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The reports of the death of large-scale macroeconomic forecasting models are not
exaggerated (e.g., Peter Pas ell, “The Model Was Too Rough: Why Economic Forecasting
Became a Sideshow,” The X ew York T imes, February 1, 1996). But many outside observers,
including Passell, incorrect!'” interpret the failure of the large-scale macro-econometric
models as indicative of a bleak future for macroeconomic forecasting more generally.

Passell’s premise is i1correct and his conclusion is unwarranted in any event. First,
the large-scale macroeconon ic forecasting models were not failures in all respects: although
they didn’t live up to their original promise, they nevertheless made lasting contributions --
they spurred the development of identification and estimation theory, powerful computational
and simulation techniques, ¢ ymprehensive machine-readable macroeconomic databases, and
much else. Second, past failiires do not necessarily imply a bleak future: we learn from our
mistakes. Just as macroecon ymics has benefitted from rethinking since the 1970s, so too will
macroeconomic forecasting.

Understanding the fut ire of macroeconomic forecasting requires understanding the
evolution of the nonstructural and structural approaches to forecasting, and the corresponding
interplay between measurement and theory.! I advance a two-part thesis:

(1) Nonstructural eco 10metric forecasting has progressed steadily over the last

century and coitinues to do so.

(2) Structural econom :tric forecasting, which by necessity lags innovations in

' “Nonstructural” macio-econometric models capture the correlations in observed
macroeconomic time series w thout relying on any particular economic theory. Structural
models, in contrast, explain thz correlations in observed series as the outcome of purposeful
economic behavior.
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economic theory, receded during the times of rapid theoretical advance in the
1980s and ea ly 1990s but will likely reemerge as the new theory matures. The
new structura macroeconomic forecasting models, however, will bear little
resemblance (0 their ancestors.

In short, macroeconomic for zcasting, broadly defined, is alive and well. Nonstructural
forecasting has always been well and continues to improve, while structural forecasting has
been dormant for some time but is poised for resurgence.

To make my case, I { rst chronicle the evolution and progress of nonstructural
forecasting in section 1. Then, in section 2, I first trace the advance and retreat of Keynesian
theory and structural forecas ing, and then the emergence and growth of modern dynamic
stochastic general equilibriur theory. I argue that a related new breed of structural
macroeconomic forecasting i ; similarly emerging and will likely continue to grow. I
conclude in section 3.

1. Nonstructural Forecastig?

Nonstructural econom stric forecasting has progressed steadily over the last century
and continues to do so. In this section, I chronicle that progress, which serves several
purposes. First, nonstructural forecasting is of tremendous interest in its own ri ght and is one
of the great successes of mod :rn econometrics and statistics. Second, it provides background
and contrast relevant for our sbsequent discussion of the evolution of structural forecasting.

Finally, it provides a partial giiide to the future of structural forecasting, which will

? For a more detailed i1 troduction to modern nonstructural time series forecasting, see
Diebold (1997).



-3-
incorporate many of the eleients of modern nonstructural forecasting. I break the
chronology, which by neces ity is highly selective, into two rough parts: pre- and post-1970.
Pre-1970

The 1920s were a period of fertile intellectual development in nonstructural modeling
and forecasting. Many key i leas were hatched and nurtured, which even if not particularly
sophisticated from today’s v..ntage point, laid the groundwork for the impressive technical
advances of the ensuing deczdes. In particular, Slutsky (1927) and Yule (1927) argued that
simple linear stochastic diffe ence equations provide a convenient and powerful framework
for modeling and forecasting a variety of time series, including those that arise in economics,
finance, and business. They yroposed and studied autoregressive and moving average
processes, which remain grea: workhorses of applied forecasting. Frisch (1933) put the
Slutsky-Yule framework to work in formulating the idea of impulse and propagation
mechanisms in economic dynamics.

As the 1930s and 194( s unfolded, macroeconomists and econometricians busied
themselves largely with Keyn :sian theory and Keynesian structural econometrics.
Nevertheless, a pathbreaking 10onstructural contribution was made by the economist H. Wold,
after which nonstructural tech riques progressed impressively in the hands of the
mathematicians N. Weiner an | A. Kolmogorov, and the engineer R. Kalman.

Wold showed that, giv :n sufficient stability of the underlying probabilistic mechanism
generating a time series, its stichastic part can be represented as a model of the form studied

by Slutsky and Yule.®> Thus, tie Slutsky-Yule models are not only convenient and powerful,

* In the formal jargon, ‘Wold required the series to be “covariance stationary.”
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they are absolutely central -- they’re the only game in town. Weiner and Kolmogorov worked
out the mathematics of optiial linear forecasting for models satisfying Wold’s conditions;
that is, they produced the fo 'mula for the linear projection of a future value of a series onto
the infinite sequence of its ¢ irrent and past values. Kalman completed the theory by working
with a general and flexible r:presentation called state space form. Kalman’s formulae, which
have a convenient recursive form amenable to real-time forecasting, are called the Kalman
filter. Prediction using the k alman filter allows for relaxation of the covariance stationarity
assumption and also allows ior conditioning on only a finite past.

The Wold-Weiner-K.«Imogorov-Kalman theory, which effectively represents the
pinnacle of the Slutsky-Yule research program, is beautifully exposited in Whittle (1963,
second edition 1983). Apprcpriately enough, a leading economist, T. Sargent, wrote the
second edition’s introduction which catalogs the tremendous impact of the prediction theory
on modern dynamic economi:s.

Post-1970

Early on, the nonstruc ural forecasting explosion consisted in large part of
econometricians simply discovering and appreciati ng the powerful advances made by the
likes of Wold, Weiner, Kolmigorov and Kalman. But a key development in the linear
tradition occurred with the puslication of the landmark book by Box and Jenkins (1970; third
edition Box, Jenkins and Reirsel, 1994).

First, Box and Jenkins promoted and popularized the use of autoregressive moving
average (ARMA) models, whi ch are very closely related to the autoregressive and moving

average models of Slutsky anc Yule, but which have the potential to approximate dynamics
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more accurately and with fe wer parameters than purely autoregressive or moving average
models.* Moreover, Box ard Jenkins integrated ARMA models into a workable framework
for applied forecasting, con: isting of iterative cycles of model formulation, estimation,
diagnostic checking, and for gcasting.’

Second, Box and Jen «ins focused professional attention on the idea that, under certain
conditions, trending econom ¢ time series may be made stationary by differencing. Series
that are appropriately detren led by differencing are said to contain stochastic trend, or a unit
root.® The pioneering, if controversial, work of Dickey and Fuller (e.g., Fuller, 1976) on unit
root testing grew from attem ts to understand whether and when differencing is appropriate.

Third, Box and Jenki: s heightened professional awareness of the fact that series with
stochastic trend behave in ce: tain respects very differently from series with a fixed
deterministic trend. In partic lar, shocks to integrated series have permanent effects, so that
long-run forecasts fail to revert to any fixed trend; effectively, the underlying trend location is

redefined each period.” That message was subsequently amplified and elaborated in the

*In the Box-Jenkins prlance, which has since become standard, ARMA models are
said to be parsimonious.

* See also Nerlove, Grither and Carvalho (1979) and Harvey (1989), who study
unobserved components modc s, in which observed series are treated as additively composed
of underlying latent trend, seasonal, cyclical and noise components, and show their intimate
relationship to ARMA models.

¢ Stock and Watson ( 19'88a) provide a good introduction to stochastic trends and unit
roots. Unit root processes are also called integrated processes, and the Box-Jenkins strategy
of fitting ARMA models to di ferenced data is called ARIMA (autoregressive integrated
moving average) modeling.

7 See Diebold and Sent adji (1996) for an illustration in the context of U.S. aggregate
output forecasting.
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empirical macroeconomics literature associated with such important contributions as Nelson
and Plosser (1982) and Campbell and Mankiw (1987).

Following the semin:| work of Box and Jenkins, an ongoing flood of work has sought
to complete their research program. Because macroeconomics is crucially concerned with
multivariate dynamics, many extensions of the Box-Jenkins program involve multivariate
modeling and forecasting. Early examples include Granger (1969) and Sims (1972), who
develop methods for explorii g causal patterns in multivariate systems. The Granger-Sims
causality notion is predictive not philosophical; we say that x Granger-Sims causes y if the
history of x is useful for fore asting y, over and above the history of y.

Sargent and Sims (19"'7) and Geweke (1977) develop dynamic factor models, in
which some economic shock: are common across sectors, whereas others are idiosyncratic.
The common shocks produce realistic comovements among variables and facilitate
parsimonious modeling and frecasting of large numbers of variables. Dynamic factor
models are particularly useful with the emergence of macroeconomic panel datasets,
including cross-country, cross-region, and cross-state data. Hence the recent resurgence of
interest in the idea, as in Qual and Sargent (1993) and Forni and Reichlin (1997).

Granger (1981) and Er gle and Granger (1987) develop the idea of cointegration,
which is closely related to fac or structure. Two series are cointegrated if each is individually
integrated, yet there exists a li 1ear combination that is covariance stationary and hence mean
reverting. Thus, for example, each of two series x and y may be integrated, but the spread x-y
may be mean reverting. A key insight is that in an N-variable cointegrated system, although

each variable has a univariate :tochastic trend, the system is driven by fewer than N
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underlying stochastic trend:, because some are shared. This is the essence of the Stock-
Watson (1988b) “common irends” representation of cointegrated systems and is precisely the
same idea as with the dynaniic factor model.

Cointegration is poteatially important for forecasting, because if present it lets us allow
for serially-correlated deviations from equilibrium in short run forecasts, while nevertheless
incorporating the idea of lon g-run reversion to equilibrium.® This is the idea of error-
correction, pioneered by Sarjan (1964) and long a cornerstone of “LSE econometrics.”®
Indeed, there is a formal equ valence between cointegration and error correction, as
established in Engle and Gra 1ger (1987).

Most of the multivarii te elaborations of the Box-Jenkins tradition are conveniently
implemented in the central model of modern multivariate linear forecasting, the vector
autoregression, or VAR." Tl.e VAR was advocated in econometrics by Sims (1980) as a less
restrictive alternative to traditional econometric simultaneous equations models, in which
variables were rather arbitrarily labeled “endogenous” or “exogenous.”

In a univariate autoreg ression, we approximate dynamics by regressing a variable on
lags of its own past. In a vecior autoregression, by way of logical extension, we regress each
variable in the system on lags of itself and lags of every other variable in the system. Least

squares estimation of VARs it not only statistically efficient, but also simple and numerically

* Engle and Yoo (1987), for example, establish the important result that long-run
forecasts from cointegrated sy stems sati sfy the cointegrating relationships exactly.

> For a good discussior, see Hendry (1995).

' Witness, for example, recent books such as Litkepohl (1991) and Johansen (1995).
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stable, in contrast to the ted ous numerical optimization required for estimation of multivariate
ARMA models. Early on, 11oreover, it was recognized that VARSs estimated using Bayesian
shrinkage techniques produced forecasts superior to those from unrestricted VARs. The
“Minnesota prior,” a simple vector random walk, soon became dominant.!! The Bayesian
VAR tradition continues to progress, as for example with the work of Sims and Zha (1997),
who develop methods applicable to large systems, and Ingram and Whiteman (1994), who
shrink in directions suggeste by economic theory.

The Future

The future of nonstru :tural economic forecasting will be more of the same -- steady
progress -- fueled by cheap, :ast computing, massive storage, and increased sophistication of
numerical and simulation tec iniques. Such techniques are rapidly allowing us to estimate
complicated models not ame: able to treatment with standard methods, and to dispense with
the unrealistic assumptions o ten invoked in attempts to quantify forecast uncertainty, such as
normally distributed shocks 21d no parameter estimation uncertainty. '

Nonlinear forecasting methods have also received increasing attention in recent years,
as the Slutsky-Yule theory of linear modeling and forecasting has matured, and that trend will

likely continue.” I have, however, intentionally avoided discussion of nonlinear methods

" For an extensive discussion, see Doan, Litterman, and Sims (1984).

2 Efron and Tibshirani (1993) and Gourieroux and Monfort (1996) provide good
overviews of recent developm :nts.

 Models of volatility (lynamics, which permit volatility forecasting, are an important
example. The literature began with Engle’s (1982) seminal contribution; recent surveys
include Bollerslev, Chou and I roner (1992) and Bollerslev, Engle, and Nelson (1994).
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because although many of t1e nonlinear methods are clearly of value in areas such as finance,
they are less useful in macr: economics, for two reasons. First, many of the nonlinear
methods require huge amou 1ts of hi gh-quality data for successful application, whereas in
macroeconomics we typical y have short samples of data contaminated by substantial
measurement error. Second many of the nonlinearites relevant in fields such as finance
simply don’t appear to be irr portant in macroeconomics, perhaps because macroeconomic
data are highly aggregated o ser both space and time. '*

One strand of the norlinear literature, however, is potentially highly relevant for
macroeconomic forecasting - - the idea that business cycle expansions and contractions mi ght
be usefully viewed as differe 1t regimes, which focuses attention on tracking the cycle,
charting the timing of turning points, and constructing business cycle chronologies and
associated indexes of leading lagging and coincident indicators, '* Burns and Mitchell (1946)
is a classic distillation of earl ' work in the nonlinear tradition, much of which was done in the
first four decades of the twen ieth century, and which was extended in breadth and depth by
G. Moore, V. Zarnowitz and their colleagues at the National Bureau of Economic Research in
the ensuing decades.

Regime-switching moilels are the modern embodiment of the Burns-Mitchell nonlinear

forecasting tradition. The ide. of regime switching is implemented through threshold models,

! Early on, for exampl :, ARCH models were fit to macroeconomic data, such as
aggregate inflation, but those ‘’entures were abandoned as it rapidly became clear that the real
action was in high-frequency iinancial data.

** See Diebold and Rucebusch (1996, 1998) for extensive discussion of these issues, as
well as discussion of the interj lay between linear and nonlinear methods in macroeconomic
forecasting.
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in which an indicator variab e determines the current regime (say, expansion or contraction).
In the observed indicator m dels of Tong (1990) and Granger and Terisvirta (1993), the
indicator variable is some as pect of the history of an observable variable.'¢ In contrast,
Hamilton (1989) argues that models with unobserved regime indicators may be more
appropriate in many busines , economic and financial contexts. In Hamilton’s widely-applied
model, sometimes called a “Markov-switching” or “hidden-Markov” model, the regime is
governed by an unobserved 1wo-state first-order Markov process.’

2. The Rise and Fall (and L:ise) of Structural Macroeconomic Forecasting'®

Nonstructural models linear and nonlinear, are unrestricted reduced-form models. As
such they are useful for prodi cing unconditional forecasts -- best guesses about the future, not
conditioned on assumptions r:garding the future stance of policy or other “exogenous”
effects. Nonstructural mode! are widely used in a variety of environments ranging from
firm-level business forecastin ; to economy-wide macroeconomic forecasting; one of their
virtues is their wide applicabi ity -- one can use them without assuming much about the inner
workings of the system being forecast.

Particularly in macroe::onomic environments, however, we often want to analyze

various scenarios, such as the effects of a change in a policy rule or a tax rate. Such

' For example, the cur ent regime may be determined by the sign of last period’s
growth rate; if time t-1 growth was positive then the time-t regime is expansion, and
conversely.

' See Hamilton (1994) Chapter 22.

' The title of this section was inspired by Pagan’s (1996) entertaining paper on the
evolution of the business cycle.
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conditional forecasts requir s structural models. Structural econometrics, and hence structural
macroeconomic forecasting makes use of macroeconomic theory; thus developments in
structural forecasting naturally lag developments in theory. There have been two major
theoretical advances in twer tieth century macroeconomic theory, the Keynesian theory of the
1930s and the dynamic stoc 1astic general equilibrium theory of the 1970s and 1980s. The
first was followed by a majcr advance in structural macroeconomic forecasting, and the
second, I argue, will be as w:ll.

The Rise and Fall of Keynes an Macroeconomic Theory and Structural Forecasting

With the publication »f Keynes’ General Theory in 1936, macroeconomic theory
distinctly led structural macr-econometrics, which effectively began in the wake of the
General Theory. Structural ¢ conometrics soon caught up, however, with the classical work
associated with the “Keynesi in revolution” of Klein (1946) and Klein and Goldberger (1955).
The period following the pub ication of the General T heory was one of unprecedented and
furious intellectual activity di-ected toward the construction, estimation and analysis of
Keynesian structural econom: tric models. The statistics side of the structural econometrics
research was fueled by the pa hbreaking advances of Fisher, Neyman, Pearson, and many
others earlier in the century. "“he economics side, of course, was driven by Keynes’ landmark
contribution, which spoke so loquently to the severe economic problems of the day.

The intellectual marria ze of statistics and economic theory was reflected in the
formation and growth of the F zonometric Society and its journal, Econometrica, and

beautifully distilled in the wor ¢ of the Cowles Commission for Research in Economics, at the
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University of Chicago in th: 1940s and early 1950s.”” The intellectual focus and depth of
talent assembled there were unprecedented in the history of economics: Cowles researchers
included T.W. Anderson, K. Arrow, G. Debreu, T. Haavelmo, L. Hurwicz, L.R. Klein, T.
Koopmans, H. Markowitz, . Marshak, F. Modigliani, H. Simon, A. Wald, and many others.
A primary focus of the Cow es researchers was understanding identification and estimation of
systems of stochastic differe ice equations desi gned to approximate the Keynesian
macroeconomic theory. The Cowles approach was dubbed the “system-of-equations”
approach by Prescott (1986). in reference to the fact that the it concentrated on the estimation
of parameters of equation Sy:tems representing decision rules (the “consumption function,”
the “investment function,” i) as opposed to the more fundamental parameters of tastes and
technology.

Just as the marvelous slending of mathematical statistics and economics associated
with the Cowles commission was historically unprecedented, so too was the optimism for
solving pressing macroecono:nic problems. Early on, the Cowles Foundation research
program appeared impressive y successful, and structural econometric forecasting blossomed
in the late 1950s, 1960s, and ¢ arly 1970s, the heyday of the large-scale macroeconomic
forecasting models, which sor1etimes consisted of systems of thousands of equations. There
was strong consensus regardir g the validity of the system-of-equations approach, even if
there was disagreement on deiails such as the relative slopes of IS and LM curves, and the

models were routinely used fo - forecasting and policy analysis in both academia and

" For a concise history of the Chicago days of the Cowles Commission, see Chapter 1
of Hildreth (1986).
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government.

But cracks in the fouidation, which began as intellectual dissatisfaction with the
underpinnings of Keynesian macroeconomics and system-of-equations econometrics, began
to appear in the late 1960s ai.d early 1970s. First, economists became dissatisfied with the
lack of foundations for the d sequilibrium nature of the Keynesian model. Attempts to
understand and explain stick - prices began a new research program in the microfoundations
of macroeconomic theory thit continues to the present. Many key early contributions appear
in the classic Phelps et al. ( 1970) volume, and more recent contributions are collected in
Mankiw and Romer (1991).

Second, just as macro :conomists became increasingly disenchanted with the ad hoc
treatment of sticky prices in t aditional models, they became similarly disenchanted with the
ad hoc treatment of expectations in those models. Building on key early work by Muth
(1960, 1961), who introduced the idea of rational expectations and showed that schemes such
as adaptive expectations were rational only in unlikely circumstances, the “rational
expectations revolution” quicidy took hold; Sargent and Wallace (1975) is a key and starkly
simple early paper.

Third, and most gener:lly, economists became dissatisfied not only with certain parts
of the Keynes-Cowles system. of-equations program, such as the assumptions about price
behavior and expectations forination, but rather with the overall modeling approach embodied
in the program. The system-o -equations tradition, in particular, is based on the estimation of
decision rules rather than the riore fundamental economic parameters of tastes and

technology. Early work in the tastes-and-technology tradition includes Lucas and Prescott
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(1971), and work accelerate | rapidly following Lucas’ (1976) famous formal critique of the
system-of-equations approa :h to structural econometrics, in which he argues that analysis
based on decision rules is a ‘undamentally defective paradigm for analyzing the effects of
alternative economic policie i, because the parameters of decision rules will generally change
when policies change.

Finally, if the cracks n the foundation of Keynesian structural forecasting began as
intellectual dissatisfaction, they were widened by the economic facts of the 1970s, in
particular the simultaneous p ‘esence of high inflation and unemployment, which did not
accord with the predictions ¢ "the Keynesian model. Moreover, econometricians began to
absorb some of the impressiv : advances that had been made in the nonstructural tradition and
reached the then-startling con:lusion that simple Box-Jenkins ARIMA forecasting models
often outperformed the large tructural models; Nelson (1972) remains a classic. Keynesian
macroeconomics soon declined, and Keynesian structural econometric forecasting followed
suit.

In the theoretical vacu im of the late 1970s, economic forecasters continued to absorb
and contribute to the nonstruc ural tradition. The memorable title of an important paper by
Sargent and Sims (1977), “Business Cycle Modeling Without Pretending to Have too Much a
Priori Theory,” nicely summa -izes the econometric spirit of the times. As economists,
however, we still have grand ¢ conometric aspirations, which is to say structural econometric
aspirations, but progress had ti) await the theoretical advances of the 1980s in dynamic
stochastic general equilibrium (DSGE) modeling.

Important intermediate steps, no doubt, were taken by Fair (e.g., 1984, 1994) and
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Taylor (e.g., 1993), who bu It important bridges from traditional system-of-equation structural
econometrics to modern DS 3E structural econometrics. Their work, in particular, shows
increased concern with mici oeconomic foundations, expectations formation and Cross-country
interactions, sophisticated u:e of nonstructural time series methods, and ri gorous assessment
of model fit and forecasting »erformance.? But the theory on which such structural
econometric models are based remains largely in the system-of-equations tradition. DSGE
theory, to which we now turi proceeds very differently.

The Rise of Modern Dynami : Stochastic General Equilibrium Theory

As we have seen, an ¢arly wave of structural econometrics followed the development
of Keynesian theory in the 1¢30s and was associated with the Cowles commission and the
subsequent large-scale systen s of equations that blossomed in the 1940s through the 1960s.
But the Keynesian theory wa: largely based on decision rules, rather than the true economic
primitives of taste and techno ogy; the Cowles system-of-equations approach to structural
econometric forecasting inher ted that defect and hence wasn’t really structural. Ultimately
the system-of-equations apprc ach to both theory and forecasting declined in the 1970s.

A new wave of powerful theory soon followed. The new theory has its roots in the
dissatisfaction with the systen -of-equations approach that percolated in the late 1960s and
1970s, and it congealed with t1e seminal paper of Kydland and Prescott (1982). Early on, the
new theory was dubbed “real Husiness cycle theory,” because it emphasized the idea that real

shocks to technology (that is, tupply shocks) in simple representative-agent flexible-price

? Models in the Fair-T..ylor spirit are now in use at a number of leading policy
organizations, including the Fcderal Reserve Board and the IMF.
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competitive equilibrium mcdels could explain a surprisingly large share of business-cycle
fluctuations. The essence ¢ the new approach, however, is ultimately not about whether the
shocks that drive the cycle : re real or monetary, whether prices are flexible or sti cky, or
whether competition is perfi:ct or imperfect.® Rather, the essence of the new approach is
methodological and reflects a view of how macroeconomics should be done: it should be

based on fully-articulated m »del economies (preferences, technologies, and rules of the

game), and it should be fundamentally dynamic, stochastic, and aggregative. Hence the
newer, more descriptively accurate, name: dynamic stochastic general equilibrium modeling.

At its core, the appro: ch boils down to stochastic dynamic programming, a well-
known recent economic treat se on which is Stokey, Lucas and Prescott (1989). The key
innovation is that DSGE moc els are built on a foundation of fully-specified stochastic
dynamic optimization, as opy osed to reduced-form decision rules, and are therefore not
subject to the Lucas critique. But ultimately the “new” theory is neither new nor radical;
rather, it is very much in the | est tradition of neoclassical economics.

The Future: A New Structurz| Econometric F orecasting?

Nonstructural forecast ng has evolved steadily and with little controversy, in contrast
to structural forecasting, whic 1 aligns itself with economic theories and hence rises and falls
with those theories. Waves of theory are followed by waves of structural econometrics. As
the DSGE theory reaches matirity, a new wave of structural econometric forecasting --

radically different from the ea lier variety -- is emerging. Measurement and theory are

! The more recent litersture is filled with numerous variations on the general theme,
including models that allow fo - imperfect competition and sticky prices, and hence real
effects of monetary shocks. §:e Cooley (1994) for a good overview.
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beginning to be united in fudamental ways rarely seen before, a phenomenon driven by our
deepening understanding of the links between structural economic models and their “reduced
forms,” or implied systems « £ decision rules. The result is a marriage of the best of structural
economic theorizing and no structural economic time series analysis.

Hansen and Sargent (in press), for example, stress the convenience and power of
simple “linear-quadratic” economic models, with linear technology and quadratic preferences,
for which the implied syster: of decision rules is the great workhorse nonstructural model -- a
vector autoregression, subjec: to restrictions arising from theory.” Linear-quadratic models
are surprisingly more flexibl¢ than a superficial assessment might indicate; they nest a variety
of popular and useful prefere ice and technology structures. Linear-quadratic models are also
convenient. A huge literature provides powerful methods for solving and analyzing such
models, and as Hansen and $: rgent stress, state-space representations in conjunction with the
Kalman filter are readily used for maximum-likelihood estimation and for forecasting.

Although linear-quadr itic models are surprisingly flexible, their quadratic preferences
and linear technologies are ne sertheless sometimes restrictive. Thus many theorists,
particularly those less inclinec toward empirical economics and forecasting, prefer models
that are not linear-quadratic. !juch models don’t have tidy VAR equilibria (linear decision
rules), but they have equilibri: that can often be accurately approximated by VARs. Only
time will tell whether full-blovin econometric analysis of non-linear-quadratic models, which

are challenging to solve and ai alyze but preferred by theorists, or econometric analysis of

2 Interestingly, chapter drafts circulated for a decade before the authors finally let go,
as the furious pace of advance nent necessitated continuous reworking and extending of the
manuscript.
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linear-quadratic approximal ons, which are simpler and evidently favored by empirically-
oriented economists, repres:nts the best compromise for practical forecasting. Either way, the
seeds have been sown for a -adically new structural econometrics and structural econometric
forecasting.

The new structural e« onometrics is emerging more slowly than was the case with the
earlier wave following Keyn es, because the baby was almost thrown out with the 1970s
bathwater: the flawed econcmetrics that Lucas criticized was taken in some circles as an
indictment of al/ econometri :s. It has taken take us some time to get on with our econometric
work, but now progress is ev dent.

One important tool th it has found wide use in the analysis of DSGE models is
Calibration.” Calibration means many things to many people, but central to calibration is the
idea of learning about the pre perties of a complicated dynamic model by simulating the model
economy. The parameters urnderlying the simulated model economy are typically set
informally, sometimes by stat stical considerations such as generating realistic amounts of
volatility in observed variables, sometimes by economic considerations such as producing
“reasonable” steady state beh: vior, and sometimes by appealing to previous empirical studies.
Selected features of the simul ited model economy are then compared to the same features of
the actual economy in an atter1pt to assess the adequacy of the fitted model.

Calibration is the natu: al response of economic theory to the computer age; hence the
commonly-used synonym “qu intitative economic theory.” Calibration, however, fails to

provide a complete and probal ilistic assessment of agreement between model and data and

» For a recent expositicn, see Kydland and Prescott (1 996).
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therefore fails to deliver the goods necessary for estimation and forecasting with DSGE
models. Econometric disccatent based on recognition of that fact has been simmering for
some time and is expressed forcefully and eloquently by Sims (1996) in a recent Journal of
Economic Perspectives sym posium on calibration and econometrics.2* The growing list of
such symposia includes a spacial issue of Journal of Applied Econometrics (see the
introduction by Pagan, 1994) and an Economic Journal “Controversy” section (see the
introduction by Quah, 1995}

If DSGE models are o be used for forecasting, formal econometric analysis is
necessary for at least two rezsons. First, simply using a priori “reasonable” parameter values,
although useful as a prelimin ary exercise to assess agreement between model and data, is not
likely to produce accurate fo: ecasts. For example, it might be commonly agreed that a
technology shock is likely to be serially correlated, and for purposes of a preliminary
calibration exercise we might set the serial correlation coefficient to an arbitrary but
“reasonable” value, such as .“5. The serial correlation coefficient that produces the closest
agreement between model an | data, however, might turn out to be .73. Although the choice
of .95 vs. .73 is likely to mak« little difference in a qualitative analysis of the model’s
properties, it can make a big ¢ ifference for forecasting. Accurate forecasting demands
quantitative precision.

Second, forecasting is ntimately concerned with the quantification of various

uncertainties, including innov ition uncertainty, parameter uncertainty, and model uncertainty,

? See also Hansen and Heckman (1996), in the same symposium, the lead paper in
which is Kydland and Prescoti (1996).
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which are jointly responsib ¢ for our forecast errors. Accurate assessment of such uncertainty
is key, for example, for pro lucing credible and accurate interval forecasts.

The upshot is that fo- forecasting we need to take seriously the “fit” of DSGE models
and search for best-fitting p irameters. There are a variety of ways to do so. The theory and
practice of generalized mett od of moments estimation and inference, for example, has
advanced rapidly, particular y in conjunction with recent advances in simulation.® The
mechanics of classical procedures such as maximum likelihood have been greatly advanced
by the development of linear and nonlinear filtering theory, and the mechanics of Bayesian
procedures have been simila ly advanced by Markov chain Monte Carlo techniques.” New
estimation procedures, whicl include both calibration and maximum likelihood estimation as
special cases and attempt to ¢xploit the middle ground, have also been developed.?’

Formal econometric analyses of DSGE models are becoming more common, and the
outlook is encouraging. Proniinent examples, which have taken us closest toward workable
DSGE models for forecasting and policy analysis, include:

a. Christiano and Eicl enbaum (1992), who provide an early example of formal

generalized me:hod of moments estimation of a DSGE model with government
spending shocks

b. Hansen and Sargen (1997) and McGrattan, Rogerson, and Wright (1997), who

** See Hamilton (1994), Chapter 14.

% See, for example, Havey (1981, second edition 1993, Chapter 5), Gelman et al.
(1995), and Geweke (1994).

% See Diebold, Ohaniz 1 and Berkowitz (1995).
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estimate DS E models, many of which have an explicit role for policy, by
maximizing & Gaussian likelihood

c. Leeper and Sims (1994), Leeper, Sims and Zha (1996), and Sims and Zha (1996),

who estimate rich classes of DSGE models using a strategy based on

interpreting cl ta from the vantage point of the likelihood principle.?®
Thus the new wave of structiiral macroeconomic forecasting has already begun. Many of the
tools of nonstructural econor ietrics, moreover, figure prominently in the new structural work.
The ideas behind ARMA an¢ VAR models, for example, are central to specifying and
analyzing both DSGE model! inputs and outputs, or in business cycle parlance, the classic duo
of impulse and propagation n echanisms. Other nonstructural developments, such as
nonlinear models of regime s vitching, have not yet been thoroughly explored in the context
of empirical DSGE models.

One might expect the .cale of empirical DSGE models to grow over time. That is
likely to happen, and current inodels that determine, for example, three or four variables in
equilibrium, are likely to evol /e into richer models that determine, say, ten or twelve variables
in equilibrium.” But the expznsion in scale is likely to stop there, for two reasons. First, the
demise of the large-scale mod :ls heightened professional awareness of the fact that bigger

models are not necessary bettcr, an idea memorably enshrined in Zellner’s (1992) KISS

* That is, they examin« the entire likelihood function, in contrast to the classical
prescription of simply comput ng its maximum and examining an €-neighborhood of the
maximum.

* The work of Sims an | his coauthors has already reached that point.
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principle.®® Second, in cont ast to models in the system-of-equations tradition, which are
typically estimated equation -by-equation and then assembled in modular fashion, the nature
of DSGE models requires tht their parameters be jointly numerically estimated, which limits
the complexity of the model ; that can be entertained.*" That is a virtue, not a limitation of the
DSGE models.

3. Concluding Remarks

As Passell notes, “.../ mericans held unrealistic expectations for forecasting in the
1960's -- as they did for so m any other things in that optimistic age, from space exploration to
big government ...” Our expi:ctations for forecasting were quite appropriately revised
downward in the 1970s and 1980s, and the ensuing era of humility has been good for all. The
new humility, moreover, is nct symptomatic of failure, just as the bravado of the 1960s was
not symptomatic of success.

As the 1990s draw to i close, we find ourselves at a critical and newly-optimistic
juncture, with the futures of nnstructural and structural forecasting very much intertwined.
The ongoing development of 1onstructural forecasting, together with the recent developments
in dynamic stochastic general equilibrium theory and associated structural estimation
methods, bode well for the fut ire of macroeconomic forecasting. The hallmark of
macroeconomic forecasting o1 er the next twenty years will be marriage of the best of the

nonstructural and structural ag oroaches, facilitated by advances in numerical and simulation

* Keep It “Sophisticatedly Simple.”

*! Sims and his coautha s, however, are partially able to overcome this “curse of
dimensionality” -- some woulc say at a cost -- by incorporating prior information in a
Bayesian framework.
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techniques that will help us to approximate, solve, estimate, simulate, and forecast with rich

dynamic stochastic general zquilibrium (or disequilibrium) models. % Development will occur

in a variety of fields well be yond macroeconomics, including public economics, industrial
organization, labor economics, international economics, and agricultural economics.

It’s already happenirg.

32 Rust (1996) and Judc (1998), for example, catalog the impressive advances being
made for solving stochastic dv 1amic programming problems.
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