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Abstract: We propose seve: al methods for evaluating and improving density forecasts. We focus
primarily on methods that ar 2 applicable regardless of the particular user’s loss function, but we
also show how to use inforr ation about the loss function when and if it is known. Throughout,
we take explicit account of 11e relationships between density forecasts, action choices, and the
corresponding expected loss
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1. Introduction

Prediction occupies :. distinguished position in econometrics, as in all the sciences; hence,

evaluating predictive ability s a fundamental concern. Reviews of the forecast evaluation
literature, such as Diebold a:d Lopez (1996), reveal that much attention has been paid to
evaluating point forecasts. In fact, the bulk of the literature focuses on point forecasts, while
noticeably smaller sub-literai ures treat interval forecasts (e.g., Christoffersen, 1995) and
probability forecasts (e.g., C emen, Murphy and Winkler, 1995).

Rather remarkably, 2 most no attention has been given to evaluating density forecasts. At
least two factors explain this neglect. First, until recently density forecasts have been little used in
economics and elsewhere, ir part because analytic construction of density forecasts has
historically required restricti e and sometimes dubious assumptions, such as normality of
innovations and neglect of p rrameter estimation uncertainty. Recent work using numerical and
simulation techniques to coristruct density forecasts, however, has reduced our reliance on such
assumptions.! In fact, imprc vements in computer technology have rendered the provision of
density forecasts increasing: straightforward, and we predict that density forecasts will soon be
commonplace.

Second, the problem of density forecast evaluation appears difficult. Although it is
certainly possible to adapt tc :hniques developed for the evaluation of point, interval and

probability forecasts to the ¢ saluation of density forecasts, such approaches lead to evaluation

' See, for example, tt e discussion of construction of density forecasts using resampling
techniques surveyed in Berkowitz and Kilian (1996).
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based only on limited aspecis of the density forecast. The problem, then, is to define and

implement a comprehensive measure of density forecast adequacy.

In this paper we do : 0; we propose several variants of a general method

for density

forecast evaluation. Our methods evaluate the density forecast in its entirety and explicitly

account for the relationship: between the density forecast, the action choice, and the resultant

expected loss. In section 2, we present a detailed statement and discussion of th

e problem, and

we provide the theoretical u1derpinnings of the methods that we introduce subsequently. Our

treatment is related to, but revertheless distinct from, the notable and compleme

ntary independent

work of Granger and Pesaran (1996). In section 3 we present our methods of density forecast

evaluation, and we also pres :nt methods for improving suboptimal density forecasts. We treat

separately the case in which the user’s loss function is unknown and the case in
the first case is likely to be r10st relevant in some situations, the second in other:

section 4.

2. Density Forecasts, Loss Functions and Action Choices
The Basic Framework

Let £ (y,|Q,) be the data-generating process governing a series y,, whe
variables that affect the density of y,.> For notational convenience, we will ofte

f.(y,), but the dependence ¢ n Q, should be understood. Suppose that a series

2 We indulge in the s andard abuse of notation, which favors convenienc

which it is known;

5. We conclude in

re { denotes all
n simply write

of 1-step-ahead

P OVer precision,

and fail to distinguish betwe :n random variables and their realizations. The meaning will be clear

from context.




density forecasts of y, is avzilable, made over m periods.> The forecasts might b
closed form, or they might b: simulated draws from the densities. In any case, w
series of forecasts by {p,(y,) }¢2;-

Let the series of reali zations be denoted by {y,},~,. We wish to evaluat

e available in

ve represent the

e the density

forecasts by considering the 1istorical performance of the forecaster. There is an intimate

relationship between density forecasts, action choices, and loss functions that is

evaluating forecasts. Each firrecast user has a loss function L(a,, y,), where a,

relevant when

refers to an

action choice. The action choice need not be a prediction of y,. For example, a, may refer to the

amount of insurance coverage to purchase, with y, representing the realized loss

. The user

chooses an action to minimiz e expected loss computed using the density which she believes to be

the data-generating process. If she believes that p (y,), the prediction from the

t, is the correct density, then she chooses an action a,” by solving®

8, (p(-)) = argmin [L(a,y,)p,(v,)dy, -

a€gA

forecaster at time

The action choice defines the loss Q(yt la,) = L(a,, y,) faced for every realization of the

process f (y,). Thislossis: random variable and possesses a distribution function, which we

will call the loss distribution, and which depends only on the action choice.
The effect of the den:ity forecast on the user’s expected loss is easily see

forecast translates into a loss distribution. Two different forecasts will in genera

* The methods we de: cribe can be modified in obvious fashion for h-step-

n. A density

lead to different

ahead forecasts.

* We assume a uniqu¢ minimizer. A sufficient condition is that A be compact and that L

be convex in a.




action choices and hence dif erent loss distributions. Different forecasts that lead to the same

action choice are, to the use , equivalent. A “good” forecast will lead to an action choice which

results in a comparatively lo v expected loss,

L UCALS R AR RAATA

given the actual data-genera ing process f,(y, ).

A Conceptual Framework f 1 Evaluating Density Forecasts

Suppose the user hac the option of choosing between two forecasts in a given period,

denoted by P, (y) and p, (y , where the subscript refers to the forecast and the time subscripts

are omitted for convenience. The forecast user will prefer the forecast P; (y) if
loss distribution arising frorn following this forecast is less than the mean of the

obtained if p, (y) were follc wed instead, that is, if

[ 119 fwrdy < [y1a) )y,

where aj' denotes the actior that minimizes expected loss, given that the user bz
choice on forecast j.

Ideally, we would lil e to find a way of assigning to each forecast a score
constructed from the history of density forecasts and realizations, which would n
divergence of the realization from the forecast density, such that all users, regare
Junction, would prefer the ft recast with the lower divergence. This would allow
forecasts. Unfortunately, the following proposition shows that no such measure

two incorrect density foreca: ts.

the mean of the

oss distribution

ses the action

> D(p;),

neasure the

dless of their loss
 us to rank the

exists for ranking




Proposition 1. Let f(y) be the density of y, P, be a forecast of y, and a€A be a set of action

choices. Let aj* be the optiinal decision based on forecast p;- Then no measur¢ D(-) exists such

that for arbitrary forecast de 1sities p; and p,, both distinct from f, and for all possible loss

functions L(a, y),

D(p;) 2 (p) = [L(a, . y)f(y)dy > [L(a.,y)f(y)dy

Proof. In order to establish the result, it is sufficient to find a pair of loss functions L, and L,, a

density function f governing vy, and a pair of forecasts, P, and p,, such that,

hrlq(ag,y)f(y)dy < jiq(a{,y)f(y)dy,

while

"Lalyfdy 2 [Liay)(y)dy.

That is, user 1 does better ¢i average under forecast k, while user 2 does better

It’s straightforward to const uct such an example. Suppose the true density fung

under forecast j.

tion is N(0,1),

and suppose that user 1's los; functionis L, (a, y) = (y - a)? and user 2's loss function is

L,(a,y) = (y?- a)’. The optimal action choices are then f y p(y) dy and f y
respectively. That is, user 1 bases her action choice on the mean, with higher ex

occurring with larger errors n the forecast mean, while user 2's actions and expe

?p(y) dy

pected loss

cted losses

depend on the error in the fii-ecast of the uncentered second moment. In this context, consider

two forecasts: forecast j is I (0,2) and forecast k is N(1,1). User 1 ranks forecast j above




forecast k, because it leads ti) an action choice that in turns leads to a loss distribution with lower

expected loss, but user 2 wo ild rank forecast k above forecast j. O

To repeat: there is ny way to rank two incorrect density forecasts such t
prefer the higher ranked for::ast. However, if a forecast coincides with the true
process, then it will minimize expected loss for all forecast users, regardless of th
as we show in the following sroposition.*
Proposition 2. Suppose tha the forecast, p;(y), is identical to the data-generat
p;(y) = f(y), and hence a;' minimizes the actual expected loss. Then for all po

forecasts p, (y),

[ LGy < Ly, y)f(y)dy,

i.e., choosing the action accc rding to the true density gives the least expected los
Proof. The result follows irr mediately from the assumption that a; minimizes e

all possible actions, including those which might be chosen under alternative den

as p,(y). O

hat all users will

data-generating

eir loss function,

ing process, i.e.,

ssible density

@

xpected loss over

sities of y, such

While no forecaster ¢ in be reasonably expected to reproduce the true data-generating

process exactly, the precedin ; propositions suggest a direction for evaluating density forecasts.

Without even taking loss fun :tions into consideration, we know that the correct
superior to all forecasts. Iftl.ere is statistically significant evidence that the realiz

do not come from the foreca t densities {p(y,) }ie1» we know (subject to Type ]

5 Granger and Pesarai. (1996) independently arrive at the same conclusion.
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users, depending on their lo:s functions, could potentially be better served by a different density

forecast. In the following se :tion, we propose tests to that effect.

3. Evaluating Density For :casts

Transform
The methods that we propose are based on the relationship between the data-generating
process, f, and the density fo ‘ecast, p, as related through the probability integral transform, z, of
the realization of the process taken with respect to the density forecasts. The following lemma
describes its distribution, q.
Lemma 1. Let y be the variible of interest with f(y) as its density, and let p(y) represent a
density forecast of y. Let th variable z(y) be the probability integral transform of y with

respect to p(y). That is,

z(y) = [ p(u)du

= P(y).

Then z(y) will have support on the unit interval with density function

dP “1(z)
oz

q(z) = f(P "'(z))

_fe@))
p(P'(2))

Proof: Use the fact that p(y = a%gly—) andy = P 1(z). O




Note that if p(+) = f(+), qi z) is simply the Uniform (0,1) density. Armed with Lemma 1, it is a

simple matter to characteriz¢ completely the z series when the density forecasts are correct; we do

so with the following propos ttion.

Proposition 3. Suppose a siries {y, }io, is generated from {f.(y,1Q) oo, . Ifa sequence of

density forecasts {p,(y,) };. coincides with {f (y,|Q,)}r,, then

t=1

That is, the sequence of prot ability integral transforms of {y,},%, with respect to {p,(y,)}s, is

iid U(0,1).
Proof: The joint density of y, }o; can be decomposed as

f(Y oY1 1) = £ (Yl Q) £y O | Q) B (19

The joint density of {z,},-, :an therefore be written as

fm(}sn:l(zm)l Qm) fm—l(Pn—l—ll(zm—l)l Qm— l) fl (Pld

'(2)19,)

q(z_,...,z,|Q) = - : -
P, (P (z,)) Pm-1(Pm-1(Zpn-1)) p, (1
From Lemma 1, under the as;sumed conditions, each of the ratios above is a U(0,
Hence the joint density of {i };-, is an m-variate U(0,1) distribution. Because t
multivariate U(0, 1) distributi »n are also U(0,1), the joint distribution is the prody
marginals, which is the defiri:ion of independence. Hence {z,},", is distributed
Evaluating Density Forecasts When the Loss Function is not Specified

The theory developec thus far suggests that we use the series {z, Youp» de

P (z)))

1) density.
he marginals of a
ct of the

iid U(0,1). O

Hved from the

history of realizations and de 1sity forecasts, to evaluate forecasts. We simply check whether




{z,},>, isiid U(0,1). The icea is based upon the same principle as the Kolmogdrov-Smirnov and

Cramer-von Mises tests, wh ch check whether a random sample {y, Yo, is drawn from density

p(y) by taking the probabil ty integral transform of the sample with respect to p(y). In this

paper, we effectively consid xr a sample {y,},-, that is a realization from a sequence of densities,

but Proposition 3 reveals thit if a forecaster manages to capture the sequence of densities that

forms the true data-generati g process, then the probability integral transforms are still iid U(0,1).
In our context, however, we¢ do not begin with an iid assumption; rather, it’s something check.
nple, that if

Simple tests of iid U 0,1) behavior are readily available. Recall, for exan

z,~U(0,1) then -2log zt»ag;g.‘ Hence, if z is iid U(0,1), then S = E -2logz ~X§m. We

t=1

could use the S-statistic to  erform a simple significance test. Alternatively, we could perform

any of the various well-knoy /n tests for uniformity, such as a runs test or a Kolmogorov-Smirnov
test, all of which are actually joint tests of uniformity and iid.
cations, because

Such tests, however, are not likely to be of much value in practical appli

they are not constructive; tht is, when rejection occurs, the tests generally provide no guidance

as to why. If, for example, 1 1e S statistic rejects the hypothesis of iid U(0,1) beh

because of violation of unce aditional uniformity, violation of iid, or both? More

know that rejection comes £ om violation of uniformity, we’d like to know more:

precisely, is the nature of the violation of uniformity, and how important is it? S
we know that rejection com :s from a violation of iid behavior, what precisely is

heterogeneous but independ :nt, or is z dependent? If z is dependent, is the deps

primarily through the condit onal mean, or are higher-ordered conditional mome

¢ See Johnson and Ktz (1970).
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over, even if we
What,

imilarly, even if
its nature? Is z
endence operative

nts, such as the




variance, relevant? Is the de

even if strictly false?

The nonconstructive 1ature of tests of iid U(0,1) behavior, and the noncg

of related separate tests of iic

(superficial) statistical rigor fr more revealing methods of exploratory data analy

regards evaluating unconditic nal uniformity, we suggest visual assessment using

graphical tool, a density estin ate. Simple histograms are attractive in the present

because they allow straightfe: ward imposition of the constraint that z has support

»endance strong and important, or is iid an adequatg

and U(0,1), which can easily be constructed, make

> approximation,

nstructive nature
us eager to trade
sis. First, as

he obvious
context,

on the unit

interval, in contrast to more sphisticated procedures such as kernel density estimates with the

standard kernel functions. Th= estimated density can be visually compared to a U(0,1), and if

desired the graphical analysis :an be supplemented with a formal test of uniformity, robust to

dependence and heterogeneity Alternatively, we can estimate the c.d.f of z and

that of a U(0,1), by examining the corresponding g-q plot. The usual estimates of

z, the c.d.f. of z, and the g-q p ot remain consistent regardless of the possible pres

dependence and heterogeneity in z.

¢ompare it to
the density of

ence of

Second, as regards eva uating whether z is iid, we again suggest visual assessment using

the obvious graphical tool, the correlogram. Because we’re interested potentially sophisticated

forms of dependence -- not jus: linear dependence -- we examine not only the corr

but also those of powers of z. In practice, examination of the correlograms of z,

elogram of z,

y2, z3 and z*

should be adequate; it will reveal any dependence operative through the conditional mean,

conditional variance, condition il skewness, or conditional kurtosis. If desired, in

the correlogram inspection, sta 1dard tests for white noise may be applied to z and
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The presence of parti:ular forms of dependence in z can be informative in guiding
forecasters and users about how to improve density forecasts. For instance, serial correlation in
the z series may indicate that the mean dynamics have been inadequately modeled by the
forecaster. A caveat, howevir, is that there is in general no one-to-one correspondence between
the type of dependence found in z and the dependence in y missed by the forecasts. For example,
assume that the true data-gen :rating process is GARCH(p,q). Even if a forecastar correctly
specifies the conditional varia ice function and perfectly estimates its parameters, there will be
dependence in z if the forecas er assumes the wrong conditional density.
\djusting Density F

In the previous sectior, we approached forecast evaluation from an historical perspective,
evaluating the ability of a fore: aster based on past realizations. The intent, of course, is to gauge
the likely future accuracy of tt e forecaster based on past performance, assuming that the
relationship between the corre :t density and the forecaster’s predictive density remains fixed.
Given that we observe system: tic errors in the historical forecasts, the user may wish to simply
reject the forecast. It may alsc turn out that these errors are irrelevant to the user, a case we
further examine when we expli:itly account for the user’s loss function. Nevertheless, it is
possible to take these errors in o consideration when using the current forecast, just as it is
possible to do so in the point firecast case. In the point forecast case, for instance, one can
regress the y's on the §'s, the predicted values, and use that relationship to construct an adjusted

point forecast, allowing as well for various sorts of dynamics in the regression.

12




In the context of density forecasts, a similar procedure can be constructed by rewriting the
relationship in Lemma 1. Suj pose that the user is in period m and possesses a density forecast of

Ym.+1- From Lemma 1, we hi ve

fo (Y moy) = Pt (Yemet) Qo (P(y .0 ))

pm+l(ym?l)qm+l(zm+l)
Thus if we know q_ , ( z...,) » we would know the actual distribution fii(Ym.y) Since
Q.1(2Z,,.,) is unknown, an :stimate 4,,.,(z,,.,) can be formed using the historical series of

{z,}{-,, and an estimate of th true distribution F

m+

1(¥ 1) can then be constructed. If the
sample {z, e -1 turns out to be iid, then standard density estimation techniques can be used to
produce the estimate 4,.1(z,,,). Otherwise, the estimation of Q. (Z,,.,) becomes a non-
trivial matter, which we defer 1o future research.
Evaluating Density F Using a Specific Loss Functi
If a series of density for ecasts has been systematically in error, it may still be the case that
for a particular user, depending on her loss function, the systematic errors may be irrelevant. To
be precise, the forecast may be such that the action choice induced by the forecast, al: , minimizes
the user’s actual expected loss. ' In such cases, which we now consider, the user’s loss function
can be incorporated into the eviluation process.

Consider a density fore: ast series, {p, ()}, and the corresponding action series,

{al,"t }t21, of a particular user. The series of action choices results in a series of potential losses

(d(y,] a, )}, where Q(yt§ 1p0) = L(ay,,y,) and y, ~ f(y,). We would like to compare

” Since we have assume:! a unique minimizing action choice, this implies that ap' =a; .
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each period’s realized loss w th that period’s expected loss under that optimal action choice
E. [ 0 lag )] The expect:d difference will be positive unless a;, =a/,. If we further assume
that the forecaster correctly ¢ ssesses the expected loss in each period, i.e.,
E [{Cla;)] = E, (L] ».1)], We can compute the differential

d, = U(ylay ) - B [¢]a) )L
Under the joint null hypothesis that the series of density forecasts is optimal relative to the user’s
loss function and that the fore caster correctly specifies the expected loss in each period,
E[d,]=0, which can be teste: in the same way that Diebold and Mariano (1995) test whether

two point forecasts are equall ' accurate under the relevant loss function.

4. Concluding Remarks

We have provided a cl aracterization of optimal density forecasts, and we have proposed
methods for evaluating wheth:r reported density forecasts are optimal. Our methods are based on
the series of probability integr I transforms. We argued that this series contains much, if not all,
of the information relevant to ‘orecast users, regardless of their loss function. We showed how
to use the series of probability integral transforms to judge whether a potentially large set of users,
though not all, would reject a orecast, without explicitly specifying each individual user’s loss
function. We also showed, in :he same framework not requiring specification of the loss function,
how to improve a suboptimal lensity forecast by using information on previously-issued density
forecasts and subsequent reali: ations. Finally, when information on the relevant loss function is

available, we also showed hov to evaluate a density forecast with respect to that loss function.
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Our methods of dens ty forecast evaluation have interesting parallels with well-known
methods of evaluating point : nd interval forecasts. First, it’s well-known that optimal point
forecasts have corresponding 1-step-ahead errors that are iid with zero mean. Second,
Christoffersen (1996) shows hat the hit series corresponding to a series of correctly calibrated (1-
)% interval forecasts is iid I ernoulli(1-).* Our methods, in parallel, are based on the fact that
the z series corresponding to 1 series of correct density forecasts is iid U(0,1).

Our method for impro ving incorrect density forecasts based on their historical track record
also parallels a well-known mi:thod for improving suboptimal point forecasts, the Mincer-
Zarnowitz (1969) regression. In a Mincer-Zarnowitz regression, we regress realizations y on
point forecasts an intercept ani ¥,

y =B + By +e
Optimality of the point forecast with respect to some information set corresponds to (B, B,) = (0,
1) and at most h-dependence i ¢ if ¥ is h-step-ahead. If a forecast fails the Mincer-Zarnowitz
test, the regression nevertheless provides an immediate way to improve the forecast -- use
ﬁo + 619 + ¢ rather than y.

We stress that, althoug 1 we and others sometimes call density forecasts of the sort we
consider in this paper “predicti e densities,” our methods are not Bayesian -- we evaluate density

forecasts in terms of their beha sior in repeated samples. Our evaluation methods are, however,

similar in spirit to those used b predictivist Bayesians (e.g., Dawid, 1984; Seillier-Moiseiwitsch

* The hit sequence at an time is defined to be 1 if the realization is in the forecasted
interval, and zero otherwise.
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and Dawid, 1993). The methds by which the density forecasts themselves are produced are of
no concern to us; they could | e produced by any method, including Bayesian methods.®

The methods develope¢d here may find wide application when density forecasts become
more standard in economics a1d finance, as is happening already. The booming area of financial
risk management, for example is explicitly dedicated to providing density forecasts of future
returns and to tracking certain aspects of the density, such as value at risk.'° The day may not be
far off in which risk managem nt firms compute such density forecasts routinely, using simulation
techniques to minimize relianc : on ad hoc assumptions, and store draws from the density on line.
Forecast purchasers will be gr:nted access to the simulations and will be able to explore them for

themselves, in a fashion similar to Geweke’s (1994) suggestion for Bayesian reporting.

? A strict Bayesian, of ccurse, would have little interest in our evaluation methods;
conditional on a particular samy le path and specification of the prior and likelihood, the predictive
density simply is what it is, and here’s nothing to evaluate. More eclectic Bayesians however,
frequently evaluate Bayesian methods in classical terms. See, for example, the papers collected in
Zellner (1984).

' See, for example, the | opular RiskMetics system of J.P. Morgan & Co. (1996).
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