
Ex Post Moral Hazard in

Automobile Insurance Markets with Experience Rating

Qing Gong∗

October 15, 2017

Abstract

Accounting for unreported accidents due to ex post moral hazard is important for
studying asymmetric information in insurance markets. In this paper, I study ex post
moral hazard in an automobile insurance market with experience rating. I develop
a dynamic model in which policyholders with private information about their risk
types choose accident prevention efforts (ex ante moral hazard) and make claim filing
decisions when accidents happen (ex post moral hazard). I then estimate the model
using a detailed policy-level panel dataset from China. I find that policyholders do
not report 24% of all accidents, which account for about 5% of total monetary losses.
The degree of ex post moral hazard varies by experience rating: policyholders with
the best rating hide 40% of all accidents. Finally, I use counterfactual experiments to
evaluate the welfare implications. I find that experience rating improves policyholder
welfare, mainly by inducing higher preventive efforts and reducing accidents. When
ex post moral hazard is restricted and policyholders are forced to report all accidents,
the benefit from increased accident prevention efforts barely outweighs policyholders’
loss from increased premiums.
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1 Introduction

Moral hazard is a prominent feature of insurance markets, as well as the center of at-

tention of both researchers and insurers. Many automobile insurance providers nowadays

use experience rating to alleviate the moral hazard problem. Experience rating penal-

izes claims with higher future premiums and rewards safe driving with premium dis-

counts. While it helps to curb ex ante moral hazard, where policyholders exert a subopti-

mal amount of preventive effort, it also introduces ex post moral hazard into the market,

where policyholders choose not to file certain claims upon the occurrence of accidents. It

is important to take the unclaimed losses due to ex post moral hazard into account when

assessing the degree of asymmetric information and evaluating welfare, which has long

been the interest of theoretical and empirical research. Quantifying ex post moral hazard

is also crucial for policy evaluations, as the reported accidents are only a fraction of what

actually happened.

In this paper, I focus on automobile insurance markets with experience rating, and

want to answer the following questions. First, to what extent do ex ante and ex post moral

hazard exist? Second,What are the separatewelfare implications of the two types ofmoral

hazard? Third, how does the prevailing experience rating rule compares with alternative

policies in terms of welfare cost to both policyholders and insurers?

To this end, I develop a dynamic model of individual policyholder decisions with ex

ante and ex post moral hazard. In the model, each policyholder chooses the level of pre-

ventive effort in each contract year. Upon the occurrence of an accident, she observes the

loss realization and decides whether to file a claim. By filing a claim, she receives full re-

imbursement of the loss, but ends up in a lower experience rating class and faces higher

future premiums. By not filing a claim and paying out of pocket for her loss, she keeps a

claim-free record and receives discounts in her next-year premium. The model allows for

observed heterogeneities in car characteristics and exogenous driving conditions, which

affect the marginal cost of accident prevention. More importantly, the model also allows

for unobserved heterogeneity in the risk type of policyholders, which is usually hard to

control for in reduced-form models. The model implies that policyholders follow a cutoff
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rule when deciding whether to file a claim. The threshold loss sizes depend crucially on

the current experience rating class, along with other observable characteristics of the car

and the policyholder. These thresholds quantify the extent to which there is ex post moral

hazard in this market.

I estimate the model using detailed policyholder-level panel data on the mandatory

liability insurance (MLI) in China. TheMLI market is highly regulated, with a single stan-

dard contract across insurers and throughout the country. Thus, there is minimal, if any,

selection into contracts or insurers, making it an ideal environment to focus on the inter-

action between ex ante and ex post moral hazard. I find that car ages, driving intensity,

and local weather conditions all have significant impacts on the choice of preventive ef-

forts, and that the probability of being the low-risk type highly correlates with whether

the car is privately owned. Moreover, the model estimates imply that policyholders do

not file claims for 23.83% of all accidents that occurred, or 2.46-5.86% of total loss values.

The fraction of accidents not claimed varies greatly across experience rating classes, with

policyholders in higher classes hiding as much as 42.27% of all accidents. While reduced-

form findings also show hints of heterogeneity and moral hazard, they cannot pin down

the amount of unclaimed accidents or losses, which are important measures of ex post

moral hazard.

This paper relates to the large body of literature on asymmetric information in insur-

ance markets. Theoretical research dates back to Arrow (1963), Akerlof (1970), and Roth-

schild and Stiglitz (1976). While these studies make it clear that asymmetric information

generally leads to market inefficiency, empirical findings on the presence and welfare im-

pact of asymmetric information are relatively tenuous. Most existing studies focus on

either adverse selection or ex ante moral hazard alone. In these studies, automobile in-

surance markets have been an important testing ground, marked by the availability and

quality of micro-level data, and the relatively clear risk environment. In fact, it is the first

testing ground for the existence of asymmetric information in the seminal paper, Chiap-

pori and Salanie (2000).

Earlier papers rely on static models and try to find correlations between coverage gen-

erosity and claim intensities (Chiappori and Salanie, 2000; Chiappori et al., 2006). While
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such tests are easy to implement and shed some light on the existence of asymmetric in-

formation, they are not robust to the presence of more than one form of asymmetric infor-

mation, nor multidimensional private information (Chiappori and Salanie, 2012). Later

studies acknowledge the interaction between different types of asymmetric information,

namely ex ante moral hazard and adverse selection. They typically build dynamic models

and utilize panel data to distinguish between the two, borrowing heavily from econo-

metric tools for disentangling state dependence and unobserved heterogeneity in labor

economics (Abbring et al., 2003; Ceccarini, 2008).

Although a consensus regarding whether moral hazard and/or adverse selection exist

is yet to be reached (Chiappori and Salanie, 2012), the literature almost uniformly treats

observed claims as actual losses. This implicitly assumes away ex post moral hazard. In

reality, however, the incentive to not file certain claims can be particularly strong under the

experience rating, since the current loss in insurance reimbursement may be more than

offset by discounts in future premiums. Ignoring the presence of ex post moral hazard

may generate bias in tests for asymmetric information and lead to welfare losses (Abbring

et al., 2008).

To the best of my knowledge, Abbring et al. (2008) is the first and only paper so far to

model ex post moral hazard explicitly. Their model builds on that in Abbring et al. (2003),

adding heterogeneous dynamic changes in insurance holders’ incentive to conceal some

losses but file claims for others. Then the authors implement reduced-form tests on panel

micro-level data from a Dutch automobile insurance company. Results on the number of

claims and duration between claims provide evidence for the existence of moral hazard.

However, the non-stationarymodel in their paper cannot be estimated; and the only direct

evidence of ex post moral hazard comes from a small fraction of filed claims that are later

withdrawn by policyholders, which trivially show that there are unclaimed losses. One

other paper that studies ex post moral hazard is Robinson and Zheng (2010), which uses

aggregate data from Canada and a difference-in-differences approach to evaluating the

effect of introducing experience rating to the market. The authors find that ex post moral

hazard contributes 25-45% of the reported decline in car accidents in Canada from 1990 to

2005.
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In this paper, I contribute to the existing literature in the following ways. First, I ex-

plicitly model ex post moral hazard in a dynamic environment, allowing for ex ante moral

hazard and unobserved heterogeneity at the same time. In addition, I am able to estimate

the model on micro-level data and recover both the distribution of underlying loss sizes

and other parameters of primary interest. These provide quantitative measures of ex post

moral hazard in terms of hidden accidents. Finally, building on the model estimates, I am

able to conduct counterfactual analyses to evaluate the efficacy of current and alternative

experience rating policies.

The rest of this paper is organized as follows. Section 2 develops the dynamic model of

policyholder decisions. Section 3 describes the data. Section 4 presents the empirical find-

ings, both preliminary reduced-form evidence of ex ante and ex post moral hazard, and

estimation results of the structural model. Section 5 does counterfactual experiments to

compare the welfare implications of the prevailing experience rating rule with that under

alternative scenarios. Section 6 concludes with plans for future work.

2 Model

2.1 The primitives

In this section, I develop a dynamic programmingmodel where heterogeneous drivers

make accident prevention effort (ex ante moral hazard) and claim (ex post moral hazard)

decisions.

Time is discrete, each period being a year. The model starts from the year in which

the car is newly purchased, i.e. with age a = 1. Because the model characterizes the

decision process of an individual policyholder i, I do not separate age and calendar year

subscripts.1 Instead, I denote time in terms of the age of car, a = 1, 2, . . . , A, whereA = 30.

All drivers are policyholders of the mandatory liability insurance (MLI). Each contract

lasts one year, with premium qa and a zero deductible. Premium qa = Q(ba)q0(x) depends

on the car’s experience rating class at the beginning of the contract year, ba ∈ {0, 1, 2, 3},
1For the same reason, I will also suppress the i subscript unless it is necessary to distinguish between

individuals.
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as well as a baseline premium, q0 that is a function of time-invariant car characteristics

x, namely car size, identity of owner (individual or organization), and whether the car is

for commercial use. The experience rating schedule rewards safe driving and penalizes

accidents via the premium discount function, Q : b → {0.7, 0.8, 0.9, 1}. Policyholders in

higher experience rating classes receive larger discounts, and those in class b = 0 pays the

full baseline premium.

The policyholder always starts with b = 0 when she first purchases MLI. At the end

of each year, the class is updated according to ba+1 = B(ba, na), where na ∈ {0, 1} is an

indicator for having filed a claim during the year. Claim filing leads to downgrading of

b (and an increase in premium for the next year). Figure 1 illustrates the MLI experience

rating schedule.

b = 0
(100%)

b = 1
(90%)

b = 2
(80%)

b = 3
(70%)

n = 0 n = 0

n = 0n = 1

n = 1

n = 1

n = 1
n = 0

1

Figure 1: Experience rating schedule

A policyholder with b = 0 and paying 100% of the baseline premium will move up to

b = 1 the next year, paying 90% of the baseline premium, if she doesn’t file any claim in the

current year (n = 0); but will have to stay in b = 0 if she has an accident and files a claim

(n = 1). She will continue to move up the ladder one class at at time, until she reaches and
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stays in class b = 3, paying only 70% of the baseline premium, as long as she maintains a

claimless record. On the other hand, whenever she files a claim, she will be downgraded

all the way to the entry class b = 0.

In each period, the policyholder chooses the probability of having an accident, pa ≡

Pr(acc = 1) ∈ (0, 1), by exerting effort

ea = −γ(θ)′Xa log pa

where θ ∈ {θN , θG} is i’s risk type that is her private information, N standing for the “nor-

mal” type and G for the “good” type. The probability that a policyholder is the normal

type

Pr(θ = θN) =
exp(β11{private}+ β2DriverAge)

1 + exp(β11{private}+ β2DriverAge)
(1)

where 1{private} is a dummy variable for privately-owned cars, and DriverAge is the

initial age of the driver when the car first enters my sample.2 The intuition for including

the private dummy is that drivers of private cars are more likely to belong to the normal

type, while drivers of company or government agency cars are more likely to be the good

type since some of them drive for a living.

The effort cost of accident prevention also depends on a vector of covariates,Xa, which

includes car age, a, squared car age, a2, an indicator that the car is for commercial use,

1{commercial}, local annual precipitation PREC, and average temperatures in January,

TEMP1. Note that all covariates evolve deterministically except for the last two weather

variables. Long term meteorological studies have found that the precipitation and Jan-

uary temperature time series of the geographical region where my sample comes from

are roughly white noises (Li et al., 2005; Sun et al., 2006). Therefore I normalized PREC

and TEMP1 for each city-level location by first demeaning them, and then dividing by

their respective standard deviations. Consequently, when the policyholder calculates her

continuation values, both the precipitation and the January temperature have expectations

of zero, simplifying the dynamic programming problem.
2I do not include the driver’s gender as there is limited variation in the data.
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Conditional on having an accident, the policyholder draws a loss realization, la ∼ F ,

and a cost of not filing a claim, ξa ∼ G, ξa ≥ 0. Should the policyholder decide to file

a claim, MLI fully reimburses the loss la. If, however, she chooses not to file a claim but

to settle with the other party, she pays for any loss la out of pocket, plus any additional

cost, ξa. Regardless of her claim filing decision, however, the policyholder incurs an extra

cost, ωla that is proportional in size to the loss la. This captures non-reimbursable costs

of having accidents. The non-reimbursable cost may come in the form of missed work,

physical pain, or other non-pecuniary or pecuniary losses.

Policyholders share the same discount factor, ρ = 0.97, and derive flow utility from

consumption, u(ca), where

ca =


ya − q0 ·Q(ba) if acca = 0

ya − q0 ·Q(ba)− ωla if (acca = 1, na = 1)

ya − q0 ·Q(ba)− (1 + ω)la − ξa if (acca = 1, na = 0).

Because driver income is not observable in the data, I set u to be a linear utility function,

thus getting rid ofwealth effects and at the same time accommodating potentially negative

consumptions.

Figure 2 summarizes the time line of the model.

a = 1

b1 = 0 Choose
p1

Draw (acc1, l1, ξ1)
Choose n1

a = 2

Update
b2 = B(b1, n1)

Choose
p2

Draw (acc2, l2, ξ2)
Choose n2

Figure 2: Timing of the model

2.2 The policyholder’s problem

Denote the policyholder’s state space as

Ωa = {a, ba, Xa, ya}
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where all variables except ba evolves trivially following predetermined rules outside of the

model. Thus I only keep ba in the value functions for notational simplicity.

The policyholder’s value function in the final period, a = A, is

VA(bA) = max
pA

(1− pA) [u(yA − q0 ·Q(bA))] (2)

+ pA

∫∫
max {u(yA − q0 ·Q(bA)− (1 + ω)lA − ξA),

u(yA − q0 ·Q(bA)− ωlA)}dF (lA)dG(ξA)

− e(pA, XA, θ)

Her value function in period a < A is

Va(ba) = max
pa

(1− pa) [u(ya − q0 ·Q(ba)) + ρEVa+1(B(ba, 0))] (3)

+pa

∫∫
max {u(ya − q0 ·Q(ba)− (1 + ω)la − ξa) + ρEVa+1(B(ba, 0)),

u(ya − q0 ·Q(ba)− ωla) + ρEVa+1(B(ba, 1))}dF (la)dG(ξa)

−e(pa, Xa, θ)

where the expectation is taken over future realizations of accidents, losses, as well as

weather variables in X . As discussed earlier in this section, both weather variables have

expectations of zero.

It is easy to see that the policyholder follows a simple cutoff rule of claim filing upon

occurrence of an accident, i.e. she files a claim if and only if the sum of la and ξa exceeds

threshold L∗a(ba). When a = A, L∗A = 0 trivially, thus the optimal accident probability is

given by

p∗A = γ(θ)′XA ·
(
u(yA − q0 ·Q(bA))−

∫
u(yA − q0 ·Q(bA)− ωl)dF (l)

)−1
(4)

More generally for a < A, the optimal claim decision threshold is

L∗a(ba) = ρ∆Emaxa+1(ba) (5)
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where ∆Emaxa+1(ba) = EVa+1(B(ba, 0))−EVa+1(B(ba, 1)). Thus, the threshold is the gross

loss size that makes the policyholder indifferent between the maximized value after filing

the claim and the one after concealing the claim.

Suppressing the state variable, ba, the optimal accident probability is

p∗a =
γ(θ)′Xa

ρ∆Emaxa+1

[
1−

∫
F (ρ∆Emaxa+1 − ξ)dG(ξ)

]
+ ωE[l] + E[ξ] +

∫∫ L∗
a−ξ

0
ldF (l)dG(ξ)

(6)

Note that the denominator is the expected marginal benefit of reducing accident proba-

bility. Denoting this component as Ha, then rearranging the above equation gives

Ha = γ(θ)′Xa · (p∗a)
−1 (7)

where the right hand side is exactly the marginal cost of reducing p. Hence the optimal

accident probability is simply the one that equates the marginal benefit and cost, both of

which depends on the state variable, ba, and other covariates.

2.3 Likelihood

I estimate the above model using maximum likelihood (ML). The model parameters

are

Θ = (F,G, γ(θN), γ(θG), ω, β)

Denote the outcome of policyholder i in period a as Oia, where

Oia = (nia, lia) if nia = 1

= nia o.w.

Policyholder i’s contribution to the likelihood, given her type θi, is then

Li(Oi,Θ|Ωi, θi) =
A∏
a=0

Pr(Oia|Ωia, θi) (8)
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where

Pr(nia = 1, lia = l|Ωia, θi) = p∗ia(Ωia, θi) · [1−G(L∗ia(Ωia, θi)− l)] · f(l) (9)

Pr(nia = 0|Ωia, θi) = 1 + p∗ia(Ωia, θi) ·
[ ∫ L∗

ia

0

F (L∗ia(Ωia, θi)− ξ)dG(ξ)− 1
]
(10)

The total log likelihood is

lnL(O,Θ|Ω) =
N∑
i=1

ln
(

Pr(θi = θN)Li(Oi,Θ|Ωi, θN) + Pr(θi = θG)Li(Oi,Θ|Ωi, θG)
)

(11)

2.4 Identification

The identification of loss distribution, F , requires some parametric assumptions, as it

essentially has a mixture model component. I choose the Gamma/Gompertz distribution

with three parameters, bg, sg, βg > 0 (Bemmaor and Glady, 2012). This distribution is

defined on the positive half of the axis, and is extremely flexible. At the same time, its cdf

and pdf have the following nice analytical forms, and its moment generating functionwell

defined.

f(l; bg, sg, βg) = bgsg exp(bgl)β
sg
g

(
βg − 1 + exp(bgl)

)−(sg+1)

(12)

F (l; bg, sg, βg) = 1− βsgg
(
βg − 1 + exp(bgl)

)−sg
(13)

The parameters of F can be identified from the observed claim sizes. Although the cutoff

rule in the policyholders’ claim filing decision leads to truncation on its left tail, the overall

shape of F is still preserved. Therefore one could recover the parameters of F by only

using the larger observed claims that are free of the selection problem.

As for the distribution of the “concealing cost,” G, I assume that it is a uniform dis-

tribution over [0,M ]. However,M is not separately identified from other parameters that

affect the threshold value for filing a claim. Observing a small claim could either be the

result of having a high claiming threshold but at the same time a largeM ; or having a low

claiming threshold and small M . Because the concealing cost ξ is introduced mainly to

avoid degeneracy in the likelihood and thus not of my primary interest, I set value ofM
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to be 1.3 Having smaller M values could increase the maximized likelihood, but is also

more likely to get degeneracy problems.

I identify the parameters for the marginal effort cost of accident prevention, γ(θ), us-

ing a standard exclusion restriction argument. Note that the covariates X only affect the

probability of having an accident, but not the distribution of losses. The additional cost

parameter, ω is also easily identified, as it only enters the Emax function via the term

ωE[l], where the expected loss is already pinned down by the loss distribution parame-

ters, (bg, sg, βg).

Finally, I take advantage of the panel data structure and identify the type-determining

parameters, (β1, β2) frompersistence in accidents. To fix ideas, consider a simplifiedmodel

where Pr(θ = θN) is a fixed number β, and the marginal cost of accident prevention for

each type is governed by a single parameter, γ0j, (j = N,G). Because there is no covariate

X , normalized γ0G = 0. Consider the extreme case with full persistence in accidents in the

sense that cars either always have accidents or never have one. Then the β = Pr(acc = 1),

where Pr(acc = 1) can be recovered from F and model-implied claim filing thresholds;

and γ0N can be backed out fromEquation (6) aswell. On the other extreme of the spectrum,

suppose there is zero persistence. Then β = 1 and γ0N is again pinned down by Equation

(6) given that all other parameters are known.

3 Data and Sample Construction

I construct a panel using proprietary data on MLI from a leading property insurance

company in China. All automobiles must have MLI starting late 2006. Insured automo-

biles get a special sticker on the windshields for easy monitoring. The Ministry of Public

Security also checks the status of MLI in the annual inspection. Uninsured automobiles,

once caught, will be held in police custody until insured, and are subject to additional

fines twice the amount of applicable MLI premiums. That said, it is reasonable to believe

that all cars have MLI so there is no selection into the market.

Furthermore, the MLI policy is highly regulated, with all insurers offering exactly the

3The unit is thousand yuan (deflated to 2006 level).
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same contract throughout the country. The policy is the same as the one introduced in

Section 2, with baseline premiums only depending on car types, zero deductibles and an

experience rating schedule. Notably, the insurers share the claim history information, so

a policyholder does not lose her good records or escape from future premium penalties

by switching to another insurer. These institutional settings further reduces selection into

different insurers, making my sample from one insurer more representative.

The sample randomly selects 5,000 cars from a province in Northeast China and tracks

them up to seven years from 2007 to 2013. A sizable fraction of cars do not stay with the

insurer for all these years, and may have left because they switched to another insurer,

were sold to another person, or left the market for good (e.g. demolished). Given that

I do not observe the reason of attrition, and that most cars in my sample are fairly new

(the average car age is less than 4 years old), I assume they stay in the market but just

switch insurers. Thisway the policyholder keeps solving the same dynamic programming

problem even after she leaves the sample.

For each car-contract year, I observe the set of variables that fully characterize the in-

surance policy, especially the baseline premium and the current experience rating class. I

also observe the accident and loss realizations, i.e. the date and value of all claims filed

during the contract year. Merely 0.13% have more than one claim, which is why I restrict

the maximum of accidents in a given contract year to 1 in the structural model.

In addition, the data also include a rich set of car and owner characteristics, including

type of owner (individual or organization), nature of use (commercial or non-commercial),

car age, purchase value, car size, owner age, and city. I supplement this dataset with city-

level precipitation and temperature information for the statistical yearbook of the province

where my sample comes from.

I drop 17 cars whose experience rating class update violates the aforementioned rules

for unknown reasons.4 In the end, I get an unbalanced panel of 4983 cars and 9987 ob-

servations, where each observation is a unique car-contract year combination. Table A1

reports the summary statistics of key variables.

4For example, some of these cars filed a claim but were not downgraded to class 0 in the following year,
while others had no claim but were not promoted.
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4 Empirical Results

In this section, I present the empirical results, starting with reduced-form findings that

provide preliminary evidence of the prevalence of ex ante and ex post moral hazard in the

data. Then I proceed to report estimation results of my structural model, show goodness-

of-fit, and discuss the implication of these results.

4.1 Reduced-form evidence

To begin with, Table 1 shows the transition probability of experience rating classes.

Note that Pr(ba+1 = 0 | ba) is decreasing in ba, indicating that policyholders in better

classes tend to file fewer claims.

Table 1: Transition probability across experience rating classes
ba+1 = 0 1 2 3 Pr(ba)

ba = 0 0.128 0.872 0 0 0.489
1 0.093 0 0.907 0 0.263
2 0.085 0 0 0.915 0.119
3 0.072 0 0 0.928 0.130

This correlation, however, could be the result of heterogeneity in driving ability, as

better drivers are more likely to end up in higher classes, and at the same time have fewer

accidents, thus fewer claims. Alternatively, it could also be the result of moral hazard, as

having an accident and filing a claimwhen ba is high means foregoing a larger discount in

the next period, let alone ruining a spotless driving record, which gives the policyholder

greater incentive to drive carefully or don’t file claims even after an accident.

To see this, consider the results in Table 2. Column (1) regresses the binary outcome of

filing a claim on the experience rating class dummies and the set of covariates included in

the structural model. Comparing with the baseline group, b = 0, those in higher classes

make significantly fewer claims. The logit estimates in Column (2) are very similar both

qualitatively and quantitatively. These results, as those in Table 1, are still a mixture of

moral hazard and heterogeneity.

14



Table 2: Determinants of claim intensity (Y = 1{na = 1})
(1) (2) (3) (4)
OLS Logit FE AB

1{b=1} -0.1189*** -1.4722*** -0.3509***
[0.0075] [0.1123] [0.0123]

1{b=2} -0.1796*** -4.1755*** -0.5133***
[0.0072] [0.4551] [0.0153]

1{b=3} -0.1996*** -3.9138*** -0.6450***
[0.0096] [0.3565] [0.0181]

1{na−1 = 1} 0.0797**
[0.0348]

car age 0.0240*** 0.2519*** 0.1567*** -0.0201*
[0.0031] [0.0368] [0.0089] [0.0119]

car age2 -0.0017*** -0.0177*** -0.0062*** 0.0008
[0.0003] [0.0040] [0.0008] [0.0012]

1{private car} -0.0543*** -0.7877***
[0.0067] [0.0907]

Adj./pseudo R2 0.0859 0.1624 0.3073
N 9987 9987 9987 2156
Notes: Covariates included but not reported include the value of car, stan-
dardized local annual precipitation (demeaned and then divided by the
standard deviation), local average temperature in January, driver’s age
when first sampled, the constant, and the full set of 41 car type dum-
mies and 9 city dummies. “AB” in Column (4) refers to the Arellano-
Bond dynamic panel data model. The R2 for Column (2) is the pseudo
R2, the others are adjusted R2’s. Robust standard errors are in brackets.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Column (3) estimates a fixed effect model to control for the time-invariant hetero-

geneities. The negative relationship between claim probabilities and experience rating

classes persists, and becomes even stronger. This suggests that moral hazard is driving

the differences in claim probabilities, given that the individual fixed effects already take

care of the unobserved heterogeneities. Column (4) takes a slightly different perspective

by looking at the effect of having claims in the previous period on the current period claim

probabilities. The moral hazard story would predict that having a previous claim reduces

the incentive to avoid future claims, because the previous claim brings the policyholder

down to class b = 0, thus lowering the stake of filing future claims. Indeed, Arellano-Bond

dynamic panel estimates show that having a claim in period a − 1 significantly increases
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the probability of having a claim in the current period by almost 8%. This is highly con-

sistent with the moral hazard story.

So far the results suggest that moral hazard exists in the MLI market under the expe-

rience rating rule, but could not distinguish between ex ante and ex post moral hazard

effects. To disentangle the two, I exploit information on the size of filed claims.

Figure 3 shows the empirical cdf of filed claim sizes by experience rating class, ba. The

five marks represent the minimum, the 25th percentile, the median, the 75th percentile,

and the largest value within 1.5 inter-quartile range of the 75th percentile, respectively.5

0 1 2 3 4
claim size (thousand 2006 yuan)

3

2

1

class = 0

Figure 3: Distribution of claim sizes by experience rating class

Note that the minimum claim size increases with ba, while the rest of the distribution

is largely the same. This is consistent with the prediction that policyholders in higher

classes have larger threshold values for filing a claim, because they have stronger incen-

5Very large extreme values are not shown in the plot.
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tives to avoid claims. Hence, the different truncation points in the distribution of observed

claims is strongly suggestive of the existence ex post moral hazard. It also shows that it

is innocuous to assume that the losses of different policyholders follow roughly the same

distribution.

4.2 Structural parameter estimates

I estimate the structural model in Section 2 using maximum likelihood. Before pre-

senting the estimation results, I use Monte Carlo simulation to show the efficacy of my

estimation strategy and as supplemental evidence for identification. I choose a set of pa-

rameters and simulate an unbalanced panel dataset with 3000 policyholders and a maxi-

mum length of 7 years.6 Table A2 compares the “true” parameters andML estimates. The

differences are usually very small, in both absolute and relative terms. The biases in the

majority of parameters are less than 5% of the true value. Considering the smaller sam-

ple size in the Monte Carlo simulation than in the real data, these results are reasonably

reassuring of the estimation results to come.

Table 3 presents the formal ML estimates using the real data. The Gamma/Gompertz

distribution parameters are estimated using the 856 observed claim values. The shape

parameter sg is relatively large, indicating that the distribution is highly positively skewed.

On the other hand, βg is relatively small, which translates into tails that are not particularly

fat.

The point estimate of the square-root of ω is about 0.5545. This means that the addi-

tional, non-reimbursable cost of having an accident is about 30.75% of the loss l.

Parameters estimates governingmarginal cost of accident prevention for the good type

are fairly intuitive. Note first fromEquation (6) that higher (lower)marginal cost translates

into higher (lower) accident probabilities. Older, hence more experienced cars have lower

marginal cost and consequently lower probability of accidents, which suggests the exis-

tence of learning. This is qualitatively consistent with the reduced-form results in Table 2

under the Arellano-Bond dynamic panel model. At the same time, the positive estimate

6I also introduce considerable attrition in the simulated sample to mimic the short panel structure in the
real data.
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Table 3: Model estimation results
(1) (2) (3)

Est. coeff. s.e. implied

Gamma/Gompertz parameters
bg (scale parameter) 0.0030 0.0419
sg (shape parameter 1, “skewness”) 1.2226 0.0368
βg (shape parameter 2, “tail”) 0.0020 0.0315

Additional cost of accident (
√

additional cost
loss )

ω 0.5545 0.0010 0.3075
Marginal cost of accident prevention (good type)

constant -0.0583 0.0027
car age -0.0371 0.0000
car age2 0.0009 0.0008
1{commercial} -0.0174 0.0041
January temperature -0.0604 0.0172
total precipitation 0.0369 0.0089

Marginal cost of accident prevention (normal type,
√
γN − γG)

constant 0.4451 0.0028 0.1398
car age 0.1673 0.0001 -0.0091
car age2 0.0000 0.0000 0.0009
1{commercial} 0.2917 0.0025 0.0677
January temperature 0.0981 0.0016 -0.0508
total precipitation 0.0962 0.0020 0.0462

Probability of being normal type
1{private} 0.9998 0.1196
initial driver age 0.0785 0.0120

N = 9987, LR index = 0.7757
Notes: b > 0 is the scale parameter of Gamma/Gompertz distribution, and
s, β > 0 are the shape parameters. TheGamma/Gompertz parameters are esti-
mated on a subsample of 856 observations.1{commercial} is a dummyvariable
indicating whether the car is for commercial use, for example taxis and rental
cars. January temperature and total precipitation are all measured at the city
level, where the temperature variable is standardizedmonthly average temper-
atures (demeaned and divided by the standard deviation), and the precipita-
tion variable is standardized annual total precipitation including both rainfall
and snowfall. 1{private} is a dummy variable for the car owner being an in-
dividual rather than an organization. Initial driver age is the age of the driver
when his/her car first entered the sample. Standard errors are computed using
numerical Hessian matrices from the maximum likelihood estimation.
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in squared car age indicates the downward trend reverses at around a = 20, presumably

driven by the deteriorating condition of the car, although the estimate is not statistically

distinguishable from zero. Cars for commercial use have lower marginal costs, which is

seemingly counterintuitive. However, this is unique to the good-type cars only, and is

probably because good drivers of commercial cars (e.g. taxis) are especially careful or ca-

pable of avoiding accidents. The two weather variables have the expected effects: warmer

Januaries usually means less ice on the road and faster melting of snows, thus reducing

the probability of accidents; and more precipitation, whether in the form of rain or snow,

results in more dangerous road conditions and increases accident occurrence.

The normal type, by definition, have weakly higher marginal cost of accident preven-

tion. The estimates in Column (1) are the square-root of the difference between normal-

type andgood-typemarginal cost parameters, andColumn (3) reports the implied normal-

type parameter values, γN . To begin with, the constant term is considerably larger than

that of the good type. All other covariates have strictly larger partial effects, except for the

squared car age: older age cars are still less likely to have accidents, but the effect is much

smaller, only one fourth of that of good type; being a normal type car for commercial use

increases the accident probability so dramatically that the sign of γ1{commercial} switches

from negative for the good type to positive for the normal type. This is consistent with

the intuition that for “normal” commercial cars, the higher driving intensity makes them

more likely to have accidents. Finally, the twoweather variables have statistically different

effects on the normal type, although the implied marginal cost parameters remain similar

to those of the good type, both qualitatively and quantitatively.

Finally, estimates of the type-determining parameters show that drivers of private cars

are significantly more likely to be the normal type. This is very intuitive as those driving

for companies or government agencies should be more professional. At the same time,

older age of the driver is also associatedwith higher probabilities of being the normal type.

Figure 4 illustrates these results by plotting the fraction of normal type drivers against car

ownership and the age of driver. While the majority is always the normal type, those

driving cars owned by organizations are always more likely, ceteris paribus, to be the good

type.
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Figure 4: Model implied type distribution by ownership and car age

4.3 Goodness-of-fit

As a quick indicator for goodness-of-fit, the likelihood ratio index of the above ML

results is 0.7757, which is fairly close to the right end of the [0, 1] spectrum. For more

goodness-of-fit analyses, I use the model estimates to simulate 500 samples with the same

size as the data, and compare the key outcomes.

The left panel of Figure 5 plots the model-implied parametric cdf of underlying losses

and the empirical cdf of the observed claims in the real data. These two distributions have

approximately the same shape, but the deviation is still fairly apparent toward the left

end. The right panel replaces the model-implied loss distribution with the empirical cdf

of claims in the simulated data, taking into account the optimal claim filing decisions of

policyholders. As a result, this distribution ismuch closer to the real data. This first shows

the presence of ex post moral hazard in the form of hidden claims, and also reassures the
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choice ofGamma/Gompertz as the underlying loss distribution is reasonably appropriate.

Figure A1 in the appendix also compares the entire claim distributions from the model

versus those in the data by experience rating class, b, and find them very close.7
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Figure 5: Goodness-of-fit: distribution of actual losses and observed claims

Table 4 reports in the left panel transitions across experience rating classes in the sim-
ulated data. The model captures the prominent pattern of transitions in the data, namely
those in higher classes have better chances of upgrading to an even higher class. Themodel
is somewhat off in the levels, though, by usually slightly underestimating the fraction that
files a claim. However, the model does a good job in predicting the distribution of classes,
with simulated Pr(b) extremely close to those in the data.

7Except perhaps for b = 3, where few claims are filed in the data.
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Table 4: Goodness-of-fit: transition matrix of experience rating class
Model Data

ba+1 = 0 1 2 3 Pr(ba) 0 1 2 3 Pr(ba)

ba = 0 0.080 0.920 0 0 47.9% 0.128 0.872 0 0 48.9%
1 0.069 0 0.931 0 26.3% 0.093 0 0.907 0 26.3%
2 0.054 0 0 0.946 12.0% 0.085 0 0 0.915 11.9%
3 0.094 0 0 0.906 13.8% 0.072 0 0 0.928 13.0%

Notes: The two Pr(ba) columns are marginal probabilities of being in class ba. All other numbers are
conditional probabilities Pr(ba+1 | ba)

Table 5 compares the claim intensity for all cars and by subgroups. Overall, the model-

implied claim intensity is slightly higher than that in the data, but the deviation is not

significant relative to the standard error of the data moment.8 As for the comparison be-

tween non-commercial and commercial cars, themodel correctly captures the significantly

higher claim intensity of the latter. This is also consistent with the large estimated effect

of the commercial use dummy on the marginal cost of accident prevention for most cars.

Finally, claim intensities in the simulated data increases with the age of the car, which is

qualitatively similar to the trend in the data, although the slope is slightly higher. Note

that the contrast between the upward trend here and the negative effect of car ages on acci-

dent probabilities in Table 3. The difference is again driven by the selective filing of claims.

On the one hand, older cars are less likely to have accidents; but on the other hand, being

closer to the final period, they also have lower thresholds for filing claims, conditional on

having an accident. The upward trend in claim intensity shows that the latter of the two

opposing effects overpowers the former.

8This results does not contradicts those in the previous table, which only uses cars that stay in sample
for at least two years, whereas results here uses all observations.
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Table 5: Goodness-of-fit: claim intensity
Model Data

Overall
All 0.0903 0.0857

(0.0001) (0.0028)
By car use

non-commercial 0.0840 0.0832
(0.0001) (0.0031)

commercial 0.1151 0.0954
(0.0003) (0.0065)

By car age
[1, 3] 0.0876 0.0854

(0.0002) (0.0038)
[4, 6] 0.0905 0.0846

(0.0002) (0.0050)
[7, 9] 0.0980 0.0885

(0.0004) (0.0088)
10+ 0.1043 0.0909

(0.0007) (0.0139)
Note: Standard errors are in parentheses.

The above results show that themodel is able to capture the key features of the data, es-

pecially those for the claim probabilities and claim size distributions, which are outcomes

of my primary interest.

4.4 Discussion

Given that the model fits the data relatively well, I explore the welfare implications of

the model estimates. Table 6 compares the model-implied probability of claims with that

of underlying accidents as a measure of ex post moral hazard. Column (1) is the same set

of predicted claim intensities as in Table 5. Column (2), as a contrast, is the probability of

accidents, whether claimed or not. 11.86% of the whole sample have accidents, while the

claim intensity is only 9.03%. 2.83% of the sample have had an accident but chose not to file

a claim. This means that 23.83% of all accidents that happened are not reported, which is

close to the lower bound of estimates by Robinson and Zheng (2010). Granted, the hidden

accidents are generally smaller than the ones claimed, so Column (5) shows the fraction of
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total hidden losses. Policyholders choose to pay out of pocket 2.46% of total reimbursable

losses incurred in accidents. This figure is deceivingly small because the distribution is

highly skewed, with very large losses happening with non-zero probabilities. If one ex-

cludes the top 3% extremely values in the distribution, then the hidden losses account for

5.86% of total loss values.

Table 6: Model implied hidden accidents
(1) (2) (3) (4) (5) (6)

Pr(claim) Pr(accident) Difference % hidden % loss hidden % loss hidden
( (2)-(1) ) ( (3)/(2) ) (trimmed)

Overall
All 0.0903 0.1186 0.0283 23.83% 2.46% 5.86%

By experience rating class
b=0 0.1072 0.1173 0.0100 8.56% 0.56% 1.31%
b=1 0.0701 0.1050 0.0349 33.27% 3.63% 8.71%
b=2 0.0580 0.1005 0.0425 42.27% 5.18% 12.75%
b=3 0.0985 0.1649 0.0664 40.28% 4.21% 10.08%
Note: Standard errors are in parentheses. “% loss hidden” is the total loss of hidden accidents
divided by the total loss of all accidents. “% loss hidden (trimmed)” uses the trimmed sample
after dropping the largest 3% losses.

More interestingly, the degree of moral hazard varies across subsamples with different

incentives to avoid claims. Among the four experience rating classes, the fraction of acci-

dents hidden rises from 8.56% for b = 0, to as high as over 40% for b = 2 and b = 3. The

value of hidden losses also increases from around 1% to 5-10%. This is very intuitive given

the experience rating rules: filing a claim when in higher classes not only leads to larger

foregone premium discounts in the next period, but also shifts the entire trajectory of fu-

ture premiums upward by ruining a claim-free history. Hence cars in higher classes have

stronger incentives to avoid claims than their lower-classes counterparts. They achieve

this both by exerting more preventive effort, and by hiding a larger fraction of claims con-

ditional on occurrence of an accident.

Table 6 once again shows the importance of taking ex post moral hazard into account

when understanding the behavior of policyholders. Overlooking the hidden accidents

will introduce sizable bias, especially in policy evaluations. It also demonstrates the ne-

cessity of a structural model in the disentangling of ex ante moral hazard, ex post moral

24



hazard, as well as policyholder heterogeneity.

5 Counterfactual Analyses

Now I take the model estimates and conduct counterfactual analyses to compare the

efficiency, in terms of welfare cost, of the prevailing experience rating rule with that of

alternative ones.

Under the current rules, policyholders have two instruments for self-insurance, ex ante

preventive effort and ex post hiding of accidents. Taking the environment as given, the

freedom of ex post moral hazard is unambiguously welfare-improving for the policyhold-

ers, who voluntarily choose to pay out of pocket for some accidents. But it is not as clear

how the current rule adopted in China compares with alternatives, some actually used by

insurers in other markets, others purely hypothetical.

I am especially interested in the following alternative scenarios:

No experience rating, with premium fixed at the current baseline level and zero de-

ductible. This is the world with no incentive for ex post moral hazard, and at the same

time no longer curbs ex ante moral hazard. It is also the worst scenario from the society’s

perspective.

No experience rating, with premium fixed at the current baseline level but non-zero

deductibles. Recall that an important feature of the baseline model is that policyholders

follow cutoff rules when decidingwhen to file a claim. The resulting outcome that smaller

losses are not claimed resembles what would happenwhen there is a non-zero deductible.

Hence it is interesting to compare the two scenarios. The result clearly depends on the

choice of deductibles, which could be the same for all cars or depend on observable car

and owner characteristics. As a first step, I set the deductible to be the same for all pol-

icyholders, and fix it at D such that the cdf evaluated at D is the same as the fraction of

hidden accidents in the benchmark case.

With experience rating and mandatory filing of claims for all accidents. This is essen-

tially shutting down ex post moral hazard, and necessarily reduces the welfare of poli-

cyholders, although it still encourages accident prevention. Such an experiment helps to
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decompose the effect of experience rating on ex ante and ex post moral hazard, although

it may be hard to implement in the market.

I take the model parameters and simulate 500 samples of the same size as the real

data for each of the three scenarios above. Table 7 compares the key outcomes from the

counterfactual experiments with those under the benchmark case. Column (1) shows the

accident probability, claim probability, fraction of accidents hidden, and fraction of loss

values hidden under the benchmark, which are the same set of results discussed in the

previous section. Column (2) shows these outcomes when there is no experience rating,

with a fixed premium and zero deductible. First, note that now there is no incentive what-

soever not to file a claim conditional on having an accident. Hence the claim probability

is the same as the accident probability. Second, the absence of experience rating sets ex

ante moral hazard free and ends up with an overall accident probability as high as 0.1976,

or almost twice the benchmark value.

Column (3) introduces a non-zero deductible on top of the scenario in Column (2).

Because there is still no harness on ex ante moral hazard, preventive effort is still fairly

limited. Thus the accident probability is only slightly lower than that in Column (2), but

still very high. Nonetheless, a considerable number of accidents are not claimed, reduc-

ing the claim probability to a modest 0.1467. Note that although the hidden accidents are

similar in number with the benchmark, the total value of hidden losses are significantly

smaller. This is because the claim-filing threshold loss value in the benchmark is a func-

tion of both the experience rating class and the set of covariates. So some policyholders,

especially those in higher classes, may prefer to hide larger losses. On the contrary, the

deductible here is the same for everyone, which, under a highly skewed loss distribution,

mechanically leads to much smaller values of total loss hidden.

Column (4) shows the scenario under experience rating, but with ex post moral hazard

shut down. An immediate implication is again the equality between the accident probabil-

ity and the claim probability. Despite having one less tool to self-insure against premium

increases, the policyholders are subject to the same premium updating rules, thus still

having incentives to reduce ex ante moral hazard by exerting more preventive effort. As

a result, the accident probability is only 0.1350, which is slightly higher than but more
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comparable to that under the benchmark case.

Table 7: Counterfactual experiments
(1) (2) (3) (4)

Benchmark No EXR, no D No EXR, with D EXR, no EPMH

Pr(accident) 0.1186 0.1976 0.1923 0.1350
Pr(claim) 0.0903 0.1976 0.1467 0.1350
% accident hidden 23.83% 0% 23.74% 0%
% loss hidden 2.46% 0% 0.84% 0%
Comparing with the benchmark case . . .
∆(total pecuniary loss) - +66.94% +62.33% +13.87%
∆(loss paid OOP) - - -44.67% -
∆(premium) - +12.20% +12.20% +0.62%
∆(policyholder loss) - -15.61% -15.70% -0.84%
∆(insurer gross profit) - -10.21% -7.89% -5.50%
Note: All comparison-with-the-benchmark results show the percent increase/decrease on top of the bench-
mark case value. Total pecuniary loss is the sum of all reimbursable losses incurred in accidents, whether
claimed or not. Loss paid OOP is the total reimbursable losses that the policyholder could have claimed but
paid out of pocket instead. Premium is the total premium paid by policyholders. Policyholder loss is the
sum of premium payments, non-pecuniary losses, and loss paid OOP. Insurer gross profit is the premium
revenues net of reimbursements.

Finally, I compare thewelfare effects of these alternative scenarioswith the benchmark.

In terms of total pecuniary losses, Columns (2) and (3) are both more than 60 percent

higher than the benchmark, which is not surprising given their high accident probabili-

ties; and Column (4) is moderately higher than the benchmark by 13.87 percent. As for

out-of-pocket payments by policyholders, only Column (3) has a non-zero number of hid-

den accidents. But as discussed above, the constant deductible results in smaller values of

hidden losses, saving the policyholders 44.67 percent of their our-of-pocket payments un-

der the benchmark. The scenarios also differ in the amount of premiums. In the absence

of experience rating in Columns (2) and (3), policyholders no longer receive premium dis-

counts, paying 12.20 percent more than they do under the bench mark. In Column (4),

the policyholders still have enough incentives to prevent accidents and stay in good ex-

perience rating classes. So they only pay slightly more than the benchmark value, despite

no longer having the ex post moral hazard tool to avoid downgrading and increase in

premiums.

The last two rows of Table 7 compares the composite welfare change for the policy-
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holder and the insurer, respectively. The policyholders’ loss is defined as the sum of pre-

mium payments, non-pecuniary losses, and pecuniary losses that they choose to pay out

of pocket. Comparingwith the benchmark, policyholders are significantlyworse-offwhen

there is no experience rating, and considerably worse-off when there is experience rating

with mandatory claiming of all accidents. The insurer, on the other hand, are significantly

worse-off in all three scenarios. This is because even though they receive more premium

revenue, the higher claim probabilities and larger claim sizes also requiremore reimburse-

ment payments.

Granted, the above are fairly straightforward counterfactual experiments that help to

quantify the welfare implications of ex ante and ex post moral hazard. There are certainly

other interesting scenarios to explore. For example, it may be interesting to study the

welfare effects of having experience rating, but letting future premium depend on the

size of claims. The current experience rating rule completely ignores the claim sizes. It

would be interesting to see what would be the effect of claim-size-dependent experience

rating, which is already adopted in some markets. The extreme case is one where future

premiums is a continuous function of past claim sizes. This is essentially introducing

coinsurance into the market.

Another interesting scenario to study is one with experience rating that is the same as

the current rule, except for accident forgiveness. Some automobile insurance companies

in the U.S. highlight their accident forgiveness policies.9 However, some argue that the

terms are not as appealing as they seem.(Smith, 2011) One might expect that the benefit

and cost vary among policyholders with different characteristics. So it is helpful to see

whether and when accident forgiveness is welfare-improving. I will leave these counter-

factual experiments for future work.

6 Concluding Remarks

In this paper, I develop a dynamic model of individual policyholders’ accident pre-

vention and claim filing decisions, allowing for ex ante and ex post moral hazard, as well

9For example, GEICO R© and Progressive R© both offer policies that forgive the first accident.
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as unobserved heterogeneity in risk types. I estimate the model using panel data on a

random sample of MLI policyholders in China, and find it fits the data fairly well. The

model estimates imply that policyholders do not file claims for 23.83% of all accidents

that occurred, or 2.46-5.86% of total loss values. The fraction of accidents not claimed

varies greatly across experience rating classes, with policyholders in higher classes hiding

as much as 40% of all accidents. These results are consistent with hints of ex ante and ex

post moral hazard in reduced-form findings.

The model and empirical results have several limitations. The flow utility is linear

in consumption, which is partially because policyholder income is not observed in the

data and partially for computational simplicity.10 Including risk aversion in the model

could lead to a better fit of the data and potentially more interesting implications. The

model also restricts the unobserved heterogeneity to that in risk types, while previous

studies (e.g. Finkelstein and McGarry (2006)) have found evidence for multidimensional

private information in long-term care insurance markets, with one dimension being the

risk type, and the other being preference for insurance. Finally, the sample size results

in only a handful of observed claims from the highest experience rating classes, making

some estimates relatively noisy.

In addition to amending these limitations, the next step of the project is to better ex-

ploit the non-stationarity in the problem, and to develop a general equilibriummodel. By

abstracting away the timing of claims within a contract year, the current model becomes

stationary and is greatly simplified. But at the same time, it loses track of the rich dy-

namic decision process within the contract year, which, as Abbring et al. (2008) pointed

out, could provide valuable information on ex ante and ex post moral hazard. Given the

Abbring et al. (2008) model cannot be estimated, I plan to develop a non-stationary model

and follow the empirical strategy of Gilleskie (1998), which studies the health care con-

sumption and absenteeismdecision ofworkers and allows for the optimal timing of doctor

visits.

Finally, although the supply side of Chinese MLI market is highly regulated, it would

10CRRA utility functions are free of wealth effects, but cannot accommodate potentially negative con-
sumption values.
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still be interesting to develop a general equilibrium model with the insurers also making

profit-maximizing decisions when choosing what policies to offer. This is important for

studying other markets, especially for welfare analyses.
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Appendix: Supplemental Tables and Figures

Table A1: Sample Descriptive Statistics
N=9987 Mean s.e. Min Max

1{have filed claim} 0.086 0.280 0 1
Total amount of claim (thousand 2006 yuan) 9.105 100.972 0.1 2150
Age or car 3.837 2.731 1 18
1{private} 0.536 0.499 0 1
1{commercial} 0.203 0.402 0 1
1{freight car} 0.258 0.437 0 1
Baseline premium (thousand 2006 yuan) 1.006 0.693 0.1 4.7
Purchase value of car (thousand 2006 yuan) 89.051 115.958 2 2000
Avg. temperature in January (◦C) -15.687 1.783 -21 -12.4
Total annual precipitation (mm) 586.258 181.463 253.2 1389.5
Standardized avg. temperature in January 0.001 0.998 -3.2 1.6
Standardized total annual precipitation 0.000 0.999 -2.4 3.8
Initial age of car owner when first sampled 38.558 6.337 22 56
1{owner is male} 0.897 0.303 0 1
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Table A2: Model estimation results
(1) (2) (3) (4) (5) (6)

True para. Est. coeff. s.e. |bias| | biastrue | |biass.e. |

Gamma/Gompertz parameters
bg (scale parameter) 0.5 0.4781 0.1455 0.0219 0.0438 0.1505
sg (shape parameter 1) 6 6.7181 1.9631 0.7181 0.1197 0.3658
βg (shape parameter 2) 10 10.4123 1.5531 0.4123 0.0412 0.2655

Additional cost of accident (
√

additional cost
loss )

ω 1 0.9909 0.1406 0.0091 0.0091 0.0646
Marginal cost of accident prevention (good type)

constant 0.1 0.0920 0.0141 0.0080 0.0804 0.5700
car age 0.1 0.0968 0.0234 0.0032 0.0317 0.1356
car age2 -0.01 -0.0100 0.0087 0.0000 0.0006 0.0007
1{commercial} 1 1.0560 0.163 0.0560 0.0560 0.3434
January temperature -0.05 -0.0520 0.0172 0.0020 0.0393 0.1143
total precipitation 0.05 0.0527 0.0268 0.0027 0.0532 0.0992

Marginal cost of accident prevention (normal type,
√
γN − γG)

constant 0.5 0.5051 0.0994 0.0051 0.0102 0.0515
car age 0.2 0.1972 0.0222 0.0028 0.0141 0.1271
car age2 0 0.0006 0.0019 0.0006 - 0.3380
1{commercial} 0.3 0.3126 0.0182 0.0126 0.0420 0.6920
January temperature 0.1 0.1039 0.0284 0.0039 0.0391 0.1377
total precipitation 0.1 0.1048 0.0172 0.0048 0.0476 0.2765

Probability of being normal type
1{private} 1.6 1.5900 0.2037 0.0100 0.0062 0.0489
initial driver age 0.5 0.4005 0.2008 0.0995 0.1990 0.4955
Notes: b > 0 is the scale parameter of Gamma/Gompertz distribution, and s, β > 0 are the shape
parameters. The Gamma/Gompertz parameters are estimated on a subsample of 772 observations.
1{commercial} is a dummy variable indicating whether the car is for commercial use, for example taxis
and rental cars. January temperature and total precipitation are all measured at the city level, where
the temperature variable is standardized monthly average temperatures (demeaned and divided by the
standard deviation), and the precipitation variable is standardized annual total precipitation including
both rainfall and snowfall. 1{private} is a dummy variable for the car owner being an individual rather
than an organization. Initial driver age is the age of the driver when his/her car first entered the sample.
Standard errors are computed using numerical Hessian matrices from the maximum likelihood estima-
tion.
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Figure A1: Goodness-of-fit: distribution of actual losses and observed claims by class
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