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How Proper is Sequential Equilibrium?

by George J. Mailath, Larry Samuelson, and Jeroen M. Swinkels

1. Introduction

Among the more surprising results in game theory is that a proper equilibrium in a
normal form game induces a sequential equilibrium in every corresponding extensive
form (van Damme [11] and Kohlberg and Mertens [4]). The converse however, can be
false: a strategy profile can be sequential in every extensive form with a given normal
form without being proper. Proper equilibrium is thus stronger than sequential-in-
every-tree. What is the difference between the two, and how much stronger is proper
equilibrium?

The paper addresses these questions by exploring the relationship between proper
equilibrium and two other concepts: quasi-perfect in every tree and strategic indepen-
dence respecting equilibrium (SIRE). Quasi-perfect equilibrium, which van Damme [11]
defined and showed is implied by proper equilibrium, is an extensive-form concept closely
related to trembling-hand perfect equilibrium.! Strategic independence respecting equi-
libriwm is a normal-form concept that is, we argue, the appropriate decision-theoretic
description of sequential rationality (a key element of sequentiality).?

We begin by showing that properness is equivalent to quasi-perfect-in-every-tree: A
converging sequence of perturbed normal form strategy profiles supports its limit as a
proper equilibrium if and only if the sequence of strategies induced in every correspond-
ing extensive form supports its limit as a quasi-perfect equilibrium.> We thus obtain
an extensive-form characterization of the distinction between properness and sequen-
tiality, since quasi-perfection requires players to act optimally against each term in the
sequence of opponents’ strategies, while sequential equilibrium requires optimality only
against the limit of this sequence.

While the difference in the definitions of quasi-perfection and sequentiality is easy
to understand, the differences in the implications of those definitions are more subtle.

1t differs from extensive-form trembling-hand perfection in that, at each information set, the player
choosing an action ignores the possibility of her own future mistakes.

2Both sequential equilibrium in the extensive form and SIRE (like most existing solution concepts)
impose rather strong cross-player consistency conditions on beliefs. We will not try to argue that these
conditions are natural.

3 A key ingredient in this result is the requirement that the same sequence be used in all correspond-
ing extensive forms. The result is false without the restriction that the same sequence is used in all
corresponding extensive forms (see Hillas [3]).



In particular, sequential rationality is often described as the requirement that, at every
information set, a player’s choice makes sense if that information set is reached, even
if the player learns something unexpected about the play of her opponents (i.e., the
information set is off the play path). In contrast, quasi-perfection seems to have little
to do with the information a player learns about her opponents during play.* More-
over, every extensive-form game used in the proof of the equivalence of proper and
quasi-perfection has the property that each player receives no information about the
play of her opponents.® Since sequential rationality appears to depend in a central
way on the notion of information, while quasi-perfection does not, our extensive-form
characterization is an incomplete description of the relationship between properness and
sequential-in-every-tree.

The remainder of the paper is concerned with a normal-form characterization of
the relationship between properness and sequential-in-every-tree. The requirement
that planned actions at an information set make sense when that information set is
reached seems intrinsically an extensive-form notion. However, Mailath, Samuelson,
and Swinkels [5] (henceforth MSS) argue that this is not so: statements about “when”
an action will matter can be translated into statements about “if an action matters.”
That is, sequential rationality can be rephrased as the requirement that a decision that
only matters for a given subset of strategies by the opponents should be made as if
a strategy from that subset had been chosen. In the normal form, the phrase “only
matters for a given subset of strategies by the opponents” comes down to a particular
pattern of payoff ties for the player making the decision. We call this pattern of ties
a strategic independence. Like an information set in an extensive form, a strategic in-
dependence captures a situation in which a player can uncouple her decision into two
parts, one of which is relevant if the information set is reached, and one if it is not.%

Requiring sequential rationality in the normal form (optimal play in the limit at all
strategic independences) yields strategic independence respecting equilibrium (SIRE).
The normal-form characterization of the relationship between proper and sequential
equilbria then involves two elements: the connection between sequential-in-every-tree

4Sequentiality is more sensitive than quasi-perfection to the information structure of extensive-form
games. Consider the following two-player game of perfect information: Player I chooses “Out” or “In;”
the game ends after O yielding payoffs 0 and 1 to players I and II, respectively; and player II has
two possible actions {A, C'} after I, with (/, A) yielding payoffs 1 and 0 and (I, C) yielding payofls —1
and —1 to players I and II, respectively. The only sequential equilibrium is (I, A). However, in the
simultaneous-move extensive-form game in which player II does not know if player I has chosen [ when
choosing between A and C when choosing between A and C, (O, C) is also a sequential equilibrium. In
contrast, only (I, A) is quasi-perfect in either extensive form.

®This does not mean that the dynamic structure of the extensive form is irrelevant. The different
extensive forms are used to force players to make choices between (and so rank) every pair of strategies.

6 A strategic independence for player i is a subset of strategy profiles, X; x X_;, and is reached if the
opponents’ choices are in X _;.



and SIRE, and the connection between SIRE and proper.

The connection between sequential-in-every-tree and SIRE is straightforward: In
an extensive form, if an information set is not reached, not only is the decision maker
indifferent about her choice at that information set, but all other players are indifferent
as well. In contrast, a strategic independence in the normal form is defined solely in
terms of the payoffs to the decision maker. A strategic independence for which the payoff
ties also hold for the other players is called a normal form information set. Requiring
sequential rationality only at normal form information sets rather than at all strategic
independences yields normal form sequential equilibrium. MSS show that an assessment
induces a sequential equilibrium in every extensive form with a given reduced normal
form if and only if it constitutes a normal form sequential equilibrium in that reduced
normal form. The difference between SIRE and sequential-in-every-tree is thus the
difference between sequential rationality at all strategic independences and sequential
rationality only at those strategic independencies satisfying the extra condition on other
players’ payoffs. From the point of view of the decision maker, payoff ties for the other
players are irrelevant and so there is no decision-theoretic reason to distinguish between
the different strategic independences. Hence, SIRE is the appropriate decision-theoretic
formulation of sequential rationality.

The relationship between proper and SIRE is the normal-form analog of the relation-
ship between quasi-perfection and sequentiality. In particular, properness is equivalent
to optimal play along the sequence at all strategic independences, while SIRE requires
optimality against the limit.

We next turn to the decision-theoretic foundations of SIRE and proper. Blume,
Brandenburger, and Dekel [2] provide a decision-theoretic characterization of proper
equilibrium in terms of lexicographic probability systems (LPSs). We provide a similar
decision-theoretic characterization of SIRE.

In the Blume, Brandenburger, and Dekel [2] characterization, a proper equilibrium
can be viewed as the result of players’ ranking their strategies according to a lexico-
graphic probability system (i.e., a hierarchy of beliefs) over the play of their opponents,
where the hierarchy of beliefs reflects the opponents’ payoffs in an intuitive manner. A
player first consults her first-level belief about opponents’ play and ranks her strategies
according to their expected payoffs given this belief. If any indifferences occur, the
player appeals to her second-level beliefs, breaking indifferences accordingly to their
expected payoffs against this belief. Further indifferences are appealed to a third-level
belief, and so on. This process continues until either all indifferences have been bro-
ken or sufficiently many beliefs have been encountered that their supports exhaust the
opponents’ strategy spaces.

Like proper, SIRE can be viewed as a ranking of strategies driven by a hierarchy of
beliefs about opponents’ play. However, in a SIRE a player appeals an indifference to
the next level only if it is a structural indifference, that is, if the player’s indifference is



caused by ties in the payoff matrix (as opposed to an indifference created by a fortuitous
belief about opponents’ play).” The decision-theoretic difference between SIRE and
properness thus hinges on how they treat cases in which players are indifferent between
strategies.

Our last result compares properness and sequentiality in terms of trembles, but
without reference to information sets or strategic independences. We show that the
structural ordering (underlying SIRE) ranks player i’s strategy r; ahead of s; if and
only if 7; receives a higher payoff than s; along every sequence of trembles that con-
verges (in a sense made precise below) to the underlying hierarchy of beliefs about play.
The lexicographic ordering (underlying properness) ranks r; ahead of s; if and only if
r; achieves a higher payoff along a converging sequence of trembles drawn from a par-
ticular subset of such sequences. Both proper and SIRE are characterized in terms of
optimal behavior against sequences of trembles, but the set of sequences of trembles is
different.® The conditions for properness to rank a pair of strategies are weaker than
the corresponding conditions for SIRE, and so properness accordingly imposes more
restrictions on strategy choices than does SIRE.

The following section introduces notation. Section 3 presents the extensive-form
characterization of proper equilibrium in terms of quasi-perfection, and so the charac-
terization of the difference between properness and sequentiality in terms of optimality
along a sequence of perturbations versus optimality in the limit. Section 4 introduces
strategic independences and SIRE. Lexicographic belief systems and the strategy order-
ings underlying properness and SIRE are described in Section 5. Section 6 characterizes
these strategy orderings in terms of sequences of perturbed strategies.

2. Preliminaries

We denote the set of players by N and player i’s (pure) strategy set by S;, ¢ € N,
with |S;] < oo . Typical strategies for player ¢ are denoted 7y, s;, and ;. The set
of strategy profiles is given by S = [[;c v Si. A set of strategy profiles S and a payoff
function 7 : § — RN constitute the normal form game (S, 7). A subset of player i’s pure
strategy space is denoted X;. The set of probability distributions over a set X; C 5;
is denoted A(X;). A subscript —i denotes N\{i} and a subscript —/ denotes N\I.
For any distribution 8 € A(S_;), define expected payoffs given this distribution over

"Normal form sequential equilibrium appeals an indifference to the next level only if every player in
the game is structurally indifferent between the outcomes involved (as opposed to indifference only on
the part of the player making the decision).

8There is, as far we know, no corresponding tremble characterization of the ordering described in
footnote 7 for normal form sequential equilibrium.



opponents’ strategies as:

E{mi(si, )} = 3 milsi,5-0)B(s-4).

5_:€S_;
Definition 1. Strategies r; and s; agree for player i on X_; CS_; if, Vs_; € X,
mi(riy s-i) = mi(8i,5-5).
Strategies r; and s; agree for all players (or agree) on X_; C S_; if, Vs ; € X,
7 (riy $=s) = m;(8s,5-3), Vj€ N.

We use the term agree for player i on X _; to emphasize that player ¢ is indifferent
between 7; and s; for any fixed strategy profile, s_;, of the other players in X _;, but
other players might not be. Note that these indifferences are due to the structure of
payoff ties in the game, and do not depend on some particular mixed strategy profile of
the other players. We will accordingly say that r; and s; are structurally indifferent on
X_;.

We say that the normal form (S, ) is a pure strategy reduced normal form game
(PRNF) if there does not exist a pair {r;, s;} with r; # s; and r; agreeing with s; on
S_;. Any normal form is easily written as a PRNF by treating the set of pure strategies
that agree on S_; as a single strategy.

For any mixture on PRNF strategy profiles P, we also let P denote the mixture
on normal-form strategies obtained by dividing the probability attached to each PRNF
strategy equally among the corresponding normal-form strategies.?

A probability sequence, {{P*}2°4,7 € N}, is a collection of independent probability
distributions such that each P!* is a completely mixed probability distribution on S;.
Given a probability sequence, we define P" and P", in the obvious manner, i.e., P"(s) =
[Lien PP(s:) and P7(s) = 1,4 P7(s;). We say that the probability sequence {P"} is
conditionally convergent if, for all subsets X C S, {P"(- | X)} (and all its marginals) are
convergent sequences, where P"(s | X) = P™(s)/P™(X) for s € X and zero otherwise.
We sometimes refer to converging probability sequences as “trembles” or “sequences of

perturbed strategy profiles.”

Definition 2. (Myerson [9]) A strategy profile o is proper if there is a probability
sequence {P"} with lim P" = ¢ and a sequence {¢,}, ¢, — 0, such that, for all ¢ and
all ri, s; € S;,

E{mi(sy, P2;)} < BE{mi(ri, PL,)} = Pl (si) < en B (14). (1)

9A PRNF strategy need not imply unique choices in an extensive form, because different actions at
an extensive form information set may be consistent with the same PRNF strategy. This ambiguity is
unimportant because the differing actions consistent with a given PRNF strategy profile do not affect
any players’ payoffs. Hence, any other completely-mixed division of the probability among corresponding
normal form strategies could have been chosen.



By taking subsequences, we can always ensure that {P"} is conditionally convergent.
If o is a proper equilibrium and P" is the probability sequence satisfying (1), then we
say that o is supported by {P"}.

3. An Extensive-Form Characterization of Properness

This section characterizes the difference between the equilibrium concepts of sequential-
in-every-tree and properness. Sequential-in-every-tree requires strategies at every infor-
mation set (in every tree) to be best responses to the limits of sequences of opponents’
strategies. Properness requires strategies at every information set to be best responses
to all of the terms in the sequence of perturbed strategies.

The extensive-form equilibrium concept used to characterize proper equilibrium is
that of a quasi-perfect equilibrium:

Definition 3. (van Damme [11]) A conditionally convergent probability sequence
{P"} with limit o induces a quasi-perfect equilibrium in an extensive form game
I if, for the corresponding sequence of completely mixed behavior strategies b" and
limit b, for each player ¢ and information set h for that player, contingent on having
reached h, b° is a best reply to b", for all n.

Quasi-perfection is closely related to sequentiality: sequentiality is obtained by re-
placing “b¢° is a best reply to b”, for all n” in the above definition with “b7° is a best
reply to limy,_,» b",.” That is, sequentiality requires best replies, at all information sets,
to the limits of a perturbed sequence of opponents’ strategies, while quasi-perfection re-
quires best replies, at all information sets, to each element of the sequence of perturbed
strategies.

Extensive-form trembling-hand perfection (hereafter, perfection) requires player ¢ to
play a best response at every information set to the perturbed strategies of her opponents
and to perturbed versions of her own continuation strategies. Quasi-perfection, on the
other hand, forces player ¢ to ignore the perturbations in her own strategies. As a
result, there is no inclusion relationship between perfection and quasi-perfection. The
two standard examples illustrating this are in Figure 1. In the first extensive form, LL is
quasi-perfect, but not perfect, while in the second, RL is perfect, but not quasi-perfect.
A quasi-perfect equilibrium must be sequential, but the converse fails.

It would be consistent with common usage to characterize a strategy profile o of the
PRNF (S,7) as inducing a quasi-perfect equilibrium in an extensive form (with that
PRNF) if there exists a sequence of completely mixed behavior strategy profiles whose
limit is equivalent to o and is a quasi-perfect equilibrium. In contrast, we have defined
a sequence {P"} as inducing a quasi-perfect equilibrium in an extensive form if {F"}
yields a sequence of completely mixed behavior strategies that converges to a limit that,



Figure 1: There is no inclusion relationship between perfection and quasi-perfection.

together with the sequence, satisfies the conditions for quasi-perfection. Thus, when
{P"™} induces a quasi-perfect equilibrium in every extensive form with a given PRNF,
the strategy sequences supporting the quasi-perfect equilibrium in the different extensive
forms are derived from the same sequence of completely mixed PRNFE strategies.!?

While a proper equilibrium need not induce a perfect equilibrium in every extensive
form (LL in the first extensive form in Figure 1, for example), a proper equilibrium
does induce a quasi-perfect equilibrium in every extensive form (van Damme [11]). Our
first result is that this property characterizes proper equilibria:!!

Proposition 1. A conditionally convergent probability sequence {P"} on S induces a
quasi-perfect equilibrium in every extensive form with PRNF (S, n) if and only if the
limit o of {P™} is a proper equilibrium supported by {P"} in (S, 7).

The proof of this proposition begins with a straightfoward reformulation of proper
equilibrium (whose proof is omitted):

Opjgures 11-13 in MSS describe a simple example of a pair of extensive forms with the same normal
form with the property that a strategy profile can be supported as a sequential equilibrium in each
extensive form, but only by using different trembles. Hillas {3] contains an example of a strategy profile
that is not proper, and yet can be supported by (necessarily different) trembles as a quasi-perfect in
every tree.

11n a previous version, we stated this proposition with the additional assumption of transference of
decision maker indifference (see footnote 16). We are grateful to John Hillas for pointing out that our
proof did not require this assumption. Also, see Hillas [3] for a different proof of this theorem.



Lemma 1. The strategy profile o is a proper equilibrium if and only if there exists a
conditionally convergent probability sequence {P"}, with lim P" = o and a sequence
€n, — 0 such that, for all i and all r;, s; € X,

E{mi(si, P)} < E{mi(ri, P2,)} = P (i | {1, 8:}) < €n. (2)

Proof of Proposition 1: [ONLY IF] Suppose { P} induces a quasi-perfect equilibrium
in every tree. Since {P"} is completely mixed, it can be viewed as a completely mixed
behavior strategy profile. Fix a pair of strategies s; and r; for player 2 such that

E{mi(si, P1)} < B{mi(rs, P2))}. 3)

The trivial extensive form representation of the PRNF, interpreted as a simultaneous
move game, has one information set for each player, with |S;| choices for player j. Let
I" denote the extensive form obtained from this trivial extensive form by the following
application of the “coalesce” transformation: Replace the single information set of player
i with two sequential choices, the first information set has |S;] — 1 actions, corresponding
to {r;, s;} and the strategies in S;\{r;, s;}, with the action {r;, s;} leading to a second
information set, &, with two actions, r; and s;. In T, if player ¢ wishes to play either r;
or s;, i must first select {r;, s;}, and then choose between r; and s;. Since {P"} induces
a quasi-perfect equilibrium in T, (3) implies P}*(s; | {si,7:}) — 0. Because S; is finite,
a sequence {e,} can be found such that (2) is satisfied, and so o is proper.

[IF] This is van Damme [11, Theorem 1]. O

Thus, the distinction between properness and sequential-in-every-tree is that proper-
ness requires optimality along the sequence, while the latter only requires optimality in
the limit. One of the attractive aspects of Proposition 1 is that it gives a characteriza-
tion of properness that involves optimal play against a sequence of perturbed strategies,
rather than condition (1), which only requires almost-optimal play. This characteriza-
tion does, however, require considering different extensive forms (with the same PRNF )
The key step in the proof of Proposition 1 involves finding, for every pair of strategies for
each player i, an extensive form in which player i chooses from just these two strategies
while all other players still have all of their strategies available. For any pair of strate-
gies, there are extensive forms with such an information set, but, in general, there is no
extensive form that captures all of these information sets for all players (see Mailath,
Samuelson, and Swinkels [6, Section III] for a canonical example).!?

12The distinction between properness and sequential-in-every-tree is reminiscent of that between trem-
bling hand perfection and sequentiality in a given tree. Moreover, generically (in extensive form payoffs)
the latter two coincide. This suggests that, in some sense, generically, proper and sequential-in-every-
tree coincide. However, since we must deal simultaneously with several extensive forms at the same
time, the description of the appropriate genericity requirement is a subtle issue. Section 10 of Mailath,
Samuelson, and Swinkels [7] discusses this issue in some detail.



4. Sequential Rationality

4.1. Strategic Independence Respecting Equilibrium

The idea behind sequential equilibrium, optimality at every information set, is often
phrased in terms of restrictions on the behavior of a player when he is asked to make
a decision. This suggests that an important feature of the structure in an extensive
form game is that a player need not make a decision until required to by the realized
play of the game. In MSS, we argued that this is incorrect: it is not that the choice of
an action at an information set need not be made until that information set is reached
that is important, but rather that the choice of action, whenever taken, “matters” (i.e.,
affects the outcome of the game) only if that information set is reached. Hence, whether
a player makes a decision at an information set or makes an ex ante contingency plan,
the player’s action for that information set can be made as if the information set in
question has been or will be reached. Sequential equilibrium requires that this choice
be a best response to some belief about opponents’ play given that the information set
in question is reached.

The normal form structure that captures situations in which a player can make a
decision as if he knew that his opponents had chosen from a particular subset of their
strategies was called a strategic independence in MSS:

Definition 4. The set X C S is strategically independent for player ¢ if
1. X = X; x X, and

2. Vr;, s; € X;, 3t; € X; such that t; and r; agree for player t on X_; and t; and s;
agree for player i on S_;\X_;.

Suppose X is a strategic independence for player i. If s; and ¢; € S; agree for player
i on X_; C S_;, then we say that s; and t; are X_;-equivalent. If s; and t; agree for
player i on S_;\X_;, then we say that s; and t; are S_;\X_;-equivalent. Then when
player i is evaluating strategies in X;, we can think of him as independently choosing
an X_;-equivalence class of strategies in X; and an S_;\X _;-equivalence class; these
together determine a strategy in X;. The optimality of the choice of an X _;equivalence
class is a function only of beliefs over X ;.13 Similarly, the optimality of the choice of an
S_;\ X_;-equivalence class is a function only of beliefs over S_i\X_;. We can thus think
of player #’s choice in X; as one of choosing behavior that is relevant if opponents choose
from X_; and independently choosing behavior that is relevant if opponents choose from

S_A\X_i.

13his follows from the fact that, in any two X _;-equivalence classes, there are strategies s; and
s, which agree on S-;\X_;, so that an X _;-equivalence class can be chosen without worrying about

S_A\X_i.



The decision-theoretic analog of requiring best replies at all information sets is re-
quiring best replies at all strategic independences:

Definition 5. The limit of a conditionally convergent sequence {P"} is a strategic
independence respecting equilibrium (SIRE) if for all i and any strategic inde-
pendence X for player i, lim P*(- | X;) is a best reply from among the elements of X;
to lim P*(- | X_;), L.e., for all r;, s; € X;,

E{m;(ss, im P (- | X_3))} < B{mi(rs, im P2;(- | X—4))} = lim PM(s; | Xi)=0. (4)

As usual, we say that the strategic independence respecting equilibrium is supported
by the sequence { P"}. Some examples are discussed in Section 5.3.

As a second manifestation of the limit of optima vs. optima of limits distinction, we
note:

Lemma 2. A strategy profile o is proper if and only if there is a conditionally conver-
gent probability sequence {P"}, with lim P" = o, and a sequence {en}, €n — 0, such
that, for all i, all strategic independences X for i, and all 74, s; € Xi,

E{mi(si, PY( | X=i)} < B{mi(r, P2(-| X23))} = PP(s: | Xi) < én. (5)

Proof. [ONLY IF]: Let o be a proper equilibrium and let {P"} and {¢n} be sequences
satisfying (1). Suppose E{m;(s;, P*(- | X-))} < E{mi(rs, P2,(- | X=;))}. Since X is a
strategic independence, there exists ¢; € X; that agrees with s; on S_;\X_; and agrees
with 7; on X_;. Then E{m(s;, P",)} < E{mi(t;, P*;)} and hence properness implies
P (s;) < e PP(t;). Since s;, t; € X;, we then have Pr(si | X;) < enPP(ti | Xi) < én,
giving the result.

[IF]: Since X = {r;, s;} x S_; is a strategic independence for player 7, and on that
strategic independence, E{m;(r:, P*%(- | X-:))} = E{m(ri, P*;)} and E{m(s;, PT;(- |
X_))} = E{mi(si, P";)}, the result follows from Lemma 1. O

Condition (5) implies that if there exists an n* such that the antecedent of (5) holds
for all n > n*, then lim P*(s; | X;) = 0.14 The definition of SIRE is thus the limit
of the characterization in Lemma 2: proper equilibrium is the limit of a sequence of
strategies, each element of which satisfies an optimality property, while SIRE requires
optimality only with respect to the limiting strategies induced by such a sequence.!?
This also implies, of course, that a proper equilibrium is a SIRE, and so SIRE exist.

“Note that, since {P"} is conditionally convergent, if (5) holds for all n, either E{mi(s:, P"(- |
X_:))} < E{mi(ri, P™(- | X-:))} holds for all n sufficiently large, or the reverse inequality holds for all
n sufficiently large.

15Gince the statement and proof of Lemma 2 are still valid if strategic independence is replaced by
normal form information set, a similar distinction holds between properness and normal form sequential
equilibrium.
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4.2. Sequential-in-every-tree

If the definition of a strategic independence is strengthened by requiring agree for all
players, rather than just agree for player ¢, then the resulting normal form structure is
called a normal form information set. This structure is the focus of MSS, where it is
shown that a set of strategy profiles X of a PRNF (S, 7) is a normal form information
set for player i if and only if there exists an extensive form game without nature with
PRNF (&, 7) with an information set h for player ¢ such that the set of PRNF strategies
that make h reachable is precisely X (Theorem 1).

The definition of normal form sequential equilibrium is obtained by replacing “strate-
gic independence” with “normal form information set” in the definition of SIRE. Normal
form sequential equilibrium is precisely secquential-in-every-tree, in the sense that the
limit of a conditionally convergent sequence {P"} in a PRNF is a normal form sequen-
tial equilibrium if and only if {P"} induces a sequential equilibrium in every extensive
form with that PRNF (MSS, Theorems 7 and 8). While the lexicographic belief sys-
tems formulation of SIRE has a clear decision-theoretic character, the corresponding
formulation of normal form sequential equilibrium does not (see footnote 20). Since any
normal form information set for a player is also a strategic independence for that player,
any SIRE is a normal form sequential equilibrium. 6

5. Decision-Theoretic Foundations of Properness and SIRE

In this section, we begin by briefly reviewing Blume, Brandenburger, and Dekel [2]’s
notion of lexicographic probability systems (LPSs). We then recall their characterization
of properness in terms of an ordering induced by an LPS.} Finally, we show how that
order can be modified to yield a characterization of SIRE.

5.1. Lexicographic Probability Systems

Consider a finite state space €. In a game theoretic context, the appropriate choice
for Q is S;, S_;, or S. For example, the state space when describing player i’s beliefs

16Gince not every strategic independence is a normal form information set, the converse can fail.
Following Marx and Swinkels [8], say that a game satisfies transference of decision-maker indifference
if, for all i and any pair of strategy profiles (si,s—:) and (ti,s-:), mi(si,5-:) = mi(ti,5-:) implies
7 (Si, 5~i) = mj{ti,s-i) for all § € N. BEvery strategic independence for a player is also a normal
form information set for that player if and only if (S, ) satisfies transference of decision-maker indiffer-
ence. Moreover, if the game satisfies transference of decision-maker indifference, strategic independence
respecting equilibrium and normal form sequential equilibrium coincide.

17Blume, Brandenburger, and Dekel 1] provide an axiomatic characterization of decision making
that yields a subjective expected utility theory based on LPSs. Myerson’s [10] notion of a conditional
probability system (which is equivalent to the notion of a lexicographic conditional probability system,
see footnote 21) is an alternative description of beliefs about out-of-equilibrium play.
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about opponents’ play is the space of strategy choices for the other players, S_;. Where
convenient, we will define the concepts for an arbitrary state space Q.

Definition 6. A Lexicographic Probability System (LPS) on Qisa K -tuple p =
(p°, ..., pK"1), for some integer K, of probability distributions on Q.

Blume, Brandenburger, and Dekel [2, page 82] interpret an LPS p as follows: “The
first component of the LPS can be thought of as representing the player’s primary theory
of how the game will be played, the second component the player’s secondary theory,
and so on.” In a Nash equilibrium, players’ primary theories about the play of the game
will be correct and so p? also describes player i’s behavior.

Each player ¢ has an LPS p_; describing his or her beliefs about S_;. A collection
of lexicographic probability systems, one for each player, is denoted (p-1y--s P=N)-
We (like Blume, Brandenburger, and Dekel [2]) impose three restrictions on the lexico-
graphic probability systems held by players:

1. Common Prior Assumption: There exists an LPS p on S such that for all ¢,
p—; is the marginal on S_; of p.!1®

2. Strong Independence: There exists a sequence of vectors {r(n)}, with r(n) =
(ri(n),...,r5"1(n)) € (0,1)K~! and r(n) — 0, such that the probability dis-
tribution r(n)Op is a product distribution for all n, where rOp = (1 — r1)p° +
A1 —r2)p! +r2[(1 — 13)p2 + 13[-- + rE-2[(1 - PK-1YpK=2 4 pK=1pK-1)))1 for
re (0, 1)KL,

3. Full Support: For all i and s_; € S_;, there exists & such that p®(s-;) > 0.

The first condition is the usunal requirement that different players have the same
beliefs about the behavior of other players. We let p; denote the lexicographic belief
system that players other than i hold on S;. The second condition ensures that player
i believes that the other players are independently choosing strategies.!® The third
condition ensures that a player can evaluate the relative likelihood of any two strategy
profiles chosen by the other players.

Every LPS induces a “more likely than” ordering:

18The marginal of an LPS (p°,...,p" 7!) is the LPS whose &' probability distribution is the marginal
of p", k=0,..., K~ 1.

19Blume, Brandenburger, and Dekel [2, Proposition 1] show that as n — oo, and hence r(n) — 0, the
sequence of probability distributions {r(n)0p} “captures” the hierarchy of beliefs described by the LPS,
in the sense that strategies are ranked the same by the LPS p and expected payoffs under the sequence
of probability distributions {r(n)0p}sz, (see Proposition 4 below).
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Definition 7. Given an LPS p on Q and w, ' € Q, write w >, w' if
min{x : p*(w) > 0} < min{x : p*(&') > 0}.

The order >, captures the ranking on states induced by the order in which these
states appear in the levels of the belief systems. As usual, we have w >, W if w >, W
holds but w’ >, w does not; and w =, ' if both w =, «' and w’' >, w hold. The order
>, is a complete and transitive order on Q. Loosely, if w >, «/, then w is “infinitely
more likely” than ' under p.

Finally, given a lexicographic probability system, the number k(r;, s;), identifies the
first level in the beliefs p_; at which strategies r; and s; receive different payoffs, with
k(ri,s;) = K if r; and s; agree at all levels.

These preliminaries in hand, we now turn to the respective orders characterizing
proper equilibrium and SIRE.

5.2. Proper Equilibrium

The key to the LPS characterization of proper is the following order generated from the
LPSs and payoffs:

Definition 8. Given a lexicographic probability system p, the lexicographic order
> on S; is given by, for r;, s; € S,

1. r; > s; if k(ry,8;) < K and, for k = k(r4, s;),

E{mi(ri, p%3)} > E{mi(si, p%4)},
2. 1 rop s ifk(rs, ) = K, and
3. r; - s ifr; = s 0orT; v S

Note that > is a complete and transitive order.

When comparing strategies 7; and s; for player i, the lexicographic order seeks the
first level in the beliefs p_; at which 7; and s; receive different payoffs, and ranks the
higher payoff strategy (at this level) ahead of the other. Blume, Brandenburger, and
Dekel [2] prove:

Proposition 2. The strategy profile o is proper if and only if there is lexicographic
probability system p with p® = o that satisfies the common prior assumption, strong

independence, full support, and

T L 8i = T Zp; Sie
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5.3. Strategic Independence Respecting Equilibrium

The LPS characterization of SIRE requires only a small modification to the lexicographic
order used to characterize proper in Proposition 2.

Definition 9. Given a lexicographic probability system p, the structural (partial)
order >g on S; is given by r; =g s; if

1. r; = s;, and

2. for all k < k(r;, s;), 7; and s; agree for player i on the support of p* .

The structural order, like the lexicographic order, seeks the first level at which
r; and s; receive different payoffs. However, the structural order then ranks the two
strategies only if all preceding indifferences are structural, meaning that the indifferences
are created by payoff ties in the normal form and hence would hold for any possible
opponent strategy. As a result, >g in general will only be a partial order (unlike >).
In particular, if two strategies r; and s; have equal expected payoffs according to 2,
but are not structurally indifferent on the support of p°,, then they are not comparable
under >g. Conversely, if two strategies r; and s; are not comparable under =g, then
for some k, the expected payoffs to r; and s; are equal under all p%,; for k < k, while r;
and s; are indifferent but not structurally indifferent on the support of o~

The structural order provides an intuitive characterization of SIRE:?

Proposition 3. The strategy profile o is a SIRE if and only if there is lexicographic
probability system p with p® = o that satisfies the common prior assumption, strong
independence, full support, and

Ty =S 8 =Ty >p, Si.

Proof. We first formulate SIRE in terms of LPSs. Let p;|x denote the conditional
distribution p¥(- | X;), where k = min{x : pf(X;) > 0}, and similarly for p_;|x. It

20There is a similar characterization of normal form sequential equilibrium. The strategy profile o
is a normal form sequential equilibrium if and only if there is an LPS p with p° = o that satisfies the
common prior assumption, strong independence, full support, and

-
Ti =g 8 = Ti 2p; Si,

where 7; =5 s iff 7; =r s and, for all K < k(ri, si), 7: and s; agree for all players on the support of
p" ;. The difficulty with this characterization is that the order =5 requires player i to pay attention to
the payoff structure of the other players, something that cannot be justified on purely decision-theoretic
grounds. Moreover, there is no trembles-based characterization of % analogous to the characterizations
of >, and =5 discussed in the next section.
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is immediate from the definitions that a strategy profile o is a SIRE if and only if
there is a lexicographic probability system p with p® = o that satisfies the common
prior assumption, strong independence, full support, and for every player ¢ and every
strategic independence for player i, X, p; |x is a best reply to p-;|x on X;. We say
that such an LPS is a SIRE, or that it supports o as a SIRE.

(i) (7‘,’ g 8 = T >p; si) = p is SIRE.

The proof is by contradiction. Suppose X is a strategic independence for player 2
with p; |x not a best reply to p_;|x. Let k = min{x : pf(X;) > 0} and k' = min{x :
p*,(X_;) > 0}. Then there exists s;, t; € X;, with p¥(s;) > 0 and mi(ss, P |x) <
mi(ti, p’ili |x). Since X is a strategic independence, there exists r; € X; agreeing for ¢
with ¢; on X_; and agreeing for ¢ with s; on S_;\X_;. So

E{mi(si, o)} = o5 (X _i)milss, pF51x) + (1 = pH (X)) milss, P15\ x)

< X )milri o 1x) + (1= PP X)) milrs, o svx) = E{mi(ri, p¥0)

where S\ X denotes the distribution conditional on S_;\X_; and the expressions are
well defined when p*;(S_;\X _;) = 0 (since p¥;(X_;) = 1 in that case). Now, r; and s;
agree for 7 on S_;\X_; and so r; =g s;. But then r; >,, s;, which is a contradiction
(since pf(s;) > 0).

(i) p is SIRE = (r; >g si = 15 >p,; 5i)-

Fix 75, s;, and define X_; to be the smallest subset of S_; with the property that
r; and s; agree for i on S_;\X_;. Now, r; >g s; = 7ri(1'i,p’i/i) > Wi(si,p{c_li), where
k' = min{x : p®,(X_;) > 0}. Since {rj, s;} x X _; is a strategic independence, pi(si) =0,
where k = min{x : pf({r;,s;}) > 0}, and so r; >, s;. O

Thus, in a SIRE, strategies that rank higher in the payoff order s also rank higher
in the behavior order >,,. That is, players believe that player i is infinitely more likely
to play r; than s; if player i’s preferences (as described by »g) rank r; ahead of s;.

Propositions 2 and 3 show that the decision-theoretic difference between SIRE and
proper consists precisely of the difference between =g and > .21 Suppose that player ¢
finds himself indifferent between strategies 7; and s;, given that the opponents’ play is
described by p_;. SIRE appeals to the next level in the belief hierarchy p_; in order to
rank r; and s; if and only if 7; and s; are structurally indifferent. Proper equilibrium

21 Ope difference between the orders =5 and > is reflected in the ability, when using s, to work
with an LPS whose various levels have disjoint supports. A lexicographic probability system is a
lexicographic conditional probability system if the probability distributions (po, ..., p¥ ) have pairwise
disjoint supports. An LPS p is a SIRE if and only if the lexicographic conditional probability system
p defined by p%;(-) = p'i(- | S-i\ U<k supp(p®.;)) for all x is a SIRE. A restriction to lexicographic
conditional probability systems is thus without loss of generality for the order =5 and SIRE. The same
is not true for =1 and proper equilibria (Blume, Brandenburger, and Dekel [2, p. 89]).
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Figure 2: (.5C +.5D, .5C + .5R) is a SIRE but is not proper
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Figure 3: A SIRE that is not proper. Superscripts indicate levels of the LPS.

always appeals to the next level. As a result, we have r; =g s; = 73 =1 8;. Proper
equilibrium thus imposes more stringent requirements then does SIRE.

Since =, appeals any indifferences between strategies at a given level of beliefs to a
higher level, while =g appeals only indifferences that are structural, these orders, and
hence SIRE and proper equilibrium, will coincide if all payoff ties arise out of structural
indifferences. In particular, if p is an LPS supporting p° as a SIRE and the support of
p" is a singleton for each k, then p supports p° as a proper equilibrium.

Figure 2 shows that a SIRE need not be proper. Since B weakly dominates %C + %D,
the profile (%C + %D, %C + %R) cannot be a proper equilibrium. However, normal
form information sets and strategic independences include {C, D} x {C, R} for both
players. Letting p(C) = (D) = A(C) = pY(R) = 0.5, p}(B) = p3(L) = 1, and
pt(A) = 1 then gives best replies on all strategic independences and hence ensures that
(%C + %D, %C + %R) is a SIRE. In particular, pJ makes player 1 indifferent between B,
C, and D, but the indifference is not structural and hence is not appealed to ps-
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The SIRE in Figure 2 is not even a normal form perfect equilibrium, since it attaches
probability to the dominated strategy %C + %D.n However, Figure 2 is special in that
the payoffs to A, B, C, and D all fortuitously equal 2 when player 2 plays %C + %R.
That is, the game is not robust to tie-preserving perturbations of payofls.

An example in which SIRE and proper do not coincide that cannot be destroyed
by tie-preserving payoff perturbations is given in Figure 3.2 Let p be as indicated, so
that p0(4) = R(B) = pX(C) = pAD) = .25, pY(e) = .25, p3(B) = 0.75, p3(7) = .75,
p3(6) = 0.25, and p}(#) = 1. Then the lexicographic probability system p is a SIRE.
However, there exists no lexicographic probability system that will support this outcome
as a proper equilibrium. To verify this, consider the specification of p3 that would be
required for properness. Since player 1 is indifferent between strategies A and D against
09 and A earns a higher payoff than D against 3, pi must attach a probability to 6 higher
than .25 (otherwise A surely earns a higher payoff than D, precluding indifference).
But player 1 is also indifferent between strategies B and C, requiring p3 to attach a
probability to ~ higher than .75, a contradiction.

6. Tremble-Based Characterizations of >, and =g

The characterizations of properness and sequentiality in Sections 3 and 4 are in terms
of perturbed strategy profiles and the structural features of games (information sets
in the extensive form and structural indifferences in the normal form). In contrast,
the characterizations in Sections 5.2 and 5.3 are not in terms of structural features of
games, but do use LPSs. In this section, we provide tremble-based characterizations
that do not use the structural features of games. The original definition of properness
is, of course, one such characterization of properness. The substantive result here is the
characterization of =g in terms of trembles. This is then compared with a tremble-based
characterization of .

First, note the following equivalence between lexicographic probability systems and
probability sequences: Given an LPS satisfying common prior, strong independence, and
full support, {P"} = {r(n)0p} is a conditionally convergent probability sequence (where
r(n) is the sequence of vectors from strong independence). Moreover, P/* = 7(n)0p;,

)

so that, for s; € S; and any k < min{x : p*(s;) > 0}, p¥(s:) = lim PP (s:)/ TTE_y 7%(n)

K

2214 is easy to show that a SIRE cannot attach positive weight to a pure strategy that is weakly dom-
inated by another pure strategy, though it can attach positive probability to a pure strategy dominated
by a mixed strategy.

23This example is generic in the sense that any perturbations in payoffs that preserve the ties in
player 1’s payoffs yields a nearby SIRE that is not a proper equilibrium. The ties in player 2’s payoffs
appear for simplicity; they are not important to the example. There exist nearby specifications of player
2's payoffs that feature no ties and again yield a SIRE that is not proper. This example is then only
nongeneric if one considers all perturbations in payoffs, including those that disrupt ties.
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(where we avoid division by zero by defining [M°_,7*(n) = 1). In particular, o =
lim P". Thus, p; |x is a best reply to p_; |x on X; if and only if the distribution
lim P"(- | X;) is a best reply to the distribution lim Pm(- | X_;) on X;. Conversely,
given a sequence of completely mixed behavior strategy profiles and so, trivially, a
sequence of completely mixed PRNF strategy profiles, {P"}, there exists an LPS p such
that a subsequence {P™} of {P"} can be written as P™ = r(m)Op for a sequence of
vectors {r(m)} C (0,1)¥~1 with r(m) — 0 (see Blume, Brandenburger, and Dekel [2,
Proposition 2]).

Definition 10. The LPS p and the probability sequence { P"} are tail equivalent if
there exists n*, such that for n > n*, P* = r(n)Qp for some r(n) € (0, 1)K=1 with
r(n) — 0.

The LPS p and the probability sequence P" are limit equivalent if for all © €
N, s t-i €S-,

o P(t)
S_; >p7i t_; <= TL]LHO]O_P-fZ—(-S_—l) =0
and
P as— o [an, VK,

where A® = supp(p®;) and A® = supp(p®;)\ Ue<r A°.

Limit equivalence is less demanding than tail equivalence. For example, the sequence

(3 +112 - 132, is limit, but not tail, equivalent to the constant sequence {3,3}

More generally, if the probability sequence {P™} is tail equivalent to p, then it is limit
equivalent to p and there exists n*, such that for n > n*,

Prias= pZ;|ax, Vk.

Given an LPS with pairwise disjoint supports (i.e., a lexicographic conditional prob-
ability system, see footnote 21), the payoffs to any two strategies, r; and s;, must be
ranked the same way by P", for all sufficiently large n and for every probability se-
quence that is tail equivalent to p. Hence, if r; receives a higher payoff than s; along
some probability sequence that is tail equivalent to p, then r; receives a higher payoff
than s; along every probability sequence that is tail equivalent to p. This is also true
when the LPS does not have pairwise disjoint supports (Proposition 4 below). The same
does not hold for limit equivalence; it is easy to find two probability sequences that are
limit equivalent to the same LPS but rank strategies differently.?

24 : 1_13_1 3 _ 1 1 1 1 13_1 3 1 11
InFlgure3,thesequences{z~——ﬁ,z—;,E—n—f,m,?}and{z—_ﬁﬁ_;’4_;’2;_;Lm.}are

both limit equivalent to py, but the first gives a higher payoff to C' than to A (for large n) while the
second gives a higher payoff to A than to C.
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The lexicographic order induced by a lexicographic probability system p ranks 7;
ahead of s; if and only if 7; receives a higher payoff than s; along probability sequences
that are tail equivalent to p:

Proposition 4. Suppose p is an LPS satisfying the common prior, strong indepen-
dence, and full support assumptions. Then, for all i, r; > s; if and only if for every
probability sequence { P} tail equivalent to p, there exists n* such that for all n > n*,

E{ﬂ'i(n‘, sz)} > E{m—(si, Pfl)}

Proof: The proof of [2, Proposition 1] applies here with the modification that (using
their notation) n* is chosen so that n > n* implies 7*(n) < r* ¥n > n*, where r* solves
(1=r")B+r*W > 0. m]

The structural order can be similarly characterized, but the relevant probability
sequences now consist of all limit equivalent sequences. The appendix proves the fol-
lowing;:

Proposition 5. Suppose p is an LPS satisfying the common prior, strong indepen-
dence, and full support assumptions. Then for all i, r; =g s; if and only if for every
probability sequence { P} limit equivalent to p, there exists n* such that for alln > n*,

E{m;(rs, P7)} > E{mi(si, PT5) }-

Propositions 4 and 5 describe the difference between tail and limit equivalence, and
correspondingly between the lexicographic and structural orders, without reference to
structural features of the game. Fix an LPS p and suppose that every tail-equivalent
probability sequence ranks r; ahead of s;. Then r; > s;. However, r; =5 s; may fail to
hold, as there may be limit-equivalent probability sequences that either fail to rank r;
and s; or disagree in their ranking.?®> The structural order thus requires more stringent
conditions than the lexicographic order to rank strategies and the structural order can
decline to rank strategies that are ranked under the lexicographic order.

We can illustrate this difference by returning to Figure 2. Consider the specification
p3(C) = p(R) = .5 and p}(L) = 1. How should player 1’s strategies be ranked? Against
09, player 1 is indifferent between A and B. Properness then demands that the decision
between A and B be appealed to p3, which suffices to rank B ahead of A. The set
{A, B} x {L} is a strategic independence for player 1, and SIRE also ranks B ahead of
A. Tt is obvious that for any {P}} converging to pg, B receives a higher payoff than A
along every term of the sequence.

25 A probability sequence fails to rank 7; and s; if each strategy earns a higher payoff than the other
for infinitely many terms of the sequence.
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Player 1 is also indifferent between strategies B, C' and D given 9. Properness again
appeals to p}, ranking B ahead of C and D. A similar ranking is given along every
term of any sequence that is tail equivalent to p. The key here is that tail equivalence
preserves any indifferences that appear at any level of beliefs in p. In particular, a
tail equivalent probability sequence is simply a collection of convex combinations of the
distributions p§, n = 1,...k—1, with the weight on o becoming arbitrarily high relative
to p’2°+]. Using p to evaluate strategies according to the order », is then equivalent to
looking at sequences of tail-equivalent strategies.

Because player 1 has no information set or strategic independence that includes B
and either C or D, and in which player 2’s strategy set is { L}, the order > and hence
SIRE does not rank B, C and D. It is easy to find sequences that are limit (but not tail)
equivalent to p in which either C or D gets a higher payoff than B along every element
of the sequence. More generally, when must SIRE rank B ahead of C ?7 A necessary
condition must be that along every converging sequence of perturbed strategies, B does
strictly better than C, since otherwise we can find limits in which C' does as least as
well as B and hence the SIRE need not rank B ahead of C. The proof of Proposition
5 involves showing that this condition is sufficient as well, by showing that if B fares
better than C along every limit-equivalent sequence, then all indifferences between B
and C must be structural indifferences, causing =g to rank B ahead of C.

7. Conclusion

In this paper, we provide three results on the relationship between properness and
sequential-in-every-tree. First, we show that properness is equivalent to quasi-perfect-in-
every-tree. Since quasi-perfection is optimality along the sequence of perturbed strate-
gies, while sequentiality is optimality in the limit, the distinction between properness
and sequential-in-every-tree can be similarly phrased. Second, we provide a lexico-
graphic probability system characterization of SIRE, the normal form implementation
of sequential rationality. This characterization uses the structural order on a player’s
strategy space, denoted >g. Blume, Brandenburger, and Dekel [2] have a similar charac-
terization of properness, based on the lexicographic order, > . The distinction between
g and >, describes the difference in the decision theories that underlie sequential ra-
tionality and properness. Third, we give tremble-based characterizations of the orders
»¢ and >, that do not involve structural features of the game, such as information sets
or strategic independences.

Appendix: Proof of Proposition 5

The result is trivial if 7; and s; agree for i on S_;. So suppose not. Let k be the largest
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index satisfying: r; and s; do not agree for ¢ on supp(p”;) for k£ < k. Let A® = supp(p?,),
A* = supp(p” ;)\ Ue<x A", for all k. Define Am(s_;) = mi(ri, s _i) — mi(8i,5-5)-

(=) Suppose {P™} is limit equivalent to p and 7; >s s;. Then r; has a strictly
higher expected payoff than s; under p*.,. Let C = Y p* (s_;)Am(s-;) and B =
max |Am;(s_;)|. Note that A* # 0, so that e(n) = _Z(A’V)/p_l(A’“) is well defined.
Since P" is completely mixed, ¢(n) # 0. Choose n' so that for n > n' and for all
85 & Ugcrsupp(p®;), P*(s—s) < Ce(n)/(3B | S_; |). Since P is limit equivalent to p,
there is an n’” such that for n > n”,

3 i) Am(s_) = (e(n) ™t Y Pli(s-i)Am(s)| < C/3.
€Ak s_;CA¥

Set n* = max{n/,n"}. Since r; and s, agree for ¢ on supp(p®;) for k <k,

ZPKL’ Am(s_ Z Pfi(svi)Aﬂ'i(S_i)

i¢u,{<ksupp(p'ii)
= Y Phi(s-i)Ami(s-i) + > Pri(s-s)Ami(s—i)
S_iEAk S—i¢un§ksupp(pii)
> Z P".(s_i)Ami(s—;) — Ce(n)/3

s_;€AF
> e(n)(C —C/3-C/3) =¢(n)C/3 > 0.
(<) Suppose for all {P"} limit equivalent to p and for n sufficiently large,

ZPfi(a"Zi)Aﬂ'i(S—i) > 0. (6)

We suppose 1; =g s; does not hold and derive a contradiction. If r; >g s; does not hold,

then:
Y pri(s—s)Ami(s_;) =0 for all

ok i(s-i)Ami(s-) < 0.
The definition of k and (6) implies:

Z —i)Ami(s_;) + Z Pr(s_)Ami(s—;) >0

_i€ Ak s_i¢Un<ksupp(p” ;)

(7)

Dividing by P™,(A*) and taking limits yields

Yo (s )Am(s-) 20

s_,;EAk
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Combining with (7) yields
Z pF (s Am(s_;) = 0. (8)

S—iEAk

We now argue that there exists a probability sequence @ that is limit equivalent to
p but reverses the inequality in (6), which is a contradiction.

Define k;(s;) = min{x : pf(s;) > 0} and k-i(s—;) = min{x : p®.(s—;) > 0}
Note that k = k_;(s_;), Vs_; € A¥. Since p is strongly independent, there exists
r(n) € (0,1)X-1, r(n) — 0 as n — oo, such that r(n)0p = [[;(r(n)0p); = [L(r(n)Bp;).
Fixing s_; € S_;, and letting k; = k;(s;), k—; = k_s(s-:), we have

Pl () ki) (1= b))ty (sma) + 754 )
=TT ()5 (n) (1 = P54 ) (55) + 5 () ).
J#i

(We follow the convention that r!(n)---7%(n) = 1.) Dividing by r!(n)--- r¥-i(n) and
taking n to infinity shows that

P55 (ss) = alk~ k=) x [] o7 (s), (9)
i

where k=% is the vector (k;);. and

a(k™ k_;) = lim [

n-—00

[Lzr'(n)-- 1% (")} # 0.

rl (n) . 'I‘k—i(’ll)

Let A% = {s; € S;: (s5,5_(i5)) € A¥ for some s_g; 3} Define u(s_;) = a(k™*(s_s),
k_i(s—s)) X Am;(s—;) and consider the function ® : [];4; R4 R, given by, for p_; =

k
(ps)jir Pj € R
Op-s)= Y |[Ipi(s5) ) uls-i).
s_ieAk \Ji

From (8) and (9), ®(p*,) = 0, where pj(s;) = pfj(sj)(sj). Since u(s_;) # 0 for at
least one s_; € A*, ® is not identically zero on any neighborhood of p*. Fix § > 0
and p® such that | p* — p°® |< & and ®(p°) # 0. Define p/ = (pf,...,p;,pgﬂ,...,p?\,),
for j = 1,...,N, so that pV = p*. Let j' be the first index j such that o(p?) = 0.
Since ®((1 — A)p?"~! + Ap') is affine in A and ®(p’'~1) # 0, there is a A € R such that
P’ = (1= N)p/' 1 47 satisfies ®(p®) < 0 and | p* — p® |< 8. Since p}(s;) # 0, for small
6, pj(sj) # 0 for all s; € A? and j.
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We now define a pseudo-LPS for player j, 0;(.;6), as follows: afj(sj)(sj; &) = p3(s5),
and 0% (s;;6) = pf(s;) for k # k;(s;). The pseudo-LPS fails to be a true LPS only
because it may be that 3~ 07(s;j;6) # 1 for some &.

Consider, for fixed 6, the probability sequence { P}'(.; 6)} given by Pr(; 8) = gj(n; 6)-

-1
(r(n)0o;(.;8)), where g;(n;8) = (Zsj(r(n)Daj(sJ-;é))) € R, is a scaling factor
(gj(n;8) — 1 as 6 — 0, and ¢;(n;6) = 1 if ci(.;8) is a true LPS). We now argue
that for n sufficiently large,

ZPI’i(sﬂ'; 8)Ami(s—i) <O. (10)
This is clearly equivalent to:

Z(rl(n) ok (n))! H (r(n)Oo;(s;; 6)) Ami(s ;) < 0.
J#i
Using the fact that k;(s;) = min{x : p§(s;) > 0} = min{x : 67(s5;6) > 0}, the left hand
side converges to

Z (H a?j(sj)(sj;6)> k™ (s-3), k—i(s_s))Ami(s—s) = o(p°) <0

SwiEAk .77"!:"

as n — 00, and so (10) holds for n sufficiently large.

Let Q7 = P;l(m)(.;l /m), where {n(m)}mreo is an increasing sequence with the
property that (10) holds when § = 1/m and n = n(m). It is immediate that {Q7} is
limit equivalent to p and reverses the inequality in (6). This is the desired contradiction
and so r; >g ;. O
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