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ABSTRACT

Prediction problems involviny asymmetric loss functions arise routinely in many fields, yet the
theory of optimal prediction inder asymmetric loss is not well developed. We study the optimal
prediction problem under ger eral loss structures and characterize the optimal predictor. We
compute the optimal predicto - analytically in two leading tractable cases and show how to
compute it numerically in les; tractable cases. A key theme is that the conditionally optimal
forecast is biased under asym metric loss, and that the conditionally optimal amount of bias is
time-varying in general and < spends on higher-order conditional moments. Thus, for example,
volatility dynamics (e.g., GARCH effects) are relevant for optimal point prediction under
asymmetric loss. More geneially, even for models with linear conditional-mean structure, the
optimal point predictor is in general nonlinear under asymmetric loss, which provides a link with

the broader nonlinear time se;ies literature.



1. INTRODUCTION

A moment's reflectio yields the insight that prediction problems involving asymmetric
loss structures arise routinely, as a myriad of situation-specific factors may render positive errors
more (or less) costly than ne;;ative errors. The potential necessity of allowing for asymmetric
loss has long been acknowlec ged. Granger and Newbold (1986), for example, note that although
“an assumption of symmetry about the conditional mean ... is likely to be an easy one to accept,
-+« an assumption of symmet:y for the cost function is much less acceptable" (p. 125).
Practitioners routinely echo tis sentiment (e. g., Stockman, 1987).

In this paper we treat he prediction problem under general loss structures, building on the
classic work of Granger (1963). In Section 2, we characterize the optimal predictor for non-
Gaussian processes under asy nmetric loss. The results apply, for example, to important classes
of conditionally heteroskedas ic processes. In Section 3, we provide analytic solutions for the

optimal predictor under two | opular analytically-tractable asymmetric loss functions. In Section

4, we provide methods for apiroximating the optimal predictor under more general loss
functions. We conclude in Se¢ction 5.
2. OPTIMAL PREDICTIO N FOR NON-GAUSSIAN PROCESSES

Granger (1969) studie: Gaussian processes and shows that under asymmetric loss the
optimal predictor is the condiiional mean plus a constant bias term. Granger's fundamental
result, however, has two key imitations. First, the Gaussian assumption implies a constant
conditional prediction-error viriance. This is unfortunate because conditional heteroskedasticity
is widespread in economic anc financial data. Second, the loss function must be of prediction-

error form; that is, L(y,,,.5,.,) = Ly,,,,.») = L(e,,;), where y, , is the h-step-ahead
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realization, y,,, is the h-step ahead forecast (made at time t), and e,,, is the corresponding
forecast error. More general functions of realizations and predictions are excluded.

Let us begin, then, by generalizing Granger's result to allow for conditional variance
dynamics. We achieve this niost simply by working in a conditionally-Gaussian, but not
necessarily unconditionally-G aussian, environment, with prediction-error loss. Subsequently we
shall allow for both condition il non-normality and more general loss functions.

PROPOSITION 1. If y,,,[Q, ~ N(pﬁh“,o,{,,“) is a conditionally Gaussian process and
L(e,,,) is any loss function defined on the h-step-ahead prediction error e,,,, then the optimal
predictor is of the form y,, - Heone* % onp Where @, depends only on the loss function and the
conditional prediction-error viriance 0,2+,,, ¢ = var(y,,|Q) = var(e,,,|1Q).

Proof. See Appendix.

The optimal predictor inder conditional normality is not necessarily just a constant added
to the conditional mean, becai se the conditional prediction-error variance may be time-varying.
Conditionally Gaussian GAR( H processes, for example, fall under the jurisdiction of Proposition
1. Thus, under asymmetric lcss, conditional variance dynamics are important not only for
interval prediction, but also for poins prediction. If loss is asymmetric but conditional
heteroskedasticity is ignored, the resulting point predictions will be suboptimal and may have
dramatically greater condition: lly expected loss in consequence.

The result of Propositicn 1 that the "adjustment factor" depends only on the conditional
variance depends crucially on ::onditional normality. We can dispense with conditional normality
and still obtain a sharp result, 10wever, which is a straightforward extension of Proposition 1.

PROPOSITION 2. If},,,|Q, has conditional mean e.pp» and a vector of (possibly time
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It is so-named because when a> 0, loss is approximately linear to the left of the origin and

approximately exponential tc the right, and conversely when a<0. The optimal h-step-ahead

predictor under linex loss so ves

2 E, {Blexp(@05,) - a0, D) = 1]

yt*.*w

Differentiating and using the conditional moment-generating function for a conditionally Gaussian
variate, we obtain ¥, = p, .,,+g 0,2+,,|,. Similar calculations reveal that the pseudo-optimal
predictor is y,,, = phhlﬁ%ﬁ:, where o: = varf(e,,,) is the unconditional h-step-ahead prediction-

€rror variance.

Proposition 1 shows t 1at the optimal predictor under conditional normality is the
conditional mean plus a funct on of the conditional prediction-error variance. Under linex loss,
the function is a simple linea: one, depending on the degree of asymmetry of the loss function, as
captured in the parameter a.” The reason is simple--when a is positive, for example, positive
prediction errors are more de rastating than negative errors, so a negative conditionally expected
error is desirable. The optim 1l amount of bias depends on the conditional prediction-error
variance of the process; as it ;rows, so too does the optimal amount of bias, in order to avoid
large positive prediction errors. Effectively, optimal prediction under asymmetric loss
corresponds to conditional-me¢an prediction of a transformed series, where the transformation
reflects both the loss function and the higher-order conditional moments of the original series.
For example, the optimal pre« ictor of y,,, under conditional normality and linex loss,

3

o a2 . o - a2
Deeh = Ppone * _2.0,4,,,, is the :onditional mean of x,,,, where x,,, = y,,, + —2-0”,,',.
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Inserting the optimal pseudo-optimal, and conditional mean predictors into the
conditionally expected loss ¢ xpression, we see that the conditionally-expected linex losses are
ba 20,2”,,,/2, blexp(a 2(0,{,,,,” 1)/2) + a*Y2 - 1], and blexp(a 20,2*,,,,/2) - 1], respectively. By
construction, the conditional y expected loss of the optimal predictor is less than or equal to that
of any other predictor. Inteiestingly, however, it is not possible to rank the pseudo-optimal as
superior to the conditional rr ean predictor. Tedious but straightforward algebra reveals that, for
sufficiently small values of "«::j,z*h,, (depending non-linearly on the values of @ and 0;2,), the
conditionally expected loss o the conditional mean will be smaller than that of the pseudo-
optimal predictor. In very lcw volatility times, the conditionally optimal amount of bias is very
small, resulting in a lower ccnditionally expected loss for the conditional mean than for the
pseudo-optimal predictor, the bias of which is optimal in "average" times, but too low in low-
volatility times.

The situation is illustrited in Figure 1, in which we plot conditionally expected linex loss
as a function of 0,2+,,, ; for eac1 of the three predictors. The conditionally expected loss of the
optimal predictor is linear in :3,2”,, . and is of course always lowest. The losses of the pseudo-
optimal and the optimal predi :tors coincide when 012+h|r = 0,2, = 1. As 0,2*,,,, falls below of,, the
loss of the conditional mean i itersects the loss of the pseudo-optimal predictor from above. As

°r2+hl . gets close to zero, the «ptimal predictor incorporates progressively smaller corrections to

the conditional mean, so the conditionally expected losses of the optimal and conditional mean

predictors coincide.
3.2. Linlin Loss

The "linlin" loss funct on,
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alyt+h—ﬁt+h|’ if (yhh_)‘;t*h) >0
L(y "‘h—yl+h) = ” . "
blyhh—ynhl’ If(y,*,,—y,*,,) <0,

so-called because of its linea ity on each side of the origin, was used by Granger (1969) and is the

loss function underlying quar tile regression. The optimal predictor solves

)"‘nh

er a f()’; vh—yAnh)f(yhtht)dynh -b f(yt+h_y‘t+h)f0)t+hlgt)dyt+h

yt+h y.toh

The first-order condition is

—a(l._F();HhIQt)) + b F(}‘;ﬁhlgg) = 0’

which is equivalent to

a
>
a+b

F(yAuhIQ() =

where F(y,,,|Q) is the condit onal c.d.f. of y,,, and S,.,1€) is the conditional density of y,,,.

In the conditionally G: ussian case we have from Proposition 1 that

5 Yen Meonts | %,
FOl) = Pty 5, 110) - 222 i) of

t+h|t ot+h|t

t+h _ a
- 5
a+b

t+h|t

where ®(z) is the N(0,1) c.d. . It follows that the conditionally optimal amount of bias is

-1 a
o =0 P s
t+hit t+h|t (a+b)




so that*

-~ _] a
y+h = p’ + + o+ Q .
t t+h|t t+h|t a+b

Similar calculations reveal ttat the pseudo-optimal predictor is

p., = +a, @Y 2|
Yeeh = Mpanpe h (a+b)

Now let us compute ¢onditionally expected linlin loss for the optim:

and conditional mean predictors. Recall the formulae for the truncated exp

f yr+h f(ythQr)dyﬁh
E',f‘iyt+hl(yg+h>ykt+h)} = L

1 —F()‘;{+h I Qp)

y’oh

fyhhf(yhhlgt)dynh

'Z’;';’{y#» !(y+<ﬁ+)} = Yy b4
(VtrhE N t+h vk F(Ynth,)

and substitute them into the ¢ :pected loss expression to obtain

E,{L(}’Hh"ﬁ”h)} = a(l—F(ft»oﬂ,101))[E({)/t+hl(yt+h>y“t+h)}_j>t+h] - bF()‘;nh'Q;)[E

But under conditional normality,

d)(E”h[;)

Efy >0 = + g e
p{‘v,+h|(yhh yl*h)} u”hlt thlt 1"@(61,.;,[,)

al, pseudo-optimal

ectation,

{yn»h ' (ynh<ﬁt+h)} _y\nh]'
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and
3 5 (N
E‘r{y”hl(y’*h<yhh)} = “Hh[f - t+h|t q’(Et h’t)’
t+h|t

where

E - yﬁh-pﬁhlt
t+hit ’
ot*hit

and ¢(°) is the N(0,1) p.d.f. Substituting into the conditionally expected loss expression, we

obtain (after some algebraic 1aanipulation)

EI{L(ynh_ﬁnh)} = (aufb)onhhd)(enh[t) - a At+h|t—ut+h|t) + (a+b)®(Er+h|r)@t+h|t—“nh[r)'

For the optimal predictor,

gnh[: = q)-l( = ),

a+b

yielding an expected loss of (1+b)o,,, ,cb( (D“‘( ab
a+
o
=2 h_
E“hlt ( a+b) or+hlt

yielding an expected loss of

a+b a+ a+b

(a+b)°:+h|r¢(q"l( = )—?i'-}l - ad>“(ib)oh . (a+b)q>(qu( a )_fh_

Ot onle

01+h[r

)) . For the pseudo-optimal predictor,
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For the conditional mean pre dictor, EH,,I . = 0, yielding an expected loss of (a+b)0th /‘/’2_75.
Qualitatively, the situation is identical to that shown in Figure 1 for the linex case.

4. APPROXIMATING THE OPTIMAL PREDICTOR
The analytic results above re y on simple loss functions. In general, howex
solve analytically for the opt mal predictor. Here we develop an approxim;
via series expansions. The a jproach is of interest because it frees us from
restrictive assumptions -- cor ditional normality and prediction-error loss.
For the moment main ain the conditional normality assumption, and

optimal predictor exists and is unique,

~ 2
Yen = G(uhhlt’ohhlt)’

where G(:,) is at least twice continuously differentiable. Then we can tak

Taylor series expansion arou: d the unconditional (and time invariant) mom

Hm.p“u;,
+ —

2 2
2 (F‘uhp'“h’ O .hjs~Oh) G’

A 2
Pen = G0 + Gl

Ot ih)t~ O

Rewrite this as

. 2 2
Ven = By + Bl“nhu v pz“nh[z * Ba(“nhu)z + B4(°:+h|;)2 + Bs(u“hi,ﬂ

where B = (B,, B,, ..., Bs)’ end B, = H(u,, of,), i

generally unknown, so too ar: the H(-,) functions. But M,.5, and 0,2*,,,, are

minimization that defines BN :an be done over a very long simulated realiza

0, I, ..., 5. Because

ver, it is not possible to
ately optimal predictor

two potentially

assume that the

e a second order

2
ents u, and g,

o | Heerje” B

Otenjt~Ch

20 = VenB),

the function G(-,") is
> known, and the

tion of length N; that
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is,

N
BN = argmin EL(VH;,JQ:),(B)).
BEB t=1

Under regularity conditions jiven in the Appendix, the following proposition is immediate.

PROPOSITION 3. A5 N-w, y,:,,(ﬁN)~y,:,,(Bo), where y,.,(B,) is the best predictor within
the y,.,(") family, with respect to the metric L(,").

Proof. See Appendix

A number of remarks are in order. First, the h-step-ahead conditional expectation and the
corresponding conditional va:iance may be computed conveniently using the Kalman filter
recursions. Second, if loss is in fact of prediction-error form, L(e,,,), one may set 8, = 1 and P,
= Bs = 0 a priori, due to Proposition 1. Third, it is clear that higher-order expansions in Hyeonie
and 012+hl ¢ may be entertained and may lead to improvements. Fourth, conditional non-normality
may be handled with expansicns involving more than the first two conditional moments (e.g.,
involving conditional skewne: s and kurtosis). Fifth, and related, parametric economy can be
achieved in conditionally non Gaussian cases using the autoregressive conditional density
framework of Hansen (1994). Hansen's framework exploits parametric conditional mean and
variance functions but allows ‘or higher-order conditional dynamics by letting the normalized
variable z,,(8) = (y.,-u,., ()Ya,,, (8) follow a distribution with possibly time varying "shape"
parameters, such as a t-distrib ition with time-varying degrees of freedom (and variance
standardized to 1). Sixth, in ! oth the conditionally Gaussian and conditionally non-Gaussian

cases, one is of course not limited to series expansions; other nonparametric functional estimators
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may be used.
S. SUMMARY AND CON CLUDING REMARKS

This paper is part of :. research program aimed at allowing for general loss structures in
estimation, model selection, yrediction, and forecast evaluation. Recently a number of authors
have made progress toward t1at goal, including Weiss (1994) on estimation, Phillips (1996) on
model selection, and Diebol¢ and Mariano (1995) on forecast evaluation. Here we focused on
prediction and analyzed the ¢ ptimal prediction problem under asymmetric loss. We computed the
optimal predictor analytically in two leading tractable cases and showed how to compute it
numerically in less tractable cases. Christoffersen and Diebold (1996) present extensions, and
they provide an illustration ir the context of point prediction of GARCH processes under
asymmetric loss.

A key emergent theme is that the conditionally optimal forecast is biased, and that the
conditionally optimal amount of bias is time-varying in general and depends on higher-order
conditional moments. Thus, :ven for models with linear conditional-mean structure, the optimal
predictor is in general nonlinc ar, thereby providing a link with the broader nonlinear time series
literature.

Interestingly, some im portant recent work in dynamic economic theory is very much
linked to the idea of predictic 1 under asymmetric loss discussed here. Building on Whittle
(1990), Hansen, Sargent and [allarini (1993) set up and motivate a general-equilibrium economy
with "risk sensitive" preferen: es resulting in equilibria with certainty-equivalence properties.’
Thus, the prediction and deci:ion problems may be done sequentially--but prediction is done with

respect to a distorted probabil ty measure that yields predictions different from the conditional
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APPENDIX

Proof of Proposition 1. We seek the predictor that solves

fun Er{;{”{ynh_ﬁhh)} = min [ Ly D) S041Q) B,

yt+h t+h _o

(Here and throughout, E(x) lenotes E(x|Q).) Without loss of generality we can write

Yeen = P’nhlt + at+h|t and Yeen = ”r+h|r + Xpop SO that

o

argmin EI{L(thw]‘;nh)} = Pw,“ + argmin fL(xt+h_at+h|:) ﬂxt+hlgt) dxnh'

t+h Cone T

Because flx,,,|Q) depends or o,{,,,, but not H..pp SO too does the o4, that solves the
minimization problem depend on 0,2,,,,, but not u,, . n
Proof of Proposition 2. Pre:isely parallels that of Proposition 1. |
Proof of Proposition 3. Fol owing Amemiya (1985), we require three conditions:
(1) B,eB, a compact s bset of &*.
@ LB = fv_l:L(ym,y,ih(B)) is continuous in feB for all y=(y,,,,...,Yv.,) and is a
P
measurable funi:tion of y for all feB.
(3) N'Ly(p) converge: to a nonstochastic continuous function L(f) in probability
uniformly in f¢ Bas N~ , and L(P) attains a unique global minimum at f,.
Under the conditions, ﬁN = a’éﬁ';é,'eﬂgnLN(B) converges in probability to 4, by the argument of

Amemiya (1985, p. 107). Thus, y,:,,(ﬁN) converges in probability to y,:,,(Bo) by continuity of

y t:h(ﬁ N)' .
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NOTES
1. As will be made clear, ho wever, although conditional normality is crucial to our derivation of

the optimal predictor under I nex loss, it may readily be discarded under linlin loss.

2. Note that as a-0 the cond itionally optimal amount of bias approaches zero. Quadratic loss
obtains as a-0, because if a s small one can replace the exponential part of the loss function by
the first two terms of its Tay or series expansion, yielding the approximation L(x) = x2.

3. Because y,,, is conditional y normal with Ely,,I1Q] = Hehp Xisn 1S conditionally normal with
E[x”hIQ‘] = Renpe * %‘Jrzum = Pp

4. Note that with linlin loss ( n contrast to linex loss) it is very easy, even for non-Gaussian
conditional distributions, to f nd the optimal predictor -- Just draw the conditional c.d.f. and read
the value on the x-axis corres onding to a/(a+b). More formally, y, , = F "( ﬁlﬁ,), O ¥,.,
is simply the (a/(a+b))th con litional quantile. When a=5, of course, Y., is the conditional
median.

5. See also Whittle (1979).
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Figure 1
Conditionally Expected Linex Loss of
Conditional [ fean, Pseudo-Optimal, and Optimal Predict
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