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Abstract

In macroeconometrics, unit root tests are typically performed using logs. While this is
sensible from a theoretical macroeconomic perspective, there is no clear reason, particularly
from an empirical perspective, why logs should be used rather than levels. Further, standard
unit root tests assume linearity under both the null and the alternative hypothesis. Violation of
this linearity assumption can result in severe size and power distortion, both in finite and large
samples. Finally, casual inspection of gnp per capita, for example, plotted against its fitted
linear deterministic trend (see Figure 1) gives no clear indication that a loglinear specification
should be preferred to a linear specification. Thus, it is reasonable to address the problem of data
transformation before running a unit root test. In this paper we propose a simple completely
consistent procedure for choosing between levels and log-levels specifications in the presence of
deterministic and/or stochastic trends. Once we have chosen the proper data transformation,
we remain with the standard problem of choosing between I(1) or I(0), either in levels or in
logs. Based on a series of Monte Carlo experiments, we show that the frequency of selecting the
correct data transformation is close to one, even for very small sample sizes, when our procedure
is implemented. Empirical evidence is also presented, and suggests that 11 of the 14 variables
in the Nelson and Plosser (1982) dataset are appropriately modeled in levels rather than in logs,
when performing unit root tests.



1 Introduction

In macroeconometrics, unit root tests are typically performed using logs. This is consistent with
much of the real business cycle literature (see e.g. Long and Plosser (1993) and King, Plosser, Stock,
and Watson (1991)) where it is suggested, for example, that gnp should be modeled in logs, given
an assumption that output is generated according to a Cobb-Douglas production function. While
this is sensible from a theoretical macroeconomic perspective, there is no clear empirical reason
why logs should be used rather than levels, when performing unit root tests, particularly given that
standard unit root tests assume linearity under both the null and the alternative, and violation of
this linearity assumption can result in severe size and power distortion, both in finite and large
samples (e.g. see Granger and Hallman (1991) and Figure 2 below). Also, casual inspection of gnp
per capita, for example, plotted against its fitted linear deterministic trend (see Figure 1) gives no
clear indication that a loglinear specification should be preferred to a linear specification. Thus, it

is reasonable to address the problem of data transformation before running a unit root test.

The current convention is to define an integrated process of order d (I(d)) as one which has
the property that the partial sum of the dth difference, scaled by T-1/2 satisfies a functional
central limit theorem (FCLT). In this case, integratedness in logs does not imply integratedness
in levels, and vice — versa. Thus, any a prior: assumption concerning whether to model data
in levels or logs has important implications for the outcome of unit root and related tests. For
example, Granger and Hallman (1991) show that the percentiles of the empirical distribution of
the Dickey-Fuller (1979) statistic constructed using exp(X;) are much higher, in absolute value,
than the corresponding percentiles constructed using the original time series X;, when X; is a
random walk process. Thus, inference based on the Dickey-Fuller statistic using the exponential
transformation leads to an overrejection of the unit root null hypothesis, when standard critical
values are used. More recently it has been shown in Corradi (1995) that if X, is a random walk,
then any convex transformation (such as exponentiation) is a submartingale, and any concave
transformation (such as taking logs) is a supermartingale. However, while submartingales and
supermartingales have a unit root component, their first differences do not generally satisfy typical
FCLTs. Thus, Dickey-Fuller type tests no longer have well defined limiting distributions. Given all
of the above considerations, it is of some interest to use a statistical procedure for selecting between

linear and loglinear specifications, rather than simply assuming from the outset that a series is best



modeled as linear or loglinear. Further, while Cox-type tests are available for the I(0) case, few

results are available for the I(1) case.

In this paper we propose and examine a simple testing strategy for choosing among I(0) in
levels, 1(0) in logs around a nonzero linear deterministic trend, I(1) in levels around a positive
linear deterministic trend, and I(1) in logs. Our approach consists of two steps. In the first step,
two statistics are constructed, say Vi and Vor. If the underlying data generating process (DGP) is
either I(0) in levels (possibly around a linear deterministic trend) or is I(1) in levels, then we show
that both of the statistics approach zero in probability. On the other hand, if the underlying DGP
is either I(0) in logs (around a nonzero linear deterministic trend) or is I(1) in logs, then one of the
statistics diverges at a geometric rate, while the other approaches zero in probability. This enables
us to distinguish between linear and loglinear model specifications. The procedure outlined above
is completely consistent, as both type I and type II errors approach zero asymptotically (i.e. the
asymptotic size is zero and the asymptotic power is one). Given that we now know whether the
series is best characterized as linear or loglinear, we are left with the standard problem of selecting
between I(1) and I(0). The second step of our testing strategy consists of using any procedure for
choosing between I(0) and I(1) (e.g. Dickey and Fuller (1979), Kwiatkowski, Phillips, Schmidt,
and Shin (1992), Phillips and Ploberger (1994), and Stock (1994)). As Step 1 is a completely
consistent procedure, we ensure that the probability of accepting (rejecting) the true (false) DGP
is asymptotically one, if a completely consistent procedure is used in Step 2; and that our approach
does not does not suffer from the size distortion problem typical of sequential testing procedures,

if a classical unit root test is used in Step 2.

In a stimulating recent paper, Kobayashi & McAleer (1996) propose a related procedure for
distinguishing between integratedness in logs and integratedness in levels. However, their approach
differs from ours in a number of respects. First, integratedness is a maintained assumption. Second,
they derive the limiting distribution of their test statistic under the assumption that the variance
of the innovations in both DGPs converges to zero as the sample size approaches infinity, at a

sufficiently fast rate.

We examine the finite sample behavior of our procedure via a series of Monte Carlo experiments,
and show that type I and type II errors associated with the use of Vi1 and Vor are very close to

zero, even for samples as small as 50 observations. Also, the overall ability of our approach to select



the ”correct” DGP is shown to be quite reasonable when augmented Dickey-Fuller or Kwiatkowski,
Phillips, Schmidt, and Shin (1992, hereafter KPSS) unit root tests are used in the second step of
the approach.

Empirical evidence based on Nelson and Plosser (1982) data is also presented. Our main findings
can be summarized as follows. First, for 11 out of 14 variables, our procedure suggests éonstructing
unit root tests using levels data. The 3 variables for which we choose logs are: employment,
wages, and nominal gnp. Second, we find that unemployment is I(0) using both levels and logs.
Third, we find that two other variables are I(0) based on our choice of data transformation. These
two variables, employment and real wages, also constitute two of the three variables for which
we choose log specifications. As these two variables were modeled in logs by Nelson and Plosser
(1982), our findings disagree with their finding that both variables are I(1). However, it should be
noted that the t-statistic reported by Nelson and Plosser for real wages is -3.04, which is borderline
1(0). Also, the contradiction between our finding and theirs for employment is due to our different
approach for selecting the number of lag angmentations to use in our application of the ADF
test. In particular, they choose two lags while we choose one lag. Indeed, any choice of lags
other than 1 (ie. 0,2, .., 10) leads to a test statistic value of at most -3.19, in agreement
with their findings. Third, for employment, gnp per capita, money, real gnp, and wages, using
the inappropriate data transformation leads to I(1) being found when the data are I(0) using
the appropriate transformation, and vice-versa. This suggests that the use of the correct data
transformation is important when constructing unit root tests, thus providing evidence as to the

usefulness of our procedure.

The rest of the paper is organized as follows. Section 2.1 gives a heuristic discussion of the
approach and the statistics which we use. In Section 2.2 we outline the main results and describe the
sequential approach used. Section 3 summarizes the findings of several Monte Carlo experiments.
In Section 4, the procedure is applied to a number of U.S. macroeconomic series. Section 5 gives

concluding remarks.



2 Distinguishing Between I(0) and I(1) Processes in Logs and Lev-

els

2.1 Pitfalls With Classical Hypothesis Testing Approaches

Given a series of observations on an underlying strictly positive process X;, ¢t = 1,2,..., our
objective is to decide whether: (1) X, is an I(0) process (possibly around a linear deterministic
trend), (2) log X; is an I(0) process around a nonzero linear deterministic trend, (3) X, is an I(1)
process (around a positive linear deterministic trend), and (4) log X is an I(1) process, (possibly
around a linear deterministic trend). A natural approach to this problem is to construct a test that
has a well defined limiting distribution under a particular DGP, and diverges to infinity under all
of the other above DGPs.

While it is easy to define a test having a well defined distribution under one of (1)-(4), it not
clear how to ensure that the test has power against all of the remaining DGPs. To illustrate the
problem, consider the sequence &, given as the residuals from a regression of X, on a constant and
a time trend. Now, construct the test statistic proposed by Kwiatkowski, Phillips, Schmidt, and
Shin (1992, hereafter KPSS):

1 2T t ) 2
ST:&—%‘T_; gﬁt y

where 6% is a heteroskedasticity and autocorrelation (HAC) robust estimator of var (T‘l/ 25t ét)-
It is known from KPSS that if X, is I(0) (possibly around a linear deterministic trend), then St has
a well defined limiting distribution under the null hypothesis, while Sy diverges at rate 7'/l under
the alternative that X, is an integrated process, where Iy is the lag truncation parameter used in the
estimation of the variance term in S7. However, if the underlying DGP islog X; = oy +61t+2§-=1 €55
61 > 0 (i.e. logX, is a unit root process) then both ¢4 and 72 ZZ;I ( §‘=1 €j)2 will tend to diverge
at a geometric rate, given that X; = exp(a; + 6;t + Z§'=1 €;). In this case it is not clear whether
the numerator or the denominator is exploding at a faster rate. This problem is typiczﬂ of all tests

which are based on functionals of partial sums and variance estimators, and arises because certain

nonlinear alternatives are not treatable using standard FCLTs.

So far we have analyzed the case in which we perform a test with 7(0) as the null hypothesis and

I(1) as the alternative. In this case, the statistic is typically constructed in terms of functionals of



partial sums scaled by a variance estimator. Another common procedure is to test for the null of I(1)
versus the alternative of I(0) using Dickey-Fuller type tests. To illustrate the problems associated
with this approach, consider the following simple example. Assume that log X; = log X, + €,
€ ~ 11d(0,02). However, we perform a Dickey-Fuller test using levels. For example, we compute
T(&r — 1), where
o T XiXi

aT = =T 2 -

Zt:? Xt——l

Now, X; = exp(log X;_1 + €;) = X;_1 exp(e;), so that we can write:

T ZtT=2 X?—l(eet - 1)

Tlér =1)===57

Note that as X; = X exp(Z}zl €;), standard unit root asymptotics no longer apply. However, by
confining our attention to the case where ¢ ~ N(0,0?), we can examine the properties of (41 — 1),
thus gaining insight into the performance of a Dickey-Fuller test using an incorrect transformation
of the data. Notice that Eec = e37¢ > 1. Thus, we might expect that T'(&r —1) tends to diverge to
+00. However, Granger and Hallman (1991) find that this statistic tends to overreject the null of a
unit root. One possible explanation for the difference between their finding and our intuition is that
the distribution of et —1 is highly skewed to the left, and has a lower bound of negative one. Thus,
even though the mean of e —1 is positive, this is due to the very long right-tail of the distribution.
When ¢; is drawn from a standard normal distribution, however, most observations are rather close
to zero (e.g. 95% are between 2 and -2). These data, when transformed using e — 1, are mainly
between -0.86 and 6.4, say. Further, the median of the distribution of e — 1 is zero. Now, in the
context of finite samples, this suggests that if we truncate the distribution of e — 1 to be, say,
between -0.8 and 1, then the mean of this truncated distribution will actually be negative (as we
draw relatively fewer observations close to the upper bound than negative observations close to the
lower bound). In the context of generating data in finite samples, as Granger and Hallman did, this
situation indeed seems to have occurred, resulting in mostly large negative values being calculated
for the expression T(&r — 1). Put another way, the negative elements of T Y%, X2 (e — 1) are
usually quite large in magnitude, relative to most of the positive elements of the same sum. Of
course, in large samples, and with large o2 we should expect that this result will not hold, as the
effect of large positive draws from the distribution of e — 1 begins to dominate the overall sum

TS X2 (e — 1). This intuition suggests that Granger and Hallman’s results, while holding



for the usual sample sizes and the usual error variances observed in economic time series, should
not hold generally. It further suggests that indeed using levels data when the true process is I(1)
in logs will produce either overrejection of the unit root null (as Hallman and Granger show), or

underrejection of the null. Interestingly, these arguments also suggest that for very special cases

2

¢ and sample size), the empirical size of the Dickey-Fuller test may

(i.e. appropriately chosen o
actually match the nominal size, even when the wrong data transformation is used! To examine
this intuition further, we carried out a Monte Carlo experiment. Data were generated according
to a loglinear random walk, with error variance equal to o2, and the T(&r — 1) test statistic was
used to check for a unit root at the 5% level. Samples of 100, 250, and 500 observations were
used, 2000 replications were performed, and o, was varied between 0.01 and 1000. The results
are presented in Figure 2, and support our intuition, suggesting that the empirical size is close to
and/or below the nominal size for extremely large samples and/or extremely large error variances.
Further, for extremely small error variance, the statistic tends to zero, as the numerator of the of
the test statistic tends to zero, again resulting in underrejection of the null. For standard deviations
between 0.5 and 100, and for all of the sample sizes which we examine, Granger and Hallman’s
result holds, however, and the test severely overrejects the null hypothesis. In summary, there

appears to be a need to carefully consider which transformation is used when constructing unit

root tests, as the wrong transformation may yield entirely misleading results.

Even if we decide to keep integratedness as a maintained assumption, and choose between I(1)
in levels and I(1) in logs, or vice versa, we do not in general obtain a test which has unit asymptotic
power. For example consider constructing a KPSS-type test using the first differences of the levels
data (i.e. AX;). Under the null of I(1) in levels the statistic has the usual well defined limiting
distribution. However, under the alternative of I(1) in logs it does not necessarily diverge to infinity.
Again the reason for this result is that both the numerator and the denominator tend to diverge
to infinity if they have a positive linear deterministic trend, and in general we cannot determine
whether the numerator or the denominator is diverging at a faster rate. Recently Kobayashi and
McAleer (1996) develop a test for the null of I(1) in levels versus the alternative of I(1)in logs, and
vice versa, under the maintained assumption of integratedness. However, in order to derive the
limiting distribution of their statistic under the null and to show the power under the alternative,

they assume that the variance of the innovation term approaches zero at a sufficiently fast rate.



In this paper, our aim is to develop a procedure for selecting among levels and log-levels linear
specifications, while allowing for both deterministic and stochastic trends. In the short memory
case, Cox-type tests for choosing between non-nested specifications, and in particular between
levels and log-levels specifications are already available. These tests, however, are not applicable to
I(1) variables, in general. Our approach is somewhat different. In a first stage, we construct two
simple statistics. If X, is either I(0) or I(1) in levels, possibly around a linear deterministic trend
component, then both of the statistics approach zero in probability. If instead X; is I(0) in logs
around a non-zero linear trend or is I(1) in logs with or without a deterministic trend'component,
then one of the two statistics diverges at a geometric rate, as the sample size gets large. (The case
where log X; is I(0) without a deterministic trend component is discussed below.) Thus, we obtain
a very simple completely consistent rule for selecting among levels and log-levels specifications. We
are then left with the standard problem of choosing between I(0) and I(1), using data which are
either in levels or logs. In a second stage, we can either employ a completely consistent procedure
(e.g. Phillips and Ploberger (1994) or Stock (1994)), or we can rely on classical hypothesis testing
procedures (e.g. Dickey and Fuller (1979) or Kwiatkowski, Phillips, Schmidt, and Shin (1992)).

2.2 Testing Strategies

We propose a simple completely consistent procedure for choosing between levels and log-levels
specifications. The procedure avoids the pitfalls discussed above which are associated with standard
hypothesis testing approaches. Consider the following four DGPs:

H Xi=ap+bot+e, >0

H,: X, :C¥0+(50t+2§‘=1€j, 6o >0

Hs(i):log Xy = a1 + 61t + €, 61 =0

Hi(ii):log X; =g + 61t + €, 61 >0

Hs(iid) : log Xy = a1 + 61t + €, 61 <0

Hy(3) :log Xy = aq + 61t + Z;zl €, 61 =0

Hy(i1) :log Xy = o + 61t + 23':1 €, 61 >0

Hy(ii1) :log Xy = ay + 61t + iy €5, 61 <0

Also, assume the following:

Assumption 1: (i) X; > 8 > 0,V¢t > 0. (ii) the partial sums of ¢;, scaled by T~1/2 gatisfy a



functional central limit theorem.

Given Assumption 1 (ii) above, {¢;} can display dependence and heterogeneity of various forms.
For example, most strong mixing processes, mixingales, and near-epoch dependent functions of
mixing sequences satisfy a FCLT under mild moment (or domination) conditions. Under H;, X, is
an I(0) process (possibly around a constant and a positive linear deterministic trend), while under
H,, Xt is an I(1) process (around a constant and a positive linear deterministic trend). Under Hs,
log X, is an I(0) process with: (i) no deterministic trend (ii) a positive linear deterministic trend,
and (iii) a negative linear deterministic trend. In these cases, the sign of the trend component plays
a crucial role. For example, if 6, > 0, X, tends to explode at a geometric rate as t — oo, while if
61 < 0, X; converges to zero at a geometric rate, as t — oco. Finally, under Hy, log X; is an I(1)

process, possibly with a linear deterministic trend component.

It is worth noting that the above DGPs include the class of ARMA(p,q) and ARIMA(p,q)
models. Let ¢; = %%—LL-%ut, where u; is 4d(0,02), and A(L) and B(L) are lag polynomials of order p
and q respectively, with all roots outside the unit circle. Then, under H, and Hy, X? and log X;
are ARIMA(p,q) processes. Under H, and Hj, X; and log X; are ARMA(p,q) when §; = 0,7 =0, 1;
and when 6; # 0,7 = 0,1, the deviations of X; and log X; from their trends are ARMA(p,q).
Furthermore, in the I(1) case (i.e. H, and Hy), the addition of an I(0) error term, say v, is
sufficient to ensure that the above DGPs include the class of DGPs considered by KPSS (1992).
Needless to say, the inclusion of an additional I(0) term in the DGPs in H, and H, does not in

any way affect the asymptotic results stated below.

Our objective is to choose among Hy, Hz, H3(1) — (112), H4(3) — (24i). Hereafter, let 7; denote the
residuals from the regression of X; on a constant and a linear trend, and let ft denote the residuals
from the regression of log X; on a constant and a linear time trend. Consider the following two

statistics:




Then, we have the following.

Proposition 2.2.1: Let Assumption 1 hold.

(a) Given the additional assumption under Hs(i) that sup;»o F (€*) < 0o, we have that under
both Hy and Hs(i), Vit 2 0, and Vor 5 0 , where Vi1 converges at rate T7-(1=7) and V,r converges
at rate T~2(1=1/2¥) ~ > 0 and arbitrarily small.

(b) Under Hy, Vit 5 0 at rate T=3+7, and Vor 5 0 at rate T 4 > 0 and arbitrarily small.
(¢) Under H3(ii) and Hy(ii), Vit 5 0 at a geometric rate, and Vor 2 0o at a geometric rate.

(d)

(e) Under Hy(7), either

Under Hj(44i) and Hy(i44), Viz > oo at a geometric rate, and Vor 5 0 at a geometric rate.

Vir % 0,Var % 00

or

Vir B o0, Var 5 0,

where both the divergence to infinity and the convergence to zero occur at geometric rates.

Proof: See Appendix.

Proposition 2.2.1 can be interpreted as follows. Under H; and Hj(i), T > converges in
probability to a non-deterministic limit (given the law of large numbers), while %— & = Op(logT).
Thus, both Vi7 and V7 approach zero in probability. Under H,, Tli S°#H? converges in distribution
to a well defined non-degenerate limit, and hence %Zﬁf diverges at rate 7', On the other hand,
% > ftz = Op(logT). Thus, both Vi1 and Vo7 again approach zero in probability. Under Hj3(i4) and
Hy(13), H = exp(ag + 81t + &) — G — 67 and fe = exp(ay + 61t + Z}zl €;) —ar — ST, respectively.
This implies that Y77 explodes at a geometric rate. However, under Hj(ii), %Eétz = 0,(1),
while under Hy(1), T35 &= O,(1). Tt follows that Vip 5 0 and Var 5 00, and that convergence
(divergence) occurs at a geometric rate in both cases. In the case of §; < 0, (i.e. Hs(4ii) and
H, (7)), —}— S #h2 converges to zero at a geometric rate. Thus, Viy = oo and Var 5 0. Finally,

consider Hy(4), where X; = exp(ay + Y %¢;). Set t = [Tr]. Then, given that T}/2 ZE-TT] ¢; weakly

converges to a nondegenerate limit, it follows that | ZETT] ¢;| diverges with probability approaching
one, and so —Tlf S #2 either diverges to infinity or converges to zero, at a geometric rate. Thus,

. P .
either Vi; 5 0 and Vor & 00, Or vice versa.



Let Hy = Hi U Ho U H3(i) and Hp = H3(11) — (13¢) | Ha(3) — (443). The following summarizes
our procedure.
STEP 1: If Vir <1 and Vo < 1, choose Hy. Otherwise, choose Hp. If H, is chosen, go to Step
2. Otherwise, go to Step 3.
STEP 2: Choose between I(1) and I(0) using data in levels. If the variable is found to be I(1),
then choose H,. Otherwise, choose Hy |J H3(7).
STEP 3: Choose between I(1) and I(0) using logged data. If the variable is found to be I(1),

then choose H4. Otherwise, choose Hs.

Step 1 of the procedure follows directly from Proposition 2.2.1, as under Hy4, both Vi7 and
Var approach zero in probability, while under Hg, either Vi7 or Vo7 diverges to infinity. We have
chosen unity as the ”cut-off” value in Step 1. Although at first glance, this may appear to be a
somewhat arbitrary choice, our simulation results reported below suggest that the rule works, in
the sense that the percentage of times that the wrong hypothesis is selected is arbitrarily close to
zero, even when very small samples are used in the construction of the statistics. However, given
that either Vi1 or Var diverges at a geometric rate under Hg, the probability of choosing H 4, when
Hp is true, approaches zero very rapidly. If we are concerned about the probability’ of choosing
Hp, when instead H4 is true, we can choose a somewhat looser ”"cut-off” value. Once either Hy4
or Hp are chosen, it remains only to select between I(0) and I(1) in levels, or between I(1) and
I(0) in logs, in which case we proceed either to Step 2 or Step 3, respectively. There are many
procedures which can be used in Steps 2 and 3. For example, a completely consistent procedure
for selecting among I(1) and I(0) may be implemented. This would ensure that the probability of
selecting the true DGP using Steps 1-3 approaches unity as the sample size increases. Examples of
completely consistent unit root procedures include Phillips and Ploberger (1994) and Stock (1994).
Alternatively, many classical hypothesis testing procedures are available for implementation in
Steps 2 and 3. If classical tests are used, then the entire procedure (Steps 1-3) is not affected by
the usual size distortion problem associated with sequential testing procedures, as Step 1 is based
on a completely consistent approach. Two widely used classical hypothesis tests which can be used
in Steps 2 and 3 are: (i) Dickey-Fuller type tests for the null of I(1) versus the alternative of I(0)
(using levels if H is chosen, and using logs if Hp is chosen); and (ii) KPSS tests for the null of 1(0)

versus the alternative of I(1) (again using levels if Hy4 is chosen, and using logs if Hp is chosen).
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It should be noted that if the variable being examined using Steps 1-3 is found to be I (0) in
Step 2, then a choice remains between H3(i) and H;. In particular, the series may be I(0) in
logs with no linear deterministic trend, or I(0) in levels, possibly around a linear deterministic
trend. Two comments are in order here. First, Step 2 uses levels data to choose between I (1)
and I(0), even if the true DGP is H3(i). This, however, is of little concern, as H3(i) and Hy are
indistinguishable in the context of unit root tests and procedures. Second, it may be useful to
examine the linear deterministic trend component of a fitted model of the data, for example, as a
coeflicient significantly different from zero suggests choosing H;. When the same coefficient is not
significantly different from zero, then a Cox-type test might be used to select among logs and levels

in the context of I(0) data (e.g. as suggested Pesaran and Pesaran (1993)).

So far we have only considered the problem of choosing between levels and log — levels specifi-
cations. One reason for this approach is that macroeconometricians typically model data either in
levels or in logs. However, the above procedure can be easily modified to select among data in levels
or data which has been transformed in some other manner, say g(X,). Define ft as the residual
from the regression of g(X;) on a constant and a linear deterministic time trend. Provided that
¢ is unbounded and lim, .o, g(2)/z = 0, we can still rely on the ideas which lead to Proposition
2.2.1, and formulate a procedure that is analogous to the one outlined above. However, it should
be noted that the rate of divergence of one of the two statistics is no longer geometric in general,

under the g transformation, but depends on the particular functional form of g.

3 Finite Sample Performance

In this section the results of two related Monte Carlo experiments are presented. In the first
experiment, the finite sample performance of using Vi and Va7 to discriminate betwéen Hy and
Hp is examined (this corresponds to Step 1 of the above procedure). In the second experiment, the
finite sample performance of the entire testing procedure is examined (by carrying out Steps 1-3).
Thus, the first experiment addresses the usefulness of Vi7 and Vyr for choosing between expressing
a variable in levels or logs, prior to carrying out unit root tests. The second experiment uses the
results of the first experiment in conjunction with standard strategies for selecting between I(0)
and I(1) to fully classify the variable being examined as either: (1) I(0) in levels possibly around

a positive (linear) deterministic trend or I(0) in logs with no deterministic trend (this is denoted

11



by ”Hj or H3(i)"); (2) I(0) in logs with a positive or negative deterministic trend (this is denoted
by " Hs(ii) or H3(4i2)”); (3) I(1) in levels around a positive deterministic trend (this is denoted by
"Hj"); or (4) I(1) in logs with a positive, negative or zero deterministic trend (this is denoted by

"Hy = Hy(i) — (444)"). Both experiments are based on the following DGP:
Ye = Bt + 71 + s,

Tt = T¢—1 + Vs

This is the same DGP as that used by KPSS (1992). One of the reasons why we use this DGP
is that in the second experiment we construct KPSS (and also Augmented Dickey-Fuller) tests to
select between I(0) and I(1), given prior knowledge (from Step 1 of the procedure) as to whether
the data are better modeled in levels or in logs. Our experimental setup closely follows KPSS,
although they consider p between -0.8 and 0.8, and we allow it to vary between -0.99 and 0.99.
In particular, we model 7, as a AR(1) process in I(0) cases (i.e. 7; = pm_1 + ), allowing for
different choices of p € (0,1). Clearly as p gets closer to one, it becomes somewhat more difficult
to distinguish between I(0) and I(1). In I(1) cases, m: is generated as iidN(0,1), and the finite
sample properties of our procedure is examined by varying the parameter A = ol /0‘%. In the I(0)
case, A = 0 as o2 = 0, while in the I(1) case, the lower the value of ), the greater the likelihood of
mistakenly identifying an I(1) process as an I(0) process, as the unit root component of y; accounts
for little of the stochastic variation of the series. Under Hs and Hy, we set the initial value, say
To, equal to zero, while under H; and H; we set 79 = 100. In theory, under H; and H,, we should
impose some sort of ”constraint” on the support of 7; and on the support of g, or v, in order to
ensure the positivity of X;,Vt. However, by using an initial value of ro which is large enough, it
turns out that we never draw a negative value, and thus we avoid having to impose restrictions on

the support of the distributions.

In summary, we generate data using the above DGP, and corresponding to the hypothe-
ses Hy — Hy. For example, note that for Hsz and Hy, data which are I(0) and I(1) in logs
are generated. This is accomplished by setting y, = logz;, where z; is the underlying series
in levels. Then, the series in levels is constructed by forming exp(y;). The parameterizations
which we consider can be summarized as follows. For H; and Hs(i) — (iii) data are generated

using: f1 = 0 (for H, and Hs(z)), /1 = 0.1 (for Hy and Hs(ii)), B4 = —0.1 (for Hz(31)),
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p = {0.99,0.9,0.5,0,-0.5, 0.9, —0.99}, and p; ~ 12dN(0,1). In all of these cases, ol = 0. For
H; and Hy(i) — (iii) we generate data using 8; = 0.1 (for Hy(d)), £ = 0.1 (for Hy and Hy(i1)),
B1 = —0.1 (for Hy(t2)), A = {0.0001,0.01, 1,100, 100000}, and both 7, and v; ~ 1dN(0,1). In
all experiments, samples of 50, 100, 250, and 500 observations are used. However, for the sake of
brevity, and because the results based on our first experiment change little, we only include tabu-
lated results for samples of 50 and 100 observations. (Complete results are available upon request.)
All experiments are based on 5000 replications, and in all cases where ADF and KPSS tests are

run, critical values correspond to a 5% nominal size.

Tables 1A.1-1A.2 and 1B.1-1B.2 present results based on the first experiment. For DGPs
generated according to Hq-Hy, the freqﬁency of occurrence of all possible combinations of Vi and
Var are tabulated. Also, the expected magnitudes (from Proposition 2.1.1) of the two statistics are
given in the last column of the tables. For example, in Table 1A.1 (sample size = 50) and Table
1A.2 (sample size = 100), Proposition 2.1.1 suggests that Vi1 and Vap should both be less than one
for H; and Hj3(i). The same applies to H, in Tables 1B.1 and 1B.2. Together, these hypotheses
form H, (see above). It is immediately apparent, even upon cursory inspection, that the frequency
of times that the expected combination of statistics is observed is always close to unity, even for
samples of only 50 observations. In fact, there are only two notable exceptions to this finding. The
first is the case of H3(i) when p is equal to 0.99 or -0.99 (see Tables 1A.1 and 1A.2). In this case,
we do not find that Vir and V,r are both less than unity, as expected. This is due to the fact
that the DGPs in these cases mimic unit root processes, so that our simulated data appear to have
been generated according to log difference stationary processes with no linear deterministic trend
(i.e. Hy(i)). The second exception occurs when data are generated according to DGP Hy (1), and
A is very close to zero. A value for A close to zero indicates that the variance of the random walk
component is very small relative to the variance of y;. Thus, the data tend to mimic data generated
according to a short memory process (i.e. Hs(z), as discussed in KPSS). In short, co;xditional on
the two standard exceptions noted here, Step 1 of our procedure appears to perform surprisingly

well, even for very small samples.

Tables 2A.1-2A.2 and 2B.1-2B.2 report results based on the second experiment, when the ADF
test is used in Steps 2 and 3. The method used to select the number of lags in the ADF test

regressions is discussed in the next section, and in the footnote to Table 4. Each ADF test reported
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on is carried out using a stepwise procedure, which begins with the formation of an ADF regression
with both intercept and trend. If the series is found to be I(0) based on this regression, the
procedure is stopped. Otherwise, the significance of the trend component is examined, and if the
trend component is found to be insignificant, then a new regression is estimated with only an
intercept. If the series is then found to be I(0), the procedure is stopped. Otherwise, we test
whether or not to include the intercept term in the ADF regression, and continue by estimating a
regression with no intercept or trend, if appropriate.

First, consider Tables 2A.1-2A.2, which report results based on data generated according to
short memory processes. The entries of these tables can be interpreted as follows. Consider the
first entry in the upper left corner of Table 2A.1, which is 0.334. This entry denotes the frequency
of times that Steps 1-3 of our procedure result in the selection of ” H; or H3(4)”, given that actual
data are generated according to H;(6 = 0). Put another way, the data are first subjected to Step 1
of our procedure, and either H,4 or Hp is selected. Then, given the appropriate data transformation
implied by Step 1, an ADF test is performed, and the data are further classified as either I(0) or
I(1). For simplicity, when Hy4 is selected in Step 1, we use a levels transformation of the data.
However, as Hy includes not only H; and H, (I(0) and I(1) in levels), but also Hs(i) (I(0) in logs
with no deterministic linear trend), this approach should be viewed as a simplification. In practice,
though, this simplification does not affect our results, as H; and Hs(i) are indistinguishable from
an empirical perspective (i.e. when ADF tests are used). It should be noted that the empirical
power of the ADF test (from Steps 2-3 of our procedure), as well as the ”empirical power of the
entire procedure” (from Steps 1-3) can also be inferred from the entries in Tables 2A.1-2A.2. Here,
by the "empirical power of the entire procedure”, we mean the frequency of rejection of the column
entry " Hy or H3(7)” when the actual data are generated according to H; (6§ = 0), say.

To illustrate all of the above concepts, consider the row of entries in Table 2A.1 corresponding
to data generated according to H3(i1) with p = 0.99. The entries are 0.008, 0.331, 0.012, and
0.647. The entry 0.331 is the frequency of times that the true DGP, Hs(4i), falls within the class of
DGPs (” H3(ii) or H3(i41)”) selected by the entire procedure. Also, the empirical power of the ADF
test is 0.008+-0.331=0.339, as these two entries amount to the probability of rejecting the I(1) null
hypothesis when it is false. Finally, the empirical power of the entire procedure is 0.331, which is
the intersection of the probability of finding Hp using Step 1 of our procedure, and the probability
of finding that the variable is I(0) using the ADF test. Upon examination of Tables 2A.1-2A.2 it is
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clear that the empirical power of our procedure is very high for all values of p, except for p=0.99,
-0.99. This is not surprising, as the ADF test has very little power for values of |p| close to unity,
and so our entire procedure likewise has low power. Further, even for as few as 100 observations,
the overall power of the procedure improves appreciably for moderate values of p. For example,
for p = 0.5 and data generated according to H3(i1), the empirical power of the procedure increases
from 0.759 to 0.932 when the sample is increased from 50 to 100 observations.

Tables 2B.1-2B.2 are analogous to Tables 2A.1-2A.2, except that empirical size is presented,
rather than empirical power, given that all data in these two tables are generated according to I(1)
processes. Consider the row of entries corresponding to data generated according to Hy(i1)(6 > 0)
with A = 1.0. The entries are 0.040, 0.458, 0.031, and 0.470. In this example, the empirical
size of the ADF test is 0.04040.458=0.498. Also, the empirical size of our entire procedure is
0.040+-0.458+0.031=0.529. Notice that the empirical size of the ADF test as well as pf the entire
procedure is always above 0.80 for in Table 2B.1 for A = 0.0001. This is not surprising, as A = 0.0001
is the case for which very little of the variation in y; is due to the random walk component (r;).
Also, not surprisingly, as A and the sample size increase, the empirical size of the ADF test as well

as of the entire procedure improve dramatically.

Tables 3A.1-3A.2 and 3B.1-3B.2 are based on the same experiment reported on in Tables 2A.1-
2A.2 and 2B.1-2B.2. However, there are a number of differences in the test procedure used, and
in the layout of the tables. First, 6 different KPSS unit root test statistics - i, and 7, for 10, 14,
and /12, rather than one ADF unit root test, are used in Steps 2 and 3 of the procedure. Second,
no results are reported for data generated according to Hs(i). This is because 6 times as many
columns of results would need to be presented in order to adequately partition the entries in the
table, thus allowing for a reasonable interpretation of data generated according to Hj(i). (These
results, however, are available for the authors.) Third, entries in the tables correspond to the
empirical size of the entire procedure (Tables 3A.1-3A.2) and to the empirical power of the entire
procedure (Tables 3B.1-3B.2). For example, the upper left entry in Table 3A.1, which is 0.957 ,
suggests that when data are generated according to H1(6 = 0), the probability of finding that the
actual data are generated by either Hy, H3(i3) — (i44), or Hy is 0.957. This empirical size is very
poor, and arises because the data are generated with p = 0.99, in which case the KPSS test used

in Steps 2-3 of our procedure tends to severely overreject the null of I(0). Notice that the empirical
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size of the entire procedure improves as the lag truncation parameter is increased from [0 to 112,
as |p| decreases, and as the sample increases from 50 to 100 observations. This finding is in accord
with the findings of KPSS (1992, Table 3). Now, consider the upper left entry in Table 3B.1, which
is 1.000, suggesting that when the data are generated according to Hy(8 > 0) with A = 0.0001, the
probability of finding that the actual data are generated by H, is 1.000. In this case, the empirical
power of our procedure is extremely good. However, this result is an artifact of the fact that the
true data are generated with a positive deterministic trend, but the test statistic used is f, with [0.
This KPSS statistic invariably rejects the I(0) null because the deterministic trend is ignored, thus
leading to the selection of H; by the entire procedure. Indeed, when data are generated according
to Hy(6 > 0), the appropriate columns in Table 3B.1 are the last three, in which results based on
- KPSS test statistics are reported. Here, entries are close to 0.05, which is actually the expected
empirical size of the procedure. However, this result is completely expected, as A = 0.0001, in
which case the data mimic those generated according to an I(0) process (as discussed above). Of
final note is that the empirical power of the procedure increases as A and the sample size increase,
but decreases as we move from [0 to [12. Again, this result is in accord with KPSS (1992, Table 4).

In summary, our procedure appears to perform as well in finite samples as the unit root test
used in the second and third steps of the procedure. This is due to the impressive finite sample
performance of the completely consistent approach used in the first step of the procedure, and
suggests that practitioners may use our procedure with the knowledge that it will essentially perform

as well as the classical unit root test used in Steps 2 and 3.

4 Empirical Application: U.S. Macroeconomic Series

In this section, an updated version of the Nelson and Plosser (1982) dataset is examined. Vi,
Var, ADF, and KPSS statistics are calculated for all of the variables. More precisely, ADF' test
statistics based on regressions with a constant and trend, #;, as used in Nelson and Plosser (1982),
and KPSS statistics using two of the three lag truncation parameters used in our simulations - /4
and [12 (see above), and with deterministic trend, #,, are reported on. Complete results for ADF
and KPSS test statistics, including 7, 7,, -, A, and 7, for 10, 14, and [12, are available upon
request from the authors. For the ADF test statistics, the number of lagged differences used in

the test regressions was selected by examining their t-statistics, starting with 10 lags, and stopping
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when the last lagged difference had a coefficient significantly different from zero at a 95 percent
level of confidence.

Although the Nelson-Plosser data have been examined many times, it has usually been assumed
a priort that the data are best modeled in logs. Our approach is to first use Step 1 of the above
procedure to ascertain whether the variables are better modeled as linear in logs or in levels.
Thereafter, we apply ADF and KPSS tests to the appropriately transformed data, as well as to
the inappropriately transformed data. Although the construction of ADF and KPSS test statistics
to these data may seem a bit repetitive given the large number of previous studies in which the
same data have been examined, we nevertheless include these results, in order to illustrate how our
entire procedure (Steps 1-3) can be applied empirically, and because it turns out that using what

we find to be the wrong data transformation can lead to misleading inference.

Table 4 contains our findings. The data are the same as those used by Schotman and van Dijk
(1991), who updated the original Nelson-Plosser (1982) dataset. The sample size considered for
each of the variables is equal to the length of the shortest series in the dataset, and is 80 observations
(1909-1988). For 11 out of 14 variables, our procedure suggests constructing unit root tests using
levels data. The 3 variables for which we choose logs are: employment, wages, and nominal gnp.
It is somewhat surprising that we choose logs for nominal gnp, but choose levels for real gnp and
per capita gnp. This is particularly surprising, as much of the real business cycle literature (e.g.
Long and Plosser (1993) and King, Plosser, Stock, and Watson (1991)) suggests that gnp should
be modeled in logs, given an assumption that output is generated according to a Cobb-Douglas
production function, say. To examine this finding further, we plotted per capita gnp and nominal
gnp against their fitted linear deterministic trends (see Figure 1). While there is clear evidence that
nominal gnp is well modeled as loglinear around a deterministic trend, even cursory inspection of

the plots indicates that choosing between levels and logs for per capita gnp not straightforward.

Table 4 also reports our results based on ADF and KPSS unit root tests, using both the correct
and incorrect data transformation, where by ”correct” we mean the transformation chosen by our
procedure. A number of findings emerge. First, we find that unemployment is 1(0) using both levels
and logs. Further, even though we choose levels, our above definition of levels” includes I(0) in
logs with no deterministic trend. As pointed out above, I(0) in logs with no deterministic trend is

the only loglinear specification which is included in the definition of ”levels” which we use in Table
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4. As unemployment is the only series which is found to be I(0) in levels, it is also the only series

for which our procedure is unable to clearly distinguish between linear and loglinear specifications.

Second, we find that two other variables are I(0) based on the correct transformation. These
two variables, employment and real wages also constitute two of the three variables for which
we choose log specifications. As these two variables were modeled in logs by Nelson and Plosser
(1982), our findings disagree with their findings that both variables are I(1). However, it should be
noted that the t-statistic reported by Nelson and Plosser for real wages is -3.04, which is borderline
I(0). Also, the contradiction between our finding and theirs for employment is due to our different
approaches for selecting the number of lag augmentations to use in our application of the ADF test.
In particular, they choose two lags while we choose one lag. Indeed, any choice of lags other than

1 (ie. 0,2, ..., 10) leads to a test statistic value of at most -3.19, in agreement with their findings.

Third, for employment, gnp per capita, money, real gnp, and wages, using the incorrect data
transformation leads to I(0) being found when the data are I(1) using the correct transforma-
tion, and vice-versa. This finding is the same regardless of whether ADF or KPSS test statistics
are examined. This suggests that the use of the correct data transformation is important when

constructing unit root tests, thus providing evidence of the usefulness of our procedure.

5 Conclusions

In this paper we propose a simple consistent procedure for choosing between levels and log-levels
specifications in the presence of stochastic and/or deterministic trends. The proceduré is designed
to help in the selection of the appropriate data transformation when carrying out unit root tests,
for example. Our procedure is carried out in two steps. First, the appropriate data transformation
is chosen. Second, a standard unit root test is performed in order to select between I(1) and
I(0), given the appropriate data transformation. The second step can be carried out by using a
wide variety of classical hypothesis tests, or alternatively, using a completely consistent approach.
If a completely consistent approach is used, then the entire procedure is completely consistent.
However, even if a classical hypothesis test is used, the size distortion problem typical of sequential
testing procedures is avoided, as our procedure for selecting the appropriate data transformation

is completely consistent.
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In order to assess the usefulness of the proposed procedure, a series of Monte Carlo experiments
were carried out. Results based on these experiments are encouraging. For example, the frequency
at which the correct data transformation is selected is very close to unity in most cases, even with
samples as small as 50 observations. Empirical evidence is also presented which suggests that mod-
eling macroeconomic variables in levels may in some cases be preferable to modeling them in logs.
This evidence is based on an examination of the dataset used in Nelson and Plosser (1982). Perhaps
most importantly, we show that for this dataset, using the inappropriate data transformation leads
to I(1) being found when the data are I(0) using the appropriate transformation, and vice-versa,
for 5 of 14 variables. This suggests that the use of the correct data transformation is important

when constructing unit root tests, thus providing evidence of the usefulness of our procedure.

6 Appendix

Proof of Proposition 2.2.1: Unless otherwise stated, all summations run from 1 to 7. Let ér
and 5T denote the estimated coefficients from the regression of X; on a constant and a linear time

trend, and define
T’ (T+1)RT+1) THT+1)* T!

Dy =

6 4 T 12
we have
. T(T+1)(2T + 1) T+1
ar = 6Dy ZX —~ tht (1)
. T+1
by = Z X+ 5 ZtXt (2)

Analogously, let &7 and 57 be the coefficients from the regression of log X; on a constant and a

linear time trend, we have

. _T(T+1)(T+1) T(T+1

Gr = o Zl X - > tlog X, 3)
. T(T +1)
or = ——%—Zl og X +——ZtlogXt (4)

(a) Under Hy,

. T(T+1)2T +1) T(T + 1)
VT(6r — ap) = 6D7/T \/—Z ¢ — __2DT/T2 T3/2Z €
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and
(T(T +1) 1

3/2/%

Thus
1 . 1 ~
TZ€?:TZ(Q—(QT—OZO) (61 — b0)t) th +0p(1
and so 75 Y%7 5 0 at rate T. Now log X; = log(ao + ot + €;), so that Gr = O,(logT) and

by = 0, (l‘%‘l), when the trend component is nonzero. When 6o = 0, then a7 = 0,(1) b7 = Ou(7).

It follows that
1 — ~
T3/2 Z(log(ao + 6ot +e)—ar—o6rt)t B0

at rate T~1/2+7/2 and 5 &7 approaches zero at rate T-(=7), 5 > 0, arbitrarily small. So
Vir 5 0 at rate T-1%7, and Var 2 0 at rate T-2(1=7) 5 > 0, arbitrary small.

Under Hj(:), VT(Gr — 01) = Oy(1) and T%2(87 — &) = O,(1), so that

1 .
T 24 0

at rate T~1/2. Now X, = exp(c; +¢), so that E(X?) = exp(2aq ) E(exp(2¢;)) < 0o, by assumption.
Thus 7 3 X7 = 0,(1), so &7 = O,(1) and b7 = 0,(T~1). So

1 . 1 . a
727 = = > (eaplan + &) — ar - 8rt)? = 0, (1)

also note that the expression above is strictly positive except for a set of measure zero. It follows

that Vit 5 0, Vor 5 0, at rate 717 and T-200-7) respectively..

(b) Under H,,

1 T(T+1)2T+1) 1 X, T(T+1) 1 t
JFOT T o) = =5 n T3/2Z(ZEJ 2D7/T? T/ 73 2t 2 <

t=1 j=1 t=1 j=1
so that
L ) L a0, [ Wds - 60, [ sw,d
—=(ar — ap) — 4o, sas — 60, sWsas
VT T /0 /0
and r
5 _T(T+1) : T 1
VT (b —b0) = -2 (S e, ty e
2Dr/T? Tsﬂg ]z; 7" Dr /T3 T5/2t§ E; !
so that

~ 1 1
\/T(éT — 8p) LA —605/ W,ds + 1206/ sWds
0 0
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Consequently,

1 1
s Y =y e~ (G — o) - (b — 8o)t)? 0—3/0 (W7 )2ds

where
W =W, + (65 — 4) /01 W,dr + (—125 + 6) /01 W, dr
Thus
T DAL
at rate T

On the other hand, ar = O,(log T') and ér = 0, (lﬂi‘l), so that

t

T3/2210ga0+60t+263 —aT-—(?Tt) 20
J=1

at rate T~1/2%7 > 0, arbitrary small. Thus Vi7 5 0 at rate T3+, and Vior 2 0 at rate T-1+7.
(c) Under Hy(11), X; = exp(ay + 61t + Z§=1 €;), thus |ar| and |5T[, explode at a geometric rate
as T — o0o. Thus

T
Z TZ(ea:p ay +61t+26j)—6Tt—aT) 20

7=1
at a geometric rate.

Note that, because of the law of the iterated logarithm for weakly dependent processes (Eberlain,

theorem 1, 1986),

lim sup

1 ¢
——| ) €| =0
T—oo V21'loglogT ; ! ‘
so that the asymptotic behavior of X, is driven by the deterministic trend component; thus also

under Hs(i1),
Zm 5 00
at a geometric rate. Under H5(4i),
1 > 1 5 L
T3/2 Zéf = T3/2 Z(ft —(ar —oq) — (67 — (51)t)2 50

at rate 712 Vip 50, Vor & o0, and the convergence (divergence) occurs at a geometric rate.

Under Hy(ii), by the same argument used in part (b), we know that
1 1
L& S at [ s
0
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where W/ is a detrended Brownian motion. Thus

1 A
T3/2 253 5 &

at rate T2 As %47, 4 3247 diverge at a geometric rate, the same outcome as in H3(11)

occurs.

(d) Essentially by a similar argument as in (c), noting that for &, < 0, under Hs(i1),

1., 1 .
T an == Z(emp(c?lt +oq +e) —ar —brt)2 B0

at a geometric rate, and similarly under Hy(ii). The behavior of T~3/2 3" £2 is as in part (c) under
both Hjz(iii) and Hy(4¢3). Thus simply the asymptotic behavior of the two statistics is switched,

and Vit & oo and Var 2 0, and the convergence (divergence) occurs at a geometric rate.
(e) The limiting behavior of T73/2 " €2 is as in (b) and (c). Now as T~1/2 321"} ej 5 N(0,70?),
for any r € [0, 1], it follows that, for r € [0, 1],

[T7]
lim P (]Zeﬂ >CT> =1

T—oo =1

where F,%{W — 00, as T' — o0, for v > 0, arbitrarily small.

Given (3)-(4), we see that |ar| and |é7| diverge to infinity, or approach zero, at a geometric rate,
depending whether Z]'T=1 €; £ 50 or Z]T=1 €; 2, _ 0, but we know that Z};l €;, in absolute values,
diverges to infinity, with probability approaching one. Thus depending on the divergence to oo
or to —oo of ) ¢€;, we know that either Vir 2 0 and Var B 00, or vice versa. In all cases the

divergence (convergence) occurs at a geometric rate.
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Figure 2: Empirical Size of the Dickey-Fuller Test Using Levels Instead of Logs
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Footnote: Graphs report percentage of rejections of the I(1) null when performing a Dickey-Fuller test
ata 5% level, using levels data, given that the true DGP is I(1) in logs. Figures plotted are based on

2000 Monte Carlo replications, with the standard deviation of the error process used to generate the
data reported along the horizontal axis.
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Table 2A.1: Complete Procedure Performance Using ADF for Steps 2-3!
Hypotheses Examined: H; and H,. Sample Size = 50 Observations

Data Generated  Parameter Values Model Selected
According To: Short Memory Integrated (I(1))
Hyior Hiy(i)  Hs(i) or Hs(iii) H, H,(D)—(iii)
H, (6=0) p=0.99 0.334 0.000 0.665 0.000
p=0.90 0.381 0.000 0.619 0.000
p=0.50 0.830 0.000 0.170 0.000
p=0.00 0.887 0.000 0.112 0.000
p=-0.50 0.896 0.000 0.103 0.000
p=-0.90 0.894 0.000 0.105 0.000
p=—0.99 0.890 0.000 0.109 0.000
H, (6>0) p=0.99 0.340 0.000 0.659 0.000
p=0.90 0.376 0.000 0.623 0.000
p=0.50 0.759 0.000 0.241 0.000
p=0.00 0.881 0.000 0.118 0.000
p=-0.50 0.894 0.000 0.105 0.000
p=—0.90 0.895 0.000 0.104 0.000
p=-0.99 0.893 0.000 0.106 0.000
H;@) p=0.99 0.155 0.234 0.137 0.473
p=0.90 0.476 0.060 0.325 0.137
p=0.50 0.812 0.000 0.187 0.000
p=0.00 0.855 0.000 0.144 0.000
p=-0.50 0.848 0.000 0.151 0.000
p=-0.90 0.408 0.347 0.208 0.035
p=-0.99 0.051 0.817 0.037 0.094
H; (i) p=0.99 0.008 0.331 0.012 0.647
p=0.90 0.000 0.376 0.000 0.623
p=0.50 0.000 0.759 0.000 0.241
p=0.00 0.000 0.881 0.000 0.118
p=-0.50 0.000 0.894 0.000 0.105
p=-0.90 0.000 0.895 0.000 0.104
p=—0.99 0.000 0.893 0.000 0.106
H,(iii) p=0.99 0.058 0.318 0.026 0.596
p=0.90 0.000 0.380 0.000 0.619
p=0.50 0.000 0.760 0.000 0.239
p=0.00 0.000 0.882 0.000 0.117
p=-0.50 0.000 0.894 0.000 0.105
p=—0.90 0.000 0.897 0.000 0.102
p=—0.99 0.029 0.855 0.012 0.102

I See notes to Table 1A.1. The entries in this table can be interepreted as follows. Consider the first entry in the upper left corner of Table
2A.1, which is 0.334. This entry denotes the frequency of times that Steps 1-3 of our procedure result in the selection of H | or H (i), given
that actual data are generated according to H1,(0=0), and we interpret it as the "empirical power" of our entire procedure. Analogously, the
empirical power of the ADF test is equal to the sum of the 3rd and 4th columns of the table (see above discussion). Put another way, the data
are first subjected to Step 1 of our procedure, and either Hy or Hp is selected. Then, given the appropriate data transformation implied by Step
1, an ADF test is performed, and the data are further classified as either 1(0) or I(1). ADF tests are performed as discussed above. Each entry is
based on 5000 Monte Carlo replications.
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Table 2A.2: Complete Procedure Performance Using ADF for Steps 2-3!
Hypotheses Examined: H; and H;. Sample Size = 100 Observations

Data Generated  Parameter Values Model Selected
According To: Short Memory Integrated (I(1))
Hyor Hy(i)  H;(i) or Hs(iii) H; H ,(D)—(iii)
H, (6=0) p=0.99 0.205 0.000 0.795 0.000
p=0.90 0.409 0.000 0.590 0.000
p=0.50 0.925 0.000 0.074 0.000
p=0.00 0.949 0.000 0.050 0.000
p=-0.50 0.955 0.000 0.044 0.000
p=—0.90 0.961 0.000 0.038 0.000
p=—0.99 0.961 0.000 0.039 0.000
H, (6>0) p=0.99 0.213 0.000 0.786 0.000
p=0.90 0.370 0.000 0.629 0.000
p=0.50 0.932 0.000 0.068 0.000
p=0.00 0.957 0.000 0.042 0.000
p=-0.50 0.963 0.000 0.036 0.000
p=—0.90 0.968 0.000 0.031 0.000
p=-0.99 0.966 0.000 0.033 0.000
Hi (i) p=0.99 0.179 0.136 0.108 0.575
p=0.90 0.590 0.044 0.229 0.135
p=0.50 0.891 0.000 0.108 0.000
p=0.00 0.922 0.000 0.078 0.000
p=-~0.50 0.921 0.000 0.078 0.000
p=-0.90 0.574 0.279 0.134 0.011
p=-0.99 0.035 0.915 0.011 0.037
H;(i) p=0.99 0.001 0.213 0.000 0.785
p=0.90 0.000 0.370 0.000 0.629
p=0.50 0.000 0.932 0.000 0.068
p=0.00 0.000 0.957 0.000 0.042
p=—0.50 0.000 0.963 0.000 0.036
p=—0.90 0.000 0.968 0.000 0.031
p=-0.99 0.000 0.966 0.000 0.033
H(iii) p=0.99 0.073 0.196 0.016 0.714
p=0.90 0.000 0.365 0.000 0.634
p=0.50 0.000 0.931 0.000 0.068
p=0.00 0.000 0.957 0.000 0.042
p=-0.50 0.000 0.963 0.000 0.036
p=-0.90 0.000 0.968 0.000 0.031
p=—0.99 0.057 0.894 0.016 0.031

1See notes to Table 2A.1.
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Table 2B.1: Complete Procedure Performance Using ADF for Steps 2-3!
Hypotheses Examined: H, and H . Sample Size = 50 Observations.

Data Generated Parameter Values Model Selected
According To: Short Memory Integrated (I(1))
HyorHy(i)  Hs(ii) or H(iii) H, H,()-@ii)

H; (6>0) A=0.0001 0.887 0.000 0.113 0.000
A=0.01 0.855 0.000 0.144 0.000
A=1.0 0.576 0.000 0.423 0.000
A=100 0.408 0.000 0.591 0.000
A=10000 0.406 0.000 0.593 0.000

H,@0) (6=0) A=0.0001 0.855 0.000 0.144 0.000
A=0.01 0.813 0.000 0.185 0.0000
A=1.0 0.119 0.397 0.071 0411
A=100 0.001 0.346 0.000 0.652
A=10000 0.001 0.346 0.000 0.652

H (i) (6>0) A=0.0001 0.000 0.878 0.000 0.121
A=0.01 0.000 0.845 0.000 0.154
A=1.0 0.040 0.458 0.031 0.470
A=100 0.001 0.343 0.000 0.655
A=10000 0.000 0.344 0.000 0.654

H ,(iii) (86<0) A=0.0001 0.000 0.880 0.000 0.119
A=0.01 0.000 0.844 0.000 0.155
A=1.0 0.085 0.445 0.030 0.438
A=100 0.001 0.349 0.000 0.649
A=10000 0.001 0.344 0.000 0.654

! See notes to Table 2A.1. This table is analogous to Table 2A.1, except that empirical size is presented, rather than empirical power, given that
all data used in the experiments reported on in this two table are generated according to I(1) processes. For example, consider the row of entries
corresponding to data generated according to H 4(ii)(3>0), and A=1.0. The entries are 0.040, 0.458, 0.031, and 0.470. In this example, the
empirical size of the ADF test is 0.040+0.458=0.498. Also, the empirical size of our entire procedure is 0.040+0.458+0.031=0.529. Put another
way, the data are first subjected to Step 1 of our procedure, and either Hy or H, B is selected. Then, given the appropriate data transformation
implied by Step 1, an ADF test is performed, and the data are further classified as either I(0) or I(1). ADF tests are performed as discussed
above. Each entry is based on 5000 Monte Carlo replications.
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Table 2B.2: Complete Procedure Performance Using ADF for Steps 2-3!
Hypotheses Examined: H, and H,. Sample Size = 100 Observations.

Data Generated Parameter Values Model Selected
According To: Short Memory Integrated (I(1))
HyorHy(i)  H;(if) or Hs(iii) H, H , ()—(iii)

H, (6>0) A=0.0001 0.956 0.000 0.043 0.000
A=0.01 0.879 0.000 0.120 0.000
A=1.0 0.397 0.000 0.602 0.000
A=100 0.282 0.000 0.717 0.000
A=10000 0.285 0.000 0.715 0.000

H, (@) (8=0) A=0.0001 0917 0.000 0.083 0.000
A=0.01 0.810 0.000 0.189 0.000
A=1.0 0.149 0.250 0.064 0.535
A=100 0.002 0.216 0.000 0.781
A=10000 0.001 0212 0.000 0.786

H (i) (8>0) A=0.0001 0.000 0.956 0.000 0.043
A=0.01 0.000 0.878 0.000 0.121
A=1.0 0.031 0317 0.018 0.633
A=100 0.002 0214 0.000 0.783
A=10000 0.001 0.211 0.000 0.787

H 4 (i) (86<0) A=0.0001 0.000 0.956 0.000 0.043
A=0.01 0.000 0.877 0.000 0.122
A=1.0 0.068 0.302 0.015 0.614
A=100 0.001 0.212 0.000 0.786
A=10000 0.001 0.208 0.000 0.790

1 See notes to Table 2B.1
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Table 3A.1: Complete Procedure Performance Using KPSS for Steps 2-3!

Hypotheses Examined: H; and H;. Sample Size = 50 Observations

Data Generated ~ Parameter Values My Ne

According To: 10 14 112 10 14 112

H; (6=0) p=0.99 0.957 0.685 0.290 0.973 0.635 0.179
p=0.90 0.888 0.454 0.109 0.957 0.506 0.112
p=0.50 0.347 0.103 0.029 0.500 0.110 0.054
p=0.00 0.052 0.040 0.060 0.360 0.040 0.048
p=—0.50 0.001 0.000 0.880 0.060 0.018 0.037
p=-0.90 0.000 0.011 0.000 0.000 0.520 0.024
p=-0.99 0.000 0.115 0.000 0.000 0.660 0.004

H, (6>0) p=0.99 0.966 0.732 0.397 0.973 0.635 0.179
p=0.90 0.954 0.742 0.369 0.957 0.506 0.112
p=0.50 1.000 0.999 0.952 0.500 0.118 0.054
p=0.00 1.000 1.000 1.000  0.053 0.040 0.048
p=-0.50 1.000 1.000 1.000 0.000 0.880 0.037
p=-0.90 0.996 1.000 1.000 0.000 0.075 0.024
p=—0.99 0.436 0.999 0.763 0.000 0.646 0.004

H; (i) p=0.99 0.967 0.742 0.413 0.974 0.645 0.196
p=0.90 0.954 0.742 0.369 0.957 0.506 0.112
p=0.50 1.000 0.999 0.952 0.500 0.118 0.054
p=0.00 1.000 1.000 1.000 0.053 0.040 0.048
p=-0.50 1.000 1.000 1.000 0.000 0.880 0.037
p=—0.90 0.996 1.000 1.000 0.000 0.075 0.024
p=-0.99 0.436 0.999 0.763 0.000 0.646 0.004

H; (i) p=0.99 0.963 0.764 0.441 0.975 0.664 0.245
p=0.90 0.951 0.748 0.375 0.957 0.506 0.112
p=0.50 1.000 0.999 0.950 0.500 0.118 0.054
p=0.00 1.000 1.000 1.000  0.053 0.040 0.048
p=—0.50 1.000 1.000 1.000 0.000 0.880 0.037
p=—0.90 0.995 1.000 1.000 0.000 0.075 0.024
p=—0.99 0.478 0.999 0.782 0.042 0.640 0.046

! See notes to Table 2A.1. Reported frequencies are based on the same set of experiments reported on in Tables 2A.1-2A.2 and 2B.1-2B.2.
However, there are 2 number of differences in the manner in which the findings are reported. First, entries are based on 6 different KPSS unit
root test statistics - Vy, and V., for 10,14, and [ 12, rather than on one ADF unit root test. Second, entries correspond to the empirical size of
the entire procedure. For example, the upper left entry, which is 0.957, suggests that when data are generated according to H | (5=0), the pro-
bability of finding that the actual data are generated by either H,, H 3, 0r H 4 is 0.957. This entry corresponds to the frequency of times that
the correct DGP (i.e. the DGP according to which the experimental data were generated) was chosen based on the entire procedure (Steps 1-3).
Put another way, the data are first subjected to Step 1 of our procedure, and either H, 4 or Hyp is selected. Then, given the appropriate data
transformation implied by Step 1, a KPSS test is performed, and the data are further classified as either K0) or I(1). KPSS tests are performed as

discussed above. Each entry is based on 5000 Monte Carlo replications.
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Table 3A.2: Complete Procedure Performance Using KPSS for Steps 2-3!

Hypotheses Examined: H; and H;. Sample Size = 100 Observations

Data Generated ~ Parameter Values My e
According To: 10 14 112 10 14 112
H,; (6=0) p=0.99 0.993 0.793 0.505 0.998 0.815 0.393
p=0.90 0.944 0.449 0.170 0.993 0.597 0.195
p=0.50 0.356 0.096 0.043 0.543 0.110 0.051
p=0.00 0.049 0.040 0.029 0.053 0.045 0.032
p=-0.50 0.000 0.017 0.017 0.000 0.020 0.022
p=—0.90 0.000 0.000 0.003 0.000 0.000 0.005
p=-0.99 0.000 0.000 0.000 0.000 0.000 0.000
H, (650) 0=0.99 0995 0879 0700 0998 0815 0393
p=0.90 1.000 0.994 0.951 0.993 0.597 0.195
p=0.50 1.000 1.000 1.000 0.543 0.110 0.051
p=0.00 1.000 1.000 1.000 0.053 0.045 0.032
p=-0.50 1.000 1.000 1.000 0.000 0.020 0.022
p=-0.90 1.000 1.000 1.000 0.000 0.000 0.005
p=-0.99 0.968 1.000 1.000 0.000 0.000 0.000
H4 (i) p=0.99 0.995 0.880 0.701 0.998 0.816 0.394
p=0.90 1.000 0.994 0.951 0.993 0.597 0.195
p=0.50 1.000 1.000 1.000 0.543 0.110 0.051
p=0.00 1.000 1.000 1.000 0.053 0.045 0.032
p=-0.50 1.000 1.000 1.000 0.000 0.020 0.022
p=-0.90 1.000 1.000 1.000 0.000 0.000 0.005
p=-0.99 0.968 1.000 1.000 0.000 0.000 0.000
H(iii) p=0.9 0.997 0.886 0.702 0.998 0.831 0.448
p=0.90 0.999 0.994 0.955 0.993 0.597 0.195
p=0.50 1.000 1.000 1.000 0.543 0.110 0.051
p=0.00 1.000 1.000 1.000 0.053 0.045 0.032
p=-0.50 1.000 1.000 1.000 0.000 0.020 0.022
p=—0.90 1.000 1.000 1.000 0.000 0.000 0.005
p=-0.99 0.971 1.000 1.000 0.073 0.073 0.074

! See notes to Table 3A.1.
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Table 3B.1: Complete Procedure Performance Using KPSS for Steps 2-3!
Hypotheses Examined: H, and H,. Sample Size = 50 Observations.

Data Generated Parameter Values Ty Ne

According To: 10 14 112 10 14 112

H, (6>0) A=0.0001 1.000 1.000 1.000 0.052 0.040 0.046
A=0.01 1.000 1.000 1.000 0.137 0.104 0.068
A=1.0 1.000 1.000 1.000 0.907 0.580 0.171
A=100 1.000 1.000 1.000 0.969 0.621 0.174
A=10000 1.000 1.000 1.000 0.970 0.621 0.173

H,() (0=0) A=0.0001 0.000 0.000 0.000 0.000 0.000 0.000
A=0.01 0.000 0.060 0.000 0.000 0.000 0.000
A=1.0 0.744 0.542 0.246 0.736 0.472 0.140
A=100 0.954 0.689 0.319 0.968 0.620 0.174
A=10000 0.954 0.688 0.319 0.968 0.620 0.173

H (@) (6>0) A=0.0001 1.000 1.000 1.000 0.052 0.040 0.046
2=0.01 0.999 0.999 0.998 0.137 0.104 0.068
A=1.0 0.870 0.671 0.368 0.841 0.541 0.160
A=100 0.955 0.690 0.318 0.967 0.620 0.174
A=10000 0.955 0.689 0.318 0.969 0.620 0.173

H 4(iii) (86<0) A=0.0001 1.000 1.000 1.000 0.052 0.040 0.046
A=0.01 1.000 1.000 0.999 0.137 0.104 0.068
A=1.0 0.826 0.655 0.383 0.803 0.514 0.151
A=100 0.952 0.686 0.320 0.968 0.620 0.174
A=10000 0.951 0.687 0.319 0.968 0.620 0.173

! See notes to Table 3A.1. Reported frequencies are based on the same set of experiments reported on in Tables 2A.1-2A.2 and 2B.1-2B.2.
However, there are a number of differences in the manner in which the findings are reported. First, entries are based on 6 different KPSS unit
root test statistics - Vy and Vo, for [0, [ 4, and [ 12, rather than on one ADF unit root test. Second, entries correspond to the empirical power
of the entire procedure. For example, the upper left entry, which is 1.000, suggests that when the data are generated according to H,(0>0),
the probability of finding that the actual data are generated by H is 1.000. This entry corresponds to the frequency of times that the correct
DGP (i.e. the DGP according to which the experimental data were generated) was chosen based on the entire procedure (Steps 1-3). Put another
way, the data are first subjected to Step 1 of our procedure, and either H 4 or Hp is selected. Then, given the appropriate data transformation
implied by Step 1, a KPSS test is performed, and the data are further classified as either 1(0) or I(1). KPSS tests are performed as discussed
above. Each entry is based on 5000 Monte Carlo replications.
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Table 3B.2: Complete Procedure Performance Using KPSS for Steps 2-3'

Hypotheses Examined: H, and H,. Sample Size = 100 Observations.

Data Generated Parameter Values My Ne

According To: 10 4 112 10 14 112

H, (6>0) A=0.0001 1.000 1.000 1.000 0.058 0.048 0.037
A=0.01 1.000 1.000 1.000 0.354 0.273 0.167
A=10 1.000 1.000 1.000 0.990 0.798 0.398
A=100 1.000 1.000 1.000 0.998 0.816 0.405
A=10000 1.000 1.000 1.000 0.998 0.815 0.405

H4(@i) (6=0) 2=0.0001 0.000 0.000 0.000 0.000 0.000 0.000
A=0.01 0.000 0.000 0.000 0.000 0.000 0.000
A=1.0 0.775 0.633 0.431 0.779 0.632 0.319
A=100 0.989 0.806 0.553 0.995 0.814 0.405
A=10000 0.991 0.808 0.554 0.997 0.814 0.404

H4(ii) (6>0) A=0.0001 1.000 1.000 1.000 0.058 0.048 0.037
A=0.01 1.000 1.000 1.000 0.354 0.273 0.167
A=1.0 0.941 0.818 0.640 0.941 0.759 0.379
A=100 0.991 0.806 0.554 0.996 0.815 0.405
A=10000 0.992 0.807 0.554 0.997 0.815 0.405

H 4(iii) (6<0) A=0.0001 1.000 1.000 1.000 0.058 0.048 0.037
A=0.01 1.000 1.000 1.000 0.354 0.273 0.167
A=1.0 0.908 0.800 0.660 0.908 0.732 0.365
A=100 0.993 0.805 0.564 0.997 0.815 0.404
A=10000 0.993 0.806 0.565 0.996 0.814 0.405

! See notes to Table 3B.1.



Ppaseq st (0)] 10 (1)] I9YID S S3[qeLIeA dy) Jo UOTIBOYISSE[D ‘SOTISIIRIS 1S9}
Y} 0] pue ‘(dA0qe 335) Cl]puepy
JUSIOIY20 © pey 0UIPIp pasdey iser oy uaym Surddors pue ‘sSe
) ‘sonsneEls 1591 AV Y 104 (S9p'E- ST AD %S -
poseq uoneuULIOjSUR} 1591100, 3y} 0] Yyog ‘pautodax

JO UOIOI[IS Y1 YIM PAIBIOOSSE UOHRUL

- SUOTIR[NUIIS JNO ux pasn s1ajourered uo

OS[e are sonsuels S§43 pue AV puel) SUSIUTULIAGP Teaul] ou Yim ejep paddol & Suisn 10
areotpur Leus 3593 9dA1-x0D) ® JayuIny € “(0)[ 9q 03 punoj ore jeq) saLes 10§ ‘puodas sjeridoidde st oqey | s[9A9l,
-Waun 10y osed st sy ], oerdordde oq ospe Aewr woneussardal puan JUSTUIULIAAP Jeaul} ou yim ()] Sof e
ojsuen ayy Sunousp o yoeoidde oyy aye; op uesoyo st & [ ‘osumayy
sauas ay1 - VZy 5500ya om “Ajtun uey ssof ore sonjea SOUSHEIS 10q uaym d]durexs 1o ‘9A0QE 7 UONDAS Ul pou
“6061) SUOLBAIISQO ()8 S1 PAISPISUOD ozis ajdures ay] ‘Josejep (T861) 19s50]d-u0S[aN reurduo oy pajepdn oy

‘sonjeA [BONID 956 SA0QE dYj Uo

pautodar ays Jo [e 104 (910 ST AD %S - *l1) uononnsuos ansuels 1591 9y Ul PAPOUL SI PULI) STISIUTILISIP © Yorym uf 9seo
Teoun) Sef 50143 oy} Jo om) 10§ papodal’are soUSTIRIS SSIN "90UAPYUOD JO [9AI] %S6 B 18 019Z WOy JuaIafIp Auesyusis
101, yw Sunress ‘sonsness-} ayendordde oy Sururwexs Aq paisyes sem ,sdef, se UoAIS) pasn saouaiagp padder jo roquinu
1) puan e pue JuBISUOD € PIM SUOISSaISar (T 10j panodar are SONSHEIS 159) JQV [[V "UOHRULIOJSURI] ,}0OSLI00UL, 9Y] Jo] pue ‘arnpadoid 1no uo

‘eJep S[9A9 SuIsn pafapouw 1aNaq ST SALIAS 9y} JYIoyM

Sy (1)1 2q 03 punoy a5e Jey} SSLAS [[e 10§ IsI :uawnsSie siy) Surzuewrung juswkod
U3l “(0)1 2q 01 IN0 pauIny SIS Sy JT Jey) PAIOU 3q PINOYS It YSnoye *,S[9A2], se i34
0 "PUSL} SWSIUIISIGP 033z ¥ punore s301 ul (0)] (1) J0 ‘S[9AS] I ([)] 30 (0)I (1) Ioyma st
mno axnpasold ay jo | doyg ur se pasn are papodar sonsne)s LT A pue Ll A oyy (8861
M (1661) i uea pue ueunoydg Aq pasn asoy} se oures ayj are uo papodar sojqeLres I

((DI1°681°0 ‘(DI ‘19¥°0)
((M1°L81°0 (DI ‘STH°0)
((0)1 “290°0 (01 ‘980°0)
((M1°8¥1°0 ‘(DI ‘10€°0)
01 °0€1°0 (DI €9Z°0)
{10110 ‘(DI ‘891°0)
((DI°981°0 (DI ‘€T¥°0)
1110 (DI ‘612°0)
((D1°281°0 ‘(DI ‘99+°0)
((0)1°860°0 (I ‘P¥1°0)
(01 ‘v60°0 ‘(DI “1S1°0)
((11°851°0 (DI ‘65€°0)
((D1°€81°0 ‘(I ‘€6€°0)
((DI°9ST°0 “(DI ‘0S€°0)

(1 vE1°0 (N1 €8T°0)
((M1°881°0 ‘(DI “LEY'0)
(01 ‘€L00 (O “L11°0)
((M1°107°0 (DI ‘v8€°0)
((O1°501°0 (DI ‘T2T'0)
((M1°80T°0 ‘(11 ‘¥0S°0)
(1710 (DI “‘1¥€°0)
((D1°€81°0 “(DI “LOY'0)
((M1°681°0 (DI “‘1¥+°0)
((M1°€81°0 (1 ‘0LE0)
((DI1°907°0 (DI ‘L0S°0)
((D1°281°0 (DI “121'0)
O1°111°0 (DI ‘991°0)
((D1°8L1°0 ‘(DI ‘v0t'0)

(D101 ‘0TH 1)
((M1°1 *$s2°¢€~)
({01 ‘01 ‘Sv8°€-)
((D1°1 *8€8°27)
((DI°1°L9¢°1-)
(1)) M I IND
(D16 p¥T1)
(018 “269°€-)
((D1°0 ‘v6S°1-)
(o1 ‘128°€)
((M1°6 ‘'99%°2-)
(D11 ‘6L0°C)
((M1°6 ‘vLT°0)
((D1°s ‘6£5°2)

((01°01 “L8L'E")
((D1°T ‘90T°€~)
(019 ‘€05°¢~)
(D1 ‘€1+°0)
(D11 ‘6VL'1-)
((M1°6 ‘€10°0)
((11°9 '¥86'C-)
(D19 ‘¢5L°07)
((M1°6 ‘58+°0)
(D11 ‘110°¢")
(D1°T5L6°07)
(D11 2170
(O ‘1 ‘z08°¢-)
M1z ‘oson

sgo1
NELE)|
S[oA9]
S[eA9]
S[9AQ]
S[oA9]

s3o1
S[oA9]
S[eAQ]
S[9AQ]
S[oA9]
S[OA9]

sgo[

S[oA9]

(LS'L8 ‘61-28L9'T)
(LO-20€9°T ‘¥100°0)
(ST00°0 ‘90-98€0°€)
(0ST0°0 ‘01-°0€6'T)
(S0-9960°¢ ‘60-2069°'7)
(0120°0 ‘¥1-9865°7)
(90+9€T6S°L ‘8T-2L8TE)
(LOL90 ‘ST-3VET Y)
(S0-979¢°L ‘SO-96€T'1)
(6861°0 ‘91-99€9°7)
(S100°0 ‘OT-9LPT'T)
(9220°0 ‘T1-°0L9'p)
(€V°6T ‘TT-2PLY'T)
(1120°0 ‘T1-2080°8)

sofem
KI100[9A
juowiKojduroun
00sdzps
safem [ea1
dug eax
du3 [eurwou
Ksuow
9Jel JSaI9)UL

eydes 1od dug

‘poxd rewsnpur

10egop dud
juowAordure
1do

() AL TR PA) AL TV
1991100U]
S1Ns9Y 15T, SSAS

Q1T M) 1 ™)
1921100
SINSaY 1531, SSI

Q)1 ‘s8pp 1)
1091100U]

SINSOY 1S3L, JAVY

(@)1 *s8pp %)
100110
SINSAY 1S9L AAV

UOTJBULIOJSURI]
1001107)

(A1)

S[quIIeA

11ISEIE(] 195SO]J-UOSPIN Y} JO WOHLUIIEXd-Y UY :(()] SNSIIA ()] pue s30T SNSISA S]PAT :p I[qeL

I@MI



