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Abstract

The effect of sorting students based on their academic performances depends not
only on direct peer effects but also on indirect peer effects through teachers’ efforts.
Standard assumptions in the literature are insufficient to determine the effect of
sorting on the performances of students and so are silent on the effect of policies such
as tracking, implementing school choice, and voucher programs. We show that the
effect of such policies depends on the curvature of teachers’ marginal utility of effort.
We characterize conditions under which sorting increases (decreases) the total effort
of teachers and the average performance of students.

Keywords : Indirect Peer Effects, Sorting, Comparative Statics

JEL classification: I21, D47, C60

1 Introduction

We introduce a model to analyze the effect of student sorting on the total effort of teachers
and the average or total performance of students. Our model allows for both direct and
indirect peer effects. First, consider the case of homogeneous teachers who choose effort
after observing their classes’ composition. Each teacher chooses an effort based on the
distribution of students’ abilities in their classes, i.e., the teacher’s choice may depend
on the whole distribution, not just the mean of students’ abilities. The effect of sorting
on the teachers’ total effort choice is ambiguous. Because the teachers’ total effort may
increase or decrease as a result of student sorting, the effect of sorting on the average
or total performance of students is ambiguous, too. We characterize conditions on the
utility function of teachers under which the total effort of teachers strictly increases or
strictly decreases by sorting. If the teachers’ marginal utility of effort is supermodular
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(submodular) and convex (concave) in effort, then the total effort of teachers increases
(decreases) as a result of sorting of students. Subsequently, in the absence of direct peer
effects, if performance is convex (concave) in a teacher’s effort, the total performance of
an education system increases (decreases) as a result of sorting.1 We show that this result
persists even when we allow for heterogeneous teachers.

Sorting affects students’ outcomes because of peer effects. There are two types of peer
effects: direct and indirect. Direct peer effects are the result of student-to-student spillovers
(see Sacerdote (2000), Sacerdote (2011), and Epple and Romano (2011) for a review of the
literature). Indirect peer effects happen through a teacher’s effort choice (see Duflo et al.
(2011) and Todd and Wolpin (2012)). Duflo et al. (2011) report that both direct and
indirect peer effects exist in the data and that the data cannot be explained using only one
kind of peer effects.

Two types of sorting are present in an education system: within-school sorting and
between-school sorting. Within-school sorting, or tracking, is an explicit policy that sorts
students into different classes based on their abilities. Sorting between schools happens
in different ways, such as: (i) Sorting between public and private schools.2 (ii) Sorting
as a result of voucher programs.3 Chakrabarti (2009) states that “There is strong and
robust evidence in favor of stratification by ability” as a result of Milwaukee Voucher
Program. Hsieh and Urquiola (2006) report that they “find evidence that the voucher
program led to increased sorting, as the ‘best’ public school students left for the private
sector.” (iii) Standardized admissions tests. MacLeod and Urquiola (2012) state that
“the introduction of standardized admissions tests will lead to stratification by ability.”
(iv) Public information regarding schools’ qualities. Hastings and Weinstein (2007) find
that “providing parents with direct information on school test scores resulted in significantly
more parents choosing higher-scoring schools for their children.”. (v) Different school choice
policies.4 Levin (1998) reports that “evidence is consistent that educational choice leads
to greater socioeconomic (SES) and racial segregation of students.” We incorporate both
types of sorting in our model.

Our paper also contributes to the literature on comparative statics. That literature is
focused on the monotonicity of the argmax of a maximization problem;5 however, to analyze
the effect of sorting on the total performance of students, we need to understand the effect
of sorting on the total effort of teachers, which depends on supermodularity and submod-
ularity of the argmax of teachers’ utility maximization problem. We find conditions under
which the argmax of a maximization problem is strictly supermodular or strictly submod-
ular. More concretely, if the marginal utility of a teacher is supermodular (submodular)
and convex (concave) in effort, then the argmax of the teacher’s maximization problem —
the optimal effort of the teacher — is supermodular (submodular); therefore, the total per-

1Because most of the results for one set of conditions are parallel in wording to results under the other
set of conditions, instead of stating results under each set of conditions separately, we state both results in
one statement using parentheses.

2see Epple and Romano (1998) and Epple et al. (2002) for more details.
3See Barrow and Rouse (2008).
4See Avery and Pathak (2015) for the effect of implementing school choice instead of neighborhood

assignment rule on student sorting.
5See Topkis (1998), citemilgrom1994monotone, and Edlin and Shannon (1998).
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formance of all teachers increases (decreases) as a result of sorting students. In the absence
of direct peer effects, the only channel through which sorting changes the total/average
performance of students is through indirect peer effects. Hence, if teachers are putting in
more effort altogether and performance is a convex function in the teacher’s effort, then the
total/average students’ performance increases. On the other hand, if teachers are putting
in less effort altogether and performance is a concave function in the teacher’s effort, then
the total/average students’ performance decreases. We state the results for an education
system; one can use the same tools to analyze any one-to-many matching with endogenous
effort choice and evaluate the effect of different matchings. Moreover, conditions for strict
supermodularity (submodularity) of the argmax are derived for a general maximization
problem; hence, these results can be used in any maximization problem that has the same
structure.

Sorting increases inequality in students’ performances; however, if the marginal utility
of teachers is supermodular and convex in effort, sorting increases the total/average per-
formance of students. In this situation, sorting is desirable under the Utilitarian welfare
function. On the other hand, if the marginal utility of teachers is submodular and con-
cave in effort, sorting decreases the total/average performance of students and increases
inequality in students’ performances. In this situation, sorting reduces both the Utilitarian
welfare function and the Rawlsian welfare function. Affirmative action policies have the
opposite effect of sorting, i.e., these policies reduce sorting; therefore, in this situation,
affirmative action policies increase both the Utilitarian welfare function and the Rawlsian
welfare function.

The effect of sorting on the total/average performance through the channel of indirect
peer effects is robust, whether direct peer effects exist, even when teachers are heterogeneous
in quality and utility function. Furthermore, if teachers are heterogeneous and classes are
sorted, the standard results regarding the benefit of positive assortative matching (PAM)
versus negative assortative matching (NAM) may not hold.6 We show that even if the
performance function of classes and the utility of teachers are supermodular, the total
performance of students can be higher under negative assortative matching compared with
positive assortative matching. Moreover, inequality is lower under negative assortative
matching compared to positive assortative matching. To put it differently, the value of
the Utilitarian welfare function and the Rawlsian welfare function are higher under NAM
compared with PAM.

The effectiveness of monetary incentives on teachers’ effort choices is debated in the
literature. There is some evidence of a positive effect of monetary incentives in developing
countries (Lavy (2002)). However, in developed countries such as the U.S., the evidence
suggests that monetary incentives have an insignificant effect on teachers’ effort choices
(Fryer (2013)). We consider the U.S. as the main application, i.e., monetary incentives don’t
affect teachers’ effort choices. Under a pay-per-performance system in which a teacher’s
wage depends on the performance of his/her students, sorting has an impact on the budget
of the education system and results in inequality in teachers’ salaries. Sorting increases
inequality in teachers’ salaries when teachers are homogeneous and wage increases are based
on students’ performances. Sorting increases (decreases) the total payment to teachers if the

6See Tincani (2014).
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total students’ performance increases (decreases) and payment to teachers is an increasing
and a convex (concave) function of class performance. Our model can incorporate monetary
incentives, too. We consider a general utility function that can incorporate monetary
incentives; hence, we can analyze the effect of sorting under different monetary incentive
systems.

In section 2, we set up the model and develop the required mathematical tool to handle
the student sorting problem. In section 3, we analyze the effect of student sorting on the
total effort of teachers by finding conditions on the utility function of teachers such that
the argmax of their utility maximization problem is supermodular (submodular). Subse-
quently in section 4, we show how sorting affects students’ outcomes under three settings:
(1) homogeneous teacher with indirect peer effects, (2) homogeneous teacher with direct
indirect peer effects, and (3) heterogeneous teacher with direct and indirect peer effects.

2 Model

Let T be a finite set of homogeneous teachers and I a finite set of students, where |I| = n|T |.
A student i ∈ I has a type θi ∈ R+. The type can represent a student’s ability, the prior
year’s test score, parents’ education/income, or any other characteristic that affects the
students’ performance. We interpret type as ability.

A matching is an assignment of students to teachers, denoted by µ : T → I, such that
|µ(t)| = n, where n is the size of the class. Each student is assigned to only one teacher,
i.e., µ−1(i) is a function. We denote a class by the profile of types θ ∈ Rn

+ assigned to it.
We denote the class assigned to teacher t by θt = (θi)i∈µ(t).

There is a measure of performance for each student i ∈ µ(t), denoted by p(et, θi, θ
t). We

interpret a student’s performance as his/her end-of-year test score. There is an aggregate
measure of performance for each class t, denoted by p(et, θ

t). We consider the aggregate
measure of performance for each class as the average performances of students in that class.

Teacher t ∈ T chooses an effort et ∈ [0, 1]. Each teacher gets a payment — wage plus
bonus — based on the aggregate performance of the class, denoted by w(p(et, θ

t)).7 Each
teacher t has a utility function f(et, θ

t). The utility function is the same for all teachers.8

f(et, θ
t) represents the induced utility of a teacher; the utility of a teacher may depend on

the performance of his/her class, his/her wage, and the amount of effort he/she exerts.9

We assume that the wage structure is fixed; hence, if the utility of a teacher depends on the
wage, then f(e, θ) is the induced utility function for a fixed wage structure. The marginal
utility of effort at e = 1 is strictly negative for any class θ. The marginal utility of effort
at e = 0 is strictly positive for any class θ.

7Wage can be a constant function.
8We relax this assumption in section 4.3.
9For example, the utility function of a teacher can be the non pecuniary utility that he/she gets from

his/her class’s performance minus the cost of effort, i.e., f(e, θ) = u(p(e, θ))− c(e). The cost of effort may
depend on effort and the class composition, i.e., f(e, θ) = u(p(e, θ)) − c(e, θ). The utility function of a
teacher may include the utility he/she gets from wages or bonuses plus the non pecuniary utility that he/she
gets from his/her class’s performance minus the cost of effort, i.e., f(e, θ) = u(p(e, θ))+v(w(p(e, θ)))−c(e).
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We assume that a teacher’s utility function and performance of his/her class are sym-
metric functions in students’ type, i.e., any permutation of a class θ generates the same
performance and utility for a teacher: if θ′ is a permutation of θ, then:

f(e, θ) = f(e, θ′), p(e, θi, θ) = p(e, θi, θ
′), and p(e, θ) = p(e, θ′).

We assume a teacher’s utility function and the performance of his/her class are three times
continuously differentiable, i.e., f(e, θ), p(e, θ) ∈ C3.

First, we define sorting of two classes, and then we show the mathematical relationship
between sorting and the coordinate-wise maximum and minimum of two classes. We order
all the students in the two classes by their types, and then we put the top half of students
in one class and bottom half in the other class. This process is called sorting.10

One-step sorting of two classes is defined as the coordinate-wise maximum and minimum
of two classes:

∀θ, θ† : θ′ = θ ∨ θ†, θ′′ = θ ∧ θ†,

where for any two vectors θ = (θ1, ..., θn), θ† = (θ†1, ..., θ
†
n):

θ ∨ θ† = (max(θ1, θ
†
1), ...,max(θn, θ

†
n)), θ ∧ θ† = (min(θ1, θ

†
1), ...,min(θn, θ

†
n)).

Lemma 1 There exists a reordering of two classes such that sorting is achieved by one-step
sorting.

Proof: In the appendix.
For any class θ, define θ̃ as the reordering of the vector θ in descending order, i.e., the

permutation of the class in which the first element is the greatest type in the class, the
second element is the second greatest type in the class, and so on: θ̃ = (θ̃1, . . . , θ̃n) such
that θ̃i ≥ θ̃i+1 ∀i = 1, . . . , n − 1. Given this reordering of the two classes θ1, θ2, define a
partial ordering of two classes �∗ as the vector ordering in Rn:

θ1 �∗ θ2 ⇔ θ̃1
i ≥ θ̃2

i ∀i = 1, . . . , n, (1)

we call θ1 a better class than θ2. Note that after sorting of two classes θ, θ†, the sorted
classes θ′, θ′′, have the following property:

θ �∗ θ′, θ† �∗ θ′, θ′′ �∗ θ, θ′′ �∗ θ†.

We call θ′ the lower track and θ′′ the higher track. Observe that the higher track is a better
class than the lower track.

These two classes can be in one school or in two different schools. The former represents
within-school sorting; The latter represents between-school sorting. In between-school sort-
ing, every class in one school is a better class than any class in the other school (based on
the partial order �∗ defined in (1)). However, we may be unable to order two classes in the

10This process is called sorting only if the two new classes have different student compositions than they
did before sorting.
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same school (based on the partial order �∗) after between-school sorting. All the following
results hold for both between-school sorting and within-school sorting.

A function h : Rn → R is supermodular if it is pairwise supermodular in any of its
two arguments, i.e., the cross-partial derivatives in any of its two arguments are positive.11

For example, p(e, θ) is supermodular if peθi(e, θ) ≥ 0, pθiθj(e, θ) ≥ 0 ∀i, j ∈ I,∀e, ∀θ.
If the performance function is supermodular then two types of complementarities exist:
complementarity between effort of the teacher and a student’s ability and complementarity
between students’ abilities. If cross-partials are strictly positive, then the function is strictly
supermodular. A function is modular if the cross-partial derivatives in any of its two
arguments are zero. For example, p(e, θ) is modular if peθi(e, θ) = 0, pθiθj(e, θ) = 0, ∀e ∈
[0, 1] ∀i, j, θi ∈ R+, θj ∈ R+. A function is submodular if it is pairwise submodular in
any of its two arguments, i.e., the cross-partial derivatives in any of its two arguments
are negative. For example, p(e, θ) is submodular if peθi(e, θ) ≤ 0, pθiθj(e, θ) ≤ 0 ∀i, j ∈
I,∀e, ∀θ. If cross-partials are strictly negative, then the function is strictly submodular.

3 Characterizing Teachers’ Optimal Efforts

In this section, we characterize the conditions under which the argmax of a maximization
problem is strictly supermodular or strictly submodular.12 Furthermore, these conditions
determine the effect of sorting on the total effort of teachers. Each teacher maximizes
a utility function; the argmax of a teacher’s maximization problem is his/her optimal
effort, which is unique under the following assumption (Assumption 1). We show that
if the marginal utility of effort is supermodular and convex in effort, then the argmax is
supermodular. Subsequently, we show that sorting increases the total effort of teachers
in this case. Similarly, we show that if the marginal utility of effort is submodular and
concave in effort, then the argmax is submodular. We conclude that sorting decreases the
total effort of teachers in this case.

Assumption 1

i) A teacher’s utility function is pairwise supermodular in effort and each student’s type,
i.e., feθi(e, θ) ≥ 0 ∀i, e ∈ [0, 1], θ ∈ Rn

+.

ii) Performance is strictly increasing in the effort of teacher and each student’s type, i.e.,
pe(e, θ) > 0, pθi(e, θ) > 0.

iii) fee(e, θ) < 0, teachers’ utility function is strictly concave in effort.

Assumption 1-i captures a complementarity between a teacher’s effort and a student’s type
in teacher’s utility function. To put it differently, the marginal utility of effort is increasing
in a student’s type. Assumption 1-ii states that the performance of a class increases as
the teacher puts in more effort or as the ability of a student increases. Assumption 1-iii
ensures that a teacher’s maximization problem has a unique interior solution given by the

11See Topkis (1998).
12We consider only maximization problems that have a unique argmax.

6



first-order condition, i.e., a teacher chooses an effort such that the marginal utility of effort
is zero.

Given Assumption 1, increasing a student’s type — having a better class — results in
a higher effort by the teacher. The following lemma shows this result formally.

Lemma 2 Given Assumption 1, the optimal effort of a teacher (e∗(θ) = argmaxe∈[0,1]f(e, θ))
is increasing in any student’s type.

Proof: Increasing any student’s type in a class results in a better class: θi ≥ θ′i∀i⇒ θ �∗
θ′. Using the Topkis theorem, we have θ �∗ θ′ ⇒ e∗(θ) ≥ e∗(θ′).

Consider two classes with two teachers. After sorting, the two teachers are assigned
to two new sorted classes, the higher track and the lower track. The teacher assigned
to the higher track puts in more effort after sorting because the higher track is a better
class compared with both initial classes, based on the partial order defined in (1). Sorting
increases the effort of the teacher assigned to the higher track and decreases the effort of
the teacher assigned to the lower track. Hence, every student in the higher track has a
higher performance after sorting, and every student in lower track has a lower performance
after sorting. We call this an increase in inequality of students’ performances.

Proposition 1 Given Assumption 1, sorting increases inequality in students’ performances,
i.e., every student in the higher track has a higher performance after sorting, and every stu-
dent in the lower track has a lower performance after sorting.

Proof: By Lemma 2, a teacher’s effort increases in the higher track. Because performance
is increasing in teacher’s effort, every student in the higher track has a higher performance
after sorting. Similarly for students in the lower track, performance decreases after sorting.

Corollary 1 Under the Rawlsian welfare function, i.e., Max-Min of all students’ perfor-
mances, sorting decreases welfare.

The effect of sorting on the total performance of students, under standard assumptions
used in the literature, is ambiguous.

Example 1 (Value-added system) This example is inspired by the value-added measure
used in Koedel et al. (2015). Suppose p(e, θi, θ) = eθi and

P (e, θ) =
1

n

∑
i∈µ(t)

p(e, θi, θ)− p′(θi)

 ,

where p′(θi) is student i’s last year’s test score. This performance function measures the
average of a teacher’s contribution to the increase in the students’ scores from their scores
from last year. Consider the following utility function:

f(e, θ) = u(P (e, θ))− c(e).
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Suppose u′(.) > 0, u′′(.) < 0, c′(.) > 0, c′′(.) ≥ 0, and c′′′(.) ≥ 0.
If u′′′(.) ≤ 0, then sorting decreases the total performance of students; however, if

u′′′(.) ≥ ζ13, then sorting increases the total performance of students. (The proof is in the
appendix.)

To understand the effect of sorting on the average/total performance of students, first
we need to analyze another problem: What is the effect of sorting on the total effort
of teachers? In the following theorem, we show that if the marginal utility of effort is
supermodular and convex in effort, then the argmax of a teacher’s utility maximization
problem — the optimal effort of a teacher — is strictly supermodular. Under this condition,
sorting increases the total effort of teachers. Similarly, if the marginal utility of effort is
submodular and concave in effort, then the argmax of the teacher’s utility maximization
problem — the optimal effort of a teacher — is strictly submodular.

Condition 1 The marginal utility of effort is supermodular and convex in effort:

feθiθj(e, θ) ≥ 0, feeθi(e, θ) ≥ 0, feee(e, θ) ≥ 0,∀e ∈ [0, 1], i, j, θi ∈ R+, θj ∈ R+,

with at least one strict inequality.

Condition 2 The marginal utility of effort is submodular and concave in effort:

feθiθj(e, θ) ≤ 0, feeθi(e, θ) ≤ 0, feee(e, θ) ≤ 0,∀e ∈ [0, 1], i, j, θi ∈ R+, θj ∈ R+,

with at least one strict inequality.

Theorem 1

1. If Condition 1 is satisfied, then the optimal effort is strictly supermodular.

2. If Condition 2 is satisfied, then the optimal effort is strictly submodular.

Proof: In the appendix.
Theorem 1 holds under weaker conditions, which we characterize in the appendix.
The following thought experiment shows the effect of each inequality in Condition 1 on

the teacher’s total effort. Consider a teacher assigned to two identical classes. The teacher
chooses an effort level such that the marginal utility of effort is zero, e∗ in Figure 1, for
both classes. Hence, the total effort is 2e∗. After sorting, the teacher’s marginal utility
changes in both classes. More concretely, the teacher’s marginal utility in the higher track
shifts upward and in the lower track shifts downward at e∗. Suppose these two shifts are
equal, i.e., s1 = s2 in Figure 1. Because the marginal utility of effort is convex, recall that
feee(e, θ) ≥ 0, the increase in the teacher’s optimal effort in the higher track is more than
the decrease in the teacher’s optimal effort in the lower track, i.e., eh − e∗ ≥ e∗ − el in
Figure 1, with strict inequality if the marginal utility of effort is strictly convex.

On top of that, feθiθj(e, θ) ≥ 0 ensures that the marginal utility of effort is supermodular
in students’ type. Therefore, the upward shift in the marginal utility function in the higher

8



Figure 1: The teacher’s marginal utility of effort is convex.

Figure 2: The teacher’s marginal utility of effort is pairwise supermodular in students’ type
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Figure 3: The teacher’s marginal utility of effort is pairwise supermodular in the teacher’s
effort and student’s type.

track is greater than or equal to the downward shift in the teacher’s marginal utility of
effort in the lower track, s1 ≥ s2 in Figure 2. This implies that eh − e∗ ≥ e∗ − el in Figure
2, with strict inequality if the marginal utility of effort is strictly supermodular.

feeθi(e, θ) ≥ 0 ensures that the slope of the marginal utility of effort for the teacher in
the higher track is greater than or equal to the slope of the marginal utility of effort for the
teacher in the lower track. To put it differently, in Figure 3, the marginal utility of effort
for the higher track is flatter than the marginal utility of effort before sorting, which is
flatter than the marginal utility of effort for the lower track. Hence, the teacher’s optimal
effort in the lower track, e∗l , is to the right of el, and the teacher’s optimal effort in the
higher track, e∗h, is to the right of eh. Therefore, e∗h − e∗ ≥ e∗ − e∗l with strict inequality
if feeθi(e, θ) ≥ 0 holds with strict inequality. To conclude, each of the three inequalities in
Condition 1 ensure that the total effort of the teacher increases after sorting. We state the
result for any initial class composition in the following proposition.

Proposition 2

1. Given Condition 1, sorting strictly increases the total effort of teachers.

2. Given Condition 2, sorting strictly decreases the total effort of teachers.

Proof:

1. By Lemma 1, sorting is the result of repeating the one-step sorting process. At each
step, by Theorem 1, the total effort strictly increases if a class composition changes.
Hence, sorting strictly increases the total effort of teachers.

13ζ > max{−u′′(.)
(
2n
e

)
, c′′′}
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2. By Lemma 1, sorting is repeating the one-step sorting process. At each step, by
Theorem 1, the total effort strictly decreases if a class composition changes. Hence,
sorting strictly decreases the total effort of teachers.

4 Impact of Sorting on Students’ Performances

In this section, we characterize the effect of sorting on the average of students’ performances
under three different settings: (1) only indirect peer effects exist; (2) both direct and
indirect peer effects exist; and (3) teachers are heterogeneous in quality and utility function,
and both direct and indirect peer effects exist.

First, we consider a setting with homogeneous teachers and without direct peer effects.
The only impact of sorting on students’ performances is through indirect peer effects. Using
the characterization of the total effort of teachers after sorting, we can characterize the
effect of sorting on the average of students’ performances. If teachers are putting in more
(less) effort in total and the performance function is convex (concave) in effort, then the
total/average students’ performance increases (decreases). This setting allows us to isolate
the effect of teachers’ effort and the role of the curvature of the teachers’ marginal utility
function in answering our main question: Does sorting increase or decrease the average
performances of students? Is sorting a desirable outcome based on the utilitarian welfare
criterion?

Second, we consider a setting with both direct and indirect peer effects with homoge-
neous teachers. Duflo et al. (2011) report that both direct and indirect peer effects exist in
the data and that excluding either is inconsistent with their data. Sorting has two effects
on the average of students’ performances. If both effects go in the same direction then we
can determine whether sorting increases or decreases the average of students’ performances.
However, if these two effects go in opposite directions, then the effect of sorting depends on
the magnitude of each effect; we provide a general method to evaluate the effect of sorting
on average students’ performances in this case.

Third, we consider a general environment in which teachers have different qualities
and utility functions, and both direct and indirect peer effects exist. We show that — by
extending Assumption 1, Condition 1, and Condition 2 to include teachers’ type — the
previous results are robust. Furthermore, if classes are ordered by the partial ordering �∗
defined in (1), we can analyze the welfare implications of positive assortative matching
(PAM) of teachers and classes compared with negative assortative matching (NAM) of
teachers and classes. The curvature of the marginal utility of effort of teachers has an
important impact on this welfare comparison. There are simple examples in which the
usual results about the benefits of PAM compared with NAM don’t hold. More precisely,
in these examples, switching from PAM to NAM decreases the inequality and increases the
average performances of students, i.e., increases both the utilitarian welfare function and
the Rawlsian welfare function.
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4.1 Indirect Peer Effects

Consider an environment in which all teachers have the same quality and utility function.
Suppose there is no direct peer effect.14 What is the effect of sorting on the total students’
performance in this environment? Can we increase the average performance of students
by changing the composition of the classes? In other words, which matching of students
to classes maximizes the total performance of students? In this subsection,we show that
the answers to these question depend on the curvature of the marginal utility of effort of
teachers. More concretely, if Condition 1 is satisfied and performance is convex in effort,
sorting increases the total performance of students, i.e., sorting is a desirable outcome based
on the utilitarian criterion. On the other hand, if Condition 2 is satisfied and performance
is concave in effort, sorting is the least desirable matching of students to classes under both
the utilitarian and the Rawlsian criteria.

Suppose there is no direct peer effect, i.e., peθi(e, θ) = 0, pθiθj(e, θ) = 0 ∀e ∈ [0, 1], i, j, θi ∈
R+, θj ∈ R+. Then, the only effect of sorting on students’ performances is through indi-
rect peer effects. The direction of indirect peer effects depends on whether Condition 1 is
satisfied and performance is convex in effort or Condition 2 is satisfied and performance is
concave in effort. Under the former, teachers put in more effort in total, and the composi-
tion of classes for a fixed level effort doesn’t affect the total performance of these classes;
therefore, sorting increases the total performance. Under the latter, teachers put in less
effort in total; hence, sorting decreases total performance.

Theorem 2

1. If Condition 1 holds and performance is modular and convex in effort, sorting strictly
increases the total performance of students.

2. If Condition 2 holds and performance is modular and concave in effort, sorting strictly
decreases the total performance of students.

Proof: In the appendix.
The proof specifies a general method for analyzing other situations as well; for example,

when Condition 1 is satisfied but performance is concave in effort. Simply put, if equation
(5) defined in the appendix is positive (negative), then sorting increases (decreases) the
total performance.

Note that even when there is no direct peer effect and the total effort of teachers
increases, the total performance may increase or decrease by sorting. For example, con-
sider two teachers who exert the same level of effort for two identical classes; one teacher
increases his/her effort by an amount equal to the amount by which the other teacher
decreases his/her effort. The total performance of these two classes (strictly) increases if
the performance function is (strictly) convex and (strictly) decreases if the performance
function is (strictly) concave.

If Condition 1 holds and performance is modular and convex in effort, the effect of
sorting depends on the welfare function that we use, i.e., based on different welfare ob-
jectives sorting maybe desirable or undesirable. If Condition 2 holds and performance is

14See Foster (2006).
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modular and convex in effort, sorting results in the worst classes’ compositions among all
other classes’ compositions. Therefore, a policymaker needs to consider the curvature of a
teacher’s marginal utility of effort in order to make a decision that increases or decreases
the sorting of students.

Corollary 2

1. If condition 1 holds and performance is modular and convex in effort, sorting improves
the utilitarian welfare function but decreases the Rawlsian welfare function.

2. If condition 2 holds and performance is modular and concave in effort, sorting de-
creases both the utilitarian welfare function and the Rawlsian welfare function.

Because sorting changes the performance of classes, under a pay-per-performance sys-
tem, sorting has an effect on the total payment to teachers — budget of an education
system — and on inequality in payments to teachers. For example, under the value-added
system in the U.S. education system, tracking increases teachers’ income inequality; how-
ever, it may increase or decrease the average payment to teachers. The following corollary
states these effects formally.

Corollary 3

1. If Condition 1 holds, performance is modular and convex in effort, and payment
to teachers is an increasing and convex function of class performance, then sorting
strictly increases the total payment to teachers.

2. If Condition 2 holds, performance is modular and concave in effort, and payment
to teachers is an increasing and concave function of class performance, then sorting
strictly decreases the total payment to teachers.

3. If payment to teachers is an increasing function of class performance, then sorting
strictly increases inequality in teachers’ payments.

4.2 Direct and Indirect Peer Effects

Suppose both direct and indirect peer effects are present. Direct and indirect peer effects
may affect the total performances of students after sorting in the same direction or in
opposite directions. If both direct and indirect peer effects increases (decrease) the total
performances of students, then the effect of sorting is clear, which we state in the following
theorem. On the other hand, if they have the opposite effect on the total performances of
students, then the effect of sorting on the total performance depends on the magnitude of
direct versus indirect peer effects. We provide a general method to evaluate the effect of
sorting on the total performances of students when the direct and indirect peer effects have
the opposite effect on the total performances of students.

Theorem 3

13



1. If Condition 1 holds and performance is increasing, supermodular, and convex in
effort, sorting strictly increases the total performance of students.

2. If Condition 2 holds and performance is increasing, submodular, and concave in effort,
sorting strictly decreases the total performance of students.

Proof: In the appendix.
Note that Proposition 1 and Corollary 1 hold in this subsection. Hence, sorting increases

inequality in students’ performance.

Corollary 4

1. If Condition 1 holds and performance is increasing, supermodular, and convex in
effort, sorting improves the utilitarian welfare but decreases the Rawlsian welfare.

2. If Condition 2 holds and performance is increasing, submodular, and concave in effort,
sorting decreases both the utilitarian welfare and the Rawlsian welfare.

Consider a situation in which sorting increases the total performances of students be-
cause of direct peer effects but decreases the total performances of students because of
indirect peer effects. The effect of sorting on the total performance depends on the mag-
nitude of these two forces. A general method for finding the effect of the tradeoff between
direct and indirect peer effects for any performance function p(e, θ) and any utility function
f(e, θ) is:
Step 1: Use equation (7) in the appendix to find the sign of the function Ψ(e, θ), which is
defined in equation (7) in the appendix.
Step 2: If Ψ(e, θ) is positive everywhere, then sorting increases the total performance; if
Ψ(e, θ) is negative everywhere, then sorting decreases the total performance (proof in the
appendix).
Step 3: If the sign of Ψ(e, θ) is unclear for all effort levels and class compositions, we can
find the sign of Ψ(e, θ) for a given level of effort and a given class composition. If Ψ(e, θ)
is positive, then sorting increases the total performance at the given effort level and class
composition; if Ψ(e, θ) is negative, then sorting decreases the total performance at the given
effort level and class composition.

In Theorems 2 and 3, we used Assumption 1; specifically, we used the assumption that
pθi ≥ 0 and feθi > 0. Note that we can define the order on θi such that pθi ≥ 0 holds. To put
it differently, assumption of pθi ≥ 0 is without loss of generality; however, the assumption
that both pθi and feθi are strictly positive is not without loss of generality. One can relax
this assumption: suppose teachers prefer low-ability students, i.e., suppose feθi < 0. Then
the optimal effort of a teacher is decreasing in a student’s type. Moreover, we can use the
general method, i.e., finding the sign of Ψ(e, θ), to determine the effect of sorting on the
total performance of students in this situation.

Using the results from Theorem 3, we can specify the effect of sorting on the teachers’
payment when both direct and indirect peer effects exist.

Corollary 5
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1. If Condition 1 holds, performance is increasing and supermodular, and payment to
teachers is an increasing and convex function of class performance, then sorting
strictly increases the total payment to teachers.

2. If Condition 2 holds, performance is increasing and submodular, and payment to
teachers is an increasing and concave function of class performance, then sorting
strictly decreases the total payment to teachers.

3. If payment to teachers is an increasing function of class performance, then sorting
strictly increases inequality in teachers’ payments.

4.3 Heterogeneous Teachers and Direct and Indirect Peer Effects

Suppose each teacher has a quality — teacher’s type — qt ∈ R+ that enters the performance
function and teachers’ utility function, i.e., teachers’ utility function is f(e, q, θ) and the
performance of a class is p(e, q, θ). We extend Assumption 1 and Conditions 1 and 2 to
include the teachers’ type as well.

Assumption 2 A teacher’s utility function is pairwise supermodular in effort and the
teacher’s type, i.e., feq(e, q, θ) ≥ 0 ∀e ∈ [0, 1], q ∈ R+, θ ∈ Rn

+.

Condition 3 The marginal utility of effort is supermodular and convex in effort, i.e.,

feqθi ≥ 0, feeq ≥ 0, feθiθj ≥ 0, feeθi ≥ 0, feee ≥ 0,∀e ∈ [0, 1],∀θ ∈ Rn
+, ∀q ∈ R+,

with at least one strict inequality.

Condition 4 The marginal utility of effort is submodular and concave in effort, i.e.,

feqθi ≤ 0, feeq ≤ 0, feθiθj ≤ 0, feeθi ≤ 0, feee ≤ 0,∀e ∈ [0, 1],∀θ ∈ Rn
+, ∀q ∈ R+,

with at least one strict inequality.

We maintain the assumption of anonymity for students of a class, i.e., teachers’ utility
functions and the performance of a class are symmetric functions in students’ types. The
one-step sorting is defined as before with the assignment of the higher-quality teacher to the
upper track. Sorting is defined as: Order all the students in the two classes by their types,
then put the top half of the students in one class with the teacher who has the higher
quality and put the bottom half in the other class with the teacher who has the lower
type. If the two new classes have different student and teacher compositions as did the
two classes before sorting, then this process is called sorting. After sorting of two classes,
we can order the students of these classes by the binary relation �∗ defined in (1). Define
student sorting with positive assortative matching(PAM) as the sorting of students of two
classes and assigning the higher-quality teacher to the higher-track class and the lower-
type teacher to the lower-track class. Sorting is equivalent to student sorting with PAM.
Similarly, define student sorting with negative assortative matching(NAM) as the sorting
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of students of two classes and assigning the lower-quality teacher to the higher-track class
and the higher-quality teacher to the lower-track class.

The following theorem states the parallel result of Theorem 2 when teachers are hetero-
geneous. We drive the result parallel to Proposition 2 — the effect of sorting on the total
teachers’ effort — in the appendix.

Theorem 4 Given Assumptions 1 and 2:

1. If Condition 3 holds and performance is supermodular and convex, sorting of two
classes increases the total performance.

2. If Condition 4 holds and performance is submodular and concave, sorting of two
classes decreases the total performance.

Proof: In the appendix.
As we stated in Corollary 3, under a pay-per-performance system — such as the value-

added system in the U.S. — sorting changes the inequality in teachers’ payment and the
total payment to teachers.

Corollary 6 Suppose Assumptions 1 and 2 are satisfied.

1. If Condition 3 holds, performance is supermodular and convex, and payment to teach-
ers is an increasing and convex function of class performance, then sorting strictly
increases the total payment to teachers.

2. If Condition 4 holds, performance is submodular and concave, and payment to teach-
ers is an increasing and concave function of class performance, then sorting strictly
decreases the total payment to teachers.

3. If payment to teachers is an increasing function of class performance, then sorting
strictly increases inequality in teachers’ payments.

Changing the matching from PAM to NAM when students are sorted — or classes are
ordered by the binary relationship �∗ defined in (1) — has the opposite effect of sorting.
The following theorem shows one implication of such a change in the matching of classes
and teachers. Note that the standard assumption on supermodularity or submodularity
of the performance function is insufficient for analyzing the advantage or disadvantage of
PAM versus NAM.

Theorem 5 Suppose Assumptions 1 and 2 and Condition 4 are satisfied and performance
is submodular and concave:

1. The total performance under student sorting with NAM is higher than student sorting
with PAM.

2. Inequality in students’ performance under student sorting with NAM is lower than
student sorting with PAM.

Proof: In the appendix.
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Corollary 7 Suppose Assumptions 1 and 2 and Condition 4 are satisfied and perfor-
mance is submodular and concave:

1. The total payment to teachers under student sorting with NAM is higher than student
sorting with PAM.

2. Inequality in teachers’ payment under student sorting with NAM is lower than student
sorting with PAM.

Remark 1 Affirmative Action:
Let I be a set of students and each student belongs to either the minority group or the
majority group. These students are assigned to two classes θ1, θ2, such that θ1 �∗ θ2.
Suppose the percentage of minority students in class θ1 in less than φ and the percentage
of minority students in class θ2 is more than φ.

Affirmative action policies such as implementing a quota, i.e., assigning at least φ per-
cent of seats to minority students in each class, have the opposite effect of sorting. Denote
the two classes after implementing quotas by θ1

a,θ
2
a. The following relation between these

classes hold: θ1 �∗ θ1
a, θ

2 �∗ θ1
a, θ

2
a �∗ θ2 , and θ2

a �∗ θ1. Affirmative action policies have
the opposite effect of sorting on the total/average effort of teachers and the total/average
performance of students in Proposition 2 and Theorems 2, 3, and 4.

5 Conclusion

We model an education system in which teachers choose their effort level based on the whole
distribution of students, not only the mean of students’ abilities. Furthermore, in our model
both direct and indirect peer effects exist. The model incorporates both between-school
sorting and within-school sorting, i.e., tracking.

We show that the standard assumptions in the literature are insufficient to understand
the effect of sorting on the total effort of teachers and the total performance of students.
We show that the change in the total performance of students after sorting depends on
teachers’ utility function. Even in the absence of direct peer effects, when teachers are
homogeneous, sorting has an effect on the total effort of teachers and the total performance
of students that depends on the curvature of teachers’ marginal utility of effort.

We characterize conditions on the utility function of a teacher under which the optimal
effort of a teacher is strictly supermodular. Under these conditions, sorting increases the
total effort of teachers and the total performance of students, even though sorting increases
inequality in students’ performances. Therefore, under these conditions, how one evaluates
the effect of sorting on students’ performances depends on the welfare criteria chosen,
i.e., under the Utilitarian criterion, sorting increases welfare; however, under the Rawlsian
criterion, sorting decreases welfare. Similarly, we characterize conditions on the utility
function of a teacher under which the optimal effort of a teacher is strictly submodular.
Under these conditions, under both welfare criteria, any assignment of students to teachers
is strictly preferred to sorting.
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Appendix A Proofs of Results

Proof of Lemma 1
Proof: Consider two classes θ′ = (θ′1, ..., θ

′
n) and θ′′ = (θ′′1 , ..., θ

′′
n). Order all elements of

these two vectors in descending order, denoted by θ̄1, θ̄2, ..., θ̄2n, i.e., θ̄1 is greater than or
equal to all elements of both classes, θ̄2 is the second greatest element of all elements of
both classes, and so on. θ̄1 is either in class θ′ or in class θ′′. Consider the permutation
of these two classes such that θ̄1 is the first element of one these two classes. Similarly θ̄2

is either class θ′ or in class θ′′. Consider the permutation of these two classes such that
θ̄1 is the first element of one of these two classes and θ̄2 is the second element of one of
these two classes. We can do the same for θ̄1, θ̄2, ..., θ̄n. Therefore, we have a permutation
of two classes, where θ̄1 is the first element of one class. Moreover, the first element of
the other class is one of the following: θ̄n+1, θ̄n+2, ..., θ̄2n. Note that θ̄1 ≥ θ̄n+1, θ̄n+2, ..., θ̄2n.
Similarly, θ̄2 is the second element of one of the two classes, and the second element of
the other class is one of θ̄n+1, θ̄n+2, ..., θ̄2n. The same is true for any element i between 1
and n. θ̄i is the ith element of one these classes, and the ith element of the other class is
one of θ̄n+1, θ̄n+2, ..., θ̄2n. Furthermore, θ̄i ≥ θ̄n+1, θ̄n+2, ..., θ̄2n. Hence, using coordinate-wise
maximum and minimum on these permutations results in having θ̄1, θ̄2, ..., θ̄n in one class
and θ̄n+1, θ̄n+2, ..., θ̄2n in the other class. Therefore, by using these permutations for these
two classes, one-step sorting is equivalent to sorting.

Proof of Example 1
Define θ̄ = ( 1

n
)
∑

i∈µ(t) θi. We have:

Pθi = e
n
.

Pe = θ̄.

fθi = e
n
u′(.).

fθi,θj = ( e
n
)2u′′(.).

fθi,θj ,e = 2( e
n
)u′′(.) + θ̄( e

n
)2u′′′(.).

fe = θ̄u′(.)− ce.
fe,e = (θ̄)2u′′(.)− ce,e.
fe,e,e = (θ̄)3u′′′(.)− ce,e,e.
fθi,e,e = 2

n
(θ̄)u′′(.) + e

n
(θ̄)2u′′′(.).

Note that fθi,θj ,e and fθi,e,e are strictly negative, and fe,e,e is negative. Therefore, Con-
dition 2 is satisfied.

P ∗i = Peei + pi

P ∗i,j = pe,eeiej + pe,jei + peei,j + pe,iej + Pi,j

= 1
n
(ei + ej) + θ̄ei,j.
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Want to show P ∗i,j < 0:

1
n
(ei + ej) + θ̄ei,j ⇔ 2ei < −nθ̄ei,j

⇔ −2
fe,i
fe,e

< −nθ̄ −1
f3e,e

(Φ)

⇔ 2fe,i < −nθ̄ 1
f2e,e

(Φ)

⇔ 2
nθ̄
< −(Φ)

f2e,efe,i
,

where

−Φ = −f 2
e,efe,θi,θj − fe,e,efe,θife,θj + fe,e,θife,θjfe,e + fe,e,θjfe,θife,e

= −f 2
e,efe,θi,θj − fe,e,efe,θife,θj + 2fe,e,θife,θjfe,e.

Note that

−f 2
e,efe,θi,θj ≥ 0,−fe,e,efe,θife,θj ≥ 0.

Therefore,

−Φ ≥ 2fe,e,θife,θjfe,e.

Because f 2
e,efe,i ≥ 0, it is enough to show:

2

nθ̄
<

2fe,e,θife,θjfe,e

f 2
e,efe,i

⇔ 1

nθ̄
<
fe,e,θi
fe,e

.

Note that fe,e = (θ̄)2u′′(.) − ce,e and ce,e > 0; hence, fe,e ≤ (θ̄)2u′′(.). Therefore,
fe,e,θi
fe,e

≥
fe,e,θi

(θ̄)2u′′(.)
. It is enough to show:

1
nθ̄
<

fe,e,θi
(θ̄)2u′′(.)

⇔ 1
n
<

fe,e,θi
(θ̄)u′′(.)

=
2
n

(θ̄)u′′(.)+ e
n

(θ̄)2u′′′(.)

(θ̄)u′′(.)

= 2
n

+
e
n

(θ̄)2u′′′(.)

(θ̄)u′′(.)

= 2
n

+
e
n

(θ̄)2

(θ̄)

u′′′(.)
u′′(.)

.

Because u′′′(.)
u′′(.)

≥ 0, we have:

2

n
+

e
n
(θ̄)2

(θ̄)

u′′′(.)

u′′(.)
>

2

n
.

which is what we wanted to show.
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Proof of Theorem 1
Consider a function f(e, θ); maximizing with respect to e we have:

fe(e
∗, θ) = 0.

By the Implicit Function Theorem, we have:

e∗ = g(θ)⇒ ∂e∗

∂θi
= −

∂fe
∂θi
∂fe
∂e

= −feθi
fee

. (2)

Therefore,

∂2e∗

∂θi∂θj
= −

f 2
eefeθiθj + feeefeθifeθj − feeθifeθjfee − feeθjfeθifee

f 3
ee

. (3)

Condition 5

f 2
eefeθiθj + feeefeθifeθj − feeθifeθjfee − feeθjfeθifee > 0,∀e ∈ [0, 1], i, j, θi ∈ R+, θj ∈ R+.

Condition 6

f 2
eefeθiθj + feeefeθifeθj − feeθifeθjfee − feeθjfeθifee < 0,∀e ∈ [0, 1], i, j, θi ∈ R+, θj ∈ R+.

If Condition 5 is satisfied, then (3) is strictly positive. Moreover, if Condition 1 is
satisfied, then Condition 5 is satisfied. Hence, the argmax is strictly supermodular if
Condition 1 is satisfied. If Condition 6 is satisfied, then (3) is strictly negative. Moreover,
if condition 2 is satisfied, then Condition 6 is satisfied. Hence, the argmax is strictly
submodular if Condition 2 is satisfied.

Note that

f 2
eefeθiθj + feeefeθifeθj − feeθifeθjfee − feeθjfeθifee,

is either zero, strictly positive, or strictly negative locally. Therefore, locally the argmax is
either strictly supermodular, strictly submodular, or modular.

Proof of Theorem 2
Consider a general performance function p(e, θ):

∂(p

∣∣
e=e∗

)

∂θi
= ∂p

∂e

∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂θi

∣∣∣
e=e∗
⇒

∂(p

∣∣
e=e∗

)

∂θi∂θj
=

(
( ∂2p
∂e∂e

∂e

∣∣
e=e∗
∂θj

+ ∂2p
∂e∂θj

)
∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂e

∂2(e

∣∣
e=e∗

)

∂θi∂θj
+ ∂p

∂e∂θi

∂(e

∣∣
e=e∗

)

∂θj
+ ∂2p

∂θi∂θj

)∣∣∣
e=e∗

. (4)

Using (4) when performance is modular, i.e., peθi(e, θ) = 0, pθiθj(e, θ) = 0 ∀e ∈
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[0, 1],∀i, j, θi ∈ R+, θj ∈ R+, we have:

∂(p

∣∣
e=e∗

)

∂θi∂θj
=

(
( ∂2p
∂e∂e

∂e

∣∣
e=e∗
∂θj

)
∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂e

∂2(e

∣∣
e=e∗

)

∂θi∂θj

)∣∣∣
e=e∗

. (5)

1. By Theorem 1, under Condition 1, we have
∂(e

∣∣
e=e∗

)

∂θi∂θj
> 0. Performance is convex,

hence, we have ∂2p
∂e∂e
≥ 0. Moreover,

∂e

∣∣
e=e∗
∂θi

> 0 by Lemma 2. Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂θj
> 0.

2. By Theorem 1, under Condition 2, we have
∂(e

∣∣
e=e∗

)

∂θi∂θj
< 0. Performance is concave,

hence, we have ∂2p
∂e∂e
≤ 0. Moreover,

∂e

∣∣
e=e∗
∂θi

> 0 by Lemma 2. Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂θj
< 0.

Proof of Theorem 3
Consider a general performance function p(e, θ), and recall (4):

∂(p

∣∣
e=e∗

)

∂θi∂θj
=

(
( ∂2p
∂e∂e

∂e

∣∣
e=e∗
∂θj

+ ∂2p
∂e∂θj

)
∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂e

∂(e

∣∣
e=e∗

)

∂θi∂θj
+ ∂p

∂e∂θi

∂(e

∣∣
e=e∗

)

∂θj
+ ∂2p

∂θi∂θj

)∣∣∣
e=e∗

. (6)

1.
∂(p

∣∣
e=e∗

)

∂θi∂θj
> 0 because:

i) By convexity of performance, we have ∂2p
∂e∂e
≥ 0.

ii) By Lemma 2, we have
∂e

∣∣
e=e∗
∂θi

> 0∀i ∈ I.

iii) Performance is supermodular; therefore, we have ∂2p
∂e∂θi

≥ 0∀i ∈ I.

iv) By Assumption 1, performance is increasing in effort ∂p
∂e
> 0.

v) By Theorem 1, under Condition 1, the optimal effort is strictly supermodular
∂(e

∣∣
e=e∗

)

∂θi∂θj
> 0.

vi) Performance is supermodular; therefore, we have ∂2p
∂θi∂θj

≥ 0.

Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂θj
> 0, i.e., sorting increases the total performance of students.

2.
∂(p

∣∣
e=e∗

)

∂θi∂θj
< 0 because:

i) By concavity of performance, we have ∂2p
∂e∂e
≤ 0.

ii) By Lemma 2, we have
∂e

∣∣
e=e∗
∂θi

> 0∀i ∈ I.
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iii) Performance is submodular; therefore, we have ∂2p
∂e∂θi

≤ 0∀i ∈ I.

iv) By Assumption 1, performance is increasing in effort ∂p
∂e
> 0.

v) By Theorem 1, under Condition 2, the optimal effort is strictly submodular
∂(e

∣∣
e=e∗

)

∂θi∂θj
< 0.

vi) Performance is submodular; therefore, we have ∂2p
∂θi∂θj

≤ 0.

Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂θj
< 0, i.e., sorting decreases the total performance of students.

General Method
Using (2), (3), and (4), we have:

∂(p

∣∣
e=e∗

)

∂θi∂θj
=

(((
∂2p
∂e∂e

)(
−

∂2f
∂e∂θj

∂2f
∂e∂e

)
+ ∂2p

∂e∂θj

)(
−

∂2f
∂e∂θi
∂2f
∂e∂e

)
+ ∂p

∂e

(
−

( ∂
2f

∂e∂e
)2( ∂3f

∂e∂θi∂θj
)+( ∂3f

∂e∂e∂e
)( ∂2f
∂e∂θi

)( ∂2f
∂e∂eθj

)−( ∂3f
∂e∂e∂θi

)( ∂2f
∂e∂θj

)( ∂
2f

∂e∂e
)−( ∂3f

∂e∂e∂θj
)( ∂2f
∂e∂θi

)( ∂
2f

∂e∂e
)

( ∂
2f

∂e∂e
)3

)
+ ∂p

∂e∂θi

(
−

∂2f
∂e∂θj

∂2f
∂e∂e

)
+ ∂2p

∂θi∂θj

)∣∣∣
e=e∗

.

Note that
∂(p

∣∣
e=e∗

)

∂θi∂θj
depends only on the primitives in this equation. Define:

Ψ(e, θ) =

((
∂2p
∂e∂e

)(
−

∂2f
∂e∂θj

∂2f
∂e∂e

)
+ ∂2p

∂e∂θj

)(
−

∂2f
∂e∂θi
∂2f
∂e∂e

)
+ ∂p

∂e

(
−

( ∂
2f

∂e∂e
)2( ∂3f

∂e∂θi∂θj
)+( ∂3f

∂e∂e∂e
)( ∂2f
∂e∂θi

)( ∂2f
∂e∂eθj

)−( ∂3f
∂e∂e∂θi

)( ∂2f
∂e∂θj

)( ∂
2f

∂e∂e
)−( ∂3f

∂e∂e∂θj
)( ∂2f
∂e∂θi

)( ∂
2f

∂e∂e
)

( ∂
2f

∂e∂e
)3

)

+ ∂p
∂e∂θi

(
−

∂2f
∂e∂θj

∂2f
∂e∂e

)
+ ∂2p

∂θi∂θj
. (7)

If Ψ(e, θ) ≥ (≤)0, then
∂(p

∣∣
e=e∗

)

∂θi∂θj
≥ (≤)0, i.e., sorting increases (decreases) the total

performance of students.

Proof of Theorem 4
First, we extend Theorem 1:

Lemma 3

22



1. If Condition 3 holds, sorting strictly increases the total effort of teachers.

2. If Condition 4 holds, sorting strictly decreases the total effort of teachers.

Proof: Consider a function f(e, q, θ), maximizing with respect to e:

fe(e, q, θ) = 0⇒ e∗ = g(q, θ)

⇒ ∂e∗

∂θi
= −

∂fe
∂θi
∂fe
∂e

= −feθi
fee
.

Therefore,

∂2e∗

∂θi∂q
= −f

2
eefeθiq + feeefeθifeq − feeθifeqfee − feeqfeθifee

f 3
ee

. (8)

If Condition 3 is satisfied, then (8) is strictly positive. Moreover, Condition 3 implies
Condition 1. Therefore, if Condition 3 is satisfied, then (3) is strictly positive, by the
same argument as in proof of Theorem 1. Hence, the argmax is strictly supermodular if
Condition 3 is satisfied and sorting strictly increases the total effort of teachers. If Condition
4 is satisfied, then (8) is strictly negative. Moreover, Condition 4 implies Condition 2.
Therefore, if Condition 4 is satisfied, then (3) is strictly negative, by the same argument as
in proof of Theorem 1. Hence, the argmax is strictly submodular if Condition 2 is satisfied
and sorting strictly decreases the total effort of teachers.

Consider a general performance function p(e, q, θ), and recall (4):

∂(p

∣∣
e=e∗

)

∂θi∂q
=

(
( ∂2p
∂e∂e

∂e

∣∣
e=e∗
∂q

+ ∂2p
∂e∂q

)
∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂e

∂(e

∣∣
e=e∗

)

∂θi∂θt
+ ∂p

∂e∂θi

∂(e

∣∣
e=e∗

)

∂q
+ ∂2p

∂θi∂q

)∣∣∣
e=e∗

.

1. To prove the first part of the theorem, we need to show that p(e, q, θ) is pairwise
supermodular in students’ types and pairwise supermodular in each student’s type
and the teacher’s type at the optimal effort. In Theorem 3, we established that under
these conditions, p(e, q, θ) is pairwise supermodular in students’ types.

We need to show that
∂(p

∣∣
e=e∗

)

∂θi∂q
> 0:

i) By convexity of performance, we have ∂2p
∂e∂e
≥ 0.

ii) By Lemma 2, we have
∂e

∣∣
e=e∗
∂θi

> 0∀i ∈ I.

iii) Because performance is supermodular, we have ∂2p
∂e∂θi

≥ 0∀i ∈ I and ∂2p
∂e∂θt

≥ 0∀t.

iv) By Assumption 1, performance is increasing in effort ∂p
∂e
> 0.

v) By Lemma 3, under Condition 3, the optimal effort is strictly supermodular
∂(e

∣∣
e=e∗

)

∂θi∂θt
> 0.
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vi) Because performance is supermodular, we have ∂2p
∂θi∂θt

≥ 0.

Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂q
> 0. We can conclude that sorting increases the total performance

of students.

2. Similarly, to prove the second part of the theorem, we need to show that p(e, q, θ) is
pairwise submodular in students’ types and pairwise submodular in each student’s
type and the teacher’s type at the optimal effort. In Theorem 3, we established that
under these conditions, p(e, q, θ) is pairwise submodular in students’ types. We need

to show that
∂(p

∣∣
e=e∗

)

∂θi∂q
< 0:

i) By concavity of performance, we have ∂2p
∂e∂e
≤ 0.

ii) By Lemma 2, we have
∂e

∣∣
e=e∗
∂θi

> 0∀i ∈ I.

iii) Because performance is submodular, we have ∂2p
∂e∂θi

≤ 0∀i ∈ I.

iv) By Assumption 1, performance is increasing in effort ∂p
∂e
> 0.

v) By Lemma 3, under Condition 4, the optimal effort is strictly submodular
∂(e

∣∣
e=e∗

)

∂θi∂θj
<

0.

vi) Because performance is submodular, we have ∂2p
∂θi∂θj

≤ 0.

Therefore,
∂(p

∣∣
e=e∗

)

∂θi∂θj
< 0. We can conclude that sorting decreases the total performance

of students.

Proof of Theorem 5
Consider a general performance function p(e, q, θ), and recall (4):

∂(p

∣∣
e=e∗

)

∂θi∂q
=

(
( ∂2p
∂e∂e

∂e

∣∣
e=e∗
∂q

+ ∂2p
∂e∂q

∂(e

∣∣
e=e∗

)

∂θi
+ ∂p

∂e

∂(e

∣∣
e=e∗

)

∂θi∂q
+ ∂p

∂e∂θi

∂(e

∣∣
e=e∗

)

∂q
+ ∂2p

∂θi∂q

)∣∣∣
e=e∗

.

By proof of Theorem 4, we know that
∂(p

∣∣
e=e∗

)

∂θi∂q
< 0.

Consider two classes after student sorting with NAM. By sorting these two classes, we
get two new classes with student sorting with PAM. By Theorem 4, sorting decreases the
total performance of students, i.e., the total performance of students under NAM is higher
than under PAM. Furthermore, by Theorem 4, sorting increases inequality in students’
performance, i.e., inequality in students’ performance under NAM is higher than under
PAM. To put it differently, when two classes are sorted, i.e., student sorting with PAM,
changing the matching of teachers and class from PAM to NAM has the opposite effect of
sorting. Because when two classes are sorted with NAM, sorting results in two classes that
are sorted with PAM.
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