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Abstract

A unified Bayesian framework for the econometric evaluation of dynamic
stochastic general equilibrium (DSGE) models is presented. The evaluation is
coherent under misspecification, that is, low posterior probability of all DSGE
models in a candidate set, as well as no misspecification. The framework en-
compasses many of the existing evaluation schemes as special cases, including
Kydland and Prescott’s (1996) informal calibration and the traditional macroe-
conometric approach of judging models according to their ability to track and
forecast aggregate time series. A detailed illustrative application of the frame-
work to a standard cash-in-advance model and a liquidity model is provided.
The models are evaluated according to their predictions of co-movements be-
tween output growth and inflation, and responses to discretionary changes in

the growth rate of money supply.

JEL CLASSIFICATION: C11, C32, C52
KEY WORDS: Bayesian, Dynamic Stochastic General Equilibrium Model, Econo-

metric Model Evaluation, Loss Function.



1 Introduction

While dynamic stochastic general equilibrium (DSGE) models provide a complete
multivariate stochastic process representation for the data, and are also interesting
from a theoretical perspective, they impose very strong restrictions on actual time
series and are in many cases rejected against reduced form models such as vector
autoregressions (VAR). The debate among macroeconomists and econometricians
about the empirical evaluation of these models is controversial, e.g., Kydland and
Prescott (1996), Hansen and Heckman (1996), and Sims (1996). The purpose of this
paper is to provide a unified econometric framework that enables a coherent model
evaluation and determination regardless of the degree of misspecification of the
DSGE models. It encompasses many existing approaches as special cases. Although
this framework will deliver some absolute measures of fit for structural models, the
focus is on model comparisons. Which DSGE model, among a candidate set of two

or more models, summarizes the regular features of the data most accurately?

The potential misspecification of all candidate models poses a conceptual difficulty
for the design of econometric procedures. The inference problem is not to determine
the “true” model among an exhaustive set. Instead, the goal is to find an approxi-
mation to an appropriate probabilistic representation of the data from a restricted
choice set. Two questions have to be addressed: how should one construct the prob-
abilistic representation of the data that serves as a benchmark, and how should the

distance to its second best approximation be measured?

The proposed framework is Bayesian. It is based on a joint probability distribution
for models, parameters, and the data. A reference model is considered in addition
to the structural candidate models to cope with their potential misspecification. In
general, such a reference model should impose weaker restrictions on the data than
the structural models and achieve an acceptable fit. Vector autoregressions, widely
used in empirical macroeconomics, can serve as a reference for the evaluation of
DSGE models. The probability distribution for the data is specified as a mixture of

the structural models and the reference model. Based on this mixture, it is possible



to compute posterior distributions for features of the aggregate time series, such as
patterns of covariation. If the statistical fit of the structural models is poor, the
overall posterior distributions are dominated by the contribution of the reference

model.

A notion of distance to the mixture of candidate models and reference model is
needed to determine which structural model provides a second best approximation.
A frequently used measure of discrepancy between probability distributions is the
Kullback-Leibler distance. Each structural model as well as the mixture of structural
and reference model define a probability distribution for the data. In principle, the
econometric comparison of the candidate models could be based on their respective
proximity in the Kullback-Leibler sense to the overall mixture distribution. How-
ever, macroeconomists are generally more interested in the evaluation of DSGE
models based on their ability to generate realistic patterns of co-movements among

macroeconomic aggregates or impulse responses to structural shocks.

The proposed evaluation framework will incorporate this practice as follows: based
on a specific research question the investigator determines which time series char-
acteristics are important for the model comparison, e.g., unconditional second mo-
ments or impulse response functions. Moreover, a loss function that penalizes de-
viations of predicted characteristics from actual characteristics is chosen. For each
structural model the implications, or predictions, with respect to the characteristics
of interest are derived. Then the expected loss of the model predictions is calcu-
lated. The expectation is taken with respect to the overall posterior distribution that
takes the contribution of the reference model into account. The structural model
that attains the smallest posterior prediction loss wins the comparison. This idea
is generalized to take parameter uncertainty into account, derive loss function esti-
mators, and construct mixtures of structural models that approximate the overall

probabilistic representation of the data.

The evaluation approach remains sensible in situations where all structural models
have negligible posterior probability compared to the reference model. If in ad-

dition, the loss function is quadratic, then the framework leads to an evaluation



procedure that closely resembles Kydland and Prescott’s (1982, 1996) calibration
approach. On the other hand, if the parsimoneous DSGE models have high posterior
probability compared to a more general reference model, then the structural models
are essentially judged according to their posterior probabilities. Since the poste-
rior probabilities provide a measure for one-step ahead out-of-sample forecasting
performance, the procedure resembles the macroeconometric tradition of evaluating
models based on their ability to track and forecast aggregate time series (cf. Fair,
1984 and 1994). The forecasting performance of a prototypical DSGE model has
been examined by Dejong et al. (1997).

Many evaluation techniques that were previously proposed in the literature are
based on p-values for various characteristics of the data. The p-values measure
how far transformations of the data fall in the tails of their respective sampling
distributions, that are derived from the structural models. A non-exhaustive list of
examples are Christiano and Eichenbaum (1992a), Burnside et al. (1993), Soderlind
(1994), Smith (1993), Canova et al. (1994), and Nason and Cogley (1994). Canova
(1994) computes Bayesian versions of these p-values following Box (1980). However,
p-values are not designed for model comparisons. Moreover, in cases where it 18
believed that the structural models are severely misspecified it is implausible to
use sampling distributions as a benchmark, that were derived from the misspecified

models.

Alternatively, the implications of the structural models can be compared to predic-
tions of a reference model. Diebold et al. (1998) proposed a frequentist procedure,
that evaluates structural models under a sampling distribution obtained from non-
parametric spectral estimates. Their framework is similar to our approach in the
sense that it makes explicit use of loss functions. Its conceptual drawback is that
the reference model has always posterior probability one and the structural models
have posterior probability zero regardless of their fit. We will demonstrate in an em-
pirical illustration that despite low posterior probability the structural models can
have a significant impact on the shape of the overall posterior distribution because

they deliver more concentrated predictive distributions than the VAR.



Dejong et al. (1996) propose a Bayesian approach to calibration which also assigns
zero probability to the structural model. In particular, the authors focus on the
evaluation of DSGE models that generate singular probability distributions for the
data. A measure of overlap between the posterior distribution of unconditional
moments obtained from the reference model and the prior predictive distribution
from a structural model is proposed. This methodology is further discussed and
applied in Geweke (1999). Our framework can be viewed as a generalization in
two dimensions. For non-singular DSGE models we do not impose zero posterior
probability, prior predictive distributions obtained from the structural models are
replaced by posterior predictive distributions, and several additional criteria and

loss functions that can be useful for model evaluations are introduced.

Due to the explicit consideration of loss functions defined over time series charac-
teristics that are of particular interest to researchers, the framework goes beyond
model determination based on posterior probabilities or Bayes factors, e.g, Kass
and Raftery (1995). However, asymptotic approximations (e.g. Phillips, 1996), as
well as computational aspects, for instance discussed in Geweke (1995), are very

important for the successful implementation of the framework.

Section 2 of this paper provides the details of the loss function based model eval-
uation approach. Section 3 contains the empirical illustration, adopted from the
work of Nason and Cogley (1994). A standard cash-in-advance (CIA) model and
a CIA model with liquidity effect (Christiano, 1991, and Christiano and Eichen-
baum, 1992b) are evaluated according to their implications about covariation pat-
terns among output growth and inflation, and the effects of a discretionary change

in the growth rate of money supply. Section 4 concludes.



2 A Decision Theoretic Model Evaluation Approach

2.1 Notation and Setup

Suppose that the goal is to evaluate two DSGE models, M; and M3, and determine
which of the two models provides a better summary of macroeconomic time series
features. To be more explicit, the reader may assume that we are particularly inter-
ested in a collection of second moment statistics @, where ¢ is an m x 1 vector. The
time series is denoted by Y7 = {y;}7._;, where y; is a n x 1 vector. The parameters of
model M; are denoted by 6;. Each model consists of a parametric density function
for the data, p(Yr|6;, M;). Since the framework is Bayesian, parameters are treated

as random variables and we introduce prior distributions p(6;).

To cope with the potential misspecification of the candidate models, a reference
model M, is considered in addition to M and M;. The parameter vector of M,
is denoted by 6., the data density is p(Yr |6, M), and the prior density is p(6.).
The prior probabilities of the three models are 7y, T2, and 7, o, respectively. It
is assumed that the mixture of the three models provides a for practical purposes
acceptable probabilistic representation of the data upon which an evaluation of the

structural models can be based. Three additional assumptions will be made.

(i) If the structural models are nested within the reference model, the prior p(6.)
assigns zero probability to the subset of the parameter space that corresponds
to the structural models.

(ii) To simplify exposition and implementation of the framework it is assumed
that the prior distributions of 6y, 63, and 0., are independent of each other.

(iii) It is possible to compute predictions for ¢ based on the reference model.

The third assumption is obviously satisfied if ¢ is composed of second moments.
Based on the parameter values of a VAR it is easily possible to calculate autoco-
variances for y;. If ¢ is composed of response functions to orthogonal structural
disturbances then Assumption (iii) is satisfied if an identification scheme for the

reference model is available. If ¢ consists of the effects of a permanent change in



a fiscal or monetary policy rule then it is not possible to derive predictions from a

reference model such as a VAR. The discussion of this case is deferred to Section 4.

The first part of the evaluation procedure consists of the computation of posterior
densities p(6;|Yr, M;) for the parameter vectors 0;, i = 1,2, *, posterior model
probabilities 7; 7, and the posterior distributions of the characteristics ¢ conditional

on the three models! of
p(elYr, M) = [ plel8i, Yo, Mp(B{Yr, M db, (1

for 1 = 1,2, *. This leads to the overall posterior distribution
plelYr) = > mirp(elYr, My) (2)
1=x,1,2
where

S m; 0p(YT| M)
K Yoiz1.2. Tiop(YT| M)’

We will refer to the latter quantity as the marginal density of the data conditional

p(YrIM;) = /P(YTlﬁi, M) p(6:|M;)db;

on model M;. The posterior probabilities 7; 7 determine the relative weight of the
posterior densities p(p|Yr, M;). If the structural models fit poorly relative to the
reference model, then their posterior probabilities are low and the overall poste-
rior density is dominated by p(¢|Yr, M.). Vice versa, if the parsimoneous struc-
tural models fit better than the reference model the posterior mainly determined by
p(e|YT, My) or p(p|Yr, Mj). If the distribution of the data Yr is singular under
the structural models, as it is the case if the dimension of y; exceeds the number
of structural shocks, then the posterior probabilities of M; and M, are zero and
p(|Yr) = p(¢|Yr, M.). This special case is considered in DeJong et al. (1996),
Geweke (1999), and from a frequentist perspective in Diebold et al. (1998).

UIf the vector ¢ is composed of second moments or impulse response functions then the distri-

bution of ¢ conditional on ;, Yr and model M; is simply a point mass at @(8;, M.).



2.2 Loss Function Based Evaluation

At first we describe how to derive predictions from the structural models M; and
Ms. Consider a decision maker who has to report a point prediction of ¢. The
decision maker is myopic and bases decisions exclusively on the set of structural
models M; and M. If the set were exhaustive then the optimal predictor ¢ would
be a solution to the problem

p = argmingere [ Lp,@)| 5 T [ plel6s, Yo MOp(6:l¥r. M)t dp  (3)

i=1,2

where 7; 7 denotes the myopic posterior probability #; 7 = m;7/(m1,r + o), 1 =
1,2. Since the structural models are potentially misspecified (.7 > 0), we will
judge the predictions ¢ based on their expected loss under the overall posterior
distribution of ¢, given in Equation (2). The model evaluation and determination
involves the examination of the posterior expected loss of ¢ and a re-calculation of
the posterior weights for the structural models and its parameters, such that the
predictions of the myopic decision maker yield a small overall expected prediction

loss.

Formally, define the vector of model weights A = [A, Ag] € 5!, where S! is the
simplex {\ € IR? : \; > 0,1 + A2 = 1}. The posterior densities p(0;|Yr, M;) can be
replaced by general weight functions f;(6;) with the property that [o fi(6:)df; =1,
where ©; denotes the domain of 8;. The predictor ¢(, {f;}_,) solves the minimiza-
tion problem

PN 1, 12) = axgmingern [ L(e,0)| T X [ (o, Yo, MO Ji(6)d61 | do (4)

1=1,2

We denote the domain of densities f;(6;) by F;. The expected prediction loss under

the overall posterior distribution is

RGO i, fal¥e) = [ Dl o fl,fQ))[ m,Tp«plYT,Mi)]dso (5)

1=1,2,%

The model evaluation and selection are based on the problem

)\Gsrnl,ifl;lEFi R(@(A, f1, f2)IYT) (6)



and consists of finding weights that solve the minimization under various restric-
tions on 87~! and the F;’s, documenting the expected prediction losses and their

sensitivity to changes in A and f;.

Equation (6) defines a loss function estimator for model weights and parameters.
Loss function estimators are frequently used to estimate parameters of forecasting
model. Suppose that a forecaster wants to use a first order autoregressive model
to predict the inflation rate four quarters into the future. If the AR(1) model is
regarded as potentially misspecified it may be sensible to estimate the autoregressive
parameter by the minimization of in-sample four step ahead forecast errors 23;1 (y:—
By;_4)%. The justification for Equation (6) is similar. The difference is that the
model predictions @(A, fi, f) are not compared to actual outcomes ¢ which are
unobservable. Instead they are evaluated with respect to a more general posterior
distribution that adjusts for misspecification. This analogy is further explored in

Schorfheide (1998).

Loss function based estimation and selection of models is also part of the frequentist
framework proposed by Diebold et al. (1998). Sampling uncertainty with respect to
the parameters of their “true” reference model translates into sampling uncertainty
about the parameters of the structural model that best approximates the reference
model. In our framework, a posterior distribution for ¢ is obtained model averag-
ing. Conditional on this posterior distribution, there is no uncertainty about which
structural model minimizes the posterior expected loss. Instead, there is sensitivity

of the posterior expected loss to the choice of model and parameter weights.

Since it is difficult to solve the minimization (6) for general classes of weight functions
we will consider the following restrictions: (i) the weights for the parameters of
the structural models are restricted to be equal to the posterior density of these
parameters?; (ii) the parameter weights are point masses, represented by the dirac

function 5{‘91.:9'.0}.3 In the second case, we are searching for a single parameter

2The approach by DeJong et al. (1996) and Geweke (1999) restricts the parameter weights to

be equal to the prior densities.
®The dirac function has the properties 8{;=z,) = 0 for z # zo and fé{zzzo}dx = 1.



value, say 6;, that yields the best prediction for model M;. If the model weights
are restricted to [1,0] and [0, 1], the procedure leads to a loss function based model
selection. The optimal weights A and fi, f2 define a loss function based pseudo-true
mixture of structural models conditional on the observations Y that approximates
the full posterior distribution. If no restrictions are imposed on A and the f;’s then

the loss function procedure has the following important characteristic:

Proposition 1 (i) If m.7 = 0 then X\, = w1, fi = p(6i|YT), + = 1,2, solves
the minimization problem (6). This solution does not depend on the choice of loss
function. (i) If e > 0 then \; = w1, fi = p(0i|YT), for i = 1,2 is generally not
a solution to (6). The solution to the minimization problem becomes loss function

dependent.

The consequences of the presence of a reference model on Bayesian model deter-
mination have been pointed out previously in the literature, for instance Min and
Zellner (1993) in the context of a forecasting problem, and Poirier (1997). If the
impact of R(@(X, {fi}_)|Yr, M.) is expected to be small, then we are willing to
ignore the term for practical purposes and might not even consider a reference model
a priori. The model determination procedure is consistent under general conditions
that ensure the consistency of Bayes estimators. If the data are generated from the
density p(Yr|6; 0, M;), the posterior probability of Model M, will converge to one
and the posterior distribution of 8; will concentrate in arbitrary small neighborhoods

of ;¢ for large enough sample sizes.

2.2.1 Loss Functions

While the choice of loss function L(y, ¢) may depend on the problem the researcher
is trying to solve, we consider three loss functions that are widely applicable in

practice. The quadratic loss function is of the form

Ly(g, @) = (g — &) W(p— ) (M)
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where W is a m x m weighting matrix. Let [ET denote the expectation with respect

to the overall posterior distribution. Since

Erl(¢-)W(p-¢)] = Erl(¢— Ere)W(e - Erer)]

+(¢ — ET)W(p - ETeT) (8)

the posterior ranking of predictions ¢ depends only on the weighted distance be-
tween ¢ and IET[p] but not on higher order moments of the posterior distribution.
The drawback of the quadratic loss function is that it requires the (subjective) spec-
ification of a weight matrix W. A reasonable choice is W = VJI, where V,, denotes
the posterior covariance matrix of ¢. This weight matrix places less weights on

elements of ¢ that are imprecisely measured.

The second loss function, L,(, ¢) penalizes point predictions that fall in regions of
low posterior density. Let Z{z = zo} denote the indicator function that is equal to

one if £ = g and zero otherwise.

Lo(,#) = T{plel¥r) > p(61¥r) | (9)

The expected L, loss is similar to a p-value if the posterior density is unimodal. How-
ever, its interpretation is different from traditional p-values. Many procedures that
have been used to evaluate DSGE models, e.g. Christiano and Eichenbaum (1992a)
and Nason and Cogley (1994), are based on classical p-values or their Bayesian coun-
terparts (Canova, 1994). These traditional p-values measure how far the observed
sample analog of the population characteristics ¢ fall into the tail of their sampling
distribution derived from the various structural models. Although the p-values can
be used to test for each model M; the null hypothesis that M; is “true”, there is no
formal statistical justification for ranking possibly misspecified models according to
these p-values. Our approach is to use the data Y7 to derive a posterior distribution
for population characteristics and to determine how far the population characteris-

tics implied by the structural models lie in the tails of this posterior distribution.

At last, a L, loss is proposed. The posterior distribution of ¢ is approximated by

a multivariate normal distribution centered at the posterior mean ¢. Let V,, again
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denote the posterior variance.
Lole.®) =T{ (o= V(o -9 < G- @V 0-0)) (1)

If the posterior distribution of ¢ is Gaussian, L,2 and L, loss are identical. However,
if the posterior distribution is skewed or multi-modal, evaluations under the two loss

functions can lead to different results as we will illustrate in Section 3.

2.2.2 Predictions from Mixtures of Structural Models

This Section briefly discusses the derivation of the predictor ¢(A, fi, f2), defined in
Equation (4), for the Ly, L,2 and L, loss functions. As a special case, the predictive
distribution of ¢ under the mixture of structural models can be discrete. Suppose
¢ is a vector of unconditional moments of the data. Conditional on a vector of
parameters 8; = 6; o each model ¢ leads to a specific value for ¢ which we will denote
by @i 0. If the weight function for 6; is of the form &g, —, ,} then the distribution of

¢ conditional on Yr and M; degenerates to a point mass on ;. In our notation,

/P(SDWi, YT, Mi)‘s{e,:oi,o}doi = 5{947:%,0} (11)

where ; o, the prediction of model M; with 6; ¢ plugged in.

Under the quadratic loss function L, the predictor that solves the minimization (4)

is the weighted averaged

6u0 1= [0 o [ttt vr Mas@)0:)de a2

which reduces to 37,_; 5 Aiwio in the discrete case.

For the x2-loss function we have to solve
mn, [T{e- @V -p) < (@-PVHe- 9]

SER™
X Ai | plolbs, YT, M;) f:(6;)d8; ) de (13)
(2 & [ otetoave )

For the computation of @, the mean ¢ and variance V parameters for the L2 loss

function are determined from the mixture obtained by weighting the M; models with
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X and their parameters with f;(6;) instead of the overall posterior distribution. Let
@.2(A, f1, f2) = #. The loss function then simplifies to Z{(¢ - P)V~l(p—p) <0}
Since the quadratic function of (¢ — () is always non-negative, it can be deduced
that the expected loss is zero and that ¢, is indeed a solution to (4). Note that it
need not be a unique solution, particularly if the predictive distribution of ¢ under

the mixture is discrete.

The predictor ¢,(A, f1, f2) corresponds to the value of ¢ that maximizes the func-
tion 37,1 9 As [ p(l0:, YT, M;) f;(0:)d6;. As under L2, the expected loss is zero. To
cover the discrete plug-in case we adopt the convention that A\;d(z=z} < Aib(e=zq}
if \; < A;. Technically, there is the possibility that the predictor ¢, is not uniquely
defined by the argmax. However, small changes in the weights A;, fi(6;) will over-
come the non-uniqueness so that it poses no practical problem for the evaluation

procedure.

2.2.3 A General Measure of Divergence

In situations where the specification of a loss function is difficult but the posterior
distribution of ¢ and the predictive distribution of ¢ under the pseudo-true mix-
ture of candidate models are absolutely continuous with respect to each other, the

candidate models can be evaluated based on the following entropy measure

KL, fi,..., f1) = /< > Wi,TP(SolyTvMi))

1=1,2,%
S im1.2.x Ti TP (0| YT, M) ]
X In - - d 14
[z,-zl,z N [ pelvr. 6 My Faae | ¢ Y

Model and parameter weights are selected to minimize the Kullback Leibler distance
between the posterior distribution of ¢ and the predictive distribution of the can-
didate models. This information theoretic measure of divergence complements the

confidence interval overlap criterion proposed by DeJong et al. (1996).
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2.2.4 Special Cases

Two frequently used and seemingly very different model evaluation approaches can
be interpreted as approximations to evaluation procedures that arise as special cases

within the proposed framework.

Informal Moment Matching: In the real business cycle literature DSGE models
are often informally judged by their ability to replicate patterns of covariation among
macroeconomic variables. Model predictions are simply compared to sample esti-
mates without paying much attention to standard errors of estimates. Suppose the
prior probability of the reference model 7, ¢ is one, the loss function is quadratic,
the prior distribution of the structural model parameters is degenerate and con-
centrates at a single value, and ¢ consists of a collection of unconditional second
moments of y;. Selecting the DSGE model that minimizes the posterior expected
loss is equivalent to

/\miJn—l (Sb* - 95(/\7 fl’ f2)),W(¢* - 85()\7 flv f2))
€S

where 2, is the posterior mean of the population moment ¢ based on the reference
model M,. In large enough samples, the posterior mean of ¢ obtained from a VAR
is not very different from the corresponding sample moment. Due to the properties
of the quadratic loss function, higher order moments of the posterior distribution of
¢ have no impact on the model evaluation. Thus, under special assumptions, which
may or may not be justified in any particular application, the framework leads to an
evaluation procedure in which essentially point predictions from the DSGE models

are compared to point estimates from the data.

Traditional Evaluation of Macroeconomic Models: Macroeconometric models
based on the Cowles Commission approach, e.g. Fair (1994), were evaluated accord-
ing to their ability to track and forecast the time series Y7. Posterior probabilities
implicitly provide such a measure of one-step ahead forecast performance. The log-
arithm of the joint data density In p(Y7|M;) can be decomposed as In p(Yi|M,) +
Zz;kﬂ In p(ys|Yi—1, M;) and In p(y¢|Y:—1, M) can be interpreted as predictive score
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(Good, 1952). Proposition 1 implies that if the posterior probability of the refer-
ence model is approximately zero, the optimal weights for the structural models are
given by their respective posterior probabilities. The DSGE model evaluation is

essentially based on their forecast performance regardless of the loss function.

3 Empirical Illustration

A step-by-step illustration of the proposed framework is provided to demonstrate
the differences and similarities to existing model evaluation and selection proce-
dures. We consider a standard cash-in-advance (CIA) model versus a CIA model
with portfolio adjustment costs, cf. Christiano (1991), Christiano and Eichenbaum
(1992b), and Nason and Cogley (1994). Both models are driven by two exogenous

processes, namely, a random walk production technology
InA;=7y+InA_ +e, €~N0,d2) (15)

and an autoregressive money growth process of the form
Inmg = (1—p)lnm*+plnm_y +n,, 7~ N(0,07) (16)

Equation (16) can be interpreted as a simple monetary policy rule. The innova-
tions 7; reflect discretionary actions of the central bank or “normal” policy making.
Changes in m* or p correspond to regime shifts (Sims 1982, 1986). The analysis of
regime shifts will be briefly discussed in Section 4. The models are solved in terms

of the observables output growth and inflation.

The CIA model implies that a surprise increase in the money supply growth rate
leads to a temporary contraction of output due to an anticipated inflation effect.
According to the CIA model with portfolio adjustment costs increased money supply
forces the interest rate to fall and stimulates economic activity. This liquidity effect
potentially dominates the anticipated inflation effect. Although the two structural
models might not forecast output growth and inflation data very well, they may be
able to reproduce patterns of covariation between the two series and the economy’s

response to a discretionary change in the money growth rate.
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3.1 Model Specifications
3.1.1 The Two Monetary DSGE Models

The model economy consists of a representative household (HH), a firm (F), and a
financial intermediary (FI). Let m; = My4,/M;, where M, is the stock of money
at the end of period t. The money growth rate evolves according to Equation (16).
At the beginning of period ¢, the representative household inherits the entire money
stock of the economy, M;. In the standard CIA model, all decisions are made after,
and therefore completely reflect, the current period surprise change in money growth
or technology. The household determines how much money d; to deposit at the bank
(FI). These deposits earn interest at the rate RH; — 1. The bank receives household
deposits and a monetary injection X; from the central bank, which it lends to the

firm at rate RF; — 1.

The firm starts production and hires labor services h; from the household. After
the firm produced its output, it uses the money borrowed from the FI to pay wages
wyh;. The household’s cash balance increases to M; — d; + wih;. The cash-in-
advance constraint implies that all consumption purchases must be paid for with
the accumulated cash balance. The firm’s net cash inflow is paid as dividend f; to
the household. Moreover, the household receives back its bank deposits inclusive of

interest and the net cash inflow of the bank as dividend b;.
In period ¢, the household chooses consumption ¢;, hours worked h;, and deposits
d; to maximize the sum of discounted expected future utility. It solves the problem

F, iﬁt[(l —@)Ine; + ¢In(1 — hy)] (17)

max
{Ct,ht,M41,d¢} t=0
s.t.  prer < My —di + wihy

My = (M — dy + wihy — pict) + RHidy + fi + by

The firm chooses next periods capital stock k;y;, labor demand n,, dividends f;
and loans {;. Since households value a unit of nominal dividends in terms of the

consumption it enables during period ¢+ 1, and firms and the financial intermediary
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(FI) are owned by households, date ¢t nominal dividends are discounted by date {+1
marginal utility of consumption. Thus, the firm solves the problem

Eo [i /3“”—-13—] (18)

maXx
{fr: keg1me,lc} =0 Ce+1Pt+1

s.t. ft S lt +pt[k?(Atnt)1_a - kt+1 + (1 - 5)kt] — WNy — ltRFt

wing < Uy

The financial intermediary solves the trivial problem

max} E, {i 6t+1__b_t_} (19)

{bt,lt,d¢ =1 Ct4+1P141
s.t. bt = dt + RFtlt - Rtht - lt -+ Xt

I < Xi + dy

where X; = My — M, is the monetary injection. The market clearing conditions
for labor market, money market, and goods market are hy = ny, pres = My + Xy,
and ¢; 4 (kip1 — (1—8)ks) = k¥ (Ashy)!~*. To solve the model, optimality conditions
are derived for the optimization problems. The real variables are then detrended
by the productivity A;, and the nominal variables by M;/A;. It can be shown that
the system in the detrended variables has a deterministic steady state and can be
log-linearized around it. A solution to this linear rational expectation system can
be obtained by elimination of unstable roots according to the algorithm in Sims
(1995). Let e; = [e;, m:) and 2z; be a vector of percentage deviations of detrended
model variables from their steady state. The solution to the model can be expressed

as

2 =Tz_1 + Re; (20)

The liquidity model differs in two respects from the standard CIA model. It adopts
the information structure proposed by Fuerst (1992). We assume that the household
makes its deposit decision d; before observing the monetary growth shock and the
technology shock. Thus in period ¢, after observing ¢; and 7;, the household chooses
consumption c;, the labor supply h:, and next periods deposits d;4;. Since the

household cannot revise its deposit decision after a surprise change in the money
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growth rates, the additional cash has to be absorbed by the firm, which forces
the nominal interest rate to fall. Let the household’s cash holdings be denoted by
Q: = M; — d;. To make the liquidity effect persistent, Christiano and Eichenbaum

(1992b) introduced a portfolio management cost, which is given by

Pt =i [exp {az[ Q m*]} + exp {~a2[ Qe _ m*]} — 2} (21)

Qi1 Qi
where Q; = M; — d;. The household’s problem then becomes

E 1 — )1 In(l —hy —p 22
{Ct,hz,rﬂsfli}i,Qtﬂ} 0 ;ﬂ [( ¢) n0t+¢ Il( ¢ Pt)]j| ( )

s.t. prer < Q¢+ wihy

M = (Qt + wihy — peey) + RHy(My — Q) + fr + by

Apart from the timing of the deposit decision and the portfolio adjustment cost,
the model has the same structure as the standard cash-in-advance model and can

be solved in the same manner.

3.1.2 Potential Misspecification and Reference Model

Both DSGE models imply that the vector of observables y;, composed of output
growth (A lngdp;) and inflation (Alnp;), follow a process of the form

Aln gdp,
A In gdp; 1 00 1
yr = = Alnp; |+ (v + &) (23)
Alnp, 01 1 -1
In me_1

where Inm;_, is a function of the n;’s, g/cﬂ)t is the stochastically detrended output
gdp /Ay, and P; is the detrended price level P;/(M;/A;). The money growth process
Inm; is exogenous and the laws of motion for Aln @t, Alnp; are obtained from
the solutions of the DSGE models.

More generally, log-linear approximations to DSGE models can be represented in a

generic state space form

Yy = b+ Zsi+Ue (24)

s = Tsy_1+ Rey (25)
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where e; ~ 11d(0,%,) is a k x 1 vector of structural shocks with covariance matrix
Y. , y; is the n x 1 vector of observables, and s; is a m x 1 vector of state variables.
The system matrices b, Z, U, T, and R are functions of the structural parameters
0. Let yo, = ZT'sg, By = ZT"R for h > 0, and Bo = ZR + U. Equations (24)
and (25) lead to the following MA representation for y;:

t—1
Yt = Yo, (8) + b(8) + > _ Br(f)er—n (26)
h=0

The random variable yo;(6) is determined by the initialization of the state vector
S0.

There are two dimensions in which DSGE models are potentially misspecified. First,
if the number of structural disturbances k is less than the number of observables
then the conditional distribution of y; generated by the model is singular, meaning
that some linear combinations of observables should be perfectly correlated. Such
singularities are usually rejected with a short span of time series data. Nevertheless,
the proposed model evaluation framework remains applicable despite the presence
of such singularities. The singularities will lead to the degenerate case in which
the structural models have posterior probability zero. Moreover, it is not possible
to compute posterior densities for the parameters of the DSGE model. The prior

densities can be used instead.

Various approaches have been employed to remove the counterfactual singularities
from the DSGE models prior to the empirical analysis. Further structural shocks can
be added to the specification of the DSGE model such that k£ > n, e.g. Leeper and
Sims (1994), one can introduce measurement errors, e.g. Altug (1989), or construct
a hybrid model as in Ireland (1998). Although we prefer the first modeling approach
and consider two models for which k& = n, the framework remains applicable and

useful in the other cases.

Second, since the vector of structural parameters 6 is generally of low dimension,
strong restrictions are imposed on the moving average representation, the trend
component, and the short-run dynamics of y;. These restrictions can cause poor

statistical fit and forecasting performance.
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To cope with the potential misspecification of the structural models a VAR(p) is

considered as a reference model:
Yi =Co-|-C1yt._1 + ...+prt_.p+Gl/t (27)

where vy = [v14,v2,] ~ 1id(0, I2x2) with diagonal covariance matrix ¥,. We will
interpret vy ; as standardized technology shock €;/oc and v, ; as money growth shock
n:/0y. Due to a larger number of parameters the VAR imposes fewer restrictions

on the MA representation of y;.

The VAR specified in Equation (27) is not identified. The lack of identification does
not pose a problem for the calculations of moments and correlations of y;. However,
further assumptions are needed to derive posterior distributions for money growth
impulse response functions. The two DSGE models considered in this application
imply long-run neutrality of money growth shocks, that is, the long-run level of
output is determined by the technology shocks ¢; only. The neutrality restriction
will be imposed on the VAR and enable identification via the Blanchard and Quah

(1989) decomposition. Nason and Cogley (1994) provide further details.

3.2 Likelihoods, Priors and Computational Issues

The evaluation procedure requires the computation of posterior distributions for
the model parameters 6;, posterior model probabilities 7; 7, and the corresponding
posterior predictive densities for the vector of characteristics . In general, it is
intractable to find closed form solutions for these quantities. However, Bayesian
simulation techniques can be used to obtain draws from the various posterior densi-
ties and to approximate posterior moments. If the DSGE models are singular then
their posterior probabilities are zero and the computations have to be carried out

only for the reference model.

3.2.1 Reference Model

The VAR(p), specified in Equation (27) can be rewritten as

y=al +u), U ~N0,5) (28)
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where 24 = [1,y;_1,- -, ¥i_p)y C = [Co,...,Cy], and uy = Gry. The number of
regressors is k = 1 + np. Let X be the T' X k matrix with rows z;. The generic

parameter vector 8, is composed of the non-redundant elements of C' and .

An improper prior of the form p(C, X) o |X|~(**1)/2 is chosen for the parameters of
the reference model. As a consequence, the marginal density of the data p(Yr|M,)
is also improper. This leaves density ratios and posterior probabilities essentially
undetermined. A practical solution to this problem is to condition on a training
sample Yy = (y—r,...,Y0) and to compute posterior probabilities based on the den-
sities p(Y7|Yo, M;).* The conditional data density of the VAR can be expressed

as
T
mwmwm:Z/mmmm%mMmmmmmmmmam(m
=1

It is well known that the conditional densities p(C, X|Y;_1, Yo, M,) are proper if the
training sample is long enough, namely, if 7 > p+k+n. The first p observations are
used to initialize lags. Therefore, p(Yr|Yo, M.) is a proper density that integrates

to unity.

Under the multivariate normal model, the predictive density p(yey1|Y, Yo, M) has
the shape of a t-distribution (see Zellner, 1971), that is,

T ((v +n)/2)|H| 7/
/2T (v /2)

P(yt+1|Yt,Y0,M*) =

N _ R —(n+v)/2
X {V + (o1 = Degrpe) H  (year — yt+1[t)] (30)

with degrees of freedom v =t —k — n+ 1, and

gt+1|t = é£$t+1
G = (X{Xy)T' X[V,
1

I ﬂm—&aﬂn—&d)

He = (t/v)(1+2, (X X) o) S

The analysis of p(Yr|Yy, M,) for the reference model is straightforward. Draws
(C,E)(s)y § = 1yvey Msim from the posterior distribution of the VAR parameters

1A discussion of training samples can be found, e.g., in Kass and Raftery (1995).



21

can be easily generated because the density conveniently factorizes as
p(Ca EIYTv YO7 M*) = p(E‘YT, YOa M*)p(cizv YT? YOa M*) (31)

The density p(Z|Yr, Yo, M.) has the shape of an inverted Wishart distribution with
T — k degrees of freedom and parameter matrix Hy = TSr. Conditional on X,
the posterior distribution of the coefficients vec(C) is multivariate normal with
mean vec(C) and covariance matrix ¥ ® (X,X7)~!. The draws from the poste-
rior distribution of ¢ are obtained by calculating the implied autocovariance matri-
ces T'y(h)® and impulse response functions dysn/0n; for each (C,X)(,). Posterior
moments of the form [ g(¢)p(¢|Yr, Yo, M;)dy are approximated by sample means
L_ snaim g(5(9)), where ¢(®) is a draw from p(¢|Y7, Yo, M;).

Nsim s=1

3.2.2 DSGE Models

To cast the structural models M; and M into state space form (Equations 24, 25)
define the 2m x 1 state vector s; = [z, 2z:—1]. The vector z; denotes the percentage
deviations of detrended DSGE model variable from their steady state values. The
measurement equation is based on Equation (23) and the transition equation is

derived from Equation (20). The system matrices are

T Omxm R 1 0
T= x R= b i U=

Imsxm  Omxm Omx2 Inm* -« -1 0

I

Moreover, Z is a 2m x 2 matrix that links the state vector s; to the observables

Aln gdp; and Alnp;. The vector §; of structural model parameters is
oi: [a,ﬂ,'y,m*,p,qb,é,ae,an,al,ag]', 1= 172

The portfolio adjustment cost parameters a; and ay have no effect on the standard
CIA model M;. The system matrices of the state space representation are non-

linear functions of #;. Under the assumption that the structural shocks e; = [e;, 7

5With some posterior probability € > 0, the vector autoregression in non-stationary and the
unconditional moments of output growth and inflation do not exist. In the rare event that a draw
of C implies non-stationarity, it is discarded. This corresponds to a prior p(C, %) that is zero in

non-stationary regions of the parameter space.
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are normally distributed the unconditional likelihood function p(Y7|6;, M;) can be
computed with the Kalman Filter algorithm. To make the analysis compatible to

the treatment of the reference model we condition on the training sample Yo.
p(Y7|Yo, :, M;) = p(YT, Yo|0i, Mi)/p(Yolbi, Mi) i=1,2 (32)

A posteriori inference will be based upon the conditional likelihood p(YT|Yo, 6;, M,).

We will now specify a prior distribution for 6;. A common approach in the cali-
bration literature is to evaluate models based on parameter values are regarded as
economically plausible. Such values are obtained by matching steady state charac-
teristics of the DSGE model to first moment properties of the time series data, from
micro econometric studies with cross sectional data, or by pure introspection. This
feature of the calibration approach can be interpreted as a prior distribution that
concentrates on a single point of the parameter space. Following previous Bayesian
DSGE model evaluation procedures we relax the tightness of the prior and consider

non-degenerate distributions.

The marginal prior densities that are used in the empirical application are summa-
rized in Table 1. The shapes of the densities are chosen to match the domain of
the structural parameters. The prior means correspond to the values in Nason and
Cogley’s (1994) study and are consistent with the values that appear throughout
the literature on monetary DSGE models. The prior densities for a; and ay are
only used for the liquidity model with portfolio adjustment costs. As in Canova
(1994) and Dejong et al. (1996, 1997), it is assumed that the structural parameters
are a priori independent of each other. Thus, the joint prior density is simply the
product of the marginal densities. Since all the marginal densities integrate to unity,

it follows that the joint prior distribution is proper.

To document the impact of the prior distribution we will consider two specifications
that differ in the relative weight placed on the prior. The standard errors for the
parameters «, 8, p, ¢, 8, a1, and a3 are larger for Prior 2 than for Prior 1. Under
the more diffuse Prior 2 the posterior will more closely resemble the likelihood

function than under Prior 1. The Bayes estimation can be interpreted as follows:
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find values for the structural parameters such that the DSGE models fit the data
in a likelihood sense, without deviating too far from parameter values that are
economically plausible and consistent with additional information that might be

available.

Table about here

Table 1: Prior Distribution for the Parameters of the DSGE Models.

The computations to obtain draws from the various posterior distributions involve
several steps. Conditional on the actual data Y7, Yo, a set of parameter values 6;,

the Kalman Filter is used to evaluate the posterior density up to a constant
p(6:|Yr, Yo, M) o< p(Y7|Yo, 0i, Mi)p(6:| M) (33)

A numerical optimization routine is used to compute the mode 6; of the posterior
density. Let 3; be

- 2

3}
Ei - 80 aol lIl p(Yleﬂ)olaM ) (ailMi) 9_=0', (34)

the Hessian of the log posterior density evaluated at the mode.

The Metropolis Algorithm is used to generate ny;, = 30,000 draws 02(3) from the

posterior distribution. At each iteration s a candidate parameter vector ¥; is drawn
from a jumping distribution J(¥; |0(s Y ) and the density ratio

p(YT|Y07'l9uM )p(lﬂ ]M )

T p(Yr|Ye, 0070, M)p(6°TVIM;) %)

is calculated. The jump from 01(-3_1) is accepted (Oz(s) = 9J;) with probability min(r, 1)
and rejected (91(3) = 01(3_1)) otherwise. It can be shown that the sequence {01(3)} con-
verges to the target posterior distribution (Gelman et al. 1995 and references cited
therein). We used a Gaussian jumping distribution of the form J, ~ ./\/(02(3_1), e*%).
We chose ¢ = 0.2 for the standard CIA model, and ¢ = 0.1 for the model with lig-

uidity effect. The rejection rates were about 37 percent, respectively. We found
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that é = 2.4/y/d;, where d; is the number of parameters 9 and 11, respectively,
recommended in Gelman et al. (1995) leads to too many rejections. Based on the
draws {02(5)} one can calculate the implied autocovariances, autocorrelations, and

impulse response functions {¢{*)} for the DSGE models.

Finally, the marginal data densities have to be computed at the observed Y7, Yo.
p(VrlYo, Mi) = [ p(VTIVo, 81 Mo)p(6:] M) 6 (36)

For the structural models this integral cannot be evaluated analytically. There are
several approximation methods available. An overview of different approximation
methods can be found in Kass and Raftery (1995). We will use a Laplace approxi-

mation

B(Yr|Yo, M;) = (20)¥ 3|1 2p(Y7| Yo, 6, Mi)p(6:|Yo, M) (37)

based on a log-quadratic expansion around the posterior mode.

3.3 Empirical Results

The two DSGE models and the VAR are fitted to quarterly U.S. data from 1950:1
to 1997:IV. The data were extracted from the DRI/Citibase database. Aggregate
output is real gross domestic product (GDPQ) converted into per capita terms
by the NIPA population series (GPOP). The GDP-deflator series (GD) is used as
aggregate price level. Logarithms and first differences are taken to obtain quarterly

output growth and inflation.

3.3.1 Posterior Distributions and Model Probabilities

The first step consists of the analysis of the overall posterior density p(¢|YT, Yo)
given in Equation (2). Table 2 summarizes posterior means and standard errors for
the structural models M; and M,. The posterior moments are calculated from the
output of the Metropolis algorithm. For the parameters ¢, oy, and oy the likeli-
hood function is essentially uninformative. The moments of the marginal posterior

distributions for these parameters are very similar to the prior moments. For other
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parameters, such as the capital share «, the discount factor 3, the depreciation rate
5, and the persistence of the money supply shock, the posterior means are very
different from the prior means. A seemingly small increase in the prior variance
from Prior 1 to Prior 2 leads to a substantial change in the posterior mean. To gain
a better understanding of this effect, consider a Gaussian linear regression model
with conjugate prior. The posterior mean is a weighted average of the prior mean
and the maximum likelihood estimate. The relative weight of the prior decreases as
the variance of the prior distribution increases. If we use Prior 2 instead of Prior 1
in our analysis the posterior mode moves more closely toward the maximum of the
likelihood function.

Table about here

Table 2: Posterior Moments for the Parameters of the DSGE Models.

The estimates of the capital share parameter « are greater than 0.7, and, thus, larger
than estimates reported elsewhere in the literature. The estimates of the discount
factor S are about 0.97 for the standard CIA model and 0.95 for the liquidity model.
The low estimates of B imply a counterfactual risk free rate of more than 3 percent
per quarter. Under Prior 2 the estimate of the depreciation rate § is 0.29 percent
for M; and 0.62 percent for My which leads to a low investment to capital ratio

along the balanced growth path of the model economies.

For the interpretation of the estimates it is important to note that most GMM
and maximum-likelihood estimates reported elsewhere in the literature are based
on long-run averages and low frequency characteristics of aggregate data, such as
output, consumption, investment and capital stock. In our empirical application,
the models are fitted to differenced data and the likelihood estimates are dominated
by short-run dynamics. It is well documented, e.g. Cogley and Nason (1995) and
Rotemberg and Woodford (1996) that standard business cycle models have difficul-
ties to replicate the stochastic behavior of output growth. Thus, it is not surprising
that the transformation of the data from levels to differences leads to a different set

of estimates. This sensitivity to the choice of criterion function is an indication of
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model misspecification. The model has no “true” parameter values. Instead there
are only “pseudo-true” parameter values that depend on the criterion function of
the estimators and can be thought of as their hypothetical limit as the sample size
tends to infinity. The use of prior distributions provides a coherent way of imposing
that large deviations of the parameter estimates from values that are consistent with

other information is penalized.

Table about here

Table 3: Approximations to the Marginal Data Densities.

Table 3 contains likelihood statistics and approximations of the marginal data densi-
ties p(Y1|M;). Not surprisingly, the reference model attains the highest likelihood,
followed by the liquidity model M,. However, it is not meaningful to rank models
according to maximum likelihood values. The Schwarz approximation (BIC) to the
marginal data density suggests to penalize the likelihood values by the model dimen-
sionality d; according to the term (d;/2)InT. The liquidity model is more strongly
penalized than the standard CIA model because it has the additional parameters
ay and oy. Row 4 of Table 3 lists the BIC values for the three models. The infor-
mation criterion can be converted into a posterior odds scale by the transformation
exp{BIC; — BIC;}. Our results imply that the BIC odds of the VAR versus the
liquidity model are approximately 90:1, and the odds of the standard CIA model

versus the liquidity model are 1:8.5.

Exact posterior probabilities depend on the marginal data density
P(YrlYo, M0) = [ p(Yr[Yo, 6, MO)p(6:1Yr) e (38)

As pointed out in the previous section, the marginal density cannot be calculated
analytically for the two structural models. Instead we report a Laplace approx-
imation. According to the approximation the liquidity model is preferred to the
standard CIA model for Prior 1 and Prior 2, respectively. Surprisingly, the liquidity
model with Prior 2 is also slightly preferred to the VAR (5:1). Unfortunately, the
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good statistical fit of model Mj comes at the price of unusual structural parameter

estimates.

The trade-off between economically plausible parameter values and statistical fit

deserves closer inspection. Consider the expression
p(Yr|Yo, 0, M;)p(0i|YT) (39)

The informative prior distribution pulls the posterior mode §; away from the mode
of the likelihood function éi,mle toward the prior mode. If the prior distribution is
very concentrated (Prior 1), the difference between the likelihood function evaluated
at its maximum and at the posterior mode can be substantial, in our case roughly
40. The tight prior leads ultimately to a low value of the marginal density. Thus,
somebody who strongly believes that the parameter values should not deviate much
from the mean specified in Table 1 (Prior 1) will deduce that the structural models
have essentially zero posterior probability. A person who is less certain about the
parameter values a priori (Prior 2) can conclude that the liquidity model fits output

growth and inflation data quite well, compared to a VAR(4).

A simple Bayesian model determination stops with the calculation of posterior odds.
The posterior probabilities of DSGE models, however, may often be small, and
macroeconomists are interested in evaluating such models according to a different
metric than the one implied by likelihood based econometric procedures. In our
evaluation framework the calculation posterior distributions and model probabilities
is an intermediate step, that is necessary to obtain the overall posterior distribution

of population moments and impulse response functions .

Although according to the Laplace approximation the liquidity model with Prior 2
has a higher posterior probability than the VAR(4), a qualification of the result is
necessary. It is possible to find a plausible prior distribution for the VAR param-
eters, e.g., Minnesota Prior with hyperparameters integrated out as in Schorfheide
(1998), such that the posterior probability of the reference model is greater than
the posterior probabilities of all structural models. However, many evaluations of

DSGE models are conducted based on a very diffuse reference model, such as a
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fourth or sixth order VAR (Nason and Cogley 1994, 1995), or nonparametric esti-
mates (Diebold et al. 1998). Our application suggests it is not always justified to
neglect the predictions of the best fitting structural model. The subsequent calcu-
lations will be conducted with a posterior probability of 80 percent for the VAR (4)

and 20 percent for the liquidity model with Prior 2, Myy).

3.3.2 Evaluation Based on Bayes Estimation of DSGE Models

In this section it is demonstrated how the model evaluation framework can be used to
evaluate models based on their ability to generate realistic patterns of co-movements
among macroeconomic aggregates or realistic impulse responses to structural shocks.
At first parameter weight functions f;(#) that appear in Equation (4) are specified.
The standard calibration approach uses degenerate weight functions that concen-
trate all their mass on parameter values such as the posterior means given in Table 1.
Dejong et al. (1996) and Geweke (1999) suggest to replace the degenerate parameter
weights by prior densities. Since these authors consider DSGE models that gener-
ate a singular probability distribution for the data there is no posterior parameter
distribution. In our application posterior densities p(8;|YT, Yo, M;(;)) are available
and can be used as weight functions f;;). The subscript i(j) refers to model M;

with Prior j. Define
Bhij = argmingenn [ Lip, p(el¥r, Migy)dy (40)

Under L, and Li loss the optimal predictor ¢y ; is the posterior mean, for the L, loss
it is the posterior mode. Below we report the overall posterior expected prediction
loss of @p,;. Determining the model M;(;) that minimizes this prediction risk is
equivalent to solving the minimization problem in Equation (6) with respect to A.
We restrict the model weights to be zero or one. The fit of mixtures of structural

DSGE models is not explored in this paper.

The calculations of expected L, losses and the Kullback-Leibler distances involve

estimates of posterior densities p(p|Yr, Yo, M;). We use non-parametric Kernel
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estimates of the form

1 Natm

> K((p - ¢*)/h) (41)

Ngim hm s=1

ﬁ((PIYTv YOv Mz) =

where K(z) = (2m)~™/?exp(z'z/2) (cf. Silverman, 1986). It can be shown that
the optimal bandwidth k' for the smoothing of normally distributed data with unit
variance is

r A 1/(mt4) —1/(m+4)
h = (—m+2) N

which we scale by the average marginal variance of the components of ¢.°

Table 4 and Figure 1 summarize the evaluation results with respect to correlation
patterns between output growth and inflation. Results for individual moments as
well as jointly for o(Alngdp,;), o(Alnp;), corr(Aln gdps, Alnp;) and the four first
order autocorrelations are provided. We report the overall posterior means and
standard deviations, posterior mean predictions of M,(;), as well as expected L,
and L, prediction losses. The L, prediction risks for an identity weight matrix can
be obtained as squared difference between overall posterior mean and the posterior
mean predictions of models M;(;). The Kullback-Leibler distance serves as a general
measure of discrepancy between the p(¢|YT, Yy, M;(;))’s and the overall posterior
p(¢|YT, Yo). Figure 1 depicts posterior density plots for three moments, Gaussian
approximations to these posterior densities, and posterior mean predictions from

models M i(5)-

Table about here

Table 4: Model Evaluation Statistics for Second Moments.

8 All our posterior calculations are subject to numerical approximation errors which can, at
least in principle, be made arbitrarily small by increasing the number of simulation draws. For
practical purposes, the number of draws might often be limited to a few thousands and asymptotic
distribution theory could be used to calculate approximation errors, e.g., Geweke (1992). In this

paper, however, we do not pursue the computation of numerical errors.
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It was argued in Section 2 that informal moment comparisons or the evaluation of
the model predictions under a quadratic loss function is equivalent to ranking the
models according to the difference between posterior mean predictions ¢y ;(;) and the
overall posterior mean. For o (A In gdp;) the difference is minimized by model M, ).

The other criteria support the conclusion that M(;) is the preferred specification.

Now consider o(Alnp;). The ranking according to the quadratic loss function is
Ma), Myga), My and My(y). However, the difference between the posterior
mean predictions of the first two models is only 0.0001. To avoid the difficulty
of judging the magnitude of this difference it has to be normalized. In a GMM-
framework this is achieved by p-values for tests based on overidentifying moment
restrictions. The discrepancy is normalized by its sampling variance under the
hypothesis that the structural model under consideration is actually true. We argued
above that this approach is conceptually unappealing. Comparisons across models
are difficult to interpret if there is a significant chance that all structural models
under consideration are misspecified. Qur L, loss function essentially standardizes
the discrepancy by the variance of the overall posterior distribution. The expected
L, is always between zero and one and can be losely interpreted as a p-value. This
statistic suggest that My(y) is clearly preferable to M (y). In Figure 1 the expected
L2 loss corresponds to the area under the Gaussian approximation of the posterior

density for which p(¢|Yr) is larger than p(@y ;)| Y7)-

According to the L, loss the ranking of models M3 and My;) is reversed. More-
over, model M(;) now appears better than Mjy(;) and almost as good as M (y). It
is apparent from the second plot of Figure 1 that the actual posterior distribution
of 0(Alnp;) is skewed. The L, loss indicates that the posterior modes of M, ;) and
Mgy are closer to the mode of the overall posterior distribution than the posterior

mode predictions of My(;) and My(y).

The Kullback-Leibler distance calculations for o(Alnp;) favor model Mj(y) which
is ranked last according the other loss functions. Table 4 indicates that conditional
on the other three specifications of the structural models the posterior distributions

of o(Alnp;) are sharply peaked around the mode. The standard deviations are
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0.0006 or less. Under My, this standard deviation is almost twice as large. The
overall posterior distribution of o(A In p;) is also quite dispersed (standard deviation
of 0.0021). The Kullback-Leibler distance not only takes into account the location
of the overall posterior distribution versus the model prediction but also whether
the posteriors conditional on the structural model resemble the overall posterior in

terms of dispersion and shape which explains the small value for Mj(y).

The posterior distribution of corr(Alngdp:, Alnp;) is bimodal. Despite its low
posterior probability, My(y) introduces a second mode into the posterior density
due to a more concentrated posterior density for corr(Alngdp:, Alnp;) than the
diffuse reference model. For this reason the expected L, loss of Mjy(y) is smaller
than the loss for M, despite () being closer than @y(z) to mean and mode of

the overall posterior density.

The last panel of Table 4 summarizes the prediction losses for seven moments jointly.
The zero L, loss indicates that the structural models introduce highly peaked modes
into the overall posterior distribution. According to L,2 loss and the Kullback-
Leibler measure, the liquidity model with Prior 2 predicts the covariation patterns

more accurately than the simple CIA model.

The results demonstrate that the model evaluation is potentially sensitive to the
choice of loss function. A simple comparison between model prediction and posterior

mean can lead to a distorted ranking and incomplete assessment.

In terms of policy implications of the two models it is more interesting to examine
their predictions with respect to the effects of a discretionary change in the growth
rate of money supply, as measured by the impulse responses {dIn gdpt+h/377t}hH=0
and {OA Inpyn/0n}L, to a standardized money growth shock n,. Figure 2 depicts
the posterior distribution and the Bayes predictors @ (1) for the impulse response
functions under Prior 1. The posterior distribution of {9 1n gdp;4x/0n:}1 is dom-
inated by the positive hump-shaped response of output to the expansion of money
supply. The liquidity model is able to generate a positive response of output, but

initially smaller and in the long-run more persistent than the one predicted by the
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Figure 1: Posterior densities for the moments o(Alngdp;), o(Alnp), and
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output of the Metropolis Algorithm. Approz refers to a Gaussian approximation

with same mean and variance as the simulated moments. Vertical lines signify pos-

terior mean predictions @ ;(;) for structural models M; with Prior j.
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VAR. The response of the standard cash-in-advance model is dominated by the ex-
pected inflation effect which causes a slight decrease of output initially. Figure 2
also depicts the shortest connected fifty percent confidence intervals. The fact that
the posterior mean is at some horizons not contained in these sets indicates that the
predictions of the structural model My(;y skew the overall posterior distribution.
Both structural models predict a sudden increase in the price level which results in

a substantially larger inflation rate than under M..

3.3.3 Evaluation Based on Loss Function Estimation

In this section loss function estimates for the liquidity model M, are computed.
The loss function estimation corresponds to solving the minimization problem (6)
of Section 2 for A = [0,1]’ and F; being the set of point mass functions d(g,—¢, o},
0;0 € ©;. We focus on the liquidity model Mj because the standard CIA model
cannot generate a positive response of output to a discretionary increase in the
money growth rate. Thus, loss function estimation of M; is not very interest-
ing. Let ¢ = [p1), 2] where ¢(1) corresponds to the impulse response sequences
{81n gdp,4n/0n: 1., and {OA In peyr/One} L and ©{?) to the structural parameters

6, of the liquidity model. A modified quadratic loss function of the form
L(p, @) = (¢ — #M)'kW (¢ — ¢1) — In p(3!) | M) (42)

is used to obtain the estimates.

The weight matrix W is diagonal, discounting h-step ahead predictions by 0.99".
The second term penalizes strong deviations from a priori “plausible” parametriza-
tions of the structural model. If  is large the loss is dominated by the accuracy
of the impulse response predictions. If k = 0, the loss is minimized by the prior
mode parameters. Alternatively, ©®) could be composed of unconditional moments
to ensure that the loss function estimates do not have very unrealistic implications
about correlation patterns. Instead of using (1) to estimate or calibrate the model
parameters and ©(? to test or evaluate the models, our approach treats all model

predictions symmetrically.
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Table 5 summarizes the estimation results. Figure 3 depicts the corresponding
impulse response functions. For k = 1 the estimates are similar to the prior mean.
In the liquidity model the money growth shock increases the amount of loans that
the firm has to absorb since the household’s bank deposits are predetermined. To
increase the demand for loans the nominal interest rate has to fall which stimulates
economic activity. The household can adjust its labor supply in response to the
money growth shock. The labor-leisure trade-off determines aggregate real output
in the initial period since the capital stock is also predetermined. For the prior
mean values of the structural parameters the incentive for the household to increase
its labor supply is not strong enough to generate such a large increase in output
as suggested by the overall posterior distribution. Instead the structural model

attributes a large fraction of the rise in nominal output to an increased price level.

Prior Mean Prior Std.Error | k=1 k=1E2 k=1FE3 k=1F4
o 0.345 0.050 0.343  0.431 0.612 0.635
B 0.993 0.005 0.996  0.956 0.900 0.900
0% 0.003 0.001 0.003  0.003 0.002 1.0E-5
m* 1.011 0.002 1.011 1.011 1.011 1.018
P 0.728 0.050 0.736  0.724 0.760 0.778
¢ 0.773 0.050 0.782  0.787 0.810 0.946
é 0.022 0.005 0.021 0.015 0.010 0.002
o 0.035 00 0.016  0.016 0.016 0.016
o 0.009 00 0.004  0.005 0.004 0.004
Vou 0.007 0.001 0.007  0.006 0.004 0.003
NG?) 31.62 2.000 31.62 30.15 25.81 21.00

Table 5: Loss Function Based Parameter Estimates, My().

As k is increased and more weight is placed on matching the impulse response
characteristics the estimate of the capital share parameter rises to & = 0.431 and
the discount factor drops to 8 = 0.956. This trend continues as x is increased

to 10000. Overall the propagation mechanism for the nominal shock is not strong
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enough to reproduce the posterior mean response of output.

The empirical illustration suggests that despite some overall deficiencies, the liquid-
ity model M is preferable to the standard cash-in-advance model M; in terms of
posterior probabilities, its implications with respect to autocorrelations of order zero
and one, and its impulse response patterns. Our assessment of the liquidity model
is to some extent more favorable than Nason and Cogley’s (1994) assessment. Using
classical hypothesis tests, Nason and Cogley reject the null hypotheses that the im-
pulse response functions {0 1n gdps/0n:}_, and {9A In p,/dn,} L, were generated

from either of the structural models by a wide margin.

4 Conclusion

This paper introduced a unified framework for the evaluation of small DSGE models.
It combines features of many existing evaluation techniques in a coherent procedure.
A variety of measures are provided that are useful for comprehensive model com-
parisons. Under special circumstances, the evaluation procedure is similar in spirit
to the popular informal moment comparisons. However, the illustrative application
demonstrated that informal moment comparisons might lead to a distorted assess-
ment and only yield an incomplete picture of relative model performance. The
framework also builds a link to the traditional measures of fit for macroeconometric
models, namely, their ability to track historic data and forecast future observations.
This is measured by the posterior probabilities of the structural models, which de-
termine how much weight should be given to the predictions of the DSGE models

relative to the predictions of the reference model.

Our approach is particularly interesting for policy analyses because the prediction
of policy effects can be convincingly stated within a loss function based frame-
work. Throughout the paper, we considered cases in which it is possible to generate
predictions p(¢|M.) from the reference model. The attractiveness of structural eco-
nomic models, however, rests in their ability to generate predictions about aspects

of economic activity that cannot be analyzed within the context of a reduced form
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reference model. For instance, suppose ¢ is composed of the effects of permanent
changes in the monetary policy rule. The vector autoregression cannot generate

predictions with respect to such a ¢.

If the posterior probability of the reference model M, were very small then one could
regard the posterior mixture of structural models as “true” for practical purposes
and base the decisions on predictions obtained from the M; and M3 mixture. Of
course, one has to keep in mind that there is always the possibility that despite
high posterior probability, M; and M3 do not capture the policy effects correctly.
On the other hand, if the reference model has the highest posterior probability, it
becomes more difficult to determine how to base decisions on M; or M,. Implicitly,
macroeconomists seem to proceed as follows: use a vector of characteristics ¢, for
which it is possible to generate predictions from the reference model, say responses
to a discretionary increase in the growth rate of money supply, and weight the
DSGE models according to their ability to predict ¢.. For this selection procedure
to be persuasive, the vector ¢, and the loss function L.(g«, ¢«) have to be carefully
selected and might depend on various aspects of model fit. Choosing a ¢. and
L.(@«, ¢«) that is informative about the actual ¢ and L(p, ¢) is beyond the scope
of econometric analysis and the framework presented in this paper. The advantage
of our framework is that it can be adapted to a variety of characteristics ¢, and loss
functions L.(¢«, ¢«), to document in which respects the structural models M; and

M fit the data.

While the implementation of the framework is conceptually straightforward, the non-
linear structure of the DSGE models might cause practical problems with respect
to optimizations and simulation from the posterior distributions of the structural
parameters. The reference model could be equipped with a hierarchical prior dis-
tribution based on the structural models and controlled by hyperparameters as in
Ingram and Whiteman (1994) and Schorfheide (1998). The evaluation of L,-losses
requires non-parametric density estimation, which is likely to cause non-negligible
approximation errors for high dimensional vectors ¢. In this case, a careful asymp-

totic analysis of the numerical errors is desirable.
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