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Abstract

Why do some sellers set prices in nominal terms that do not respond to changes
in the aggregate price level? In many models, prices are sticky by assumption. Here
it is a result. We use search theory, with two consequences: prices are set in dollars
since money is the medium of exchange; and equilibrium implies a nondegenerate price
distribution. When money increases, some sellers keep prices constant, earning less per
unit but making it up on volume, so profit is unaffected. The model is consistent with
the micro data. But, in contrast with other sticky-price models, money is neutral.
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1 Introduction

Arguably one of the most difficult questions in macroeconomics is this: Why do some sell-

ers do not adjust their nominal prices in response to changes in the aggregate price level,

ostensibly flying in the face of fundamental microeconomic principles? Many popular macro

models, including those used by most policy makers, argue that price stickiness is caused

by the existence of technological restrictions to nominal price adjustment (Calvo fairies or

Mankiw costs). Here, we argue that price stickiness is caused by the existence of search

frictions in the product market. Moreover, in contrast with theories of price stickiness that

rely on technological constraints, our theory predicts that money is neutral: the central bank

cannot engineer a boom or end a slump simply by issuing currency. Hence, while our theory

provides a microfoundation for the key ingredient at the core of Keynesian economics (i.e.

price stickiness), it has very different policy implications.

We also show that our theory of price stickiness is more successful than existing theories at

matching the salient empirical features of the dynamics of individual prices.1 For example,

our theory can account for the average duration of prices that we observe in the data.

Moreover, our theory can account for the fact that on average price changes are large and

yet many price changes are small. Also, our theory can account for the fact that prices change

more frequently, and not just by larger amounts, when inflation is higher. In contrast, menu

cost theories of price stickiness cannot easily account for the second empirical fact mentioned

above. And Calvo theories of price stickiness cannot easily account for the third empirical

fact.

These findings seem relevant for several reasons. First, despite the successes of the New

Classical and Real Business Cycle paradigms, it is hard to deny that at least some nominal

prices seem sticky in the sense defined above — they do not respond to changes in the

aggregate price level. Moreover, this observation is one of main reasons why many Keynesians

are Keynesian. Consider Ball and Mankiw (1994), who we consider representative, when

1A sample of empirical work on price stickiness includes Cecchetti (1985), Carlson (1986), Bils and
Klenow (2005), Campbell and Eden (2007), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2009),
Eichenbaum, Jamovich and Rebelo (2009) and Gagnon (2009). See Klenow and Malin (2010) for a recent
survey.
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they say: “We believe that sticky prices provide the most natural explanation of monetary

nonneutrality since so many prices are, in fact, sticky.” They go on to claim that “based on

microeconomic evidence, we believe that sluggish price adjustment is the best explanation for

monetary nonneutrality.” Furthermore, “As a matter of logic, nominal stickiness requires a

cost of nominal adjustment.” Some people that one might not think of as Keynesian present

similar positions. For instance, Golosov and Lucas (2003) assert that “menu costs are really

there: The fact that many individual goods prices remain fixed for weeks or months in the

face of continuously changing demand and supply conditions testifies conclusively to the

existence of a fixed cost of repricing.”

We interpret the above claims as containing three points related, respectively, to empirics,

theory, and policy. The first claim is that price stickiness is in the data. The quotations

assert this, and it is substantiated in the numerous empirical studies mentioned above.

We concede this point. The second claim is that price stickiness implies “as a matter of

logic” the existence of some technological constraint to price adjustment. We prove this

wrong: we describe equilibria that match not only the broad observation of price stickiness,

but also some of the more detailed empirical findings, with recourse to no technological

constraints. The third claim, to which at least Ball and Mankiw seem to subscribe, is that

price stickiness implies that money is not neutral, and this rationalizes Keynesian policy

advice. We also prove this wrong: our theory is consistent with the relevant observations, but

rather than yielding Keynesian policy implications, money is neutral. Sticky prices simply do

not constitute evidence that money is not neutral or that particular policy recommendations

are warranted.2

To explain our approach, we begin by pointing out that the issues at hand concern

monetary phenomena: Why are prices quoted in dollars in the first place? Why do they not

all adjust to changes in the money supply? What does this imply about monetary policy? To

answer these questions, it seems natural to use a monetary model. We choose to work with

2To be clear, our position is not that money is neutral is the real world, and we know of compelling
examples (like the one in Lucas, 1972) where it is not neutral in theory. The point is to construct a
coherent economic environment with two properties: (i) it is consistent with the sticky-price facts; and (ii) it
nevertheless delivers neutrality. Money is not superneutral in the model — inflation matters, even if the money
stock does not, as in true in many models — but this hardly rationalizes Keynesian policy prescriptions.
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a version of the New Monetarist framework laid out in Lagos and Wright (2005), Nosal and

Rocheteau (2010) or Williamson and Wright (2010a,b). In this framework, specialization

and search frictions limit barter, while commitment and information frictions limit credit.

Hence, money is essential for at least some exchange, and naturally prices are posted in

dollars, because dollars are the objects being traded. To please those with a different taste

for microfoundatrions, we could have worked with a cash-in-advance or a money-in-the-

utility-function models.

Now consider the following observation. In many New Keynesian models, such as Clarida,

Gali and Gertler (1999) orWoodford (2003), nominal price rigidities generate price dispersion

only if there is inflation. To understand this point, suppose that two sellers set the same

pt at date t. At date s1 > t, the first seller is visited by the Calvo fairy and sets its price

to ps1 . At date s2 > s1, the second seller is visited by the Calvo fairy and sets its price

to ps2 . Between dates s1 and s2, the prices of the two sellers are different if and only if

inflation is strictly positive. But the data suggest that there is dispersion in prices even

during episodes of low or zero inflation (see, e.g. Campbell and Eden 2007). For this reason,

it seems important to work with a model that delivers price dispersion even with low or

no inflation. Although there are many market structures that are known to generate price

dispersion without inflation (e.g. Varian 1980 and Stahl 1989), we adopt the structure of

Burdett and Judd (1983).

In order to understand Burdett and Judd’s theory of equilibrium price dispersion, it

helps to review the history of search theory. The earliest search models of McCall (1970)

and Mortensen (1970) were partial equilibrium models, in the sense that they characterized

the optimal search strategy of the buyers taking as given the distribution of prices posted by

different firms. Diamond (1971) was the first general equilibrium search model, in the sense

that the price distribution was derived from the profit maximization problem of the firms.

Diamond proved that, as long as buyers can only sample one seller at a time, the equilibrium

price distribution is degenerate. In particular, every seller finds it optimal to ask the pure

monopoly price. Since buyers have no reason to search without price dispersion, Diamond’s

result was seen by many as the end of search theory. However, Burdett and Judd (1983)
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came to the rescue. They proved that the equilibrium price distribution in a product market

with search frictions is non-degenerate as long as the probability that a buyer meets two

(or more) sellers and the probability that he meets only one seller are both strictly positive.

When the probability that a buyer meets two or more sellers approaches one, the distribution

converges to the competitive price. When the probability that a buyer meets two or more

sellers approaches zero, the distribution converges to the pure monopoly price. Intuitively,

if buyers may meet one or multiple sellers with positive probability, the pricing problem of

the firm is analogue to a first-price procurement auction in which the number of bidders is

uncertain. In this kind of auction, the optimal bidding strategy involves mixing.

In this paper, we embed Burdett and Judd (1983) into a dynamic general equilibrium

monetary model a la Lagos andWright (2005). In particular, we assume that agents alternate

between trading in a decentralized product market that operates as in Burdett and Judd, and

a centralized market that operates as in Arrow-Debreu. In the decentralized market, buyers

and sellers need to use money as a medium of exchange because search frictions preclude the

use of barter and information frictions preclude the use of credit. In the centralized market,

buyers and sellers can use either money or credit. Technically, our model is a version of

Lagos and Wright (2005) in which prices in the decentralized market are not determined as

the outcome of a bargaining game between buyers and sellers, but they are posted by the

sellers.3

In equilibrium, identical sellers choose to post different prices in the decentralized market.

In particular, at any date t, the distribution of prices in the decentralized market is given by a

continuous cumulative distribution function Ft with support [pt, pt], with pt < pt. While the

equilibrium pins down the price distribution, it does not pin down the price of an individual

seller. Indeed, every individual seller is indifferent between choosing any price between the

lower and the upper bound of the support of the distribution. If the seller posts a low price,

3The framework is flexible in this regard, and several mechanisms other than Nash bargaining, have been
studied. For instance, Rocheteau andWright (2005) and Berentsen, Menzio andWright (2010) introduce price
posting with directed search and (Walrasian) price taking; Aruoba, Berentsen and Waller (2007) consider
alternative bargaining solutions; Galenianos and Kircher (2008) use auctions. No one previously tried posting
with random matching in Lagos-Wright, although it is used in the related model of Shi (1997) by Head and
Kumar (2005) and Head, Kumar and Lapham (2010).
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he earns a small profit per unit of output, but he sells many units of output. If the seller

posts a high price, he earns a large profit per unit of output, but he sells fewer units. When

the money supply increases from Mt to Mt+1, the equilibrium price distribution shifts to

Ft+1 with support [pt+1, pt+1]. This requires that some sellers change their prices, but not

all of them. In particular, if a seller’s price at date t, pt, does not belong to the support of

the price distribution at date t + 1, [p
t+1

, pt+1], then the seller must adjust its price. But,

if pt belongs to [pt+1, pt+1], the seller may leave his nominal price unchanged. Hence, in

our model, sellers can change price infrequently in the face of continuous movements in the

aggregate price level, even though they are allowed to change them whenever they like and

at no cost.

Our theory says that sellers can be rationally inattentive to the aggregate price level

and monetary policy, within some range, since as long as pt ∈ [pt, pt], their place in this

distribution does not matter. We show that a calibrated version of our theory can match

quite well the empirical behavior of prices in the US retail market. First, our theory predicts

an average price duration (11.6 months) that is close to the one observed in the data (8.6

months). Second, our theory generates a price change distribution that has the same shape

and the same features of the empirical price change distribution (i.e. the average magnitude

of price changes is large, there are many small price changes, and there are many negative

price changes). Third, as it is observed in the data, in our model the probability and

magnitude of price adjustments are approximately independent of the age of a price. Fourth,

the theory correctly predicts that inflation increases both the frequency and the magnitude

of price changes. Overall, our theory of price stickiness appears to be empirically reasonable.

But, again, according to our theory, money is neutral.4 If the central bank issues extra money

at date t, the price distribution responds fully and immediately, and no real expansion is

created. Hence, nominal price stickiness does not logically justify interventionalist policies

4There are several other interesting models where, despite price stickiness, money may be (sometimes
approximately) neutral. These include Caplin and Spulber (1987), Eden (1994), and Golosov and Lucas
(2007). Our approach differs in a number of respects. First, we start with a general equilibrium model
where money is essential as a mediun of exchange. Second, money by design is exactly neutral, although not
superneutral, in our environment. Third, stickiness arises entirely endogenously and robustly — it does not
depend on particular functional forms, timing, the money supply process, etc. Fourth, the distribtion of prices
is endogenous and derived from standard microfoundations (Burdett-Judd), instead of simply assuming, say,
prices are distributed uniformly on some interval.
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by central banks.

2 The Model

2.1 Preferences, technology and markets

Time is discrete and continues forever. In every period, two markets open sequentially. The

first is a decentralized product market in which buyers and sellers come together through a

frictional matching process. In this market, barter is not feasible because buyers do not carry

goods that are valued by the sellers, and credit is not feasible because buyers are anonymous.

Instead, exchange takes place with fiat money, which is supplied by the government. We will

refer to this decentralized and anonymous market as the Burdett-Judd market (BJ market).

The second market is a centralized product and labor market in which buyers and sellers

are recognizable. In this market, exchange may take place using either money or credit. We

will refer to this market as the Arrow-Debreu market (AD market).

The economy is populated by a continuum of households with measure 1. Each household

has preferences described by the utility functionX∞

t=0
βt[u(qt) + v(xt)− ht], (2.1)

where β ∈ (0, 1) is the discount factor, u is a strictly increasing and strictly concave function

defined over the consumption of the good traded in the BJ market (the BJ good), v is a

strictly increasing and strictly concave function defined over the consumption of the good

traded in the AD market (the AD good), and −h is the disutility of working h hours. For

the sake of concreteness, we assume u(q) = q1−γ/(1− γ) with 0 < γ < 1.

The economy is also populated by a continuum of firms with measure s > 0. Each firm

operates a technology that turns h hours of labor into f(h) units of the BJ good, as well as a

technology that turns h hours of labor into g(h) units of the AD good. For concreteness, we

assume that f(h) = h/c and that g(h) = h, where c > 0 is the cost of producing a unit of the

BJ good relative to the cost of producing the AD good. Firms are owned by the households

through a balanced mutual fund.
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In the BJ market, each firm posts a nominal price p, taking as given the amount of money,

mt, brought into the market by each household and the cumulative distribution function,

Ft(p), of nominal prices posted by all the other firms. Following Burdett and Judd (1983),

we assume that each household observes the entire price distribution, but can only purchase

the good from a random sample of firms. In particular, the household cannot purchase the

good from any firm with probability α0 ∈ [0, 1). The household can purchase the good from

exactly one firm with probability α1 ∈ (0, 1− α0). And with probability α2 = 1− α0 − α1,

the household can purchase the good from two firms. As mentioned above, all transactions

in the BJ market are carried out with money.

In the AD market, the government prints money and injects it into the economy through

a lump-sum transfer to the households, Tt. Hence, Tt = (μ− 1)Mt, whereMt is the quantity

of money at the beginning of the period and μ > 1/β is the money growth rate. For the sake

of simplicity, we assume that μ is constant over time. Each household receives the transfer

from the government, Tt, and a nominal dividend payment from the mutual fund that owns

the firms, Dt. Then, each household chooses how much to work, ht, how much of the AD

good to consume, xt, and how much money to carry into the next BJ market, mt+1, taking

as given the wage and the price of the AD good. Similarly, each firm chooses how much

labor to hire and how much of the AD good to produce, taking as given the wage and the

price of the AD good. As mentioned above, exchange in the AD market may take place with

either credit or money.

2.2 The problem of the household

First, consider a household who enters the AD market with mt units of money. The lifetime

utility of this household is given by

Wt(mt) = max
ht,xt,mt+1

v(xt)− ht + βUt+1(mt+1),

s.t. wtxt +mt+1 ≤ wtht +mt +Dt + Tt,

xt ≥ 0, mt+1 ≥ 0.

(2.2)

The expression above is intuitive. The household chooses how much to work, ht, how much

to consume, xt, and how much money to hold, mt+1, so as to maximize the sum of its utility
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in the current AD market, v(xt)−ht, and its lifetime utility at the beginning of the next BJ

market, βUt+1(mt+1). The household’s choice of (ht, xt,mt+1) must be affordable given its

non-labor income, mt + Tt +Dt, and the wage, wt.

The household’s optimal choices (h∗t , x
∗
t ,m

∗
t+1) satisfy the conditions

h∗t = x∗t + w−1t
¡
m∗

t+1 −mt −Dt − Tt
¢
,

v0(x∗t ) = 1, βUt+1(m
∗
t+1) = w−1t .

(2.3)

These optimality conditions are easy to interpret. The optimal choice for mt+1 is such that

the disutility from earning an additional unit of money in the AD market, 1/wt, equates the

utility from carrying an additional unit of money into the next BJ market, βU 0
t+1(mt+1). The

optimal choice for xt is such that the disutility from working an additional hour, 1, equates

the utility from consuming an additional unit of the AD good, v0(xt). The optimal choice

for ht is such that the household’s budget constraint holds with equality.

As in Lagos and Wright (2005), the optimal choices for mt+1 and xt are independent of

mt, and the optimal choice for ht is a linearly decreasing function of mt with slope −1/wt.

That is, the amount of money with which the household enters the AD market does not

affect the household’s decision of how much to consume and how much money to carry to

the next BJ market. The amount of money with which the household enters the AD market

only affects the household’s decision of how much to work and it does so linearly. Given the

properties of the optimal choices (h∗t , x
∗
t ,m

∗
t+1), it is immediate to verify that the household’s

lifetime utility Wt is a linear function of mt with slope 1/wt. Notice that the independence

of mt+1 from mt greatly simplifies the analysis of the equilibrium as it guarantees that the

distribution of money holdings across households in the BJ market is degenerate. Also,

notice that the linearity of Wt with respect to mt simplifies the analysis of the equilibrium

because it guarantees that the distribution of money holdings across households in the AD

market does not affect their valuation of the dividends paid out by the firms.

Next, consider a household who enters the BJ market with mt units of money and pur-
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chases the good at the price p. The lifetime utility of this household is given by

Vt(mt, p) = max
qt

q1−γt

1− γ
+Wt (mt − pqt),

s.t. 0 ≤ pqt ≤ mt.
(2.4)

The expression above is intuitive. The household chooses how much of the good to purchase,

qt, so as to maximize the sum of its utility in the current BJ market, q1−γt /(1− γ), and its

lifetime utility from entering the next ADmarket withmt−pqt units of money,Wt(mt−pqt) =

Wt(0) + (mt − pqt)/wt. The choice of qt is subject to the cash constraint pqt ≤ mt because

money is the only medium of exchange in the BJ market.

The household’s optimal choice q∗t is given by

q∗t (p) =

(
mt/p, if p ≤ p̂t,

(wt/p)
1
γ , if p > p̂t,

(2.5)

where p̂t = wt(wt/mt)
γ

1−γ . If the price p is smaller than p̂t, the cash constraint is binding

and the household purchases mt/p units of the good. Otherwise, the cash constraint does

not bind and the household purchases (wt/p)
1/γ units of the good. Figure I illustrates the

household’s demand for the BJ good. The black curve is the household’s demand given that

the cash constraint is binding. The grey curve is the household’s demand given that the

cash constraint is lax. The household’s demand, q∗t , is the lower envelope of the black and

the gray curves.
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Finally, the lifetime utility of a household who enters the BJ market with mt units of

money is given by

Ut(mt) = α0Wt(mt) + α1

Z
Vt(p,mt)dFt(p)

+α2

Z
Vt(p,mt)d [1− (1− Ft(p))

2].
(2.6)

The expression above is easy to understand. With probability α0, the household cannot pur-

chase the BJ good and enters the next AD market with mt units of money. With probability

α1, the household can purchase the good from exactly one firm. The price p charged by the

firm is a random variable with distribution Ft(p). With probability α2, the household can

purchase the good from two firms. The lowest price p charged by the two firms is a random

variable with distribution 1− [1− Ft(p)]
2.

After substituting (2.5) into (2.6) and differentiating Ut with respect tomt, we can rewrite

the optimality condition for mt+1 as

i = α1

Z
1[p≤p̂t]

"
wt

p

µ
mt

p

¶−γ
− 1
#
dFt(p)

+2α2

Z
1[p≤p̂t]

"
wt

p

µ
mt

p

¶−γ
− 1
#
[1− Ft(p)] dFt(p),

(2.7)
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where i is the net nominal interest rate β−1(wt+1/wt)− 1. The expression above is intuitive.

The left-hand side of (2.7) is the marginal cost of carrying money, i.e. the net nominal

interest rate. The right-hand side of (2.7) is the marginal benefit of carrying money, i.e.

the value of relaxing the cash constraint in the BJ market. The optimal choice for money

holdings, m∗
t+1, equates the marginal cost and the marginal benefit of carrying money.

2.3 The problem of the firm

If a firm posts the price p in the BJ market, its profits are given by

Πt(p) =
1

s
[α1 + 2α2(1− Ft(p)) + α2nt(p)]Rt(p), (2.8)

where nt(p) and Rt(p) are defined as

nt(p) = lim�→0+ Ft(p)− Ft(p− �),

Rt(p) = q∗t (p)(p− cwt).

The first term on the right-hand side of (2.8) is the number of customers served by the firm.

First, there are α1/s households who purchase the good from the firm because they are not

in contact with any other seller. Second, there are 2α2(1−Ft(p))/s households who purchase

the good from the firm because the other seller with whom they are in contact charges a price

greater than p. Finally, there are 2α2nt(p)/s households who are in contact with the firm

and with another seller that also charges the price p. Each of these households purchases

the good from the firm with probability 1/2.

The second term on the right-hand side of (2.8) is the firm’s profit per customer. The

firm sells q∗(p) units to each customer and each unit is sold at the price p and produced at

the cost cwt. In Figures II and III, we plot the firm’s profits per customer as a function of

the price p. The black curve is the plot of (mt/p)(p− cwt), which us the profit per customer

given that the customer is cash constrained. The gray curve is the plot of (wt/p)
1/γ(p−cwt),

which is the profit per customer given that the customer is not cash constrained. The firm’s

actual profit per customer is given by the lower envelope of the black and grey curves. Figure

II illustrates a case in which the customer’s money holdings are relatively high. In this case,

the price that maximizes the firm’s profit per customer is cwt/(1− γ). Figure III illustrates

12



the case in which the customer’s money holdings are relatively low. In this case, the price

that maximizes the firm’s profit per customer is p̂t. Overall, the price that maximizes the

firm’s profit per customer is pmt = max{cwt/(1−γ), p̂t}. We shall refer to pmt as themonopoly

price.
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Each firm chooses the price p so as to maximize the profit function Πt(p). Therefore, the

price distribution Ft is consistent with the firms’ pricing strategy only if the profit function

Πt(p) is maximized by every price on the support of Ft, i.e.

Πt(p0) = Π∗t for all p ∈ suppF ,
Π∗t ≡ maxpΠt(p).

(2.9)

The following lemma makes use of condition (2.9) in order to characterize the price

distribution Ft. The proof of the lemma adapts the arguments developed by Burdett and

Judd (1983) to characterize the price distribution in a market for an indivisible good where

buyers have deep-pockets to a market for a divisible good where buyers are cash-constrained.

Lemma 1 (Burdett and Judd, 1983): The unique price distribution that is consistent with

the firms’ pricing strategy is

Ft(p) = 1−
α1
2α2

∙
Rt(p

m
t )

Rt(p)
− 1
¸
. (2.10)

The price distribution Ft is continuous and its support is the connected interval [pt, pt], where

Rt(pt) =
α1

α1 + 2α2
Rt(p

m
t ),

pt = pmt .
. (2.11)

Proof : In Appendix A.

First, lemma 1 states that the price distribution is continuous. Intuitively, if the price

distribution had a mass point at p0, a firm that posts p0 could increase its profits by charging

p0 − � instead, as the deviation would leave the firm’s profit per customer approximately

constant but it would increase the firm’s customer base by a discrete amount. Second, lemma

1 states that the support of the price distribution is connected. Intuitively, if the support of

the price distribution had a gap between p0 and p1, a firm that posts p0 could increase its

profits by charging p1 instead, as the deviation would not affect the firm’s customer base and

it would increase the firm’s profits per customer. Third, lemma 1 states that the highest price
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on the support of the price distribution, pt, is equal to the monopoly price, p
m
t . Intuitively,

if pt were smaller than pmt , a firm that posts pt could increase its profits by charging pmt

instead, as the deviation would not affect the firm’s customer base and it would increase the

firm’s profits per customer. If, on the other hand, pt were greater than p
m
t , a firm that posts

pt could increase its profits by charging p
m
t , as the deviation would increase both the firm’s

customer base and the profit per customer.

Given the above properties of the price distribution and condition (2.9), we can derive

the expression (2.10) for Ft and the expression (2.11) for pt. Since the price distribution has

no mass points, the profit of a firm that charges the price p is given by

Πt(p) =
1

s
[α1 + 2α2(1− Ft(p))]Rt(p). (2.12)

Since the monopoly price is on the support of the price distribution, the maximized profit

of the firm is given by

Π∗t =
α1
s
Rt(p

m
t ) (2.13)

Finally, since every price on the support of the price distribution must maximize the profit

of the firm, it follows that for every p ∈ [p
t
, pt]

1

s
[α1 + 2α2(1− Ft(p))]Rt(p) = α1Rt(p

m
t ). (2.14)

Solving (2.14) with respect to Ft leads to equation (2.10). In turn, setting Ft(pt) = 0 and

solving for p
t
leads to equation (2.11).

2.4 Equilibrium

We are now in the position to define an equilibrium.

Definition 2 (Stationary Monetary Equilibrium): A stationary monetary equilibrium, Σ∗,

is a sequence of quantities {m∗
t , x

∗
t , h

∗
t , q

∗
t }∞t=0 and prices {w∗t , F ∗t } that satisfy the following

conditions:
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1. m∗
t+1, x

∗
t and h∗t solve the household’s problem in the AD market:

i =

Z
1[p≤p̂t]

"
w∗t
p

µ
m∗

t

p

¶−γ
− 1
#
[α1 + 2α2 (1− F ∗t (p))] dF

∗
t (p),

v0(x∗t ) = 1, h∗t (m) = x∗t + w∗−1t

¡
m∗

t+1 −m−Dt − Tt
¢
;

2. q∗t solves the household’s problem in the BJ market:

q∗t (p) =

(
m∗

t/p, if p ≤ p̂t,

(w∗t /p)
1
γ , if p > p̂t,

where p̂t = w∗t (w
∗
t /m

∗
t )

γ
1−γ ;

3. F ∗t is consistent with the solution to the firm’s problem in the BJ market:

F ∗t (p) = 1−
α1
2α2

∙
Rt(p

m
t )

Rt(p)
− 1
¸

all p ∈ [p
t
, pt],

where Rt is given by (2.8) and p
t
and pt are given by (2.11);

4. w∗t is such that the household’s money demand equates the government’s money supply:

m∗
t =Mt;

5. nominal variables grow at the rate μ and real variables are constant:

m∗
t+1 = μm∗

t , wt+1 = μwt, F ∗t+1(μp) = F ∗t (p),

x∗t+1 = x∗t , h∗t+1 = h∗t , q∗t+1(μp) = q∗t (p).

To establish the existence of a stationary monetary equilibrium, we proceed in two steps.

In the first step, we prove that the prices posted by the firms in the BJ market are decreasing

(in the first order stochastic dominance sense) with respect to the amount of money that

the households are expected to carry into the BJ market. The intuition for this result is

simple. If the households carry more money, the cash constraint is relaxed, and the quantity

of the good demanded by a customer at a low-price firm increases relative to the quantity

demanded at a high-price firm. For this reason, the profits that a low-price firm makes on

each customer increase relative to the profits made by a high-price firm. In order to keep

the firms indifferent between posting low and high prices, the distribution of prices must fall
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so that the number of customers served by a low-price firm declines relative to the number

of customers served by a high-price firm.

In the second step, we prove that the amount of money carried by the households in the

BJ market is decreasing with respect to the prices posted by the firms in the BJ market.

Intuitively, if the prices posted by the firms are higher (in the sense of first order stochastic

dominance), the household has a lower probability of meeting a low-price seller and, conse-

quently, a lower probability of being cash constrained. Therefore, if the prices posted by the

firms are higher, the value to the household from carrying an additional unit of money in

the BJ market falls.

From the above observations, it follows that the amount of money that the households

choose to carry into the BJ market is a monotonic function of the amount of money that

the firms expect the households to hold. Moreover, we can prove that the amount of money

that the households choose to carry into the BJ market is bounded. Hence, from Tarski’s

fixed point theorem (Tarski, 1955), there exists an m∗
t such that: (i) m

∗
t is the amount of

money that solves the households’ problem given that the price distribution is F ∗t , and (ii)

F ∗t is the price distribution given that the firms expect the households to have an amount

of money m∗
t . That is, from Tarski’s fixed point theorem, it follows that there exist m∗

t and

F ∗t that satisfy the equilibrium conditions (1) and (3). Given m∗
t and F ∗t , we can then find

the h∗t , x
∗
t , q

∗
t and w∗t that satisfy the remaining equilibrium conditions.

Theorem 3 (Existence): For any μ > β−1, a stationary monetary equilibrium exists.

Proof : In Appendix B.

3 Price stickiness and monetary neutrality

3.1 Price stickiness

The equilibrium uniquely pins down the aggregate price distribution in the BJ market, but

it does not pin down the price of an individual firm. In fact, an individual firm is indifferent

between posting any price from the support of the aggregate price distribution, as any one
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of these prices is profit maximizing. Figure IV illustrates the implications of this property

of equilibrium for the dynamics of the aggregate price distribution and for the dynamics of

the price of individual firms in the case of an inflationary economy, i.e. μ > 1. The black

line is the aggregate price distribution in period t, F ∗t , and the red line is the aggregate price

distribution in period t+1, F ∗t+1. All the firms in the vertically shaded area must change their

price between the two periods as their period-t price does not maximize profits in period t+1.

Each of the firms in the horizontally shaded area, however, is indifferent between keeping

its price constant, posting a new price from the interval [p
t+1

, pt+1], or randomizing between

keeping its price and changing it. The only equilibrium restriction on the price dynamics of

individual firms between period t and t+1 is that the aggregate price distribution in period

t+ 1 has to be F ∗t+1. We formalize this restriction in the following definition.

Definition 4 (Supportable policies): The stationary monetary equilibrium Σ∗ supports the

price policy p∗t+1(p) if, given that the price distribution in period t is F ∗t (p) and all firms

follow the policy p∗t+1(p), the price distribution in period t+ 1 is F ∗t+1(p).

In the remainder of the paper, we will restrict attention to the case of an inflationary
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economy and to pricing policies of the form

p∗t+1(pt) =

½
pt w.p. ρ
p0 w.p. 1− ρ

, if pt ≥ μp
t
= p

t+1
,

p∗t+1(pt) = p0, if pt < μp
t
= p

t+1
,

(3.1)

where ρ is a parameter between 0 and 1 and p0 is a price randomly drawn from the cumulative

distribution function

G∗t+1(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F ∗t (p/μ)

F ∗t (μpt) + (1− ρ)
h
1− F ∗t (μpt)

i , if p < μp
t
,

F ∗t (p/μ)− ρF ∗t (p, μ)

F ∗t (μpt) + (1− ρ)
h
1− F ∗t (μpt)

i , if p ≥ μp
t
.

(3.2)

According to (3.1), the firm posts a new price in period t + 1 if the price it posted in

the period t is outside of the support of the equilibrium price distribution for period t + 1.

Otherwise, the firm posts the same price in period t + 1 as in period t with probability ρ

and posts a different price with probability 1−ρ. Whenever the firm changes price, it draws

the new price from the distribution function G∗t+1(p) defined in (3.2). To see that G
∗
t+1(p)

is a legitimate cumulative distribution function, notice that G∗t+1(p) = 0 for all p ≤ μp
t
,

G∗t+1(p) = 1 for all p ≥ μpt, and G0∗
t+1(p) > 0 for all p in the interval between μp

t
and μpt.

Given that the price distribution in period t is F ∗t and that all firms follow the pricing

policy p∗t+1, the price distribution in period t+ 1 is given by

Ft+1(p) =

⎧⎪⎨⎪⎩
n
F ∗t (μpt) + (1− ρ)

h
1− F ∗t (μpt)

io
G∗t+1(p), if p < μp

t
,

ρF ∗t (p) +
n
F ∗t (μpt) + (1− ρ)

h
1− F ∗t (μpt)

io
G∗t+1(p), if p ≥ μp

t
.

(3.3)

Using (3.2) to substitute out G∗t+1(p) in (3.3), we obtain Ft+1(p) = F ∗t (p/μ) which, in turn,

is equal to F ∗t+1(p). Hence, we have established the following result.

Proposition 5 (Supported policies): The pricing policy (3.1) is supported by the stationary

monetary equilibrium Σ∗ for all ρ ∈ [0, 1].

The class of pricing policies described by (3.1) is not exhaustive, but it is sufficient to

capture a wide range of behaviors in a parsimonious way. For ρ = 1, the pricing policy (3.1)
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describes the extreme case in which a firm only changes its price when it is no longer profit

maximizing. Clearly, for ρ = 1, the pricing policy (3.1) attains the smallest fraction of price

changes and the highest average price duration that are consistent with equilibrium. For

ρ = 0, the pricing policy (3.1) describes the opposite extreme case in which a firm changes

its price in every period. Clearly, for ρ = 0, the pricing policy (3.1) attains the largest fraction

of price changes and the lowest average price duration that are consistent with equilibrium.

For ρ between 0 and 1, the pricing policy (3.1) describes the intermediate cases in which

the firm changes a profit maximizing price with probability ρ. As the parameter ρ increases

from 0 to 1, the frequency of price changes and the average duration of a price move from

one extreme to the other.

For a given ρ, let us compute the average duration of a price. The cumulative distribution

of new prices in period t is G∗t (p). Let N denote the largest integer such that μNpt ≤

pt. For n = 1, 2, ...N , a fraction G∗t (μ
np

t
) − G∗t (μ

n−1p
t
) of new prices lies in the interval

[μn−1p
t
, μnp

t
]. Also, a fraction 1 − G∗t (μ

Np
t
) of new prices lies in the interval [μNp

t
, pt].

Each price in the interval [μn−1p
t
, μnpt] will be changed in period t + i (and not before)

with probability ρi−1(1 − ρ), i = 1, 2, ...n − 1, and will be changed in period t + n with

probability ρn−1. Therefore, the average duration of prices in the interval [μn−1p
t
, μnpt] is

equal to (1 − ρ) + 2ρ(1 − ρ) + ... + nρn−1 = (1 − ρn)/(1 − ρ) periods. Each price in the

interval [μNp
t
, pt] will be changed in period t+ i with probability ρi−1(1− ρ), i = 1, 2, ...N ,

and will be changed in period t+N+1 with probability ρN . Therefore, the average duration

of prices in the interval [μNp
t
, pt] is equal to (1−ρN+1)/(1−ρ) periods. Overall, the average

duration of a new price is

A(ρ) =

(
NX
n=1

h
G∗t (μ

np
t
)−G∗t (μ

n−1p
t
)
i 1− ρn

1− ρ

)
+
h
1−G∗t (μ

Np
t
)
i 1− ρN+1

1− ρ
(3.4)

Notice that, since the ratio (1 − ρn)/(1 − ρ) is increasing in ρ and n and the distribution

function G∗t is increasing in ρ (in the first order stochastic dominance sense), A(ρ) is an

increasing function of ρ.

Second, we compute the fraction of prices that change between period t and t+ 1. The

cumulative distribution of prices in period t is F ∗t (p). A fraction F ∗t (μpt) of prices lies in
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the interval [p
t
, μp

t
], and each of these prices will be changed between period t and t + 1

with probability 1. A fraction 1− F ∗t (μpt) of prices lies in the interval [μpt, pt], and each of

these prices will be changed between period t and t+ 1 with probability 1− ρ. Overall, the

fraction of prices that change between t and t+ 1 is given by

FR(ρ) = F ∗t (μpt) + (1− ρ)
h
1− F ∗t (μpt)

i
. (3.5)

Clearly, FR(ρ) is a decreasing function of ρ.

Third, we compute the distribution of the magnitude of price changes. The density of

firms that post the price p in period t and a different price in period t + 1 is given by

F 0∗
t (p)/FR(ρ) if p is smaller than μp

t
, and by (1− ρ)F 0∗

t (p)/FR(ρ) if p is greater than μp
t
.

Among the firms that post the price p in period t and a different price in period t + 1, a

fraction G∗t+1(p(1 + x)) increases its price by x percent or less. Therefore, the cumulative

distribution function for the magnitude of price changes is given by

Ht(x, ρ) =
1

FR(ρ)

Z
G∗t+1(ρ(1 + x))

³
1− ρ1[p ≥ μp

t
]
´
dF 0

t(p). (3.6)

From (3.2) and (3.6), it is immediate to verify that the fraction of negative price changes,

Ht(0, ρ), is strictly positive for all ρ < 1.

The following theorem contains the main theoretical results of the paper.

Theorem 6 (Sticky prices): The stationary monetary equilibrium Σ∗, together with the

pricing policy p∗t+1, is such that the average price duration is A(ρ) and the frequency of a

price change is FR(ρ), where A(ρ) is increasing and FR(ρ) is decreasing in ρ.

(i) There exists a μ∗ > 1 such that, for all μ ∈ (1, μ∗) and all ρ ∈ (0, 1], the average price

duration A(ρ) is strictly greater than 1, and the frequency of a price change FR(ρ) is strictly

smaller than 1.

(ii) For all μ ∈ (1, μ∗) and all ρ ∈ [0, 1), the fraction of negative price changes, H(0, ρ), is

strictly greater than 0.

Proof : In Appendix C.

Part (i) of the theorem shows that, unless the growth rate of money is too high, our
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model is consistent with the observation that some firms leave their price unchanged for

weeks or months in the face of a continuously changing aggregate price level. Our model

delivers this result not because there are technological restriction to price adjustment, but

because, due to search frictions, there is an entire interval of prices for which the profits

of the firm are maximized. Part (ii) of the theorem shows that our model is consistent

with the observation that some firms change their price down in the face of a continuously

increasing aggregate price level. Our model delivers this result because of search frictions, not

because of idiosyncratic shocks to the firm’s cost of production. More broadly, the theorem

shows that one should be cautious in inferring the existence of menu costs or Calvo fairies

from the observed stickiness of individual sellers prices. Similarly, the theorem shows that

negative price changes in an inflationary economy are not necessarily caused by idiosyncratic

productivity shocks.

3.2 Monetary neutrality

In our model, some firms may post the same nominal price for many periods in the face of

a continuously increasing aggregate price level. The government, however, cannot increase

short-run production or consumption through an unexpected increase in the monetary base.

For example, consider what would happen in the government were to unexpectedly double

the stock of money at the opening of the AD market. In response to this policy, the amount

of money that the households carry into the BJ market would double, but so would the

distribution of prices that the firms post in the BJ market. Hence, the quantity of the BJ

good traded and produced would remain unchanged. Similarly, in response to this policy,

the amount of money that the households spend in the AD market would double, but so

would the prices charged by the firms in the AD market. Hence, the quantity of the AD

good traded and produced would remain unchanged. Overall, expansionary monetary policy

is completely neutral. Intuitively, money is neutral because, while the price posted by some

sellers is rigid, the distribution of prices is perfectly flexible.
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4 Quantitative evaluation

In the previous section, we developed a theory of price rigidity that does not rely on the

existence of technological frictions to price adjustment (e.g. menu costs or Calvo fairies), but

on the existence of search frictions in the product market. Unlike theories of price rigidity

based on technological constraints to price adjustment, our theory implies that money is

neutral because the equilibrium price distribution responds fully and instantaneously to

increases in the stock of money. In this section, we want to find out whether our theory

can account for the empirical facts about prices that have been documented by Klenow and

Kryvtsov (2008).

4.1 Data and calibration

The household’s preferences are described by the utility function for the BJ good, u(q) =

q1−γ/(1 − γ), the utility function for the AD good, v(x), and the discount factor, β. The

firm’s technology is described by the production function for the BJ good, f(h) = h/c, and

the production function for the AD good, g(h) = h. We restrict attention to the case in

which the BJ and AD goods are produced using the same technology, i.e. c = 1. The firm’s

pricing behavior is described by the policy function p∗t+1(p, ρ). The search frictions in the BJ

market are described by the probability distribution {αi}2i=0, where αi is the probability that

a household meets i firms. We restrict attention to the family of probability distributions

{αi}2i=0 that would obtain if each household could search the BJ market twice and each

search would lead to meeting a firm with probability λ. That is, we restrict attention to

the family of probability distribution such that α0 = (1− λ)2, α1 = 2(1− λ)λ and α2 = λ2.

Finally, the monetary policy is described by the growth rate of money, μ. Overall, the model

is fully characterized by the parameters {γ, β, ρ, λ, μ} and the utility function v(x).

We calibrate the model to the US economy over the period 1988-2004, and we interpret

the BJ market as the retail sector and the AD market as the intermediate goods sector. We

choose the model period to be a month. We choose the parameter β so that the annual

real interest rate in the model, β−12, equals the average real interest rate in the data, 1.035.

We choose the parameter μ so that the annual inflation rate in the model, μ12, equals the
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average inflation rate in the data, 1.03. We choose the parameters γ and ρ so as to minimize

the distance between the model-generated distribution of price changes in the BJ market,

Ht(x, ρ), and the empirical distribution of price changes observed in the retail sector (as

measured by Klenow and Kryvtsov, 2008). Finally, we choose the parameter λ so that

the average mark-up in the BJ market is 30 percent, which is a common estimate of the

average mark-up in the retail sector (see Faig and Jerez, 2005). After having calibrated the

parameters {γ, β, ρ, λ, μ}, the predictions of the model regarding the behavior of prices in the

BJ market are uniquely pinned down. Since we are interested in comparing these predictions

of the model with the empirical behavior of prices in the retail sector, we do not need to

calibrate the utility function for the AD good, v(x).

There is a simple intuition behind our calibration strategy for γ and ρ. The parameter

γ determines the elasticity of the firm’s profit per customer, Rt(p), with respect to the

firm’s price, p. Hence, the parameter γ affects the equilibrium price distribution, F ∗t (p), and

the equilibrium price change distribution, Ht(x, ρ). Similarly, the parameter ρ determines

the probability that a firm does not adjust its price when the firm is indifferent between

adjusting and not adjusting. Hence, the parameter ρ affects the distribution of prices among

firms that do not change their price and, consequently, the distribution of prices among firms

that do change their price, G∗t (p), and the price change distribution, Ht(x, ρ). Our calibration

strategy for λ is also easy to understand. In fact, the equilibrium price distribution, F ∗t (p),

is decreasing (in the first-order stochastic dominance sense) with respect to the meeting

probability λ.

4.2 The price of individual sellers

Using the calibrated model, we derive the predictions of the model regarding the behavior

of prices and compare these predictions with the empirical findings reported in Klenow and

Kryvtsov (2008). The bottom line is that our search theory of price rigidity can account

quite well for the empirical behavior of prices.

According to the data analyzed by Klenow and Kryvtsov (2008), the average duration of

a price in the retail sector is between 6.8 and 10.4 months, depending on whether temporary
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sales and product substitutions are interpreted as price changes or not. In particular, if

temporary sales and product substitutions are both interpreted as price changes, the average

duration of a price is 6.8 months. If product substitutions are considered as price changes but

temporary sales are not, the average duration of a price is 8.6 months. If neither product

substitutions nor temporary sales are considered price changes, the average duration of a

price increases to 10.4 months. Following Klenow and Kryvtsov (2008), we will take the

second case as our benchmark.

The average duration of a price predicted by the model is close to its empirical counter-

part. In particular, given an average inflation rate of 3 percent and a calibrated value of ρ

of 0.93, the model predicts that the average duration of a price is 11.6 months. Notice that,

for higher values of ρ, the average price duration predicted by the model would be higher,

up to a maximum of 34 months. Conversely, for lower values of ρ, the average price duration

implied by the model would be lower, down to a minimum of 1 month. The model would

generate the same average price duration as in the data for ρ = 0.91, a value very close to

the one that is obtained with our calibration. Also, notice that the average price duration is

decreasing with respect to inflation, as higher inflation increases the fraction of prices that

exit the support of the equilibrium price distribution in each period. These properties of the

average price duration are illustrated in Figure V.
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The blue histogram in figure VI is the empirical price change distribution estimated

by Klenow and Ksrystof (2008). Three features of the price change distribution are worth

stressing. First, on average, price changes are large. More specifically, the average of the

absolute value of price changes is 11 percent. Second, many price changes are small. More

specifically, 44 percent of all price changes are smaller than 5 percent in absolute value.

Third, many price changes are negative. More specifically, 35 percent of all price changes

are negative. Klenow and Krystof (2008), Golosov and Lucas (2007), and Midrigan (2006)

interpret the existence of many small and negative price changes as evidence of large and

frequent shocks to individual seller’s idiosyncratic productivity.

The red histogram in figure VI is the price change distribution predicted by the model.

One can immediately see that the model-generated price change distribution is very close

to its empirical counterpart and shares the same features. More specifically, for the model-

generated price change distribution, the average of the absolute value of price changes is 9

percent, the fraction of price changes between -5 and +5 percent is 43 percent, and the frac-

tion of negative price changes is 35 percent. Interestingly, our model generates a good fit of

the empirical price change distribution without seller-specific productivity shocks. Accord-

ing to our model, price changes are large because search frictions create a lot of dispersion

in the equilibrium price distribution. For example, the price posted by a firm at the 90th

percentile of the equilibrium price distribution is approximately 2 times larger than the price

posted by a firm at the 10th percentile. Hence, the firms whose price exits the support of

the distribution make, on average, a large price adjustment. According to our model, many

price changes are small because there are many firms that change their price before it exits

the support of the distribution. For the same reason, many price changes are negative.

Klenow and Kryvtsov (2008) estimate the relationship between the probability that a

firm adjusts its price for a given item (i.e. the price-change hazard) and the time since the

previous price adjustment (i.e. the age of the price). Moreover, they estimate the relationship

between the absolute value of the size of a price adjustment (i.e. the price-change size) and

the time since the previous price adjustment. After controlling for unobserved heterogeneity
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across different items, they find that the price-change hazard remains approximately constant

during the first 11 months and increases significantly during the 12th month. Similarly, after

controlling for unobserved heterogeneity, they find that the price-change size is approximately

independent of the age of the price.

The red histogram in figure VII is the price-change hazard predicted by our model. Notice

that, just like in the data, the price-change hazard is approximately constant for the first

11 months of the life of a price. However, unlike in the data, the price-change hazard does

not increase on the 12th month of the life of a price. These findings are easy to explain.

In our model, the equilibrium price distribution has a wide support. Therefore, during the

12 months after a price change, only few firms need to readjust their price because it is no

longer profit maximizing. Instead, during the 12 months after a price change, the majority

of firms change their price with probability ρ, a probability that is independent of the age

of a price. The model does not predict a spike in the price-change hazard after 12 months

because, unlike in the real world, firms in our model have no seasonal incentives to adjust

their price. The blue histogram in figure 2 is the price-change size predicted by the model.

For the same reasons that we mentioned above, the price-change size predicted by the model

is approximately independent of the age of a price.
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4.3 The effect of inflation

Using time-variation in the US inflation rate over the period 1988-2005, Klenow and Kryvtsov

(2008) measure the effect of inflation on the frequency of price adjustments (i.e. the extensive

marine of price adjustments) and on the magnitude of price adjustments (i.e. the intensive

margin of price adjustments). They accomplish this task by estimating the coefficient on

inflation in the regression of the frequency of price adjustments and in the regression of the

magnitude of price adjustments. Their main finding is that inflation has a positive effect

on both the frequency and the magnitude of price adjustments. More specifically, they find

that a 1 percentage point increase in inflation increases the frequency of price adjustments

by 2.38 percentage points and the magnitude of price adjustments by 3.55 percentage points.

Figure VIII illustrates the predictions of our model regarding the effect of inflation on

the frequency and magnitude of price adjustments. Notice that, according to our model, an

increase in inflation increases both the frequency and the magnitude of price adjustments.

These findings are easy to explain. First, an increase in inflation leads to a decline in the real

balances carried by the households in the BJ market and, in turn, the decline in real balances
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leads to a compression of the support of the equilibrium price distribution. Second, given the

length of the support of the equilibrium price distribution, an increase in inflation reduces

the time it takes for a price to exit the support. For both reasons, an increase in inflation

increases the fraction of prices that are adjusted in every month. For similar reasons, an

increase in inflation leads to an increase in the average price adjustment.

In our model, the effect of inflation on the extensive and intensive margins of price

adjustment has the same sign as in the data but a different magnitude. For example, an

increase in annual inflation from 3 to 4 percent increases the frequency of price adjustment by

approximately 9 percentage points, and it increases the magnitude of price adjustments by

approximately 5 percentage points. This discrepancy between the predictions of the model

and the results of the regression analysis should not be too surprising nor too much of a

concern. In the real world, fluctuations in the inflation rate are likely to be correlated with

other shocks (e.g. productivity shocks) that are not controlled for in the regression. In our

model, fluctuations in the inflation rate are the only shock.

Finally, Klenow and Kryvstov (2008) measure the effect of inflation on the fraction of

prices that increase (i.e. positive price adjustments) and on the fraction of prices that
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decrease (i.e. negative price adjustments). Again, they accomplish this task by estimating

the coefficient on inflation in the regressions of the fraction of prices that increase and on

the fraction of prices that decrease. Their main finding is that inflation has a positive effect

on the fraction of price increases and a negative effect on the fraction of prices that decrease.

More specifically, they find that a 1 percentage point increase in inflation increases the

fraction of positive price changes by 5.48 percentage points and it decreases the fraction of

negative price changes by 3.10 percentage points.

Figure IX illustrates the predictions of our model regarding the effect of inflation on

positive and negative price changes. Like in the data, our model predicts that an increase

in inflation increases the fraction of positive price adjustments, and it reduces the fraction

of negative price adjustments. However, the magnitude of the effect of inflation on these

variables is different than the one obtained from the regression analysis. In particular,

according to our model, an increase in annual inflation from 3 to 4 percent increases the

fraction of positive price changes by approximately 10 percentage points, and it decreases

the fraction of negative price changes by approximately 2.5 percentage points. For the reasons

discussed above, we do not find this discrepancy between the predictions of the model and

the outcomes of the regression analysis too surprising.
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4.4 Summary of results

From the previous paragraphs, it is clear that our theory of price rigidity can account quite

well for the empirical behavior of prices in the US retail market. First, the model predicts

an average price duration (11.6 months) that is close to the one observed in the data (8.6

months). Second, the model generates a price change distribution that has the same shape

and the same features of the empirical price change distribution (i.e. the average magnitude

of price changes is large, there are many small price changes, and there are many negative

price changes). Third, as it is observed in the data, in the model the probability and

magnitude of price adjustments are approximately independent of the age of a price. Fourth,

the model correctly predicts that inflation increases both the frequency and the magnitude

of price changes. Finally, the model correctly predicts that inflation increases the fraction of

positive price changes and reduces the fraction of negative price changes.

In contrast to our model, existing theories of price rigidity cannot account for all these

features of the empirical behavior of prices. On the one hand, menu costs theories of price

rigidity (e.g. Golosov and Lucas, 2007) cannot simultaneously account for the average dura-

tion of prices (which suggests that menu costs are large) and for the large fraction of price

changes that are small (which suggests that menu costs are small). On the other hand,

time-dependent theories of price rigidity (e.g. Calvo 1983 and Taylor 1980) cannot account

for the effect of inflation on the frequency of price adjustment, because this frequency is a

technological parameter. To the best of our knowledge, the only theory that matches the

empirical behavior of prices as well as ours is the one by Midrigan (2006), which combines

elements of state-dependent and time-dependent models. However, Midrigan’s theory has

very different implications than ours. In Midrigan’s model money is not neutral. Hence, the

central bank can engineer an expansion by injecting money into the economy. In our model,

money is neutral and monetary policy cannot be used to generate short-run outbursts of

production and consumption.
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5 Conclusions

We have constructed a theory of nominal price stickiness that is consistent with the empirical

evidence. Our theory does not impose ad hoc restrictions on firms’ pricing decisions — they

are free to change their prices when they like at no cost. Instead, it relies on the existence of

standard search frictions in goods markets, which give rise to equilibrium price dispersion.

Sticky prices are an obvious corollary of price dispersion. This would be true of relative

prices in an economy with perfect credit, in which some individual sellers may keep the

same price, measured in terms of a numeraire commodity, in the face of shocks to supply

and demand conditions (i.e., technology and preferences). Since many of the claims and

arguments in macroeconomics concern monetary matters, we develop the idea in the context

of a monetary economy, and show it is also true that individual sellers may keep the same

price, measured in terms of dollars, in the face of shocks not only to supply and demand but

also to changes in the money supply.

Contrary to what one sees in other models that claim to be consistent with the facts,

based on Calvo or Mankiw pricing, in our framework the monetary authority cannot engineer

a boom or get us out of a slump simply by issuing currency. We prove that money is

neutral in the model, although not superneutral (inflation can have real effects on prices and

allocations). Of course, a model is only a model. We did not prove that a central bank could

not engineer a real expansion merely by printing money in the real world. And, we did not

in this paper get into the question of, even if they could, does this mean they should? All

we did was to show that the observation of sticky nominal prices does not logically imply

that we need menu costs, or related devices, in our models to match the facts, and that this

observation also does not rationalize particular policy prescriptions as some people seem to

believe.
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Appendix

A Proof of Lemma 1

We take five steps to prove the lemma.

Claim 1: The firm’s maximized profits, Π∗t , are strictly positive.

Proof : For any λ > 1, the profits of a firm that posts the price λcwt are given by

Πt (λcwt) =
1

s
[α1 + 2α2 (1− Ft (λcwt)) + α2nt(λcwt)] q

∗
t (λcwt) (λ− 1) cwt

>
α1
s
q∗t (λcwt) (λ− 1) cwt.

Since q∗t (λcwt) > 0 and λ > 1, the previous inequality implies Πt (λcwt) > 0. In turn, since

Π∗t ≥ Πt (λcwt), we have Π∗t > 0.

Claim 2: The price distribution Ft is continuous.

Proof : On the way to a contradiction, suppose that there exists a price p0 such that nt(p0) >

0. The profits of a firm that posts p0 are given by

Πt (p0) =
1

s
[α1 + 2α2 (1− Ft (p0)) + α2nt(p0)]Rt(p0).

Now, consider any p1 < p0 such that (i) Rt(p1) is strictly positive and (ii)∆ ≡ Rt(p0)−Rt(p1)

is strictly smaller than α2nt(p0)Rt(p0)/ (α1 + 2α2). A price p1 that satisfies conditions (i)

and (ii) exists because the function Rt(p) is continuous in p and, since Πt(p0) = Π∗t > 0,

Rt(p0) is strictly positive. The profits of a firm that posts p1 are given by

Πt (p1) =
1

s
[α1 + 2α2 (1− Ft (p1)) + α2nt(p1)]Rt(p1)

≥ 1
s
[α1 + 2α2 (1− Ft (p0)) + 2α2nt(p0)] [Rt(p0)−∆]

≥ Πt (p0) + α2nt(p0) [Rt(p0)−∆]− (α1 + 2α2)∆

(A.1)

Since Rt(p0) − ∆ > 0 and ∆ < α2nt(p0)Rt(p0)/ (α1 + 2α2), it follows from (A.1) that

Πt (p1) > Πt (p0). However, from the fact that p0 belongs to the support of the price distri-

bution Ft, it follows that Πt (p0) = Π∗t ≥ Πt (p1). Hence, we have reached a contradiction.

Claim 3: The monopoly price, pmt , is the highest price on the support of the distribution
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Ft.

Proof: On the way to a contradiction, suppose that the highest price on the support of the

distribution is pt 6= pmt . The profits of a firm that posts the price pt are given by

Πt (pt) =
α1
s
Rt(pt). (A.2)

The profits of a firm that posts the price pmt are given by

Πt (p
m
t ) =

1

s
[α1 + 2α2 (1− Ft (p

m
t ))]Rt(p

m
t )

≥ α1
s
Rt(p

m
t )

>
α1
s
Rt(pt),

(A.3)

where the third line makes use of the fact that pmt is the unique maximizer of Rt. From (A.2)

and (A.3), it follows that Πt (p
m
t ) > Πt (pt). However, from the fact that pt belongs to the

support of the price distribution Ft, it follows that Πt (pt) = Π∗t ≥ Πt (p
m
t ). Hence, we have

reached a contradiction.

Claim 4: The support of the price distribution Ft is connected.

Proof : On the way to a contradiction, suppose that p0 and p1 are two prices on the support

of the distribution such that p0 < p1 and Ft(p0) = Ft(p1). Since p0 and p1 belong to the

support of the price distribution, they are greater than cwt and smaller than pmt . Hence,

cwt < p0 < p1 ≤ p1. The profits of a firm that posts the price p0 are given by

Πt (p0) =
1

s
[α1 + 2α2 (1− Ft (p0))]Rt(p0).

The profits of a firm that posts the price p1 are given by

Πt (p1) =
1

s
[α1 + 2α2 (1− Ft (p1))]Rt(p1).

First, note that α1 + 2α2 (1− Ft (p1)) is equal to α1 + 2α2 (1− Ft (p0)) because Ft (p1) =

Ft (p0). Second, note that Rt(p1) > Rt(p0) because cwt < p0 < p1 ≤ p1 and the function

Rt(p) is strictly increasing for all p ∈ [cwt, p
m
t ]. From these observations, it follows that

Πt (p1) > Πt (p0). However, from the fact that p0 and p1 belong to the support of the

price distribution Ft, it follows that Πt (p0) = Πt (p1) = Π∗t . Hence, we have reached a
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contradiction.

Claim 5: The price distribution Ft is given by

Ft(p) = 1−
α1
2α2

∙
Rt(p

m
t )

Rt(p)
− 1
¸
. (A.4)

Proof : Since the price distribution has no mass points, the profit of a firm that charges the

price p is given by

Πt(p) =
1

s
[α1 + 2α2(1− Ft(p))]Rt(p).

Since the monopoly price is on the support of the price distribution, the maximized profit

of the firm is given by

Π∗t =
α1
s
Rt(p

m
t ).

Finally, since every price on the support of the price distribution must maximize the profit

of the firm, it follows that for every p ∈ [p
t
, pt]

1

s
[α1 + 2α2(1− Ft(p))]Rt(p) = α1Rt(p

m
t ). (A.5)

Solving (A.5) with respect to Ft leads to equation (A.4).

B Proof of Theorem 3

We find it convenient to express all the nominal variables in real terms (i.e. units of labor).

Specifically, we let nt denote the real balances mt/wt, we let zt denote the real price p/wt,

and let Ht denote the distribution of real prices z. Then, a stationary monetary equilibrium

can be defined as a tuple {n∗, x∗, h∗, q∗,H∗} such that:

(i) n∗ and x∗ and h∗ solve the household’s problem in the AD market:

i =

Z ẑ(n∗)

z(n∗)

"
1

z

µ
n∗

z

¶−γ
− 1
#
[α1 + 2α2 (1−H∗(z|n∗))] dH∗(z|n∗),

v0(x∗) = 1, h∗(n) = x∗ + (μ−1n∗ − n−D − T ) ;

(ii) q∗ solves the household’s problem in the BJ market:

q∗(z, n) =

(
n/z, if z ≤ ẑ(n),

(1/z)
1
γ , if z > ẑ(n);
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(iii) H∗ is consistent with the solution to the firm’s problem in the BJ market:

H∗(z|n∗) = 1− α1
2α2

∙
R(zm, n∗)

R(z, n∗)
− 1
¸

all z ∈ [z(n∗), z(n∗)] ,

where R(z, n∗) = q∗(z, n∗)(z − c).

To establish the existence of a stationary monetary equilibrium, it is sufficient to prove

that there exists a n̂∗ such that the households’ optimal choice of real balances is n̂∗ when

the distribution of prices posted by the firms is H∗(z|n̂∗). That is, it is sufficient to prove

that there exists a n̂∗ such that

i =

ẑ(n)Z
z(n∗)

∙
1

z

³n
z

´−γ
− 1
¸
[α1 + 2α2 (1−H∗(z|n∗))] dH∗(z|n∗),

for n = n̂∗. We carry out this task in three steps.

Claim 1: Let n∗ and n∗ be defined as

ẑ(n∗) =
c

1− γ
, ẑ(n∗) = c

"
1− α1

α1 + 2α2

1

n∗

µ
c

1− γ

¶− 1
γ
µ

γc

1− γ

¶#−1
.

For all n∗0 and n∗1 such that 0 < n∗0 < n∗1 ≤ n∗, the price distribution H(z|n∗0) first order

stochastically dominates the price distribution H(z|n∗1). For all n∗0 and n∗1 such that n
∗ ≤

n∗0 < n∗1, the price distribution H(z|n∗0) is equal to the price distribution H(z|n∗1).

Proof: For all n∗ ∈ (0, n∗], the price distribution is given by

H(z|n∗) = 1− α1
2α2

∙
z(n∗)−1n∗ (z(n∗)− c)

z−1n∗ (z − c)
− 1
¸

and its support is given by [z(n∗), z(n∗)], where

z(n∗) = n∗−
γ

1−γ ,

z(n∗) = c

∙
1− α1

α1 + 2α2

µ
z(n∗)− c

z(n∗)

¶¸−1
.

Consider any n∗0 and n∗1 such that 0 < n∗0 < n∗1 ≤ n∗. Clearly, z(n∗0) > z(n∗1) and z(n∗0) >

z(n∗1). For z ≥ z(n∗0), H(z|n∗0) = H(z|n∗1) = 1. For z ∈ (z(n∗1), z(n∗0)), H(z|n∗0) < H(z|n∗1)

because z(n∗0) > z(n∗1). For z ≤ z(n∗1), H(z|n∗0) = H(z|n∗1) = 0. Hence, H(z|n∗0) first order

stochastically dominates H(z|n∗1).
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For all n∗ ∈ [n∗, n∗], the price distribution is given by

H(z|n∗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− α1

2α2

"
z(n∗)−

1
γ (z(n∗)− c)

z−
1
γ (z − c)

− 1
#
, if z ∈ [ẑ(n∗), z(n∗)],

1− α1
2α2

"
z(n∗)−

1
γ (z(n∗)− c)

z−1n∗ (z − c)
− 1
#
, if z ∈ [z(n∗), ẑ(n∗)]

and its support is given by [z(n∗), z(n∗)], where

z(n∗) =
c

1− γ
,

z(n∗) = c

"
1− α1

α1 + 2α2

z(n∗)−
1
γ (z(n∗)− c)

n∗

#−1
.

Consider any n∗0 and n∗1 such that n
∗ ≤ n∗0 < n∗1 ≤ n∗. Clearly, z(n∗0) = z(n∗1), ẑ(n

∗
0) > ẑ(n∗1)

and z(n∗0) > z(n∗1). For z ≥ ẑ(n∗0), H(z|n∗0) = H(z|n∗1). For z ∈ [ẑ(n∗1), ẑ(n∗0)), H(z|n∗0) <

H(z|n∗1) because z−1n∗0 < z−
1
γ . For z ∈ [z(n∗0), ẑ(n∗1)), H(z|n∗0) < H(z|n∗1) because n∗0 < n∗1.

For z ≤ z(n∗0), H(z|n∗0) ≤ H(z|n∗1). Hence, H(z|n∗0) first order stochastically dominates

H(z|n∗1).

For all n∗ ≥ n∗, the price distribution is given by

H(z|n∗) = 1− α1
2α2

"
z(n∗)−

1
γ (z(n∗)− c)

z−
1
γ (z − c)

− 1
#

and its support is given by [z(n∗), z(n∗)], where

z(n∗) =
c

1− γ
,

z(n∗) = c+
α1

α1 + 2α2

µ
z(n∗)

z(n∗)

¶− 1
γ

(z(n∗)− c) .

In this case, the price distribution does not depend on n∗. Hence, H(z|n∗0) = H(z|n∗0) for all

n∗0 and n∗1 such that n
∗ ≤ n∗0 < n∗1.

Claim 2: Given the price distribution H(z|n∗), the unique solution for n to the equilibrium

condition (i) is ψ(n∗). The solution ψ(n∗) has the following properties:

(i) For all n∗0, n
∗
1 such that 0 < n∗0 < n∗1 ≤ n∗, ψ(n∗0) ≤ ψ(n∗1);

(ii) For all n∗0, n
∗
1 such that n

∗ ≤ n∗0 < n∗1, ψ(n
∗
0) = ψ(n∗1);
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(iii) For all n∗ > 0, ψ(n∗) ∈ [ψ,ψ), where ψ > 0 and ψ = n∗.

Proof : Given the price distribution H(z|n∗), the equilibrium condition (i) is

i = α1

Z ẑ(n)

z(n∗)

∙³z
n

´γ 1
z
− 1
¸
dH(z|n∗)

+α2

Z ẑ(n)

z(n∗)

∙³ z
n

´γ 1
z
− 1
¸
d [1− (1−H(z|n∗))2].

Let φ(n, n∗) denote the right-hand side of the equation above. First, notice that limn→0 φ(n, n
∗) =

∞. Second, notice that φ(n, n∗) is strictly decreasing in n for all n ∈ (0, ẑ−1(z(n∗))). Third,

notice that φ(n, n∗) = 0 for all n ≥ ẑ−1(z(n∗)) = z(n∗)−
1−γ
γ . From these observations, it

follows that there exists a unique solution, ψ(n∗), to the equation φ(n, n∗) = i. Moreover,

ψ(n∗) > 0 and ψ(n∗) < ẑ−1(z(n∗)).

Consider any n∗0 and n
∗
1 such that 0 < n∗0 < n∗1 ≤ n∗. In this case, claim 1 implies thatH(z|n∗0)

first order stochastically dominates H(z|n∗1) and, consequently, that 1− (1−H(z|n∗0))2 first

order stochastically dominates 1 − (1 − H(z|n∗1))2. From these observations and from the

fact that (z/n)γ /z − 1 is decreasing in z, it follows that φ(n, n∗0) ≤ φ(n, n∗1). Therefore,

ψ(n∗0) ≤ ψ(n∗1). Moreover, it is straightforward to verify that ψ(n
∗
0) ≥ ψ > 0.

Now, consider any n∗0 and n∗1 such that n
∗ ≤ n∗0 < n∗1. In this case, claim 1 implies that

H(z|n∗0) is equal to H(z|n∗0) and that 1− (1−H(z|n∗0))2 is equal to 1− (1−H(z|n∗1))2. From

these observations, it follows that φ(n, n∗0) = φ(n, n∗1) and, hence, ψ(n
∗
0) = ψ(n∗1). Moreover,

it is straightforward to verify that ψ(n∗1) < n∗.

Claim 3: There exists a n̂∗ ∈ [ψ, ψ) such that ψ(n̂∗) = n̂∗.

Proof : Claim 2 implies that: (a) ψ(n∗) is an increasing function of n∗, (b) for all n∗ in the

interval [ψ,ψ], ψ(n∗) belongs to the interval [ψ, ψ). Hence, from Tarski’s fixed point theorem,

it follows that there exists a n̂∗ ∈ [ψ,ψ) such that ψ(n̂∗) = n̂∗. Moreover, claim 2 implies

ψ(n∗) ≥ ψ for all n∗ < ψ, and ψ(n∗) < ψ for all n∗ ≥ ψ. Hence, there is no n̂∗ /∈ [ψ,ψ) such

that ψ(n̂∗) = n̂∗.

C Proof of Theorem 6

We take two steps to prove Theorem 6.
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Claim 1: In any stationary monetary equilibrium, Σ∗,

pt − p
t

pt
≥ ∆ > 0, (A.6)

where

∆ =
2α2γ

2α2 + α1(1− γ)
.

Proof: Let Σ∗ be an arbitrary stationary monetary equilibrium. From condition (1) in the

definition of equilibrium, it follows that households are either cash constrained in all trans-

actions in the BJ market, or they are cash constrained in a positive fraction of transactions

and not constrained in the others.

First, suppose Σ∗ is such that households are cash constrained in all transactions. In this

case, we have

pt = w∗t

µ
w∗t
m∗

t

¶ γ
1−γ

≥ cw∗t
1− γ

, (A.7)

p
t
=

cw∗t∙
1− α1

α1 + 2α2

pt − cw∗t
pt

¸ . (A.8)

From (A.7) and (A.8), it follows that

pt − p
t

pt
=
2α2(pt − cw∗t )

2α2pt + α1cw∗t

≥ 2α2γ

2α2 + α1(1− γ)
= ∆,

(A.9)

where the second line makes use of the fact that pt ≥ (1− γ)−1cw∗t .

Next, suppose Σ∗ is such that households are cash constrained in some but not all transac-

tions. In this case, we have

pt =
cw∗t
1− γ

≥ w∗t

µ
w∗t
m∗

t

¶ γ
1−γ

, (A.10)

p
t
=

cw∗t"
1− α1

α1 + 2α2

µ
pt
w∗t

¶− 1
γ
µ
pt − cw∗t

m∗
t

¶# . (A.11)
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From (A.10) and (A.11), it follows that

pt − p
t

pt
=

(α1 + 2α2)γm
∗
t − α1γ

µ
c

1− γ

¶γ−1
γ

w∗t

(α1 + 2α2)m∗
t − α1γ

µ
c

1− γ

¶γ−1
γ

w∗t

≥ 2α2γ

2α2 + α1(1− γ)
= ∆,

(A.12)

where the second line makes use of the fact that m∗
t ≥ [(1 − γ)/c]

1−γ
γ w∗t . Combining (A.9)

and (A.12), we obtain (A.6).

Claim 2: Let μ ∈ (1, μ∗), where μ∗ = (1 − ∆)−1. Then, for any stationary monetary

equilibrium Σ∗ together with the pricing policy p∗t+1(p, ρ), we have

FR(ρ) < 1 and A(ρ) > 0, all ρ ∈ (0, 1],
Ht(0, ρ) > 0, all ρ ∈ [0, 1).

Proof : From claim 1 and μ ∈ (1, μ∗), it follows that

μp
t
<

1

1−∆
p
t
≤ pt. (A.13)

For any ρ ∈ (0, 1], the fraction of prices that adjust is

FR(ρ) = F ∗t (μpt) + (1− ρ)
h
1− F ∗t (μpt)

i
< F ∗t ((1−∆)−1p

t
) + (1− ρ)

h
1− F ∗t ((1−∆)−1p

t
)
i

< 1,

where the second line makes use of (A.13), and the third line makes use of the fact that

F ∗t ((1 − ∆)−1p
t
) < F ∗t (pt) = 1. Since the fraction of prices that adjust is less than 1, the

average duration of a price must be greater than 1 period. That is, A(ρ) > 1. Finally,

it is straightforward to verify that for all ρ ∈ [0, 1), the fraction of negative price changes,

Ht(0, ρ), is strictly positive.
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