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Abstract

We introduce lotteries — that is, randomized trading — into search-theoretic models
of monetary exchange. In the model with indivisible goods and fiat money, we show
that in any monetary equilibrium goods change hands with probability 1 and money
changes hands with probability 7 where 7 < 1 iff the buyer has sufficient bargaining
power. In the model with divisible goods, a nonrandom quantity of goods g changes
hands with probability 1 and, again, money changes hands with probability 7 where
7 < 1 iff the buyer has sufficient bargaining power. Hence, the implicit assumption
made in the previous literature that lotteries are ruled out is restrictive. Moreover,
g may be less than but can never exceed the efficient quantity (a result that cannot
be shown without lotteries). We also consider the implications of lotteries for models
with direct barter or commodity money. If commodity money has sufficient intrinsic
value, we show the equilibium quantity q is necessarily efficient (another result that

cannot be shown without lotteries).
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1 Introduction

In this paper we introduce lotteries — that is, randomized trading — into search-theoretic
models of monetary exchange. There are several reasons for doing so. First, consider
the most basic version of the model, with indivisible goods and indivisible fiat money
and agents with single unit storage capacity (as in Kiyotaki and Wright [1991, 1993]).
Although this model is simplistic, we think that it still has virtues; in particular, since every
trade is a one-for-one swap, one can relatively easily study certain aspects of the exchange
process and illustrate certain essential features of money without having to determine
exchange rates or the distribution of inventories. However, it is well known from the study
of various economic environments with indivisibilities or other nonconvexities that, in such
an environment, agents can often do better using randomized rather than deterministic
trading mechanisms.! So agents in this model may want to use lotteries, and we see no
compelling reason to constrain them not to.

In the model with indivisible goods and money, bargaining over lotteries means bar-
gaining over the joint probability distribution of (g, m), where ¢ € {0,1} is the amount
of the good and m € {0,1} the amount of money to be exchanged. We show first that if
buyers (i.e., agents with money) have bargaining power 6 below some threshold a monetary
equilibrium will not exist, and for 6 above this threshold a unique monetary equilibrium
does exist. If 8 is above the threshold but not too large, then when a buyer meets a seller
with a good he desires he gives the seller the money with probability 1 and the seller gives
him the good with probability 1. If 4 is larger, however, then the money changes hands with

probability 7 < 1 and the good changes hands with probability 1 independent of whether

1See, for example, Prescott and Townsend (1984a, 1984b), Rogerson (1988), Shell and Wright (1993),
or Diamond (1990).



the seller gets the money. Hence, at least for some parameter values, the implicit assump-
tion made in the previous literature that lotteries are not allowed is restrictive. Moreover,
allowing lotteries means that we can discuss a notion of prices even though goods and
money are both indivisible, since 7 is the average amount of currency that changes hands
for a unit of consumption goods.?

Now consider the search model of money with divisible consumption goods, where even
if (in the interests of tractability) we continue to assume that money is indivisible and
agents have a unit storage capacity, one can determine prices by letting agents bargain
over the quantity of goods that a buyer gets for a unit of currency (as in Shi [1995] and
Trejos and Wright [1995]). In this model bargaining over lotteries again means bargaining
over the joint probability distribution of (¢, m), but now ¢ € [0,00). We prove that there
exists a unique monetary equilibrium for all parameter values, and when a buyer meets a
seller with a good he desires, he gives the seller the money with probability 7, where again 7
is strictly less than 1 if and only if the buyer has sufficient bargaining power, and the seller
gives him ¢ units of the good with probability 1, where q is deterministic and independent
of whether or not the money changes hands. Thus, at least for some parameter values,
assuming no lotteries is also restrictive with divisible goods.

Further, we find in the divisible goods model that the equilibrium quantity g may be

2We emphasize here that lotteries are different from mixed strategy equilibria. In particular, in the
basic model with indivisible goods and indivisible money, without lotteries, if there exists a pure strat-
egy equilibrium where money is universally accepted then generically there also exists a mixed strategy
equilibrium where money is accepted with probability less than 1. One thing to note is that sellers are
indifferent between having and not having money in this mixed strategy equilibrium, while in the model
with lotteries sellers strictly prefer having money — but so do buyers, and the bargaining solution deter-
mines the probability that each gets it. Moreover, once we allow agents to bargain over lotteries, mixed
strategy equilibria of the above variety no longer exist. Thus, introducing lotteries serves to eliminate the
somewhat unnatural equilibria where agents randomize by sometimes accepting and sometimes rejecting

money.



less than but can never exceed the efficient quantity ¢*, to be defined precisely below. In
particular, if the bargaining power of the buyer 6 is below a critical value 8, we have 7 = 1
and ¢ < ¢*; as 6 increases towards 6, T stays at 1 and ¢ increases towards ¢*; and for
0>90,q stays at ¢* and 7 decreases below 1. We think that this is interesting because it
has been argued in Trejos and Wright (1995) that having ¢ less then ¢* is a natural result
for a monetary model. But one can only rule out q > ¢* for one of the two versions of the
bargaining game considered in that paper, and even in that version one can not rule ¢ > ¢*
for all bargaining power parameters. Once we allow agents to use lotteries, it turns out
that ¢ < g* holds for both versions of the bargaining game and for all parameter values.
Moreover, we will show that welfare is strictly higher for some parameter values, and never
lower, if lotteries are allowed than if they are ruled out in this model.

A feature of both the indivisible and divisible goods models is the asymmetry between
the way in which goods and money are traded: goods always change hands with probability
1 while for some parameters money changes hands with probability 7 < 1. We claim this
is due to the fiat nature of the monetary object (i.e., it has no intrinsic value and has use
only as a medium of exchange). To demonstrate this we do two things. First, we consider
a nonmonetary model where agents barter consumption goods directly, and show that any
good that is indivisible may be traded with probability less than one. Second, we consider a
model with commodity rather than fiat money by assuming the monetary object has a flow
utility yield v. With commodity money, low 8 does not rule out the existence of monetary
equilibria the way it did in the model with fiat money and indivisible goods. Moreover,
with commodity money it is possible for indivisible consumption goods to change hands
with probability less than 1. Also, with commodity money and divisible goods, we show

that if « is sufficiently large then monetary equilibria are necessarily efficient, in the sense
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that ¢ = ¢*. Finally, note that in a commodity money model without lotteries, if 7 is too
big then agents will hoard the money and all trade will cease. With lotteries, we show that
if ¥ becomes large money will change hands with a low probability, but still with a positive
probability, and goods will still change hands with probability 1.

The rest of the paper is organized as follows. In Section 2 we present the basic assump-
tions underlying the model. In Section 3 we analyze the version with indivisible goods. In
Section 4 we analyze the version with divisible goods. Section 5 considers the barter and

commodity money models. Section 6 concludes.?

2 The General Model

The economy is populated by a [0, 1] continuum of infinitely-lived agents who specialize
in consumption and production. Assume consumption goods are non-storable (to rule out
commodity money, so that we may concentrate on fiat money, for now). Let X, be the set
of goods that agent ¢ consumes. No agent ¢ produces a good in X;. Moreover, for a pair
of agents ¢ and j selected at random, the probability that ¢ produces a good in X; and
also j produces a good in X; is 0 (there are no double coincidences of wants), while the
probability that ¢ produces a good in X; but j does not produce a good in X; is z € (0, 1).
For example, if there are N goods and N types, N > 2, and each type ¢ agent consumes
only good i and produces only good ¢ + 1 (mod N), then z = 1/N. Let @ denote the set
of feasible quantities that agents can produce. We will consider two cases: the indivisible
goods model where @ = {0,1}, and the divisible goods model where ) = R..

For every agent i, preferences are described as follows. He derives utility u (g) from

3We do not consider models where both money and goods are divisible, or where money is indivisible
but agents can hold more than a single unit in inventory, such as such as Molico (1996), Green and Zhou
(1997), Zhou (1998), Camera and Corbae (1998), Taber and Wallace (1998) or Berentsen (1998).

)



¢ units of any good in X; and incurs in disutility c(g) from ¢ units of a good that he
produces. We always assume u (0) = ¢ (0) = 0. For the divisible goods model, we assume
that both u and ¢ are C? real-valued functions, with v/ (¢) > 0, ¢ (¢) > 0 for all ¢ > 0,
and u” (¢) < 0 and ¢”(¢) > 0, with at least one strict inequality, for all ¢ > 0. We also
assume u’ (0) > ¢/ (0) = 0, and that there exists a § > 0 such that u (§) = c(g). For the
indivisible goods model, let u (1) = U and ¢(1) = C and assume U > C > 0. The rate of
time preference is 7 > 0.

In addition to the consumption goods described above, there is also an object that
cannot be produced or consumed by anyone called fiat money. We assume that money is
indivisible and that individuals have a single unit storage capacity, so that if a fraction
M € (0,1) of the population are each initially endowed with one unit of money then (at
least as long as no one disposes of the stuff) there will always be M agents with and
1 — M agents without money. We call agents with money buyers and agents without
sellers. Agents meet randomly according to a Poisson process with arrival rate . Thus,
the probability per unit time that buyer ¢ meets a seller j such that j produces a good in
X; is a(1 — M) z, and the probability that seller j meets a buyer i such that j produces a
good in X; is aMz. Without lost of generality, we can normalize axz = 1 by choosing the
units of time appropriately.

We want to consider exchanges where the amounts of goods and money that are traded
may be random. To this end, define an event to be a pair (¢,m), where ¢ € () denotes
the quantity of the good and m € {0,1} the amount of money that is traded. Let E =
@ x {0,1} denote the space of such events and £ denote the Borel o-algebra. Define a
lottery to be a probability measure A on the measurable space (F,£). One can always

write A (g, m) = An(m)Agm (q), where A, is the marginal probability measure of m and
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Agim 18 the conditional probability measure of ¢ given m. Then to reduce notation let
Am(m=1) =7 and A\, (m =0) = 1 — 7, where 7 € [0, 1] is the probability that the unit
of money changes hands. A lottery can be completely described by the probability 7 and
the two probability measures A\go and Ay

Let Vi, denote the value function for an agent with m € {0,1} units of money in

inventory. Then the expected payoffs from a lottery for a buyer and a seller are given by

m==Tuﬁmmmm+%yuv4ﬂ/wmmwm+m}
o = r|-f et an(d) + ] + (1= ) |- [ e(0) ola) + 5

We focus on symmetric equilibria, where in any meeting between a buyer 7 and a seller
where j produces a good in X;, the agents agree to the same lottery. Then we can write
Bellman’s equations as follows:

Vi=(1- M) (I, - V)
(1)

For example, the first of these equations sets the flow value to being a buyer, rV;, equal to
the rate at which he meets sellers who produce a good in X, which is simply 1 — M given
the normalization axz = 1, times his net gain from playing the lottery.

We now discuss bargaining. In this paper we employ the generalized Nash solution.

4One may question how agents can commit to the outcome of the lottery. For example, suppose that
we agree to randomize so that you give me the good for sure and we flip a coin to see whether I give you
the money. If the coin comes up so that I keep the money, will you still give me the good? Of course, in
any exchange some notion of commitment is required, but perhaps it is more delicate when objects are
not exchanged simultaneously. We are simply assuming that agents can commit to the outcome of the
lottery;. To the extent that one might worry about this, however, there are devices that get around the
problem. For example, if I am supposed to give you the money with probability n/m, I can put it in one
of m boxes and shuflle them, and then we can simultaneously swap n of the boxes for the good.



That is, we determine 7, Ay o and Agi1 by solving
max (II; — T1)° (Ty — Tp)*~° (2)

where T7 and Tp are the threat points of the buyer and the seller, respectively, and 6 € [0, 1]
1s the bargaining power of the buyer. It is well known that using the generalized Nash
solution is equivalent to using an explicit strategic bargaining model of the sort developed
by Rubinstein (1982) when the time between rejected offers and counteroffers is small,
where 6 and T; depend on details of the strategic environment.’ In what follows, we allow
¢ to take on any value in [0, 1] and consider two cases for the threat points: T; = V;, which
follows from the strategic model if we assume that individuals continue to meet other
potential trading partners between bargaining rounds; and T; = 0, which follows from
the strategic model if we assume that they cannot meet other trading partners between
bargaining rounds. Additionally, we impose incentive compatibility conditions to guarantee

that agents voluntarily agree to bargain:
II; > Vi and Ilp > V. (3)

A steady state equilibrium for this economy is a list (Vl, Vo, T, Aqos )\q|1) such that: the
value functions satisfy the Bellman equations in (1) taking the lottery as given; and the
lottery solves the maximization problem in (2) subject to the constraints in (3) taking the
value functions as given. If Ago(0) = Ag1(0) = 1 or 7 = 0 the equilibrium is called non-
monetary, and otherwise it is called monetary. It is clear that a nonmonetary equilibrium

always exists. From now on we focus on monetary equilibria. In any monetary equilibria,

5See Binmore, Rubinstein and Wolinsky (1986) or Osborne and Rubinstein (1990); see Coles and Wright

(1998) for an exposition in the context of monetary search models.



the second constraint in (3) can be rearranged to yield

1-—71
M=10> [ cratdn) + =7 [ elaotda) > o0 ()
Hence, Vi > V4. In the next two sections, we analyze in turn the two models, where

Q ={0,1} and where Q = R,.

3 The Indivisible Goods Model

When g € {0, 1}, a lottery is completely described by 7, plus two numbers, A\; = Ay;(g = 1)
and Mg = Ago(¢ = 1), which give the probabilities that the good changes hands conditional
on money changing hands and conditional on money not changing hands, respectively (of
course, g is irrelevant if 7 = 1 and vice-versa). Given any lottery, one can solve (1) for
the value functions, substitute into (3), and verify that the first constraint holds for all

parameters, while the second holds if and only if
rC <71(l-M)(U - C). (5)

Notice that A\; and A¢ do not appear in this expression. Also notice that we require
C<(1-MU/(r+1— M) for a monetary equilibrium to exist, since otherwise (5) could
not be satisfied for any 7 < 1. To facilitate the presentation, we ignore the non-generic

case and assume this holds with strict inequality in what follows:

C<C&%¥E)U (6)

We begin by briefly reviewing the standard model, where lotteries are ruled out. To
allow for mixed strategy equilibria, let 2 denote the probability that money is accepted by
a seller. Then we have

Vi=1-MQU+V,— W)

Vo= MQ(Vi -V, - C).
9



In this model (which is basically Kiyotaki and Wright [1993]), there is nothing to bargain
over, and an equilibrium is simply a list (V;, V;, Q) such that either: Vi — Vo — C > 0 and
Q=LV-V%-C<0andQ=0;0r0<Q < 1and V; — Vj — C = 0. There is always an
equilibrium with {2 = 0. Setting Q = 1 implies V; - V; — C = (1 - M)(U — C) — rC, and
so an equilibrium with €2 = 1 exists as long as (6) holds. Also, as long as (6) holds, there
exists an equilibrium where Q = rC/(1 — M)(U — C) € (0,1) and V; — V5 — C = 0.

We claim that the equilibrium with Q@ € (0,1) is an artifact of ruling out lotteries
in this model. To see this, notice that in such an equilibrium the seller is indifferent
between trading and not trading, V) — Vy — C = 0, while the buyer strictly prefers to trade,
U+ Vo~ Vi > 0. This means that trading with probability less than 1 is inconsistent with
efficient bargaining. To see this, think about the strategic game of alternating offers that
underlies the Nash solution, and suppose that buyer ¢ makes seller j the following offer:
¢ gives j the money with probability 1 and j gives ¢ the good with probability A;. Then
there will be A; < 1 such that both i and j strictly prefer to trade. Consequently, there
can be no equilibria where € (0,1) and V; — Vi — C = 0 if we allow lotteries. This is
why we implicitly assumed that {2 = 1 in the previous section, and will continue to do so
in what follows.5

As stated earlier, we will analyze separately the two cases, T; = V; and T; = 0. The

following proposition characterizes the set of equilibria for the former case.

Proposition 1 Assume T; = V;. Then there are critical values §; and 61 constructed

in the proof, with 0 < 8; < 0; < 1, such that the following is true: if < 8, there is

6This is essentially the same argument that rules out mixed strategy monetary equilibria in the divisible
goods model, except that there the buyer offers to take a slightly smaller quantity while here he offers to
take the indivisible quantity with a slightly lower probability. Note that we will actually show below that
in any monetary equilibrium the good changes hands with probability A; = 1 in this model; the argument
that set A\; < 1 was only used to show that Q < 1 is not an equilibrium.

10



no monetary equilibrium; if @ € [6,,0,] there exists a unique monetary equilibrium and it
entails T =1 and M\, = 1; and if 6 > 0, there exists a unique monetary equiltbrium and it
entails \y = Ao =1 and 7 =1, € (0,1), where

_r[8C + (1-6)U)
T 9-mMmU-0)

Proof: In this model, (2) reduces to choosing (7, Ag, A1) € [0,1]x [0,1] x [0,1] to solve
max (I; — V;)° (Ip — Vo)'™*

where II; = 7(AM U+ Vo) + (1 —7)(AU + V1) and Iy = 7(— A C+ V1) + (1 — 7)(—=AeC + V),
taking V; and V}, as given. Necessary and sufficient conditions for a solution are

6[Vo—Vi+ (A= Xo) Ul (TTp — Vo)
+(1-0)Mi-Vo— (M —=2)Cl(IL =V1) =70, <0, = if7>0

7
07U (y - Vo) — (1= 0)7C (I, — Vi) — 7, <0, = if Ay >0 ()

6(1—7)U (Mo~ Vo)~ (1 0)(1-7)C(IL — Vi) — 7y <0, = if X > 0.

where the 7,’s are nonnegative multipliers for the constraints that the choice variables
cannot exceed 1.

We are looking for monetary equilibria, which means that 7 > 0 and the first condition
in (7) holds with equality. First consider the case 7 < 1, which implies n, = 0. If \; € [0,1)
then n; = 0 and 67U (Ily — Vo) < (1 — 6) 7C (II; — V1), and combining this with the first
condition in (7) yields U < C, which is a contradiction. A similar contradiction results if
Ao € [0,1). Hence, 7 < 1 implies A\; = Ao = 1. Given this, we can solve (1) for the V}’s,
substitute them into first condition in (7) at equality, and solve for 7 = 71, where 7, is
defined in the statement of the proposition. Notice that 7, € (0,1) if and only if § > 6,

where

5 _ (r+ MU - MC
T +1r1)(U—C) '




One can easily check that the incentive condition (5) is satisfied at 7 = 7;. We conclude
that there exists an equilibrium with A; = A\ =1 and 7 = 7, € (0,1) if and only if 6 > 6.

Now consider the case where 7 = 1. This means that )¢ is irrelevant and A\; > 0 in any
monetary equilibrium. Inserting the V;’s into the second equation in (7) at equality and

rearranging, we arrive at:
MU(L-=MU - (r+1-M)C]—(1-0)Cl(r+ M)U —MC]} = (1+7)n,. (8)

Suppose A; < 1; then n; = 0, and (8) can be satisfied only for the nongeneric parameter

value § = 6, where

_ C1+r) 7
T A-MU+MCTT

Hence, except for the nongeneric case § = §,, the only solution to (8) with A; < 1is A; = 0.
Therefore, in any monetary equilibrium we have A\; = 1. But this means that (8) holds
if and only if the left hand side is non-negative, which is true if and only if 8 > 8,. So
monetary equilibria are only possible if § > 8, and A\; = 1. Given this, 7 = 1 satisfies the
first condition in (7) if and only if § < #,. One can easily check that (5) is satisfied at
7 = 1. Hence, we conclude that there exists an equilibrium with A; = 1 and 7 = 1 if and
only if 8, < 6 < 0,.

Summarizing, an equilibrium with 7 € (0,1) exists if and only if § > #; and an
equilibrium with 7 = 1 exists if and only if 8, < 0 < 6,. Finally, one can verify that

0 < 8, < 6, <1 using (6). This completes the proof. B

In terms of existence results, the version of the model with T; = 0 has exactly the same
qualitative properties, although 7, § and 6 change quantitatively. Since the argument is
basically the same as the proof of Proposition 1, we simply state the results here and

relegate the proof to the Appendix.
12



Proposition 2 Assume T; = 0. Then there are critical values 8, and 8y constructed in
the proof, with 0 < 8y < 0y < 1, such that the following is true: if § < 8, there exists
no monetary equilibrium; if 8 € [QO, 50] there exists a unique monetary equilibrium and it
entails T =1 and Ay = 1; and if 0 > 8, there exists a unique monetary equilibrium and it
entails Ay = Ao =1 and 7 = 19 € (0,1), where

r[0(r+ M)C+ (1 -0)(r+1— M)U]
[r(@— M)+ M(1-M)(20-1)]U-C)

T0 =

Several comments are in order concerning these results. First, since § < 1, we have 7 €
(0,1) in a region of parameter space with positive measure. Hence, the implicit restriction
made in the previous literature, that lotteries are not allowed, is indeed restrictive. Second,
we want to emphasize the strong asymmetry in the model: money may change hands
randomly, but goods either change hands with probability 1 or not at all. This is depicted
in Figure 1, which plots 7 and X as functions of 8 (for either the model with T; = V; or
T; = 0, since the results are qualitatively the same). As is clear, for § > 6 goods trade
with probability 1 and money trades randomly, for intermediate 8 € [Q, 9] both objects
trade with probability 1, and for 8 < 6 monetary equilibria do not exist. We will discuss
this asymmetry further in Section 5.

Also, there is a clear sense in which 7 measures the price level: it is the average number
of units of money that it takes to buy a consumption good. Hence, one can discuss
prices even though all objects are indivisible here. One can show that both 7, and 7 are
decreasing in 6, increasing in r, increasing in C, and decreasing in U (the last result is
perhaps counterintuitive, but can be explained by nooting that when U increases money
becomes more desirable, and so sellers are willing to settle for less). The effects of changes
in M depend on which version of the model we use: one can show 07,/0M > 0, but,

perhaps surprisingly, 7¢/0M > 0 if and only if » and M are not too small. Also, as
13



Figure 1: Monetary Equilibrium as a Function of 6.

r — 0, we have 7 — 0 for all § > 6 (the T curve in Figure 1 approaches a vertical line
at § = ), and so if § > @ and agents are very patient, one can get the good virtually for
free.” When r is near 0, a seller is willing to produce when 7 near 0 because, even though
he gets paid with a very low probability, if he does get paid he expects to be able to buy
a large number of goods with the money.

Finally, to close this section, we mention welfare. For low 6 there is no monetary
equilibrium, and so the only equilibrium is the nonmonetary equilibrium which implies V; =
Vo = 0. By way of contrast, if lotteries are ruled out there is an equilibrium where money
is accepted with probability 1 and V; > V4 > 0 for all parameters. Hence, allowing lotteries
can actually reduce welfare. This is not too surprising, since in the monetary equilibrium

without lotteries buyers get to consume every time they meet an appropriate seller, and

"Note that § also changes: as r — 0, §; — M and §; — CM/[(1 - M)U + MC] in the model with
T; = V;,and g — 1/2 and §, — C/ (U + C) in the model with T; = 0. For completeness, we report some
other differences between the models with different threat points. When T; = 0, 6o > 1/2 for all r > 0,
and so lotteries are not used when buyers and sellers have equal bargaining power; but when T; = V;, it
is possible to have 7 < 1 when 6 = 1/2. Also, one can show that as long as 71 and 7¢ are in (0, 1), the

difference 7o — 71 is proportional to 1 — 2M, and so 79 < 71 if and only if M > 1/2.
14



there is no concern about how much they consume because the good is indivisible. All
the result says is that agents may be better off ex ante if they can commit to 7 = A = 1,
rather than bargaining over these variables in each bilateral meeting. We will see in the
model with divisible goods in Section 4, and also in a model with indivisible goods but

commodity rather than fiat money in Section 5, that lotteries may well increase welfare.

4 The Divisible Goods Model

When g € R, a lottery is generally described by 7 and two conditional probability distri-
butions, Ago and Ag;. However, we claim that the amount of goods that changes hand is

degenerate and independent of whether money changes hands.

Proposition 3 There is a q (that depends on parameter values) such that Ago(q) =

)‘qll(Q) = 1.

Proof: The Nash bargaining problem is to choose 7 € [0, 1] and probability measures

Agio and Mgy to solve

max{r | [ut@rantan + 16| + 00 | [ut@reatan + 11| -7} |
X { [—/C(Q))\qll(dQ) +‘/1:| +(1—7) [_/C(q) Aolda) +Vb:‘ B TO}I—Q

subject to the incentive constraints in (3), taking V; and V) as given. Suppose that the
solution implies that A\go and A,; are nondegenerate, and let go = [ gAgo(dg) and ¢ =
[ gAq1(dg). Since u(q) is concave and ¢(g) is convex, by Jensen’s inequality, the incentive
constraints are still satisfied and the Nash product is higher when Ajo(go0) = Ag1(q1) = 1,
which is a contradiction. Hence, Ay and Ay, are degenerate at go and g, respectively.

Now suppose qo # q1, and let Eq = 7¢; + (1 — 7)go. Again, since u(q) is concave and ¢(q)
15



is convex, the incentive constraints are still satisfied and the Nash product is higher at Fq,

which is a contradiction. This completes the proof. B

The above result makes the analysis simpler because we can now restrict attention
to lotteries that are completely characterized by two numbers, 7 and q. Given any such
lottery, one can, as in the previous section, solve (1) for the value functions, substitute in
(3), and verify that the first constraint is never binding and the second is satisfied if and

only if

re(q) =7 (1= M)[u(q) —c(q)] <0. (9)

In particular, if 7 = 1, then (9) holds if and only if
p(g)=rc(q) — (1 - M)[u(q) —c(q)] <0. (10)

It is easy to see that ¢(0) = 0, ¢'(0) < 0, ¢"(q) > 0 for all ¢, and (q) > 0 for large ¢;
hence, if 7 = 1 the constraints are satisfied if and only if ¢ is below some critical value .
Also, let g* be the efficient quantity, defined by v/(¢*) = ¢/(¢*). It is easy to verify that ¢*
is the quantity that maximizes welfare, W = MV; + (1 — M)V,. If ¢ = ¢* then (9) holds if

and only if

re (q°)
=@ —c@)’ (1D

I

T>T

which can only hold if  is not too big.
We consider in turn the case with and without threat points. The following proposition

characterizes the set of equilibria for the former case.

Proposition 4 Assume T; = V;. If 8 = 0, there does not exist a monetary equilibrium.

If 0 > 0, then there is a critical value 0, constructed in the proof, where 51 > 0 for all
16



parameter values and 6; < 1 if and only if r < (1 — M)[u(g*) — c(q*)]/c(¢q*), such that
the following is true: if < 0, there exists a unique monetary equilibrium and it entails
7=1 and q < ¢*, with 0q/00 > 0 and limy 5 ¢=q"; and if 6 > 01 there exists a unique

monetary equilibrium and it entails ¢ = ¢* and 7 =7, € (0,1), where

= r[fc(g*) + (1 = 0)u(q)]
(0 — M) [u(gr)—c(g9)]

Proof: If # = 0 then the bargaining solution is equivalent to take-it-or-leave-it offers by
the seller, which implies u(q) = 7(V; — V). Inserting this into (1), we find V; = 0, and
therefore V) < 0 by (4). But a seller can always achieve V5 = 0 by not trading. Hence,
there cannot exist a monetary equilibrium when 6 = 0.

Now assume 6 > 0. Then (2) reduces to choosing (7,¢q) € [0,1] x R, to solve
max (Hl - ‘/1)6 (HO - %)1_0 ’

where IT) = u(q) + Vo + (1 — )V} and Iy = —c(q) + V1 + (1 — 1)V}, taking V; and V; as

fixed. Necessary and sufficient conditions for a solution are

6’ (q) (Tlo — Vo) — (1= 0) ¢ () (I, = Vi) <0, = ifg >0
(12)

0(Vo—V1) (o= Vo) + (1 —-0)(Vi— Vo) (I = Vi) —n, <0, = if7>0
where 7, is the nonnegative multiplier on the constraint 7 < 1. We are looking for monetary
equilibria, which implies that both conditions hold with equality.
First consider the case where 7 < 1, which implies that n, = 0. Then combining the
two first order conditions yields u/(q) = ¢/(¢), and so ¢ = ¢*. Solving (1) for the V}’s and
inserting the solutions, as well as ¢ = ¢*, into the second condition in (12), we can solve

for 7 = 7, where 71 is defined in the statement of the proposition. Notice that 7; € (0,1)
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if and only if 6 > 51 where

g — (r+ Mu(g") — Mc(q")
(L+7)[u(g*) —c(g)]

1=

One can check that 7; > 7, where 7 is defined in (11), and therefore the incentive condition
(9) holds at 7 = 7, and ¢ = ¢*. Hence, we conclude that there exists an equilibrium with
7 =7, and q = ¢* if and only if § >51.

Now consider the case where 7 = 1, which implies n, > 0. By combining the two
conditions in (12), we get v’ (¢) > ¢’ (q), and this implies ¢ < ¢* in any equilibrium with
T = 1, with strict inequality as long as n, > 0. Inserting the V,’s and 7 = 1, we can rewrite

the first order condition for ¢ as

(1-0)c(g) _1-M~—(r+1- Melq)/ulg)

o () r+ M — Melg)/u(q) (13)

The left hand side of (13) is zero at ¢ = 0 and it is strictly increasing. As ¢ — 0, the right
hand side approaches (1 — M)/(r + M) > 0, because c¢(q)/u(q) — 0 by I'Hopital’s rule,
and it is strictly decreasing and equals 0 when ¢ = ¢, where recall that ¢ is the solution to
(10) at equality. Hence, there exists an unique solution to (13), call it x = x(6), in (0, 4).
Moreover, it is easy to check that x'(8) > 0 and that x(8;) = ¢*. Since we need x(8) < ¢*
for an equilibrium with 7 = 1, an equilibrium of this type cannot exist if 6 > 0,. If 6 < 6,
then x(0) < ¢*, and we now show that this also implies the first order condition for 7 is

satisfied at 7 = 1. To see this, rearrange the first order condition for 7 as

< (r+ M)u(g)

< Tl ' 14

Mc(q)
c(q)]

The right hand side of (14) is decreasing in  and approaches (r+ M)/(1+r) > 0 asqg — 0.
Also, (14) is satisfied at equality when 6 = ;. Hence, (14) is satisfied if and only if 6 < 8.

We conclude that 7 = 1 and ¢ = x(6) satisfy the first order conditions if and only if § < 8.
18



Moreover, since x(0) < g, it satisfies the incentive condition (10), and hence satisfies all of
the conditions for an equilibrium.
Finally, it is obvious that #; > 0, and that §; < 1 if and only if r < (1 — M)[u(q*) —

c(q*)]/c(¢g*). This completes the proof. W

As in the previous section, the version of the model with T; = 0 has the same qualitative
properties, although 7 and 8 change quantitatively. Thus, we simply state the results here

and again relegate the proof to the Appendix.

Proposition 5 Assume T; = 0. If § = 0 there does not exist a monetary equilibrium. If
8 > 0 then there is a critical value 8y, where 50 > 0 for all parameter values and 50 <1
if and only if 1 < (1 — M)[u(g*) — c(q*)]/c(q*), such that the following is true: if < 8
there exists a unique monetary equilibrium and it entails T = 1 and q¢ < q*, with 8q/86 > 0
and lim,_j5 q =q*; and 1f 6 > 50 there exists a unique monetary equilibrium and it entails

¢q=q* and T =Tg € (0,1), where

- rl1-0) (1= Mtr)u(g)+0(M+1r)c(g)]
CTIrO-M)+M(1-M)(20-1)][u(g) - clg)]

Several comments are in order. First, as in the previous section, we emphasize that
the two objects are traded asymmetrically: randomization may be used for trading money
never for trading goods. Figure 2 shows 7 and ¢ as functions of 6 (for either T; = V; or
T; = 0, since the outcome is qualitatively the same). Note, however, that 6 < 1 if and
only if 7 is not too big. If agents are extremely impatient, then > 1, and we have 7 = 1
for all 8. If individuals are not extremely impatient, then 6 < 1, and as long as the buyer
has sufficient bargaining power we have 7 < 1. Hence, as in the model with indivisible
goods, there are parameters values for which the implicit restriction made in the previous

literature, that lotteries are not allowed, is restrictive.
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Figure 2: Monetary Equilibrium as a Function of 6.

Next, notice that ¢ < ¢* for all §, with strict inequality if and only if 6 < 8, where q*
is the efficient quantity. It is argued in Trejos and Wright (1995) that it is natural to have
q below ¢* in a monetary economy, although in the model in that paper, without lotteries,
the result does not hold very generally: it holds when 6 = 1/2 in the model where T; = 0,
but it may not hold for other values of 6, and it may not hold in the model where T; =V}
even if § = 1/2. With lotteries, we find that ¢ can never exceed ¢*, irrespective of the
threat points or bargaining power parameter.’

Some results in this section are similar to those in the indivisible goods model. For

example, we have the asymmetry that money may change hands randomly but goods

80ne way to interpret this heuristically is as follows. Agents generally would like first to maximize the
size of the surplus and then bargain over how to distribute that surplus. With lotteries, they therefore
would like first to set ¢ = ¢* and then hold a lottery to see who gets to keep the money in order to
distribute the surplus according to the bargaining solution. This can be done if the buyer is due suflicient
gains from trade (i.e., if 6 is big). Otherwise, even if the seller is getting the money with probability 1 he
may not be getting his share, and so ¢ will have to be reduced below ¢*. In the model without lotteries,
the only way to distribute the surplus across agents is to vary ¢, which simultaneously affect the size of
the surplus. Without lotteries, then, ¢* will almost certainly not satisfy the bargaining solution for given
parameters.
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never change hands randomly, and the behavior of 7 with respect to the parameters 6,
r and M is qualitatively the same as in the previous section.’ There are also differences
between the indivisible and divisible goods models. For one thing, in the indivisible goods
model we have 6 < 1, and hence we definitely have 7 < 1 for high 6; but in the divisible
goods model § < 1 if and only if r is not too big, and hence we can guarantee 7 < 1
for high ¢ if and only if  is not too big. Also, in the indivisible goods model we showed
8 > 0, and so for low § monetary equilibria do not exist; but in the divisible goods model a
monetary equilibrium exists for all § > 0. Finally, recall that lotteries could reduce welfare
in the indivisible goods model, but it is easy to see that lotteries can only improve welfare
in this model: for 6 < 8, ¢ is the same with or without lotteries; and for 8 > 8, ¢ = ¢* with

lotteries and ¢ > ¢* without lotteries.

5 Discussion

We have seen that although agents may agree to a lottery where money changes hands with
probability less than 1, they will never agree to a lottery where goods change hands with
probability less than 1. What lies behind this asymmetry? It is not due to the assumption
that money is indivisible while goods are divisible, because the same asymmetry arises
when goods and money are both indivisible. Rather, the asymmetry seems to be due more
to the fiat nature of the monetary object (i.e., it has no intrinsic worth, and derives its
value solely from its role as a medium of exchange). To develop this further, we now present
some variations and extensions of the basic framework.

First, consider a model with direct barter instead of monetary exchange. There are V;

90ne can show that 7 is increasing and q is decreasing in r in either version of the model, and that
is increasing and g is decreasing in M in the version with T; = Vj, but not necessarily in the version with
T; = 0. Also, as 7 — 0, 7 — 0 for all § > 0 (the 7 curve in Figure 2 approaches a vertical line at § = 8).
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agents who consume good 1 and produce good 2, and Ny, = 1 — N, agents who consume
good 2 and produce good 1. For now, both goods are indivisible. Production of good j
costs C; > 0 and its consumption yields utility U; > C;. Agents meet at random, and
when two agents of the opposite type meet they bargain over lotteries. If two agents agree
to a lottery, the random trade is executed, after which they return to the market to search
for new trading partners. This model is meant to be as close as possible to the monetary
search model, except that both objects are treated symmetrically in the sense that both
are real commodities.”

Let 7; be the probability that an agent of type j trades his production good to the

other agent, and let V; be the value function of type j.!' The Bellman equations are

’I“‘/l = NQ(TQUl—Tlcz) (15)

'I‘Vé = N1 (7'1U2 . T2C1) .
The bargaining solution chooses (71, 72) to solve

max (7’2U1 - 7'102 -+ ‘/1 d T1)6’ (7'1U2 —_ 7’201 + Vé —_ Tg)l—e

19This model can also be thought of as a version of Rubinstein and Wolinsky (1985) where both goods
are indivisible. The only difference is that agents in their setup exit the model after trading, while here
they reenter the market to search for new partners. This is not at all important, however, and we have
derived qualitatively similar results for versions where agents trade and exit, and also where agents trade
and switch from desiring good 1 to desiring good 2. Details of these and other extensions, including
different choices for the threat points for the various models in this section, are available on the Web at

http: //www-vwi.unibe.ch/staff/berentsen/aleks.htm.
1 As in Secion 3, with two indivisible objects, the most general lottery needs to be defined in terms of

T, the probability the first object changes hands, plus the conditional probabilities Ag and A; (i.e., the
probability the second object changes hands conditional on the first changing hands and the probability
the second changes conditional on the first not changing hands). However, one really only needs a single
A, because we showed Ag = Ay (i.e., whether the good changes hands is independent of whether the money
changes hands). A similar independence result can be used here to restrict attention to lotteries defined
in terms of the pair (71, 72), where 7; is the probability good j changes hands, and so in order to reduce

notation, this is what we do in this section.
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where Tj is the threat point of type j and @ is the bargaining power of type 1 agents. For
brevity, we only present results for T; = V; (the case T; = 0 is similar), and relegate the

proof to the Appendix.

Proposition 6 Assume U; > Cy and Uy > C,. Then there are critical values 8 and 0
constructed in the proof, with 0 < § < 6 < 1, such that the following is true: if 6 < 0 there

exists a unique equilibrium and it entails 71 = 1 and 7 = 7, € (0, 1), where

L _ U+ (1-0GG
2= ClUl )

if 6 < 0 < 0 there exists a unique equilibrium and it entails T\ = 7o = 1; and if @ > 0 there

exists a unique equilibrium and it entails 7o =1 and 71 =71 € (0,1), where

- _ (1=60)UU; +6C,C,
1= CyU, ‘

The results are depicted in Figure 3. First notice that if one good is changes hands with
probability less that 1 then the other good changes hands with probability 1. Also, either
agent can get his consumption good with probability less than 1 if he has sufficiently low
bargaining power 8, while for intermediate 6 both agents get their good with probability
1. The main point is that this model is symmetric, and thereby differs from the model
where one of the objects is fiat money. In the monetary model, as the bargaining power of
the money holder declines, the probability he gets his good jumps discretely from 1 to 0
as 0 crosses 0 (recall Figure 1); in the present model, as his bargaining power declines the

probability gets his good declines smoothly from 1 to Cy/U;.2

12The Proposition assumes U; > C, and U, > Cj, but this is not necessary to get trade. In fact, if
Ui € C; and Us > €4, then for all 6 there exists a unique equilibrium and it entails 79 = 1 and 7y = 7y;
and if Uy < C; and Uy > Cs, then for all § there exists a unique equilibrium and it entails 77 = 1 and
Tg = T2 € (0,1). Thus, even if the cost of production exceeds the benefit of consumption, if we allow

lotteries, an agent is still willing to produce with some probability in order to consume.
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Figure 3: Equilibrium with Two Indivisible Real Commodities

Next, consider a model with one indivisible good and money, as in Section 3, except
that now we assume that the money is a commodity money in the sense that it yields a
direct utility flow v > 0 to someone holding it.!® Letting 7 and X be the probabilities that

money and goods change hands, the value functions now satisfy

™o = M[r (V1 —Vy) — AC] (16)

Vi

I

(1 - M)[r(Vo— Vi) + U]+ 7.

The bargaining solution is the same as in Section 3. Again, for brevity we only present the

case T; = V; (the other case is similar), and relegate the proof to the Appendix.

Proposition 7 Let 3 = (r+ M)U — MC. Ify € (0,7) then there are critical values 6 and

6 constructed in the proof, with 0 < § < 6 < 1, such that the following is true: if 6 < 8

13This is one notion of commodity money — it yields a real rate of return, like gold jewelry, say; another
notion is that it yields utility only if consumed, like cigarettes, say.

24



there exists a unique monetary equilibrium and it entails T =1 and A\ = X € (0,1), where

Y[8U + (1 — 6) C]

A:(U—CUMlﬂ—QM?—HU—JWﬂﬂ+rCU;

if 0 € [0, 0] there exists a unique monetary equilibrium and it entails T = 1 and \ = 1; and
if 0 > 6 there ezists a unique monetary equilibrium and it entails \ = 1 and 7 =7 € (0,1),

where

. rleC+(1-6)U)
TTyre-mU-0)

If v > 7 then for all 0 there exists a unique monetary equilibrium and it entails A = 1 and

r=7¢€(0,1).

There are three parts of Proposition 7 that we want to emphasize. First, when v > 0
there exists a monetary equilibrium for all § > 0, while with fiat money there did not exist
a monetary equilibrium for small 8. Second, when v > 0 we can have A € (0,1), while
with fiat money we either have A =1 or A = 0. Third, for large v we must have A = 1 and
T € (0,1).

To develop some further intuition for this, we now present an alternative but equiv-
alent way of analyzing the model. Given economy-wide probabilities A and 7, the value
functions satisfy (16). Then, when a particular buyer-seller pair meet, they bargain over
the probabilities A and ¥ that they will use to trade, taking A and 7 as given. This gen-
erates something akin to a best response function mapping (X, 7) into (A, %), of which an
equilibrium is a fixed point. Let us look for equilibria with 7 = ¥ = 1. The best response

function mapping A into A is given by A = min {A()), 1}, where A()) is the linear function

U+ (1-9)
AR = CU(1+r)

C{’)f—i-[(l—M)U—i—MC’])\}.
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On the one hand, assume v = 0 so that we are back to the fiat money model. Then
the intercept of A()) is zero. When 6 < 6, the slope of A()) is less than 1; in this case,
given any economy-wide A € [0, 1] a particular pair of agents will bargain to X < ), and so
the only fixed point is A = 0. When 6 > 6, the slope is greater than 1; in this case, given
any economy wide A > 0 the bargaining solution implies A > Aandso A =0and A =1
are both fixed points. On the other hand, in the commodity money model with v > 0,
the intercept of A()) is strictly positive, and so the unique fixed point is strictly positive.
Intuitively, even if other agents are giving goods with probability A = 0 in exchange for
money, v > 0 implies that you would be willing to trade your good with some positive
probability to get a unit of money. In particular, if ¥ > 0 and § < 8, then in equilibrium
goods change hands with probability strictly between 0 and 1.

Note that 7 — 0 as 7 — o0, but for any given v we have 7 > 0, and the agent with the
money can still get his consumption good. This is not generally true in a model without
lotteries. One can show that when lotteries are not allowed, if v > rU, then money is
hoarded and never used to purchase goods (see Velde, Weber and Wright [1998] for an
application of such a model). Intuitively, if v is very big agents do not want to spend all of
their money to get their consumption good, and since the money is indivisible they cannot
spend part of it. With lotteries, however, agents trade regardless of v because they can
adjust the probability 7 that the money changes hands. Hence, for large v the velocity of
money may be low, but buyers still get their consumption good in every opportunity. This
means that for large v welfare is higher if lotteries are allowed than if they are ruled out,
because every trade generates a positive surplus U — C, and it does not matter from an ex
ante welfare point of view who gets the money after the trade.

To close this section we briefly consider the model with divisible consumption goods and
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indivisible money, where the money is now commodity money with flow utility v > 0.14
One can derive the following results for the divisible goods model, analogous to those
discussed in the previous paragraph for the indivisible goods model. If lotteries are ruled
out, one can show that money will be hoarded and trade will cease if v > ru(q’), where
q is given by u(q’) = c(¢’). With lotteries, however, 7 — 0 as ¥ — oo, but for any
given v we have 7 > 0 and the agent with the money can still get his consumption good.
Furthermore, recalling that 8 is the threshold such that q = ¢* for all § > 0, one can show
that 0 is decreasing in 7 and that there is a 4* such that = 0. Therefore, for all v > v
the equilibrium is efficient in the sense that buyers get their consumption good in every

opportunity, and the amount that they get is g*.

6 Conclusion

We think that introducing lotteries has been interesting for the following reasons. First, in
general, individuals may want to use lotteries in this environment, and we see no compelling
reason to constrain them not to. Second, the use of lotteries in the models analyzed here
affects aggregate welfare. Third, in the model with indivisible goods and money, lotteries
give agents something to bargain over and thereby give us a way to discuss prices. Fourth,
introducing lotteries eliminates the somewhat unnatural mixed strategy equilibria (where

agents are indifferent between accepting and rejecting money) that appear in models in the

140ne can also consider a model with no money but with two consumption goods, one divisible and
one indivisible. In this model, a nonrandom quantity g of the divisible good always changes hands with
probability 1, while the indivisible good changes hands with probability 7, where 7 < 1 iff the agent with
the indivisible good has sufficient bargaining power. Note that this is essentially the model in Rubinstein
and Wolinsky (1985), except that here the instantaneous payoffs are u(g) — C and U — ¢(q) for agents who
consume and produce ¢ units of the divisible good, while Rubinstein and Wolinsky assume the payoffs are
g and 1 — g. Agents never need to use lotteries in their model only because of the assumption that the

utility and disutilty functions are linear.
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literature without lotteries. Fifth, it is not difficult to get a rather complete characterization
of the outcome: with either indivisible or divisible goods, in any equilibrium with valued fiat
money, good changes hands with probability 1 and money changes hands with probability
7, where 7 < 1 if and only if the buyer has sufficient bargaining power. Sixth, when
goods are divisible one can prove ¢ < ¢* in the model with lotteries, where ¢* is the
efficient quantity, but one cannot prove this in general without lotteries. Seventh, if we
allow lotteries, commodity money will never drop out of circulation entirely, and even if
it 1s traded with low probability money holders still acquire consumption goods in every
opportunity, while without lotteries a sufficiently valuable commodity money will drop out
of circulation and trade will cease. And, finally, with divisible goods one can show that a
sufficiently valuable commodity money not only can be used to acquire consumption goods
in every opportunity, it always commands the efficient quantity ¢*.

Based on these findings it seems that allowing lotteries can be important in at least
some versions of this framework for at least some applications. One may be able to derive
additional insights by introducing lotteries into other related models. For example, in
would seem possible to include lotteries in models where the medium of exchange is derived
endogenously, such as the model in Kiyotaki and Wright (1989). This could give us a way
to discuss prices in that framework, among other things, hopefully without complicating

the analysis too much. We leave this to future research.
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Appendix
Proof of Proposition 2

The argument mimics that of Proposition 1. Now the bargaining solution is max T¢I} ~?,
where Iy = 7(A U + Vo) + (1= 7) (AU + V1) and Iy = 7(= A\ C +V4) + (1 = 7) (= AC + Vo).
Necessary and sufficient conditions for a solution are:

0[Vo—Vi+ (A1 — Xo) UlTIo

17
0rUTly — (1 — 6) 7CI;, — 7, <0, = if A\, >0 (17)

0(1—-7)Ullp—(1—6) (1 —7)CI; —ng <0, = if g >0
Since 7 > 0, the first condition in (17) holds with equality. First consider the case 7 <
1, which implies \; = Ag = 1. Then we can solve for the V}’s, substitute them into
first condition in (17), and solve for 7 = 7o where 74 is defined in the statement of the
Proposition. Notice 79 € (0, 1) if and only if § > 6,, where

5 _ (r+1-M)[(r+M)U — MC]
ST A 1I-M) [ +MU-MCl+(r+M[A-MU-(r+1-M)C|

One can check (5) is satisfied at T = 7. Hence, there exists an equilibrium with A\; = Ao = 1
and 7 = 79 < 1 if and only if § > 8.
Now consider the case where 7 = 1 and A; > 0. Inserting the V;’s into the second
equation in (17) at equality and rearranging, we have
M{U(r+M)[(1-MU—-(r+1-M)C]—1-0)C(r+1—M)[(r+ MU — MC]} =r(1+7r)n,.
(18)
Suppose A; < 1; then 7; = 0, and (18) can be satisfied only for the nongeneric parameter
value 0 = §,, where

_ Clr+1-M)[(r+M)U — MC]
-0 (1—M)(T+M)3({12—M(r+1-—M)C’2'




Hence, except for § = 6, the only solution to (18) with A\; < 1 is A, = 0. Therefore,
we must have A; = 1, which means that (18) holds if and only if the left hand side is
non-negative, which is true if and only if # > §,. So monetary equilibria are only possible
if > 6, and \; = 1. Given this, 7 = 1 satisfies the first condition in (17) if and only
if < 6. One can easily check that (5) is satisfied at 7 = 1. Hence, there exists an
equilibrium with A\; = 1 and 7 = 1 if and only if 0, <6< 6,. F inally, one can verify

0<y<8y<1using (6). W

Proof of Proposition 5

The argument mimics that of Proposition 4. As there, if § = 0 there is no monetary
equilibrium. For 6 > 0, the bargaining problem reduces max IT{II}~? where IT; = u(q) +
Vo + (1 —7)V; and Iy = —¢(g) + 7V4 + (1 — 7) V4. Necessary and sufficient conditions:

0u' (g)Ilp— (1 -0) (¢)I1; <0, = ifg>0
(19)
0(Vo—-Vi)o+(1-0)(Vi- Vo)1 —n, <0, = if7>0

In monetary equilibria both conditions hold with equality.

First consider the case 7 < 1, which implies that 7. = 0. Then combining the first order
conditions yields u'(¢q) = ¢/(g), and so ¢ = ¢*. Insering the V}’s into the second condition
in (19), we can solve for 7 = 7o where 7, is defined in the statement of the Proposition.
Notice 7o € (0,1) if and only if 6 > §, where

i (r+1-M)[(r+M)u(q") — Mc(q")] .
P+ 1-M)[r+ M)ulg) - Me(g)] + (r+ M) [T - M)u(g) = (r+1— M)c(q")]

One can check that (9) holds at 7 = 7y and ¢ = ¢*. Hence, there exists an equilibrium
with 7 = 79 and ¢ = ¢* if and only if § > 50.
Now consider the case 7 = 1, which implies 77, > 0. Combining the conditions in (19),

we get u' (¢) > ¢’ (g), or ¢ < ¢*, with strict inequality as long as 7, > 0. Inserting the V;’s
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we can rewrite the first order condition for ¢ as

(1-6)c(aq) _(r+M[1-M—(r+1- M)c(g)/u(q)] (20)
ou' () (r+1-M)[r+M—Mc(g)/u(g)]

As in Proposition 4, there exists an unique solution to (20), call it x = x(0), in (0, 4§).
Moreover, it is easy to check that x(6) > 0 and that x(fy) = ¢*. Since we need x(8) < ¢*
for an equilibrium with 7 = 1, an equilibrium of this type cannot exist if § > 8. If § < 6,
then x() < ¢*, and this also implies the first order condition for 7 is satisfied at 7 = 1.
We conclude that 7 = 1 and ¢ = x(6) satisfy the first order conditions if and only if
6 < 6. Moreover, x(0) satisfies the incentive condition, and hence all of the conditions for

an equilibrium. This completes the proof. B

Proof of Proposition 6

Necessary and sufficient conditions for a solution to the maximization problem are:

-—902([]27'1—ClT2)+(1—9)U2(U17’2—027’1)—7’]1SO, = if7'1>0
(21)
9U1(U27’1—017'2)—(1—0)01([]17'2—027'1)—772SO, = if7'2>0

The incentive compatibility constraints are U7y — Co1; > 0 and Uy — C172 > 0. We are
interested in equilibria where 7, and 72 > 0, and (21) holds with equality. First consider the
case 71 < 1 and 7, < 1, which implies n, = 1, = 0. Manipulating (21) yields U,U; = C,C%,
a contradiction.

Consider now the case 77 = 1 and 75 < 1, implying 7, = 0. Solving the second equation

at equality for 74 yields:

. _ U+ (1-6) GG
2 = U1C1 )
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which is less than 1 if and only if § < § where

Cl (Ul - 02)

0= )
- U1U2 - 01C2

Note that U; < C, implies 8 < 0, and so there is no equilibrium of this type. Thus, we
must have U; > Cy. Infact, 0 <8 < 1ifand only if U; > Co and Uy > C,. f U, < C4
then 8 > 1 and thus 73 < 1 for any 6. One can also verify that 7, = 1 and 7, = 7 satisfy
the incentive constraints.

The case 7; < 1 and 73 = 1 is completely symmetric, and we simply report:

Uz (UL — Co)
U, — C1Cy’

9 =

Finally, consider the case 7, = 7 = 1, which implies n; > 0. For the first or-

der conditions to hold the following two inequalities must be satisfied: 6C, (U, — C;) >
(1-6)Uy (U — Cy) and 60U, (U — C1) < (1 —6)Cy (Uy — C2). Also, the incentive com-
patibility constraints are satisfied if and only if U; > C3 and U; > C;. Under this condition

the two inequalities are satisfied if and only if 0< 9 <6 <8 <1. B

Proof of Proposition 7

Necessary and sufficient conditions for a solution are:

~0[r (Vi = Vo) = AC] (Vi — Vh)
07 (Vi = Vo) = ACJU — (1= ) [r (Vo — Vi) + AU] C =y <0, = if A >0
Since 7 > 0 the first condition in (22) holds with equality. Consider the case 7 < 1, which

implies A = 1. Then we can substitute the V;’s into first condition in (22) at equality and
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solve for 7 = 7, where 7 is defined in the statement of the Proposition. Notice 7 & (0,1) if

and only if § > 8, where

r+M)U—-MC -~

g_ (
L (7o)

Also, 6 > 0 if and only if (r + M)U — MC > ~. The incentive conditions are satisfied at
7 =7 and A = 1. Hence, there exists an equilibrium with A\ =1 and 7 =7 € (0,1) if and
only if § > 6.

Now consider the case where 7 = 1. Inserting the V;’s into the second equation in (22)

at equality and rearranging, we get
MU =MU = (r+1-M)C+7] = (1=-60)C[(r+ MU - MC —+]} = (14 1)n,.

Consider the case A < 1, which implies n, = 0 and 7 = 1. Given this, we can substitute
the V;’s into second condition in (22) at equality and solve for A = X, where X is defined

in the statement of the Proposition. Notice X € (0,1) if and only if < g, where

Cllr + MU — MC — )
U—-C)(UQ-M)+CM+7)

g =

The incentive conditions are satisfied at A = . Hence, there exists an equilibrium with
T=1andA=X<1ifandonlyif0<_0_.

Consider the case A = 7 = 1. Note that 7 = 1 satisfies the first condition in (22) if
and only if # < 6 and A = 1 satisfies the second condition if and only if § > 4. Also,
the incentive compatibility constraints are satisfied at 7 = A = 1. Hence, there exists an
equilibrium with A = 1 and 7 = 1 if and only if § < § < 4. Finally, one can verify that

y<#7implies0<f<f<1 W
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