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Abstract

The paper considers the problem of using a vector autoregression (VAR) to
forecast a stationary process several periods into the future. If the VAR is mis-
specified, it might be best to use the loss function under which the forecasts are
evaluated also for parameter estimation. It is a plausible and straightforward
procedure to conduct a model check of the VAR before adopting a loss function
estimator. If the VAR is discredited by the data then a loss function estimator
1s used, otherwise the parameters are estimated by a likelihood based technique.
We calculate the asymptotic prediction risk for such a pre-test procedure under
the assumptions that the data are generated from a linear process that drifts
toward the VAR as the sample size tends to infinity. The pre-test can avoid
picking the inferior estimator when the stakes are high. This is confirmed by a
small Monte Carlo study. A Bayesian interpretation of loss function estimation
and the pre-test procedure is provided. A forecaster places non-zero prior pro-
bability on a reference model but finds it too onerous to calculate its posterior
predictive distribution. Instead he chooses a prediction procedure based on the

VAR that has a small integrated prediction risk.

Key Words: Bayesian Analysis, Forecasting, Loss Function Estimation,

Pre-testing

JEL Classification: C11, C32, C53



1 Introduction

Forecasts of future observations Y7+r are often based on parametric probability
models. Suppose the distribution of the future observation is given by a density
p(yr+nl6, Y1), where Y7 is a vector of past observations that are available at time
T, and 0 is a vector of parameters. The forecast Y147, made at time T, is evaluated
according to a loss function L(yT+h,g}T+h[T). If the parameter vector # is known,

then the optimal forecast as a function of 8 is given by!

Ir+ni7(0) = argming.c pn / L(yr+n, v")p(yr 410, T1)dyr 11, (1)
YT+ h
However, before this predictor can be used to generate a forecast, a suitable para-
meter value has to be determined. An interesting question is whether one should
employ the loss function that is used to evaluate the forecasts, to obtain a parameter
value for §. A loss function estimator of 6 can be obtained by minimizing in-sample
forecast losses:
A 1 T~h
O, = argmingeo & > L(Yetns Genpe(6)) (2)
t=1

Future observations can be forecasted with the resulting plug-in predictor Y747 (07,0)-

This predictor will be called loss function predictor.?

From a Bayesian perspective the loss function predictor is sub-optimal. Standard

analysis suggests to use the predictor that minimizes the posterior expected loss.

9T 4pjr = ATMIN ¢ pn / [/ L{yr+h, ¥ )Py 4110, Y1)dyr 1| P(6] TT)dO
€0 LJyryn
(3)
where p(8|T7) is the posterior density of the parameter §. Throughout the paper,
we will restrict our attention to quadratic forecast error loss functions. If the loss
function is quadratic, then the optimal predictor is a weighted average of parametric

conditional expectations

@}+h|T=/ [/ yr+r0(yr 4010, TT)dyr 0 | p(8]T7)dO (4)
fe© YT+h

'In slight abuse of notation, integrals with respect to various probability distributions are ex-

pressed through densities: fg(x)dPg = fg(z)p(z]ﬁ)dz, where z can be a vector.
2The term is not quite precise. It is shorthand for loss function estimation based plug-in

predictor.



The posterior distribution p(8|Y7) provides the optimal parameter weights. The
posterior depends on the likelihood function and the prior distribution of the para-
meters 6, but is unrelated to the loss function L(yr+4n, §740)7)- In large samples, the
posterior distribution is concentrated in a neighborhood around the maximum like-
lihood estimator. Thus, Bayes predictor and maximum likelihood plug-in predictor
are approximately equivalent. Despite a seemingly lack of optimality, loss function
estimators are frequently used in practice and received considerable attention in the
recent econometrics literature, e.g., Christoffersen and Diebold (1996, 1997), Weiss

(1996), Tsay et al. (1993, 1994, 1996).

In the context of h-step ahead forecasting the loss function estimators are also called
multi-step or dynamic estimators. The properties of such estimators have been
examined, for instance, by Findlay (1983), Weiss and Andersen (1984), and Weiss
(1991). These authors consider cases where the expectation of a random variable
Yt+h, conditional on information available up to time ¢, is misspecified and conclude
that, if the misspecification is substantial or the sample size is small, predictors based
on multi-step estimation may be preferable. Weiss (1991) provides conditions under
which multi-step estimators are consistent and asymptotically normal. More general
convergence results are reported in Findlay et al. (1998). Weiss (1991) conducts a
series of Monte Carlo experiments in which he compares the efficiency of estimators
based on single- and multi-step estimation for various kinds of misspecification.
The Monte Carlo analysis has been extended by Clemens and Hendry (1998), who
are generally skeptical about the benefits of loss function estimation. Tsay (1993),
Tiao and Tsay (1994), and Lin and Tsay (1996) refer to loss function estimation as
adaptive forecasting and document the performance of such procedures in various

applications. Their assessment is more favorable to loss function estimation.

The existing literature demonstrates that the benefits of a loss function estimation
approach hinge on the potential misspecification of the forecasting model, in parti-
cular, the conditional expectation of ;45 given past data Y. The derivation of the
Bayes predictor (3) does not take such a misspecification into account. To capture

potential misspecification it is important to distinguish between a candidate model,



that is used to compute the forecasts, and a reference model, from which the data

are assumed to be generated.

This paper considers the problem of multi-step forecasting with a vector autore-
gression (VAR) under quadratic prediction error loss. A stationary moving average
process of infinite order will serve as a reference model. It is a plausible strategy to
base the choice between loss function and Bayes predictor upon the assessment of
the candidate model’s adequacy. A negative outcome of the model check indicates
misspecification and suggests to use the loss function estimator. In Section 2 of the
paper, we propose a model check based on the difference between the maximum
likelihood and the loss function estimator of the VAR parameters in the spirit of
Hausman (1978). The linear process theory of Phillips and Solo (1992) is used to
obtain an asymptotic approximation to the expected prediction loss of this pre-test
procedure. The performance of the pre-test predictor is compared to the loss func-
tion and the Bayes predictor. If the loss differential between the two predictors is
large, then the pre-test avoids choosing the inferior predictor. If both predictors
perform about equally well, then the forecaster is worse off by pre-testing. The
asymptotic results are confirmed in a small Monte Carlo study in Section 3. The

experiments closely resemble the ones conducted by Weiss (1991).

In Section 4 we propose a Bayesian interpretation of loss the function predictor
and the pre-test procedure. One of the conceptual difficulties associated with the
frequentist analysis of prediction losses under misspecification is that the ranking
of predictors depends on the specific parametrization of the reference model. These
parameters are unknown to the forecaster, yet he has to choose a predictor at time
T. One popular solution to this problem, reflected in the papers by Tsay et al. and
a statement by Granger (1993), is the minimax solution. If the misspecification of
the candidate model is believed to be potentially severe, the loss function predictor
is preferable to the maximum likelihood plug-in or the Bayes predictor under worst
case assumptions for the reference model. Hence, the forecaster should always choose

the loss function predictor.

A Bayesian framework offers an alternative solution. Consider a forecaster who



places non-zero prior probability on the candidate model as well as the reference
model. However, the forecaster finds it too onerous to evaluate posterior predictive
distributions based on the latter. In practice, forecasters often choose simple can-
didate models, such as linear vector autoregressions, instead of more complicated
specifications, such as vector autoregressive moving average (VARMA) models. The
former can be easily analyzed with standard econometric software packages. Moreo-
ver, even if the candidate model is very sophisticated the forecaster might still be
concerned about misspecification and tacitly consider a more general specification

as reference.

A forecaster who faces the above constraint, is not able to calculate the predictor
that minimizes the overall expected loss conditional on the observed data. However,
the prior distribution enables averaging over the different parametrizations of the
reference model. Thus, the forecaster is able to evaluate and rank prediction proce-
dures a priori based on their integrated risk. The pre-test is called a model check in
the Bayesian literature, see Gelman et al. (1995). It is illustrated how the optimal
calibration of the model check depends on the prior distribution placed on candidate
and reference model. Vice versa, the willingness to accept a certain rejection level
for the test can be interpreted as an indicator for an implicit prior distribution. Sec-

tion 5 concludes and the Appendix provides derivations of the formulae that appear

in the main text.



2 Multi-Step Forecasting of a Linear Process

2.1 Notation and Setup

The forecaster uses a time series {yt}thl to compute parameter estimates for the
candidate models. We will assume that the process to be predicted, {gt}f:T+h,
is independent of {y;}, but otherwise has exactly the same probabilistic structure.
This assumption has often been made for mathematical convenience in studies of
the present nature. Throughout this section, the random quantity to be predicted
by a point forecast is ¢ = gry,. The loss function is assumed to be quadratic. Let

tr[-] denote the trace operator.

Assumption 1 (Loss Function) The forecasts are evaluated under the quadratic

prediction error loss function

L(g, @) = tr[W(p = &) — ¢)]

W is a symmetric and positive definite weight matriz. O,

The candidate model is comprised of p’th order Gaussian VARs of the form

M oy =1y + o Pl + e~ N(0,%) (5)
where y; is an n X 1 vector and ¢, ..., ¢, are n X n matrices. The VAR coefficients
are collected in the matrix ¢ = [¢1,...,¢p]. The presence of correctly modeled

deterministic components does not affect our conclusions in any substantive way.
Hence, we will proceed as if they are absent just to keep derivations as simple as
possible. Let O, denote an n x n matrix of zeros, and I,, an n X n identity matrix. To

express the VAR in companion form we introduce the following additional notation:

¢1 e ¢p—1 ¢p I, €t
Yt
I, --- 0, 0, 0, 0
}/t = ] @ = . . . 9 Mn - X 3 Et =
Yi—p+1
0, -+ I, 0, 0y, 0




Thus,

i =Y, + E (6)
where y; = M]Y;. The VAR parameters ¢ are related to the companion form
parameters ® according to ¢ = M/ ®. Let § € © be the generic parameter vector

for the candidate model that consists of the non-redundant elements of ® and ¥.

The conditional likelihood function is of the form

T
P(T710, ¥o) o 27T/ exp {"%”[ DO STHMLY, - @Y )(MLY, - ¢>Yt_1)IJ } (7)

t=1

T; denotes the sample y,...,yr, and Yy contains the initialization for the lags
Y1—p,- -+, Yo. The likelihood function is maximized at
) ) -1
¢rp = M,or;= M, ( > Yth’_l) (Z YHY/_1> (8)
. 1 . .
Sro= 5D Mu(Ye= SrpYon)(Yi - rpYina) M, (9)

For completeness, we will also specify a prior distribution for the parameters.

Assumption 2 (Candidate Model) The candidate model from which all fore-
casts are derived s a Gaussian vector autoregression of order p, specified in Equa-
tion (5). The prior distribution of § concentrates on a compact subset @ and has
non-zero density p(#) in the stationary regions of the parameter space for which the

largest eigenvalue of @ is less than one in absolute value. O

Under the quadratic prediction error loss function the Bayes predictor, derived from

the candidate model is equal to the posterior predictive mean of §ry,
2y = / M 0"V p(8, 2| T r, M)dBIE (10)
(C]

where p(®, ¥|T7, M) denotes the posterior density of the VAR parameters condi-
tional on the data. In large samples, the posterior distribution concentrates around
the maximum of the likelihood function and the Bayes predictor is approximately
equal to the maximum likelihood plug-in predictor. Throughout the paper we will
treat the two predictor as asymptotically equivalent. This can be formally expressed

as follows.



Lemma 1 Suppose a time series {y,}L., is generated from the VAR specified in
Equation (5) or the reference model specified in Equation (11) below, then the Bayes

predictor o, can be approzimated as follows
VT|gy - M, 9%¥7| =0 O

Proof: The Lemma can be proved by Laplace approximation of the posterior mean

of ®", see for instance, Crowder (1988). Details are omitted. O

Under the reference model M., y; is the sum of a VAR(p) process z; and a di-
sturbance process z;. For any fixed sample size T, it is simply a VM A(oc) process.
Wold’s theorem implies that the class of VM A(oo) processes encompasses a large

collection of stationary processes and hence comprises a reasonable reference class.

Let ||A| = (tr[A’A])Y/2.

Assumption 3 (Reference Model) The reference model is a drifting vector mo-

ving average process of the form
My: yp=zi+al 2z (11)

where

Te=Y MiF'Mye, z=Y MyA;jMyu

j=0 j=0
The matrices F and A; are npxnp. The matriz F is in companion form and has the
same structure as ®. The largest eigenvalue of F' is less than one in absolute value.
The sequence {A;}72, is summable in the sense Z?’;OfHAJH < oc. The innovations
¢; and u; are independent across time and jointly distributed with variances ¥ and
Yuu, covariance matriz e, and finite forth moments: ||IE.[(e:€;)(e})]|] < oo,

|1 [(ueug)(wewp)]|| < 00. O

Conditional on a disturbance process z;, the parameter « controls the size of the
misspecification. The drift term T-1/2 ensures that the trade-off between bias and
efficiency of the different estimation procedures does not vanish as the sample size

tends to infinity. The assumption that the linear process innovations are identical



distributed and independent across time is stronger than necessary for the subse-
quent analysis. For alternative assumptions see Phillips and Solo (1992). Let v
denote the generic parameter vector of the reference model that contains the non-
redundant elements of the matrices F,X,,, Yee, Leus Ao, A, .. .. The discussion of a

prior distribution for the parameters of the reference model is deferred to Section 4.

The following additional notation is introduced. The companion form version of
r; and z is denoted by X; = E;io FjEt_j, 7y = Z?’;O A;U_;, where Uy =
[ut,0,...,0]'. Generally, upper case letters refer to the companion form representa-
tion. For instance, autocovariances are denoted as

Fxﬂ:(h) = Mrlz,rXX(h)Mn - M;L(ZF]-HLEEUFJ/) M,

=0

=
8
N
~—~
Pyl
S
Il

M!Txz(h)M, = M! ( > Ff+hEEUA;> M,

Jj=0
We will now calculate expected quadratic prediction error losses conditional on
the parametrization of the reference model. This expected loss is the frequentist

prediction risk.



2.2 Risk Calculations for Bayes and Loss Function Predictor
2.2.1 Pseudo-true Values and Loss Function Estimation

At first we will define pseudo-true values for the vector autoregression based on
the h-step ahead forecasting problem. The concept of pseudo-true values has been
widely used in the econometrics. Our definition is most closely related to one used in
the indirect inference literature, e.g., Gourieroux et al., (1993). If the time series is
generated from a linear process with parametrization v, then the optimal predictor
i8 @y = E’}[M,QYT+h], where [E7. denotes the expectation under M, conditional on
time T and infinitely many past observations. The expected loss of Py provides a

lower bound for the frequentist risk of estimators.

We normalize the prediction risk R(@|e, M.) of a predictor ¢ as follows
RS M) = B [0l (o = 9)o - 11| - B oo~ pu)(o = g0))
= I [tT[W(% — ?)(pw — @)']} >0 (12)
The relative ranking of predictors is not affected by this normalization.
Definition 1 The pseudo-true parameter vector 07 of the VAR(p) for the problem

of predicting a process generated from the reference model M, h periods into the

future is given by the solution of the minimization problem

min R(M,®1(0)¥r|¥, M) O
(S

Using tedious but straightforward algebra it can be shown that the pseudo-true

. . s 03
autoregressive parameters have the companion form representation

o4, = F* + T ap + o(T7/?) (13)

3Since the predictor M,,®"Yr does not depend on the variance parameters ¥, the pseudo-true

value is, strictly speaking, not uniquely defined. However, this non-uniqueness is irrelevant for the

prediction problem.
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where
= [Pzx(h) = F*T 7% (0)]T x x (0)™* (14)
The matrix norm of the remainder term converges to zero faster than 7-1/2,

As pointed out in the previous Section, the loss function or multi-step estimator
is designed to obtain an estimate of the pseudo-true value @%1. The loss function

estimator of ®” is of the form

. -1
o4, = Mﬁ(ZYth’—h) (ZYt—hYt/—h> (15)

and does not depend on the weight matrix W. The corresponding A-step plug-in

predictor is ¢; = M,’li)%IYT

Loss function estimation procedures are based on the idea that in a large sample
the observed frequencies of hypothetical prediction losses at times ¢ < T are a relia-
ble indicator for the frequentist risk associated with different predictors. Granger
(1993), for instance, proposes that if we believe that a particular criterion should be
used to evaluate forecasts, then it should also be used at the estimation stage of the
modeling process. More formally, loss function estimators are designed to converge
under mild regularity conditions to the “true” parameter value 6 if the data are
generated from the candidate model, and otherwise to the pseudo-true parameter

value 6y, defined above.*

2.2.2 Limit Distribution of the Estimators

The asymptotic theory for linear processes developed by Phillips and Solo (1992) can
be used to derive the limit distribution of the approximation to the Bayes estimator
M,’L(i)%b and the loss function estimator Mfw‘i)}fz The limit distribution is used to

calculate the contribution of the parameter uncertainty to the prediction risk. Define

o4y = F' 4+ Ty (16)

*If the sample average of the observed prediction loss does not converge to the frequentist pre-
diction risk, then loss function estimation is difficult to interpret. This paper focuses on stationary

models for which the convergence occurs.
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where
h—1

wo= | D F"E Iy p(1) = PTyx (1] x(0) "1 F* (17)
k==0

Proposition 1 Suppose the time series Y7 is generated from the reference model

specified in Equation (11) and Assumption 3. Then’

M;L éh - Fh Ml s}
Vi B A (T e I I R "
M (27, — ®74) oMy, (1 — ) 0 V2-v2
where
h—1h-1
vy = M, F*SppF" M, © [FPF Ty (0)7 Fh=11]
k=0 [=0
h=1h-1
Vlo = MAFkEEE‘Fl Mn®[rxx(0)_—lrxx(k‘—Z)FXX(O)"I] O
k=0 [=0

The proposition implies that even under the considered misspecification the asym-
ptotic distribution of the inefficient loss function estimator can be expressed as the
sum of the limit distribution of the likelihood based estimator and an uncorrelated
random variable. It is centered at the pseudo-true value M;L(I)’%’l and has variance
VZO > Vbo. The sampling distribution of the likelihood based estimator Mn@%b is

centered at M,’L<I>{;’T # Mfl(I);fT. Since
My ®%, — My @4 = T~ M) (1 — ) (19)

the discrepancy between the location of the sampling distributions of the two esti-

mators is an increasing function of the parameter a.

2.2.3 Frequentist Prediction Risk

The subscript ¢ = b,/ will be used to index the Bayes and loss function predictor

and the corresponding risk. Equation (12) and the properties of a quadratic loss

®The notation is shorthand for: \/Tvech[M,’l(Ci)'}’b — PM)] =2 N(avech[M/ps), V) where vech

denotes the operator that stacks the rows of a matrix.
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function imply
R(&|¢, M) = IE” [W[WMT'L(E?YTM ~ % Yr)(ErYren — 9% YrY M,)|  (20)

The normalization removes the portion of the forecast error loss that is due to the
randomness of the §r process and does not vanish in large samples. The effects of
parameter uncertainty and model misspecification are both of order T-! and de-
termine the asymptotic behavior of the normalized risk. The asymptotic prediction

risk can be defined as R(-|-) = limg_ o, T - R(-|-).

The risk can be decomposed as follows
BG4 MY) = [0V M T — 0, F0) (B3 s, - 0, T2,
+IE* [tr[WM{L(ti%LYT — O Yo )(®4 Y7 - @h,LYT)’Mn]J (21)
—2IF" {”[WMQ(E??TM — ®% Y7)(®h V7 - ‘I’f’?,LYT)'Mn]]

The first term captures the risk attained by the plug-in predictors M, ®r Y7. For

a = 1 its limit will be denoted by R*

R’ = lim T - IE* [tr[WM,;(zE}YTM — ®% Yr)(ETYryn — 4 Y7 )’Mn]] a=1

T—co
Clearly, Rf < Rj, since M{LQ’}J was defined as the set of VAR(p) coefficients that
minimizes the frequentist risk. The second term can be approximated by the va-
riance of the limit distribution of an’/fm The third term vanishes asymptotically

because the limit distribution of Mn@%L has expected value an’]%,u

Proposition 2 As the sample size tends to infinity, the frequentist risk R(p,|v, M)

for v = b,1 converges to:
R(@u |, M) = o® R} + tr[(W © T4(0))V)) (22)
where

R = tr[WMpTxx(0)u,M,] — 2tr[WMLuuTx x(0)ul M,
+ir [WM,Q(Z(AM—R”Aj>EUU<Aj+h—RhAj)’) Mn} O (23)
7=0
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Since R} < R} and VP> V2 in the matrix sense, there exists a trade-off between

the two predictors. Based on the inequality

o’ > tr((W @ Txx (0))(Vi — Vi)l/(B; — Rj) (24)

we can distinguish two cases:

(i) The misspecification of the candidate model is small in the sense that Ine-
quality (24) not satisfied for any parameter value in the support of the prior
distribution. In this case, the candidate model M approximates the reference
model M, well enough in terms of h-step ahead prediction under quadratic
loss the Bayes predictor is preferable.

(ii) The misspecification of the candidate model is severe in the sense that Ine-
quality (24) is satisfied. In this case the loss function predictor (; dominates

the Bayes predictor.

Since the reference model is approaching the candidate model at rate 77-1/2, the
choice between the loss function estimator and Bayes estimator does not depend on
the sample size. The trade-off between the efficiency of the likelihood based estima-
tor and the bias toward the pseudo-true value of the loss function estimator does
not vanish. In practice, the sample size is fixed and the choice of predictor depends
ultimately on the conjectured misspecification of the candidate model relative to the
available amount of data. This is captured by the weight «. The forecaster does not
know the parameters of the reference model and cannot determine which predictor
has the smallest expected loss. A plausible procedure is to assess the adequacy of the

candidate model before choosing between the Bayes and the loss function predictor.

2.3 A Prediction Rule Based on Model Checking

The previous analysis showed that the divergence of Mg@’}b and MT’L@%Z is an
indicator for misspecification of the M model. If the misspecification is severe, it is
preferable to use the loss function predictor ¢;. Although this type of selection rule
does not take the contribution of the variance terms V,? and VY to the asymptotic

frequentist risk into account, it seems intuitively reasonable because the gain from
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choosing ¢; is large if the misspecification is substantial and the Hausman-type
test is powerful. Define the difference ﬁT = <I>f}b - <I>:};l Let IA/TJ, and IA/TJ denote
estimators of V2 and V2, respectively, that are consistent under the candidate model

M. Define the checking function
g(Yr)=T- ﬁT(VT,L - ‘A/T,b)—lb/T (25)

One can deduce from Proposition 2 and the Continuous Mapping Theorem, that
the checking function is in large samples approximately x? distributed with np?
degrees of freedom, if data are generated from the candidate model M. Consider

the following pre-test prediction procedure.

Procedure 1 Choose the loss function based predictor &1 if g(T1) > ¢ and the

Bayes predictor ¢ otherwise. The resulting predictor is denoted by Q.

Define V; = V2 - V;? and Vpy = VTOI - VTO,b. Moreover, define the integrals

Ioy(c*,m) = (27r)—1/2/ e~ 2y
(e=m)(z=m) 2

Ioy(c*,m) = (2%)_1/2/ za'e™ " 2y
(e=m) (2=m)>c2

where m is a vector with the same dimension as z. It is easily seen that I0y(0,m) =
0, Iig)(c0,m) = 1, I(3y(0,m) = 0,2, and I(3)(c0,m) = I,,2. The following proposi-
tion provides the asymptotic risk R(@.|y, M.) and R(¢.|6, M).

Proposition 3 The asymptotic frequentist risk of predictions according to Proce-

dure 1 is

R(@el, M) = a®Ri + tr[(W @ Tye(0))V0) (26)
+a? (Ry — RY) Loy(c®, oV 2 (uy — )

Hr{(W @ T (0)V, Ly (e?, VP (wy — ) VP ©
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Suppose that y; is a univariate time series and the candidate model is AR(1). For

this case the integrals that appear in the formula of Proposition 3 simplify to

I(O)(c2,m) = 1=Fn(m+ec)+ Fy(m —¢)

Ip)(c2m) = Toy(®m) + (m+ ) fn(m +¢) = (m — ¢) fa(m — ¢)

Fy and fn denote the cumulative and probability density functions of a A(0,1)
random variable, respectively. The term [(0)(02, m) corresponds to the power of the
Hausman test. The overall risk of the pre-test predictor, setting W = 1, can be

expressed as

R(p |y, M,) = [1 = L) (¢®, m)] R, ML) + Loy(c2, m)R(@1|v, M..)

+(VP = VD(m+ e)fn(m+c) = (m — ) fn(m — )] (27)

where m = an_l/Q(ub—ul). The first part of Equation (27) is a linear combination of
the prediction risk of the Bayes and the loss function predictor. The weights for this
linear combination are given by the power function of the model check procedure.
It can be verified that the second part is non-negative and, thus, is a penalty for the
testing pre-testing. While in some regions of the parameter space of the reference
model, for instance, o very small, or & very large, the pre-test prediction procedure

dominates either the loss function or the Bayes predictor, it is not guaranteed that

min {R(@y]%, My), R(G1]h, M)} < R(2eltp, Mo) < max{R(@s|vp, M), R(¢i]w, M..))
(28)
This is easily seen by choosing the parameters of the reference model such that
R(&s]9, M.) = R(¢1|v, M.). Since V;° > V2 and (m+c¢) fy(m+c)—(m—c) fn(m—
c) > 0, it follows that the pre-test predictor performs worse than both the Bayes

and the loss function predictor.
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3 Monte Carlo Experiment

A small Monte Carlo study is conducted to examine the finite sample properties of
the pre-test predictor and how well the expected prediction losses are approximated
by the asymptotic formulae derived in the previous section. The specification and
parametrizations of the reference model resemble the ones used by Weiss (1991).

Data are generated from the model

Y = Biyi—1 + Bavr—a + y1ve + 1y (29)

vy = P + & (30)

The disturbances 7; and & are iid A(0,1) and independent of each other. Ta-
ble 1 lists the parameter values and the model identification numbers used by Weiss

(1991). Throughout this section, all forecasts are generated from an AR(1) model.

To apply the asymptotic formulae y; has to be decomposed in the processes z,
and z;. This decomposition is clearly not unique but it will have an effect on the
goodness of the asymptotic approximation. The process y; is decomposed such
that the variance of the misspecification process z; is minimized. It can be seen
in the Appendix that the autocovariances of z; enter the calculations with a factor
T-1, whereas the cross covariances between ; and z, enter with a factor 7-1/2
and dominate asymptotically. The adopted decomposition is not necessarily the
most favorable one to the asymptotic approximation. However, it is a reasonable
decomposition because the size of higher order autocovariances of z; is bounded in

absolute value by the variance of z.

From Table 1 it can be seen that model specifications M4 to M8 correspond to
AR(2) models. The AR(2) model has a moving average representation of the form
Y = Z;’;O ¢;(B1, B2)ni—;. The autoregressive coeflicient F of the x; process is chosen
to minimize »3774(c;(f1,82) — F7)2. The MA representation of models M9 to
M12 is of the form y; = Z‘;‘;O ﬂ{nt_j + 1 Z‘;’;O d;(B1,p1)&—; where 1 and & are
independent and 7id M'(0,1). The process z; = z;‘f__o Fj(wlm_j-l—wgft_j) and F, wy,

and w; are to chosen to minimize the variance of the distortion z;. It turns out that
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for most specifications of Weiss’ (1991) study the variance of the misspecification

process z; is substantially smaller than the variance of the signal z;.

The sample size is chosen to be T = 100, the forecast horizon is h = 2,4,6 and 8
periods ahead. The threshold for the pre-test is ¢ = 2 which leads to approximately
five percent of rejections if the data are generated from an autoregressive model
of order one. The number of replications used to compute the expected prediction
losses is 50,000. During each replication a sample of 300 observations is generated.
The first 200 observations are discarded and the remaining 100 observations are
used to calculate IE%[Y744,], é;{pr é%)lYT, and g(Y7). The results are tabulated
in Tables 2 and 3. The columns contain Monte Carlo averages of the normalized pre-
diction losses (IE7[Yr14]—@,)?, and the asymptotic prediction risks T-R($,|v, M.,)

for the Bayes predictor, the loss function predictor, and the pre-test predictor.

For M1, M2, and M3 the candidate AR(1) model is correctly specified. The loss
function predictor performs clearly worse than the Bayes predictor. The asymptotic
approximations for the loss function predictor are quite precise. Due to the power
transformations of the parameter estimate, the discrepancy between asymptotic and
finite sample risk is somewhat larger for the Bayes predictor. Due to the choice of
the threshold c¢ the candidate model passes the model check in about 95 percent of
the iterations. The pre-test predictor clearly dominates the loss function predictor.
As indicated by the asymptotic calculations, there is however, a small price to be

paid for the pre-testing.

Model specifications M4 to M8 correspond to the five AR(2) models. Only under
M8 the loss function predictor is clearly dominated by the Bayes predictor. Table 1
shows that the variance of the misspecification process z; is less than one percent
of the variance of z;. The model check confirms the adequacy of the forecasting
model. In particular, at horizons 6 and 8, the pre-test predictor avoids the large
losses of the loss function predictor. Under specification M6 both loss function
predictor and Bayes predictor perform about equally well. In this case, the variance
of the distortion z; is roughly two percent of the variance of ;. Overall, the pre-test

predictor performs worse than the other two predictors. This is consistent with the
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asymptotic theory developed in the previous section. Whenever the risks of the
Bayes predictor and loss function predictor are approximately equal, the pre-test
procedure leads to inferior predictions. At horizon 8, the asymptotic approximation
is imprecise and somewhat misleading about the actual ranking of the three forecast
rules. Conditional on M4, M5, and M7 the loss function predictor dominates the
Bayes predictor. This is consistent with the fact that the relative variance of zy
Is much larger than in the previous two cases. The pre-test predictor dominates
the Bayes predictor. Under specification M4 it performs almost as well as the loss

function predictor, under M5 and M7 the improvements are smaller.

Table 3 contains the results for model specifications M9 through M12. The diffe-
rence between M9, M 10, and M 11 is the weight v with which the €X0genous process
v¢ enters the determination of y,. If v is small (M9) the Bayes predictor dominates
the loss function predictor. If the weight is large, the ranking is reversed. As before,
the pre-test procedure avoids choosing the inferior predictor if the discrepancy in
performance between the Bayes and the loss function predictor is large. If the per-
formance of the two predictors is roughly equal then the pre-test predictor performs
worse than both of them. The Monte Carlo study confirms the analytical results

obtained in the previous section.
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Model Weiss-ID | 3 B 1 o; F wq wy  varly] var(e] var(z]
M1 2 |08 0.80 278 2.78
M2 (3) 0.5 0.50 1.33 1.33
M3 (4) |02 0.20 .04 1.04
M4 ) 1.6 -0.64 0.95 35.2 11.3 10.6
M5 (8) |13 -0.40 0.90 864 519  0.92
M6 (9) 1.0 -0.16 0.84 4.00 3.43 0.06
M7 (10) 1.0 -0.25 0.76 2.96 2.35 0.13
M8 (11) 0.7 -0.10 0.61 1.70 1.60 0.01
M9 (12) 0.8 0.5 05084 090 0.78 4.94 4.77 0.17
M10 (13) 0.8 25 05086 0.84 3.68 56.8 54.1 2.70
M11 (14) 0.8 50 051|086 083 7.26 2188 208.6 10.2
M12 (15) 0.8 0.5 081090 068 1.22 11.6 10.1 1.50

Table 1: Reference Model Parameters for Monte Carlo Experiment. Sample Size

T' = 100, rejection threshold for pre-test ¢ = 2, weight matrix of loss function W = 1.

Number of Monte Carlo replications is 50,000.
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Simulated Loss Asymptotic Loss
Model Proc Forecast Horizon Forecast Horizon

2 4 6 8 2 4 6 8

M1 0.0248 0.0394 0.0379 0.0306 | 0.0256 0.0419 0.0387 0.0281
0.0294 0.0655 0.0874 0.0990 | 0.0292 0.0680 0.0949 0.1105
0.0262 0.0475 0.0521 0.0477 | 0.0265 0.0488 0.0534 0.0497
0.0095 0.0029 0.0006 0.0001 | 0.0100 0.0025 0.0004 3.9E-5
0.0169 0.0205 0.0208 0.0212 | 0.0175 0.0217 0.0222 0.0222
0.0115 0.0074 0.0050 0.0047 | 0.0120 0.0075 0.0061 0.0058
0.0017 45E-5 13E-6 4.7E-8|0.0016 1.0BE-5 3.7E-8 1.E-10
0.0110 0.0111 0.0110 0.0112 | 0.0112 0.0113 0.0113 0.0113

0.0043 0.0028 0.0026 0.0026 | 0.0041 0.0030 0.0030 0.0030

M2

M3

M4 1.8914 4.0567 6.1981 8.6738 | 1.8993 4.0572 6.0807 8.2545
1.9089 3.6236 4.1219 4.0277 | 1.8681 3.4204 3.8562 3.8723
1.9093  3.6254 4.1287 4.0416 | 1.8681 3.4204 3.8562 3.8723
0.3932 0.7132 1.0662 1.3150 | 0.4029 0.7462 1.0794 1.2612
0.3884 0.4812 0.4829 0.4853 | 0.3770 0.4522 0.4673 0.5123
0.3889 0.4862 0.5109 0.5683 | 0.3773 0.4544 0.4873 0.5971
0.0630 0.1200 0.1534 0.1552 | 0.0667 0.1223 0.1423 0.1287
0.0665 0.1139 0.1463 0.1641 | 0.0628 0.1078 0.1499 0.1814
0.0663 0.1208 0.1577 0.1679 | 0.0659 0.1249 0.1611 0.1633
0.1181 0.1816 0.1606 0.1033 | 0.1219 0.1785 0.1417 0.0788
0.1047 0.0913 0.0874 0.0886 | 0.1022 0.0934 0.0979 0.1039
0.1075 0.1190 0.1308 0.1082 | 0.1080 0.1307 0.1411 0.1046
0.0267 0.0222 0.0092 0.0030 | 0.0271 0.0186 0.0060 0.0014
0.0279  0.0326 0.0333 0.0341 | 0.0277 0.0344 0.0366 0.0371

0.0287 0.0291 0.0164 0.0095 | 0.0289 0.0262 0.0154 0.0111

M5

M6

M7

M8

mrwmhwmhwmhwmhwmrwmrwmrw

Table 2: Monte Carlo Results, Part (i). Simulated and Asymptotic Prediction Losses
for Bayes Predictor (B), Loss Function Predictor (L), and Hausman-Test Procedure

(H). Columns contain Monte Carlo averages of (IE%[Yr4n) — ¢.)? and asymptotic

risk T - R(,w, M..).
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Simulated Loss Asymptotic Loss
Model Proc Forecast Horizon Forecast Horizon

2 4 6 8 2 4 6 8

M9 0.1568 0.1958 0.1914 0.1744 | 0.1554 0.2033 0.1946 0.1636
0.1640 0.2171 0.2238 0.2274 | 0.1568 0.2100 0.2272 0.2430
0.1604 0.2109 0.2144 0.2062 | 0.1567 0.2135 0.2206 0.2058
25972 44110 6.2791 7.5328 | 2.4279 4.4889 5.9821 6.2902
2.5912  3.2091 3.2080 3.2238 | 2.2809 2.8798 2.9592 3.0965
25977 3.2641 3.4573 3.8488 | 2.3373 3.3600 4.2375 5.0460
10.115 17.822 26.157 31.965 | 9.5088 18.172 24.897 26.707
10.036 12.428 12.488 12571 | 8.8726 11.186 11.503 12.075
10.053 12.572 13.280 14.741 | 9.0739 12.847 16.266 19.922
0.6801 1.2670 1.4892 1.5596 | 0.5991 1.1878 1.4829 1.5996
0.6905 1.2741 1.3937 1.3021 | 0.5975 1.1250 1.2702 1.2307

0.6871 1.2712 1.4078 1.3452 | 0.5997 1.1699 1.4090 1.4840

M10

M11

M12

(== R ol oo B i == o v < B == B < o« B = o B « o

Table 3: Monte Carlo Results, Part (ii). Simulated and Asymptotic Prediction
Losses for Bayes Predictor (B), Loss Function Predictor (L), and Hausman-Test

Procedure (H). Columns contain Monte Carlo averages of (IE%[Y71n] — ,)? and

asymptotic risk 7 - R(, |1, M.,).
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4 A Bayesian Perspective

In Sections 2 and 3 we demonstrated that a Hausman type pre-test can be helpful
to choose between the Bayes and the loss function predictor. The analysis also
showed that there is still no clear ranking of the three forecast rules in terms of
their frequentist prediction risk. We will now argue, that an a priori judgement
about likely parameter values of the reference model can rationalize the choice of

prediction procedure.

Consider a Bayesian forecaster who uses the candidate model to compute forecasts,
although he believes that it is misspecified. More formally, he places non-zero prior
probability on the reference model and its parameters, vet finds it too onerous to
evaluate the posterior predictive distribution of the reference model. An example for
such a reference model is a VARMA process. Posterior predictive distributions for
VARMA models are much more difficult to compute than for vector autoregressions.
This is reflected in the dominance of VARs in empirical applications. The non-zero
prior probability of the reference model implies that the forecaster is aware of the
possibility that the candidate model is inappropriate. It enables the forecaster to
determine the potential behavior of statistical procedures applied to the candidate
model, and how to translate frequencies of past forecasting losses into expected

future forecasting losses.

Without a predictive distribution from the reference model, the forecaster is not
able to calculate the predictor that minimizes the overall expected loss conditional
on the observed data. However, the prior distribution enables averaging over the
different parametrizations of the reference model. Thus, the forecaster is able to

evaluate and rank prediction procedures a priori based on their integrated risk.

The pre-test can be interpreted as model checking. Box (1980) argued in favor of a
sampling approach to criticize a statistical model in the light of the available data,
say model M in the context of this paper. This model criticism then can induce
model modifications. Although conceptually not undisputed, model checking and

sensitivity analysis plays an important role in applied Bayesian statistics, see for
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instance the discussion in Gelman et al. (1995). However, unlike in many inferential
situations, the nature of the forecasting problem requires a prediction at time 7. Tt
is not possible to simply reject model M and search for a better representation of
the data. Yet it is possible to use the loss function predictor if the candidate model

appears to be discredited.®

The general idea of model checking in a Bayesian framework is to evaluate the mar-
ginal density of the data under the entertained model M, at the observed data. If
the observations fall in a region of low density, then model M is discredited. In
practice, this approach is often implemented through the evaluation of tail proba-
bilities for a function of the data g(Tr). In our case the check function is given by
Equation (25). If the distribution of g(T7) converges in distribution to a y? random
variable, conditional on every parameter § in the support of the prior distribution
of the candidate model, then the marginal distribution of g(Yr) will also converge
to a x? distribution, and the pre-test in Procedure 1 can indeed be interpreted as

Bayesian model check.

4.1 A Numerical Illustration

Suppose the candidate model is a simple autoregression of order one and the refe-

rence model is an ARMA(1,1) process of the form
(1-FL)y; = (14 aT"Y?L)¢ (31)

where L denotes the lag operator and ¢ ~ itdA'(0,1). The reference model has
prior probability one. The prior for F' places uniform probability on the grid

0.05,0.10,...,0.95. The misspecification parameter o is equal to a; = j/2 with

®Consider the following approach to select one of the predictors ¢, and ¢;. Define a third model
M, such that the likelihood function under M; embeds the loss function L(ep, ) and the Bayes
predictor under M; leads to the loss function predictor ¢;. The posterior odds ratio of M and
M, could then be used to determine which predictor to choose. Although plausible at first glance,
it can be shown that this strategy will in large samples always lead to the selection of the Bayes

predictor.
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probability

P{a = o} x cy;/z_le"af/2 (32)

forj=1,2,...,J4 and J, = 100. Thus, the prior of o has the form of a discretized
Gamma G(u/2,2) distribution. The risk properties of the different predictors will

be compared for various choices of .

Both R, and V,°, which appear in the prediction risk formula of Proposition 2, are
functions of the parameters of the reference model. The first step of our analysis is
to average the terms R, and V? with respect to the prior distribution of F.7 The
resulting marginal risk R(,]a, M.) conditional on the misspecification parameter o
is depicted in Figure 1(i), normalized by by R(|a, M, ). Due to the normalization
the risk of the Bayes predictor is equal to 100 for all «. If the misspecification
parameter o is small, in particular a < 3, then the Bayes predictor is preferable.
For large misspecifications, the risk is minimized by the loss function predictor
¢1. Figure 1(i) also shows the risk properties of the model check predictor for the
rejection levels ¢ = 2 and ¢ = 5. The level ¢ = 2 implies that in about five percent
of the cases, the loss function estimator is chosen if the misspecification @ = 0. For
¢ = 5, this frequency is almost zero. Since the model check procedure chooses the
loss function predictor more often if ¢ is small, R(@e=2]a, M.) < R(Pems|o, M., )
for large values of a. The prior distribution of @ and the absolute prediction loss

R($s]a, M,) are plotted in Figure 1(ii).

The risk R(@|a, M.) can now be integrated with respect to the prior distribution
of & to obtain R(G|M.) = R(p). Figure 2(i) shows the relative integrated risk
R(¢|M,) as a function of the parameter u of the prior distribution of «. The

relative risk is defined as

(@ 1) = 100——— A_ L (33)

"H the prior distribution of the parameters is continuous, the exchange of integration and limit
operation requires some uniformity in the convergence of the frequentist risk to its limit. One
way to establish such uniformity is to limit the support of the prior distribution for ® and F to a

compact subset of the stationary region of the parameter space.
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For the predictors . the graph shows by how much the model checking procedure
improves on the risk of the Bayes or loss function predictor. As the prior parameter
j increases, the probability of severe misspecification of model M rises and the loss
function predictor ¢; has the best integrated risk properties. Correspondingly, if u
is small the Bayes predictor minimizes the integrated risk. In both cases, the model

check becomes obsolete.

Figure 2(ii) depicts a contour plot of r(¢., 1) as a function of the prior parameter
p and the rejection level ¢. The contour plot can be read in two ways. Suppose
an econometrician is willing to specify a prior distribution for « by choosing a
#. Conditional on g, the diagram enables us to determine the optimal rejection
level. If p = 1.3 then ¢,y = min e p+ 7{(Pe, ) = 2.8. If p is very small then
Copt 18 large (almost always use the Bayesian predictor) and as K Increases, Copt
decreases which implies to use the loss function predictor more often. However,
many econometricians might be reluctant to choose a prior distribution through
picking a value for u and skeptical about the prior for ¢ in the first place. Yet it
Is important to recognize that choosing a rejection level for the model check can
be interpreted as an implicit prior distribution for the size of the misspecification
a, and more generally for the parameters of the reference model under which the
prediction procedure is sensible. A rejection level of, say, ¢ = 3 is only reasonable if
p s neither very small, that is, the misspecification is negligible, or very large, that

is, the misspecification is severe.
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Figure 1: (i) Relative prediction risk 100 - R(|a, M..)/R(ps|r, M,) for the pre-
dictors @y, Pp, @e=2, and @.—5. (ii) Prior distribution P{o = «;} and absolute

prediction risk R(s|a, M,)/1000.
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5 Conclusion

The paper considers the problem of multi-step ahead forecasting with a potentially
misspecified VAR(p) model. It is well known that if the forecasting model is severely
misspecified, parameters should be estimated by minimization of h-step in-sample
forecasting errors. Under the assumption that a stationary time series is generated
from a linear process that approaches the candidate model at rate T-1/2 we calcu-
late asymptotic forecast error losses for a loss function predictor and a Bayes, or
maximum likelihood plug-in, predictor. The results illustrate that the ranking of
the two predictors is not only determined by whether or not the candidate model is
misspecified, but rather by the size of the misspecification relative to the available
sample size. An easy to implement procedure to choose between the two predictors
is to compare the discrepancy of the loss function based parameter estimate and
the Bayes or maximum likelihood estimate. If the discrepancy is large, then the
candidate model appears inadequate and the loss function predictor is chosen. The
asymptotic prediction risk for this pre-test procedure is derived. Both the Monte
Carlo results and the asymptotic calculations demonstrate that the pre-test can
avoid choosing the inferior predictor among the Bayes and the loss function predic-
tor. As an alternative to the usual mini-max argument that is used to justify loss
function estimation, we offer a Bayesian interpretation of the loss function predictor
and the pre-testing. If the misspecification of the candidate model is believed to be
large, then the integrated prediction risk is small for a prediction rule based on a

low threshold level c.
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A Derivation and Proofs

Throughout the Appendix, we will analyze the VAR(1) case. However, we will use the
companion form notation. The derivations can be easily generalized to higher order vector

autoregressions by the appropriate insertion of the selection matrix M,,.

A.1 Calculation of the Pseudo-true VAR parameters

The difference between the conditional expectation of Y745 and the prediction function

@Y%+his

o0 ) o0
Ep[Yren] = @"Yr = (F* = ") Y " FIBEr_j + aT™Y2Y (444 — F*4;)Ur_,

j=0 j=0

The expected quadratic deviation of the prediction function from the conditional expectation

is

" [tr[W(EHYTM] = Q"Y7)(E7[Yr4a] — ®"Yr)']

= E” [tr[W ((Fh — M xx (0)(F* — @) 4+ o*T 1 T 24(0)®" — 2027~ 13" > A uu Al
7=0

[ee] o0
+2aT 2N A;BppFI) (08 — FPY — 20T 23" Ay nSupF ) (@ — FP) 4 (- ))”
Jj=0 j=0

The omitted terms do not depend on ®” and therefore do not affect the calculation of

pseudo-true values. The pseudo-true @%J has to satisfy the first order condition

\/T((I)%J — F") [FXX(O) + OIT—I/Z(Z FjEUEAj') + aT“l/Q( Z Aj EUEWI)]
j=0 ji=0

o [e 0] [ee]
= a) ApaSueF! — oY FMA;SypF +oT V2N AjSuu A — o T~ Y2FT25(0)
J=0 j=0 j=0

which implies that

VT(®, - F*) = a[lzx(h) = F'Tzx(0)]Txx(0)"! + o(1) O

A.2 Proof of Proposition 1

We will begin with the asymptotic analysis of the sample autocovariance and then use the

d-method to derive the limit distribution for @%‘b, é%yl, and @%b — @C}}I
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Denote the sample autocovariance matrices of Y; by f‘yy(T, h)= % Zthh Y;Y/_,. Under the

reference model, the sample autocovariances have the following asymptotic approximation:

Tyy(T,h) =
1

/
o o0
(Z(FfEt_j +aT™124; Ut_j) (Z(FjEt_h_j + aT-l/?AjU,-h_j)

7j=0 j=0

il
Mq NgE

{ZFJE, “DNQoF Eny) +aT V23" FIE_ )Y AiUiony)

P Eoneg)(Y AUey) + 0T (Y 4,03 AjUt—h—j)']
Lo Txx(h)

o~
1l

+
R
K

since the last three terms converge to zero as sample size tends to inifinity. Now consider

the asymptotic behavior of v/T standardized sample autocovariances
VT(Lyy (T, k) - Txx(h))

= VT(Txx(T, k) = Txx(h)) Z [ O FE)O . AU,

+(Q L FIBn ) (O AUy

~

+0p(1)

| S

where
T

% > [(Z FIEC)() 4Un-i) + (O F B ) 4 Ut—j)'} = Txz(h)+Tzx (h)
t=1

Following the proof of Theorem 3.7 in Phillips and Solo (1992) it can be deduced that

vech[Cyy (T,0) — I'x x (0)] Go Soo So1 Son
VT vech[Tyy (T)1) = Txx(1)] | = N Gi || S0 Sui S
vech[Tyy (T, h) — Tx x (h)] Gh Sho Sh1 Sk

where G; = I'xz (i) + zx(d) for i = 0,1, h. Define Fy(1) = Z;io FI@Fitk and F* (1) =
Zj:k Fi @ Fi=% for k > 0. The limit covariance matrix consists of the sub-matrices Ski
(k=0,1,h; {=0,1,h)

Sei = FR(W)E"[(EE' - Lgp)(EE - Sge)|F (1)

s

+Z (Fl:+r(1) + Fl;k—r(l))E*[(Ei—f‘Etl)(Et"f‘Eé)l] (Fl’l-r(l) + Fl*—r(l))/

To apply the -method we approximate the functions @%b and @%, by a first order Taylor
expansion around I'x x (0), I'x x (1), T x x (h), respectively. Define dryy(T, s)=Tyy (T, s)—
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Fxx(s)

vech(®% , — [T xx(1)Txx(0)7*]")
1

-

= - {Z[Fxx(l)FXX(O)"I]h_k ® [FXX(O)_lFXX(—l)]kFXX(O)_l} vee(dlyy (0))

=0
-1

+ {Z[FXX(UFXX(O)_I]}’_'“'1 ® [Pxx (0) ' Txx (D) Ixx (—1)7" } vee(dlyy(~1))
k=0

+Ry(dl'yy (0), dTyy (h))

bl

vech(r (h) — D(R)T(0)™1)
= —{Txx(MTxx(0)"' ® Lxx(0)™'} vec(dTyy(0))
1@ Lx ()7 Txx (=hI(=k)™" } vee(dlyy (=h)) + Ri(dlyy (0), Ty (h))

Tedious but straightforward algebraic manipulations reveal that (i):};,b» and @%I — @}b are

asymptotically independent with limit variances V;?, and V;® — V2, respectively. O

A.3 Proof of Proposition 2

Consider the three terms of the prediction risk decomposition in Equation (22). Note that

o0 o
EpYrin -0 Yr = oT723" 45,07, - oT~ 2N " Fh AU
j=0 j=0
R .o~ ad ~
—aT™ P, | N F Br i+ TN A4 0r
j=0 =0

Therefore, the first term converges to

T E" [tr[W(ETYren — 94, Y1) (B3 Yren — O V7))

©0
—  a’tr [W (/,Lerx(O),u: - 22(Aj+h - FhA]')EUEFj//,tZ
ji=0

+Y (Ajpn — F*4;)Suu(Ajn — FhAj)')]
j=0

Since 3777 o(Aj+n —FMA))SypFi’ = T xx(0), see Equation (14), the first term converges
to a®R,, defined in Equation (23).
The second term can be manipulated as follows
T - E; [tr[W(®r, — &1,)Yr Vi (S, — &1.,)]]
= F%7 [tr(W ® )N/T}}:;)vech(é%L — @%L)vech/(éfT‘,L — @?pt)]]
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If the sequence {T . vech(é?}w - @%)L)vech’(é}%‘t - (I)%,L)} is uniformly integrable for
T=T
some Ty, then it can be deduced that °

T Ep[triW(dr, — ®1,)Yr Y (@1, — @7,)]] — tr[(W @ Txx (0))V.]

The third term converges to zero because <,1>T,L was assumed to be independent of f/T,

ErYr — 4 Yr is Op(T~1/?), and E.[VT($%, — ®7,)] — 0. O

A.4 Proof of Proposition 3

Define Dp = CD%,I — @%yb = aT~ 2y — tp). We proceed by analyzing the three terms of
the prediction risk decomposition in Equation (22). However, we have to take into account
that the choice of predictor depends on the pre-test. Let {g(Y7) > ¢?} denote the indicator

function that is equal to one if g(Y7) > ¢%. The first component of the frequentist risk is
T-E l:tr[(E;}{/T+h - <I’ﬁr,bYT)(E;“{/T+h - ‘I)}:il’,b?T)l]{g(TT) <%
{7 Va0 = OV (7 Vs - 04, T Ho(Tr) < )
= T-E* [tr[(!E’:}f/ﬂ_h = O} Y1) (B Yron — ®h V7)) 4 tr[Dr Yo Vi Dil{g > ¢%}
—2tr[(E7Yryn — ®F Y1)V Dpl{g > Cz}]
— "Ry + oW (= p)Txx (0)( — ) oy (e, oV (= )

—2a%tr[W (1 = )T xx (0) (st = ) Moy, eV 2 (i = ua)
= o’Rj + (R — R}y, oV 2w - )

because

T E* [tr[W(Ei}f/TM - @;’;,b?T)?qiD’T]]

o0

j=0 j=0

azt’"[W (Z(Aj+h - FhAj)EUEFjI) ( — #b)'] - aztr[WubFXX(O)(m - ub)’]

j=0

o tr[W (s — )T x (0)(pr — pas)']

(oo} o
T E* [tr[W (aT—W Y (Ajpn = F*4)0p 5 — o2y (S FI Br_j +aT V2N 4;07_5)

j=0 j=0 7=0

|
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The second term is of the form
T [t (8, — )TV (8, — 9, T () < €7}
+r[W (% — ®F 4 + (Dr — Dr))Yr Yp(®% , — % Vo) + (Dr — Dp){g(Yr) > ¢?}
= T-E [tr[W@%,b - ®h )Y Y7(®h , — ®4 ,Yr)]
+tr[W(Dr — Dr)YrY4(Dr — DrY{g(Yr) > c%}
+2r[W(®F  — 4 ,)Yr Y7(Dr — Dr){g(Y7) > ¢*}
— (W@ Txx (0))Vy'] + tr[(W @ Txx (0))(Vy* Iz (2, aVy P (= ) V171

The cross product term drops out because ((i)%,b - Q%b) is asymptotically independent of
Yr and Dr and has mean zero.
The third term component is of the form
T [t (8, = 98,07 (5 Vi~ 04 7))
- “‘[W(‘i’%,b - Q%‘,b){/T?TIDT]{g(TT > c*)}
+ t[W(Dr = Dr)Yr(EYrgn — 5 V) {g(Tr > ¢?)}

The first two term converges to zero because <i>§i b — <I>§E » has asymptotically mean zero and

1s independent of the other expressions. The last term converges to zero because

E* [(E}f’ﬂh - Q%,I?T)YT’]

= oI VPp [(Z(Aﬂh ~ F"4)Ur-; — m( Y F Er_j +aT™/? ZAJ'UT—]‘))

ji=0 7=0 7=0

j=0 ji=0

’
o0 co
X (Z FjET_j + aT"l/ZZAjﬁT_j):]

[ee]
. aT_1/2[Z(Aj+h ~ PP 4;)Syp Y — uTxx(0)] = 0
j:O

This completes the prediction risk calculations for the pre-test predictor. O



