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Abstract

This paper studies a model of currency attacks in which the government can choose some
credible signal about the fundamentals of the economy. The government initially pegs the ex-
change rate and speculators decide whether to attack the currency or not. Speculators observe,
in addition to the public signal, a private noisy signal. Public signals create partial common
knowledge that can lead to multiple equilibria. It is possible to find disclosure policies that
dominate an uninformative public signal, regardless of the equilibrium strategy played by
speculators. Commitment is key to this result. The optimal policy with commitment is char-
acterized when, if there is multiplicity, the government only cares about its lowest equilibrium
payoff. In this case, the public signal is informative and leads to a unique equilibrium, which
is preferred to a full disclosure policy. Our results indicate that the government has incentives
for being vague in its communication.

1 Introduction

Informed governmental agencies are often criticized for the poor quality of the information
they release. Referring to the early years of Alan Greenspan as head of the Fed, Blinder and Reis
(2005) write:

∗We thank Harold Cole, Dirk Krueger and Guillermo Ordonez for helpful comments.
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Soon Greenspan, who is far from plainspoken in any case, became known for such memorable
phrases as ’mumbling with great incoherence’- which he used (with a hint of humor) to charac-
terize his own version of Fedspeak.

In this paper, we argue that it is optimal for the government to be vague in its communica-
tion. This happens because government’s preferences do not coincide with preferences of other
economic agents. When the government has access to payoff relevant information, it needs to be
vague in order to induce agents to take the government’s most preferred action.

We analyze the environment where a government can release a public signal about the funda-
mentals of the economy. In our model, the government would like to maintain a currency peg. The
peg can be attacked by a continuum of speculators, who wish to profit from a currency devaluation.
Payoffs depend on the state of fundamentals of the economy, the action taken by speculators, and
the government’s choice between defending or abandoning the peg. If fundamentals are weak
(low states), speculators can have large profits from attacking the currency and the government
has to pay a high cost to maintain the peg; if fundamentals are strong (high states), speculators can
have at most small profits from attacking the currency and the cost of defending the peg is low.
The cost of maintain the peg is increasing in the number of speculators that attack the currency.

Following Morris and Shin (1998), we assume that speculators receive noisy private signals
about the fundamentals. Thus, if public signals are imprecise, one could expect them to have small
effects on speculators beliefs about the state of fundamentals. This raises the question: why are
vague announcements effective?

When information is dispersed across speculators, an imprecise signal about the fundamentals
can have large effects because it changes the beliefs of a speculator about what other speculators
believe. If the government can delegate to an informed and independent agency (such as the Fed)
the mission to send a public signal (such as the FOMC statements) about the state of fundamentals,
this public signal generates partial common knowledge about the unknown state. Thus, govern-
ment communication induces coordination among speculators, even if the public signal has a low
precision.

In our model, the government chooses an arbitrary partition of the space of fundamentals. The
public signal reveals in which element of the partition the true fundamentals lie. Only truthful
signals are allowed. Given the common prior and the private and public signals, speculators use
Bayesian updating and then decide whether to attack the currency or not.

In a model where the state of fundamentals is common knowledge, multiple equilibria arise
because of the coordination problem faced by speculators. However, Morris and Shin (1998) show
that the introduction of noisy private signals about the fundamentals leads to a unique equilibrium,
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where speculators use cutoff strategies based on their private signals. Our introduction of public
signals breaks the uniqueness result in Morris and Shin (1998).1 To characterize the optimal
disclosure policy we thus assume that, in the case of multiplicity, the government only cares about
the worst equilibrium outcome.2 Under this assumption, we show that the optimal disclosure
policy is, without loss of generality, a policy with two signals (a two interval partition). We
interpret this result as a deliberate decision from the government to be vague - indeed, if the
government could reveal the exact state of the economy, it would choose not to do so.

We then move to a characterization of the optimal disclosure policy. Two signals are sent
when the optimal policy is implemented: a low one, corresponding to bad states of fundamentals
(a coordinated attack in this region is always profitable), and a high one, for the not too bad
states (a coordinated attack is not always profitable). We find that the government ‘’hides” some
intermediate states with strong ones in the not too bad region. Intuitively, this is the optimal signal
because, after observing a high signal, speculators assign a sufficiently high probability to states
where it is not profitable to attack, which allows the government to prevent attacks in intermediate
states. In order to do this, the government commits to acknowledging the really bad states of
fundamentals.

We find that the subgame that follows the optimal disclosure policy has a unique equilibrium.
After observing the low signal, speculators coordinate on attacking and the government abandons
the currency peg. When a high signal is observed, speculators refrain from attacking and the peg
is maintained. If the government had included too many states in the not too bad region, this would
have lead to an equilibrium with currency attacks after the high signal, which the government
wishes to avoid. In other words, the government wants to minimize the revelation of bad states
by reducing the bad region up to the limit where not attacking after observing the high signal is
still the unique possible action to be taken in equilibrium.

The final result of this paper is that commitment is essential for the government to benefit
from disclosing information. When the government cannot commit to a disclosure policy, there
exist equilibria in which the government is made worse off by sending a public signal. Without
commitment, the government wishes to fully reveal the good states, which allows the speculators
to coordinate on attacking in bad and intermediate states.

1 In a different setting, Angeletos et al. (2006) study a model where policy interventions generate endogenous
information, leading to multiple equilibria. We, however, assume that the government can commit ex-ante to a
disclosure policy. If we remove this assumption, our results change significantly. See Section 5.

2 There are two ways to justify this assumption. First, this selection mechanism maximizes speculators’ payoffs.
Second, we take Morris and Shin (1998) as a benchmark to ask whether the government is better off by sending an
informative signal. The optimal signal derived from our equilibrium selection provides a strictly positive lower bound
for the government’s benefits from sending a public signal.
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Related literature.
This paper is related to the literature on self-fulfilling currency crises when payoffs are not

common knowledge among speculators. The idea that small deviations from common knowledge
can have a large impact on equilibrium outcomes dates back at least to Rubinstein’s mail game
(Rubinstein (1989)), and has gained great attention since Carlsson and van Damme (1993) and
Morris and Shin (1998).

We build on the model of Morris and Shin (1998) to introduce a public signal that generates
partial common knowledge. In different settings, the interaction between public and private
signals in coordination games has been studied in Morris and Shin (2002),Morris and Shin (2003),
Hellwig (2002).3

In our model, public signals induce coordination among speculators, as in Angeletos et al.
(2006), Angeletos and Pavan (2007, 2009) and Angeletos and Pavan (2013). Breaking the unique-
ness result in Morris and Shin (1998), Angeletos et al. (2006) point out that policy interventions
that convey some information about the fundamentals may lead to multiple equilibria. We focus
on optimal government communication, thus policy in our model is the revelation of information
itself, and, as opposed to the literature, does not change payoff relevant parameters. The govern-
ment has incentives to release information about the fundamentals in order to influence the final
outcome of the game. This is true even if, by restoring partial common knowledge, the game that
follows the government’s decision admits multiple equilibria.

The paper also relates to the literature on coordination motives in information acquisition (e.g.,
Hellwig and Veldkamp (2009), Myatt and Wallace (2012)). Hellwig and Veldkamp (2009) show
that, when there are complementarities in the actions, agents “want to know what others know”. In
line with their findings, our equilibrium displays speculators that coordinate on the public signal
and take the same action regardless of their private information.

Finally, the paper relates to the literature on Bayesian persuasion (e.g., Kamenica and Gentzkow
(2011)), which studies the optimal signal structure from the perspective of a sender who wants
to influence a rational Bayesian receiver to take the sender’s preferred action. This is done by
affecting the receiver’s beliefs. In addition to this effect, our model also takes into account the in-
teraction of speculators who have private information, where a public signal can play an important
role on coordination. The optimal policy is designed to maximize the probability that speculators
coordinate on not attacking the currency peg.

Structure of the paper. The remainder of this paper is divided as follows. In Section 2, a motivating

3 In those papers, the public signal cannot generate common knowledge about dominance regions. In Morris and
Shin (1998), this lack of common knowledge is important for equilibrium uniqueness. In our model, we allow for the
public signal to make such revelations.
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example is presented. Section 3 presents the model and some of its equilibrium properties. The
main results are described in Section 4. Section 5 analyzes the model without the commitment
assumption and Section 6 concludes the paper. A numerical example is provided in Appendix A,
and the proofs that are omitted in the main text are presented in Appendix B.

2 A simple example

Before the full model is introduced, we present an example that that conveys the main ideas in this
paper. It illustrates the effects of adding a public signal to a model of currency attacks in which
speculators observe a private signal about the fundamentals.

Consider an economy where the state of the fundamentals is given by θ ∈ Θ = {0, 0.5, 1}, and
the common prior assigns the same probability for each state. There is a continuum of speculators
with unit mass. The government initially pegs the exchange rate at 1, and the equilibrium rate
without intervention is θ. Speculators decide simultaneously whether to attack the currency peg
or not. Given θ and the size of the attack, the government decides whether to abandon the peg or
defend the currency.

Each speculator pays a cost of t = 0.4 to attack the currency peg, and the gross payoff is 1− θ if
the peg is abandoned (a successful attack). The speculator’s net payoff from a successful attack is
thus given by

u(θ) =


0.6, if θ = 0,
0.1, if θ = 0.5,
−0.4, if θ = 1,

and the payoff from an unsuccessful attack is −0.4. If the speculator refrains from attacking, his
payoff is 0.

The government derives a value v = 1 from the currency peg, and the cost of defending it
is given by c(θ, α) = 1.3 − θ + α, where α is the mass of speculators who attack the peg. If the
government abandons the peg, its payoff is 0. The critical mass of attackers necessary for the
government to abandon the peg is given by

a(θ) =


0, if θ = 0,

0.2, if θ = 0.5,
0.7, if θ = 1,

that is, if θ is the state and α is the fraction of speculators who attack the currency, then the
government abandons the peg if α > a(θ), and defends the peg if α < a(θ).
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2.1 Common knowledge

If the state of the fundamentals is common knowledge, the game admits two equilibria. In one
equilibrium there is a coordinated attack on the currency peg after θ = 0.5 is observed, which
forces the government to abandon the peg. The other equilibrium features no attack after θ = 0.5
is observed, and the government chooses to maintain the peg. In both equilibria there is no attack
when θ = 1, since the speculators know that it is not profitable to attack; and every speculator
attacks the currency when θ = 0, since they know that the the government will abandon the peg
regardless of the size of the attack.

2.2 Private signal

Suppose that the true state is unknown, but the speculators observe a private signal x ∈ {0, 0.5, 1},
with conditional probability P(x|θ) as follows:

x = 0 x = 0.5 x = 1
P(x|θ = 0) .50 .25 .25
P(x|θ = .5) .25 .50 .25
P(x|θ = 1) .25 .25 .50

As in Morris and Shin (1998), this game admits a unique equilibrium. In equilibrium, specu-
lators attack the currency if the private signal is x ≤ 0.5, and the government abandons the peg if
θ ≤ 0.5.4

4 The proof of is constructed in 6 steps:

1. If θ = 0, the government abandons the peg in equilibrium regardless of the size of the attack.

2. If x = 0, since the peg is abandoned when θ = 0, the equilibrium payoff from attacking is at least P(θ = 0|x =
0) − 0.4 = 0.1; thus, speculators attack when x = 0.

3. Ifθ = 0.5, since speculators attack when x = 0, the size of the attack is at leastP(x = 0|θ = 0.5) = 0.25 > a(0.5) = 0.2:
thus, the government abandons the peg when θ = 0.5.

4. If x = 0.5, since the peg is abandoned when θ ≤ 0.5, the equilibrium payoff from attacking is at least P(θ = 0|x =
0.5) + 0.5P(θ = 0.5|x = 0.5) − 0.4 = 0.25 + 0.52

− 0.4 = 0.1: speculators attack.

5. If x = 1, since the payoff from attacking when θ = 1 is -0.4 (whether it is successful or not), the equilibrium payoff
from attacking is P(θ = 0|x = 1) + 0.5P(θ = 0.5|x = 1) − 0.4 = −0.025; thus, speculators refrain from attacking
when x = 1.

6. Finally, if θ = 1, the size of the attack is P(x < 1|θ = 1) = 0.5 < 0.7 = a(1),and the government defends the peg.
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2.3 Private and public signals

Now suppose that the government can commit to a disclosure policy as follows. First, the gov-
ernment partitions the state space Θ, and then it sends a public signal y that reveals in which
element of the partition the true fundamentals lie. The introduction of a public signal can lead
to multiple equilibria. For example, if the government chooses to fully disclose the fundamentals
by choosing the partition {{0}, {0.5}, {1}}, we are back to the common knowledge case and there are
two equilibria.

Suppose that, in case of multiplicity, the government only cares about the worst equilibrium
outcome. We claim that, in this case, the optimal partition is {{0}, {0.5, 1}}. The government thus
sends two signals:

y =

 yl , if θ = 0,
yh , if θ ∈ {0.5, 1}.

If the public signal is y = yl, it becomes common knowledge that the true state is θ = 0, which
means that the currency peg will be abandoned and it is profitable to attack, regardless of the other
speculators’ behavior and the private signal. Hence, every speculator must attack in equilibrium
after observing y = yl. If y = yh, it becomes common knowledge that it is never profitable to attack
the currency peg when no one else attacks. This leads to an equilibrium in which speculators
coordinate on not attacking if y = yh.

It turns out the equilibrium is unique. Speculators follow the public signal and attack if and only
if y = yl, and the government abandons the peg if only if θ = 0. The government is strictly better
off by sending a public signal, since it eliminates attacks when θ = 1. Without a public signal, when
θ = 1 half the speculators observe a private signal x ≤ 0.5 and attack the peg, so the government
has to pay a cost to defend the currency. Furthermore, in the worst equilibrium with full disclosure,
the peg is abandoned if θ ∈ {0, 0.5}. Thus, the optimal policy strictly dominates full disclosure
(common knowledge) or no disclosure (uninformative public signal) for the government.

The remainder of paper shows that the results in this section still hold in a more general
framework. In the full model, when the government only cares about the worst equilibrium
outcome, it is without loss of generality to consider only two-signal structures. Public policy
thus divides the fundamentals into two intervals: a lower interval, where the peg is abandoned
and speculators coordinate on attacking; an upper interval, where the peg is maintained and no
speculator attacks. The optimal policy involves maximizing the size of the upper interval, while
keeping the equilibrium unique.
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3 Model

3.1 Actions and payoffs

The model is similar to the one in Morris and Shin (1998), with the addition of a public signal.
There is a currency peg in the economy and speculators have to decide whether to attack it or
not. There is a continuum of speculators of measure one, who are indexed by i and uniformly
distributed on [0, 1]. The state of fundamentals in the economy is given by θ, which is uniformly
distributed on Θ = [0, 1]. In the absence of government intervention, the exchange rate is a function
f (·) of the state θ, where f (·) is continuous and strictly increasing. The exchange rate is initially
pegged by the government at e∗, with e∗ ≥ f (θ) for all θ.

A speculator attacks the currency by selling short one unit of currency at a cost t > 0. If the
speculator attacks and the peg is abandoned, his payoff is e∗ − f (θ) − t, whereas the payoff from
attacking when the currency is defended is −t. If the speculator does not attack the currency, his
payoff is zero.

The government derives a value v > 0 from maintaining the currency peg. There is a cost
c(α, θ) to defend the peg, where α is a mass of speculators who attack the currency. The cost c is
continuous, strictly increasing in α and strictly decreasing in θ. Hence, the payoff from defending
the peg is v − c(α, θ), and the payoff from abandoning the peg is zero. The following assumptions
are made:

• c(0, 0) > v: the government abandons the peg if fundamentals are sufficiently weak, even if
no one attacks;

• c(1, 1) > v: the government abandons the peg if everyone attacks, even if fundamentals are
good;

• e∗ − f (1) − t < 0: it is not profitable for speculators to attack the currency if fundamentals are
good enough.

Denote by θ the value of θ that solves v = c(0, θ). If θ ≤ θ, the government finds it optimal
to abandon the peg regardless of the size of the attack. Denote by θ̄ the value of θ such that
e∗ − f (θ) − t = 0. If θ > θ̄, attacking is not profitable even if the peg is abandoned.

We assume that θ < θ̄.5 When the state is common knowledge, we can divide Θ in three
intervals, as it has been pointed out in the literature.6 Following the terminology in Morris and
Shin (1998):

5 This condition holds for a large v and a small t.
6 See, for example, Obstfeld (1996) and Morris and Shin (1998).
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• if θ ∈ [0, θ], the currency is unstable: the government always abandons the peg;

• if θ ∈ (θ, θ̄), the currency is ripe for attack: a coordinated attack is profitable and, if there is
coordination on not attacking, attacking is not profitable;

• if θ ∈ [θ̄, 1], the currency is stable: it is never profitable to attack the peg.

3.2 Timing and information

The game has three stages. In the first stage, before observing θ, the government commits to a
disclosure policy, which is announced to the speculators. In the second stage, once θ is realized, a
public signal y is sent according to the disclosure policy.7 Speculators do not observe θ, just the
public signal y and a private signal x. Given x and y, speculators simultaneously decide whether
to attack the currency or not. In the last stage, the government observes θ and the size of the
attack, and decides whether to defend the currency or abandon the peg. The structure of the game
is assumed to be common knowledge.

We denote a partition of the interval [0, 1] by P = {mn}
N
n=0, where 0 = m0 < m1 < ... < mN = 1,

and N ∈N.8 The n-th interval of the partition P is denoted by yn, with

y1 = [0,m1], y2 = (m1,m2], ..., yn = (mn−1,mn], ..., yN = (mN−1, 1].

When the public signal y = yn is sent, it becomes common knowledge that θ ∈ yn. When N = 1,
the public signal is uninformative.

It is important to stress that, since the government commits to a choice of P before learning
the true state θ, there is no strategic learning, i.e., the choice of P does not change the speculators’
beliefs about what the government knows.9 In Section ??, we show that commitment is essential
for our results.

In addition to the public signal, speculator i observes a private signal xi, where

xi = θ + σεi,

with σ > 0. The idiosyncratic noise εi is drawn from a distribution with probability density

7 There are two interpretations for the disclosure policy. One is that the government commits to a disclosure rule,
observes θ, and then sends the prescribed signal y(θ). Another interpretation is that the government commits to an
information acquisition procedure and, if the state is θ, the government observes y(θ) and announces it. The latter is
in line with the Bayesian persuasion literature (see, for example, Kamenica and Gentzkow (2011)). In this case, the
government is not more informed than the speculators when the public signal is sent.

8 In this presentation, we restrict the analysis to partitions with a finite number of intervals. The results still hold if
the partitions can have a countable number of intervals.

9 This is in contrast to Angeletos et al. (2006).
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function (pdf) g(·), and cumulative distribution function (cdf) G(·). Each εi is independently and
identically distributed across agents and independent of θ. We assume that supp(g) = [−ε̄, ε̄],
ε̄ > 0, and that g(·) is differentiable on (−ε̄, ε̄). Define ε = σε̄, and let 2ε < min{θ, 1 − θ̄}.

The derivative of g(·), g′(·), is assumed to be bounded and such that

if g′(ε̃) < 0, then g′(ε̂) ≤ 0 ∀ε̂ ∈ (ε̃, ε̄). (1)

Since the common prior on θ is uniform on [0, 1], the posterior distribution of θ given private
signal x and public signal y has probability density function φy(θ|x), where

φyn(θ|x) =


1
σ g( x−θ

σ )

G
( x−mn−1

σ

)
−G( x−mn

σ )
, if θ ∈ yn

0, otherwise
. (2)

The derivation of φyn(θ|x) is presented in Appendix B.1.10

3.3 Equilibrium

We solve this game by backward induction. In the last stage, given an attack of size α and
a state θ, the government optimally chooses to abandon the peg if and only if c(α, θ) ≥ v. In
the second stage, given a partition P, speculators observe the public signal and their own private
signal. Anticipating the government’s decision in the next stage, they simultaneously decide
whether to attack the currency or not. In the first stage, the government chooses a partition
P. The multiplicity in the second stage of the game poses a selection problem that we solve by
assuming that the government only cares about the worst equilibrium outcome. Alternatively, we
could assume that speculators play the equilibrium strategy that maximizes their own payoff (or,
equivalently, the one that minimizes the government’s payoff).

More formally, suppose the government chooses a partition P = {mn}
N
n=0. Let pn = P(θ ∈ yn) be

the probability that θ lies in the interval yn of the partition.11 In addition, consider the subgame
that follows the disclosure of y = yn. Denote Vn the infimum of all government’s equilibrium
payoffs when y = yn.12 We let V(P) =

∑N
n=1 pnVn. The government’s problem is to choose P to

maximize V(P).

10 There is a finite number of pairs (x, y) that fully reveal θ: when y = yn and x = mn + ε, we have P(θ = mn|y = yn, x =
mn + ε) = 1; likewise, when y = y1 and x = −ε, then P(θ = 0|y = y1, x = −ε) = 1. For all other pairs (x, y), the conditional
density of θ is given by (2).

11 Since we assume that θ is uniformly distributed on [0, 1], we have pn = mn −mn−1.
12 Such infimum always exists as the government always has the option to abandon the peg, so the equilibrium payoff

is bounded below by 0.
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The problem of the government in the last stage is simple. For each θ, let a(θ) be the solution to
v = c(a, θ). This function represents the critical mass of speculators that have to attack the currency
in order to induce the government to abandon the peg. Note that, given our assumptions on c(·, ·),
we have that a(·) is continuous, a(θ) = 0 for θ ≤ θ, and a(·) is strictly increasing for θ > θ.

For a given profile of strategies for the speculators, the measure of speculators who attack the
currency given a pair of signals (x, y) is denoted by π(x, y). If the state is θ, the proportion of
speculators who attack the currency is given by

s(θ, π) =

∫ θ+ε

θ−ε
π(x, yn(θ))

1
σ

g
(x − θ
σ

)
dx. (3)

where yn(θ) is the public signal sent according to P when the state is θ. The government maintains
the peg when

s(θ, π) < a(θ). (4)

Thus, the event where there is a regime change is given by

A(π) = {θ : s(θ, π) ≥ a(θ)}. (5)

The payoff to a speculator from attacking the currency at state θ, when the aggregate strategy
is π, is given by

h(θ, π) =

 e∗ − f (θ) − t, if θ ∈ A(π)
−t, if θ < A(π)

. (6)

The expected payoff from attacking the currency given a pair of signals (x, yn) is given by13

uyn(x, π) =

∫
[x−ε,x+ε]∩yn

h(θ, π)φyn(θ|x)dθ (8)

=

∫
[x−ε,x+ε]∩yn∩A(π)

[e∗ − f (θ)]φyn(θ|x)dθ − t.

13 Equation (7) holds for all but a finite number of pairs (x, y), as described in footnote 10. If y = yn and x = mn + ε,

uyn (mn + ε, π) = [e∗ − f (mn)]I(mn) − t, (7)

where I(θ) is an indicator function that equals 1 if the peg is abandoned at state θ. Similarly,

uy1 (−ε, π) = e∗ − f (0) − t,

since the peg is always abandoned when θ = 0.
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In equilibrium, π(x, y) = 1 if uy(x, π) > 0, and π(x, y) = 0 if uy(x, π) < 0.

3.4 Equilibrium properties

We now present some auxiliary results, which are similar to the ones in Morris and Shin (1998).
The first result shows that, if other speculators are more likely to attack the currency peg for every
private signal x, then the expected payoff from attacking increases.

Lemma 1. For a given public signal y, if π(x, y) ≥ π′(x, y) for all x, then uy(x, π) ≥ uy(x, π′) for all x.

Proof: See Appendix B.2. �

For k ∈ [−ε, 1 + ε], let the indicator function Ik be defined as

Ik(x) =

 1, if x < k
0, if x ≥ k

. (9)

When aggregate short sales are given by Ik (in particular, short sales will not depend on the
public signal y), the proportion of speculators who attack the currency at state θ is given by

s(θ, Ik) = G
(

k − θ
σ

)
. (10)

Note that s(θ, Ik) is strictly decreasing in θ for θ ∈ (k − ε, k + ε), and constant otherwise.
We denote by θk the largest value of θ at which the government finds it optimal to abandon the

currency peg when the speculators’ aggregate short sales are given by Ik. As in Morris and Shin
(1998), let ψ(k) = min{θk − k, ε}. Appendix B.3 provides a derivation of θk and ψ. The threshold
θk is increasing in k, and the government finds it optimal to abandon the peg for all θ ≤ θk. The
function ψ(·) is continuous, ψ(k) = ε for k ≤ θ − ε, ψ(1 + ε) = −ε, and ψ(·) is strictly decreasing for
k ∈ (θ − ε, 1 + ε].

Let Xy denote the set of private signals that can be received by the speculators when the public
signal is y. Then Xy1 = [−ε,m1 + ε] and, for n > 1, Xyn = (mn−1 − ε,mn + ε].

Since the currency peg is abandoned if and only if θ ∈ [0, k +ψ(k)], the payoff function uyn(k, Ik)
is given by

uyn(k, Ik) =

∫
[k−ε,k+ψ(k)]∩yn

[e∗ − f (θ)]φyn(θ|k)dθ − t, (11)

for all k ∈ Xyn .14

14 As in footnote 13, equation (11) holds for all but a finite number of (x, y) that fully reveal θ. The reader can check
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Lemma 2. For a given public signal y, uy(k, Ik) is continuous in k, for all possible private signals k ∈ Xy.

Proof: See Appendix B.4. �

Let u(k, Ik) be the payoff function when there is no public signal. Then

u(k, Ik) =

∫ b

a
[e∗ − f (θ)]

1
σ g

(
x−θ
σ

)
G

(
x
σ

)
− G

(
x−1
σ

)dθ − t, (12)

where a = max{k − ε, 0}, and b = k + ψ(k). Note that the payoff function is continuous in k. The
following lemma shows that it is also strictly decreasing in k.

Lemma 3. For k ∈ (ε, 1 − ε), the payoff function u(k, Ik) is strictly decreasing in k.

Proof: See Appendix B.5. �

4 Optimal signal structure

This section presents the results of the model with commitment when, in case of multiplicity after
a partition choice, the government only cares about the worst equilibrium outcome.15 First, we
show that there is no loss of generality in considering partitions with at most two intervals. Then,
we prove that it is not optimal for the government to chose a one-interval partition and send the
uninformative signal. Finally, the optimal partition is characterized.

4.1 No loss of generality in two-interval partitions

Let Φy(θ|x) denote the cumulative distribution function of θ conditional on private signal x and
public signal y. To find the optimal partition, the following assumption is made.

that

limk→mn+εuyn (k, Ik) = uyn (mn + ε, Imn+ε),∀n,
limk→−εuy1 (k, Ik) = uy1 (−ε, I−ε),

and that for a fixed k,

limx→mn+εuyn (x, Ik) = uyn (mn + ε, Ik),∀n,
limx→−εuy1 (x, Ik) = uy1 (−ε, Ik).

For the sake of brevity, in the remainder of the paper we omit these finite number of cases. The limits above guarantee
that our results still hold.

15 When there is no ambiguity, we say equilibrium when we mean the equilibrium of the subgame that follows the
choice of P.
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Assumption 1. Let the public signal be y. For any pair of private signals x1 and x2, with x1 < x2,
Φy(θ|x2) ≤ Φy(θ|x1) for all θ.

This assumption means that the distribution of θ conditional on y and x2 first-order stochastically
dominates the distribution of θ conditional on y and x1. In Appendix B.6, it is shown that
Assumption 1 is satisfied, for example, if the idiosyncratic noise on [−ε̄, ε̄] follows a concave or a
truncated normal distribution. Assumption 1 leads to the following lemma.

Lemma 4. Suppose that Assumption 1 is satisfied. When the aggregate strategy is given by Ik, the payoff
from attacking the currency, uy(x, Ik), is decreasing in the private signal x.

Proof: Suppose that the aggregate strategy is given by Ik. Let I(θ) be an indicator function that
equals 1 if the currency peg is abandoned when the state is θ. Since, by assumption, speculators
follow a cutoff rule, I(θ) is weakly decreasing in θ.16 Define

U(θ) = [ f (θ) − e∗]I(θ),

which is negative and increasing. Consider a public signal y and a pair of private signals x1 and
x2, with x1 < x2. Then ∫ 1

0
U(θ)dΦy(θ|x2) ≥

∫ 1

0
U(θ)dΦy(θ|x1),

where the inequality comes from Assumption 1 and the fact that U is increasing. Hence

uy(x1, Ik) = −

∫ 1

0
U(θ)dΦy(θ|x1) − t

≥ −

∫ 1

0
U(θ)dΦy(θ|x2) − t

= uy(x2, Ik),

which completes the proof. �

The following two lemmas are needed for the main results. The first one shows a sufficient
condition for a cutoff strategy for the speculators to exist in equilibrium, while the second lemma
characterizes the speculators’ equilibrium strategy that minimizes the government’s payoff for a
given public signal y.

Lemma 5. Let the public signal be y, and suppose that Assumption 1 is satisfied. If k solves uy(k, Ik) = 0,
then there is an equilibrium where the aggregate short sales after y is observed are given by Ik.

16
I(θ) = 1, if θ ≤ θk; and I(θ) = 0, if θ > θk.
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Proof: Fix y. Suppose that k solves uy(k, Ik) = 0, and that the aggregate short sales are given by Ik.
If a speculator receives a signal x < k, his payoff from attacking the currency is given by

uy(x, Ik) ≥ uy(k, Ik) = 0,

where the inequality comes from Lemma 4. Hence the payoff from attacking is (weakly) larger
than the payoff from not attacking. Similarly, if x ≥ k, the payoff from attacking the currency is

uy(x, Ik) ≤ uy(k, Ik) = 0,

therefore not attacking yields a (weakly) larger payoff than attacking. Both statements imply that
following a cutoff rule Ik is optimal for the speculator, given that all other speculators are using the
same rule. This means that there exists an equilibrium in which Ik is the aggregate selling strategy.
�

Lemma 6. Suppose that Assumption 1 is satisfied. For a given public signal y,

i. if uy(k, Ik) < 0 for all k ∈ Xy, then, in any equilibrium, π(x, y) = 0 for all x ∈ Xy.

ii. if uy(k′, Ik′) ≥ 0 for some k′ ∈ Xy, then, in the worst equilibrium for the government, speculators use
the cutoff rule Ik after observing y, where k = sup{k′ ∈ Xyn : uyn(k′, Ik′) ≥ 0}.

Proof:

i. Suppose that uy(k, Ik) < 0 for all k ∈ Xy. Let π be any equilibrium strategy, and suppose by
way of contradiction that there is x′ ∈ Xy such that π(x′, y) > 0. If this is true, then the set
{x ∈ Xy : π(x, y) > 0} is non-empty and we can define x̄y as

x̄y = sup{x ∈ Xy : π(x, y) > 0}.

Note that x̄y ∈ Xy because Xy is right-closed. Also note that, if π is an equilibrium strategy,
then for any x̃ ∈ {x ∈ Xy : π(x, y) > 0}, it has to be true that uy(x̃, π) ≥ 0. By the continuity of uy

in the private signal, uy(x̄y, π) ≥ 0. From Lemma 1,

uy(x̄y, Ix̄y) ≥ uy(x̄y, π) ≥ 0

Thus, uy(x̄y, Ix̄y) ≥ 0, which contradicts the assumption that uy(k, Ik) < 0 for all k ∈ Xy.

ii. If u(k, Ik) > 0, by continuity (Lemma 2), it has to be true that k is the right bound of the interval
Xy and, by the decreasing property of uy in x (Lemma 4), Ik is an equilibrium strategy. If
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u(k, Ik) = 0, then we know that Ik is an equilibrium strategy (Lemma 5). Using the same
arguments from part i., assume by way of contradiction that there is an equilibrium with
π(x′, y) > 0 for some x′ > k. Let x̄y = sup{x ∈ Xy : π(x, y) > 0} ∈ Xy. By Lemma 1,
uy(x̄y, Ix̄y) ≥ uy(x̄y, π) ≥ 0, which contradicts the assumption that k is the supremum of the set
{k′ ∈ Xy : uy(k′, Ik′) ≥ 0}.

�

Recall that θ̄ defines the threshold θ at which investors’ payoff from a successful attack is 0.
The following lemma characterizes the worst equilibrium outcome for the government given a
choice of P.

Lemma 7. Suppose that Assumption 1 is satisfied and consider an arbitrary partition P = {mn}
N
n=0. Given

P, the equilibrium that minimizes the government’s payoff involves the following:

i. for all n such that mn ≤ θ̄, speculators always attack the currency if y = yn;

ii. for all n such that mn−1 ≥ θ̄, speculators never attack the currency if y = yn;

iii. for all n such that mn−1 < θ̄ and mn > θ̄,17 speculators never attack if uyn(k, Ik) < 0 for all k ∈ Xyn .
Otherwise, speculators follow Ikn after observing yn, where kn = sup{k ∈ Xyn : uyn(k, Ik) ≥ 0}.

Proof: i. Let n be such that mn ≤ θ̄. If speculators always attack the currency after observing yn, then
the government abandons the peg (because c(1, 1) > v) and the speculators have a positive payoff

(by the definition of θ̄). Hence always attacking after observing yn is an equilibrium strategy for
the speculators, and no other strategy can yield a lower payoff for the government when θ ∈ yn.

ii. Let n be such that mn−1 ≥ θ̄. If a speculator attacks after observing yn, his expected payoff is
strictly negative. Hence there is no equilibrium where speculators attack when θ ∈ yn.

iii. Follows immediately from Lemma 6. �

Lemma 7 provides the intuition as to why there is no loss of generality in considering only
two-interval partitions. If there are several n such that mn ≤ θ̄, then the government could group
all these yn. Likewise, if there are several n such that mn−1 ≥ θ̄, the government can group these
yn. This rules out any partition P with four or more intervals.

Now consider a partition P with three intervals, that is, P = {0,m1,m2, 1}, where m1 < θ̄ < m2.
If the government maintains the peg for all θ ∈ (m1,m2], then the government could have chosen
the partition P′ = {0,m1, 1}. If the government abandons the peg for all θ ∈ (m1,m2], then the
government could have chosen the partition P′ = {0,m2, 1}. If the government abandons the peg
for some but not all θ ∈ (m1,m2], then, by Lemma 7, speculators use a cutoff rule when y = (m1,m2].

17 There is at most one such n.
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This cutoff strategy generates a threshold θ′ ∈ y2, such that the government abandons the peg if
θ ∈ (m1, θ′] and maintains the peg if θ ∈ (θ′,m2]. But if this is the case, then the government could
have chosen the partition P′ = {0, θ′, 1}. We use Lemma 9 (in the appendix B.7) to formalize this
result, which is presented in Theorem 1.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, for any partition P = {mn}
N
n=0 with N > 2,

there exists P′ = {m′n}N
′

n=0 with N′ = 2, such that V(P′) ≥ V(P).

Proof: Given Lemma 7, the only non trivial result left to show is that, for any P = {0,m1,m2, 1}, with
m1 < θ̄ < m2, there is a P′ = {0,m′, 1} such that V(P′) ≥ V(P).

• Case 1: the government maintains the peg for all θ in y2. Consider the alternative partition
P′ = {0,m1, 1}. The government cannot be worse off if θ ≤ m1.

We know from Lemma 7 that u(m1,m2](k, Ik) < 0 for any k ∈ X(m1,m2]. Since m2 > θ̄, we also
know that u(m2,1](k, Ik) < 0 for any k ∈ X(m2,1]. From Lemma 9,

u(m1,1](k, Ik) ≤ u(m1,m2](k, Ik) < 0, for any k ∈ (m1 − ε,m2 + ε],

and
u(m1,1](k, Ik) = u(m2,1](k, Ik) < 0, for any k ∈ (m2 + ε, 1 + ε].

The inequalities imply that u(m1,1](k, Ik) < 0 for k ∈ X(m1,1]. From Lemma 6, no one attacks if
θ > m1. Thus, V(P′) ≥ V(P).

• Case 2: the government abandons the peg for all θ in y2. Consider the partition P′ = {0,m2, 1}.
The government is not worse off if θ ≤ m2. If θ > m2, speculators observe the public signal
(m2, 1], and since m2 > θ̄, no one attacks. Thus, V(P′) ≥ V(P).

• Case 3: the government abandons the peg at some but not all θ in y2. From Lemma 6, speculators
use a cutoff rule Ik2 .

From Lemma 7, speculators follow a cutoff rule Ik2 after observing y2, where k2 = sup{k ∈
Xy2 : uy2(k, Ik) = 0}. Given the speculators’ strategy, there exists θk2 ∈ (m1,m2] such that the
peg is abandoned if and only if θ ≤ θk2 . From Lemma 9, increasing m1 would never increase
the cutoff k, and it would never increase the threshold θk.

This implies that, with the partition P̃′ = {0, θk2 ,m2, 1}, no one attacks if θ ∈ (θk2 ,m2]. From
Case 2, when the partition is P′ = {0, θk2 , 1}, there is no attack if θ ∈ (θk2 ,m2]. By changing
the partition from P to P′, the government no longer has to pay a cost to defend the currency
on (θk2 , θk2 + ε), therefore V(P′) > V(P).
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For the remainder of the paper, we denote the two element partition P = {0,m, 1} by Pm.

4.2 No disclosure is not optimal

This subsection shows that it is not optimal for the government to send the uninformative public
signal, i.e., to set N = 1. The result is obtained by proving that there exist partition choices with
N = 2 that strictly dominate the uninformative partition with N = 1. When N = 2, the government’s
problem is equivalent to a choice of m ∈ [0, 1] such that speculators will learn whether θ ≤ m or
θ > m. Given the choice of m, they observe the public signal y ∈ {yl, yh}, drawn as follows:18

y =

 yl, if θ ∈ [0,m]
yh, if θ ∈ (m, 1]

. (13)

In the model without a public signal, which has the same outcome as the case m = 1, it is known
from Morris and Shin (1998) that the equilibrium is unique. In that equilibrium, speculators follow
a cutoff rule and attack the currency if and only if their private sigal is below x∗, where x∗ solves
u(x∗, Ix∗) = 0. The currency peg is thus abandoned if and only if θ ≤ θ∗, where θ∗ makes the
government indifferent between defending the peg or not.19

The next lemma shows that, for any choice of m < 1, there is always an equilibrium where
government and speculators coordinate on the public signal for at least one realization of y.

Lemma 8. Consider the subgame that follows the choice of m < 1 by the government. If m ≤ θ̄, there
exists an equilibrium where the government abandons the peg when θ ∈ [0,m], and the speculators attack
the currency after observing y = yl. If m ≥ θ, there exists an equilibrium where the government defends
the peg if θ ∈ (m, 1], and there is no attack following the signal yh.

Proof: Let m ≤ θ̄ and suppose that all speculators attack the currency after observing y = yl. Given
the speculators’ aggregate strategy, the government abandons the currency peg if θ ∈ [0,m], and
it is indeed optimal for each speculator to attack if y = yl. Now let m ≥ θ and suppose that
no speculator attacks the currency after observing y = yh. Given the speculators’ strategy, the
government defends the peg if θ ∈ (m, 1], and therefore it is indeed optimal for each speculator
not to attack if y = yh. �

For any choice of m ∈ [θ, θ̄], there exist an equilibrium where speculators follow the public
signal: they coordinate on attacking if y = yl, and they refrain from attacking if y = yh. In this

18 To distinguish the case where the government is restricted to N ≤ 2 from the general case, we change the notation:
we use m instead of m1; yl and yh instead of y1 and y2.

19 That is, θ∗ solves s(θ, Ix∗ ) = a(θ).
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equilibrium, the currency peg is abandoned if θ ≤ m. This result is presented in Corollary 1 below.

Corollary 1. For all m ∈ [θ, θ̄], there exists an equilibrium where the currency peg is abandoned if and
only if θ ∈ [0,m], and speculators attack the currency if and only if θ ∈ [0,m].

The following theorem compares the equilibrium outcomes for a given choice of m with the
unique equilibrium outcome in the absence of a public signal.

Theorem 2. Fix m. If m = θ∗, there is a unique equilibrium, in which speculators follow the public signal.
If m , θ∗, the equilibrium may not be unique. There are bounds x∗ ≥ x∗ and x̄∗ ≤ x∗ such that, in any
equilibrium, π(x, yl) ≥ Ix∗(x) and π(x, yh) ≤ Ix̄∗(x) for all x. The equilibria are as follows:

i. if m < θ∗: speculators always attack the currency and the peg is abandoned if y = yl; moreover, if
m ∈ (x∗ − ε, θ∗), then x̄∗ < x∗;

ii. if m > θ∗: the currency is not attacked and the peg is defended if y = yh; moreover, if m ∈ (θ∗, x∗ + ε),
then x∗ > x∗.

Proof: See Appendix B.8. �

Part i. of Theorem 2 states that, when the government chooses m < θ∗ and the public signal is
y = yh, the set of private signals that induce attack is contained in the set of private signals that
would induce attack in the absence of a public signal. Thus, for any θ ∈ yh, the size of the attack
does not increase. Moreover, if Assumption 1 holds, we use Lemma 7 to conclude that, in the
worst equilibrium for the government, the cutoff used when y = yh is below the cutoff when there
is no public signal. Conversely, part ii. and Assumption 1 imply that, when m > θ∗, speculators
will use a higher cutoff when y = yl. This can be seen in Figure 1, which is constructed from the
numerical example in Appendix A.

If the government chooses m = θ∗, the equilibrium is unique and the currency peg is abandoned
if and only if θ ≤ θ∗, as in the equilibrium of the game without a public signal. However, no
speculator attacks the currency when θ > θ∗, whereas without the public signal some speculators
would still attack the currency for someθ > θ∗, increasing the cost of maintaining the peg. Thus, the
government is strictly better off by the introduction of the public signal. Note that the speculators
are also strictly better off now that all of them attack when the currency peg is abandoned, and no
one attacks when peg is maintained.

Table 1 summarizes the results in Theorem 2.20

20 If m > θ∗, the currency is not attacked when y = yh. For m close enough to θ∗, the government’s payoff can be
higher with the public signal if the increase in the probability of devaluation when y = yl is offsetted by a lower cost of
defending the currency when y = yh.
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Probability of Devaluation Equilibrium payoff

m ≤ x∗ − ε weakly lower weakly higher
x∗ − ε < m ≤ θ∗ strictly lower strictly higher

θ∗ < m < x∗ + ε strictly higher effect is ambiguous
m ≥ x∗ + ε weakly higher weakly lower

Table 1: Given m, the second column compares the equilibrium probability of currency devaluation with
the case without a public signal. The last column compares the government’s possible equilibrium payoffs
with the unique equilibrium payoff in the game without a public signal.

Note that any choice m > θ∗ is strictly dominated by m = θ∗. Compared to the unique
equilibrium with m = θ∗, any equilibrium with m > θ∗ features a strictly higher probability of
devaluation and, for all θ, there is a weakly larger mass of speculators attacking the currency. This
leads to the following corollary.

Corollary 2. The choice of any m > θ∗ is strictly dominated by m = θ∗.

Corollary 2 implies that the choice of m = 1 is strictly dominated by choosing N = 2 and m = θ∗.
Thus sending an uninformative public signal is not optimal for the government.

4.3 Characterization of the optimal signal structure

We are now ready to find the optimal partition for the government. Define M as

M = {m : there is no attack in any equilibrium after yh}.

Note that M , ∅ because θ∗ ∈M. Define m as

m = inf M.

Figure 2 from Appendix A gives the intuition about how the optimal partition should be. Any
choice of m > θ∗ is strictly dominated by m = θ∗, which leads to a unique equilibrium, with no
attacks when θ ∈ (m, 1]. Starting from m = θ∗, as m decreases, the government is strictly better off

as long as the equilibrium is still unique. Decreasing m will increase the range of fundamentals
that lead to no currency attacks. However, there is a discontinuity in the government’s payoff

at m. Decreasing m even further to the region where it leads to multiple equilibria makes the
government strictly worse off. Thus, the government wants decrease m up to the limit where the
equilibrium is still unique, m. This result is formalized in the following theorem.
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Theorem 3. Suppose that Assumption 1 is satisfied. For every partition P, V(P) ≤ V, where

V = lim
m↓m

V(Pm).

Then

i. if m ∈ M, the government’s equilibrium payoff is V. In equilibrium, when θ > m, there are no attacks
and the peg is maintained; and when θ ≤ m, every speculator attacks the currency and the peg is
abandoned. The government can achieve the payoff V with the two-interval partition Pm = {0,m, 1}.

ii. if m <M, no equilibrium exists. However, the government can achieve a payoff arbitrarily close to V.

Proof: See Appendix B.10. �

The optimal policy involves setting m as low as possible, up to the limit where not attacking is
the unique equilibrium action for speculators on (m, 1]. Note that for any m close enough to m21

any disclosure policy with yN = (m, 1] yields the same payoff for the government, regardless of
the signal structure when θ ∈ [0,m]. It is still true that when θ > m, there is no attack and the peg
is maintained; and when θ ≤ m, every speculator attacks the currency and the peg is abandoned.
Thus the government could be arbitrarily precise when the state of fundamentals is very bad, but
when the state is “not too bad” the government needs to be vague. This vagueness is used by
the government to make the speculators uncertain about whether the state is intermediate (where
a coordinated attack is profitable) or good (when attacking is never profitable), preventing them
from attacking.

4.4 Vagueness

We conclude this section by showing that, even if the government could fully disclose the state, it
would not be optimal to do so.

In Lemma 12 (Appendix B.9), we show that that m < θ̄. Since m < θ̄, there exists m ∈
M ∩ (m, θ̄) such that the partition Pm = {0,m, 1} is strictly preferred to full disclosure. If the state is
fully revealed, in the worst equilibrium for the government, speculators coordinate on attacking
whenever θ < θ̄. With the partition Pm, the government eliminates currency attacks between
(m, θ̄). This leads to Proposition 1.

Proposition 1. Full disclosure of the state is not an optimal policy for the government.
21 That is, m ∈ (m, θ̄).

21



5 No commitment

In this section, we drop the assumption that the government can commit to a disclosure policy.
Here the government chooses the public signal after observing the true state θ. For simplicity, the
government’s strategy in the last stage of the game is taken as given.

The game between government and speculators becomes a signaling game, where θ can be
interpreted as the government’s type. A strategy for the government is a function y : Θ → Θ2

such that when the state is θ, the public signal is y(θ) = [y(θ), y(θ)] and speculators learn that
θ ∈ [y, y].22 As before, we require that the government must make truthful announcements,
that is, y(θ) ≤ θ ≤ y(θ) for all θ. Note that, if the government is not restricted to truthful
announcements, there exists an equilibrium in which the speculators ignore the public signal. In
this case, the equilibrium outcome is the same as the one in the game without a public signal.
(And, possibly, there are even worse equilibria.)

A strategy for speculators is a function that gives, for every private signal x and every public
signal, the corresponding action to be taken (attack or not). As before, let π(x, y) be the aggregate
selling strategy. The equilibrium concept in this section is the Perfect Bayesian Equilibrium (PBE)
with symmetric strategies for the speculators.

Definition. The strategy profile (y, π) is a PBE if

1. for all θ ∈ [0, 1], y(θ) maximizes the government’s payoff given π;

2. for each possible signal y, there exist beliefs µx,y about θ such that π(x, y) maximizes the
speculator’s expected payoff given µx,y, the aggregate strategy π, and signals x and y;

3. for each signal y such that
∫
{θ̃:y(θ̃)=y} 1dθ̃ > 0,

µx,y(θ) =


1
σ g( x−θ

σ )∫
{θ̃:y(θ̃)=y} 1dθ̃

, if y(θ) = y

0, otherwise
. (14)

4. for each signal y such that
∫
{θ̃:y(θ̃)=y} 1dθ̃ = 0

support(µx,y(θ)) ⊂ [x − ε, x + ε] ∩ y (15)

22 The restriction to closed intervals is made only for simplicity.
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Consider the following profile of (y, π, µ):

y(θ) ={θ}, ∀θ,

µx,y(θ) =

 1, if θ = max{x − ε, y}

0, otherwise

π(x, y) =

 1, if max{x − ε, y} ≤ θ̄

0, otherwise
.

In equilibrium, the public signal reveals the true state of the fundamentals, and speculators
attack if and only if θ < θ̄. Since θ∗ < θ̄, the government is ex ante strictly worse off compared
to the unique equilibrium of the game without a public signal. Furthermore, for all types θ the
equilibrium payoff is weakly smaller.

To see that (y, π) is in fact an equilibrium with beliefs µ, first consider speculator i’s problem. If
y = y = θ, given that speculators follow π, it is only profitable for i to attack if y < θ̄, which means
that π is optimal on path. Now consider off path signals where y < y. When y ≥ θ̄, the speculators
know that θ ≥ θ̄ and attacking is indeed not profitable. If y < θ̄ and speculator i receives a private
signal xi ≤ θ̄+ ε, he believes that θ = max{x− ε, y} < θ̄. The speculator also believes that everyone
else received a private signal below θ̄ + ε, and if aggregate sales are given by π, the speculator
believes that other speculators will attack. Hence, attacking is profitable given µ, π, xi, and y.
Finally, if y < θ̄ and xi > θ̄ + ε, the speculator knows that θ ≥ θ̄, and it is not profitable to attack.
Thus, following π is optimal when y < θ̄ and xi > θ̄ + ε.

Now we show that strategy y is optimal for the government given π and µ. Suppose that the
government has a profitable deviation from y for some type θ′ ∈ [0, 1].23 Since there is no attack
for θ ≥ θ̄, there can only be a profitable deviation if θ′ < θ̄. According to µ, speculators believe
that θ < θ̄ and attack. Thus, there is no profitable deviation from y.

The PBE above passes the intuitive criterion of Cho and Kreps (1987). Note that only types
in [0, θ̄) could benefit from a deviation. However, if the speculators know that θ < θ̄, they can
coordinate on attacking the currency peg, thus a deviation would not be profitable.

This example shows that commitment is essential for the government to benefit from a public
signal. When only truthful announcements are allowed, the speculators can exploit the fact that
the government wants to reveal its type for θ ≥ θ̄. In this case, speculators are able to coordinate
on attacking the currency peg whenever θ < θ̄. If the government is allowed to lie, the speculators
can simply ignore the public signal. The results are summarized in the following proposition.

Proposition 2. Suppose that the government only cares about its lowest equilibrium payoff. If the govern-

23A deviation here is a signal signal y = [y, y], with y < y and θ′ ∈ [y, y].
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ment cannot commit to a disclosure policy, then it does not benefit from sending a public signal. Furthermore,
when only truthful announcements are allowed, the government is strictly worse off with the introduction
of a public signal.

6 Conclusion

This paper analyzes a model of currency attacks in which the government sends a credible pub-
lic signal about the fundamentals of the economy. The government can partition the space of
fundamentals and reveal in which interval the unknown state lies. The introduction of a public
signal generates partial common knowledge about the fundamentals and it can lead to multiple
equilibria. We find informative policies that strictly dominate no disclosure even if multiplicity
arises. We also derive the optimal policy by assuming that the government only cares about the
worst equilibrium outcome of each policy.

We find that sending very precise public signals can be harmful to the government. In fact,
for any signal structure, there exists a two-signal policy that is preferred by the government. The
optimal disclosure policy thus partitions the space of fundamentals into two intervals. In the lower
interval, speculators coordinate on attacking the currency and the peg is abandoned; in the higher
interval, no speculator attacks and the peg is maintained. The government is deliberately vague
in order to induce speculators not to attack the currency in the higher interval. After the public
signal reveals that the state is in the higher interval, speculators are not sure whether a coordinated
attack is profitable or not, thus they refrain from attacking. If the government had chosen a finer
partition, with more precise signals, speculators could have been able to coordinate on attacking
for a wider range of fundamentals, making a devaluation more likely.

When the government cannot commit to a disclosure policy, we find equilibria in which the
government is made worse off by sending a public signal. Thus commitment is key for the
government to benefit from disclosing information.
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Appendices

A A numerical example

This section provides a numerical example for the baseline model with commitment. The state of
fundamentals is uniformly distributed in [0, 1]:

θ ∼ U(0, 1).

The exchange rate in the absence of government intervention is

f (θ) = θ.

If the government maintains the peg, the exchange rate is

e∗ = 1.

The cost of short selling is
t = 0.25.

The government’s value of defending the currency is

v = 0.75.

The cost of defending the currency is

c(α, θ) = 1 − θ + α,

where α is the measure of speculators that attack the currency. 24

For a given θ, the government decides to abandon the peg if the fraction α of speculators
attacking the currency is at least a(θ), where

a(θ) =

 0, if θ ∈ [0, 0.25]
θ − 0.25, if θ ∈ (0.25, 1]

.

24 Note that c(0, 0) = 1 > v and c(1, 1) = 1 > v, but c(0.1, 0.8) = 1 + 0.1 − 0.8 = 0.3 < v, so there are regions where the
government decides to maintain the peg.
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Define θ as the solution to c(0, θ) = v, and define θ as the solution to e∗ − f (θ) = t. We have

θ = 0.25, θ = 0.75.

Speculators receive a signal x = θ + ε̃, where

ε̃ ∼ U(−ε, ε).

The precision of the signal is affected by the parameter ε:

ε = 0.1.

If a speculator receives the signal x ∈ [−ε, 1 + ε], he will believe that θ is uniformly distributed in
[x − ε, x + ε] ∩ [0, 1].

Let ψ(k) solve
1
2
−
ψ(k)
2ε

= k + ψ(k) − 0.25

or
ψ(k)

(
1 +

1
2ε

)
=

3
4
− k

ψ(k) =
(3
4
− k

) (
1 +

1
.2

)−1
=

(3
4
− k

)
(6)−1 =

1
8
−

k
6
.

The speculators payoff from following Ik when there is no public signal is given by25

u(k, Ik) =
1
2ε

∫ k+ψ(k)

k−ε
e∗ − f (θ)dθ − t = 5

∫ k+ψ(k)

k−ε
1 − θdθ − 0.25.

= 5
[
θ −

θ2

2

]∣∣∣∣∣∣k+ψ(k)

k−ε
− 0.25

=0.764k2
− 1.854k + 0.861.

Proceeding numerically,
u(x∗, Ix∗) = 0 ⇐⇒ x∗=̃0.626,

which implies
θ∗=̃0.64.

A speculator will attack the currency x < x∗, and will not attack if x > x∗. Given this rule, the

25 For k ∈ (0.1, 0.9).
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government will abandon the peg when θ < θ∗, and maintain the peg if θ > θ∗.
For a given θ, the fraction of speculators attacking the currency is

P(θ + ε̃ < x∗) = P(ε̃ < x∗ − θ) =


0, if θ ≥ x∗ + ε

ε+x∗−θ
2ε , if θ ∈ (x∗ − ε, x∗ + ε)
1, if θ ≤ x∗ − ε

The expected payoff to the government is

P(θ < θ∗) · 0 + P(θ > θ∗)
∫ 1

θ∗
v − (1 − θ + α(θ)) dθ.

A.1 Public signal

Suppose that the government can commit to a public signal. The government chooses m ∈ [0, 1]
and emits a signal

y(θ) =

 yl, if θ ≤ m
yh, if θ > m

.

Given the parameters above, m = x∗ − ε = 0.526. Figure 1 depicts the mass of speculators who
attack the currency for different choices of m, compared to the case where there is no public signal.
It also shows the critical mass of attackers needed for the government to abandon the peg, a(θ).

Suppose that, in the case of multiplicity given a choice of m, the government only cares about
the lowest equilibrium payoff. In this case, the government chooses a partition P to maximize V(P).
From Theorem 3, the government wants to set m as close as possible to m. Since m = x∗ − ε, from
Theorem 2, for m = m, there exists an equilibrium where speculators follow Ix∗ when y = yh. Hence,
the choice m = m leads to multiple equilibria, and it is dominated by any m ∈ (m, θ∗], which lead to
a unique equilibrium. Theorem 3 thus implies that there is no equilibrium for this game. However,
the government can still achieve a payoff arbitrarily close to V̄ = supP V(P) = limm↓m V(Pm). Figure
2 depicts the government’s payoff V(Pm) for all possible choices of m ∈ [0, 1].
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Figure 1: Mass of speculators attacking the currency for different choices of m, compared to the
case with no public signal.
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Figure 2: Government’s payoff V(Pm) given the choice of m.

B Proofs

B.1 Posteriors

For any pair of continuous random variables A and B, let gAB denote their joint pdf. Let gA and
gB denote the marginal pdfs, and let gA|B denote the pdf of A conditional on B. Finally, denote the
cdfs by GA and GB. Following the main text, we denote the pdf of the idiosyncratic noise by g, and
its cdf by G, ommiting the subscripts.

B.1.1 No public signal

For x ∈ (−ε, 1 + ε):

gθ|x(θ|x) =
gθx(θ, x)

gx(x)
=

1
σ g( x−θ

σ )gθ(θ)∫ +∞

−∞

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃

=

1
σ g

(
x−θ
σ

)
G

(
x
σ

)
− G

(
x−1
σ

) , if θ is uniform on [0, 1].

For x ∈ {−ε, 1 + ε}: P(θ = 0|x = −ε) = 1; P(θ = 1|x = 1 + ε) = 1.
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B.1.2 Public signal

Posterior of θ ∈ yn conditional on the public signal y = yn:

gθ(θ|yn) =
gθ(θ)

P(mn−1 ≤ θ ≤ mn)
=

gθ(θ)
Gθ(mn) − Gθ(mn−1)

.

Distribution of xi conditional on y = yn:

P(xi ≤ x|yn) =

∫ x
−∞

∫ mn

mn−1
gθx(θ, x̃)dθdx̃

Gθ(mn) − Gθ(mn−1)
=

∫ x
−∞

∫ mn

mn−1

1
σ g( x̃−θ

σ )gθ(θ)dθdx̃

Gθ(mn) − Gθ(mn−1)

⇒ gx(x|yn) =

∫ mn

mn−1

1
σ g( x−θ

σ )gθ(θ)dθ

Gθ(mn) − Gθ(mn−1)
.

Hence, the posterior of θ conditional on (x, yn) is

gθ|x(θ|x; yn) =
gθx(θ, x|yn)

gx(x|yn)
=

gx|θ(x|θ; yn)gθ(θ|yn)
gx(x|yn)

=
1
σ g( x−θ

σ )[gθ(θ)/(Gθ(mn) − Gθ(mn−1))][∫ m1

mn−1

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃/(Gθ(mn) − Gθ(mn−1))
]

=
1
σ g( x−θ

σ )gθ(θ)∫ mn

mn−1

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃

=
1
σ g( x−θ

σ )

G
(

x−mn−1
σ

)
− G

(
x−mn
σ

) , if θ is uniform on [0, 1].

B.1.3 Comparison

In the case of a two-element partition, when y = yl (θ ≤ m):

gθ|x(θ|x; yl) = gθ|x(θ|x)γyl(x),

where γyl(x) = [
∫ +∞

−∞

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃/
∫ m
−∞

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃] ≥ 1. And if y = yh (θ > m):

gθ|x(θ|x; yh) = gθ|x(θ|x)γyh(x),

where γyh(x) = [
∫ +∞

−∞

1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃/
∫ +∞

m
1
σ g( x−θ̃

σ )gθ(θ̃)dθ̃] ≥ 1.
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B.2 Proof of Lemma 1

Lemma 1. For a given public signal y, if π(x, y) ≥ π′(x, y) for all x, then uy(x, π) ≥ uy(x, π′) for all x.

Proof:

π(x, y) ≥ π′(y, x)∀x⇒ s(θ, π) ≥ s(θ, π′)⇒ A(π) ∩ y ⊇ A(π′) ∩ y⇒ uy(x, π) ≥ uy(x, π′).

�

B.3 Derivation of ψ

For k ∈ [−ε, 1 + ε], define θk as
θk = sup{θ : s(θ, Ik) ≥ a(θ)}.

θk is the largest value of θ such that the government finds it optimal to abandon the peg when
speculators’ aggregate short sales are given by Ik. Since s(·, Ik) is decreasing and a(·) is increasing,
the government abandons the peg if and only if θ ≤ θk.

If k ≤ θ − ε,

s(k + ε, Ik) = G
(
−ε
σ

)
= 0,

which implies that θk = θ. If k ∈ (θ − ε, 1 + ε],

s(k − ε, Ik) = G
(
ε
σ

)
= 1 > a(k − ε),

therefore θk is well-defined.26 Note that θk is continuous in k.
Define k̄ as the unique value of k that solves

G
(

k − 1
σ

)
= a(1).

Hence k̄ = 1 + σG−1(a(1)). Since a(1) ∈ (0, 1), k̄ ∈ (1 − ε, 1 + ε).
For k ∈ (θ − ε, k̄], θk is then the unique value of θ that solves

G
(

k − θ
σ

)
= a(θ). (16)

If θ < θ, the LHS of (16) is strictly positive, while the RHS equals 0, thus θk > θ. Note that the
LHS of (16) is strictly decreasing in θ, for θ ∈ (k − ε, k + ε), and constant otherwise. For θ > θ,

26 c(1, 1) > v implies that a(1) < 1, thus a(θ) < 1 for all θ.
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a(θ) ∈ (0, 1), and it is strictly increasing. This implies that θk ∈ (k − ε, k + ε), and that θk is strictly
increasing in k. Finally, if k > k̄, θk = 1.

Define the function ψ as ψ(k) = min{θk − k, ε}, for k ∈ [−ε, 1 + ε]. Thus

ψ(k) =


ε, if k ≤ θ − ε

−σG−1(a(θk)) ∈ (−ε, ε), if k ∈ (θ − ε, k̄]
1 − k ∈ [−ε, ε), if k > k̄

.

From the continuity of θk, it follows that ψ(k) is continuous. Since θk is strictly increasing for
k ∈ (θ − ε, k̄], then ψ(k) is strictly decreasing for k > θ − ε.

B.4 Proof of Lemma 2

Lemma 2. For a given public signal y, uy(k, Ik) is continuous in k, for all possible private signals k ∈ Xy.

Proof: Using 11, the payoff function when y = yn is given by

uyn(k, Ik) =

∫ byn

ayn

[e∗ − f (θ)]φyn(θ|k)dθ − t, (17)

where ayn = max{k − ε,mn−1}, and byn = max{min{k + ψ(k),mn},mn−1}. Since φyn(·|k) and the limits
of integration are continuous in k (because ψ(·) is continuous), uyn(k, Ik) is continuous in k. �

B.5 Proof of Lemma 3

Lemma 3. For k ∈ (ε, 1 − ε), the payoff function u(k, Ik) is strictly decreasing in k.

Proof: For k ∈ (ε, 1 − ε)

u(k, Ik) =

∫ k+ψ(k)

k−ε
[e∗ − f (θ)]

1
σ g

(
k−θ
σ

)
G

(
k
σ

)
− G

(
k−1
σ

)dθ − t.

Differentiating u(k, Ik) with respect to k and using the fact that G
(

k−1
σ

)
= g

(
k−1
σ

)
= 0, for k < 1 − ε,

yield

d
dk

u(k, Ik)

= [e∗ − f (k + ψ(k))](1 + ψ′(k))
1
σ g

(
−ψ(k)
σ

)
G

(
k
σ

) − [e∗ − f (k − ε)]
1
σ g

(
ε
σ

)
G

(
k
σ

)
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+

∫ k+ψ(k)

k−ε
[e∗ − f (θ)]

1
σ2 g′

(
k−θ
σ

)
G

(
k
σ

) dθ −
∫ k+ψ(k)

k−ε
[e∗ − f (θ)]

1
σ2

g
(

k−θ
σ

)
g
(

k
σ

)
G

(
k
σ

)2 dθ

≤ [e∗ − f (k + ψ(k))]
1
σ g

(
−ψ(k)
σ

)
G

(
k
σ

) − [e∗ − f (k − ε)]
1
σ g

(
ε
σ

)
G

(
k
σ

) +

∫ k+ψ(k)

k−ε
[e∗ − f (θ)]

1
σ2 g′

(
k−θ
σ

)
G

(
k
σ

) dθ,

where the inequality comes from ψ′(k) ≤ 0, and from the fact that the last term on the RHS of the
equality is positive. Define ε̃ as

ε̃ = inf
{
ε̃ ∈

[
−ψ(k)
σ

,
ε
σ

]
: g′(ε̂) ≤ 0 ∀ε̂ > ε̃

}
.

From (1), ε̃ is well defined. Furthermore, g′(ε̃) ≥ 0, for ε̃ ≤ ε̃, and g′(ε̃) ≤ 0, for ε̃ > ε̃. Define θ̃ as

θ̃ = k − σε̃.

Hence θ̃ ∈ [k − ε, k + ψ(k)]. We then have

G
(

k
σ

) [
d
dk

u(k, Ik)
]

≤ [e∗ − f (k + ψ(k))]
1
σ

g
(
−ψ(k)
σ

)
− [e∗ − f (k − ε)]

1
σ

g
(
ε
σ

)
+

∫ min{θ̃,k+ψ(k)}

k−ε
[e∗ − f (θ)]

1
σ2 g′

(
k − θ
σ

)
dθ +

∫ k+ψ(k)

min{θ̃,k+ψ(k)}
[e∗ − f (θ)]

1
σ2 g′

(
k − θ
σ

)
dθ

≤ [e∗ − f (k + ψ(k))]
1
σ

g
(
−ψ(k)
σ

)
− [e∗ − f (k − ε)]

1
σ

g
(
ε
σ

)
+ [e∗ − f (min{θ̃, k + ψ(k)})]

∫ min{θ̃,k+ψ(k)}

k−ε

1
σ2 g′

(
k − θ
σ

)
dθ

+ [e∗ − f (min{θ̃, k + ψ(k)})]
∫ k+ψ(k)

min{θ̃,k+ψ(k)}

1
σ2 g′

(
k − θ
σ

)
dθ

= [e∗ − f (k + ψ(k))]
1
σ

g
(
−ψ(k)
σ

)
− [e∗ − f (k − ε)]

1
σ

g
(
ε
σ

)
+ [e∗ − f (min{θ̃, k + ψ(k)})]

[
1
σ

g
(
ε
σ

)
−

1
σ

g
(

k −min{θ̃, k + ψ(k)}
σ

)]
+ [e∗ − f (min{θ̃, k + ψ(k)})]

[
1
σ

g
(

k −min{θ̃, k + ψ(k)}
σ

)
−

1
σ

g
(
−ψ(k)
σ

)]
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=
1
σ

{
g
(
−ψ(k)
σ

) [
f (min{θ̃, k + ψ(k)}) − f (k + ψ(k))})

]
+ g

(
ε
σ

) [
f (k − ε) − f (min{θ̃, k + ψ(k)})

]}
,

< 0,

which implies that u(k, Ik) is strictly increasing in k. �

B.6 Proof that Assumption 1 holds for concave or normal distributions

Here we show two assumptions on the distribution of the idiosyncratic noise that guarantee that
Assumption 1 is satisfied. The first assumption is that the probability density function g is concave
on [−ε̄, ε̄]. The second assumption is that the noise follows a truncated normal distribution on
[−ε̄, ε̄].

Without loss of generality, assume that σ = 1. In this case, ε = ε̄. Let the public signal be y and
consider two private signals x1 and x2, with x1 < x2. There are five possible cases:

1. θ ≤ x1 − ε: Φy(θ|x1) = Φy(θ|x2) = 0;

2. θ ≥ x2 + ε: Φy(θ|x1) = Φy(θ|x2) = 1;

3. θ ∈ (x1 − ε, x2 − ε): Φy(θ|x1) > Φy(θ|x2) = 0;

4. θ ∈ (x1 + ε, x2 + ε): 1 = Φy(θ|x1) > Φy(θ|x2);

5. θ ∈ [x2 − ε, x1 + ε].

To prove that Assumption 1 is satisfied, it is left to show that Φy(θ|x2) ≤ Φy(θ|x1) for all θ ∈
[x2 − ε, x1 + ε]. Note that, in this case, x2 < x1 + 2ε.

B.6.1 Concave distribution

Let the probability density function of the idiosyncratic noise, g, be concave on [−ε, ε]. The density
of θ conditional on a public signal y = yn and a private signal x is given by

φy(θ|x) =
g(x − θ)

G(x −mn−1) − G(x −mn)
.

Consider two private signals x1 and x2, with x1 < x2 and x2 < x1 + 2ε, and define δ = x2 − x1 < 2ε.
For θ ∈ [x2 − ε, x1 + ε]

φy(θ|x1)
φy(θ|x2)

=
g(x1 − θ)

g(x1 − θ + δ)
c̄,

where c̄ = [G(x2 −mn−1) − G(x2 −mn)]/[G(x1 −mn−1) − G(x1 −mn)].
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To prove that Assumption 1 holds for θ ∈ [x2 − ε, x1 + ε], two results are needed.
Claim 1. If g is concave on [−ε, ε], then φy(·|x1) crosses φy(·|x1) at most once for θ ∈ [x2 − ε, x1 + ε].

Proof: Suppose that there exists θ1 and θ2 in [x2 − ε, x1 + ε], with θ1 < θ2, such that

φy(θ1|x1)
φyn(θ1|x2)

=
φy(θ2|x1)
φy(θ2|x2)

= 1.

Define εH = x1 − θ1 and εL = x1 − θ2. Hence

c̄g(εH) = g(εH + δ),

c̄g(εL) = g(εL + δ).

There are three cases:

1. c̄ > 1:

g(εH) < g(εH + δ),

g(εL) < g(εL + δ).

It must be true that g(εH) > g(εL), otherwise g would decrease or be constant somewhere
between εL and εH, and then increase somewhere between εH and εH + δ, a contradiction
with the concavity of g. The slope of the line segment that connects points (εL, g(εL)) and
(εL + δ, g(εL + δ)) is given by

SL = (c̄ − 1)
g(εL)
δ

,

and the slope of the line segment that connects (εH, g(εH)) and (εH + δ, g(εH + δ)) is given by

SH = (c̄ − 1)
g(εH)
δ

.

Since g(εH) > g(εL), it follows that SH > SL, a contradiction with the concavity of g.

2. c̄ < 1:

g(εH) > g(εH + δ),

g(εL) > g(εL + δ).

It must be true that g(εL) > g(εH), otherwise g(εL) ≤ g(εH) and g(εL + δ) = c̄g(εL) ≤ c̄g(εH) =

g(εH + δ). In this case, g would decrease between εL and εL + δ, and then increase or be
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constant somewhere between εL + δ and εH + δ, a contradiction with the concavity of g. The
slope of the line segment that connects points (εL, g(εL)) and (εL + δ, g(εL + δ)) is given by

SL = (c̄ − 1)
g(εL)
δ

,

and the slope of the line segment that connects (εH, g(εH)) and (εH + δ, g(εH + δ)) is given by

SH = (c̄ − 1)
g(εH)
δ

.

Since g(εL) > g(εH) and c̄ < 1, it follows that SH > SL, a contradiction with the concavity of g.

3. c = 1:

g(εH) = g(εH + δ),

g(εL) = g(εL + δ),

thus it must be the case that g(εH) = g(εL) and g is flat between εL and εH + δ.

�

Claim 2. If g is concave on [−ε, ε], then φy(·|x2) can only cross φy(·|x1) from below for θ ∈ [x2−ε, x1 +ε].

Proof: Suppose that φy(θ|x2) crosses φy(θ|x1) from above in [x2 − ε, x1 + ε]. Then, there exist θ1 and
θ2 in [x2 − ε, x1 + ε], with θ1 < θ2, such that:

φy(θ1|x2) = φy(θ1|x1),

φy(θ2|x2) < φy(θ2|x1).

Define εH = x1 − θ1 and εL = x1 − θ2. The inequalities above imply

c̄g(εH) = g(εH + δ),

c̄g(εL) > g(εL + δ).

Denote the slope of the line segment that connects points (εI, g(εI)) and (εI + δ, g(εI + δ)) by SI, for
I ∈ {L,H}. There are three cases:

1. c̄ = 1: then SL < 0 and SH, 0, a contradiction with the concavity of g.

2. c̄ > 1: then g(εH) < g(εH + δ). It follows that g(εL) ≤ g(εH), otherwise g would decrease
between εL and εH, and then increase between εH and εH + δ, a contradiction with the
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concavity of g. Thus

SL < (c̄ − 1)
g(εL)
δ
≤ (c̄ − 1)

g(εH)
δ

= SH,

a contradiction with the concavity of g.

3. c̄ < 1: then g(εL) > g(εL + δ). It follows that g(εL) > g(εH), otherwise

g(εH + δ) = c̄g(εH) ≥ c̄g(εL) > g(εL + δ),

therefore g would decrease between εL and εL + δ, and then increase between εL + δ and
εH + δ, a contradiction with the concavity of g. Thus

SL < −(1 − c̄)
g(εL)
δ
≤ −(1 − c̄)

g(εH)
δ

= SH,

a contradiction with the concavity of g.

�

Claims 1 and 2 imply that, if there exists θ ∈ [x2 − ε, x1 + ε], such that φy(θ|x2) > φy(θ|x1),
then φy(θ̃|x2) ≥ φy(θ̃|x1) for all θ̃ > θ. This implies that, if there exists θ ∈ [x2 − ε, x1 + ε], such
that Φy(θ|x2) > Φy(θ|x1), then Φy(θ̃|x2) > Φy(θ̃|x1), for all θ̃ > θ. In particular, Φy(x1 + ε|x2) >
Φy(x1 + ε|x1) = 1, a contradiction. Thus Φy(θ|x2) ≤ Φy(θ|x1), for all θ ∈ [x2 − ε, x1 + ε], and
Assumption 1 holds.

B.6.2 Normal distribution

Suppose that the idiosyncratic noise follows a truncated normal distribution on [−ε, ε], with the
originating distribution having mean µ and variance ν2. Let the public signal be y and consider
two private signals x1 and x2, with x1 < x2 and x2 < x1 + 2ε. To prove that Φy(θ|x2) ≤ Φy(θ|x1) for
θ ∈ [x2 − ε, x1 + ε], it suffices to show that the following monotone likelihood ratio holds

φy(θ2|x2)
φy(θ1|x2)

≥
φy(θ2|x1)
φy(θ1|x1)

, ∀θ1 < θ2.

Let θ1, θ2 ∈ [x2 − ε, x1 + ε]. Then

φy(θ2|x2)
φy(θ1|x2)

≥
φy(θ2|x1)
φy(θ1|x1)
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⇔

exp
(
−

(x2−θ2−µ)2

2ν2

)
exp

(
−(x2−θ1−µ)2

2ν2

) ≥ exp
(
−

(x1−θ2−µ)2

2ν2

)
exp

(
−

(x1−θ1−µ)2

2ν2

)
⇔ exp

(
−(x2 − θ2 − µ)2 + (x2 − θ1 − µ)2

2ν2

)
≥ exp

(
−(x1 − θ2 − µ)2 + (x1 − θ1 − µ)2

2ν2

)
⇔ −(x2 − θ2 − µ)2 + (x2 − θ1 − µ)2

≥ −(x1 − θ2 − µ)2 + (x1 − θ1 − µ)2

⇔ −(x2 − θ2)2 + 2µ(θ1 − θ2) + (x2 − θ1)2
≥ −(x1 − θ2)2 + 2µ(θ1 − θ2) + (x1 − θ1)2

⇔ −x2
2 + 2x2θ2 − θ

2
2 + x2

2 − 2x2θ1 + θ2
1 ≥ −x2

1 + 2x1θ2 − θ
2
2 + x2

1 − 2x1θ1 + θ2
1

⇔ 2x2(θ2 − θ1) ≥ 2x1(θ2 − θ1)

⇔ θ1 ≤ θ2,

which completes the proof.

B.7 Lemma 9

Lemma 9. Suppose that y = yn and that speculators follow Ik, for k ∈ Xyn . When a speculator receives the
private signal x = k, the payoff from attacking, uyn(k, Ik), is continuous in both mn−1 and mn. The payoff
uyn(k, Ik) is decreasing in mn−1 for k < mn−1 + ε, and constant otherwise. It is also decreasing in mn for
k > mn − ε, and constant otherwise.

Proof: Without loss in generality, let y = y2. Then,

uy2(k, Ik) =

∫ max{min{k+ψ(k),m2},m1}

max{k−ε,m1}

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ − t,

where

D(k,m1,m2) = G
(

k −m1

σ

)
− G

(
k −m2

σ

)
.

The limits of integration are continuous in mn−1 and mn, and, since G is a continuous function, D
is continuous in all of its arguments. Hence uy2(k, Ik) is continuous in mn−1 and mn.

If m1 − ψ(k) ≥ k, then uy2(k, Ik) = −t, which is constant in m1. If k > m1 + ε then the limits of
integration above are constant in m1 and so is D(k,m1,m2),27 therefore uy2(k, Ik) is constant in m1.
Now consider the case m1 − ψ(k) < k ≤ m1 + ε:

uy2(k, Ik) =

∫ min{k+ψ(k),m2}

m1

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ − t,

27For all m1 such that m1 < k − ε: k−m1
σ > ε̄⇒ G( k−m1

σ ) = 1
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then

∂
∂m1

uy2(k, Ik) = −
[
e∗ − f (m1)

] 1
σ g

(
k−m1
σ

)
D(k,m1,m2)

+

 1
σ g

(
k−m1
σ

)
D(k,m1,m2)


∫ min{k+ψ(k),m2}

m1

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ

< −
[
e∗ − f (m1)

] 1
σ g

(
k−m1
σ

)
D(k,m1,m2)

1 −
∫ min{k+ψ(k),m2}

m1

1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ


= −

[
e∗ − f (m1)

] 1
σ g

(
k−m1
σ

)
D(k,m1,m2)

1 − G
(

k−m1
σ

)
− G

( k−min{k+ψ(k),m2}

σ

)
D(k,m1,m2)


≤ 0,

which completes the proof for m1.
Let k ≤ m2 − ε. Then

uy2(k, Ik) =

∫ max{k+ψ(k),m1}

max{k−ε,m1}

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ − t,

Since the limits of integration above are constant in m2, and so is D(k,m1,m2),28 then uy2(k, Ik) is
constant in m2. The same is true for k ≤ m2 − ψ(k).

Now suppose m2 < k + ψ(k). The payoff becomes

uy2(k, Ik) =

∫ m2

max{k−ε,m1}

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ − t,

then

∂
∂m2

uy2(k, Ik) =
[
e∗ − f (m2)

] 1
σ g

(
k−m2
σ

)
D(k,m1,m2)

−

 1
σ g

(
k−m2
σ

)
D(k,m1,m2)


∫ m2

max{m1,k−ε}

[
e∗ − f (θ)

] 1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ

<
[
e∗ − f (m2)

] 1
σ g

(
k−m2
σ

)
D(k,m1,m2)

1 −
∫ m2

max{m1,k−ε}

1
σ g

(
k−θ
σ

)
D(k,m1,m2)

dθ


28For all m2 such that m2 ≥ k + ε: k−m2

σ ≤ −ε̄⇒ G( k−m2
σ ) = 0
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=
[
e∗ − f (m2)

] 1
σ g

(
k−m2
σ

)
D(k,m1,m2)

1 − G
(

k−max{m1,k−ε}
σ

)
− G

(
k−m2
σ

)
D(k,m1,m2)


= 0.

The last inequality comes from the fact that

G
(

k −max{m1, k − ε}
σ

)
= min

{
G

(
k −m1

σ

)
,G

(
ε
σ

)}
= min

{
G

(
k −m1

σ

)
, 1

}
= G

(
k −m1

σ

)
⇒ G

(
k −max{m1, k − ε}

σ

)
− G

(
k − 2
σ

)
= D(k,m1,m2).

�

B.8 Proof of Theorem 2

First, we need to compare uy(k, Ik) and u(k, Ik). Note that for k ≤ m− ε, from (12) and (17), the limits
of integration are29

ayl = a , byl = b,

and the density functions are the same, which implies that uyl(k, Ik) equals the payoff function
u(k, Ik). For k > m + ε, from (12) and (17),

ayh = a , byh = b,

and the density functions are the same, which implies that uyh(k, Ik) equals the payoff function
u(k, Ik). From Lemma 2, the continuity of uyh(k, Ik) in k implies that uyh(k, Ik) = u(k, Ik) for k = m + ε.
The comparison between uy(k, Ik) and u(k, Ik) when k ∈ (m−ε,m+ε) is analyzed in the two following
lemmas.

Lemma 10. If the public signal is y = yl, then uyl(k, Ik) > u(k, Ik) for all k ∈ (m − ε,m + ε).

Proof:

uyl(k, Ik) − u(k, Ik)

29 Here yl = y1, yh = y2, and m = m1.
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=

∫ min{k+ψ(k),m}

max{k−ε,0}
[e∗ − f (θ)]φyl(θ|k)dθ −

∫ k+ψ(k)

max{k−ε,0}
[e∗ − f (θ)]

1
σ g

(
k−θ
σ

)
G

(
k
σ

)
− G

(
k−1
σ

)dθ

=

 1

G
(

k
σ

)
− G

(
k−m
σ

) − 1

G
(

k
σ

)
− G

(
k−1
σ

)
∫ min{k+ψ(k),m}

max{k−ε,0}
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

−

∫ k+ψ(k)

min{k+ψ(k),m}
[e∗ − f (θ)]

1
σ g

(
k−θ
σ

)
G

(
k
σ

)
− G

(
k−1
σ

)dθ

If k + ψ(k) ≤ m, the last integral equals zero, therefore uyl(k, Ik) > u(k, Ik). For k + ψ(k) > m,

[uyl(k, Ik) − u(k, Ik)]
[
G

(
k
σ

)
− G

(
k − 1
σ

)]
=

G
(

k−m
σ

)
− G

(
k−1
σ

)
G

(
k
σ

)
− G

(
k−m
σ

) 
∫ m

max{k−ε,0}
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

−

∫ k+ψ(k)

m
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

>[e∗ − f (m)]


G

(
k−m
σ

)
− G

(
k−1
σ

)
G

(
k
σ

)
− G

(
k−m
σ

) 
∫ m

max{k−ε,0}

1
σ

g
(

k − θ
σ

)
dθ −

∫ k+ψ(k)

m

1
σ

g
(

k − θ
σ

)
dθ


=[e∗ − f (m)]


G

(
k−m
σ

)
− G

(
k−1
σ

)
G

(
k
σ

)
− G

(
k−m
σ

) 
[
G

(
k −max{k − ε, 0}

σ

)
− G

(
k −m
σ

)]
−

[
G

(
k −m
σ

)
− G

(
−ψ(k)
σ

)]}
=[e∗ − f (m)]


G

(
k−m
σ

)
− G

(
k−1
σ

)
G

(
k
σ

)
− G

(
k−m
σ

) 
[
G

(
k
σ

)
− G

(
k −m
σ

)]
−

[
G

(
k −m
σ

)
− G

(
−ψ(k)
σ

)]}
=[e∗ − f (m)]

[
G

(
−ψ(k)
σ

)
− G

(
k − 1
σ

)]
≥0,

where the last inequality comes from k + ψ(k) ≤ 1. This implies that uyl(k, Ik) > u(k, Ik), which
completes the proof. �
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Lemma 11. If the public signal is y = yh, then uyh(k, Ik) < u(k, Ik) for all k ∈ (m − ε,m + ε).

Proof: First note that if k + ψ(k) ≤ m, uyh(k, Ik) = −t < u(k, Ik). If k + ψ(k) > m,

[u(k, Ik) − uyh(k, Ik)]
[
G

(
k
σ

)
− G

(
k − 1
σ

)]
=

∫ k+ψ(k)

max{k−ε,0}
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

−

[
G

(
k
σ

)
− G

(
k − 1
σ

)] ∫ k+ψ(k)

m
[e∗ − f (θ)]φyh(θ|k)dθ

=

∫ m

max{k−ε,0}
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

−

 G
(

k
σ

)
− G

(
k−m
σ

)
G

(
k−m
σ

)
− G

(
k−1
σ

)
∫ k+ψ(k)

m
[e∗ − f (θ)]

1
σ

g
(

k − θ
σ

)
dθ

<[e∗ − f (m)]


∫ m

max{k−ε,0}

1
σ

g
(

k − θ
σ

)
dθ −

 G
(

k
σ

)
− G

(
k−m
σ

)
G

(
k−m
σ

)
− G

(
k−1
σ

)
∫ k+ψ(k)

m

1
σ

g
(

k − θ
σ

)
dθ


=[e∗ − f (m)]

{
G

(
k −max{k − ε, 0}

σ

)
− G

(
k −m
σ

)
−

 G
(

k
σ

)
− G

(
k−m
σ

)
G

(
k−m
σ

)
− G

(
k−1
σ

)
[
G

(
k −m
σ

)
− G

(
−ψ(k)
σ

)]
≤[e∗ − f (m)]

[
G

(
k −max{k − ε, 0}

σ

)
− G

(
k
σ

)]
=0,

which implies that u(k, Ik) < uyh(k, Ik), therefore the proof is complete. �

Now we can prove Theorem 2:

Theorem 2. Fix m. If m = θ∗, there is a unique equilibrium, in which speculators follow the public signal.
If m , θ∗, the equilibrium may not be unique. There are bounds x∗ ≥ x∗ and x̄∗ ≤ x∗ such that, in any
equilibrium, π(x, yl) ≥ Ix∗(x) and π(x, yh) ≤ Ix̄∗(x) for all x. The equilibria are as follows:

i. if m < θ∗: speculators always attack the currency and the peg is abandoned if y = yl; moreover, if
m ∈ (x∗ − ε, θ∗), then x̄∗ < x∗;

ii. if m > θ∗: the currency is not attacked and the peg defended if y = yh; moreover, if m ∈ (θ∗, x∗ + ε),
then x∗ > x∗.
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Proof: Now consider any possible strategy profile for the speculators. For y ∈ {yl, yh}, let π(x, y)
denote the proportion of speculators who attack the currency given a private signal x. Define xy

and x̄y as

xy = inf{x ∈ Xy : π(x, y) < 1}, and x̄y = sup{x ∈ Xy : π(x, y) > 0}.

Note that xy ≤ x̄y. If xy ∈ Xy, then from Lemma 1

uy(xy, Ixy
) ≤ uy(xy, π) ≤ 0, (18)

and if x̄y ∈ Xy

uy(x̄y, Ix̄y) ≥ uy(x̄y, π) ≥ 0. (19)

Using Lemma 3, the proof of existence and uniqueness of equilibrium in the game without public

signal is analogous to the one in Morris and Shin (1998). The speculators follow a cutoff strategy
Ix∗ , such that u(x∗, Ix∗) = 0, with x∗ ∈ (ε, 1−ε). Since u(k, Ik) > 0 for k ≤ ε, and u(k, Ik) < 0 for k ≥ 1−ε,
it follows from Lemma 3 that u(k, Ik) > 0 for k < x∗, and that u(k, Ik) < 0 for k > x∗.

First, let θ ∈ yl = [0,m]. From Lemma 10, uyl(k, Ik) ≥ u(k, Ik), with strict inequality for k ∈
(m − ε,m + ε). If x∗ < Xyl = [−ε,m + ε], then uyl(k, Ik) is strictly positive for all k. From (18) all
speculators attack the currency for θ ∈ yl, therefore the peg is always abandoned. If x∗ ∈ Xyl , then

uyl(x
∗, Ix∗) ≥ u(x∗, Ix∗) = 0,

with strict inequality for m ∈ (x∗ − ε, x∗ + ε). Hence, either every speculator attacks for all x ∈ Xyl ,
in which case θ∗ = m, or xyl

≥ x∗, with strict inequality if m ∈ (x∗ − ε, x∗ + ε). In the latter case, all
speculators attack the curency for x < xyl

. This guarantees the existence of θ∗ ∈ [θ∗,m] such that the
government always abandons the currency peg for all θ ≤ θ∗.30 Furthermore, if m ∈ (x∗ − ε, x∗ + ε)
then θ∗ > θ∗.

Now let θ ∈ yh = (m, 1]. From Lemma 11, uyh(k, Ik) ≤ u(k, Ik), with strict inequality for
m ∈ (x∗ − ε, x∗ + ε). If x∗ < Xyh = (m − ε, 1 + ε], then uyh(k, Ik) is strictly negative for all k. From (19)
the currency is not attacked for any θ ∈ yh, and the government finds it optimal to keep the peg.
If x∗ ∈ Xyh , then

uyh(x∗, Ix∗) ≤ u(x∗, Ix∗) = 0,

with strict inequality for m ∈ (x∗ − ε, x∗ + ε). Hence, either x̄yh ≤ x∗, with strict inequality if

30Take for example θ∗ = θxyl
, the value of θ that makes the government indifferent when speculators follow Ixyl

(s(θxyl
, Ixyl

) = a(θxyl
)).
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m ∈ (x∗ − ε, x∗ + ε) , or the currency is never attacked, in which case θ̄∗ = m. In the former case, no
speculator attacks the curency for x > x̄yh , therefore there exists θ̄∗ ∈ [m, θ∗] such that the currency
peg is never abandoned for θ > θ̄∗.31 Furthermore, if m ∈ (x∗ − ε, x∗ + ε) then θ̄∗ < θ∗.

For m = θ∗, since θ∗ ∈ [θ∗,m] and θ̄∗ ∈ [m, θ∗], it must be the case that θ∗ = θ̄∗ = m. Thus the
unique equilibrium involves coordination on the public signal.

For m < θ∗, then the currency is always attacked on yl = [0,m] and θ∗ = m, otherwise
θ∗ ≤ θ∗ ≤ m, a contradiction. Since m < θ∗, then x∗ ∈ Xyh . Hence, if x∗ < (m − ε,m + ε), then
θ̄∗ ∈ [m, θ∗], and if x∗ ∈ (m − ε,m + ε), then θ̄∗ ∈ [m, θ∗). In the latter case, x̄yh < x∗.

For m > θ∗, then the currency is never attacked on yh = (m, 1] and θ̄∗ = m, otherwise m ≤ θ̄∗ ≤ θ∗,
a contradiction. Since m > θ∗, then x∗ ∈ Xyl . Hence, if x∗ < (m − ε,m + ε), then θ∗ ∈ [θ∗,m], and if
x∗ ∈ (m − ε,m + ε), then θ∗ ∈ (θ∗,m]. In the latter case, xyl

> x∗.

B.9 Lemma 12

Lemma 12. Suppose that Assumption 1 is satisfied. Then, m < θ̄.

Proof: We need to find m < θ̄ such that u(m,1](k, Ik) < 0 for all k. Consider the partition Pθ̄ and let k̄
solve θk̄ = θ̄.32

We claim that u(θ̄,1](k, Ik) ≤ δ < 0 for all k ∈ (θ̄ − ε, 1 + ε). To see this, let k ≤ k̄. If speculators
follow Ik, then the threshold for the government to abandon the peg is θk ≤ θ̄, which means that
the government does not abandon the peg on (θ̄, 1]. Hence u(θ̄,1](k, Ik) = −t for any k ≤ k̄. For k > k̄

u(θ̄,1](k, Ik) ≤ u(θ̄,1](k, I1+ε) ≤ u(θ̄,1](k̄, I1+ε) ≡ δ < 0,

where the first inequality comes from Lemma 1, the second inequality comes from Lemma 4, and
the last inequality comes from the fact that it is never profitable to attack when y = (θ̄, 1]. Since
δ ≥ −t, we have that u(θ̄,1](k, Ik) ≤ δ for all k.

Define l1m and l2m as
l1m = lim

k↓k̄
u(m,1](k, I1+ε),

and
l2m = lim

k↓θ̄−ε
u(m,1](k, Ik̄).

Since u(θ̄,1](k, I1+ε) ≤ δ for all k > k̄, continuity implies that l1
θ̄
≤ δ. Since u(θ̄,1](k, Ik̄) ≤ δ for

31Take for example θ̄∗ = θx̄yh
, the value of θ that makes the government indifferent when speculators follow Ix̄yh

(s(θx̄yh
, Ix̄yh

) = a(θx̄yh
)).

32 a(θ̄) = s(θ̄, Ik̄), that is, if speculators follow the cutoff rule Ik̄, the government is indifferent between defending the
currency and abandoning the peg at θ = θ̄.

45



k ∈ (θ̄ − ε, k̄], continuity also implies that l2
θ̄
≤ δ. From Lemmas 1 and 4, l1m ≥ u(m,1](k, Ik) for

k > k̄, and l2m ≥ u(m,1](k, Ik) for k ∈ (θ̄ − ε, k̄]. Then lm ≡ max{l1m, l2m} ≥ u(m,1](k, Ik) for k > θ̄ − ε.
From Lemma 9, l1m and l2m are continuous in m, and so is lm. Hence, there exists m′ < θ̄ such that
lm′ < lθ̄ − δ/2 ≤ δ/2 < 0. This implies that u(m′,1](k, Ik) ≤ δ/2 for k > θ̄ − ε. In this case, either
u(m′,1](k, Ik) < 0 for all k ∈ (m′ − ε, θ̄− ε], or there exists k′ = sup{k ∈ (m′ − ε, θ̄− ε] : u(m′,1](k, Ik) ≥ 0}.
From Lemma 6, either there is no attack on (m′, 1], thus m′ ∈ M, or, in the worst equilibrium for
the government, speculators follow Ik′ after observing (m′, 1]. In the latter case, the government
abandons the peg for θ ≤ θk′ ∈ (m′, θ̄). Consider the partition Pθk′ . From Lemma 9, u(θk′ ,1](k, Ik) < 0
for all k ∈ X(θk′ ,1], and, from Lemma 6, there is no attack on yh. This means that θk′ ∈ M. Thus,
either θ̄ > m′ ∈M or θ̄ > θk′ ∈M, which implies that m < θ̄. �

B.10 Proof of Theorem 3

Theorem 3. Suppose that Assumption 1 is satisfied. For every partition P, V(P) ≤ V, where

V = lim
m↓m

V(Pm) = sup
m∈M

V(Pm).

Then

i. if m ∈ M, the government’s equilibrium payoff is V. In equilibrium, when θ > m, there are no attacks
and the peg is maintained; and when θ ≤ m, every speculator attacks the currency and the peg is
abandoned. The government can achieve the payoff V with the two-interval partition Pm = {0,m, 1}.

ii. if m <M, no equilibrium exists. However, the government can achieve a payoff arbitrarily close to V.

Proof: For any two partitions A and B, if V(A) > V(B), then A is said to be preferred to B. From
Lemma 12, we know that m < θ̄.

Suppose that the partition P is optimal. From Theorem 1, we can assume that P = {0,m, 1}.

i. a. Suppose that m > m. In this case, there exists m′ ∈ [m,m) ∩M. If m ≤ θ∗, from Theorem
2, it follows that the peg is abandoned if and only if θ ∈ [0,m]. Since m′ ∈ M and m′ < θ∗,
the peg is abandoned if and only if θ ∈ [0,m′]. Hence the partition {0,m′, 1} is preferred to
P. If m > θ∗, from Theorem 2, partition {0, θ∗, 1} is preferred to P, a contradiction with the
optimality of P. Hence m ≤ m < θ̄.

b. Suppose that m < m. Since m < θ̄, the peg is abandoned for θ ∈ [0,m]. From Lemma
7, in the worst equilibrium for the government, speculators follow a cutoff rule Ikh after
observing yh, where kh = sup{k ∈ Xyh : uyh(k, Ik) ≥ 0}. Given the speculators’ strategy, there
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exists θkh > m such that the peg is abandoned if and only if θ ≤ θkh . From Lemma 9,
increasing m would (weakly) decrease the cutoff signal k, which would (weakly) decrease
the threshold state θk. This implies that, with partition P′ = {0, θkh , 1}, no one attacks if
θ ∈ (θkh , 1]. Thus, P′ is preferred to P, a contradiction with the optimality of P. We have
that m = m.

ii. From a., b., if P is an optimal partition, then m = m. If m ∈M, partition Pm = {0,m, 1} is optimal.
If m <M, there is no equilibrium, but the government can achieve a payoff arbitrarily close to
V = limm↓m V(Pm).

�
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