 0.13 0.06 0.13 0.13
Average minus frictionless markup E [µit]− µ∗ 0.10 0.02 0.01 0.02 0.02

Notes: (i) The table presents three alternative calibrations of the monopolistically competitive model. MCI I has the same
parameters as the baseline duopoly calibration. MCI I I has a value of η chosen such that it delivers the same frictionless
markup as the duopoly model. MCIV has a value of η equal to the duopoly model. Under MCI I I and MCIV , the values
of ξ̄ and σz are chosen to match the frequency and size of adjustment. (ii) Given that log zij follows a random walk, σz

measures percentage innovations to zij. (iii) Average log absolute price change is computed conditional on a non-zero
price change.
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Table 2: Market structure and the composition of monetary non-neutrality

1. Intensive 2. Extensive 3. Covariance

A. Fraction of inflation accounted for by each margin

Monopolistic competition πmc
t 0.40 0.55 0.05

Duopoly πd
t 0.41 0.58 0.01

B. Fraction of the difference in inflation accounted for by each margin

Monopolistic competition minus duopoly
(
πmc

t − πd
t

)
0.36 0.45 0.19

C. Fraction of the difference in each margin accounted for by regions of the distribution of markups

Both markups below the median
(

µL
i , µL

j

)
-0.90 -0.73 -0.50

One below, one above the median
(

µL
i , µH

j

)
1.81 1.65 1.05

Both markups above the median
(

µH
i , µH

j

)
0.09 0.08 0.45
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Table 3: Market structure, monetary non-neutrality and price-setting technologies

Fixed menu cost Random menu cost Calvo
Mon. Comp. Duopoly Mon. Comp. Duopoly Mon. Comp.

σ(log(Ct))× 100 0.08 0.31 0.13 0.41 0.38

Relative σ(log(Ct))
Duopoly vs Mon.Comp 2.38 - 1.07 -
Calvo vs Menu Cost - - 1.32 2.92

Notes: (i) Menu cost model results are from Table 1: DuoI and MCI . (ii) Calvo model frequency of price change α = 0.13

and size of shocks σz = 0.05 are chosen to match the same frequency and average size of absolute price change as the

menu cost model. (iii) Note, the same σz is able to be used in both the duopoly and monopolistically competitive Calvo

models due to the lack of pricing complementarity under Calvo. (iv) Relative σ(log(Ct)) is the ratio of σ(log(Ct)) for

the relevant comparison.
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Table 4: Moments of the distribution of price changes: xit = log (pit/pit−1)

Model Std. Skew. Kurt. p10 p25 p75 p90 Increases

Monopolistic competition MCI 0.11 -0.26 1.88 -0.14 -0.10 0.09 0.12 0.58
Duopoly DuoI 0.11 -0.06 1.79 -0.15 -0.10 0.10 0.14 0.54

Notes: (i) All moments are from the distribution of price changes. (ii) pX give the percentiles of the price change
distribution. (ii) Increases gives the fraction of prices changes that are positive.
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Table 5: Market structure and output losses due to nominal rigidity

Mon. Comp. Duopoly
MCI DuoI

(1) Output under no distortions ξ̄ = 0 µit = µ∗ 0.78 0.83
(2) Output under no dispersion (level only) µit = E[µit] 0.77 0.77
(3) Output in full model (level + dispersion) 0.76 0.75

(1)-(3) Total output loss due to nominal rigidity 2.6% 9.6%
(1)-(2) ... due to level of markups 0.49 0.77
(2)-(3) ... due to dispersion in markups 0.51 0.23

Notes: (i) Calibration of both models is as in Table 1, MCI and DuoI . Recall that these calibrations are such that
E[µit] is the same in both models. (ii) When the markups of all firms are equal µt = µit, so under PtYt = Mt, then
Yt = Mt/Pt = 1/µt. This is used to simply compute output under the counterfactuals in rows (1) and (2). Row (3)
takes average output from simulations of the model with aggregate shocks.
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Additional and appendix tables

Table A1: Existing results

Ref. Peak IRF Slope PC Freq. Dur.
∆log Yt

∆log Mt
λ = πt

m̂ct
α 1/α

(1) (2) (3) (4) (5) (6) (7)

Panel A.
Golosov-Lucas Menu-cost Fig. 4a 0.42 1.36 0.67 1.49
Nakamura-Steinsson 14-sector Fig. VIII 0.50 1.00 0.62 1.62

+ Round-a-bout∗ Fig. IX 0.80 0.25 0.39 2.56
Gertler-Leahy Baseline Fig. 2 0.45 1.22 0.65 1.53

+ sectoral labor∗∗ Fig. 3 0.75 0.33 0.43 2.30
Burstein-Hellwig Baseline Fig. 5 0.34 1.94 0.73 1.37

+ DRS∗∗ Fig. 5 0.56 0.79 0.58 1.73
+ Wage rigidity∗ Fig. 5 0.70 0.43 0.47 2.11

Klenow-Willis Baseline Fig. 4 - 0.51 0.50 1.99
+ Kimball∗∗ Fig. 4 - 0.40 0.46 2.16

This paper Monopolistic comp. Fig. 5 0.42 1.38 0.67 1.49
Duopoly∗∗ Fig. 5 0.74 0.36 0.45 2.25

Forms of pricing complementarity: ∗ = ‘macro’-complementarity, ∗∗ = ‘micro’-complementarity

Panel B.
Calvo model Bils-Klenow Tab. 1 0.967 0.167 0.22 4.55

6 month price duration 0.967 0.033 0.17 6
9 month price duration 0.986 0.014 0.11 9
12 month price duration 0.992 0.008 0.08 12

Notes: Column (4) provides my calculation of the ratio of the peak output response ∆log Yt to the size of a monetary

shock ∆log Mt, as inferred from the impulse response provided in the referred to paper (column 1), and figure (column

3). For example, Fig. VII of Nakamura and Steinsson (2010) shows a peak response of ∆log Yt = 0.005, in response to

∆log Mt = 0.010. The models referred to are as follows. In Nakamura and Steinsson (2010), the round-a-bout produc-

tion technology with an intermediate share of 0.70. In Gertler and Leahy (2008), the sectoral labor supply model with

a unit Frisch elasticity of labor supply. In Burstein and Hellwig (2007) “+DRS” refers a decreasing returns production

technology (labor share equal to 0.55), “+ Wage rigidity” refers to aggregate nominal wage rigidity: Wt = Y−0.8
t Mt.

In Klenow and Willis (2016), the model with Kimball (1995) preferences and super-elasticity of demand θ = 10. Now

consider a New-Keynesian model with constant returns to scale in production, no idiosyncratic shocks, and Calvo price

adjustment. In this model, output is proportional to real marginal cost, and the response of prices to changes in real

marginal cost (πt/m̂ct) would be given by λ = (1 − x)/x, where x is the value in column (4). Here, λ is the slope

of the Phillips curve. In this model, λ would obtain under the monthly frequency of price change α given in Column

(6): λ = (1 − βθ)(1 − θ)/θ, where θ = 1 − α. Column (7) provides the average duration of prices implied by α, inter-

pretable as “the average duration of prices in a baseline New-Keynesian model that would deliver the same relationship between

real marginal cost and inflation following monetary shocks, implied by the given model in column (2)”. Panel B, proceeds back-

ward, starting with an average duration of price change in column (7). Christiano, Eichenbaum, and Trabandt (2015)

estimate a 12 month average price duration. Smets and Wouters (2007) estimate a 6 month average price duration in a

model with strong complementarities and sticky wages.
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Table A2: Decomposing changes in firm revenue

Unweighted Revenue weighted

(1) Firm share in market 1.27 1.07
(2) Market share in state 0.72 0.40
(3) State expenditure 0.20 0.13
(4) Covariance terms -1.20 -0.61

Notes: Table gives the averages of the elements of equation (D2), computed for each product p, region r, where the
firm f has the largest revenue in market pst. There are 1, 333 observations (31 products and 43 regions). Since these are
averages, each column does not necessarily sum to one.
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Figures
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Figure 1: Wholesaler market concentration in the IRI data

Notes: (i) A market is defined as an IRI product category p within state s in quarter t giving 191, 833 observations. (ii) A
firm i is defined within a pst market by the first 6 digits of a product’s bar code, which identifies the wholesale firm. (iii)
Revenue ripst is the sum over the revenue from all products of firm i in market pst. See Appendix A for more details
on the data. (iv) Medians reported in the figure are revenue weighted. Unweighted medians are A. 21, B. 3.88, C. 0.64.
(v) Each histogram has 20 bins. Panel A: Number of firms is the total number of firms with positive sales in market
pst. Panel B: Effective number of firms is given by the inverse Herfindahl index h−1

pst, where the Herfindahl index is

the revenue share weighted average revenue share of all firms in the market, hpst = ∑i∈{pst}(ripst/rpst)
2. Panel C:

Two-firm revenue share is the share of total revenue in market pst accruing to the two firms with the highest revenue.

Figure 2: Example - Positive monetary shock in monopolistically competitive model

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary
shock. Thin dashed lines give corresponding optimal markups conditional on adjustment, where µ∗

1 = µ∗
2 . Thick solid

lines include a monetary shock in period 40 which decreases both firms’ markups. Thick dashed lines—which lie on
top of the thin dashed lines before period 40—give the corresponding optimal markups. The model is solved in steady
state, and the monetary shock is a one-time unforeseen level increase in money. The parameters of the model are as
in Table 1. The y-axis in panel A describes the log deviation of markups from the value chosen when realizations of
shocks and menu costs are zero, µ̄ = 1.30, which is equal to the average markup.
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Figure 3: Static complementarity

Notes: Thick curves in panel B plot the component of firm 1’s profit function due to the two firms’ markups: π̂1(µ1, µ2)
from the normalized profit function in equation (8). The only parameters that enter this function are η and θ, which
are set to their calibrated values of 10.5 and 1.5 (see Table 1). The upper (grey) curve describes firm 1 profits when
µ2 = 1.30, which equals the average markup under the baseline calibration. The lower (black) curve describes firm 1
profits when µ2 = 1.20, which equals the frictionless Nash equilibrium markup under the baseline calibration. Given
a value of µ2 on the x-axis, the solid thin line describes π̂1(µ

∗
1(µ2), µ2), under firm 1’s static best response. The static

best response µ∗
1(µ2), is plotted in panel A. Given a value of µ2 on the x-axis, the dotted thin line describes π̂1(µ2, µ2),

under firm 1 setting its markup equal to firm 2’s.

Figure 4: Example - Positive monetary shock in duopoly model

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary
shock. Thin dashed lines give corresponding optimal markups conditional on adjustment µ∗

1 (µ1, µ2) and µ∗
2 (µ1, µ2).

Thick solid lines include a monetary shock in period 40 which decreases both firms’ markups. Thick dashed lines—
which lie on top of the thin dashed lines before period 40—give the corresponding optimal markups. The model is
solved in steady state, and the monetary shock is a one-time unforeseen level increase in money. The parameters of
the model are as in Table 1. The y-axis in panel A describes the log deviation of markups from the value chosen when
realizations of shocks and menu costs are zero, µ̄ = 1.30, which is equal to the average markup.

68



Figure 5: Monetary non-neutrality in the duopoly and monopolistically competitive models

Notes: Parameters for both models are as in Table 1 (DuoI , MCI). Impulse response functions computed by local
projection (see footnote 39). The response function plotted IRFτ for ∆ log Ct is multiplied by the standard deviation
of innovations to money growth σg = 0.0019. This is then multiplied by 100, such that units are log points. The peak
response elasticity is therefore (0.0014/0.0019) = 0.74.

Figure 6: Impulse responses of frequency and size of adjustment to a positive monetary shock

Notes: Impulse response functions are computed by local projection (see footnote 39). For panel A, the dependent
variable is the change in the fraction of firms adjusting price. For panel B, the dependent variable is the change in the
average absolute size of log price changes. To isolate the effect of a positive monetary shock, only positive innovations
to money growth ε

g
t > 0 are included in the regressions. Black (grey) lines correspond to low (high) markup firms. In

the duopoly model, firms are assigned to the low-markup group if, within their sector, they have the lowest markup.
In the monopolistically competitive model, pairs of firms are drawn at random and assigned to the low-markup group
if their markup is the lowest in the pair.
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Figure 7: Elasticity of substitution comparative statics and monopolistic competition

Notes: Solid lines denote values for the monopolistically competitive model under σz = 0.041 and the recalibrated
values of ξ̄ given by the solid line in panel A. These values of ξ̄ are chosen to best match data on both the frequency and
size of price change (panel B). Dashed lines denote values for the monopolistically competitive model under σz = 0.041,
with ξ̄ fixed at its value from calibration MCI I I of Table 1. The vertical black lines mark the value of ηmc = 6 under
this calibration. In panel C, the dashed line lies imperceptibly above (below) the solid line to the left (right) of ηmc = 6.
For low values of η, and fixed ξ̄, frequency of price change is lower (panel B, grey dashed line), leading firms to choose
higher markups for precautionary reasons. These effects on the average markup are, however, very small: the average
markup is dominated by η.
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Figure 8: Market structure and the profit function of a firm

Notes: (i) In all three models, the frictionless optimal markup is µ∗ = 1.20, with ηd = 10.5 (DuoI) and ηm = 6 (MCI I I).
(ii) The solid upper (red) line describes π1 (µ1, E[µit]), the flow profit of firm 1 when the markup of firm 2 is equal to
the average markup in the duopoly model, which is 1.30. Its maximum µ∗

1(µ2) = arg maxµ1 π1 (µ1, µ2) is obtained at
1.24. (iii) The thin dashed lines describe the same profit function when µ2 is one standard deviation above and below
E[µit]. (iv) The thick dashed red line describes π1 (µ1, µ∗), the flow profit of firm 1 when the markup of firm 2 is equal
to the frictionless optimal markup µ∗, which is 1.20.

Figure 9: Distributions of markup gaps and price changes

Notes: The markup gap log
(
µ∗

it/µ̄it−1
)

is defined with respect to the markup that would occur if the firm does not
change its price, and the optimal markup µ∗

it. The distribution of price changes is equal to the distribution of markup
gaps conditional on a price change log (pit/pit−1) = log

(
µ∗

it/µ̄it

)
. For a derivation see Appendix B.1. Firms are binned

in 0.025 intervals of the values on the x-axis. Raw data from Cavallo (2018) are prices pit and pit−1 conditional on
price change, from which I compute log (pit/pit−1). Thin line gives the raw histogram of price changes binned in 0.025
intervals. Thick line with circle markets gives kernel density plot with bandwidth of 0.025.
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Figure 10: Comparative statics: Markups and firm value

Notes: (i) Figures plot comparative statics of the average firm value—in real terms—given by Bellman equation (9),
with respect to changes in the size of nominal rigidity in the menu cost model (panel A) and Calvo model (panel
B). (ii) The models are calibrated according to Table 1, DuoI and MCI I I, they therefore have the same markup and
same real average value under no pricing frictions (see footnote to Table 1. (iii) The cross mark gives the size of the
friction that maximizes firm value in the duopoly model. (iv) Panel A is truncated on the x-axis due to computational
issues associated with approximating policy functions under very small and very large menu costs, when all other
parameters are fixed: as the frequency of price change becomes too low or too high, the approximating nodes required
change, while for the purposes of comparative statics these remain fixed. (v) Note that the scale of the y-axis differs.
This is because the menu cost and Calvo models are not comparable in terms of firm value in the presence of pricing
frictions. For a given frequency of price change, firm value is larger in the menu-cost model due to the ability to time
price changes. This added value more than offsets the losses due to the small menu cost.
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Figure 11: Within-product, Across-region variation in market concentration

Notes: For construction of the Effective number of firms measure see the notes to Figure 1.
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Figure 12: Empirical relationship between market concentration and price flexibility

Notes: Data are at good-p, state-s, quarter-t level (61, 884 observations, 31 products, 43 states, 2001-2011). Concentration
is measured by the effective number of firms implied by the inverse Herfindahl index (large is more equally sized firms,
so less concentrated), computed from wholesale firm revenue shares in market-pst: iher fpst (see footnote to Figure 1).
Frequency of price change

(
f reqpst

)
is the fraction of goods changing price, size of price change

(
sizepst

)
is the average

absolute log price change (conditional on price change). For each measure xpst, I first remove joint product-time-pt
fixed effects using a regression that also controls for total market revenue revpst, and number of firms with positive
sales N f irmsprt. Residuals x̃pst are then scaled by the within-pt standard deviation: x̃′pst = x̃pst/std[x̃pst]. I then bin

markets into percentiles of ĩher f
′

pst, and compute within bin means of f̃ req
′
pst, s̃ize

′
pst, and ĩher f

′

pst. These binned means

are then used in the figure, with the within bin mean of ĩher f
′

pst on the x-axis. Note that since results are within-product-

quarter, then the x-axis can only be read as a measure of relative competitiveness of the state s market for good p at date

t relative to other states s′ at date t (e.g. in absolute terms some markets with low values of ĩher f
′

pst may have high or
low values of iher fpst relative to all markets).
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Additional and appendix figures

Figure A1: Decomposing markup adjustment in a monopolistically competitive, menu cost model

Notes: Vertical solid lines give the thresholds for adjustment µ < µ̄. Following an increase in the money supply, all
markups decrease by the same amount, as given by the leftward shift in the distribution. For a permanent one-time
increase in the money supply, the optimal markup µit and thresholds for adjustment are not affected by the shock.
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Figure A2: Regions of equilibria in a static price setting game
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Figure A3: Positive monetary shock in monopolistically competitive model - Low markup firms

Notes: Thin solid lines give exogenous evolution of markups for two firms absent a monetary shock. Thin dashed lines
give corresponding optimal markups conditional on adjustment µ′

1 = µ∗ and µ′
2 = µ∗. Thick solid lines include a

monetary shock in period 40, which decreases both firms’ markups. Thick dashed lines (which lie on top of the thin
dashed lines) give the corresponding optimal markups. The model is solved in absence of aggregate uncertainty and the
monetary shock is a one-time unforeseen level increase in money. The y-axis in panel A describes the log deviation of
markups from the value chosen when shocks and menu costs are zero, µ̄ = 1.30, which is equal to the average markup.

Figure A4: Positive monetary shock in duopoly model - Low markup firms

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary
shock. Thin dashed lines give corresponding optimal markups conditional on adjustment µ′

1 (µ1, µ2) and µ′
2 (µ1, µ2).

Thick solid lines include a monetary shock in period 40, which decreases both firms’ markups. Thick dashed lines
(which lie on top of the thin dashed lines) give the corresponding optimal markups. The model is solved in the absence
of aggregate uncertainty and the monetary shock is a one-time unforeseen level increase in money. The y-axis in panel
A describes the log deviation of markups from the value chosen when shocks and menu costs are zero, µ̄ = 1.30, which
is equal to the average markup.
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Figure A5: Decomposition of the variance of largest firm revenue changes

Notes: Figures plot the elements of equation D2, computed for each product p, region r, where the firm f has the largest
revenue in market pst. There are 1, 333 observations (31 products and 43 regions).
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Figure A6: Properties of firm profit functions

Notes: Panels A, C, and D display features of the duopoly profit functions under θ = 1.5, η = 10.5 as in Table 1. Given these
parameters, the frictionless Nash-Bertrand markup is 1.20 due to an effective elasticity of demand of ε = (1/2)(θ+ η) and a symmetric
equilibrium. Panel B plots the static best response function µ∗

i (µ j) under θ = 1.5 and different values of η. Higher values of η reduce
the Nash equilibrium markup—given by the intersection of the best response with the 45-degree line—and increase the slope of the
best response function.
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