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Abstract

This paper considers models of conditional moment restrictions that involve non-
parametric functions of single-index nuisance parameters. This paper proposes a
bootstrap method of constructing confidence sets which has the following three
merits. First, the bootstrap is valid even when the single-index estimator fol-
lows cube-root asymptotics. Second, the bootstrap method accommodates con-
ditional heteroskedasticity. Third, the bootstrap does not require re-estimation
of the single-index component for each bootstrap sample. The method is built on
this paper’s general finding that as far as the single-index is a conditioning vari-
able of a conditional expectation, the influence of the estimated single-indices in
these models is asymptotically negligible. This finding is shown to have a generic
nature through an analysis of Fréchet derivatives of linear functionals of condi-
tional expectations. Some results from Monte Carlo simulations are presented

and discussed.
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1 Introduction

Many empirical studies use a number of covariates to deal with the problem of endogeneity.
Using too many covariates in nonparametric estimation, however, tends to worsen the quality
of the empirical results significantly. A promising approach in this situation is to introduce a
single-index restriction so that one can retain flexible specification while avoiding the curse
of dimensionality. The single-index restriction has long attracted attention in the literature.?

Most literatures deal with a single-index model as an isolated object, whereas empirical
researchers often need to use the single-index specification in the context of estimating a
larger model. A prototypical example is a structural model in labor economics that requires
a prior estimation of components such as wage equations. When single-index components
are nuisance parameters that are plugged into the second-step estimation of a parameter of
interest, the introduction of single-index restrictions does not improve the convergence rate
of the estimated parameter of interest which already achieves the parametric rate of \/n.
Nevertheless, the use of a single-index restriction in such a situation still has its own merits.
After its adoption, the model requires weaker assumptions on the nonparametric function and
on the kernel function. This merit becomes prominent when the nonparametric function is
defined on a space of a large dimension and stronger conditions on the nonparametric function
and higher-order kernels are required. (See Hristache, Juditsky and Spokoiny (2001) for more
details.)

This paper focuses on semiparametric conditional moment restrictions where the restric-
tions contain nonparametric functions of single-indices that are identified and estimated prior
to the estimation of the parameter of interest. The restrictions allow the single-indices to
follow cube-root asymptotics. Numerous examples belong to this class of restrictions. For
example, a sample selection model where the selection equation error satisfies a conditional
median restriction belongs to the framework of this paper. In such a situation, one may
estimate the single-index in the selection equation using maximum score estimation. Other
examples include models of single-index exogeneity, where the instrumental variable takes
the form of a single-index that is to be estimated in the first step.

This paper considers two-step estimation, estimating the single-index component in the
first step and then estimating the parameter of interest in the second step. Then the main
concern is whether the first-step estimation error leaves its mark on the asymptotic distrib-

ution of the second step estimator. The analysis is typically based on the asymptotic linear

2For example, Klein and Spady (1993) and Ichimura (1993) proposed M-estimation approaches to estimate
the single-index, and Stoker (1986) and Powell, Stock and Stoker (1989) proposed estimation based on average
derivatives. See also Hirdle and Tsybakov (1993), Horowitz and Hirdle (1996), and Hristache, Juditsky and
Spokoiny (2001).



representation of estimated parameters. (See Newey (1994) for a systematic exposition re-
garding this analysis.) However, this approach does not apply when the first step parameter
follows cube-root asymptotics, and as far as the author is concerned, there is no literature
that formally studies this problem. Furthermore, when one attempts to make bootstrap-
based inference, it is not clear what method of bootstrap will deliver the wanted result. As
is well-known (Abrevaya and Huang (2005)), the method of bootstrap fails for estimators
that follow cube-root asymptotics.

This paper proposes a bootstrap method for the parameters of interest in this situation.
The method has three advantages. First, the bootstrap procedure is valid even when the
single-index component follows cube-root asymptotics. This is interesting in the light of
the result from Abrevaya and Huang (2005). This paper’s result affirms that as far as the
single-index is a nuisance parameter that is a conditioning variable of a conditional expec-
tation, there is a valid bootstrap procedure for the parameter of interest even when the
single-index estimator follows cube-root asymptotics. Second, the bootstrap method accom-
modates conditional heteroskedasticity. Note that conditional heteroskedascity is natural
for models under conditional moment restrictions. Third, the bootstrap method does not
require re-estimation of the single-index component or the nonparametric function for each
bootstrap sample. Hence it is computationally attractive when the dimension of the single-
index coefficient vector is large and its estimation involves numerical optimization. This is
indeed the case when the single-index is estimated through maximum score estimation and
the number of covariates is large. Therefore, the bootstrap method in this paper can be
conveniently used for models that involve nonparametric estimators of cube-root converging
single-indices.

The result of this paper is built on a general finding that when the single-index enters
as a conditioning variable of a conditional expectation, the influence of the estimated single-
index is asymptotically negligible even if it follows cube-root asymptotics. To place this
phenomenon in the perspective of Newey (1994), this paper considers functionals that involve
conditional expectations where the conditioning variable involves an unknown parameter. It
is shown that in this situation, the first order Fréchet derivative of the functional with respect
to the unknown parameter is zero. This means that there is no first order influence of the
estimator in the conditioning variable on an estimator of any functional of the conditional
expectation. This result may have interesting consequences in a broader context than that
studied in this paper.

For the sake of concreteness, this paper establishes a uniform Bahadur representation
of symmetrized nearest neighborhood (SNN) estimators over function spaces. Symmetrized

nearest neighborhood estimators do not suffer from the random denominator problem and



hence do not require a trimming sequence. Based on the uniform representation result,
this paper offers lower level conditions for the asymptotic theory of this paper. A Bahadur
representation of SNN estimators was originally established by Stute and Zhu (2005) who
established a non-uniform result in the context of testing single-index restrictions. In partic-
ular, Stute and Zhu (2005) showed that the first order effect of a \/n-converging single-index
estimator is asymptotically negligible. This paper puts their finding in the perspective of
semiparametric estimation and shows that the phenomenon of the asymptotic negligibility of
the estimated single-index arises even when the single-index component has a cube-root rate.
The uniform Bahadur representation is also useful for many other purposes, for example, for
analyzing various semiparametric specification tests.

There are many researches that study models with estimated regressors. For example,
Newey, Powell, and Vella (1999) and Das, Newey, and Vella (2003) considered nonparamet-
ric estimation of simultaneous equation models. Li and Wooldridge (2002) analyzed partial
linear models with generated regressors when the estimated parameters in the generated
regressors are y/n-consistent. Rilstone (1996) and Sperlich (2009) studied nonparametric
estimators that involve predicted regressors. While the last two papers are related to this
paper, the set-up of this paper is different. The asymptotic behavior of the nonparametric
estimator of the predicted regressors is not a major concern here because the nonparamet-
ric part is a nuisance parameter in this paper’s set-up. The main concern is centered on
the inference about the finite dimensional parameter of interest when the semiparametric
nuisance parameter involves a nonparametric function and a single-index that potentially
follows cube-root asymptotics.

The paper is organized as follows. In the next section, we define the scope of this
paper by introducing models of semiparametric conditional moment restrictions and motivate
the models with examples that are relevant in the literature. Section 3 proposes a new
bootstrap-based inference method for the models and offers the main result that establishes
the asymptotic validity of the bootstrap procedure under general conditions. Some heuristics
behind the results are also provided. Section 4 investigates whether the proposed bootstrap
procedure performs well in finite samples by using Monte Carlo simulations. Section 5
concludes. The Appendix introduces a general lemma about continuity of functionals of
conditional expectations in parameters constituting the conditioning variable. The appendix
also presents a general uniform Bahadur representation of SNN estimators which can be

useful for other purposes.



2 Semiparametric Conditional Moment Restrictions

This paper focuses on the following form of semiparametric conditional moment restrictions.
For j = 1,---,J 41, let \j(z) = \j(z;6p), where )\;(:) is a real function known up to
0o € R?. For example, \;(z;6,) = a:jTHOJ-, where z; and 0, ; are conformable subvectors of
z and 6p. Another example is \;(x;60) = exp(z] 0o;)/{1 + exp(x 6o ;)}. Given observable
i.i.d. random vectors X; € R, Y; € R/, and observable i.i.d. binary random variables
D; € {0,1}, we define

/\i7j = A](XZ) and lui,j =E D/Z,j|AZ,]; Dz — 1] ,

where Y;; is the j-th entry of Y. Let y; = (p;1,- - - 4 5)". Then we assume that the

parameter of interest 3, € R% is identified through the following restriction:

where W; = (Wi, Aigi1), (Vi, Wii) € RV T s an observable random vector and p(-, -; 3,) :
R%*/ — R is known up to 3, € B C R%. Throughout this paper, we assume that 6, is
identified before one imposes the conditional moment restriction in (1). Hence it suffices that
the restriction in (1) identifies the parameter §, only. The function p(-,-; 3,) is called the
generalized residual function which is a generalized version of the residual from the linear
regression models. The random variable );; : R — R is a single-index of X;, and the
distributions of \; ;’s are assumed to be absolutely continuous with respect to the Lebesgue
measure.

This paper’s situation is such that the parameter of main interest is 3, and the parameter
0o in the single-index is a nuisance parameter. The primary focus of this paper is on the
inference of 3, when 6 is estimated at the rate of n'/? or n'/3. Note that WW; is allowed to
depend on an unknown continuous single index \; ji;. This feature is relevant when the IV
exogeneity takes the form of single-index exogeneity, where the instrumental variable takes

the form of a single-index.

Example 1 (Sample Selection Model with a Median Restriction) : Consider the

following model:

Y, = 5JW1,1‘+U¢ and

where \; = XZ-T 6. The variable Y; denotes the latent outcome and W, ; a vector of covariates
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that affect the outcome. The binary D; represents the selection of the vector (Y;, W1 ;) into
the observed data set, so that (Y;,W;;) is observed only when D; = 1. The incidence of
selection is governed by a single index A; of covariates X;. The variables v; and ¢; repre-
sent unobserved heterogeneity in the individual observation. The exclusion restriction here
requires that W, ; is not measurable with respect to the o-field generated by ;.

The variable ¢; is permitted to be correlated with X; but Med(g;|X;) = 0. And Wy, is
independent of (v;,¢;) conditional on the index A; in the selection mechanism. This involves
the median restriction and the single-index exogeneity. The assumptions of the model are
certainly weaker than the common requirement that (W, ;, X;) be independent of (v;, ¢;). (e.g.
Heckman (1990), Newey, Powell, and Walker (1990).) More importantly, this model does not
assume that X; is independent of ¢; in the selection equation or of v; in the outcome equation.
Hence we cannot use the characterization of the selection bias through the propensity score
P{D; = 1|\;} as has often been done in the literature of semiparametric extension of the
sample selection model. (e.g. Powell (1989), Ahn and Powell (1993), Chen and Khan (2003),
and Das, Newey and Vella (2003)).

From the method of Robinson (1988), the identification of f3, still follows if the matrix

E [(X; — E[X;|D; = 1, \))(X; — E[X|D; = 1,\]) T |D; = 1]
is positive definite. In this case, we can write for the observed data set (D; = 1)
Y; = B Wi +7(N) + w,;,

where u; satisfies that E[u;|D; = 1, W; ;, \;] = 0 and 7 is an unknown nonparametric function.
This model can be estimated by using the method of Robinson (1988). Let py; = E[Y;|D; =

L, A], and pyy, ; = E[W1;1D; = 1, \i]. Then, we consider a conditional moment restriction:

E [{Y; — pyi} = Bo {Wii — i }1Di = 1, Wi, Ai] = 0.

By putting
p(Vi, 1133 Bo) = {Y: — pyi} — Bo AWii — b))

and W; = (W];,\;)7, we find that this model belongs to the model of semiparametric
conditional moment restrictions.

One may estimate 6y in \¢ using maximum score estimation in the first step and use it in
the second step estimation of 3,. Then the remaining question is concerned with the effect

of the first step estimator of 6y which follows cube root asymptotics upon the estimator of

Bo-



Note that the identification of 6y does not stem from a direct imposition of single-index
restrictions on E[Y;|D; = 1, X; = -] and E[Z;|D; = 1, X; = -]. The identification follows from
the use of auxiliary data set ((D; = 0), X;) in the sense of Chen, Hong, and Tarozzi (2008).
Such a model of "single-index selectivity bias" has a merit of avoiding a strong exclusion
restriction and has early precedents. See Powell (1989), Newey, Powell, and Walker (1990),
and Ahn and Powell (1993). B

Example 2 (Models with a Single-Index Instrumental Variable) : Consider the

following model:

Y, = Z;BO_‘_EM and

where \; = X,'0y and ¢; and 7, satisfy that E[e;|\;] = 0 and Med(n;|X;) = 0. The data
set (D;, X;) plays the role of an auxiliary data set in Chen, Hong, and Tarozzi (2008) and
enables us to identify the single-index \; that plays the role of the instrumental variable
(IV). However, the IV exogeneity condition is weaker than the conventional one because
the exogeneity is required only of the single-index X;'6, not of the whole vector X;. In
other words, some of the elements of the vector X; are allowed to be correlated with ;.
Furthermore, X; is not required to be independent of 7, as long as it maintains the conditional
median restriction. This conditional median restriction enables one to identify 6y and in
consequence [3,,.

We consider the following conditional moment restriction:
E[Y; - 2;50‘)‘1'] =0.

In this case, p(V;,u;;3,) = Yi — Z' B, and W; = )\;. Hence there is no nonparametric
component y in the generalized residual function.

We can first estimate \; and then estimate 3, by plugging in these estimates into a
sample version of the conditional moment restriction. Again, when 6, is estimated using
maximum score estimation, the main question is how we can analyze the estimator’s effect

on the estimation of 3,. W



3 Inference

3.1 Estimators and Asymptotic Distributions

This paper considers a two-step procedure where one estimates the single-index parameter
0 first, and using this estimator, estimates (3, in the second step. Suppose that we have
obtained a consistent estimator 6 of 6. For this, one may use estimation methods in the
literature of single-index restrictions (e.g. Ichimura (1993), Hristache, Juditsky and Spokoiny
(2001).) When the single-index is involved in a selection equation with a conditional median
restriction, one may obtain 6 through maximum score estimation. All we require for our

172 or n=1/3 (Assumption

purpose is that the rate of convergence of the estimator 0 is either n~
2 below).

Given the estimator é, we let 5\” =\ (X 9) As for i, this paper considers symmetrized
nearest neighborhood (SNN) estimation. Let dy; = £ 377" | 1{5\1»7]- < 5\;”} and fiy, = [fig, 1,
- [, 5]", where

By = Z?:% DiYi; K (i — k) )

o i Dily (i — )
and Kj(u) = K(u/h)/h and K : R — R is a kernel function. The estimator fi ; is a
SNN estimator proposed by Yang (1981) and studied by Stute (1984). The probability

integral transform of \; ; turns its density into a uniform density on [0, 1]. (Recall that we

assume that the distribution of J; ; is absolutely continuous throughout this paper.) Using
the probability integral transform obviates the need to introduce a trimming sequence. The
trimming sequence is often required to deal with the random denominator problem (e.g.
Ichimura (1993) and Klein and Spady (1993)), but there is not much practical guidance for
its choice. The use of the probability integral transform eliminates such a nuisance altogether.

We introduce an estimator of 3,. For any vectors x and y in R, we write 2 < y to
mean that x; <y, forall j =1,---, dy, where x;’s and y;’s are entries of  and y respectively.
We define

" n 2

3= argminZDk {Z Dip(Vy, fu; B)L{W; < Wk}} :
BeB i—1

where W; = (Wi, ;\Z J+1)- The estimation method is similar to the proposal by Dominguez

and Lobato (2004). While they considered weakly dependent observations in contrast to the

i.i.d. set-up of this paper, their model does not involve single-index components that are

estimated in the first step. Let ©(5) = {6 € R% : ||0 — 0,]| < 6}.

Assumption 1: (i) {(Vi, X,,Y;, W;, D;)}?, is a random sample.
(i) E[p(Vi, p;; B)Ds|W;] = 0 as. iff § = 3, and 3, belongs to the interior of a compact set



B.
(iii) p(v, u; B) as a function of (8, ) € B x R’ is twice continuously differentiable with the
first order derivatives pg and p, and the second order derivatives pgg5, pg, and p,,, such that

E[SUPﬁeBHﬁ(V;,M“ﬁ)Hp] <00, p > 2a for all ﬁ S {pa pﬁvp;upﬁﬁapﬁ,u}'
(iv) For some M > 0 and p > 8, E[||Y|[!] < M, El||p,(Vi, u;; Bo)|IP] < M, and

E[Sup(ﬁ,ﬁ)eBx[fM,M}Hp,uu(‘/;aﬂ?ﬂ)”q] <00, ¢>8. (3)

Assumption 2 : The estimator § satisfies that ||§ — 0|| = Op(n~") with r = 1/2 or 1/3.

Assumption 3 : (i) K(+) is symmetric, compact supported, twice continuously differentiable
with bounded derivatives, [ K(t)dt = 1.
(ii) n'/2h3-Y4 4 n=12p=2-Y4(—log h) — 0.

Assumption 1 is standard in many models of conditional moment restrictions. The con-
dition E[[|p,(Vi, p;; Bo)|[P] < M and (3) in Assumption 1(iv) are trivially satisfied when
p(v, p; B) is linear in p as in Examples 1 and 2. Assumption 3(i) is satisfied, for exam-
ple, by a quartic kernel: K(u) = (15/16)(1 — u?)?1{|u| < 1}. The bandwidth condition
in Assumption 3(ii) does not require undersmoothing; it is satisfied by any h = n™* with
q/(6g—2) < s < q/(4g+2). There are other assumptions that are of more technical character.

These assumptions (named Assumption A) and discussions are found in the appendix.

Theorem 1 : Suppose that Assumptions 1-3 and Assumption A (in the Appendix) hold.
Then,

V(B = By) = (/H )" dFy p-i( )_1/H (w)dFwp=1(w),

where H(w) = Elps(Vi, pi; Bo) Dil{W; < w}], Fwp=1 is the conditional CDF of W; given
D; = 1, C is a centered Gaussian process on R¥W that has a covariance kernel given by

Cwy, wp) = E[&§;(w1)&;(wa) Di] with &;(w) = p(Vi, pi; Bo) {Wi < w} —ri(w),

J
ri(w) =Y E{W; < w}p,; (Vi i Bo)| i, Di = 1] (Yi, — i) (4)

j=1

and p,,;(Vi, 13 Bo) 1s the j-th entry of p,(Vi, p;; By)-

Compared with the asymptotic covariance matrix of Dominguez and Lobato (2004), the
asymptotic covariance matrix contains additional terms 7;(w). This is due to the nonpara-

metric estimation error in fi. The asymptotic covariance matrix remains the same regardless

9



of whether we use the estimated indices 5\” or the true indices A; ;. This is true even if 0
follows cube root asymptotics. The following subsection offers heuristic arguments behind

this phenomenon.

3.2 Some Heuristics

For simplicity, assume that A(X;;0) = X,J0, D; =1 for all i = 1,- - -, n, and the generalized

residual takes the form of

p(Vis 135 Bo) = By — E [Y;’XZTHO} )

where 3, € R. Furthermore, we assume that the moment condition
E [p(Vi, ;5 80)Zi] = 0

identifies 3, for a certain instrumental variable Z;, where we normalize EZ; = 1. Then j, is
identified as 5, = I'(6y) where

I'(0) =E [E[Y;]X/0] Z] .

The first order effect of the estimation of 6y on that of 3, is determined by the way I'(9)
behaves as we perturb 6 around 6. (e.g. See Newey (1994).)
Under certain regularity conditions for the conditional density of Y; given X;'0, we can

show that (see the appendix for details)
0(61) = T(82) = O(][01 — 02[*). (5)

In other words, I'(0) is fairly insensitive to the perturbation in 6. (Note that the order is not
O(]|01 — 05]]) but O(||61 — 02||?).) Roughly speaking, when # is within a n~'/3-neighborhood
of 0y, (0) is within a n~2/3-neighborhood of . This means that \/n(I'(0) — T'(6y)) —p 0,
even if 6 has the cube-root convergence rate. Therefore, there is no estimation error effect
from 6.

The result in (5) can be seen intuitively as follows. To simplify the notations, we write

Ay = X;"0, and Ay; = X, 0,. First, using the law of iterated conditional expectations,

F(Ql) - P(92) = E [Zz' {E [Yz‘|A1,z‘] - E [Y;|A2z]}]
= E[E[Zi|A1;, Ao {E [Yi|Ar] — E[Yi|Ag;]}]

10



By adding and subtracting terms, we rewrite the above as

E[(E[Zi|A1i, Aol — E[Zi]Ag]) (E [Yi|Ar:] — E[Yi|Ar s, Agi])] (6)
+E[(E [Zi| A1, Aoy] — E [Zi|Ag,]) (E[Yi|Ari, Ao] — E[Yi[Ag])]
+E [E [Zi|Ag: ] {E [Yi|Ar:] — E[Yi[Ag,]}] .

The last expectation is equal to
E[{E [Zi|A2,] — E[ZiAvz, Ao HE [Yi|Ar] — E[Y[A2]}
because E [E [Z;|A1;, Ao | {E [Y;|A1;] — E[Y;|As;]}] = 0. Hence if for S; =Y, or Z,,

E [SZ|A172] — E [S|A17Z‘,A27Z'] ~ O(HHI — 02“) and (7)
E [Si|A1] — E [Si| Ay, O([101 — 6]]),

Q

all the components in the sum of (6) are O(||0; — 05]|?). Therefore I'(0) is insensitive to the
first order perturbation of . This analysis carries over even when A is an infinite dimensional
parameter taking values in a function space, say, A, as long as certain regularity conditions
for conditional densities are maintained. A detailed version of this result is presented in the
appendix.

It should be noted that the asymptotic negligibility result relies on the particular structure
where the single-index ); (here \; = X,'0) enters as a conditioning variable of a conditional
expectation. For example, Ahn and Powell (1993) and Chen and Khan (2003) use generated
regressors to estimate the main parameter of interest. In their cases, the generated regressors
do not enter as a conditioning variable of a conditional expectation, but enter as part of
a weighting matrix. Hence the phenomenon of asymptotic negligibility of the generated
regressor does not arise. Another example that is worth attention is the case where one
employs density weighting in the estimation using the density of the single-index. In this case,
the asymptotic negligibility of the estimated single-index does not arise either. For instance,
the model of Li and Wooldridge (2002) involves a generated regressor as a conditioning
variable of conditional expectation, and as shown in Theorem 2.1 in their paper, there exists
a first order effect of generated regressors in the asymptotic theory. This result appears to
stand in contradiction to the result of this paper. To see this closely, observe that Li and

Wooldridge (2002) considers the following partial linear model (Eq. (4) on page 627):

Y = Xy +m(n,) +u

11



where m is an unknown function and 7, = S; — Z, @ with a being an unknown parameter.
The parameter of interest is . Following Robinson (1988) and applying density weighting
as in Powell, Stock and Stoker (1988), Li and Wooldridge estimate 7 based on the following

identification strategy:

7 = E [(X: = E(Xiln,)(X; = B(X:|n)) " £2(n,)] " E [(¥; = B(Yiln)(X; — E(Xiln,) T f*(n,)]

where f denotes the density of 1,. The asymptotic variance of their least squares estimator
of v involves an additional term due to the use of 7); = S; — Z, & in place of 7,. Precisely
speaking, this additional term stems from the use of density weighting. The density weighting
makes v depend on the variable 7, outside the conditional expectations E(X;|n,) and E(Y;|n,).
One can show that this additional term disappears when one takes the density weighting f

to be a constant 1.

3.3 Bootstrap Procedure

While one can construct confidence sets for 3, based on the asymptotic theory, the esti-
mation of the asymptotic covariance matrix is complicated. requiring a choice of multiple
bandwidths. This paper proposes a bootstrap method that is easy to use and robust to
conditional heteroskedasticity. The proposal is based on the wild bootstrap of Wu (1986).
(See also Liu (1988).)

First, we find a consistent estimator 7;(w) of r;(w) defined in Theorem 1. As for the

estimator 7;(w), we assume the following:
Assumption 4 : sup,craw Maxi<i<y, |7 (w) — r(w)| = op(1).

Conditions for the uniform consistency of a nonparametric estimator is well-known in the
literature (e.g. Hansen (2008)). Then, define 7, = #;(W;) and

pu(B) = 1{VVZ < Wk}P(Vl,ﬂl;ﬁ),

where [i, is a first step estimator defined in (2). This paper suggests the following bootstrap

procedure.

Step 1: For b = 1, - -, B, draw i.i.d. {w;p}; from a two-point distribution assigning

masses (v/5+1)/(2v/5) and (v/5 — 1)/(2v/5) to the points —(v/5 — 1)/2 and (v/5 + 1)/2.

12



Step 2 : Compute {BZ :b=1,---,B} by

BeB

5 = argmlnz Dy, {Z D, [(plk ﬁm(ﬁ)) T Wi {'a”f(m + ﬂkH }

and use the bootstrap distribution of\/ﬁ(BZ — B) in place of the finite sample distribution of
V(B — B,) for inferences.

The bootstrap procedure is computationally very simple. The estimator /i, is stored once
and repeatedly used for each bootstrap sample. In other words, we do not have to re-estimate
0y for each bootstrap sample. This computational merit is prominent when the dimension
of the parameter 6, is large and one has to resort to a numerical optimization algorithm for
its estimation as in the case of maximum score estimation.

The bootstrap procedure is a modified version of a wild bootstrap procedure which is
typically used in the context of semiparametric specification tests (e.g. Héirdle and Mammen
(1993), Whang (2000), Delgado and Gonzélez Manteiga (2001), Song (2009).) The main
modification of the procedure is that it includes the additional term 7, in the bootstrap
procedure. This inclusion is made to induce the first order estimation error effect of i in
the bootstrap estimation problem. If there were a further estimation error effect from A, we
would have to induce this further effect in the bootstrap to ascertain validity of the bootstrap
procedure. When ) follows cube-root asymptotic theory, it is not clear how one can accom-
plish this. Now, since the result of Theorem 1 has established that there is no estimation
effect from \ even if it follows cube-root asymptotics, we do not need to induce the estima-
tion error effect in the bootstrap as far as bootstrap validity is concerned. This is the main
reason why the bootstrap still works even if it has an estimator of the nuisance parameter

1/3.

that converges at the rate of n~ Following the conventional notations, we denote — 4« to

indicate the convergence of bootstrap distributions conditional on {(V;, X;,Y;, W;, D;)}7 ;.

Theorem 2 : Suppose that Assumptions 1-3 and Assumption A (in the Appendix) hold.
Then,

VB, — B) =g </H )T dFwp=1( ) /H w)dFy p=1(w) in P

where H and ¢ are as in Theorem 1.

Theorem 2 shows that the bootstrap procedure is asymptotically valid. As we explained

above, the main reason that this bootstrap procedure works is due to the fact that there
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is no first order estimation effect from 6. It is expected that the same phenomenon will
carry over to the situation where the observations are weakly dependent, or even where the
function A(-) is a nonparametric function. In fact, the results of Theorems 1 and 2 stem from
the result of continuity of functionals of conditional expectations. (See Section 3.2 above
and Section 6.1 below in the Appendix.) This continuity result does not rely on the i.i.d.
assumption of the observations. Furthermore, the result is established in a general set-up
where \ is a nonparametric function. A full development in these extensions is left to a
future research.

In the following we revisit the two examples that we discussed before and see how the

bootstrap procedure applies.

Example 1 (Continued): Let e; = Y; — py,; — Bo (Wl,i - :U’Wl,i) and p; = [:U’Y,iaﬂwl,i]—r'
After some algebra, we find that r;(w) defined in (4) is equal to —F;(w) - e;, where F;(w) =
E [D;1{W; < w}|\;]. We construct estimator é; of e; by using estimators jiy;, fiyy, ; as in (2)

and B , and define
ooy 2 DiliW < whK, (45 — )

F; :
(w) > i1 DK (4 — ;)

where @; = L Y71, 1{\, < A;}. Finally, let

Ay = & (LW < Wi 4wy (HW: < Wi} = Bi(w)).

Then the bootstrap version of the estimator B is defined as

BeEB

n n n 2
BZ = argminz Dy {Z DTy, — BT (Z Dsz,lk) } ;
k=1 =1 =1
where
Ty = {A —{Y1 — ﬂY,l}}Dl and Tx i = (Wi — lELWl,l)Dl'

Since the form is least squares estimation, the solution BZ is explicit as follows. Let T'x be
the n x dy, vector whose k-th row is given by Y ', T)Ezk and let Ty be the n x 1 vector

whose k-th entry is given by >, | Ty . Then,
Ak -1
By, = (TxTx) TxTy.

Note that for each b = 1,- - -, B, it suffices to use the same estimators, fiy,, fiy, ;, and only

change w;; in the definition of A.

Example 2 (Continued): In this example, as for r;(w) defined in Theorem 1, r;(w) = 0.
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Hence let 6 be the maximum score estimation of 0y and Wk =X ];r 0. We define
2
b

" . AT .
Ty = W <WiH{B Zi+wi({Yi — Z'B})} and
Txw = Z1{W; < Wil

BZ = argminz {
k=1

BeB

Z Ty, — ﬁT (Z TX,Zk:)
=1 =1

where

Then, the solution is explicit as BZ = (T; TX)_1 Ty Ty similarly as before when we define Ty
be the n X dz vector whose k-th row is given by )" | Ty ;, and let Ty be the n x 1 vector
whose k-th entry is given by > | Ty .

4 A Monte Carlo Simulation Study

4.1 The Performance of the Estimator

In this section, we present and discuss some Monte Carlo simulation results. Based on the

sample selection model in Example 1, we consider the following data generating process. Let
Z’i = Uli — an/Q a,nd Xl = U2i — 772/2

where Uy; is an i.i.d. random variable that has a uniform distribution on [0, 1], Uy; and n, are
random vectors in R* with entries equal to i.i.d random variables of uniform distribution on
[0, 1]. The dimension k is chosen from {3,6}. The random variable 7, is the first component

of n;. Then, the selection mechanism is defined as
D; = 1{X, 0y + & > 0},

where ¢; follows the distribution of 27; x iZZﬁl O (X2 + | X)) + ¢, ¢ ~ N(0,1), @

denoting the standard normal distribution function, and 7; is chosen as follows:

DGP Al: T; ~ N(0,1) or
DGP A2: T; ~ t distribution with degree of freedom 1.
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Hence the selection mechanism has errors that are conditionally heteroskedastic, and in the
case of DGP A2, heavy tailed. Then, we define the latent outcome Y;* as follows:

Y;* = Zlﬁo + v,

where v; ~ (al;+e;) x ® (Z% + |Z;|) with e; ~ N(0,1). Therefore, v; in the outcome equation
and ¢; in the selection equation are correlated, so that the data generating process admits
the sample selection bias. The degree of the sample selection bias varies depending on the
choice of a. This simulation study considered a € {1,2}. We set 6, to be the vector of 2’s and

o = 2. In the simulation studies we estimated 6, by using the maximum score estimation
to obtain 6.

There are four combinations, depending on whether 6 is assumed to be known (TR) or
estimated through maximum score estimation (ES) and depending on whether SNN estima-
tion was used (NN) or usual kernel estimation was used (KN). For the latter case, we used the
standard normal PDF as a kernel. Bandwidths for the estimation of E[Y;| X, 6y, D; = 1] and
E[Z;| X" 0y, D; = 1] were chosen separately using a least-squares cross-validation method. If
the role of the sample selection bias were already marginal, the estimation error effect of 0
would be small accordingly, preventing us from discerning the negligibility of the estimation
error effect of § from the negligible sample selection bias. Hence, we also report the results
from the estimation of # that ignores the sample selection bias (W-SBC: Without Sample
Selection Bias Correction).

Table 1 shows the performance of the estimators. The results show that the performance
of the estimators does not change significantly as we increase the number of covariates from
3 to 6. This indicates that the quality of the second step estimator B is robust to the
quality of the first step estimator 0. This fact is shown more clearly when we compare the
performance of the estimator (TR) that uses 6y and the estimator (ES) that uses §. The
performance does not show much difference between these two estimators. The performance
of the SNN estimator appears slightly better than the kernel estimator. When the sample
size was increased from 200 to 500, the estimator’s performance improved as expected. In
particular the improvement in terms of RMSE is conspicuous.

The negligibility of the effect of the estimation error in # is not due to inherently weak
sample selection bias. This is evident when we compare the results with those from the
estimators that ignore the sample selection bias (W-SBC). Comparing Table 1 with Table 2,
we observe that the sample selection bias increases when we enhance the correlation between
¢; and v; by increasing a = 1 to a = 2. Nevertheless, the difference between the performance

of the estimators using 6y and that of the estimators using 6 continues to be marginal.
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Table 1: The Performance of the Estimators in Terms of MAE and RMSE: ¢ =1

k NN-TR NN-ES KN-TR KN-ES W-SBC

3 MAE | 04304 04329 0.4337 0.4414 0.6039

DGP Al RMSE | 0.2967  0.2984 0.3014  0.3108 0.5764

6 MAE | 0.4079 0.4084 0.4065  0.4201 0.5487

n = 200 RMSE | 0.2654  0.2678  0.2644  0.2820 0.4628
3 MAE | 04439  0.4473 0.4443  0.4583  0.6067

DGP A2 RMSE | 0.3095  0.3144 0.3119  0.3285  0.5848

6 MAE | 04176 04115 0.4254  0.4188 0.5483
RMSE | 0.2738  0.2681  0.2727  0.2756  0.4766

3 MAE | 0.2709 0.2705 0.2764  0.2781 0.4395

DGP A1l RMSE | 0.1134  0.1128 0.1182  0.1192  0.2990

6 MAE | 0.2553  0.2551 0.2566  0.2615  0.3586

n = 500 RMSE | 0.1039  0.1042 0.1050  0.1086  0.2026
3 MAE | 0.2683 0.2676 0.2707  0.2739  0.4482

DGP A2 RMSE | 0.1150  0.1150 0.1162  0.1209  0.3138

6 MAE | 0.2631 0.2636 0.2626  0.2689  0.3692
RMSE | 0.1073  0.1083 0.1078  0.1122  0.2117

3 MAE 0.2138  0.2125 0.2198 0.2234  0.3906

DGP A1l RMSE | 0.0715  0.0705 0.0752  0.0775  0.2298
6 MAE | 0.2064 0.2055 0.2067  0.2107  0.2916
n = 800 RMSE | 0.0674  0.0666 0.0675  0.0700  0.1313

3 MAE | 0.2166 0.2176 0.2198  0.2225 0.3846
RMSE | 0.0728  0.0735 0.0754  0.0771  0.2279

6 MAE | 0.2154 0.2142 0.2118 0.2203  0.2903
RMSE | 0.0717  0.0717  0.0703 0.0755  0.1351

17



Table 2: The Performance of the Estimators in Terms of MAE and RMSE: a = 2

k NN-TR NN-ES KN-TR KN-ES W-SBC

3 MAE | 0.6572 0.6533 0.6613  0.6735 1.0337

DGP Al RMSE | 0.6726  0.6725 0.6896  0.7130  1.6586

6 MAE | 0.6485 0.6523 0.6545  0.6665 0.8734

n = 200 RMSE | 0.6743  0.6814 0.6890  0.7056  1.1978
3 MAE | 0.6674 0.6729 0.6764  0.6807 1.0113

DGP A2 RMSE | 0.7108  0.7192 0.7280  0.7362  1.6308

6 MAE | 0.6680 0.6651 0.6722  0.6762 0.9180
RMSE | 0.7057  0.7066  0.7139  0.7235 1.3084
3 MAE | 0.4208 0.4225 0.4336  0.4388 0.7630

DGP A1l RMSE | 0.2769  0.2778  0.2922  0.2987  0.8835

6 MAE | 0.4100 0.4089 0.4114 0.4161 0.5696

n = 500 RMSE | 0.2640  0.2628 0.2653  0.2713  0.5052
3 MAE | 0.4516 0.4501 0.4571 0.4644  0.7815

DGP A2 RMSE | 0.3214  0.3188 0.3287  0.3385  0.9258

6 MAE | 0.4220 04214 0.418  0.4300 0.5756
RMSE | 0.2816  0.2818 0.2806  0.2927  0.5243
3 MAE | 03441  0.3448 0.3551  0.3584  0.6857

DGP A1l RMSE | 0.1873  0.1880 0.2003  0.2052  0.6763
6 MAE | 0.3264 0.3255 0.3258  0.3325  0.4642
n = 800 RMSE | 0.1678  0.1674 0.1688  0.1747  0.3388

3 MAE | 0.3425 0.3417 0.3480  0.3532  0.6838
RMSE | 0.1845  0.1839 0.1911  0.1966  0.6855
6 MAE | 03340 0.3352 0.3362  0.3414 0.4721
RMSE | 0.1761  0.1783 0.1785  0.1841  0.3520

4.2 The Performance of the Bootstrap Procedure

In this subsection, we investigate the bootstrap procedure, using the same model as before.
Table 2 contains finite sample coverage probabilities for the four types of estimators. When
the sample size was 200, the bootstrap coverage probability is smaller than the nominal ones.
When the sample size was 500, the bootstrap methods perform reasonably well.

It is worth noting that the performance difference between the case with true parameter
0y (TR) and the case with the estimated parameter 0, (ES) is almost negligible. This again

affirms the robustness of the bootstrap procedure to the quality of the first step estimator 0.
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Table 3: The Performance of the Proposed Bootstrap Method

k  Nom. Cov. Prob. NN-TR NN-ES KN-TR KN-ES

99% 0.9815 0.9785  0.9825  0.9775

95% 0.9355 0.9360  0.9380  0.9300

DGP Al 90% 0.8835 0.8815 0.8795  0.8755
99% 0.9825 0.9845 0.9800  0.9495

95% 0.9355 0.9380  0.9405  0.9050

n = 200 90% 0.8885  0.8920 0.8915  0.8560
99% 0.9835 0.9830 0.9830  0.9765

95% 0.9425 0.9490 0.9465  0.9330

DGP A2 90% 0.9025  0.8985 0.9005  0.8730
99% 0.9810 0.9835 0.9875  0.9255

95% 0.9415 0.9415 0.9440  0.8800

90% 0.8945 0.8935 0.9015  0.8330

99% 0.9910 0.9905 0.9875  0.9900

95% 0.9395  0.9440 0.9400 0.9470

DGP Al 90% 0.8980  0.8990  0.8960  0.8900
99% 0.9885  0.9885  0.9880  0.9860

95% 0.9480  0.9445 0.9495  0.9440

n = 500 90% 0.8890  0.8945 0.8975  0.8890
99% 0.9900 0.9885  0.9905  0.9880

95% 0.9485  0.9440 0.9425  0.9395

DGP A2 90% 0.8920  0.8850  0.8870  0.8920
99% 0.9880  0.9880  0.9885  0.9860

95% 0.9435 0.9455 0.9480  0.9435

90% 0.8970  0.9005 0.8965  0.8855

Likewise, the performance is also similar across different numbers of covariates 3 and 6. It
is interesting to note that the estimator NN-ES appears to perform slightly better than KN-
ES. This may be perhaps due to the fact that the probability integral transform in the SNN
estimation has an effect of reducing further the estimation error in 6. A more definite answer
would require an analysis of the second order effect of 0. Finally, the bootstrap performance

does not show much difference with regard to the heavy tailedness of the error distribution

in the selection equation.
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5 Empirical Application: Female Labor Supply

In this section, we illustrate the bootstrap procedure of this paper drawing on a well-known
study of female labor supply. The model and the data sets are taken from Mroz (1987) that
contain demographic characteristics of 753 married female workers in the United States. As

for the hours equation and the labor participation equation, we consider the following:

hi = B+ log(w;)B, + ZaifBy + Z?Eﬁ4 +¢; and
D; = 1{X/0y>n},

where h; denotes hours that the i-th female worker worked (divided by 10%), w; her hourly
wage, Z; nonwife income of the household that the female worker belongs (divided by 10)
and Zs3; a vector of other demographic variables.

In this study, we focus on how the estimates of coefficients in the outcome equation vary
across different specifications of X; and different methods of estimating 6, in the partic-
ipation equation. As for variables to be included in X;, we take as common background
variables such as unemployment rate in the county, parents’ schooling, variables related to
the number of children, and nonwife income. We consider the following specifications of X;

in the participation equation:

Specification I : background variables plus variables of labor market experiences
Specification I : background variables plus variables of age and schooling

Specification IIT : all the variables in Specifications I and II.

The variables in X; are also appropriately rescaled.

We estimated the model assuming two situations for 7, : one with the assumption that the
conditional median of 7, given X; is zero, and the other with the assumption that », and X;
are independent, 7, following a normal distribution. For the former model, we used maximum
score estimation to estimate 6y and for the latter, probit estimation. As for the estimation
of By, -+, B4, we employ the estimation method of partial linear models of Robinson (1988).

The results are shown in Tables 4-6. First, it appears that the results do not show much
difference between those using kernel estimation and those using SNN estimation. This
result appears due to the fact that estimation errors in 6 do not affect B in the first order
asymptotic approximation. Also estimation through probit estimation or maximum score
estimation does not appear to produce much difference for most coefficients. Second, there
seems to be more variation across different specifications of X; for certain variables such as

coefficient estimates of the number of young children and nonwife income, in particular
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Table 4: Estimation of Female Labor Participation (Specification I)

(In the parentheses are bootstrap standard errors.)

Probit Estimation Maximum Score Estimation
SNN Kernel Estimation SNN Kernel Estimation
Log wage 0.0870 0.1096 0.2245 0.2225
(0.1309) (0.1257) (0.1449) (0.1443)
Nonwife Income 0.0324 0.0299 0.0787 0.0916
(0.1075) (0.1039) (0.1059) (0.0807)
Young Children 0.0559 0.0724 —0.5609 —0.5351
(0.2413) (0.2471) (0.2023) (0.1988)
Old Children —0.0904 —0.0887 —0.0865 —0.0876
(0.0647) (0.0645) (0.0604) (0.0560)
Age 0.0222 —0.0204 —0.1320 —0.1319
(0.1173) (0.1171) (0.0836) (0.0833)
Education 0.0065 0.0101 —0.0112 —0.0105
(0.0485) (0.0486) (0.0478) (0.0467)
Table 5: Estimation of Female Labor Participation (Specification II)
(In the parentheses are bootstrap standard errors.)
Probit Estimation Maximum Score Estimation
SNN Kernel Estimation SNN Kernel Estimation

Log wage 0.1313 0.1378 0.1966 0.2081
(0.1521) (0.1584) (0.1758) (0.1807)
Nonwife Income 0.0085 0.0655 —0.0025 0.1928
(0.1663) (0.1016) (0.1682) (0.1546)
Young Children —0.6462 —0.3990 —0.4318 —0.4598
(0.6747) (0.3435) (0.2015) (0.2057)
Old Children —0.1188 —0.1044 —0.1417 —0.3298
(0.0552) (0.0514) (0.2261) (0.1958)
Age —0.0227 —0.1571 —0.1832 —0.2667
(0.2280) (0.1216) (0.1263) (0.1153)
Education —0.0078 0.0558 —0.0223 —0.0476
(0.1198) (0.0609) (0.0572) (0.0526)
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Table 6: Estimation of Female Labor Participation (Specification IIT)

(In the parentheses are bootstrap standard errors.)

Probit Estimation Maximum Score Estimation

SNN Kernel Estimation SNN Kernel Estimation
Log wage 0.0913 0.1297 0.1665 0.1793
(0.1192) (0.1249) (0.1241) (0.1242)
Nonwife Income 0.1200 0.0748 —0.0118 —0.0323
(0.0909) (0.0892) (0.0861) (0.0865)
Young Children 0.3549 —0.3887 —0.3198 —0.2929
(0.2646) (0.2852) (0.2239) (0.2212)
Old Children —0.0834 —0.0881 —0.0906 —0.0892
(0.0546) (0.0544) (0.0555) (0.0553)
Age —0.0117 —0.0183 —0.0306 —0.0442
(0.1052) (0.1041) (0.1031) (0.1097)
Education —0.1298 —0.1031 —0.0338 —0.0248
(0.0435) (0.0442) (0.0416) (0.0422)

between Specification I and Specifications II and III. Third, the variation across different
specifications of X; appears less prominent in the case of maximum score estimation than in
the case of probit estimation.

In summary, the results of the empirical exercise suggest that for most coefficient es-
timates of the outcome equation, the specification of the participation equation does not
make much difference, except for certain variables, and the results appear more robust to
the various different specification of X; in the case of maximum score estimation. Part of
this robustness seems to be due to the first order robustness of estimates of S to the noise

in the estimation of the participation equation.

6 Conclusion

This paper considers a semiparametric conditional moment restriction that contains con-
ditional expectations of single-index conditioning variables. This paper shows that the
influence of the first step index estimators on the estimator of the parameter of interest
is asymptotically negligible in this situation. An analysis was performed in terms of the
Fréchet derivatives of a relevant class of functionals. Hence this phenomenon appears to

have a generic nature. This result enables this paper to develop a bootstrap procedure that
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is asymptotically valid in the presence of first step single-index estimators following cube root
asymptotics. The simulation studies confirm that the method performs reasonably well.

As mentioned in the main text, it is expected that the results of this paper extend to
the case of the single-index \;(z) being a nonparametric function This situation often arises
in the literature of program evaluations where the single-index component corresponds to a
propensity score. It also appears that the result extends to the case of weakly dependent
observations. However, the extension may be more than an obvious corollary from the result
of this paper, because this paper heavily draws on the empirical process theory that applies

to the i.i.d. observations.

7 Appendix

7.1 Continuity of Linear Functionals of Conditional Expectations

Conditional expectations that involve unknown parameters in the conditioning variable fre-
quently arise in semiparametric models. Continuity of conditional expectations with respect
to such parameters plays a central role in the asymptotic analysis. In this section, we provide
a generic, primitive condition that yields such continuity. Let X € R be a random vector
with support Sy and let A be a class of R-valued functions on R%* with a generic element
denoted by A.

Fix Ao € A and let f\(y|A1,\2) denote the conditional density function of a random
vector Y € R¥ given (A\o(X),A(X)) = (A1, X2) with respect to a o-finite measure, say,
wy(-|A1, A2). Note that we do not assume that Y is continuous as we do not require that
wy(-|A1, A2) is the Lebesgue measure. Let Sy be the support of Y and let Sy be that of
(Ao(X), A(X)). We define || - || to be the Euclidean norm in R’ and || - ||« to be the sup

norm: ||f||ec =supgesy|f(x)|.

Definition A : (i) Py = {fa(y]-,") : (\,y) € A x Sy} is reqular for o : R — R/, if for
each A € A and (A, \y) € S,

sSup fA<y|/_\17/_\2) - f/\(y|/~\17 :\2) < O)\(y|5\17 5‘2)5’ 0 € [07 OO) (8)

(A1, A2)€Sx:[ A1 = A1 |+[A2— A2 |<6

where C)\ (|1, A2) : Sy — R is such that for some C' > 0 that does not depend on \,

swp / 13)1C (ulA, Ao)wa(dylAn, As) < C.
(A1,A2)ES)

(ii) When Py is regular for an identity map, we say simply that it is regular.

23



The regularity condition is a type of an equicontinuity condition for functions fy(y|-, "),
(y, A) € Sy xA. Roughly speaking a set of conditional densities are regular when the response
of a conditional density function to a small perturbation in the conditioning variable is small
uniformly over A € A. The condition does not require that the conditional density function
be continuous in the parameter A\ € A, which is cumbersome to check in many situations.
(Note that the perturbation on the right-hand side of (8) is concerned with a "fixed" function
fr(y]-, -), not across different density functions with different \’s.)

When fy(y|A1, X2) is continuously differentiable in (Aj, \y) with a derivative that is
bounded uniformly over A € A and @(Y) has a bounded support, Py is regular for @.
Alternatively suppose that there exists C' > 0 such that for each A € A and (A, \2) € S,

f/\(y|5\1,5\2)

)| < o,
Il AL, A2)

sup
(5\1,5\2)€3>\1|5\1*5\1 |+|5\2*5\2|§5

and E[||@(Y)]||X] < C. Then Py is regular for ¢. The regularity condition for Py yields the

following Lemma A1l as an important consequence.

Lemma A1l : Suppose that Py is reqular for @ an envelope of ® and ® is a class of
R7-valued functions on R* . Then, for each X\ € A, ¢ € ®, and = € Sx,

(20, ) = @ V| < CIAG) = dof)], and
(20, = (@ )l < CIAGE) = Mo(a)],

where

po(z;A) = E[p(Y)MX) = A(x)] and
fp(r3 20, A) = E[p(Y)[(Ao(X), A(X)) = (Ao(z), A(z))]

and C' does not depend on X\, \g, x, or .

Lemma A1 shows that the conditional expectations are continuous in the parameter \ in
the conditioning variable. This result is similar to Lemma A2(ii) of Song (2008). (See also
Lemma A5 of Song (2009).)

We introduce an additional random vector Z € R% with a support S;. Let ¥ be a class
of R7-valued functions on R% with a generic element denoted by v and its envelope by 7. As
before, we fix A\g € A, let hy(z|\1, \2) denote the conditional density function of Z given
(Ao(X), A(X)) = (A1, A2) with respect to a o-finite measure, and define P, = {hy(z]-,-) :
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(A, z) € A x Sz}. Suppose that the parameter of interest takes the form of

Tuuw(N) = E [u,(X;0) "9(2)] .

We would like to analyze continuity of I', ,,(A) in A € A. When Py and P are regular, we

obtain the following result.

Lemma A2 : Suppose that Py is reqular for & and Py is reqular for 1. Then, there ezists
C > 0 such that for each X in A,

Sup(cp,w)EtI)x\I/|F<Pﬂ/J(/\) —Loy(Mo) < CfIA = XollZ.

Therefore, the first order Fréchet derivative of T'y () at Ao € A is equal to zero.

Lemma A2 says that the functional I',,()) is not sensitive to the first order pertur-
bation of A\ around \g. In view of Newey (1994), Lemma A2 suggests that in general,
there is no estimation effect of A on the asymptotic variance of the estimator IA‘%w(/A\) =
Ly (X AN T4(Z;), where ft,(Xs; A) denotes a nonparametric estimator of p,(Xi; A).

Proof of Lemma A1l : We proceed in a similar manner as in the proof of Lemma A5 of
Song (2009). We show only the first statement because the proof is almost the same for the
second statement.

Choose z € Sy and A\; € A and let § = |A\; — \g|, where \g = Ao(z) and \; = Ai(z).
We write M@(E\l,j\o) = p,(z; A1, Ao) and ,ucp(j\o) = p,(z; Xo). Let Py, be the conditional
distribution of (p(Y), X) given A\o(X) = Ao and let Eqg, denote the expectation under
Py, Let A; = 1{|)\(X) — ;| <36}, j =0, 1. Note that Eg,[4g] = 1 and Eg ,[A1] = 1. Let
fi,(Ajs Ao) = Eoyp [0(Y) 4] /Eop[Aj] = Eo [0(Y)4;], j = 0,1. Then,

H“so(j‘h o) — 'uw(j‘o)H = H”so(j‘l’ o) — lacp(j‘l’ XO)H + ||ﬁ¢(5\1, o) = ”w(;\O)H
= (I)+ (II), say.
Let us turn to (I). By the definition of conditional expectation,
-~ _ /_\1+3(5 o o
i da) = [\, ()

A1—30

where F), (-|\) is the conditional CDF of \;(X;) given A\o(X;) = Ao. Note that

|12, (A1, o) = i, (A1, Ao) || < sup |12, (A1 + v, X0) = 1, (A1, Ao)|
’UG[735,35]:(A1+U,)\0)€S>\1
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because f;\;‘llj;? dFy, (AAo) = Eo,[A1] = 1. The last term above is bounded by

sup el ‘fh(y|/_\1 + v, Xo) — fAl(yD\l,j\o)‘ wy, (dy| A1, M)
1}6[—3(5,35]:()\1-1—11,)\())66'A1 Sy

<9 ||S~0(y)||CA1(?J|5\1,j\o)wx\l(dyv\l,;\o) < Cb.
Sy

Let us turn to (I7) which we write as
[ Eop [(Y)Ar] = Eop [p(Y)] | = |[Eop [VA ],

where V = ¢(Y) — Eg, [¢(Y)] because Eg , [A1] = 1. The term (/1) is equal to

A1+36 B B o
/ E [V A A (X) = X Ao(X) = Ao dFy, (A30)
A1—30

A1+36 B _ o
_ / E VA (X) = A Ao(X) = Ao] dEy, (Ao)
A1—30

which is bounded by C4, similarly as before. This implies that (/1) < Cd. R

Proof of Lemma A2 : Let u,,(7) = p,(z;\) and p,o(z) = p,(z; Ao). Similarly define
tp () = pry(z;A) and puy0(2) = pry (23 Ao), where puy(z;A) = E[Y(Z)|MX) = A(z)]. First

write
E [U(2) {0 (0) = 11,0(0}] = B [ER(Z)A0M0(X)]T {10 () = 1100}
= E[(ERZINX),0(X)] = 1150(X)) " (15,(X) = Blp(Y)ACX), Ao(X)))]
E | (B[(Z)MX), A0(X)] = 114,0(X)) T (B (V)X Ao(X)] = p1,0(X)) |

+E [ﬂw,o(X)T {MW\(X) - :uap,()(X)}}
= E [Nw,o(X)T {:utp,A(X) - M@,O(X)}] + O(|[A - >\0H§o)

by applying Lemma Al to the first two expectations on the right-hand side of the first

equality. The last expectation is equal to

E [115,0(X) " {50 (X) = E [p(Y)AX), do(X)]}]
+E [Mw,o(X)T {E [p(Y)AX), Mo (X)] — :uap,O(X)}}
= E [1150(X)" {5,1(X) = E[p(Y)[A(X), Mo(X)] }]
= E [{1y0(X) = 1y n ()} {1150 (X) = E [p(Y)A(X), Ao (X)]}] -
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Applying Lemma A1 again, the last expectation is equal to O(||A— ||, ). Hence we conclude
that

E [(Z)" {1,7(X) = 11,0(X) }] = O(l|A = Nl [2).

affirming the claim that the Fréchet derivative is equal to zero. W

7.2 Assumptions on Regularity of Conditional Densities

We collect the conditions for Theorem 1 that have a technical character. Let S;; be the
Jj-th entry of S;, where S; = p,(Vi, j1;; B) and let u;; = F;(A;(X;)), where F; denotes the
CDF of )\;(X;). Define Z;; = (S;j, Wi, wigs1) if w1 # u;j and Z;; = (S;;, Wh,) if
Ui g1 = ui;. We set 9 to be such that (Z;;) = |S;;|. Define fs;(yluo,u1) to be the
conditional density of Y;; given (u;j,ug;;) = (uo,u1) with respect to a o-finite measure,
where ug; ; = Fp;(A;j(X;;6)) and Fy ; is the CDF of A\;(X;; #). Similarly define hg ;(2|ug, u1) to
be the conditional density of Z;; given (u;;,ugp;;) = (uo,u1) with respect to a o-finite

measure. Let Sy; and Sz ; be the supports of Y ; and Z, j,

Py;(0) = {fo;(yl--):(0,y) € ©0) x Sy;} and
Pz;(0) {ho;(z]-,-) : (0,2) € O0) x Sz}

Assumption A : For each j =1,---,J + 1, there exist ; > 0 and C; > 0 such that
(i) foreach j =1, -+, J+1,

[ Fo,i(Nj(2;01)) — Fo, j(Nj(2;02))| < Cjl]01 — 0|, for all 61,0, € ©(0;),

(ii) for each j = 1,- - -, J, Py,;(d;) is regular and Py ;(4;) is regular for ¢, and
(iii) for each j = 1,-- -, J, (a) supucp1)E[|Yi;||ui; = u| < oo, and (b) E[Y] ;|u;; = -] is twice

continuously differentiable with bounded derivatives.

Assumption A(i) is a regularity condition for the index function A;(+;¢). Some sufficient
conditions for the regularity of Py ;(;) were discussed after Lemma Al. The regularity of
Pz;(0;) in Assumption A(ii) can be replaced by a lower level sufficient condition in more
specific contexts. Note that in the case of the sample selection model in Example 1, J = 2,
u;1 = U2 = U;3, and in the case of the model with the single-index instrument in Example
2, J =1, u;1 = u;2. In both cases, S; is a constant vector of —1’s. Hence Py ;(d;) becomes
regular, for instance, if the conditional density function of Wy, given (u;1,ug;1) = (ug, u1)
is continuously differentiable in (ug, u;) with a derivative uniformly bounded over 6 € ©(4,)

and W, has a bounded support.
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7.3 Proofs of the Main Results

Throughout the proofs, the notation C' denotes a positive constant that may assume different
values in different contexts. Let L,(P), p > 1, be the space of L,-bounded functions:
fll, == {J |f(z)|PP(dx)}}P < oo, and for a space of functions F C L,(P) for p > 1, let
Ny(e, F,||-|lp), the bracketing number of F with respect to the norm ||-|[,, to be the smallest
number 7 such that there exist fi,-- -, f, and Ay, -- - A, € L,(P) such that ||A;||, < € and
for all f € F, there exists ¢ < r with || f; — f||, < A;/2. Similarly, we define Ny(e, F, || - ||0)
to be the bracketing number of F with respect to the sup norm || - ||«. For any norm || - ||
which is equal to || - ||, or || - ||, We define N (e, F,|| - ||) to be the covering number of F,

i.e. the smallest number of e-balls that cover F.

Proof of Theorem 1 : Write pu(z) = pu(z; \o) and i(z) = ji(x;\) and as in Section 7.2,
introduce notations u; ; = Fj(\;(X;)) and ug,; = Fy;(\;(X;;6)). Put briefly, 1; = 1{W; <
W} and 1; = 1{W; < W;} and

pi(B) = p(Vi, 13 8), pui(B) = 0, (Vi, 15 8),
pi(8) = p(Vi, iv;; B), and f)m(ﬂ) = P,@(V;aﬂﬁﬁ)-

We first show the consistency of 3. Let Q(j3 = [{E [p,(3){W; < w}Di]}* dFw p=r (w),
2

- 1 < 1 5

QPB) = 5ZDZ {EZsz%(ﬁ)lil} and
I=1 i=1
n n 2

QB) = %ZDZ {%ZDUJZ‘(B>1H} ;
I=1 i=1

where Fyyp_1(w) = P{W; < w,D; = 1}. Let F,p;(A) = 137" 1{\;(X;;60) < A} and

F9J< ) = P{)\;(Xi;0) < )‘} and let g;(u) = > i1, Vi Dil (G j — w) /{2 i) Diln(ti; —u)}
and

gi(u) = BlY; jlu;j = u, D; = 1],

Note that ||t — p]|ec = sup,erax ||4(x) — p(x)|| is bounded by the maximum over j =
J+1of

~

SUPyefo,1]05 (1) = 95 ()| + sup,erax [95(F, 5 ; (A (7;0))) = g;(F5(A; (5 60)))]- (9)

The first term is op(1) as in the proof of Lemma A4 of Song (2009) and the second term is
Op(||8—60]|) (e.g. see the proof of Lemma A3 of Song (2009).) Therefore, ||ji— ji||oo = 0p(1).
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Now,

n

g 3= D)~ p) | < LS sl Vsl 0
i=1

Z sup 110, (Vi 5 B)II,

(B,p)€BX[—M,M)]

by Assumption 1(iv).

with probability approaching one for large M such that ||u||cc < M. The last term is op(1)
Note also that from large n on,
E | sup
BeB

) (11)
1 n

< = > { [ZUNPZ( )| }} \/P{UZJ—H_A < Uiyt S Ui+ At

i=1,i#l

n

%Z Dip;(B) (1a — 1)
=1

where A, = maxi<;<, SUPpc gy 5,) 1101741 — Wi ss1ll, On = n~1/3%¢ with small € > 0, and
Upigr1 = %Z?:L#i H{As1(X550) < Ajpa(Xi;6)}. Similarly as in the proof of Lemma A3
of Song (2009), A,, = Op(d,), so that the last term in (11) is o(1). From (10) and (11),

Q(ﬂ) = Q(ﬁ) + op(1), uniformly in 8 € B.

Since p(v, pu(x); 5) is Lipschitz in 8 with an L,-bounded coefficient, p > 2, and B is com-
pact, the uniform convergence of Q(j3) to Q(p) follows by the standard procedure. Hence
SUPgep 1Q(8) — Q(B)| = op(1). As in Dominguez and Lobato (2004), this yields the consis-
tency of B.

Now, using the first order condition of the extremum estimation and the mean value

theorem,

A A

V(B = Bo) = Gu(B, i AW }) Vg, (B, i, {WA)),

where, with 3 lying between B and [,

A ] —
Gu(B, 1 AW}) = EZDI{ ZDsz }{ Zszﬁz zl} and
=1
§n(B, 1, AWI}) = - > D, {EZDipﬁ,i(ﬁ)lil} {EZDiPi(ﬁO)lil} :
=1 i=1 i=1
Using consistency of 3 and following similar steps in (10) and (11), we can show that
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~

Gu(B. 1, {W1}) s equal to
(B, 11 A1) + 0p(1 /H VT By pr (1) + op(1),

by the law of large numbers. We turn to the analysis of \/n€, (3, t, {W;}). Let Hoij =
E{Yi,j’)‘j(XiS 0), D; = 1] and Ko = [Me,i,p o 'aﬂe,i,J]T~ Write

I & . 2
77 2 Do)l = f Z Dy {p(Vi.fss Bo) = p(Vis g 3 60) | L
ZD { %’MG*U/BO) (V;aﬂﬁﬁo)}izl
= Aln + A2n7 say.
We first deal with A;,, which we write as
1 « i (-
% Z Dz’PM(Vu Ko i Bo) Lu (Nz‘ - Né,z‘)

J J

ZDZZZPM L ‘/;7/1’2’/80) (luzr Mé7i7r> (ﬂi,s - M@,z}s)

r=1 s=1
= B1n+B2na say,

where [i; lies between fi; and ji;,,. We deal with Bs, first. By Holder inequality, for ¢ > 4 in

Assumption 1(iv),
_ 1
E[|Bol] < OV {EsuDuci aran] 10 (Vis 55 5014}

X {/S ‘(ﬂr(l‘) - H@m(:x)) <ﬂs(x) _ l’“é,s(ﬂi)> 4

where 1y ;(v) = E[Y; ;I\;(Xi;0) = \j(z;0)]. Note that E[supaci—ar,anllp,,.(Vi, 15 8o)||7] < oo

and
A

< /Dln ‘(ﬂr(x) - Mg;w(@) (ﬂs(ﬂi) B N/@’S((ﬂ)) T,
+ /Dzn )(ﬂr(ﬂj) - M97r(m)> (ﬂs@) _ “é,s($)>

g—1
q

irs)})

q

" dPx(z) (12)

(it (@) = 19, (@) (ul) = 1 () )
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where Dy, = {z : |F, 5 ,(A(; 0))—1| > h/2} and Dy, = {x : 1E, 5. (A(7; 0))—1| < 2h}. Using
the steps in (9) and in the proof of Lemma A4 of Song (2009), the first term is bounded by

q 2q

"+ 0p({n T Pw,} ) = Op(wi )

SUPue(0,1):|u—1|>h/2 ‘ (ﬁr(u) - gé,s(“>> <§s<“) - gg,s(u)>

where w,, = n~V2h"t/=Tlogh + h? and gy, (u) = E[Y;,|Fs,(\.(X;;0)) = u]. Similarly, the
last term in (12) is bounded by Cfue[o 1 u—1|<2h D(u)du, where D(u) is equal to

Uy Op({nY2h) ),

(30(w) = g3, (@) (3s(0) = g5, (w))

When |u—1| < 2h, |(§-(u) —géyr(u))(gs(u)—gé’s(u))|q%1 = Op(h%) uniformly over such u’s.
(See Lemma A4 of Song (2009).) The Lebesgue measure of such u’s is O(h). Hence the last
integral in (12) is Op(h3=1/(@=1D) We conclude that By, = Op(n'/?{w? + h3~/1}) = op(1)
by the condition for bandwidths.

We turn to Bj,. Suppose that 5\@{]4_1 < j\l,(]_t'_l. Then, Uy, ge1 < Ugggar Exchanging
the roles of 7 and [, we find that if 5\1’,J+1 > 5\!,J+17 Upiyi1 = Uggge- Therefore, letting
Woi = (Wi, ugi+1), we write 1{Wl < VT/I} = 1{Wy,; < Wy, }. Using this, we deduce that

1 & R
By, = % Z DiPM(W,Mé,i§50)T1{Wé,i < Wé,z} (Ni - Né,z‘) :
i1
Choose any 6,, — 0 such that \/nd> — 0 and n'/3§,, — oo, and define
I 1 © T
Vn(ewxv w) = ﬁ Z¢0,E,w(%7Xiv D;, W9,i) (:ui - Me,i) ) (97 x>w) S B(@o, 5n) X Sx X SWl’
i1

where w@,a’:,u’)(”? T, U}) = py(”? “H(x); ﬁo)t&fﬂf) ('Ta d7 U)) and
tozm(x, d,w) = H{w < wil{d = 1}1{Fp 11 (As11(2;0)) < Fog1(As11(Z;0)) }-
COIlSidGI' Hn = {1{F97J+1()\J+1(';9)) S F97J+]_(>\J+]_(a_j;9))} : (9,3_3) € B(90,5n> X Sx}
Since the indicator functions are bounded and of bounded variation, we apply Lemma A1 of

Song (2009) and Assumption 3(i) to deduce that

log Njj(e, Hn, || - ||q) < Cloge + C/e, for e > 0. (13)
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By Lemma Al and Assumption 3(i),

Hpu(v,uel(af);ﬁo) - PH(UaMQQ(l')%Bo)H < Csupﬁe[—M,M} pr(v,ﬁ;ﬁo)H X |01 — 0Os]] .

Therefore, using this, (3) and (13), we conclude that for ¥ = {¢,  ; : (0,7,w) € B(fp, 0p) X
SX X 8W1}7
log Ny(e, ¥, || - [|q) < Cloge + C/e, for e > 0. (14)

After some algebra (e.g. see the proof of (Step 1) in the proof of Lemma B1 below), we find
that 7,(0, z,w) is equal to

\/—ZD ZE ‘/zJXMDHWl 2)|u02]7 1:| (Y - N@Vi,j) +0P<1)

= IZD ZE Vis X3, Dy, Wi g, Di = 1] (Yij — ;) + op(1),

uniformly over (0,7, w) € B(0o,0,) X Sx X Sw,, where 1, ; , . denotes the j-th component
of Vg5, and Vg5 55 = Vg, 2.0 - (For the equality above, see the proof of (Step 2) in the

proof of Lemma B1 below.) Therefore, we conclude that

ln \/—ZD ZE V;,XZ,DZ,Wl z)|uz]7 - 1:| (#,w)=(X;,W1.1) (}/;,j _,Um‘)"i_OP(l)-

We turn to A,,, which we write as
1 n
Ao = =D Dit s (Vi X D2 W) (ka5 — 1) -
i=1

Using previous arguments yielding (14), we can establish a similar bracketing entropy bound
for Fr, = {Vgz.0( ) (e(-) — () = (0,%,0) € B(0o,0n) X Sx X Sw, }. Following the usual
stochastic equicontinuity arguments and using Lemma A1, Lemma A2 and Assumption 3(i),

we deduce that

‘A2n’

IN

SUP(p.z.0) | VIE [V 2.0(Vi, Xi, Doy W) (11, — 1) ]| + 0p(1)
Vnsup g z ) |B [Vo.z.6(Vis Xis Di, W) {9 — 11 }]|
+0(v/nd3) + op(1) = O(v/nd?%) + op(1) = op(1),

IN

where the supremum is over (0, 7,w) € B(0y,d,) X Sx X Sw,. Therefore, letting p, ; ;(3,) be
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the j-th entry of p,;(3,) and
1 n
= ___ . <
lw) = =3 DiplB)HW: < u)
i=1
1 n J
+% Z D, ZE [pu,i,j(ﬁo)l{wi < whuij, Dy = 1] (Yij — i)
=1 j=1
and collecting the results of Ay, and A,,, we write
A 1 & 1 & oas
V&, (B, i1, {Wi}) = - > D {ﬁ > Dipg(Vi fu; ﬁ)lu} 2n(W1) + op(1).
I=1 i=1
Since sup,craw |#n(w)| = Op(1), using (10) and (11) again, we conclude that
Vg, (B, fu, {W ZDl (W1)za (W0) + 0p (1),

The wanted result now follows by applying the weak convergence of z,, to ( and the continuous
mapping theorem (e.g. Theorem 18.11 of van der Vaart (1998).) W

Proof of Theorem 2 : First, define m(5;w) = E [p,(5)1{W, < w}D,],
(70 = 5D [{aB) — ()} T+ {p ()i + 7} and
I=1
my(B; Wi) = % > Dil{p(Bo) = (B} ik + wip {oa(Bo) Lk + 7}
I=1

where 7, = 7(W}). Then, we introduce

Q;(8) = %Zkab(b); Wi)? and Q5 (8) = %Zkab (8; Wh)?.
k=1

k=1

We first show that the bootstrap estimator is consistent conditional on G,, = {(V;,Y;, X;, W1 ,;) i,y
in probability. (Following the conventions, we use notations Ops and op« that indicate con-

ditional stochastic convergences given G,,.) Define

AO) = [ ®IEW < w}DI) dFyp(w)
+ [BD{a80) + n(w)] dFpw)
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Then it is not hard to show that uniformly over g € B,

Qr(8) = Q(B) + op+(1) in P.

For consistency of BZ, it suffices to show that

supsep| Q3 (8) — Q3 (8) = op-(1) in P, (15)

We write

Qi(8) = G;(8)| < max

1<k<n

iy (85 W) — b(ﬁ;Wk>‘%Z i (8; W) + 1 (8; Wi) |

As for the last sum, note that

E %Z (Thb(ﬁ; W) + (3 Wk>)2 |Gn
k=1
2 2
C~ (1< A A C [ 1w 2
< = (— {3 <ﬁ>}1lk) += (—ZDZ {pl<ﬁ>—pl<5>}1m>
"o\ S N
+% %ZDl {Pz(ﬁo)1z1€+7"lk}2+%Z%ZD’{pl(ﬁ)ilk+flk}2'
k=1"" 1=1 k=1 =1

The all four terms are Op-(1) in P, and hence for (15), it suffices to show that

Sup max
BEB 1<k<n

mb(ﬁ Wk) b(ﬁ; Wk)‘ = Op*(].) in P.

First, we write

rg (3 W) — 1 (B W) = ZDZ {23) = 2u(8)} L= {(B) = (D)} 1]+ (17)

where

1 .
== Dy | pu(B) i = pi(Bo) | + Dy [y —
M,k nzwl,b v od(B) 1 — pi(Bo) Lik szb VP — k] -

=1

(18)

It is not hard to show that the first sum in (17) is op(1) uniformly in (5,k) € B x {1

-, n} using the similar arguments in the proof of Theorem 1. We show that max;<;<,

E[n;, 1|9.] =
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op(1). For a future use, we show a stronger statement:

max \JE; 4|Gn] = op(n). (19)

Using the fact that w;; is a bounded, mean-zero random variables independent of the data,
we find that

2
( Zw“’Dl [pl ilk—ﬂl(ﬁo)hk]) |Gn
- 2ZD1 [pl 1lk—Pl(50)11k]2.

Following the proof of Theorem 1, we can show that the last sum is op(n~"/2) uniformly over
1 <k < n. We focus on the last sum in the definition of 7, ; in (18). Note that

1 — ’
‘— Zwl,bDl(f'lk - le)
n =1

l o . _
[ SEZHW—MHQIOP(” 0
=1

uniformly over 1 < k < n, by Assumption 4. Therefore, we obtain (19). This yields the
following:

SUP(g,u)e BxRew WX (17 (0; W) — 1i(8; W) = op-(1) in P.

From this, we deduce (16) and that BZ = By + op«(1) in P. Clearly, BZ = B+ op«(1) in
P, because B is consistent.
Now, we turn to the bootstrap distribution of BZ As in the proof of Theorem 1, we can

write
VB, — BY = Gi(B, iAW) g (By. i {Wi}),

where
1 < 1 1 NN
G (By i1 AM}) = EZDZ{EZDipg(M,ui;/imu}{EZDm;(w,ui;ﬂb)lﬂ} and
=1 = j—
S N 2 ]_ - 3 A~
§n<6b7,u7{vvl}) = EZDZ{ ZDZPB Vvlvﬂ“mﬁb }{ ZDleb{pl Zk+rik}}7
=1

and (3, lies between BZ and §. Again, similarly as in the proof of Theorem 1, we can show
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that

G By, i1 AW} = ﬁo,u,{wl}mp*(l) in P
= /H ) dFw.p=1(w) + op(1) + op<(1) in P.

Note that the only difference here is that we have ﬁz in place of B . However, BZ is consistent
for B, just as B is, yielding the first equality in the above.
As for £}(B,, f1, {W1}), note that by (19),

2 s IR 1 ¢ -
V& (By, i, AWL}) = % Z Dy, {ﬁ Z Dipg(Vi, fis; 51;)11‘1@}
k=1 i=1

X {% Z Diw;p {p;(Bo)Lik + nk}} + op«(1) in P.

Similarly as in the proof of Theorem 2, the leading term above is equal to

% ; Dy H (W) {% ; Diwip {pi(Bo)Lir + m}} + op+(1) in P.

Let T'(f) = 230, f(Wy)D; and T'(f) = [ f(w)dFw,p—1(w). Choose any sequence f,, :
R — R* such that sup,||f.(w) — f(w )|| — 0, for some f such that E [||f(W;)||D;] < oo.

Then we have
Calh) =T() = =37 (alW) = SOV) D+ 3~ F(W) D = BIf(W) D
= 0(1) + 04..(1),

by the strong law of large numbers. Let

Fo(w; Gn) = sz v D1 [0y(Bo)L{W: < w} + ri(w)] x H(w).

= \/_
Now, by the conditional multiplier central limit theorem of Ledoux and Talagrand (1988),

conditional on almost every sequence in G,
F.(+;G,) = C.

Therefore, by the almost sure representation theorem (e.g. Theorem 6.7 of Billingsley
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(1999)), there is a sequence F),(-) such that F,(-) is distributionally equivalent to F,(-) and
ﬁ’n() —a4.s. ¢ conditional on almost every sequence G,. Then, by the previous arguments,

conditional on almost every sequence {S;}]";, we have

Lo (Fu(- C(w)H (w)dFw,p=1(w).

Hence the proof is complete. B

7.4 Uniform Representation of Sample Linear Functionals of SNIN

Estimators

In this section, we present a uniform representation of sums of SNN estimators that is uniform
over function spaces. Stute and Zhu (2005) obtained a non-uniform result in a different form.
Their proof uses the oscillation results for smoothed empirical processes. Since we do not
have such a result under the generality assumed in this paper, we take a different approach
here.

Suppose that we are given a random sample {(Z;, X;, Y;)}!, drawn from the distribution
of a random vector S = (Z, X,Y) € R¥Hx+/ Tet S;,Sx and Sy be the supports of Z, X,
and Y respectively. Let A be a class of R-valued functions on R%* with generic elements
denoted by \. We also let ® and ¥ be classes of real functions on R’ and R% with generic
elements ¢ and 1. We fix \g € A such that \o(X) is a continuous random variable. Then
we focus on g, (u) = E[p(Y)|U = u, where U = Fy(Ao(X)) and Fy(-) is the CDF of A\(X).
Similarly, we define g, (u) = E[t)(Z)|U = u]. Letting F)\(-) be the CDF of A\(X), we denote
Uy = Fx(A(X)). We define fi(y|ug,u1) and hy(z|ug,u1) to be the conditional densities of
Y given (U,U)) = (ug,u1) and Z given (U,U,) = (ug,u;) with respect to some o-finite

measures, and let

Py = {NH],): (N y) €A, xSy} and
Pz = {ha(z]-): (A y) € Ay x Sz}

Define U, »; = —5 > i1z HAX) < A(Xi)} and consider the estimator:

n

; o | o
Joni(u) = (n— 1)fM(u) j;#iSO(YJ)Kh (Unpj — 1),

where f;(u) = (n — 1) Ky(Una; — u). Introduce A, = {A € A : [|[FyoX— Fyo

J=137#i
Molloe < 07t} for b € (1/4,1/2]. The semiparametric process of focus takes the following
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form:
n

1 :
vaA o) = = Zl $(Z) {3004 (Unas) = 95U}
with (A, p,9) € A, X @, x U,

Assumption B1 : (i) Classes ® and ¥ for some C' > 0, p > 8, and by, bg € (0,6/5),
log Ny(, @, || - ||,) < Ce™"® and log Ny(e, ¥, || - ||,) < Ce™*, for each e > 0,

and envelopes @ and 1) satisfy that E[|@(Y)[?] < oo and E[|¢)(Z)[?] < oo, and Supyeo.1) Bll@(Y)||U =
u] < o0.
(i) For A = {FyoX: X € A,}, some by € (0,1) and C > 0,

log N (g, AL, || - ||oe) < Ce™ for each & > 0.

Assumption B2 : (i) Py is regular for » and Py is regular for ).

(ii) g,(-) is twice continuously differentiable with derivatives bounded uniformly over ¢ € ®.

Assumption B3 : (i) K(-) is symmetric, compact supported, twice continuously differen-
tiable with bounded derivatives, and | K (t)dt = 1.
(ii) n'/2h3=YP 4 n=12p=2-1/P(—logh) — 0.

The following lemma offers a uniform representation of v,,.

Lemma B1 : Suppose that Assumptions B1-B3 hold. Then,

up () = —= - U = U0} = or(1).

(A, ) EAR XP X T
Furthermore, the representations remain the same when we replace v, (X, @, 1) by v,( Ao, @, ).

Proof of Lemma B1 : To make the flow of the arguments more visible, the proof proceeds

by making certain claims which involve extra arguments and are proved at the end of the

proof. Without loss of generality, assume that the support of K is contained in [—1,1].

Throughout the proofs, the notation Eg, indicates the conditional expectation given S5;.
Let gy (u) = E[p(Y)|Uy = u] and gy \(u) = E[(2)|Uy = ul. Define

AP = guaUna){0(Ys) = 9o (Una)}-
The proof proceeds in the following two steps.
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Step 1: SuP()\,go,w)eAnX@xlIl Vn()‘a ¥, w) - \/Lﬁ Z:'L:I A‘f@(}\)‘ = OP(l)'

Step 2 & SUP(y g e, | it { A7 (V) = AP () }| = 0n(1).

Then the wanted statement follows by chaining Steps 1 and 2.

Proof of Step 1 : Define p,, (1) = (n — 1)7" >, o Kn(Una; — t)p(Y;) and write
Goni(Unri) — gor(Ur;) as

ﬁgo,A,z‘(Un,M) gtpz\<UM)fM( Uni)
fA(U)\z)
[ﬁp,A,z’(Un,A,i) (UM)f/\z< n)\Z)](f)\(UA,%) fM< nM))

f)\z( n)\l)f)\(U)\z)
= Rii(\ )+ Ri(\ ), say.

Rii(\ ) =

+

where fy(u) = 1{u € [0,1]}. Put 7 = (\, p, %) and II,, = A,, x & x ¥, and write

va(m) = %iw&mﬁu, Zw DRE(N @)

= rln( )_I_/rln( )? e Hn? say.

From the proof of Lemma A3 of Song (2009) (by replacing A and Ay with F) o A there and
using Assumption B1(ii)), it follows that

Max; <;<,SUPyep, SUP,crdx | Furi(A(7)) — Fa(A(2))| = Op(n™?), (20)

where F,;(A) = =5 e HAXG) < A}. Using (20) and employing similar arguments
around (12) in the proof of Theorem 1, we can show that sup,cy, |5, (7)| = op(1).

We turn to r{ (), which we write as

(n—1) \/_Z Z Vilori Ky +( \/—Z Z Vil nii{ Ky — K5}

=1 j=1,j#i =1 j=1,j7%1¢

- Rln(ﬂ—)—i_RQn( )7 say,

where ¥; = U(Z), Dprig = ¢(YV)) = goa(Una), Kpij = Kn(Unag — Unaa) and Kjj =
Ky (Uy; — Uy,i). We will now show that

SUp e, | Ran ()] =1 0. (21)
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Let 5;-\ =Upxi—Uyiand dyj; = 5? — 5? and write Ra,(m) as

1 n n 1 n n
—Z Z wiASO7)\7inl,z,ijd)\7ji+ —Z Z ¢iA<P»)\7ijd§\,jiKi/zl,ij
(n=1)vn i=1 j=1,ji 2(n —1)v/n i=1 j=1,j#i
= A7) + Ay, (m), say,

where Kj, ,; = h 20K (t)/0t at t = (Ux; — Ux;)/h and
Ky . = h 30K (t) /ot

at t = {(1—a;;)(Ur; —Ux;) + aij(Unri — Unrj;) }/h, for some a;; € [0, 1]. Later we will show
the following;:

Cl: Supﬂ'EHn|A2n(ﬂ-)| = OP(l)'

We turn to Ay, (7) which we write as

1 n n 1 n n
. WA K — DA K5 (22)
=D 2 2 Vil ~ G 2 2 Vet
- Bln(ﬁ)+B2n(ﬂ—)7 say.

Write Bi,,(m) as (up to O(n™1))
1 - 1 = / /
n > vn > AviBoni Ky = B[00 ri K 51U H (Unns = Ung)
j=1 i=1

1 n
w D E [0 K lUni] (Unng — Ung) = Cin() + Con(7), say.
=1

=

As for C, (), we show the following later.
C2 : sup,¢p, [Cin(m)| = 0p(1).

We deduce a similar result for By, (7), so that we write
1 n
Am(m) = NG > E [i8 i K Un] (U = Usy) (23)
=1

1 n
~ = 2 B B B lUni] (Uns = Un) + 0p(1)
i=1

= Dln(w)i— Doy, (7) + 0p(1), say.
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Now, we show that Dy,(7w) and Ds,(m) cancel out asymptotically. As for Dy, (7), using
Hoeffding’s decomposition and taking care of the degenerate U-process (e.g. see C3 and its

proof below),

1 /!
ﬁ ;/0 E [wiAsD,)\,inllz,ij‘U)\,j = ul} (1{[])\72 S ’Lbl} - ul) du1 + 0p(1).
Using the symmetry of K, we deduce that

1 <« [
NG Z/ E [0 00 K0510n = w] ({Uxi < wi} —w) dug
i=1 70

Uy — U2

- o Z / 1 / () {gor () — gpr(u2)) K (1512 s (10 < ) = )

Uy — U

) dUQ (1{U/\,z S Ul} - Ul) dul.
As for Dy, (), we also observe that

1« [
7n Z/ E [%A@,A,iné,ij|UA,i =] (H{Uy; < wi} —w) duy
i=1 Y0

U2 — Uy

= o [ ] o) () = )} () e 00 < ) = )

Write the sum above as

Uz — Uy

ﬁg/ol /Olgw,A(Uz){gw,A(Uz) —gw(ul)}K’( - )duz(l{Um <ui} —u)du

noopl
+% ;/(; ¢n<U1, 7'(') (1{U)\’j < ul} — ul) dula

where

butonim) = 5 [ (00a(00) = gun0 a0 = goa)} &7 (M)

Note that sup, ¢ |¢,(u1;7)| = O(h) by using the first order differentiability of g, and
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ge.x- Therefore,

sup
WEHn

= Op(l).

%Z/O O (ur; ™) (H{UN; S un} —w) dug

We conclude that D1, (m) = Da,(7)+0p(1) uniformly over 7 € II,,, and that sup, ¢y |A1,(7)| =
op(1), which, together with (C1), completes the proof of (21).
It suffices for (Step 1) to show that

sup
WEHTL

Ry () — Zgw (Uni){(Yi) — g<p,)\(U)\,i>}| = op(1). (24)

We define qf ;; = q(Si, S;) = 1; A, 2,4, K7 and write Ry, () as
DI B (25)
n 1 \/_ i=1 j=1,j7#1
Let o755 = pn(5:,.55) = an; — Bsilan ;] — Bs,la7 ;] + Elg7 ;5] and define
un(ﬂ_) = Z Z pn KN
n - 1 \/_ i=1 j=1,j#i
Then, {u,(-),7 € II,} is a degenerate U-process. We write (25) as
(TL -1 \/— Z Z {ES qn 17 + ES [qn ’Lj] [qg,m]} + un(ﬂ—) (26)
=1 j=1,j#1

We will later show the following two claims.

. 1
C3: sup,cp, | =

?:1{ESi [QZU] - E[qug]H = op(1).
C4 : sup,cq, |un(m)| = op(1).

We conclude from these claims that

n— 1 \/_Z Z qnlj - ;E;Esj[qz,ij] +0P(1>-

i=1 j=1,j7#i

Then the proof of Step 1 is completed by showing the following.

C5: SUDrer, |

oy (Es 07,) = 902U 10(%) = 920U} | = 0p(1).
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Proof of C1 : First observe that max,<; j<nsupyea, |45 ;|| = Op(n~") by (20). Let b €
(1/4,1/2] be as defined in the definition of A,,. Let Ay; = @(Y;) + E[@(Y;)|U;] + Mn~. With
large probability along with large M > 0, we bound |As,(7)| by

1 C
- \/_2n(n— 1)h3 Z _Z ,

n—lx/_Z Z ‘wA”Kh”

i=1 j=1,j7#1

]

\/1_27171—1h3Z Z {~ .

i=1 j=1,j7#1¢

The leading term is Op(n~'h=3) = op(n~/2h=3/2) = 0p(1) using the standard U statis-
tics theory. Through using Holder inequality, we find that the second term is equal to
O(n=Y2h=271/P) = o(1).

Proof of C2 : Note that K’(-/h) is uniformly bounded and bounded variation. Let K; o =
{K'(o(-)/h) : 0 € L,,}, where Z,, = {ox, : (A, u) € A, x [0,1]} and o, (2) = (FroA)(z) —
By Lemma Al of Song (2009) and Assumption B1(ii),

log Ny (e, K || - [lp) < log N(Ce, L, || - |loo) + C/fe < O™, (27)

Using (27) and following standard arguments, we can show that

max
1<j<n

1 n
W D A on i Ky = B [08 00K, 51Un, U] }‘
=1

1
ﬁSuP(ﬂ'ﬁ)EHn xK1,A

IN

= Op(h_Q).

1 n
NG D {iBoniih(X5) = B[ Ap ik (X)) Un 5, Ujl}
=1

By the fact that maxi<;<, ||0}|| = Op(n~"/?), the wanted result follows because Op(n~"/2h~2) =
OP(ly

Proof of C3 : First we note that

. 112
E {sup Es.la, ] } (28)
well,
2

1 1
< / {gim (t1) + Cn*%} sup {/ {9pa(ta) — gon(t1) }Ku(ts — t1)dta | dt.
0 0

(N EP XA,
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By change of variables, the integral inside the bracket becomes

(1=t1)/hIAL
/ (gon(ty + hta) — gon(t1) VK (t2) .
{—t1/h}Vv(-1)

After tedious algebra, we can show that the expectation in (28) is O(h?). This implies
that we take an envelope, say, J of the class J, = {hE[q; ;;|Si = -] : 7 € I} such that
[J||2 = O(h3/>t1) as n — oo. Similarly as in the proof of C2, note that K (-/h) is uniformly
bounded and bounded variation. Let Ky = {K(o(:)/h) : ¢ € Z,,}. Then by Lemma Al of
Song (2009), for any p > 1,

log Ny(, Kon || - 1) < Tog N(&, Ty, || - |oe) + C/fe < G, (29)

Let us define J, = {hq’(-,-) : 7 € II,}, where ¢7(--,-) is defined prior to (25). Observe that
for any A\, Ao € A,,,

Hg%h (FM()‘l())) - g<P7>\2(F)\2()‘2(')))||oo < O||(F>\1 © )‘1) - (F/\2 © /\2)“00 and (30)
1900 (Fx (A1) = Gupo (Fas(A2())ll o < ClI(Fx 0 A1) = (Fh, © A2)[|oo;

by Lemma Al. From this and using the fact that K, is uniformly bounded, it is easy to
show that

log Ny(&, s || - |lps2) <log Ny(e/C, @, || - [[,) +log Ny(/C, W, || - [[,) + Ce™". (31)
Therefore, log Nj(g, Jp, || - |[p2) < Ce™(teVPrVea) Using this result, we obtain that
log N[](5= T || - ||p/2) < Qe bavbuVin),

Then by the maximal inequality of Pollard (1989) (e.g. Theorem A.2 of van der Vaart
(1996)),

E

SUPrer,,

% Z {Es, [47.a] — Elar, 4] } “

O(h(3/2)+1)
< C / V1108 Ny(e, T, || - [|2)de = O(RE/2X 0= Covbuon2dy — (),
0

because (b V by V by) < 6/5. Hence we obtain the wanted result.

Proof of C4 : Since p > 8, we can take A € (0,1/6) and n = 1/4 + A/2 such that
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nTHARRT 0, +1/2<1—1/pand (bg V by V by)(1/2 +n) < 1. Then, from the proof
of C3,

1 ~ (1/2+4n) 1
/ {10g Ny(e, T I Hp/2)} "de < / Ce(baVouVo /24t e < oo,
0 0
By Theorem 1 of Turki-Moalla (1998), p.878,

B Sup | ()] = op(nt/2-W/2ENTA/Z) — o (g =HA/2)
well,

Therefore, sup,cry . |1, (m)] = op(n~"2/2h71) = op(n~Y4h=1) = 0p(1). Hence the proof is

complete.

Proof of C5 : We consider the following;:

B {sup (B, [47] — 9on U)o (¥)) — gon(Ua )} ) (32)

WEHn
2

1
= /SUP {/ Anﬂr(tlat%y)dtl} dFy \(y,t2),
well, 0

where f -dFy, denotes the integration with respect to the joint distribution of (Y;, U, ;) and

Apx(tite,y) = gea(t{e(y) — gea(t) HEu(t — t2)
=gy (t2){0() = gor(t2)}

After some tedious algebra, we can show that the last term in (32) is O(h*) (see the proof

of C3). Following the proof of C3 similarly, we can obtain the wanted result.

Proof of Step 2 : The proof is based on standard arguments of stochastic equicontinuity
(Andrews (1994)). For the proof, it suffices to show that the class

G = {gua(FXAONLe() = goa(FAAC))} = (Ao, ¥) € Ay x @ x T}

has a finite integral bracketing entropy with an Ly, (P)-bounded envelope for some ¢ > 0.

Using (30) and standard arguments, we find that
IOg N[] (87 ga || : ||p/2) S CE_(béVb\pVbA)'

Since bg V by V by < 2, the wanted bracketing integral entropy condition follows. We take
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an envelope as

Fai(w,y) = {955, (Fo(Mo(@))) + Mn™"H(y) + goao (Fo(Ao(2))) + Mn~"}

for some large M. Clearly, this function Fy; is Lo, .(P)-bounded by Assumption Bl. There-

fore, the process
1 n
D {A77(0) = A7 00) — B [A7Y (1) — A7 ()| }
i=1

is stochastically equicontinuous in (A, ¢, 1) € A, x ® x U. (See e.g. Theorem 4 of Andrews
(1994)). Since A, is a shrinking neighborhood of Aq and E[A?"()\) — A?Y()\g)] = 0, we

obtain the wanted result. B

Let D; € {0,1} be a binary random variable and define g,(u, 1) = E[o(Y;)|U; = u, D; = 1]
and gy(u, 1) = E(Z;)|U; = u, D; = 1]. Consider the estimator:

n

1
Goni(u, 1) = E ©(Y;)D;Kp (Upj — u),
’ (n— 1) fra(u, 1) Z# v ’

where fy;(u,1) = (n—1)"1 3" D; Ky, (U »j — u). Similarly as before, we define

J=1,j#i
R~ R
valX 0.1, 1) = > W Z)Di{goni(Unnis 1) — 9,(Ui, 1)},
=1

with (A, ¢, ¢) € A, x &, x ¥,,. The following lemma is an extension of Lemma B1l. Note
that when D; = 1 for all 7, the result reduces to Lemma B1. The result is in fact a corollary

to Lemma B1.

Lemma B2 : Suppose that Assumptions B1-B3 hold and that sup,cpoE[D;|U; = u] > 0.
Then,

1 n
Sup Un )\7 ) 71 - DZ U”Ml 3/1 - Uz;]. = op(1).
P O ) = S DU 1) — 0 >}‘ (1)

Furthermore, the result remains the same when we replace v,(\, @,1,1) by v, (Ao, @, ¥, 1).

Proof : Write

n Nl RO
1 Jpni(Uni) g0 (Ui)
va(X 0,0, 1) = —= > (Z;)D; { “E - :
o= 2 ) { P (Unns) 9PN




i) =

Using the arguments in the proof of Lemma B1, we can write

G (Unri) gm(U)}
¢ ©,A, ’\ (%2 7
L]

gm(Un,M-) g2(U;)

7

B \/_Z gl2! )UD;{ <pM(Un,/\,i)_g<[;](Ui)}

7

Wy
—l—% Zi/f(Zz‘)Di(ggpw]#:) {gm(U) giZ](Un,A,i)} + op(1).

By applying Lemma B1 to both terms, we obtain the wanted result. B
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