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Abstract

This paper considers models of conditional moment restrictions that involve non-

parametric functions of single-index nuisance parameters. This paper proposes a

bootstrap method of constructing con�dence sets which has the following three

merits. First, the bootstrap is valid even when the single-index estimator fol-

lows cube-root asymptotics. Second, the bootstrap method accommodates con-

ditional heteroskedasticity. Third, the bootstrap does not require re-estimation

of the single-index component for each bootstrap sample. The method is built on

this paper�s general �nding that as far as the single-index is a conditioning vari-

able of a conditional expectation, the in�uence of the estimated single-indices in

these models is asymptotically negligible. This �nding is shown to have a generic

nature through an analysis of Fréchet derivatives of linear functionals of condi-

tional expectations. Some results from Monte Carlo simulations are presented

and discussed.
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1 Introduction

Many empirical studies use a number of covariates to deal with the problem of endogeneity.

Using too many covariates in nonparametric estimation, however, tends to worsen the quality

of the empirical results signi�cantly. A promising approach in this situation is to introduce a

single-index restriction so that one can retain �exible speci�cation while avoiding the curse

of dimensionality. The single-index restriction has long attracted attention in the literature.2

Most literatures deal with a single-index model as an isolated object, whereas empirical

researchers often need to use the single-index speci�cation in the context of estimating a

larger model. A prototypical example is a structural model in labor economics that requires

a prior estimation of components such as wage equations. When single-index components

are nuisance parameters that are plugged into the second-step estimation of a parameter of

interest, the introduction of single-index restrictions does not improve the convergence rate

of the estimated parameter of interest which already achieves the parametric rate of
p
n:

Nevertheless, the use of a single-index restriction in such a situation still has its own merits.

After its adoption, the model requires weaker assumptions on the nonparametric function and

on the kernel function. This merit becomes prominent when the nonparametric function is

de�ned on a space of a large dimension and stronger conditions on the nonparametric function

and higher-order kernels are required. (See Hristache, Juditsky and Spokoiny (2001) for more

details.)

This paper focuses on semiparametric conditional moment restrictions where the restric-

tions contain nonparametric functions of single-indices that are identi�ed and estimated prior

to the estimation of the parameter of interest. The restrictions allow the single-indices to

follow cube-root asymptotics. Numerous examples belong to this class of restrictions. For

example, a sample selection model where the selection equation error satis�es a conditional

median restriction belongs to the framework of this paper. In such a situation, one may

estimate the single-index in the selection equation using maximum score estimation. Other

examples include models of single-index exogeneity, where the instrumental variable takes

the form of a single-index that is to be estimated in the �rst step.

This paper considers two-step estimation, estimating the single-index component in the

�rst step and then estimating the parameter of interest in the second step. Then the main

concern is whether the �rst-step estimation error leaves its mark on the asymptotic distrib-

ution of the second step estimator. The analysis is typically based on the asymptotic linear

2For example, Klein and Spady (1993) and Ichimura (1993) proposedM -estimation approaches to estimate
the single-index, and Stoker (1986) and Powell, Stock and Stoker (1989) proposed estimation based on average
derivatives. See also Härdle and Tsybakov (1993), Horowitz and Härdle (1996), and Hristache, Juditsky and
Spokoiny (2001).
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representation of estimated parameters. (See Newey (1994) for a systematic exposition re-

garding this analysis.) However, this approach does not apply when the �rst step parameter

follows cube-root asymptotics, and as far as the author is concerned, there is no literature

that formally studies this problem. Furthermore, when one attempts to make bootstrap-

based inference, it is not clear what method of bootstrap will deliver the wanted result. As

is well-known (Abrevaya and Huang (2005)), the method of bootstrap fails for estimators

that follow cube-root asymptotics.

This paper proposes a bootstrap method for the parameters of interest in this situation.

The method has three advantages. First, the bootstrap procedure is valid even when the

single-index component follows cube-root asymptotics. This is interesting in the light of

the result from Abrevaya and Huang (2005). This paper�s result a¢ rms that as far as the

single-index is a nuisance parameter that is a conditioning variable of a conditional expec-

tation, there is a valid bootstrap procedure for the parameter of interest even when the

single-index estimator follows cube-root asymptotics. Second, the bootstrap method accom-

modates conditional heteroskedasticity. Note that conditional heteroskedascity is natural

for models under conditional moment restrictions. Third, the bootstrap method does not

require re-estimation of the single-index component or the nonparametric function for each

bootstrap sample. Hence it is computationally attractive when the dimension of the single-

index coe¢ cient vector is large and its estimation involves numerical optimization. This is

indeed the case when the single-index is estimated through maximum score estimation and

the number of covariates is large. Therefore, the bootstrap method in this paper can be

conveniently used for models that involve nonparametric estimators of cube-root converging

single-indices.

The result of this paper is built on a general �nding that when the single-index enters

as a conditioning variable of a conditional expectation, the in�uence of the estimated single-

index is asymptotically negligible even if it follows cube-root asymptotics. To place this

phenomenon in the perspective of Newey (1994), this paper considers functionals that involve

conditional expectations where the conditioning variable involves an unknown parameter. It

is shown that in this situation, the �rst order Fréchet derivative of the functional with respect

to the unknown parameter is zero. This means that there is no �rst order in�uence of the

estimator in the conditioning variable on an estimator of any functional of the conditional

expectation. This result may have interesting consequences in a broader context than that

studied in this paper.

For the sake of concreteness, this paper establishes a uniform Bahadur representation

of symmetrized nearest neighborhood (SNN) estimators over function spaces. Symmetrized

nearest neighborhood estimators do not su¤er from the random denominator problem and
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hence do not require a trimming sequence. Based on the uniform representation result,

this paper o¤ers lower level conditions for the asymptotic theory of this paper. A Bahadur

representation of SNN estimators was originally established by Stute and Zhu (2005) who

established a non-uniform result in the context of testing single-index restrictions. In partic-

ular, Stute and Zhu (2005) showed that the �rst order e¤ect of a
p
n-converging single-index

estimator is asymptotically negligible. This paper puts their �nding in the perspective of

semiparametric estimation and shows that the phenomenon of the asymptotic negligibility of

the estimated single-index arises even when the single-index component has a cube-root rate.

The uniform Bahadur representation is also useful for many other purposes, for example, for

analyzing various semiparametric speci�cation tests.

There are many researches that study models with estimated regressors. For example,

Newey, Powell, and Vella (1999) and Das, Newey, and Vella (2003) considered nonparamet-

ric estimation of simultaneous equation models. Li and Wooldridge (2002) analyzed partial

linear models with generated regressors when the estimated parameters in the generated

regressors are
p
n-consistent. Rilstone (1996) and Sperlich (2009) studied nonparametric

estimators that involve predicted regressors. While the last two papers are related to this

paper, the set-up of this paper is di¤erent. The asymptotic behavior of the nonparametric

estimator of the predicted regressors is not a major concern here because the nonparamet-

ric part is a nuisance parameter in this paper�s set-up. The main concern is centered on

the inference about the �nite dimensional parameter of interest when the semiparametric

nuisance parameter involves a nonparametric function and a single-index that potentially

follows cube-root asymptotics.

The paper is organized as follows. In the next section, we de�ne the scope of this

paper by introducing models of semiparametric conditional moment restrictions and motivate

the models with examples that are relevant in the literature. Section 3 proposes a new

bootstrap-based inference method for the models and o¤ers the main result that establishes

the asymptotic validity of the bootstrap procedure under general conditions. Some heuristics

behind the results are also provided. Section 4 investigates whether the proposed bootstrap

procedure performs well in �nite samples by using Monte Carlo simulations. Section 5

concludes. The Appendix introduces a general lemma about continuity of functionals of

conditional expectations in parameters constituting the conditioning variable. The appendix

also presents a general uniform Bahadur representation of SNN estimators which can be

useful for other purposes.
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2 Semiparametric Conditional Moment Restrictions

This paper focuses on the following form of semiparametric conditional moment restrictions.

For j = 1; � � �; J + 1; let �j(x) = �j(x; �0); where �j(�) is a real function known up to
�0 2 Rd� : For example, �j(x; �0) = x>j �0;j; where xj and �0;j are conformable subvectors of

x and �0. Another example is �j(x; �0) = exp(x>j �0;j)=f1 + exp(x>j �0;j)g. Given observable
i.i.d. random vectors Xi 2 RdX , Yi 2 RJ , and observable i.i.d. binary random variables

Di 2 f0; 1g, we de�ne

�i;j = �j(Xi) and �i;j = E [Yi;jj�i;j; Di = 1] ;

where Yi;j is the j-th entry of Yi. Let �i = (�i;1; � � �; �i;J)>. Then we assume that the
parameter of interest �0 2 Rd� is identi�ed through the following restriction:

E [�(Vi; �i; �0)jDi = 1;Wi] = 0; (1)

whereWi = (W1;i; �i;J+1); (Vi;W1;i) 2 RdV +dW1 is an observable random vector and �(�; �; �0) :
RdV +J ! R is known up to �0 2 B � Rd� : Throughout this paper, we assume that �0 is

identi�ed before one imposes the conditional moment restriction in (1). Hence it su¢ ces that

the restriction in (1) identi�es the parameter �0 only. The function �(�; �; �0) is called the
generalized residual function which is a generalized version of the residual from the linear

regression models. The random variable �i;j : RdX ! R is a single-index of Xi; and the

distributions of �i;j�s are assumed to be absolutely continuous with respect to the Lebesgue

measure.

This paper�s situation is such that the parameter of main interest is �0 and the parameter

�0 in the single-index is a nuisance parameter. The primary focus of this paper is on the

inference of �0 when �0 is estimated at the rate of n
1=2 or n1=3. Note that Wi is allowed to

depend on an unknown continuous single index �i;J+1: This feature is relevant when the IV

exogeneity takes the form of single-index exogeneity, where the instrumental variable takes

the form of a single-index.

Example 1 (Sample Selection Model with a Median Restriction) : Consider the
following model:

Yi = �>0W1;i + vi and

Di = 1f�i � "ig;

where �i = X>
i �0: The variable Yi denotes the latent outcome andW1;i a vector of covariates
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that a¤ect the outcome. The binary Di represents the selection of the vector (Yi;W1;i) into

the observed data set, so that (Yi;W1;i) is observed only when Di = 1: The incidence of

selection is governed by a single index �i of covariates Xi. The variables vi and "i repre-

sent unobserved heterogeneity in the individual observation. The exclusion restriction here

requires that W1;i is not measurable with respect to the �-�eld generated by �i.

The variable "i is permitted to be correlated with Xi but Med("ijXi) = 0: And W1;i is

independent of (vi; "i) conditional on the index �i in the selection mechanism. This involves

the median restriction and the single-index exogeneity. The assumptions of the model are

certainly weaker than the common requirement that (W1;i; Xi) be independent of (vi; "i): (e.g.

Heckman (1990), Newey, Powell, and Walker (1990).) More importantly, this model does not

assume thatXi is independent of "i in the selection equation or of vi in the outcome equation.

Hence we cannot use the characterization of the selection bias through the propensity score

PfDi = 1j�ig as has often been done in the literature of semiparametric extension of the
sample selection model. (e.g. Powell (1989), Ahn and Powell (1993), Chen and Khan (2003),

and Das, Newey and Vella (2003)).

From the method of Robinson (1988), the identi�cation of �0 still follows if the matrix

E
�
(Xi � E[XijDi = 1; �i])(Xi � E[XijDi = 1; �i])

>jDi = 1
�

is positive de�nite. In this case, we can write for the observed data set (Di = 1)

Yi = �>0W1;i + �(�i) + ui;

where ui satis�es thatE[uijDi = 1;W1;i; �i] = 0 and � is an unknown nonparametric function.

This model can be estimated by using the method of Robinson (1988). Let �Y;i = E[YijDi =

1; �i]; and �W1;i = E[W1;ijDi = 1; �i]: Then, we consider a conditional moment restriction:

E
�
fYi � �Y;ig � �>0 fW1;i � �W1;igjDi = 1;W1;i; �i

�
= 0:

By putting

�(Vi; �i; �0) = fYi � �Y;ig � �>0 fW1;i � �W1;ig)

and Wi = (W>
1;i; �i)

>, we �nd that this model belongs to the model of semiparametric

conditional moment restrictions.

One may estimate �0 in �0 using maximum score estimation in the �rst step and use it in

the second step estimation of �0: Then the remaining question is concerned with the e¤ect

of the �rst step estimator of �0 which follows cube root asymptotics upon the estimator of

�0:
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Note that the identi�cation of �0 does not stem from a direct imposition of single-index

restrictions on E[YijDi = 1; Xi = �] and E[ZijDi = 1; Xi = �]. The identi�cation follows from
the use of auxiliary data set ((Di = 0); Xi) in the sense of Chen, Hong, and Tarozzi (2008).

Such a model of "single-index selectivity bias" has a merit of avoiding a strong exclusion

restriction and has early precedents. See Powell (1989), Newey, Powell, and Walker (1990),

and Ahn and Powell (1993). �

Example 2 (Models with a Single-Index Instrumental Variable) : Consider the
following model:

Yi = Z>i �0 + "i; and

Di = 1f�i � �ig;

where �i = X>
i �0 and "i and �i satisfy that E["ij�i] = 0 and Med(�ijXi) = 0: The data

set (Di; Xi) plays the role of an auxiliary data set in Chen, Hong, and Tarozzi (2008) and

enables us to identify the single-index �i that plays the role of the instrumental variable

(IV). However, the IV exogeneity condition is weaker than the conventional one because

the exogeneity is required only of the single-index X>
i �0 not of the whole vector Xi: In

other words, some of the elements of the vector Xi are allowed to be correlated with "i:

Furthermore, Xi is not required to be independent of �i as long as it maintains the conditional

median restriction. This conditional median restriction enables one to identify �0 and in

consequence �0:

We consider the following conditional moment restriction:

E
�
Yi � Z>i �0j�i

�
= 0:

In this case, �(Vi; �i; �0) = Yi � Z>i �0 and Wi = �i. Hence there is no nonparametric

component � in the generalized residual function.

We can �rst estimate �i and then estimate �0 by plugging in these estimates into a

sample version of the conditional moment restriction. Again, when �0 is estimated using

maximum score estimation, the main question is how we can analyze the estimator�s e¤ect

on the estimation of �0. �
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3 Inference

3.1 Estimators and Asymptotic Distributions

This paper considers a two-step procedure where one estimates the single-index parameter

�0 �rst, and using this estimator, estimates �0 in the second step. Suppose that we have

obtained a consistent estimator �̂ of �. For this, one may use estimation methods in the

literature of single-index restrictions (e.g. Ichimura (1993), Hristache, Juditsky and Spokoiny

(2001).) When the single-index is involved in a selection equation with a conditional median

restriction, one may obtain �̂ through maximum score estimation. All we require for our

purpose is that the rate of convergence of the estimator �̂ is either n�1=2 or n�1=3 (Assumption

2 below).

Given the estimator �̂; we let �̂i;j = �j(Xi; �̂). As for �, this paper considers symmetrized

nearest neighborhood (SNN) estimation. Let ûk;j = 1
n

Pn
i=1 1f�̂i;j � �̂k;jg and �̂k = [�̂k;1; � �

�; �̂k;J ]>; where

�̂k;j =

Pn
i=1DiYi;jKh (ûi;j � ûk;j)Pn
i=1DiKh (ûi;j � ûk;j)

; (2)

and Kh(u) = K(u=h)=h and K : R ! R is a kernel function. The estimator �̂k;j is a

SNN estimator proposed by Yang (1981) and studied by Stute (1984). The probability

integral transform of �i;j turns its density into a uniform density on [0; 1]: (Recall that we

assume that the distribution of �i;j is absolutely continuous throughout this paper.) Using

the probability integral transform obviates the need to introduce a trimming sequence. The

trimming sequence is often required to deal with the random denominator problem (e.g.

Ichimura (1993) and Klein and Spady (1993)), but there is not much practical guidance for

its choice. The use of the probability integral transform eliminates such a nuisance altogether.

We introduce an estimator of �0. For any vectors x and y in R
dW , we write x � y to

mean that xj � yj for all j = 1; ���; dW , where xj�s and yj�s are entries of x and y respectively.
We de�ne

�̂ = argmin
�2B

nX
k=1

Dk

(
nX
i=1

Di�(Vi; �̂i; �)1fŴi � Ŵkg
)2

;

where Ŵi = (W1;i; �̂i;J+1): The estimation method is similar to the proposal by Domínguez

and Lobato (2004). While they considered weakly dependent observations in contrast to the

i.i.d. set-up of this paper, their model does not involve single-index components that are

estimated in the �rst step. Let �(�) � f� 2 Rd� : jj� � �0jj < �g:

Assumption 1 : (i) f(Vi; Xi; Yi;Wi; Di)gni=1 is a random sample.

(ii) E[�(Vi; �i; �)DijWi] = 0 a.s. i¤ � = �0 and �0 belongs to the interior of a compact set
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B.

(iii) �(v; �; �) as a function of (�; �) 2 B �RJ is twice continuously di¤erentiable with the

�rst order derivatives �� and �� and the second order derivatives ���; ��� and ��� such that

E[sup�2Bjj~�(Vi; �i; �)jjp] <1; p > 2; for all ~� 2 f�; ��; ��; ���; ���g:
(iv) For some M > 0 and p > 8; E[jjYijjp] < M , E[jj��(Vi; �i; �0)jjp] < M , and

E[sup(�;��)2B�[�M;M ]jj���(Vi; ��; �)jjq] <1; q > 8: (3)

Assumption 2 : The estimator �̂ satis�es that jj�̂ � �0jj = OP (n
�r) with r = 1=2 or 1=3:

Assumption 3 : (i)K(�) is symmetric, compact supported, twice continuously di¤erentiable
with bounded derivatives,

R
K(t)dt = 1.

(ii) n1=2h3�1=q + n�1=2h�2�1=q(� log h)! 0:

Assumption 1 is standard in many models of conditional moment restrictions. The con-

dition E[jj��(Vi; �i; �0)jjp] < M and (3) in Assumption 1(iv) are trivially satis�ed when

�(v; �; �) is linear in � as in Examples 1 and 2. Assumption 3(i) is satis�ed, for exam-

ple, by a quartic kernel: K(u) = (15=16)(1 � u2)21fjuj � 1g: The bandwidth condition
in Assumption 3(ii) does not require undersmoothing; it is satis�ed by any h = n�s with

q=(6q�2) < s < q=(4q+2). There are other assumptions that are of more technical character.

These assumptions (named Assumption A) and discussions are found in the appendix.

Theorem 1 : Suppose that Assumptions 1-3 and Assumption A (in the Appendix) hold.
Then,

p
n(�̂ � �0)!d

�Z
_H(w) _H(w)>dFW jD=1(w)

��1 Z
_H(w)�(w)dFW jD=1(w);

where _H(w) = E[��(Vi; �i; �0)Di1fWi � wg]; FW jD=1 is the conditional CDF of Wi given

Di = 1; � is a centered Gaussian process on RdW that has a covariance kernel given by

C(w1; w2) = E [�i(w1)�i(w2)Di] with �i(w) = �(Vi; �i; �0)1fWi � wg � ri(w);

ri(w) =

JX
j=1

E[1fWi � wg��;j(Vi; �i; �0)j�i;j; Di = 1]
�
Yi;j � �i;j

�
(4)

and ��;j(Vi; �i; �0) is the j-th entry of ��(Vi; �i; �0).

Compared with the asymptotic covariance matrix of Domínguez and Lobato (2004), the

asymptotic covariance matrix contains additional terms ri(w). This is due to the nonpara-

metric estimation error in �̂: The asymptotic covariance matrix remains the same regardless
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of whether we use the estimated indices �̂i;j or the true indices �i;j: This is true even if �̂

follows cube root asymptotics. The following subsection o¤ers heuristic arguments behind

this phenomenon.

3.2 Some Heuristics

For simplicity, assume that �(Xi; �) = X>
i �, Di = 1 for all i = 1; � � �; n; and the generalized

residual takes the form of

�(Vi; �i; �0) = �0 � E
�
YijX>

i �0
�
;

where �0 2 R. Furthermore, we assume that the moment condition

E [�(Vi; �i; �0)Zi] = 0

identi�es �0 for a certain instrumental variable Zi; where we normalize EZi = 1. Then �0 is

identi�ed as �0 = �(�0) where

�(�) = E
�
E
�
YijX>

i �
�
Zi
�
:

The �rst order e¤ect of the estimation of �0 on that of �0 is determined by the way �(�)

behaves as we perturb � around �0. (e.g. See Newey (1994).)

Under certain regularity conditions for the conditional density of Yi given X>
i �, we can

show that (see the appendix for details)

j�(�1)� �(�2)j = O(jj�1 � �2jj2): (5)

In other words, �(�) is fairly insensitive to the perturbation in �: (Note that the order is not

O(jj�1� �2jj) but O(jj�1� �2jj2).) Roughly speaking, when �̂ is within a n�1=3-neighborhood
of �0, �(�̂) is within a n�2=3-neighborhood of �0. This means that

p
n(�(�̂) � �(�0)) !P 0,

even if �̂ has the cube-root convergence rate. Therefore, there is no estimation error e¤ect

from �̂.

The result in (5) can be seen intuitively as follows. To simplify the notations, we write

�1;i = X>
i �1 and �2;i = X>

i �2. First, using the law of iterated conditional expectations,

�(�1)� �(�2) = E [Zi fE [Yij�1;i]� E [Yij�2;i]g]
= E [E [Zij�1;i;�2;i] fE [Yij�1;i]� E [Yij�2;i]g]

10



By adding and subtracting terms, we rewrite the above as

E [(E [Zij�1;i;�2;i]� E [Zij�2;i]) (E [Yij�1;i]� E [Yij�1;i;�2;i])] (6)

+E [(E [Zij�1;i;�2;i]� E [Zij�2;i]) (E [Yij�1;i;�2]� E [Yij�2;i])]
+E [E [Zij�2;i] fE [Yij�1;i]� E [Yij�2;i]g] :

The last expectation is equal to

E [fE [Zij�2;i]� E [Zij�1;i;�2;i]g fE [Yij�1;i]� E [Yij�2;i]g]

because E [E [Zij�1;i;�2;i] fE [Yij�1;i]� E [Yij�2;i]g] = 0. Hence if for Si = Yi or Zi,

E [Sij�1;i]� E [Sj�1;i;�2;i] � O(jj�1 � �2jj) and (7)

E [Sij�1;i]� E [Sij�2;i] � O(jj�1 � �2jj);

all the components in the sum of (6) are O(jj�1 � �2jj2). Therefore �(�) is insensitive to the
�rst order perturbation of �. This analysis carries over even when � is an in�nite dimensional

parameter taking values in a function space, say, �, as long as certain regularity conditions

for conditional densities are maintained. A detailed version of this result is presented in the

appendix.

It should be noted that the asymptotic negligibility result relies on the particular structure

where the single-index �i (here �i = X>
i �) enters as a conditioning variable of a conditional

expectation. For example, Ahn and Powell (1993) and Chen and Khan (2003) use generated

regressors to estimate the main parameter of interest. In their cases, the generated regressors

do not enter as a conditioning variable of a conditional expectation, but enter as part of

a weighting matrix. Hence the phenomenon of asymptotic negligibility of the generated

regressor does not arise. Another example that is worth attention is the case where one

employs density weighting in the estimation using the density of the single-index. In this case,

the asymptotic negligibility of the estimated single-index does not arise either. For instance,

the model of Li and Wooldridge (2002) involves a generated regressor as a conditioning

variable of conditional expectation, and as shown in Theorem 2.1 in their paper, there exists

a �rst order e¤ect of generated regressors in the asymptotic theory. This result appears to

stand in contradiction to the result of this paper. To see this closely, observe that Li and

Wooldridge (2002) considers the following partial linear model (Eq. (4) on page 627):

Yi = X>
i 
 +m(�i) + ui
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where m is an unknown function and �i = Si � Z>i � with � being an unknown parameter.

The parameter of interest is 
. Following Robinson (1988) and applying density weighting

as in Powell, Stock and Stoker (1988), Li and Wooldridge estimate 
 based on the following

identi�cation strategy:


 = E
�
(Xi � E(Xij�i))(Xi � E(Xij�i))>f 2(�i)

��1
E
�
(Yi � E(Yij�i))(Xi � E(Xij�i))>f 2(�i)

�
;

where f denotes the density of �i. The asymptotic variance of their least squares estimator

of 
 involves an additional term due to the use of �̂i = Si � Z>i �̂ in place of �i. Precisely

speaking, this additional term stems from the use of density weighting. The density weighting

makes 
 depend on the variable �i outside the conditional expectationsE(Xij�i) andE(Yij�i).
One can show that this additional term disappears when one takes the density weighting f

to be a constant 1.

3.3 Bootstrap Procedure

While one can construct con�dence sets for �0 based on the asymptotic theory, the esti-

mation of the asymptotic covariance matrix is complicated. requiring a choice of multiple

bandwidths. This paper proposes a bootstrap method that is easy to use and robust to

conditional heteroskedasticity. The proposal is based on the wild bootstrap of Wu (1986).

(See also Liu (1988).)

First, we �nd a consistent estimator r̂i(w) of ri(w) de�ned in Theorem 1. As for the

estimator r̂i(w), we assume the following:

Assumption 4 : supw2RdW max1�i�n jr̂i(w)� r(w)j = oP (1):

Conditions for the uniform consistency of a nonparametric estimator is well-known in the

literature (e.g. Hansen (2008)). Then, de�ne r̂ik = r̂i(Ŵk) and

�̂lk(�) = 1fŴl � Ŵkg�(Vl; �̂l; �);

where �̂i is a �rst step estimator de�ned in (2). This paper suggests the following bootstrap

procedure.

Step 1 : For b = 1; � � �; B; draw i.i.d. f!i;bgni=1 from a two-point distribution assigning

masses (
p
5 + 1)=(2

p
5) and (

p
5� 1)=(2

p
5) to the points �(

p
5� 1)=2 and (

p
5 + 1)=2:

12



Step 2 : Compute f�̂�b : b = 1; � � �; Bg by

�̂
�
b = argmin

�2B

nX
k=1

Dk

(
nX
l=1

Dl

h�
�̂lk(�̂)� �̂lk(�)

�
+ !l;b

n
�̂lk(�̂) + r̂lk

oi)2

and use the bootstrap distribution of
p
n(�̂

�
b � �̂) in place of the �nite sample distribution ofp

n(�̂ � �0) for inferences.

The bootstrap procedure is computationally very simple. The estimator �̂i is stored once

and repeatedly used for each bootstrap sample. In other words, we do not have to re-estimate

�0 for each bootstrap sample. This computational merit is prominent when the dimension

of the parameter �0 is large and one has to resort to a numerical optimization algorithm for

its estimation as in the case of maximum score estimation.

The bootstrap procedure is a modi�ed version of a wild bootstrap procedure which is

typically used in the context of semiparametric speci�cation tests (e.g. Härdle and Mammen

(1993), Whang (2000), Delgado and González Manteiga (2001), Song (2009).) The main

modi�cation of the procedure is that it includes the additional term r̂lk in the bootstrap

procedure. This inclusion is made to induce the �rst order estimation error e¤ect of �̂ in

the bootstrap estimation problem. If there were a further estimation error e¤ect from �̂, we

would have to induce this further e¤ect in the bootstrap to ascertain validity of the bootstrap

procedure. When �̂ follows cube-root asymptotic theory, it is not clear how one can accom-

plish this. Now, since the result of Theorem 1 has established that there is no estimation

e¤ect from �̂ even if it follows cube-root asymptotics, we do not need to induce the estima-

tion error e¤ect in the bootstrap as far as bootstrap validity is concerned. This is the main

reason why the bootstrap still works even if it has an estimator of the nuisance parameter

that converges at the rate of n�1=3. Following the conventional notations, we denote !d� to

indicate the convergence of bootstrap distributions conditional on f(Vi; Xi; Yi;Wi; Di)gni=1.

Theorem 2 : Suppose that Assumptions 1-3 and Assumption A (in the Appendix) hold.
Then,

p
n(�̂

�
b � �̂)!d�

�Z
_H(w) _H(w)>dFW jD=1(w)

��1 Z
_H(w)�(w)dFW jD=1(w) in P

where _H and � are as in Theorem 1.

Theorem 2 shows that the bootstrap procedure is asymptotically valid. As we explained

above, the main reason that this bootstrap procedure works is due to the fact that there
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is no �rst order estimation e¤ect from �̂. It is expected that the same phenomenon will

carry over to the situation where the observations are weakly dependent, or even where the

function �(�) is a nonparametric function. In fact, the results of Theorems 1 and 2 stem from
the result of continuity of functionals of conditional expectations. (See Section 3.2 above

and Section 6.1 below in the Appendix.) This continuity result does not rely on the i.i.d.

assumption of the observations. Furthermore, the result is established in a general set-up

where � is a nonparametric function. A full development in these extensions is left to a

future research.

In the following we revisit the two examples that we discussed before and see how the

bootstrap procedure applies.

Example 1 (Continued): Let ei = Yi � �Y;i � �>0
�
W1;i � �W1;i

�
and �i = [�Y;i; �W1;i]

>.

After some algebra, we �nd that ri(w) de�ned in (4) is equal to �Fi(w) � ei, where Fi(w) =
E [Di1fWi � wgj�i]. We construct estimator êi of ei by using estimators �̂Y;i, �̂W1;i as in (2)

and �̂, and de�ne

F̂i(w) =

Pn
j=1Dj1fWj � wgKh (ûj � ûi)Pn

j=1DjKh (ûj � ûi)
;

where ûi = 1
n

Pn
k=1 1f�̂k � �̂ig. Finally, let

Aik = êi �
�
1fŴi � Ŵkg+ !i;b

�
1fŴi � Ŵkg � F̂i(w)

��
:

Then the bootstrap version of the estimator �̂ is de�ned as

�̂
�
b = argmin

�2B

nX
k=1

Dk

(
nX
l=1

DlTY;lk � �>

 
nX
l=1

DlTX;lk

!)2
;

where

TY;lk = fAlk � fYl � �̂Y;lggDl and TX;lk = (W1;l � �̂W1;l)Dl:

Since the form is least squares estimation, the solution �̂
�
b is explicit as follows. Let TX be

the n � dW1 vector whose k-th row is given by
Pn

l=1 T
>
X;lk and let TY be the n � 1 vector

whose k-th entry is given by
Pn

l=1 TY;lk. Then,

�̂
�
b =

�
T>XTX

��1
T>XTY :

Note that for each b = 1; � � �; B, it su¢ ces to use the same estimators, �̂Y;i, �̂W1;i, and only

change !i;b in the de�nition of Aik.

Example 2 (Continued): In this example, as for ri(w) de�ned in Theorem 1, ri(w) = 0.
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Hence let �̂ be the maximum score estimation of �0 and Ŵk = X>
k �̂. We de�ne

�̂
�
b = argmin

�2B

nX
k=1

("
nX
l=1

TY;lk � �>

 
nX
l=1

TX;lk

!#)2
;

where

TY;lk = 1fŴl � Ŵkgf�̂
>
Zl + !l;b(fYl � Z>l �̂g)g and

TX;lk = Zl1fŴl � Ŵkg:

Then, the solution is explicit as �̂
�
b =

�
T>XTX

��1
T>XTY similarly as before when we de�ne TX

be the n � dZ vector whose k-th row is given by
Pn

l=1 T
>
X;lk and let TY be the n � 1 vector

whose k-th entry is given by
Pn

l=1 TY;lk.

4 A Monte Carlo Simulation Study

4.1 The Performance of the Estimator

In this section, we present and discuss some Monte Carlo simulation results. Based on the

sample selection model in Example 1, we consider the following data generating process. Let

Zi = U1i � �1i=2 and Xi = U2i � �i=2

where U1i is an i.i.d. random variable that has a uniform distribution on [0; 1], U2i and �i are

random vectors in Rk with entries equal to i.i.d random variables of uniform distribution on

[0; 1]: The dimension k is chosen from f3; 6g: The random variable �1i is the �rst component
of �i: Then, the selection mechanism is de�ned as

Di = 1fX>
i �0 + "i � 0g;

where "i follows the distribution of 2Ti � 1
dX

PdX
k=1� (X

2
ik + jXikj) + � i; � i � N(0; 1); �

denoting the standard normal distribution function, and Ti is chosen as follows:

DGP A1: Ti � N(0; 1) or

DGP A2: Ti � t distribution with degree of freedom 1:
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Hence the selection mechanism has errors that are conditionally heteroskedastic, and in the

case of DGP A2, heavy tailed. Then, we de�ne the latent outcome Y �
i as follows:

Y �
i = Zi�0 + vi;

where vi � (a� i+ei)�� (Z2i + jZij) with ei � N(0; 1): Therefore, vi in the outcome equation

and "i in the selection equation are correlated, so that the data generating process admits

the sample selection bias. The degree of the sample selection bias varies depending on the

choice of a. This simulation study considered a 2 f1; 2g. We set �0 to be the vector of 2�s and
�0 = 2: In the simulation studies we estimated �0 by using the maximum score estimation

to obtain �̂.

There are four combinations, depending on whether �0 is assumed to be known (TR) or

estimated through maximum score estimation (ES) and depending on whether SNN estima-

tion was used (NN) or usual kernel estimation was used (KN). For the latter case, we used the

standard normal PDF as a kernel. Bandwidths for the estimation of E[YijX>
i �0; Di = 1] and

E[ZijX>
i �0; Di = 1] were chosen separately using a least-squares cross-validation method. If

the role of the sample selection bias were already marginal, the estimation error e¤ect of �̂

would be small accordingly, preventing us from discerning the negligibility of the estimation

error e¤ect of �̂ from the negligible sample selection bias. Hence, we also report the results

from the estimation of � that ignores the sample selection bias (W-SBC: Without Sample

Selection Bias Correction).

Table 1 shows the performance of the estimators. The results show that the performance

of the estimators does not change signi�cantly as we increase the number of covariates from

3 to 6. This indicates that the quality of the second step estimator �̂ is robust to the

quality of the �rst step estimator �̂: This fact is shown more clearly when we compare the

performance of the estimator (TR) that uses �0 and the estimator (ES) that uses �̂: The

performance does not show much di¤erence between these two estimators. The performance

of the SNN estimator appears slightly better than the kernel estimator. When the sample

size was increased from 200 to 500, the estimator�s performance improved as expected. In

particular the improvement in terms of RMSE is conspicuous.

The negligibility of the e¤ect of the estimation error in �̂ is not due to inherently weak

sample selection bias. This is evident when we compare the results with those from the

estimators that ignore the sample selection bias (W-SBC). Comparing Table 1 with Table 2,

we observe that the sample selection bias increases when we enhance the correlation between

"i and vi by increasing a = 1 to a = 2: Nevertheless, the di¤erence between the performance

of the estimators using �0 and that of the estimators using �̂ continues to be marginal.
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Table 1: The Performance of the Estimators in Terms of MAE and RMSE: a = 1

k NN-TR NN-ES KN-TR KN-ES W-SBC

3 MAE 0.4304 0.4329 0.4337 0.4414 0.6039

DGP A1 RMSE 0.2967 0.2984 0.3014 0.3108 0.5764

6 MAE 0.4079 0.4084 0.4065 0.4201 0.5487

n = 200 RMSE 0.2654 0.2678 0.2644 0.2820 0.4628

3 MAE 0.4439 0.4473 0.4443 0.4583 0.6067

DGP A2 RMSE 0.3095 0.3144 0.3119 0.3285 0.5848

6 MAE 0.4176 0.4115 0.4254 0.4188 0.5483

RMSE 0.2738 0.2681 0.2727 0.2756 0.4766

3 MAE 0.2709 0.2705 0.2764 0.2781 0.4395

DGP A1 RMSE 0.1134 0.1128 0.1182 0.1192 0.2990

6 MAE 0.2553 0.2551 0.2566 0.2615 0.3586

n = 500 RMSE 0.1039 0.1042 0.1050 0.1086 0.2026

3 MAE 0.2683 0.2676 0.2707 0.2739 0.4482

DGP A2 RMSE 0.1150 0.1150 0.1162 0.1209 0.3138

6 MAE 0.2631 0.2636 0.2626 0.2689 0.3692

RMSE 0.1073 0.1083 0.1078 0.1122 0.2117

3 MAE 0.2138 0.2125 0.2198 0.2234 0.3906

DGP A1 RMSE 0.0715 0.0705 0.0752 0.0775 0.2298

6 MAE 0.2064 0.2055 0.2067 0.2107 0.2916

n = 800 RMSE 0.0674 0.0666 0.0675 0.0700 0.1313

3 MAE 0.2166 0.2176 0.2198 0.2225 0.3846

RMSE 0.0728 0.0735 0.0754 0.0771 0.2279

6 MAE 0.2154 0.2142 0.2118 0.2203 0.2903

RMSE 0.0717 0.0717 0.0703 0.0755 0.1351
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Table 2: The Performance of the Estimators in Terms of MAE and RMSE: a = 2

k NN-TR NN-ES KN-TR KN-ES W-SBC

3 MAE 0.6572 0.6533 0.6613 0.6735 1.0337

DGP A1 RMSE 0.6726 0.6725 0.6896 0.7130 1.6586

6 MAE 0.6485 0.6523 0.6545 0.6665 0.8734

n = 200 RMSE 0.6743 0.6814 0.6890 0.7056 1.1978

3 MAE 0.6674 0.6729 0.6764 0.6807 1.0113

DGP A2 RMSE 0.7108 0.7192 0.7280 0.7362 1.6308

6 MAE 0.6680 0.6651 0.6722 0.6762 0.9180

RMSE 0.7057 0.7066 0.7139 0.7235 1.3084

3 MAE 0.4208 0.4225 0.4336 0.4388 0.7630

DGP A1 RMSE 0.2769 0.2778 0.2922 0.2987 0.8835

6 MAE 0.4100 0.4089 0.4114 0.4161 0.5696

n = 500 RMSE 0.2640 0.2628 0.2653 0.2713 0.5052

3 MAE 0.4516 0.4501 0.4571 0.4644 0.7815

DGP A2 RMSE 0.3214 0.3188 0.3287 0.3385 0.9258

6 MAE 0.4220 0.4214 0.4186 0.4300 0.5756

RMSE 0.2816 0.2818 0.2806 0.2927 0.5243

3 MAE 0.3441 0.3448 0.3551 0.3584 0.6857

DGP A1 RMSE 0.1873 0.1880 0.2003 0.2052 0.6763

6 MAE 0.3264 0.3255 0.3258 0.3325 0.4642

n = 800 RMSE 0.1678 0.1674 0.1688 0.1747 0.3388

3 MAE 0.3425 0.3417 0.3480 0.3532 0.6838

RMSE 0.1845 0.1839 0.1911 0.1966 0.6855

6 MAE 0.3340 0.3352 0.3362 0.3414 0.4721

RMSE 0.1761 0.1783 0.1785 0.1841 0.3520

4.2 The Performance of the Bootstrap Procedure

In this subsection, we investigate the bootstrap procedure, using the same model as before.

Table 2 contains �nite sample coverage probabilities for the four types of estimators. When

the sample size was 200, the bootstrap coverage probability is smaller than the nominal ones.

When the sample size was 500, the bootstrap methods perform reasonably well.

It is worth noting that the performance di¤erence between the case with true parameter

�0 (TR) and the case with the estimated parameter �0 (ES) is almost negligible. This again

a¢ rms the robustness of the bootstrap procedure to the quality of the �rst step estimator �̂.
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Table 3: The Performance of the Proposed Bootstrap Method

k Nom. Cov. Prob. NN-TR NN-ES KN-TR KN-ES

99% 0.9815 0.9785 0.9825 0.9775

3 95% 0.9355 0.9360 0.9380 0.9300

DGP A1 90% 0.8835 0.8815 0.8795 0.8755

99% 0.9825 0.9845 0.9800 0.9495

6 95% 0.9355 0.9380 0.9405 0.9050

n = 200 90% 0.8885 0.8920 0.8915 0.8560

99% 0.9835 0.9830 0.9830 0.9765

3 95% 0.9425 0.9490 0.9465 0.9330

DGP A2 90% 0.9025 0.8985 0.9005 0.8730

99% 0.9810 0.9835 0.9875 0.9255

6 95% 0.9415 0.9415 0.9440 0.8800

90% 0.8945 0.8935 0.9015 0.8330

99% 0.9910 0.9905 0.9875 0.9900

3 95% 0.9395 0.9440 0.9400 0.9470

DGP A1 90% 0.8980 0.8990 0.8960 0.8900

99% 0.9885 0.9885 0.9880 0.9860

6 95% 0.9480 0.9445 0.9495 0.9440

n = 500 90% 0.8890 0.8945 0.8975 0.8890

99% 0.9900 0.9885 0.9905 0.9880

3 95% 0.9485 0.9440 0.9425 0.9395

DGP A2 90% 0.8920 0.8850 0.8870 0.8920

99% 0.9880 0.9880 0.9885 0.9860

6 95% 0.9435 0.9455 0.9480 0.9435

90% 0.8970 0.9005 0.8965 0.8855

Likewise, the performance is also similar across di¤erent numbers of covariates 3 and 6. It

is interesting to note that the estimator NN-ES appears to perform slightly better than KN-

ES. This may be perhaps due to the fact that the probability integral transform in the SNN

estimation has an e¤ect of reducing further the estimation error in �̂: A more de�nite answer

would require an analysis of the second order e¤ect of �̂: Finally, the bootstrap performance

does not show much di¤erence with regard to the heavy tailedness of the error distribution

in the selection equation.
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5 Empirical Application: Female Labor Supply

In this section, we illustrate the bootstrap procedure of this paper drawing on a well-known

study of female labor supply. The model and the data sets are taken from Mroz (1987) that

contain demographic characteristics of 753 married female workers in the United States. As

for the hours equation and the labor participation equation, we consider the following:

hi = �0 + log(wi)�1 + Z2i�2 + Z>3i�4 + "i and

Di = 1
�
X>
i �0 � �i

	
;

where hi denotes hours that the i-th female worker worked (divided by 103), wi her hourly

wage, Z2i nonwife income of the household that the female worker belongs (divided by 10)

and Z3i a vector of other demographic variables.

In this study, we focus on how the estimates of coe¢ cients in the outcome equation vary

across di¤erent speci�cations of Xi and di¤erent methods of estimating �0 in the partic-

ipation equation. As for variables to be included in Xi, we take as common background

variables such as unemployment rate in the county, parents�schooling, variables related to

the number of children, and nonwife income. We consider the following speci�cations of Xi

in the participation equation:

Speci�cation I

Speci�cation II

Speci�cation III

: background variables plus variables of labor market experiences

: background variables plus variables of age and schooling

: all the variables in Speci�cations I and II.

The variables in Xi are also appropriately rescaled.

We estimated the model assuming two situations for �i : one with the assumption that the

conditional median of �i given Xi is zero, and the other with the assumption that �i and Xi

are independent, �i following a normal distribution. For the former model, we used maximum

score estimation to estimate �0 and for the latter, probit estimation. As for the estimation

of �0; � � �; �4, we employ the estimation method of partial linear models of Robinson (1988).
The results are shown in Tables 4-6. First, it appears that the results do not show much

di¤erence between those using kernel estimation and those using SNN estimation. This

result appears due to the fact that estimation errors in �̂ do not a¤ect �̂ in the �rst order

asymptotic approximation. Also estimation through probit estimation or maximum score

estimation does not appear to produce much di¤erence for most coe¢ cients. Second, there

seems to be more variation across di¤erent speci�cations of Xi for certain variables such as

coe¢ cient estimates of the number of young children and nonwife income, in particular
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Table 4: Estimation of Female Labor Participation (Speci�cation I)

(In the parentheses are bootstrap standard errors.)

Probit Estimation Maximum Score Estimation

SNN Kernel Estimation SNN Kernel Estimation

Log wage 0:0870 0:1096 0:2245 0:2225

(0:1309) (0:1257) (0:1449) (0:1443)

Nonwife Income 0:0324 0:0299 0:0787 0:0916

(0:1075) (0:1039) (0:1059) (0:0807)

Young Children 0:0559 0:0724 �0:5609 �0:5351

(0:2413) (0:2471) (0:2023) (0:1988)

Old Children �0:0904 �0:0887 �0:0865 �0:0876

(0:0647) (0:0645) (0:0604) (0:0560)

Age 0:0222 �0:0204 �0:1320 �0:1319

(0:1173) (0:1171) (0:0836) (0:0833)

Education 0:0065 0:0101 �0:0112 �0:0105

(0:0485) (0:0486) (0:0478) (0:0467)

Table 5: Estimation of Female Labor Participation (Speci�cation II)

(In the parentheses are bootstrap standard errors.)

Probit Estimation Maximum Score Estimation

SNN Kernel Estimation SNN Kernel Estimation

Log wage 0:1313 0:1378 0:1966 0:2081

(0:1521) (0:1584) (0:1758) (0:1807)

Nonwife Income 0:0085 0:0655 �0:0025 0:1928

(0:1663) (0:1016) (0:1682) (0:1546)

Young Children �0:6462 �0:3990 �0:4318 �0:4598

(0:6747) (0:3435) (0:2015) (0:2057)

Old Children �0:1188 �0:1044 �0:1417 �0:3298

(0:0552) (0:0514) (0:2261) (0:1958)

Age �0:0227 �0:1571 �0:1832 �0:2667

(0:2280) (0:1216) (0:1263) (0:1153)

Education �0:0078 0:0558 �0:0223 �0:0476

(0:1198) (0:0609) (0:0572) (0:0526)

21



Table 6: Estimation of Female Labor Participation (Speci�cation III)

(In the parentheses are bootstrap standard errors.)

Probit Estimation Maximum Score Estimation

SNN Kernel Estimation SNN Kernel Estimation

Log wage 0:0913 0:1297 0:1665 0:1793

(0:1192) (0:1249) (0:1241) (0:1242)

Nonwife Income 0:1200 0:0748 �0:0118 �0:0323

(0:0909) (0:0892) (0:0861) (0:0865)

Young Children 0:3549 �0:3887 �0:3198 �0:2929

(0:2646) (0:2852) (0:2239) (0:2212)

Old Children �0:0834 �0:0881 �0:0906 �0:0892

(0:0546) (0:0544) (0:0555) (0:0553)

Age �0:0117 �0:0183 �0:0306 �0:0442

(0:1052) (0:1041) (0:1031) (0:1097)

Education �0:1298 �0:1031 �0:0338 �0:0248

(0:0435) (0:0442) (0:0416) (0:0422)

between Speci�cation I and Speci�cations II and III. Third, the variation across di¤erent

speci�cations of Xi appears less prominent in the case of maximum score estimation than in

the case of probit estimation.

In summary, the results of the empirical exercise suggest that for most coe¢ cient es-

timates of the outcome equation, the speci�cation of the participation equation does not

make much di¤erence, except for certain variables, and the results appear more robust to

the various di¤erent speci�cation of Xi in the case of maximum score estimation. Part of

this robustness seems to be due to the �rst order robustness of estimates of � to the noise

in the estimation of the participation equation.

6 Conclusion

This paper considers a semiparametric conditional moment restriction that contains con-

ditional expectations of single-index conditioning variables. This paper shows that the

in�uence of the �rst step index estimators on the estimator of the parameter of interest

is asymptotically negligible in this situation. An analysis was performed in terms of the

Fréchet derivatives of a relevant class of functionals. Hence this phenomenon appears to

have a generic nature. This result enables this paper to develop a bootstrap procedure that
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is asymptotically valid in the presence of �rst step single-index estimators following cube root

asymptotics. The simulation studies con�rm that the method performs reasonably well.

As mentioned in the main text, it is expected that the results of this paper extend to

the case of the single-index �j(x) being a nonparametric function This situation often arises

in the literature of program evaluations where the single-index component corresponds to a

propensity score. It also appears that the result extends to the case of weakly dependent

observations. However, the extension may be more than an obvious corollary from the result

of this paper, because this paper heavily draws on the empirical process theory that applies

to the i.i.d. observations.

7 Appendix

7.1 Continuity of Linear Functionals of Conditional Expectations

Conditional expectations that involve unknown parameters in the conditioning variable fre-

quently arise in semiparametric models. Continuity of conditional expectations with respect

to such parameters plays a central role in the asymptotic analysis. In this section, we provide

a generic, primitive condition that yields such continuity. Let X 2 RdX be a random vector

with support SX and let � be a class of R-valued functions on RdX with a generic element

denoted by �:

Fix �0 2 � and let f�(yj��1; ��2) denote the conditional density function of a random
vector Y 2 RdY given (�0(X); �(X)) = (��1; ��2) with respect to a �-�nite measure, say,

w�(�j��1; ��2): Note that we do not assume that Y is continuous as we do not require that

w�(�j��1; ��2) is the Lebesgue measure. Let SY be the support of Y and let S� be that of
(�0(X); �(X)): We de�ne jj � jj to be the Euclidean norm in RJ and jj � jj1 to be the sup

norm: jjf jj1 =supx2SX jf(x)j:

De�nition A : (i) PY � ff�(yj�; �) : (�; y) 2 � � SY g is regular for ~' : RdY ! RJ ; if for

each � 2 � and (��1; ��2) 2 S�;

sup
(~�1;~�2)2S�:j��1�~�1j+j��2�~�2j��

���f�(yj��1; ��2)� f�(yj~�1; ~�2)
��� < C�(yj��1; ��2)�; � 2 [0;1) (8)

where C�(�j��1; ��2) : SY ! R is such that for some C > 0 that does not depend on �,

sup
(��1;��2)2S�

Z
jj~'(y)jjC�(yj��1; ��2)w�(dyj��1; ��2) < C:

(ii) When PY is regular for an identity map, we say simply that it is regular.
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The regularity condition is a type of an equicontinuity condition for functions f�(yj�; �);
(y; �) 2 SY��. Roughly speaking a set of conditional densities are regular when the response
of a conditional density function to a small perturbation in the conditioning variable is small

uniformly over � 2 �. The condition does not require that the conditional density function
be continuous in the parameter � 2 �; which is cumbersome to check in many situations.
(Note that the perturbation on the right-hand side of (8) is concerned with a "�xed" function

f�(yj�; �), not across di¤erent density functions with di¤erent ��s.)
When f�(yj��1; ��2) is continuously di¤erentiable in (��1; ��2) with a derivative that is

bounded uniformly over � 2 � and ~'(Y ) has a bounded support, PY is regular for ~':

Alternatively suppose that there exists C > 0 such that for each � 2 � and (��1; ��2) 2 S�;

sup
(~�1;~�2)2S�:j��1�~�1j+j��2�~�2j��

�����f�(yj~�1; ~�2)f�(yj��1; ��2)
� 1
����� � C�;

and E[jj~'(Y )jjjX] < C: Then PY is regular for ~'. The regularity condition for PY yields the
following Lemma A1 as an important consequence.

Lemma A1 : Suppose that PY is regular for ~' an envelope of � and � is a class of

RJ -valued functions on RdY : Then, for each � 2 �; ' 2 �, and x 2 SX ;

jj�'(x;�0; �)� �'(x;�)jj � Cj�(x)� �0(x)j, and
jj�'(x;�0; �)� �'(x;�0)jj � Cj�(x)� �0(x)j;

where

�'(x;�) = E['(Y )j�(X) = �(x)] and

�'(x;�0; �) = E['(Y )j(�0(X); �(X)) = (�0(x); �(x))]

and C does not depend on �; �0; x, or ':

Lemma A1 shows that the conditional expectations are continuous in the parameter � in

the conditioning variable. This result is similar to Lemma A2(ii) of Song (2008). (See also

Lemma A5 of Song (2009).)

We introduce an additional random vector Z 2 RdZ with a support SZ . Let 	 be a class
ofRJ -valued functions onRdZ with a generic element denoted by  and its envelope by ~ : As

before, we �x �0 2 �, let h�(zj��1; ��2) denote the conditional density function of Z given

(�0(X); �(X)) = (��1; ��2) with respect to a �-�nite measure, and de�ne PZ � fh�(zj�; �) :
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(�; z) 2 �� SZg: Suppose that the parameter of interest takes the form of

�'; (�) = E
�
�'(X;�)

> (Z)
�
:

We would like to analyze continuity of �'; (�) in � 2 �. When PY and PZ are regular, we
obtain the following result.

Lemma A2 : Suppose that PY is regular for ~' and PZ is regular for ~ : Then, there exists
C > 0 such that for each � in �;

sup('; )2��	j�'; (�)� �'; (�0)j � Cjj�� �0jj21:

Therefore, the �rst order Fréchet derivative of �'; (�) at �0 2 � is equal to zero.

Lemma A2 says that the functional �'; (�) is not sensitive to the �rst order pertur-

bation of � around �0: In view of Newey (1994), Lemma A2 suggests that in general,

there is no estimation e¤ect of �̂ on the asymptotic variance of the estimator �̂'; (�̂) =
1
n

Pn
i=1 �̂'(Xi; �̂)

> (Zi); where �̂'(Xi;�) denotes a nonparametric estimator of �'(Xi;�):

Proof of Lemma A1 : We proceed in a similar manner as in the proof of Lemma A5 of
Song (2009). We show only the �rst statement because the proof is almost the same for the

second statement.

Choose x 2 SX and �1 2 � and let � � j��1 � ��0j; where ��0 � �0(x) and ��1 � �1(x):

We write �'(��1; ��0) = �'(x;�1; �0) and �'(��0) = �'(x;�0). Let P0;' be the conditional

distribution of ('(Y ); X) given �0(X) = ��0 and let E0;' denote the expectation under

P0;': Let Aj � 1fj�j(X)� ��jj � 3�g; j = 0; 1: Note that E0;'[A0] = 1 and E0;'[A1] = 1: Let
~�'(
��j; ��0) � E0;' ['(Y )Aj] =E0;'[Aj] = E0;' ['(Y )Aj] ; j = 0; 1: Then,

�'(��1; ��0)� �'(

��0)


 �



�'(��1; ��0)� ~�'(��1; ��0)

+ 

~�'(��1; ��0)� �'(
��0)




= (I) + (II); say.

Let us turn to (I): By the de�nition of conditional expectation,

~�'(��1; ��0) =

Z ��1+3�

��1�3�
�'(��; ��0)dF�1(

��j��0);

where F�1(�j��0) is the conditional CDF of �1(Xi) given �0(Xi) = ��0: Note that

�'(��1; ��0)� ~�'(��1; ��0)

 � sup
v2[�3�;3�]:(��1+v;��0)2S�1



�'(��1 + v; ��0)� �'(
��1; ��0)




25



because
R ��1+3�
��1�3� dF�1(

��j��0) = E0;'[A1] = 1: The last term above is bounded by

sup
v2[�3�;3�]:(��1+v;��0)2S�1

Z
SY
jj~'(y)jj

��f�1(yj��1 + v; ��0)� f�1(yj��1; ��0)
��w�1(dyj��1; ��0)

� �

Z
SY
jj~'(y)jjC�1(yj��1; ��0)w�1(dyj��1; ��0) � C�:

Let us turn to (II) which we write as

jjE0;' ['(Y )A1]� E0;' ['(Y )] jj = jjE0;' [V A1] jj;

where V � '(Y )� E0;' ['(Y )] because E0;' [A1] = 1: The term (II) is equal to





Z ��1+3�

��1�3�
E
�
V A1j�1(X) = ��; �0(X) = ��0

�
dF�1(

��j��0)







=







Z ��1+3�

��1�3�
E
�
V j�1(X) = ��; �0(X) = ��0

�
dF�1(

��j��0)







which is bounded by C�; similarly as before. This implies that (II) � C�: �

Proof of Lemma A2 : Let �';�(x) = �'(x;�) and �';0(x) = �'(x;�0): Similarly de�ne

� ;�(x) = � (x;�) and � ;0(x) = � (x;�0), where � (x;�) = E[ (Z)j�(X) = �(x)]: First

write

E
�
 (Z)>

�
�';�(X)� �';0(X)

	�
= E

h
E [ (Z)j�(X); �0(X)]>

�
�';�(X)� �';0(X)

	i
= E

h�
E [ (Z)j�(X); �0(X)]� � ;0(X)

�> �
�';�(X)� E ['(Y )j�(X); �0(X)]

�i
+E

h�
E [ (Z)j�(X); �0(X)]� � ;0(X)

�> �
E ['(Y )j�(X); �0(X)]� �';0(X)

�i
+E

�
� ;0(X)

> ��';�(X)� �';0(X)
	�

= E
�
� ;0(X)

> ��';�(X)� �';0(X)
	�
+O(jj�� �0jj21)

by applying Lemma A1 to the �rst two expectations on the right-hand side of the �rst

equality. The last expectation is equal to

E
�
� ;0(X)

> ��';�(X)� E ['(Y )j�(X); �0(X)]	�
+E

�
� ;0(X)

> �E ['(Y )j�(X); �0(X)]� �';0(X)
	�

= E
�
� ;0(X)

> ��';�(X)� E ['(Y )j�(X); �0(X)]	�
= E

�
f� ;0(X)� � ;�(X)g>

�
�';�(X)� E ['(Y )j�(X); �0(X)]

	�
:
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Applying Lemma A1 again, the last expectation is equal to O(jj���0jj21): Hence we conclude
that

E
�
 (Z)>

�
�';�(X)� �';0(X)

	�
= O(jj�� �0jj21);

a¢ rming the claim that the Fréchet derivative is equal to zero. �

7.2 Assumptions on Regularity of Conditional Densities

We collect the conditions for Theorem 1 that have a technical character. Let Si;j be the

j-th entry of Si; where Si = ��(Vi; �i; �0) and let ui;j = Fj(�j(Xi)), where Fj denotes the

CDF of �j(Xi). De�ne Zi;j = (Si;j;W1;i; ui;J+1) if ui;J+1 6= ui;j and Zi;j = (Si;j;W1;i) if

ui;J+1 = ui;j: We set ~ to be such that ~ (Zi;j) = jSi;jj: De�ne f�;j(yju0; u1) to be the
conditional density of Yi;j given (ui;j; u�;i;j) = (u0; u1) with respect to a �-�nite measure,

where u�;i;j = F�;j(�j(Xi; �)) and F�;j is the CDF of �j(Xi; �). Similarly de�ne h�;j(zju0; u1) to
be the conditional density of Zi;j given (ui;j; u�;i;j) = (u0; u1) with respect to a �-�nite

measure. Let SY;j and SZ;j be the supports of Yi;j and Zi;j,

PY;j(�) � ff�;j(yj�; �) : (�; y) 2 �(�)� SY;jg and
PZ;j(�) � fh�;j(zj�; �) : (�; z) 2 �(�)� SZ;jg:

Assumption A : For each j = 1; � � �; J + 1; there exist �j > 0 and Cj > 0 such that
(i) for each j = 1; � � �; J + 1;

jF�1;j(�j(x; �1))� F�2;j(�j(x; �2))j � Cjjj�1 � �2jj; for all �1; �2 2 �(�j);

(ii) for each j = 1; � � �; J; PY;j(�j) is regular and PZ;j(�j) is regular for ~ , and
(iii) for each j = 1; � � �; J; (a) supu2[0;1]E[jYi;jjjui;j = u] <1; and (b) E[Yi;jjui;j = �] is twice
continuously di¤erentiable with bounded derivatives.

Assumption A(i) is a regularity condition for the index function �j(�; �): Some su¢ cient
conditions for the regularity of PY;j(�j) were discussed after Lemma A1. The regularity of
PZ;j(�j) in Assumption A(ii) can be replaced by a lower level su¢ cient condition in more
speci�c contexts. Note that in the case of the sample selection model in Example 1, J = 2;

ui;1 = ui;2 = ui;3; and in the case of the model with the single-index instrument in Example

2, J = 1; ui;1 = ui;2: In both cases, Si is a constant vector of �1�s. Hence PZ;j(�j) becomes
regular, for instance, if the conditional density function of W1;i given (ui;1; u�;i;1) = (u0; u1)

is continuously di¤erentiable in (u0; u1) with a derivative uniformly bounded over � 2 �(�j)
and W1;i has a bounded support.
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7.3 Proofs of the Main Results

Throughout the proofs, the notation C denotes a positive constant that may assume di¤erent

values in di¤erent contexts. Let Lp(P ); p � 1; be the space of Lp-bounded functions:

jjf jjp := f
R
jf(x)jpP (dx)g1=p < 1; and for a space of functions F � Lp(P ) for p � 1; let

N[](";F ; jj�jjp); the bracketing number of F with respect to the norm jj�jjp, to be the smallest
number r such that there exist f1; � � �; fr and �1; � � �;�r 2 Lp(P ) such that jj�ijjp < " and

for all f 2 F , there exists i � r with jjfi � f jjp < �i=2: Similarly, we de�ne N[](";F ; jj � jj1)
to be the bracketing number of F with respect to the sup norm jj � jj1. For any norm jj � jj
which is equal to jj � jjp or jj � jj1, we de�ne N(";F ; jj � jj) to be the covering number of F ,
i.e. the smallest number of "-balls that cover F .

Proof of Theorem 1 : Write �(x) = �(x;�0) and �̂(x) = �̂(x; �̂) and as in Section 7.2,

introduce notations ui;j = Fj(�j(Xi)) and u�;i;j = F�;j(�j(Xi; �)). Put brie�y, 1̂il = 1fŴi �
Ŵlg and 1il = 1fWi � Wlg and

�i(�) = �(Vi; �i; �); ��;i(�) = ��(Vi; �i; �);

�̂i(�) = �(Vi; �̂i; �), and �̂�;i(�) = ��(Vi; �̂i; �):

We �rst show the consistency of �̂: Let Q(�) =
R
fE [�i(�)1fWi � wgDi]g2 dFW;D=1(w);

Q̂(�) =
1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di�̂i(�)1̂il

)2
and

~Q(�) =
1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di�i(�)1il

)2
;

where FW;D=1(w) = PfWi � w;Di = 1g. Let Fn;�;j(��) = 1
n

Pn
i=1 1f�j(Xi; �) � ��g and

F�;j(��) = Pf�j(Xi; �) � ��g; and let ĝj(u) =
Pn

i=1 YjiDiKh(ûi;j � u)=f
Pn

i=1DiKh(ûi;j � u)g
and

gj(u) = E[Yi;jjui;j = u;Di = 1];

Note that jj�̂ � �jj1 � supx2RdX jj�̂(x) � �(x)jj is bounded by the maximum over j =

1; � � �; J + 1 of

supu2[0;1]jĝj(u)� gj(u)j+ supx2RdX jgj(Fn;�̂;j(�j(x; �̂)))� gj(Fj(�j(x; �0)))j: (9)

The �rst term is oP (1) as in the proof of Lemma A4 of Song (2009) and the second term is

OP (jj�̂��0jj) (e.g. see the proof of Lemma A3 of Song (2009).) Therefore, jj�̂��jj1 = oP (1).
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Now,

sup
�2B

����� 1n
nX
i=1

Di f�̂i(�)� �i(�)g 1̂il

����� � jj�̂� �jj1
n

nX
i=1

sup
�2B

jj��(Vi; �i; �)jj (10)

+
jj�̂� �jj21

2n

nX
i=1

sup
(�;��)2B�[�M;M ]

jj���(Vi; ��; �)jj;

with probability approaching one for large M such that jj�jj1 < M . The last term is oP (1)

by Assumption 1(iv).

Note also that from large n on,

E

 
sup
�2B

����� 1n
nX
i=1

Di�i(�)
�
1̂il � 1il

������
!

(11)

� 1

n

nX
i=1;i6=l

�
E

�
sup
�2B

j�i(�)j
2

��1=2q
Pful;J+1 ��n < ui;J+1 � ul;J+1 +�ng;

where �n = max1�i�n sup�2B(�0;�n) jjû�;i;J+1 � ui;J+1jj; �n = n�1=3+"; with small " > 0; and

û�;i;J+1 =
1
n

Pn
j=1;j 6=i 1f�J+1(Xj; �) � �J+1(Xi; �)g: Similarly as in the proof of Lemma A3

of Song (2009), �n = OP (�n); so that the last term in (11) is o(1). From (10) and (11),

Q̂(�) = ~Q(�) + oP (1); uniformly in � 2 B:

Since �(v; �(x); �) is Lipschitz in � with an Lp-bounded coe¢ cient, p > 2; and B is com-

pact, the uniform convergence of ~Q(�) to Q(�) follows by the standard procedure. Hence

sup�2B jQ̂(�) � Q(�)j = oP (1): As in Domínguez and Lobato (2004), this yields the consis-

tency of �̂:

Now, using the �rst order condition of the extremum estimation and the mean value

theorem,
p
n(�̂ � �0) = Gn(�̂; �̂; fŴlg)�1

p
n�n(�̂; �̂; fŴlg);

where, with �� lying between �̂ and �0;

Gn(�̂; �̂; fŴlg) =
1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di�̂�;i(�̂)1̂il

)(
1

n

nX
i=1

Di�̂�;i(
��)>1̂il

)
and

�n(�̂; �̂; fŴlg) =
1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di�̂�;i(�̂)1̂il

)(
1

n

nX
i=1

Di�̂i(�0)1̂il

)
:

Using consistency of �̂ and following similar steps in (10) and (11), we can show that
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Gn(�̂; �̂; fŴlg) is equal to

Gn(�0; �; fWlg) + oP (1) =

Z
_H(w) _H(w)>dFW;D=1(w) + oP (1);

by the law of large numbers. We turn to the analysis of
p
n�n(�̂; �̂; fŴlg): Let ��;i;j =

E[Yi;jj�j(Xi; �); Di = 1] and ��;i = [��;i;1; � � �; ��;i;J ]>. Write

1p
n

nX
i=1

Di�̂i(�0)1̂il =
1p
n

nX
i=1

Di

n
�(Vi; �̂i; �0)� �(Vi; ��̂;i; �0)

o
1̂il

+
1p
n

nX
i=1

Di

n
�(Vi; ��̂;i; �0)� �(Vi; �i; �0)

o
1̂il

= A1n + A2n; say.

We �rst deal with A1n which we write as

1p
n

nX
i=1

Di��(Vi; ��̂;i; �0)
>1̂il

�
�̂i � ��̂;i

�
+
1p
n

nX
i=1

Di

JX
r=1

JX
s=1

��r�s(Vi; ��i; �0)1̂il

�
�̂i;r � ��̂;i;r

��
�̂i;s � ��̂;i;s

�
= B1n +B2n; say,

where ��i lies between �̂i and ��̂;i: We deal with B2n �rst. By Hölder inequality, for q > 4 in

Assumption 1(iv),

E [jB2nj] � C
p
n
�
E[sup��2[�M;M ]jj���(Vi; ��; �0)jjq]

	1=q
�
�Z

SX

�����̂r(x)� ��̂;r(x)
��

�̂s(x)� ��̂;s(x)
���� q

q�1
dPX(x)

� q�1
q

;

where ��;j(x) = E [Yi;jj�j(Xi; �) = �j(x; �)]. Note that E[sup��2[�M;M ]jj���(Vi; ��; �0)jjq] <1
and Z

SX

�����̂r(x)� ��̂;r(x)
��

�̂s(x)� ��̂;s(x)
���� q

q�1
dPX(x) (12)

�
Z
D1n

�����̂r(x)� ��̂;r(x)
��

�̂s(x)� ��̂;s(x)
���� q

q�1
dPX(x)

+

Z
D2n

�����̂r(x)� ��̂;r(x)
��

�̂s(x)� ��̂;s(x)
���� q

q�1
dPX(x);
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where D1n = fx : jFn;�̂;i(�(x; �̂))�1j > h=2g and D2n = fx : jFn;�̂;i(�(x; �̂))�1j � 2hg: Using
the steps in (9) and in the proof of Lemma A4 of Song (2009), the �rst term is bounded by

supu2[0;1]:ju�1j>h=2
����ĝr(u)� g�̂;s(u)

��
ĝs(u)� g�̂;s(u)

���� q
q�1
+OP (fn�1=2wng

q
q�1 ) = OP (w

2q
q�1
n )

where wn = n�1=2h�1
p
� log h + h2 and g�;r(u) = E[Yi;rjF�;r(�r(Xi; �)) = u]. Similarly, the

last term in (12) is bounded by C
R
u2[0;1]:ju�1j�2h D̂(u)du; where D̂(u) is equal to����ĝr(u)� g�̂;r(u)

��
ĝs(u)� g�̂;s(u)

���� q
q�1
+OP (fn�1=2hg

q
q�1 ):

When ju�1j � 2h; j(ĝr(u)�g�̂;r(u))(ĝs(u)�g�̂;s(u))j
q

q�1 = OP (h
2q
q�1 ) uniformly over such u�s.

(See Lemma A4 of Song (2009).) The Lebesgue measure of such u�s is O(h): Hence the last

integral in (12) is OP (h
(3q�1)=(q�1)):We conclude that B2n = OP (n

1=2fw2n+ h3�1=qg) = oP (1)

by the condition for bandwidths.

We turn to B1n: Suppose that �̂i;J+1 � �̂l;J+1: Then, u�̂;i;J+1 � u�̂;l;J+1. Exchanging

the roles of i and l; we �nd that if �̂i;J+1 � �̂l;J+1; u�̂;i;J+1 � u�̂;l;J+1: Therefore, letting

W�;i = (W1;i; u�;i;J+1); we write 1fŴi � Ŵlg = 1fW�;i � W�;lg: Using this, we deduce that

B1n =
1p
n

nX
i=1

Di��(Vi; ��̂;i; �0)
>1fW�̂;i � W�̂;lg

�
�̂i � ��̂;i

�
:

Choose any �n ! 0 such that
p
n�2n ! 0 and n1=3�n !1; and de�ne

~�n(�; �x; �w) =
1p
n

nX
i=1

 �;�x; �w(Vi; Xi; Di;W�;i)
> ��̂i � ��;i

�
; (�; x; w) 2 B(�0; �n)� SX � SW1 ;

where  �;�x; �w(v; x; w) = ��(v; ��(x); �0)t�;�x; �w(x; d; w) and

t�;�x; �w(x; d; w) = 1fw � �wg1fd = 1g1fF�;J+1(�J+1(x; �)) � F�;J+1(�J+1(�x; �))g:

Consider Hn = f1fF�;J+1(�J+1(�; �)) � F�;J+1(�J+1(�x; �))g : (�; �x) 2 B(�0; �n) � SXg.
Since the indicator functions are bounded and of bounded variation, we apply Lemma A1 of

Song (2009) and Assumption 3(i) to deduce that

logN[](";Hn; jj � jjq) � C log "+ C="; for " > 0: (13)
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By Lemma A1 and Assumption 3(i),



��(v; ��1(x); �0)� ��(v; ��2(x); �0)


 � Csup��2[�M;M ]



���(v; ��; �0)

� k�1 � �2k :

Therefore, using this, (3) and (13), we conclude that for 	 = f �;�x; �w : (�; �x; �w) 2 B(�0; �n)�
SX � SW1g;

logN[](";	; jj � jjq) � C log "+ C="; for " > 0: (14)

After some algebra (e.g. see the proof of (Step 1) in the proof of Lemma B1 below), we �nd

that ~�n(�; �x; �w) is equal to

1p
n

nX
i=1

Di

JX
j=1

E
�
 �;�x; �w;j(Vi; Xi; Di;W1;i)ju�;i;j; Di = 1

� �
Yi;j � ��;i;j

�
+ oP (1)

=
1p
n

nX
i=1

Di

JX
j=1

E
�
 0;�x; �w;j(Vi; Xi; Di;W1;i)jui;j; Di = 1

� �
Yi;j � �i;j

�
+ oP (1);

uniformly over (�; �x; �w) 2 B(�0; �n)� SX � SW1 ; where  �;�x; �w;j denotes the j-th component

of  �;�x; �w;j and  0;�x; �w;j =  �0;�x; �w;j: (For the equality above, see the proof of (Step 2) in the

proof of Lemma B1 below.) Therefore, we conclude that

A1n =
1p
n

nX
i=1

Di

JX
j=1

E
�
 0;�x; �w;j(Vi; Xi; Di;W1;i)jui;j; Di = 1

�
(�x; �w)=(Xl;W1;l)

�
Yi;j � �i;j

�
+oP (1):

We turn to A2n which we write as

A2n =
1p
n

nX
i=1

Di �̂;Xl;W1l
(Vi; Xi; Di;W1;i)

>
�
��̂;i � �i

�
:

Using previous arguments yielding (14), we can establish a similar bracketing entropy bound

for Fn = f �;�x; �w(�; �; �) (��(�)� �(�)) : (�; �x; �w) 2 B(�0; �n)� SX � SW1g: Following the usual
stochastic equicontinuity arguments and using Lemma A1, Lemma A2 and Assumption 3(i),

we deduce that

jA2nj � sup(�;�x; �w)
��pnE � �;�x; �w(Vi; Xi; Di;W1;i)

�
��;i � �i

����+ oP (1)

�
p
nsup(�;�x; �w)

��E � 0;�x; �w(Vi; Xi; Di;W1;i)
�
��;i � �i

	���
+O(

p
n�2n) + oP (1) = O(

p
n�2n) + oP (1) = oP (1);

where the supremum is over (�; �x; �w) 2 B(�0; �n)�SX �SW1 : Therefore, letting ��;i;j(�0) be
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the j-th entry of ��;i(�0) and

zn(w) � 1p
n

nX
i=1

Di�i(�0)1fWi � wg

+
1p
n

nX
i=1

Di

JX
j=1

E
�
��;i;j(�0)1fWi � wgjui;j; Di = 1

� �
Yi;j � �i;j

�
;

and collecting the results of A1n and A2n; we write

p
n�n(�̂; �̂; fŴlg) =

1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di��(Vi; �̂i; �̂)1̂il

)
zn(Wl) + oP (1):

Since supw2RdW jzn(w)j = OP (1); using (10) and (11) again, we conclude that

p
n�n(�̂; �̂; fŴlg) =

1

n

nX
l=1

Dl
_H(Wl)zn(Wl) + oP (1):

The wanted result now follows by applying the weak convergence of zn to � and the continuous

mapping theorem (e.g. Theorem 18.11 of van der Vaart (1998).) �

Proof of Theorem 2 : First, de�ne m(�;w) � E [�l(�)1fWl � wgDl] ;

m̂b(�; Ŵk) � 1

n

nX
l=1

Dl

hn
�̂l(�̂)� �̂l(�)

o
1̂lk + !l;b

n
�l(�̂)1̂lk + r̂lk

oi
, and

~mb(�;Wk) � 1

n

nX
l=1

Dl [f�l(�0)� �l(�)g 1lk + !l;b f�l(�0)1lk + rlkg] ;

where rlk = rl(Wk). Then, we introduce

Q̂�b(�) �
1

n

nX
k=1

Dkm̂b(�; Ŵk)
2 and ~Q�b(�) �

1

n

nX
k=1

Dk ~mb(�;Wk)
2:

We�rst show that the bootstrap estimator is consistent conditional on Gn � f(Vi; Yi; Xi;W1;i)gni=1
in probability. (Following the conventions, we use notations OP � and oP � that indicate con-

ditional stochastic convergences given Gn:) De�ne

~Q(�) �
Z
(E [�l(�)1fWl � wgDl])

2 dFW;D=1(w)

+

Z
E
�
Dlf�l(�0) + rl(w)g2

�
dFW;D=1(w):
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Then it is not hard to show that uniformly over � 2 B,

~Q�b(�) = ~Q(�) + oP �(1) in P:

For consistency of �̂
�
b , it su¢ ces to show that

sup�2BjQ̂�b(�)� ~Q�b(�)j = oP �(1) in P: (15)

We write���Q̂�b(�)� ~Q�b(�)
��� � max

1�k�n

���m̂b(�; Ŵk)� ~mb(�;Wk)
��� 1
n

nX
k=1

���m̂b(�; Ŵk) + ~mb(�;Wk)
��� :

As for the last sum, note that

E

"
1

n

nX
k=1

�
m̂b(�; Ŵk) + ~mb(�;Wk)

�2
jGn

#

� C

n

nX
k=1

 
1

n

nX
l=1

Dl

n
�̂l(�̂)� �̂l(�)

o
1̂lk

!2
+
C

n

nX
k=1

 
1

n

nX
l=1

Dl

n
�l(�̂)� �l(�)

o
1lk

!2

+
C

n

nX
k=1

1

n

nX
l=1

Dl f�l(�0)1lk + rlkg2 +
C

n

nX
k=1

1

n

nX
l=1

Dl

n
�l(�̂)1̂lk + r̂lk

o2
:

The all four terms are OP �(1) in P , and hence for (15), it su¢ ces to show that

sup
�2B

max
1�k�n

���m̂b(�; Ŵk)� ~mb(�;Wk)
��� = oP �(1) in P: (16)

First, we write

m̂b(�; Ŵk)� ~mb(�;Wk) =
1

n

nX
l=1

Dl

hn
�̂l(�̂)� �̂l(�)

o
1̂lk � f�l(�0)� �l(�)g 1lk

i
+ �n;k; (17)

where

�n;k �
1

n

nX
l=1

!l;bDl

h
�l(�̂)1̂lk � �l(�0)1lk

i
+
1

n

nX
l=1

!l;bDl [r̂lk � rlk] : (18)

It is not hard to show that the �rst sum in (17) is oP (1) uniformly in (�; k) 2 B � f1; � �
�; ng using the similar arguments in the proof of Theorem 1. We show thatmax1�k�nE[�2n;kjGn] =
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oP (1): For a future use, we show a stronger statement:

max
1�k�n

q
E[�2n;kjGn] = oP (n

�1=2): (19)

Using the fact that !l;b is a bounded, mean-zero random variables independent of the data,

we �nd that

E

24 1
n

nX
l=1

!l;bDl

h
�l(�̂)1̂lk � �l(�0)1lk

i!2
jGn

35
=

1

n2

nX
l=1

Dl

h
�l(�̂)1̂lk � �l(�0)1lk

i2
:

Following the proof of Theorem 1, we can show that the last sum is oP (n�1=2) uniformly over

1 � k � n: We focus on the last sum in the de�nition of �n;k in (18). Note that

E

24����� 1n
nX
l=1

!l;bDl(r̂lk � rlk)

�����
2

jGn

35 � 1

n2

nX
l=1

jjr̂lk � rlkjj2 = oP (n
�1)

uniformly over 1 � k � n, by Assumption 4. Therefore, we obtain (19). This yields the

following:

sup(�;w)2B�RdW max
1�k�n

jm̂b(�; Ŵk)� ~mb(�;Wk)j = oP �(1) in P:

From this, we deduce (16) and that �̂
�
b = �0 + oP �(1) in P . Clearly, �̂

�
b = �̂ + oP �(1) in

P; because �̂ is consistent.

Now, we turn to the bootstrap distribution of �̂
�
b . As in the proof of Theorem 1, we can

write
p
nf�̂�b � �̂g = G�n(�̂; �̂; fŴlg)�1

p
n��n(�̂

�
b ; �̂; fŴlg),

where

G�n(�̂
�
b ; �̂; fŴlg) =

1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di��(Vi; �̂i; �̂
�
b)1̂il

)(
1

n

nX
i=1

Di�
>
� (Vi; �̂i;

��
�
b)1̂il

)
and

��n(�̂
�
b ; �̂; fŴlg) =

1

n

nX
l=1

Dl

(
1

n

nX
i=1

Di��(Vi; �̂i; �̂
�
b)1̂il

)(
1

n

nX
i=1

Di!i;b

n
�i(�̂)1̂ik + r̂ik

o)
;

and ���b lies between �̂
�
b and �̂: Again, similarly as in the proof of Theorem 1, we can show
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that

G�n(�̂
�
b ; �̂; fŴlg) = Gn(�0; �; fWlg) + oP �(1) in P

=

Z
_H(w) _H(w)>dFW;D=1(w) + oP (1) + oP �(1) in P:

Note that the only di¤erence here is that we have �̂
�
b in place of �̂: However, �̂

�
b is consistent

for �0 just as �̂ is, yielding the �rst equality in the above.

As for ��n(�̂
�
b ; �̂; fŴlg); note that by (19),

p
n��n(�̂

�
b ; �̂; fŴlg) =

1p
n

nX
k=1

Dk

(
1

n

nX
i=1

Di��(Vi; �̂i; �̂
�
b)1̂ik

)

�
(
1

n

nX
i=1

Di!i;b f�i(�0)1ik + rikg
)
+ oP �(1) in P:

Similarly as in the proof of Theorem 2, the leading term above is equal to

1

n

nX
k=1

Dk
_H(Wk)

(
1p
n

nX
i=1

Di!i;b f�i(�0)1ik + rikg
)
+ oP �(1) in P:

Let �n(f) = 1
n

Pn
i=1 f(Wi)Di and �(f) =

R
f(w)dFW;D=1(w): Choose any sequence fn :

RdW ! Rk such that supwjjfn(w)� f(w)jj ! 0; for some f such that E [jjf(Wi)jjDi] <1.
Then we have

�n(fn)� �(f) =
1

n

nX
i=1

(fn(Wi)� f(Wi))Di +
1

n

nX
i=1

f(Wi)Di � E [f(Wi)Di]

= o(1) + oa:s:(1);

by the strong law of large numbers. Let

Fn(w;Gn) =
1p
n

nX
l=1

!l;bDl [�l(�0)1fWl � wg+ rl(w)]� _H(w):

Now, by the conditional multiplier central limit theorem of Ledoux and Talagrand (1988),

conditional on almost every sequence in G1;

Fn(�;Gn) =) �:

Therefore, by the almost sure representation theorem (e.g. Theorem 6.7 of Billingsley
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(1999)), there is a sequence ~Fn(�) such that ~Fn(�) is distributionally equivalent to Fn(�) and
~Fn(�) !a:s: � conditional on almost every sequence Gn: Then, by the previous arguments,
conditional on almost every sequence fSlgnl=1; we have

�n( ~Fn(�;Gn))!a:s:

Z
�(w) _H(w)dFW;D=1(w):

Hence the proof is complete. �

7.4 Uniform Representation of Sample Linear Functionals of SNN

Estimators

In this section, we present a uniform representation of sums of SNN estimators that is uniform

over function spaces. Stute and Zhu (2005) obtained a non-uniform result in a di¤erent form.

Their proof uses the oscillation results for smoothed empirical processes. Since we do not

have such a result under the generality assumed in this paper, we take a di¤erent approach

here.

Suppose that we are given a random sample f(Zi; Xi; Yi)gni=1 drawn from the distribution
of a random vector S = (Z;X; Y ) 2 RdZ+dX+J : Let SZ ;SX and SY be the supports of Z;X;
and Y respectively. Let � be a class of R-valued functions on RdX with generic elements

denoted by �: We also let � and 	 be classes of real functions on RJ and RdZ with generic

elements ' and  : We �x �0 2 � such that �0(X) is a continuous random variable. Then

we focus on g'(u) = E['(Y )jU = u]; where U = F0(�0(X)) and F0(�) is the CDF of �0(X):
Similarly, we de�ne g (u) = E[ (Z)jU = u]: Letting F�(�) be the CDF of �(X), we denote
U� = F�(�(X)): We de�ne f�(yju0; u1) and h�(zju0; u1) to be the conditional densities of
Y given (U;U�) = (u0; u1) and Z given (U;U�) = (u0; u1) with respect to some �-�nite

measures, and let

PY � ff�(yj�; �) : (�; y) 2 �n � SY g and
PZ � fh�(zj�; �) : (�; y) 2 �n � SZg:

De�ne Un;�;i = 1
n�1

Pn
j=1;j 6=i 1f�(Xj) � �(Xi)g and consider the estimator:

ĝ';�;i(u) =
1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

'(Yj)Kh (Un;�;j � u) ;

where f̂�;i(u) = (n � 1)�1
Pn

j=1;j 6=iKh(Un;�;j � u): Introduce �n = f� 2 � : jjF� � � � F0 �
�0jj1 � n�bg for b 2 (1=4; 1=2]: The semiparametric process of focus takes the following
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form:

�n(�; ';  ) =
1p
n

nX
i=1

 (Zi) fĝ';�;i(Un;�;i)� g'(Ui)g ;

with (�; ';  ) 2 �n � �n �	n:

Assumption B1 : (i) Classes � and 	 for some C > 0; p > 8; and b	; b� 2 (0; 6=5);

logN[](";�; jj � jjp) < C"�b� and logN[](";	; jj � jjp) < C"�b	 ; for each " > 0;

and envelopes ~' and ~ satisfy thatE[j~'(Y )jp] <1 andE[j~ (Z)jp] <1; and supu2[0;1]E[j~'(Y )jjU =
u] <1.
(ii) For �Fn = fF� � � : � 2 �ng, some b� 2 (0; 1) and C > 0;

logN(";�Fn ; jj � jj1) � C"�b� ; for each " > 0:

Assumption B2 : (i) PY is regular for ~' and PZ is regular for ~ :
(ii) g'(�) is twice continuously di¤erentiable with derivatives bounded uniformly over ' 2 �:

Assumption B3 : (i) K(�) is symmetric, compact supported, twice continuously di¤eren-
tiable with bounded derivatives, and

R
K(t)dt = 1.

(ii) n1=2h3�1=p + n�1=2h�2�1=p(� log h)! 0:

The following lemma o¤ers a uniform representation of �n:

Lemma B1 : Suppose that Assumptions B1-B3 hold. Then,

sup
(�;'; )2�n���	

������n(�; ';  )� 1p
n

nX
i=1

g (Ui)f'(Yi)� g'(Ui)g
����� = oP (1).

Furthermore, the representations remain the same when we replace �n(�; ';  ) by �n(�0; ';  ):

Proof of Lemma B1 : To make the �ow of the arguments more visible, the proof proceeds
by making certain claims which involve extra arguments and are proved at the end of the

proof. Without loss of generality, assume that the support of K is contained in [�1; 1]:
Throughout the proofs, the notation ESi indicates the conditional expectation given Si:

Let g';�(u) � E['(Y )jU� = u] and g ;�(u) � E[ (Z)jU� = u]: De�ne

�'; 
i (�) � g ;�(U�;i)f'(Yi)� g';�(U�;i)g:

The proof proceeds in the following two steps.
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Step 1 : sup(�;'; )2�n���	
����n(�; ';  )� 1p

n

Pn
i=1�

'; 
i (�)

��� = oP (1):

Step 2 : sup(�;'; )2�n���	
��� 1pnPn

i=1

n
�'; 
i (�)��'; 

i (�0)
o��� = oP (1):

Then the wanted statement follows by chaining Steps 1 and 2.

Proof of Step 1 : De�ne �̂';�;i(t) � (n � 1)�1
Pn

j=1;j 6=iKh(Un;�;j � t)'(Yj) and write

ĝ';�;i(Un;�;i)� g';�(U�;i) as

R1i(�; ') �
�̂';�;i(Un;�;i)� g';�(U�;i)f̂�;i(Un;�;i)

f�(U�;i)

+
[�̂';�;i(Un;�;i)� g';�(U�;i)f̂�;i(Un;�;i)](f�(U�;i)� f̂�;i(Un;�;i))

f̂�;i(Un;�;i)f�(U�;i)

= RA
1i(�; ') +RB

1i(�; '); say.

where f�(u) = 1fu 2 [0; 1]g: Put � = (�; ';  ) and �n = �n � ��	; and write

�n(�) =
1p
n

nX
i=1

 (Zi)R
A
1i(�; ') +

1p
n

nX
i=1

 (Zi)R
B
1i(�; ')

= rA1n(�) + rB1n(�); � 2 �n; say.

From the proof of Lemma A3 of Song (2009) (by replacing � and �0 with F� � � there and
using Assumption B1(ii)), it follows that

max1�i�nsup�2�nsupx2RdX jFn;�;i(�(x))� F�(�(x))j = OP (n
�1=2); (20)

where Fn;�;i(��) = 1
n�1

Pn
j=1;j 6=i 1f�(Xj) � ��g: Using (20) and employing similar arguments

around (12) in the proof of Theorem 1, we can show that sup�2�n
��rB1n(�)�� = oP (1):

We turn to rA1n(�); which we write as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
�
ij +

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijfK�
n;ij �K�

ijg

= R1n(�) +R2n(�); say,

where  i =  (Zi); �';�;ij = '(Yj) � g';�(U�;i); K
�
n;ij = Kh(Un;�;j � Un;�;i) and K�

ij =

Kh(U�;j � U�;i): We will now show that

sup�2�njR2n(�)j !P 0: (21)
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Let ��i = Un;�;i � U�;i and d�;ji = ��j � ��i and write R2n(�) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ijd�;ji +

1

2(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijd
2
�;jiK

00
h;ij

= A1n(�) + A2n(�); say,

where K 0
h;ij = h�2@K(t)=@t at t = (U�;i � U�;j)=h and

K 00
h;ij = h�3@2K(t)=@t2

at t = f(1� aij)(U�;i�U�;j)+ aij(Un;�;i�Un;�;j)g=h; for some aij 2 [0; 1]: Later we will show
the following:

C1 : sup�2�njA2n(�)j = oP (1):

We turn to A1n(�) which we write as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ij�

�
j �

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ij�

�
i (22)

= B1n(�) +B2n(�); say.

Write B1n(�) as (up to O(n�1))

1

n

nX
j=1

"
1p
n

nX
i=1

�
 i�';�;ijK

0
h;ij � E

�
 i�';�;ijK

0
h;ijjU�;j

�	#
(Un;�;j � U�;j)

+
1p
n

nX
j=1

E
�
 i�';�;ijK

0
h;ijjU�;j

�
(Un;�;j � U�;j) = C1n(�) + C2n(�); say.

As for C1n(�); we show the following later.

C2 : sup�2�n jC1n(�)j = oP (1):

We deduce a similar result for B2n(�), so that we write

A1n(�) =
1p
n

nX
j=1

E
�
 i�';�;ijK

0
h;ijjU�;j

�
(Un;�;j � U�;j) (23)

� 1p
n

nX
i=1

E
�
 i�';�;ijK

0
h;ijjU�;i

�
(Un;�;i � U�;i) + oP (1)

= D1n(�)�D2n(�) + oP (1), say.
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Now, we show that D1n(�) and D2n(�) cancel out asymptotically. As for D1n(�), using

Hoe¤ding�s decomposition and taking care of the degenerate U -process (e.g. see C3 and its

proof below),

1p
n

nX
i=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;j = u1

�
(1fU�;i � u1g � u1) du1 + oP (1):

Using the symmetry of K, we deduce that

1p
n

nX
i=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;j = u1

�
(1fU�;i � u1g � u1) du1

=
1

h2
p
n

nX
i=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u1)� g';�(u2)gK 0
�
u1 � u2

h

�
du2 (1fU�;i � u1g � u1) du1

=
1

h2
p
n

nX
i=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;i � u1g � u1) du1:

As for D2n(�); we also observe that

1p
n

nX
i=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;i = u1

�
(1fU�;j � u1g � u1) du1

=
1

h2
p
n

nX
i=1

Z 1

0

Z 1

0

g ;�(u1) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;j � u1g � u1) du1:

Write the sum above as

1

h2
p
n

nX
j=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;j � u1g � u1) du1

+
1p
n

nX
j=1

Z 1

0

�n(u1; �) (1fU�;j � u1g � u1) du1;

where

�n(u1; �) =
1

h2

Z 1

0

fg ;�(u1)� g ;�(u2)g fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2:

Note that sup�2�n j�n(u1; �)j = O(h) by using the �rst order di¤erentiability of g ;� and
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g';�. Therefore,

sup
�2�n

����� 1pn
nX
j=1

Z 1

0

�n(u1; �) (1fU�;j � u1g � u1) du1

����� = oP (1):

We conclude thatD1n(�) = D2n(�)+oP (1) uniformly over � 2 �n; and that sup�2�n jA1n(�)j =
oP (1); which, together with (C1), completes the proof of (21).

It su¢ ces for (Step 1) to show that

sup
�2�n

�����R1n(�)� 1p
n

nX
i=1

g ;�(U�;i)f'(Yi)� g';�(U�;i)g
����� = oP (1): (24)

We de�ne q�n;ij � q�n(Si; Sj) �  i�';�;ijK
�
ij and write R1n(�) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij: (25)

Let ��n;ij � ��n(Si; Sj) � q�n;ij � ESi [q�n;ij]� ESj [q�n;ij] + E[q�n;ij] and de�ne

un(�) �
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

��n;ij:

Then, fun(�); � 2 �ng is a degenerate U -process. We write (25) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

�
ESi [q

�
n;ij] + ESj [q

�
n;ij]� E[q�n;ij]

	
+ un(�): (26)

We will later show the following two claims.

C3 : sup�2�n j
1p
n

Pn
i=1fESi [q�n;ij]� E[q�n;ij]gj = oP (1):

C4 : sup�2�n jun(�)j = oP (1):

We conclude from these claims that

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij =
1p
n

nX
j=1

ESj [q
�
n;ij] + oP (1):

Then the proof of Step 1 is completed by showing the following.

C5: sup�2�n
��� 1pnPn

j=1

�
ESj [q

�
n;ij]� g ;�(U�;j)f'(Yj)� g';�(U�;j)g

���� = oP (1):
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Proof of C1 : First observe that max1�i;j�n sup�2�n jjd2�;jijj = OP (n
�1) by (20). Let b 2

(1=4; 1=2] be as de�ned in the de�nition of �n. Let ~�ij = ~'(Yi)+E[~'(Yj)jUj]+Mn�b:With

large probability along with large M > 0, we bound jA2n(�)j by

Cn�1

2(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

���~ i ~�ijK
00
h;ij

��� � 1p
n

C

2n(n� 1)h3
nX
i=1

nX
j=1;j 6=i

���~ i ~�ij

��� 1ij;
where 1ij = 1

�
jUi � Ujj � h+ Cn�b

	
: We bound the last term again by

1p
n

C

2n(n� 1)h3
nX
i=1

nX
j=1;j 6=i

n���~ i ~�ij

��� 1ij � E h���~ i ~�ij

��� 1ijio+ CE
h���~ i ~�ij

��� 1iji
2h3
p
n

:

The leading term is OP (n
�1h�3) = oP (n

�1=2h�3=2) = oP (1) using the standard U statis-

tics theory. Through using Hölder inequality, we �nd that the second term is equal to

O(n�1=2h�2�1=p) = o(1):

Proof of C2 : Note that K 0(�=h) is uniformly bounded and bounded variation. Let K1;� =
fK 0(�(�)=h) : � 2 Ing; where In = f��;u : (�; u) 2 �n� [0; 1]g and ��;u(x) = (F� ��)(x)�u.
By Lemma A1 of Song (2009) and Assumption B1(ii),

logN[](";K1;�; jj � jjp) � logN(C"; In; jj � jj1) + C=" � C"�b� : (27)

Using (27) and following standard arguments, we can show that

max
1�j�n

����� 1pn
nX
i=1

�
 i�';�;ijK

0
h;ij � E

�
 i�';�;ijK

0
h;ijjU�;j; Uj

�	�����
� 1

h2
sup(�;k)2�n�K1;�

����� 1pn
nX
i=1

f i�';�;ijk(Xj)� E [ i�';�;ijk(Xj)jU�;j; Uj]g
����� = OP (h

�2):

By the fact thatmax1�j�n jj��j jj = OP (n
�1=2); the wanted result follows becauseOP (n

�1=2h�2) =

oP (1):

Proof of C3 : First we note that

E

�
sup
�2�n

��ESi [q�n;ij]��2� (28)

�
Z 1

0

n
g2~ ;�0(t1) + Cn�2b

o
sup

(';�)2���n

�Z 1

0

fg';�(t2)� g';�(t1)gKh(t2 � t1)dt2

�2
dt1:

43



By change of variables, the integral inside the bracket becomesZ (1�t1)=hg^1

f�t1=hg_(�1)
fg';�(t1 + ht2)� g';�(t1)gK(t2)dt2:

After tedious algebra, we can show that the expectation in (28) is O(h3): This implies

that we take an envelope, say, J of the class Jn � fhE[q�n;ijjSi = �] : � 2 �ng such that
jjJ jj2 = O(h3=2+1) as n!1: Similarly as in the proof of C2, note that K(�=h) is uniformly
bounded and bounded variation. Let K� = fK(�(�)=h) : � 2 Ing: Then by Lemma A1 of
Song (2009), for any p � 1;

logN[](";K�; jj � jjp) � logN("; In; jj � jj1) + C=" � C"�b� : (29)

Let us de�ne ~Jn = fhq�n(�; �) : � 2 �ng; where q�n(��; �) is de�ned prior to (25). Observe that
for any �1; �2 2 �n;

kg';�1(F�1(�1(�)))� g';�2(F�2(�2(�)))k1 � Cjj(F�1 � �1)� (F�2 � �2)jj1 and (30)

kg ;�1(F�1(�1(�)))� g ;�2(F�2(�2(�)))k1 � Cjj(F�1 � �1)� (F�2 � �2)jj1;

by Lemma A1. From this and using the fact that K� is uniformly bounded, it is easy to
show that

logN[]("; ~Jn; jj � jjp=2) � logN[]("=C;�; jj � jjp) + logN[]("=C;	; jj � jjp) + C"�b� : (31)

Therefore, logN[]("; ~Jn; jj � jjp=2) � C"�(b�_b	_b�): Using this result, we obtain that

logN[](";Jn; jj � jjp=2) � C"�(b�_b	_b�):

Then by the maximal inequality of Pollard (1989) (e.g. Theorem A.2 of van der Vaart

(1996)),

E

"
sup�2�n

����� hpn
nX
i=1

�
ESi [q

�
n;il]� E[q�n;il]

	�����
#

� C

Z O(h(3=2)+1)

0

q
1 + logN[](";Jn; jj � jj2)d" = O(h(5=2)�f1�(b�_b	_b�)=2g) = o(h);

because (b� _ b	 _ b�) < 6=5: Hence we obtain the wanted result.

Proof of C4 : Since p > 8; we can take � 2 (0; 1=6) and � = 1=4 + �=2 such that
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n��+�=2h�1 ! 0, � + 1=2 � 1� 1=p and (b� _ b	 _ b�)(1=2 + �) < 1: Then, from the proof

of C3, Z 1

0

n
logN[]("; ~Jn; jj � jjp=2)

o(1=2+�)
d" �

Z 1

0

C"�(b�_b	_b�)f1=2+�gd" <1:

By Theorem 1 of Turki-Moalla (1998), p.878,

h sup
�2�n

ju1n(�)j = oP (n
1=2�(1=2+�)+�=2) = oP (n

��+�=2):

Therefore, sup�2�n ju1n(�)j = oP (n
��+�=2h�1) = oP (n

�1=4h�1) = oP (1): Hence the proof is

complete.

Proof of C5 : We consider the following:

E

�
sup
�2�n

�
ESj [q

�
n;ij]� g ;�(U�;j)f'(Yj)� g';�(U�;j)g

	2�
(32)

=

Z
sup
�2�n

�Z 1

0

An;�(t1; t2; y)dt1

�2
dFY;�(y; t2);

where
R
�dFY;� denotes the integration with respect to the joint distribution of (Yi; U�;i) and

An;�(t1; t2; y) = g ;�(t1)f'(y)� g';�(t1)gKh(t1 � t2)

�g ;�(t2)f'(y)� g';�(t2)g:

After some tedious algebra, we can show that the last term in (32) is O(h3) (see the proof

of C3). Following the proof of C3 similarly, we can obtain the wanted result.

Proof of Step 2 : The proof is based on standard arguments of stochastic equicontinuity
(Andrews (1994)). For the proof, it su¢ ces to show that the class

G = fg ;�(F�(�(�)))f'(�)� g';�(F�(�(�)))g : (�; ';  ) 2 �n � ��	g

has a �nite integral bracketing entropy with an L2+"(P )-bounded envelope for some " > 0:

Using (30) and standard arguments, we �nd that

logN[](";G; jj � jjp=2) � C"�(b�_b	_b�):

Since b� _ b	 _ b� < 2; the wanted bracketing integral entropy condition follows. We take
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an envelope as

FM(x; y) = fg~ ;�0(F0(�0(x))) +Mn�bgf~'(y) + g~';�0(F0(�0(x))) +Mn�bg

for some large M: Clearly, this function FM is L2+"(P )-bounded by Assumption B1. There-

fore, the process

1p
n

nX
i=1

n
�'; 
i (�)��'; 

i (�0)� E
h
�'; 
i (�)��'; 

i (�0)
io

is stochastically equicontinuous in (�; ';  ) 2 �n � ��	. (See e.g. Theorem 4 of Andrews

(1994)). Since �n is a shrinking neighborhood of �0 and E[�
'; 
i (�) � �'; 

i (�0)] = 0; we

obtain the wanted result. �

LetDi 2 f0; 1g be a binary random variable and de�ne g'(u; 1) = E['(Yi)jUi = u;Di = 1]

and g (u; 1) = E[ (Zi)jUi = u;Di = 1]: Consider the estimator:

ĝ';�;i(u; 1) =
1

(n� 1)f̂�;i(u; 1)

nX
j=1;j 6=i

'(Yj)DjKh (Un;�;j � u) ;

where f̂�;i(u; 1) = (n� 1)�1
Pn

j=1;j 6=iDjKh(Un;�;j � u): Similarly as before, we de�ne

�n(�; ';  ; 1) =
1p
n

nX
i=1

 (Zi)Di fĝ';�;i(Un;�;i; 1)� g'(Ui; 1)g ;

with (�; ';  ) 2 �n � �n � 	n: The following lemma is an extension of Lemma B1. Note
that when Di = 1 for all i, the result reduces to Lemma B1. The result is in fact a corollary

to Lemma B1.

Lemma B2 : Suppose that Assumptions B1-B3 hold and that supu2[0;1]E[DijUi = u] > 0.

Then,

sup
(�;'; )2�n���	

������n(�; ';  ; 1)� 1p
n

nX
i=1

Dig (Ui; 1)f'(Yi)� g'(Ui; 1)g
����� = oP (1).

Furthermore, the result remains the same when we replace �n(�; ';  ; 1) by �n(�0; ';  ; 1):

Proof : Write

�n(�; ';  ; 1) =
1p
n

nX
i=1

 (Zi)Di

(
ĝ
[1]
';�;i(Un;�;i)

ĝ
[2]
i (Un;�;i)

� g
[1]
' (Ui)

g[2](Ui)

)
;
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where g[1]' (u) = E['(Yi)DijUi = u], g[2](u) = E[DijUi = u],

ĝ
[1]
';�;i(u) =

1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

'(Yj)DjKh (Un;�;j � u) ,

ĝ
[2]
i (u) =

1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

DjKh (Un;�;j � u) :

Using the arguments in the proof of Lemma B1, we can write

1p
n

nX
i=1

 (Zi)Di

(
ĝ
[1]
';�;i(Un;�;i)

ĝ
[2]
i (Un;�;i)

� g
[1]
' (Ui)

g[2](Ui)

)

=
1p
n

nX
i=1

 (Zi)Di

g[2](Ui)

n
ĝ
[1]
';�;i(Un;�;i)� g[1]' (Ui)

o
+
1p
n

nX
i=1

 (Zi)Di
g
[1]
' (Ui)

(g[2](Ui))2

n
g[2](Ui)� ĝ

[2]
i (Un;�;i)

o
+ oP (1):

By applying Lemma B1 to both terms, we obtain the wanted result. �
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