Econ 704: Macroeconomic Theory I

Jeremy Greenwood

January 2020

Grading: Three Assignments.

TA: Ricardo Vieira Marto

Email: rmarto@sas.upenn.edu. Office Hours: Tuesdays (4.30-5.30pm) and Fridays (3.30-4.30pm) in PCPSE 208.

Classes: Mondays and Wednesdays, 10:30-12:00, PCPE 101

Description

This course will study some of the numerical methods that are used in modern macroeconomics. The class will learn how to solve nonlinear equations, maximization problems, difference equations, dynamic programming problems, differentiate functions numerically, integrate functions numerically, interpolate functions, smooth data, and conduct Monte Carlo simulations on the computer. This will be done while studying economic problems, such as the determination of labor supply, economic growth, and business cycle analysis. Calculus is an integral part of the course and some elementary probability theory will be drawn upon. The MATLAB programming language will be used.

The course will be evaluated on the basis of three take-home assignments. No collaboration with any person (either in or out of the class) is allowed for the take-home exams. You are also not allowed to use programs from the web. The assignments will be graded on a mixture of the skills you show in economics, mathematics and programming. A penalty is assessed for each day an assignments is late: 15% for the first day and 10% for each day thereafter. The course will also be graded on the errors in economic logic, mathematics, and computer code that you find in the class notes—keep such errors to yourself. Posting any material from this course online is prohibited.

Programming Language: MATLAB (from Mathworks)—must be used for assignments.

1 Nonlinear Equations

1.1 Methods

- Bisection Method
• Newton’s Method

1.2 Application, Labor-leisure choice

2 Maximization (and Minimization)
• Golden Section Search
• Discrete Maximization
• Particle Swarm Optimization

3 Graphing

4 Deterministic Dynamics
4.1 Method
• Extended path method
• Multiple shooting

4.2 Application, the neoclassical growth model

5 Numerical Approximations
• Numerical Differentiation
• Numerical Integration
• Random Number Generators
• Interpolation
5.1 Applications
- Welfare Cost of Business Cycles
- Welfare Gain from Personal Computers

6 Stochastic Dynamics

6.1 Methods
- Linearization Techniques
- Numerical Differentiation
- Monte Carlo Simulation
- Dynamic Programming
 - Discrete State Space
 - Quadratic Approximation
 - Coleman Algorithm
 - Markov Chains

6.2 Application, business cycles