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Abstract

This paper develops optimal estimation of a potentially nondi¤erentiable func-

tional �(�) of a regular parameter �, when � satis�es certain conditions. Primary

examples are min or max functionals that frequently appear in the analysis of

partially identi�ed models. This paper investigates both the average risk ap-

proach and the minimax approach. The average risk approach considers average

local asymptotic risk with a weight function � over �� q(�) for a �xed location-
scale equivariant map q, and the minimax approach searches for a robust decision

that minimizes the local asymptotic maximal risk. In both approaches, optimal

decisions are proposed. Certainly, the average risk approach is preferable to the

minimax approach when one has fairly accurate information of � � q(�). When

one does not, one may ask whether the average risk decision with a certain weight

function � is as robust as the minimax decision. This paper speci�es conditions

for � such that the answer is negative. This paper discusses some results from

Monte Carlo simulation studies.

Keywords: Local Asymptotic Minimax Estimation, Average Risks, Limit Exper-

iments, Nondi¤erentiable Functionals, Partial Identi�cation

JEL Codes: C10, C13, C14, C44.

1 Introduction

When one imposes inequality constraints on a parameter, the parameter is often rendered

nonregular, i.e. made to behave nonsmoothly as the underlying probability is locally per-

turbed. For example, when a parameter � is known to take nonnegative values, the object

1I thank Frank Schorfheide for valuable comments. All errors are mine. Correspondence to:
Kyungchul Song, 528 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104. Email address:
kysong@sas.upenn.edu
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of interest naturally takes the form of � = maxf�; 0g, a nondi¤erentiable transform of �.

Nonregular parameters also frequently arise in partially identi�ed models. Suppose for in-

stance that the parameter of interest is interval identi�ed in two di¤erent intervals [�L;1; �U;1]

and [�L;2; �U;2]: Then the identi�ed interval becomes [maxf�L;1; �L;2g;minf�U;1; �U;2g] with
nonregular bound parameters.

In contrast to the ease with which such parameters arise in the literature, a formal

analysis of the estimation problem remains a challenging task. Among others, there does

not exist an asymptotically unbiased estimator or a regular estimator for such parameters

(e.g. Hirano and Porter (2009b) and references therein.) Furthermore, elimination of bias

through a bias correction method entails in�nite variance. (Doss and Sethuraman (1989)).

One might ask what would be the optimal balance between bias and variance. The standard

theory of semiparametric e¢ ciency o¤ers no answer in this regard, because there does not

exist an in�uence function for the parameter to begin with.

This paper o¤ers a partial answer by imposing a particular structure on the way that �

becomes nonregular. Suppose that a data generating process P of observations identi�es a

regular parameter � 2 Rd: It is assumed that the object of interest is not � but a certain

functional � of �, i.e., � = �(�). This paper focuses on a particular class of maps �, by

requiring that � be a composition of a contraction map ' that satis�es a certain condition

and a location-scale equivariant map  . Despite its seeming restrictiveness, a large class of

nonregular parameters fall into this paper�s framework.

Example 1: (Intersection Bounds): In partially identi�ed models, the identi�ed set of the

reduced form parameters often takes the form of a rectangle or an interval. When there is a

multiple number of identi�ed rectangles, one often takes the intersection of these rectangles to

obtain a tighter identi�ed set. The resulting bounds typically involve min or max functions.

For example, Haile and Tamer (2003) studied an English auction model and showed that

the optimal reserve price is identi�ed in such an interval. Other examples are found in

the literature on bounds of treatment e¤ects (Manski (1989, 1990, 1997), and Manski and

Pepper (2000)), where the treatment e¤ect bounds involve min or max transforms over

values of exogenous variables. When these exogenous variables are discretized, the problem

of estimating the bounds falls into this paper�s scope. (See Manski (2008), Chernozhukov,

Lee and Rosen (2009) and Hirano and Porter (2009b) for more examples.)

Example 2: (Fréchet-Hoe¤ding Bounds): Fréchet-Hoe¤ding bounds provide upper and

lower bounds for the joint distribution function of a random vector when the marginal

distributions are identi�ed. For example, let F be the joint distribution function of X1 and

X2 whose marginal distributions are uniform on [0; 1]. Then the joint distribution function
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F lies between Fréchet-Hoe¤ding bounds: for (x1; x2) 2 [0; 1]2;

maxfx1 + x2 � 1; 0g � F (x1; x2) � minfx1; x2g:

Fan and Wu (2009) used these bounds in deriving the identi�ed set for distributional treat-

ment e¤ects. Recently, Hoderlein and Stoye (2009) obtained similar bounds for the proba-

bility of the weak axiom of revealed preference being violated.

Example 3: (Sign Restrictions): In various econometric models, certain parameters have

known sign restrictions due to the nature of the parameter or certain prior information,

and the object of interest is a sign-restricted parameter, i.e., �(�) = maxf�; 0g or �(�) =
minf�; 0g. A natural estimator �(�̂) using an asymptotically unbiased estimator �̂ of �

su¤ers from asymptotic bias. Then one may ask whether there is an estimator that performs

better than �(�̂) in terms of the mean squared error, for example, by using an asymptotically

biased estimator of �. The results of this paper address such questions in a much broader

context.

Example 4: (Measuring the Best Possible Performance of a Set of Predictive Models):

When there are multiple sets of predictive models available, one may be interested in es-

timating the maximum or minimum mean square prediction error over di¤erent predictive

models. The minimum mean square prediction error measures the best possible performance

of models in the set, and the maximum mean square error prediction the worst possible per-

formance. These performance measures are nonregular parameters due to nondi¤erentiable

transform �(�) = min(�) or �(�) = max(�).

The theory of optimal decisions in this paper is developed along two di¤erent approaches.

The �rst approach focuses on the local asymptotic average risk, where one considers a

weighted risk over the di¤erence � � q(�) for a location-scale equivariant functional q. This

approach is relevant, for example, when �(�) = jmaxf�1; �2gj and one has reliable infor-
mation of �1 � �2. This paper shows that the optimal decision minimizing the average risk

takes the form of

'
�
a0~� + c=

p
n
�
; (1)

where c 2 R is a bias-adjustment term that depends on the weight function �, a 2 Rd is a

certain vector, and ~� is a semiparametrically e¢ cient estimator of �. In this paper we call

this decision an average risk decision.

The second approach considers a minimax approach, where one seeks a robust procedure

that performs reasonably well regardless of the values of �. In this case, an estimator of the
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form:

�(~� + w=
p
n); (2)

with bias-adjustment term w 2 Rd, is shown to be robust in the sense of local asymptotic

minimaxity. For example, when �(�) = maxf�1; �2g, the result implies that the minimax
decision takes the form of maxf~�1+w1=

p
n; ~�2+w2=

p
ng. When � is linear so that � = �(�)

is a regular parameter, the decision in (2) is reduced to a semiparametric e¢ cient estimator

of � = �(�), con�rming the continuity of this paper�s approach with the standard literature

of semiparametric e¢ ciency.

In several examples of �; it is found that it su¢ ces to set w = 0. For example, when

�(�) = maxf�0b; sg; �(�) = maxfj�0bj; sg, or �(�) = j�0bj with b 2 Rd and s being a

known vector and a scalar, the local asymptotic minimax decision in (2) does not require

bias-adjustment. In these examples, the estimator �(~�) is the local asymptotic minimax

decision.

It is interesting to observe that when the candidate decisions are appropriately restricted,

the optimal estimator in (2) is reduced to maxf~�1; � � �; ~�dg + v=
p
n; with bias-adjustment

quantity v. This is a form that is similar to a bias-reduced decision proposed by Cher-

nozhukov, Lee and Rosen (2009) recently. Their major analysis centers around the case of

in�nite-dimensional �, its primary focus being on improved inference on �(�) not on its

optimal estimation. In contrast to their method, this paper�s bias-adjustment term v is

adaptive to the given decision-theoretic environment such as loss functions. Therefore, when

bias-adjustment tends to do more harm than good in terms of the local asymptotic maximal

risk, the bias-adjustment term v is automatically set to be close to zero.

A natural question that arises is whether one can robustify the average risk decision in

(1) by employing a highly "uninformative" weight function � such as a uniform density over

a large area. It turns out that when  is nondi¤erentiable, there exists no weight function �

for which the average risk decision achieves the minimax risk. While this is already hinted

from the fact that the decision (1) cannot be reduced to that of (2) for any �, the result is

proved formally. Therefore, the average risk approach with an uninformative weight function

has limitation in delivering a robust decision when  is nondi¤erentiable.

Inference in nonregular models has long received attention in the literature. For exam-

ple, estimation of a normal mean under bound restrictions has been studied by Casella and

Strawderman (1981), Bickel (1981), and Moors (1981), and estimation of parameters un-

der order restrictions, by Blumenthal and Cohen (1968b), and Lovell and Prescott (1970).

Andrews (1999, 2001) proposed general asymptotic inference procedures when parameters

potentially lie on the boundary of the parameter space. Estimating a parameter from a

family of nonregular densities has also been investigated in the literature (See P�ug (1983),
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Ghosh, Ghosal and Samanta (1994), and references therein.) Hirano and Porter (2003) and

Chernozhukov and Hong (2003) studied likelihood models that have a parameter-dependent

support. See also Ploberger and Phillips (2010) for optimal estimation under nonregular

models with dependent observations.

A research that is closest to this paper is Blumenthal and Cohen (1968a) who studied

a generalized Bayes estimator and a maximum likelihood estimator of maxf�1; �2g; when
two independent sets of i.i.d. observations from two location families are available. Cher-

nozhukov, Lee and Rosen (2009) recently proposed and analyzed a bias-reduction method for

inference procedures of parameters such as min(�) or max(�) when � is �nite dimensional

or in�nite dimensional.

The implication of a nondi¤erentiable transform for a regular parameter has been noted

by Hirano and Porter (2009b). In particular, they pointed out that for a parameter that is not

di¤erentiable in the underlying probability, there exists no asymptotic unbiased estimator.

See also van der Vaart (1991) and Theorem 9 of Lehmann (1986), p.55, for a related result.2

See Doss and Sethuraman (1989) for implications of bias-correction when the parameter has

no unbiased estimator.

The next section de�nes the decision-theoretic environment in general terms, introducing

loss functions and risk. Section 3 investigates optimal decisions based on average risks, and

Section 4, the maximal risks. At the end of Section 4, this paper discusses nonminimaxity of

average risk decisions. Section 5 concludes. Technical proofs are relegated to the Appendix.

2 Parameter of Interest, Loss and Risk

The loss function represents the decision-maker�s preference over various pairs of the decision

and the object of interest. As for the decision space and the loss function, we consider the

following.

Assumption 1: (i) The decision space D is given by D = R:

(ii) The loss function is given as follows: for d 2 D and � 2 R,

L (d; �) = �(jd� �j) (3)

where � : [0;1) ! [0;1) is increasing on [0;1), �(0) = 0; �(y) ! 1 as y ! 1, and for
each M > 0, minf�(�);Mg is Lipschitz continuous.

The decision space is a real line and the loss function is an increasing function of the

2I thank Marcelo Moreira for pointing me to the latter reference.
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Figure 1: Some Examples of '(y)

di¤erence between the object of interest � and the decision d. The condition that �(y)!1
as y !1 are used only in Theorem 5 in Section 4.2.1. later.

We introduce some notations. Let 1d be a d� 1 vector of ones. For a vector x 2 Rd and

a scalar c, we simply write x+ c = x+ 1dc. We de�ne S1 � fx 2 Rd : x01d = 1g, where the
notation � indicates de�nition. When x 2 Rd, the notation max(x) (or min(x)) means the

maximum (or the minimum) over the entries of the vector x. When x1; � � �; xn are scalars,
we also use the notations maxfx1; � � �; xng and minfx1; � � �; xng whose meaning is obvious.

As for the parameter of interest �, this paper assumes that

� = �(�) � (' �  )(�)

where � 2 Rd is a regular parameter and ' �  is the composite map of ' and  . (The
regularity condition for � is speci�ed in Assumption 4 below.) As for the maps  and ', we

assume the following.

Assumption 2: (i) The map  : Rd ! R is Lipschitz continuous, and satis�es the following.

(a) (Location Equivariance) For each c 2 R and x 2 Rd,  (x+ c) =  (x) + c:

(b) (Scale Equivariance) For each u � 0 and x 2 Rd;  (ux) = u (x):

(ii) The map ' : R! R satis�es the following.

(a) (Contraction) For any y1; y2 2 R; j'(y1)� '(y2)j � jy1 � y2j.
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(b) (Identity on a Scanning Set) For some k0 2 R, '(y) = y for all y 2 (�1; k0] or '(y) = y

for all y 2 [k0;1).

Assumption 2 essentially de�nes the scope of this paper. Some examples of  and ' are

as follows. (See Figure 1 also for some examples of ':)

Examples 5: (i)(a)  (x) = b0x; where b 2 S1.
(b)  (x) = max(x) or  (x) = min(x).

(c)  (x) = maxfmin(x1); x2g where x1 and x2 are (possibly overlapping) subvectors of x.
(d)  (x) = max(x1) + max(x2);  (x) = min(x1) + min(x2);  (x) = max(x1) + min(x2); or

 (x) = max(x1) + b0x2 with b 2 S1:
(ii)(a) '(y) = y; '(y) = maxfy; sg or '(y) = minfy; sg for some known constant s 2 R:
(b) '(y) = jyj:
(c) '(y) = maxfjyj; sg or '(y) = minf�jyj; sg for some known constant s 2 R:

When we take  (x) = b0x as in Example 5(i)(a) and '(y) = y, the parameter �(�)

becomes a regular one to which the existing theory of asymptotically optimal estimation

applies. This example is used to con�rm that the results of this paper are consistent with

the existing theory.

Many examples of nondi¤erentiable maps � are written as ' � or a(' � ) + b for some
known constants a > 0 and b 2 R. For intersection bounds of the formmax(�) ormin(�), we
can simply take �(�) = (' �  )(�) with ' being an identity map and  (�) being max(�) or
min(�). In the case of the Fréchet-Hoe¤ding lower bound, i.e., �(�) = maxf�1 + �2 � 1; 0g,
we write it as 2~�(�)� 1; where

~�(�) = maxf(�1 + �2)=2; 1=2g:

Hence it su¢ ces to produce an optimal decision �̂
�
on ~�(�) and take 2�̂

� � 1 as our optimal
decision for �(�). By taking '(y) = maxfy; 1=2g and  (x) = (x1 + x2)=2, the functional
~�(�) is written as the composite map of ' and  . Assumptions 2(i) and (ii) are satis�ed by

 and ' respectively.

We introduce two assumptions for � and the underlying probability model that identi�es

� (Assumptions 3 and 4.) These two assumptions are standard, whose eventual consequence

is the existence of a well de�ned semiparametric e¢ ciency bound for the parameter �. The

formulation of regularity conditions for � below is taken from Song (2009), which is originally

adapted from van der Vaart (1991) and van der Vaart and Wellner (1996). Let B be the Borel
�-�eld of Rd and (H; h�; �i) be a linear subspace of a separable Hilbert space with �H denoting

its completion. Let N be the collection of natural numbers. For each n 2 N and h 2 H,
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let Pn;h be a probability on (Rd;B) indexed by h 2 H, so that En = (Rd;B; Pn;h;h 2 H)

constitutes a sequence of experiments. As for En, we assume local asymptotic normality as
follows.

Assumption 3: (Local Asymptotic Normality) For each h 2 H,

log
dPn;h
dPn;0

= �n(h)�
1

2
hh; hi;

where for each h 2 H, �n(h) �(h) (weak convergence under fPn;0g) and �(�) is a centered
Gaussian process on H with covariance function E[�(h1)�(h2)] = hh1; h2i:

Local asymptotic normality reduces the decision problem to one in which an optimal

decision is sought under a single Gaussian shift experiment E = (Rd;B; Ph;h 2 H); where

Ph is such that log dPh=dP0 = �(h) � 1
2
hh; hi: The local asymptotic normality is ensured,

for example, when Pn;h = P n
h and Ph is Hellinger-di¤erentiable (Begun, Hall, Huang, and

Wellner (1983).) The spaceH is a tangent space for � associated with the space of probability

sequences ffPn;hgn�1 : h 2 Hg (van der Vaart (1991).) Taking � as an Rd-valued map on

ffPn;hgn�1 : h 2 Hg, we can regard the map as a sequence of Rd-valued maps on H and

write it as �n(h).

Assumption 4: (Regular Parameter) There exists a continuous linear Rd-valued map on

H, _�; such that
p
n(�n(h)� �n(0))! _�(h)

as n!1:

Assumption 4 says that the sequence of parameters �n(h) are di¤erentiable in the sense

of van der Vaart (1991). The continuous linear map _� is associated with the semiparametric

e¢ ciency bound of the boundary parameter in the following way. Let _�
� 2 �H be such that for

each b 2 Rd and each h 2 H, b0 _�(h) = hb0 _��; hi. Then for any b 2 Rd, jjb0 _��jj2 represents the
asymptotic variance bound of the parameter b0�: The map _�

�
is called the e¢ cient in�uence

function of � in the literature (e.g. van der Vaart (1991)). For future references, we de�ne

� � h _��; _��0i: (4)

As for �, we assume the following:

Assumption 5: � is invertible.

The inverse of matrix � is the semiparametric e¢ ciency bound for �:
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3 Optimal Decisions based on Average Risks

Suppose that one has prior information of � � q(�) for some functional q on Rd such that

q satis�es location and scale equivariance conditions of Assumption 2(i)(a)(b). This is the

situation, for example, where �(�) = maxf�1; �2g and one has information of �1 � �2. (See
Example 6 below.) One can always translate information of �� q(�) into that of �� a0� for
any vector a 2 S1 as follows:

� � a0� = Ua(� � q(�)); (5)

where Ua = Id � 1da0 and Id is the d dimensional identity matrix. The following example
illustrates how we translate information of � � q(�) into that of � � a0� when we have

information of � � q(�) in terms of a prior density �1.

Example 6: Suppose that � = [�1; �2]
0 2 R2. At the current sample size n; suppose that

one has prior information of s =
p
n(�2��1) that is represented by density function �1(s) =

1p
2�
exp(�(s� �r)2=2) for some known constant �r 2 R. This is equivalent to saying that we

have information of � � q(�) with q(�) = (�1 + �2)=2 because
p
n(� � q(�)) = [�s=2; s=2]0.

Now, for any choice of a 2 S1,

p
n (� � a0�) =

"
�(1� a1)

p
n(�2 � �1)

a1
p
n(�2 � �1)

#
;

where a1 is the �rst component of a. The weight function � for
p
n (� � a0�) is taken to be

the density of [�(1� a1)W; a1W ]
0; where W � N(�r; 1): �

Since we can translate information of �� q(�) into that of �� a0� for any vector a 2 S1,
we lose no generality by �xing a 2 S1 that is convenient for our purpose. It is convenient,

as this paper does, if we choose a as

a =
��11d
10d�

�11d
; (6)

so that the constraint _��a0 _� = 0 is made ancillary for the e¢ cient estimation of the regular
component a0�. This does not mean that this paper�s procedure renders information of

� � q(�) irrelevant by choosing a as in (6). (See Section 5.2.2 for simulation results that

re�ect advantage of such information.) Choice of such a is merely a normalization in which

we translate knowledge of � � q(�) into that of � � a0� so that after the translation the

constraint _� � a0 _� = 0 does not interfere with e¢ cient estimation of the regular component

a0�.
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Let us consider the following subclass maximal risk : for each r 2 S(a);

R"
n(�̂; r) = sup

h2H"
n(r)

Eh

h
�(j
p
nf�̂ � �gj)

i
; with � = �(�n(h)); (7)

where H"
n(r) � fh 2 H : jj

p
nf�n(h) � a0�n(h)g � rjj � "g for " > 0. The set H"

n(r) is

a collection of h such that � � a0� is approximately equal to r=
p
n. Given a nonnegative

weight function � over r, we consider the average risk:Z
R"
n(�̂; r)�(r)dr: (8)

The approach of average risks allows one to incorporate prior information of r into the

decision-making process.3

The theorem below establishes an asymptotic average risk bound. Let Z 2 Rd be a

normal random vector such that

Z � N(0;�); (9)

where � is as de�ned in (4).

Theorem 1: Suppose that Assumptions 1-5 hold and
R
E [�(ja0Z �  (r)j)]�(r)dr < 1:

Then, for any sequence of estimators �̂,

lim
"!0

liminf
n!1

Z
R"
n(�̂; r)�(r)dr � inf

c2R

Z
E [� (ja0Z + c�  (r)j)]�(r)dr: (10)

Note that the lower bound does not involve the map ':When  (�) = b0� and � is symmetric

around 0, the in�mum over c 2 R in the lower bound of (10) is achieved by c = 0 due to

Anderson�s Lemma (e.g. Strasser (1985).) However, in general, the in�mum is achieved by

a nonzero c.

Let us de�ne an optimal solution that achieves the bound. The solution involves two

components: a semiparametrically e¢ cient estimator ~� of � and a bias-adjustment term c�

that solves the minimization in the risk bound in (10). As for ~�, we assume that

p
nf~� � �g !d Z � N(0;�):

As for estimation of c�, we consider the following procedure. Let M > 0 be a �xed large

3One might view the weight function � as playing the role of a prior in the Bayesian approach. It should
be noted though that the average risk approach here is not a fully Bayesian approach because the "prior" is
imposed only over the index r that represents

p
nf� � a0�g in the limit, not over the whole index h 2 H of

the likelihood process.
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number and

�M(�) � min f�(�);Mg : (11)

De�ne �̂ to be a consistent estimator of � and let

â =
�̂�11d

10d�̂
�11d

:

Let f�igLi=1 be i.i.d. draws from N(0; Id) and

~Q�(c) =

Z
1

L

LX
i=1

�M (jâ0�i + c�  (r)j)�(r)dr. (12)

The integration over r in the above can be done using a numerical integration method. Then

de�ne

~c�� =
1

2

n
max ~E� +min ~E�

o
; (13)

where ~E� = fc 2 [�M;M ] : ~Q�(c) � infc2[�M;M ]
~Q�(c) + �n;Lg with �n;L ! 0 and �n;L

p
n!

1 as n!1 and �n;L
p
L!1 as L!1.

The optimization for obtaining ~c�� does not entail much computational cost as c is a scalar

regardless of the dimension d: The formulation of ~c�� in (13) is designed to facilitate the proof

of the result. In practice, it su¢ ces to take an in�mum of ~Q�(c) over c 2 [�M;M ].

When one knows � � a0� = �r=
p
n with certainty for some known vector �r 2 Rd and

accordingly adopts �(�) as a point mass at �r, we can take

~c�� =  (�r):

Hence we do not have to go through a numerical step in this case.

As for �̂ and ~�; we assume the following.

Assumption 6: (i) For each " > 0, there exists M > 0 such that

limsupn!1suph2HPn;hf
p
njj�̂� �jj > Mg < ":

(ii) For each t 2 Rd, suph2H
���Pn;hfpn(~� � �n(h)) � tg � PfZ � tg

���! 0 as n!1.

Assumption 6 imposes
p
n-consistency of �̂ and convergence in distribution of

p
n(~� �

�n(h)) both uniform over h 2 H. The uniform convergence can be proved in various ways.

(e.g. Lemma 2.1 of Giné and Zinn (1991).)
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Now we are prepared to introduce an optimal decision. Let

~�� = '

�
â0~� +

~c��p
n

�
: (14)

The solution depends on the given weight function � through ~c��. Verifying the optimality of
~�� may involve proving the uniform integrability condition for a sequence of the decisions.

To dispense with such a nuisance, we follow the suggestion by Strasser (1985) (p.480) and

consider instead

R"
n;M(�̂; r) � sup

h2H"
n(r)

Eh

h
�M(j

p
nf�̂ � �gj)

i
(15)

with � = �(�n(h)) and with �M de�ned in (11). The following theorem establishes that the

solution ~�� is optimal.

Theorem 2: Suppose that Assumptions 1-6 hold and
R
E [�(ja0Z �  (r)j)]�(r)dr < 1:

Then,

lim
M;L!1

lim
"!0

limsup
n!1

Z
R"
n;M(

~��; r)�(r)dr � inf
c2R

Z
E [� (ja0Z + c�  (r)j)]�(r)dr:

When  (�) = b0� for b 2 S1 and � is symmetric around zero, the bias-adjustment term
c� is zero, so that the optimal decision in this case becomes simply

~�� = '(â0~�):

This yields the following results.

Example 7: (a) When �(�) = �0b for a known vector b 2 S1, ~�� = â0~�. Interestingly,

the optimal decision does not depend on b. This is because when � � a0� + r=
p
n; we

have b0� � a0� + b0r=
p
n so that the rotation vector b is involved only in the constant drift

component b0r=
p
n and hence in ~c�� in (14). As long as � is symmetric around 0, Anderson�s

Lemma makes the role of b neutral, because regardless of b, we can set ~c�� = 0.

(b) When �(�) = maxf�0b; sg for a known vector b 2 S1 and a known constant s, ~�� =

maxfâ0~�; sg:
(c) When �(�) = j�j for a scalar parameter �, ~�� = j~�j: This result is reminiscent of a
result of Blumenthal and Cohen (1968a) that the minimax estimator of j�j from a single

observation Y � N(�; 1) is jY j.
(d) When �(�) = maxf�1 + �2 � 1; 0g, ~�� = maxf2â0~� � 1; 0g. �

The following example investigates whether the solution in (14) reduces to a semipara-

12



metrically e¢ cient estimator when � is regular.

Example 8: Consider the case of Example 7(a), where one knows for certain that � = b0�

so that � � a0� = 0. Then ~�� = â0~� is a well-known e¢ cient estimator of �(�): To see this,

let B = �A0(A�A0)�1A with A = �(Id�1 � 1d�1a02)[1d�1;�Id�1] and a2 is a (d � 1) � 1
subvector of a with the �rst entry a1 excluded. One can show that the limiting distribution

of
p
nf~�� � b0�g

is equal to that of
p
nf�̂� b0�g with �̂ = b0(I�B)~�: The estimator �̂ is an e¢ cient estimator

of b0� under the constraint that � � b0� = 0. �

4 Robust Decisions based on Maximal Risks

4.1 Local Asymptotic Minimax Decisions

When one does not have prior information of r and the decision is sensitive to the choice of

a weight function �, one may pursue a robust procedure instead. In this section, we consider

a minimax approach.

A typical approach to �nd a minimax decision searches for a least favorable prior whose

Bayes risk is equal to the minimax risk. Finding a least favorable prior is often complicated

when the parameter of interest is constrained or required to satisfy certain order restrictions.

This is true even if the parameter of focus is a point on the real line and observations follow

a normal family of distributions. This paper takes a di¤erent approach that makes full use

of the conditions for the map  in Assumption 2.

We de�ne the local maximal risk :

Rn(�̂) = sup
h2H

Eh

h
�(j
p
nf�̂ � �gj)

i
;

where � = �(�n(h)). The situation here is di¤erent from the average risk decision. In the

case of the average risk decision, the optimality result is uniform over the limit values of
p
nf�n(0)�  (�n(0))g due to the use of the subclass system based on (6). In the minimax

approach, the limit values matter. For example, when  (�) = maxf�1; �2g, the limit of the
risk Rn(�̂) changes depending on whether �1 is close to �2 or not. The local asymptotic

minimax approach that this paper develops pursues a robust decision that does not assume

knowledge of
p
nf�n(0) �  (�n(0))g and focuses on a supremum of the limit of the risk

Rn(�̂) where the supremum is over all the possible limit values of
p
nf�n(0) �  (�n(0)g:

13



Let 	 � f� 2 [�1;1]d :  (�) = 0g. For each � 2 	 and " > 0, let N(�; ") � fn 2 N :
jj
p
nf�n(0)� (�n(0))g� �jj � "g. We present the following local asymptotic minimax risk

bound.

Theorem 3: Suppose that Assumptions 1-5 hold and supr2RdE [�(j (Z + r)�  (r)j)] <1:

Then for any sequence of estimators �̂,

sup
�2	

lim
"!0

liminf
n2N(�;")

Rn(�̂) � inf
w2Rd

sup
r2Rd

E [�(j (Z + r + w)�  (r)j)] :

As in Theorem 1, the lower bound does not depend on ' that constitutes �. The main

feature of the lower bound in Theorem 3 is that it involves in�mum over a �nite dimensional

space Rd in its risk bound. In general, as a consequence of the generalized convolution

theorem (e.g. Theorem 2.2 of van der Vaart (1989)), the risk bound involves in�mum over

the in�nite dimensional space of probability measures over Rd. In a standard situation with

�(�) = b0� with b 2 S1, this in�mum poses no di¢ culty because the in�mum is achieved by

a probability measure with a point mass at zero due to Anderson�s Lemma. However for a

general class of � as is the focus of this paper, the in�mum over probability measures in the

lower bound complicates the computation of the optimal decision. To avoid this di¢ culty,

Theorem 3 makes use of the classic puri�cation result in the game theory (Dvoretsky, Wald,

and Wolfowitz (1951).)

We construct a minimax decision as follows. Draw f�igLi=1 i.i.d. from N(0; Id) as before,

and let

~Qmx(w) = sup
r2Rd:r01d=0

1

L

LX
i=1

�M

�
j (�̂1=2�i + r + w)�  (r)j

�
.

Then for large M > 0,.we obtain

~w�mx =
1

2

n
max ~Emx +min ~Emx

o
;

where ~Emx = fw 2 [�M;M ]d : ~Qmx(w) � infw2[�M;M ]d
~Qmx(w) + �n;Lg: Here max ~Emx is

the collection of vectors of coordinatewise maximizers, i.e. e 2 ~Emx if and only if ej �
maxf~ej : ~e 2 ~Emxg for all j = 1; � � �; d. Similarly we de�ne min ~Emx. This speci�cation of
~w�mx facilitates the proof of the result. In practice, it su¢ ces to take ~w

�
mx as a minimizer of

~Qmx(w) over w 2 [�M;M ]d for a large number M:

We introduce a local asymptotic minimax decision. Let ~� be a semiparametrically e¢ cient

14



estimator of � as in Theorem 2, and let

~�mx = �

�
~� +

~w�mxp
n

�
: (16)

In the following, we establish that ~�mx is local asymptotic minimax.

Theorem 4: Suppose that Assumptions 1-6 hold and supr2RdE [�(j (Z + r)�  (r)j)] <1:

Then,

lim
M!1

sup
�2	

lim
"!0

limsup
n2N(�;")

Rn;M(~�mx) � inf
w2Rd

sup
r2Rd

E [�(j (Z + r + w)�  (r)j)] ;

where Rn;M(�) is Rn(�) except that �(�) is replaced by �M(�).

When  (�) is a regular parameter, taking the form of  (�) = b0� with b 2 S1, the local
asymptotic minimax risk bound becomes

inf
w2Rd

E [� (j (Z + w)j)] = E [� (jb0Zj)] :

Hence one does not need to compute ~w�mx, because the bias-adjustment term w� (i.e. a

solution of the above minimization over w 2 Rd) is zero. Hence in this case, we simply set

~w�mx = 0 so that the minimax decision becomes simply

~�mx = '(~�
0
b): (17)

This has the following consequences.

Example 9: (a) When �(�) = �0b for a known vector b 2 S1, ~�mx = ~�
0
b. Therefore, the

decision in (17) reduces to the well-known semiparametric e¢ cient estimator of �0b.

(b) When �(�) = maxf�0b; sg for a known vector b 2 S1 and a known constant s, ~�mx =

maxf~�0b; sg:
(c) When �(�) = j�j for a scalar parameter �, ~�mx = j~�j: This decision coincides with the
average risk decision with � symmetric around 0 (Example 7(c)).

(d) When �(�) = maxf�1 + �2 � 1; 0g, ~�mx = maxf~�1 + ~�2 � 1; 0g. �

The examples of (b)-(d) involve nondi¤erentiable transform �, and hence estimators

of �(�) for a regular parameter � are asymptotically biased. However, the result of this

paper tells that the natural estimator �(~�) that does not involve any bias-reduction is local

asymptotic minimax.
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4.2 Discussions

4.2.1 Nonminimaxity of Average Risk Decisions ~�� for Nondi¤erentiable  

When information of � � q(�) is not available for any q, one may ask whether one can still

achieve the robustness of the minimax decision by using the average risk decision ~�� with a

"least favorable prior" �. When  is nondi¤erentiable, the answer is negative as we shall see

now. Let � be the set of all the nonnegative functions on Rd. For each M > 0, let DAV
n;M be

the collection of decisions ~�� as given in (14) with � running in �.

If there exists decision ~�� 2 DAV
n;M for some � 2 � such that

lim
M!1

sup
�2	

lim
"!0

limsup
n2N(�;")

R"
n;M(

~��) � inf
w2Rd

sup
r2Rd

E [�(j (Z + r + w)�  (r)j)] ;

then we can say that the decision ~�� is as robust as the minimax decision ~�mx. Indeed, from

Examples 6 and 8 that when �(�) = maxf�; sg or �(�) = j�j; for a scalar parameter �, or
�(�) = �0b with b 2 S1 for a vector parameter �, taking � to be symmetric around 0 makes
the average risk decision a minimax decision. These examples have a common feature that

 (�) = �0b with b 2 S1:When  is nondi¤erentiable, there does not exist a decision in DAV
n;M

with a potential for a minimax decision as the following theorem shows.

Theorem 5: Suppose that Assumptions 1-5 hold. Furthermore, assume that  is nondif-

ferentiable. Then, there exists no decision sequence f�̂ng1n=1 such that for some M > 0,

�̂n 2 DAV
n;M for all n � 1 and f�̂ng1n=1 achieves the local asymptotic minimax risk bound in

Theorem 3.

The practical implication of Theorem 5 is that the approach of average risk that uses

decisions of the form (14) has a limitation in attaining the robustness of a minimax decision, if

 is nondi¤erentiable. Hence when one is concerned about the robustness of the decision, it is

better to use the minimax decision than to use an average risk decision with an uninformative

weight function.

4.2.2 Using a Given Ine¢ cient Estimator of �

When a semiparametric e¢ cient estimator of � is hard to �nd or compute, one may want

to use an ine¢ cient estimator �̂ which is easy to compute. In this case, one may search for

a functional � such that �(�̂) has good properties. By imposing restrictions on the space

of candidate decisions, we propose an estimator that satis�es a weaker notion of optimality

and yet computationlly attractive when d is large.
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Suppose that we are given with �̂ such that for each t 2 Rd,

sup
h2H

���Pn;hfpn(�̂ � �n(h)) � tg � PfV � tg
���! 0; as n!1;

for some random vector V 2 Rd: We assume that the distribution of V does not depend on

h 2 H. We consider the following collection of candidate decisions.

Definition 1: Let Dn(�̂) be the set of decisions of form �̂n = �(�n(�̂) + v̂=
p
n); where � is

a functional satisfying Assumption 2(ii) and �n : Rd ! R is a functional such that for each

h 2 H, s 2 Rd and "; � > 0;

limsup
n!1

sup
s12Rd:jjs�s1jj<�

Pn;h

�����pn��n��̂ � �n(h) +
s1p
n

��
� �(V + s)

���� > "

�
< �;

for some map � : Rd ! R, and for each " > 0; suph2H Pn;hfjv̂ � vj > "g ! 0; for some

nonrandom number v 2 R.

The optimality notion based on Dn(�̂) is weaker than that of the previous section. Nev-

ertheless, this decision can still be a reasonable choice in practice when a semiparametrically

e¢ cient estimator of � is hard to �nd or compute. One can show that under the assumptions

of Theorem 3, the following analogous results hold.

Corollary 1: Suppose that the conditions of Theorem 3 hold. Then for any �̂ 2 Dn(�̂);

sup
�2	

lim
"!0

liminf
n2N(�;")

Rn(�̂) � inf
v2R

sup
r2Rd

E [�(j (V + r)�  (r) + vj)] :

This suggests the following way to obtain optimal decisions. Let fV̂igLi=1 be i.i.d. draws from
a distribution that converges to the distribution of V as n ! 1. This can be immediately
done when V is a centered normal random vector whose covariance matrix we can estimate

consistently. Take a large number M > 0 and de�ne

Q̂mx(v) = sup
r2Rd:r01d=0

1

L

LX
i=1

�
�
j (V̂i + r) + v �  (r)j

�
and

Êmx =

�
v 2 [�M;M ] : Q̂mx(v) � inf

v2[�M;M ]
Q̂mx(v) + �n;L

�
:
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Let v̂�mx =
1
2

n
max Êmx +min Êmx

o
: We are ready to introduce the minimax decisions:

�̂mx = '

�
 (�̂) +

v̂�mxp
n

�
: (18)

Therefore, using the decision of the form �̂mx is still a reasonable choice although it satis�es

a weaker notion of optimality.

5 Monte Carlo Simulations

5.1 Simulation Designs

In the simulation studies, we considered the following data generating process. Let fXigni=1
be i.i.d random vectors in R2 where X1 � N (�;�) ; where

� =

"
�1

�2

#
=

"
0

�0=
p
n

#
and � =

"
2

1=2

1=2

�0

#
; (19)

where �0 is a constant to be determined later, and �0 is chosen from grid points in [0; 5].

Note that �0 =
p
n(�2��1). We chose �0 from a grid from 0 to 5. The parameter of interest

was taken to be �(�) = ('� )(�) with ' being an identity map and  (�) = max(�). When
�0 is close to zero, it means that �1 and �2 are close to the kink points of �(�). However,

when �0 is away from zero, �(�) becomes more like a regular parameter (i.e., �2 in this

simulation set-up). We take ~� = 1
n

Pn
i=1Xi as the estimator of �. As for the �nite sample

risk, we adopted the squared error loss and considered the following:

E

��
�̂ � �(�)

�2�
;

where �̂ is a candidate estimator. We evaluated the risk using Monte Carlo simulations. The

sample size was 300. The Monte Carlo simulation number was set to be 500.

In the simulation study, we investigate the �nite sample risk pro�le of decisions by varying

�0. It is worth remembering that both the average risk decision and the minimax decision

are not necessarily optimal uniformly over �0. Therefore, for some values of �0, there can be

other decisions that strictly dominate these decisions. By investigating the risk pro�le for

each �0, we can discern the characteristics of each decision.

As for the average risk decisions, we computed ~c�� by applying a grid search over c 2
[�15; 15] with grid size 0.05, and took as ~c�� one that minimizes ~Q�(c) de�ned in (12). (We
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Figure 2: Instability of Average Risk Decisions: Performance of average risk decisions dete-
riorates near the kink points (�0 � 0) when the weight function has high dispersion.

did not truncate the loss function.) To compute the average risk, we generated 2000 number

of random numbers with density � (the speci�cation of � is explained in the next subsection)

and computed the sample mean of the risks.

5.2 Results

5.2.1 Instability of Average Risk Decisions near the Points of Nondi¤erentia-
bility

In this subsection, we check how the quality of average risk decisions depends on the accuracy

of prior information over r. We represent the accuracy of this information using weights �

with di¤erent variances. First we de�ne

�r �
p
n(� � â0�) =

"
�â2�0

�0 � â2�0

#
;

where â2 is the second component of â = �̂�112=(1
0
2�̂

�112) and �̂ is the sample analogue

estimator of �.
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We consider the following weight functions: for � > 0; let

�1 : the density of �N (0; I2) + �r

�2 : the density of
p
12�U �

p
12�=2 + �r;

where U is a random vector in R2 whose entries are independent Uniform[0; 1]. The para-

meter � represents the standard deviation of �1 and �2. The magnitude of � hence represents

the accuracy of prior information. In this exercise, we mainly focus on the role of � while

having �1 and �2 centered at the correct value of �r. (Later we will investigate its robustness

property when the weight functions are not centered around the true value �r.) The variance

parameter �0 in (19) was set to be 4.

Figure 1 reports the �nite sample risk of average risk decisions ~�� using di¤erent weight

functions �1 and �2 with standard deviation � chosen from f0:1; 1; 3; 6g. The x-axis
represents �0, which governs the discrepancy between �1 and �2: The �nite sample risk

pro�les for uniform weights and for normal weights are similar. When � is small, it is as

if one knows well the di¤erence �2 � �1, and with this knowledge, the decision problem

becomes like one focusing on a regular parameter. This is true as long as one has fairly

accurate information of �2 � �1, regardless of what the actual di¤erence �2 � �1 is. This is

re�ected by the �atness of the risk pro�les with � = 0:1: However, this is no longer the case

when � is large, say, � = 6: In this case, it matters whether � is close to the kink points of

�(�) or not. When �0 is close to zero so that � is close to the kink points of �(�), the risk

(with � = 6) is very high. On the other hand, when � is away from the kink points (i.e. �0
is away from zero), the risk is attenuated. This shows that the choice of � for the weight

function becomes increasingly important as � becomes close to the kink points. Hence when

� is close to the points of nondi¤erentiability, the risk is not robust to the choice of the

weight functions even if their centers are correctly chosen.

5.2.2 Advantage of Prior Information under Correctly Centered Weights

In the preliminary simulation studies of minimax decisions, we �nd that decisions ~�mx and

�̂mx do not make much di¤erence in terms of �nite sample risks in our simulation set-up.

Hence as for the minimax decisions, we report only the performance of the decision �̂mx that

is computationally faster.

Figure 2 compares the minimax decision and the average risk decision, when the average

risk decision is obtained with correctly centered weights. Recall that in the case of correctly

centered weights, the weight function centers around the true value of
p
n(� � a0�).

When � = 0:1, the risk pro�le dominates that of minimax decision. This attests to the
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Figure 3: Advantage of Prior Information: Average risk decisions with correctly centered
weights having small variance perform better than the minimax decisions.

bene�t of additional information of � � a0� in the decision making. When this information

is subject to uncertainty so that we have now � = 3 or 6, the average risk decisions do not

dominate the minimax decision uniformly over �0. As shown in Figure 1, this is because the

average risk decisions behave unstably with � � a0� close to zero.

5.2.3 Nonrobustness of Average Risk Decisions with Weights with Misspeci�ed
Centers

The study of average risk decisions so far has assumed that the weights have correctly

speci�ed centers. The question that we ask here is whether the performance of the average

risk decisions is robust to the misspeci�cation of the centers, and whether the performance

can be made robust by choosing � with high variance. The design with misspeci�ed centers

places the center of the weight � away from the true value of � � a0�.

The results are shown in Figure 3. The left panel shows results with the center [0; ]0 of

the weight � set to be [0; 0:1]0, i.e. close to the kink points of  (�) and the right panel results

with the center [0; ]0 of the weight equal to [0; 2]0 away from zero. In both cases, the risk

pro�le of the average risk decision performs conspicuously worse than the minimax approach

except for certain local areas of �0. Note that the performance is not quite robusti�ed even

if we increase � from 0.1 to 3. In other words, using highly uninformative weight function
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Figure 4: Nonrobustness of Average Risk Decisions: Average risk decisions with weights
having misspeci�ed centers are not robust to �0, while the minimax decisions show robustness.

does not alleviate the problem of nonrobustness. When we increase � further, the risk pro�le

of the average risk decision deteriorates further around the kink points of  (�) over a larger

area, preventing the decision from achieving robustness. This performance of average risk

decisions makes sharp contrast with the minimax decisions. Regardless of whether the data

generating process is close to the kink points or not, the �nite sample risk pro�le shows the

stable performance of the minimax decision. This result is consistent with what we found

from Theorem 5.

5.2.4 Minimax Decision and Bias Reduction

It is well-known that the estimator of the type max(�̂) is asymptotically biased and many

researches have proposed bias-reduction methods to address this problem. (e.g. Manski

and Pepper (2000), Haile and Tamer (2003), and Chernozhukov, Lee, and Rosen (2009)).

However, it is not yet clear whether a bias reduction method does the estimator harm or

good from a decision-theoretic point of view, when � = �(�) for nondi¤erentiable map �.

In this section, we consider estimators obtained through certain primitive methods of bias

reduction and compare their properties with the minimax decision proposed in this paper. In

our simulation set-up, the term bF;n = E [maxfX11 � �1; X12 � �2g] becomes the asymptotic
bias of the estimator max(�̂) when �1 = �2. One may consider the following estimator of
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bF;n :

b̂F;n =
1

L

LX
i=1

max
�
�̂1=2�i

�
,

where �i is drawn i.i.d. from N(0; I2). This adjustment term b̂F;n is �xed over di¤erent values

of �2 � �1 (in large samples). Since the bias of max(�̂) becomes prominent only when �1 is

close to �2, one may consider performing bias adjustment only when the estimated di¤erence

j�2 � �1j is close to zero. In the simulation study, we also consider the following estimated
adjustment term:

b̂S;n =

 
1

L

LX
i=1

max
�
�̂1=2�i

�!
1
n����̂2 � �̂1

��� < 1:7=n1=3o :
Then, we compare the following two estimators with the minimax decision �̂mx:

�̂F = max(�̂)� b̂F;n=
p
n and

�̂S = max(�̂)� b̂S;n=
p
n:

We call �̂F the estimator with �xed bias-reduction and �̂S the estimator with selective bias-

reduction. The results are reported in Figure 5.

The �nite sample risks of �̂F are better than the minimax decision �̂mx only around

�0 = 0. The bias reduction using b̂F;n improves the estimator�s performance in this case.

However, for other values of �0, the bias correction does more harm than good because it

lowers the bias when it is better not to. This is seen in the right-hand panel of Figure 5

which presents the �nite sample bias of the estimators. With �0 close to zero, the estimator

with �xed bias-reduction eliminates the bias almost entirely. However, for other values of

�0, this bias correction induces negative bias, deteriorating the risk performances.

The estimator �̂S with selective bias-reduction is designed to be hybrid between the two

extremes of �̂F and �̂mx:When �2��1 is estimated to be close to zero, the estimator performs
like �̂F and when it is away from zero, it performs like max(�̂). As expected, the bias of

the estimator �̂S is better than that of �̂F while successfully eliminating nearly the entire

bias when �0 is close to zero. Nevertheless, it is remarkable that the estimator shows highly

unstable �nite sample risk properties overall. When �0 is away from zero and around 3 to

7, the performance is worse than the other estimators. This result illuminates the fact that

successful reduction of bias does not always imply a better risk performance.

The minimax decision shows �nite sample risks that are robust over the values of �0. In

fact, the estimated bias adjustment term v̂�mx of the minimax decision is close to zero. This
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Figure 5: Comparison of the Minimax Decisions with Estimators obtained through Bias-
Reduction Methods

means that the estimator �̂mx involves almost zero bias adjustment, due to the concern for

its robust performance. In terms of �nite sample bias, the minimax estimator su¤ers from

a substantially positive bias as compared to the other two estimators, when �0 is close to

zero. The minimax decision tolerates this bias because by doing so, it can maintain robust

performance for other cases where bias reduction is not needed. The minimax estimator

is ultimately concerned with the overall risk properties, not just a bias component of the

estimator, and as the left-hand panel of Figure 5 shows, it performs more reliably over various

values of �0 relative to the other two estimators.

6 Conclusion

This paper has investigated the problem of optimal estimation of certain nonregular parame-

ters, when a nonregular parameter is a nondi¤erentiable transform of a regular parameter.

This paper demonstrates that we can de�ne and �nd an average risk decision and a minimax

decision, modifying the standard local asymptotic minimax theorem. While these results

are new to the best of the author�s knowledge, they nonetheless fall short of providing a

complete picture of optimal estimation of nonregular parameters in general.
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One interesting �nding of this paper is that when the functional  is nondi¤erentiable

(within the context of this paper), there exists no weight function that makes the average risk

decision of the form in the paper a minimax decision. This seems to suggest the divergence of

the Bayesian approach and the frequentist (or minimax) approach in the case of nonregular

parameters. If this divergence is indeed a general phenomenon, it is conjectured that minimax

decisions for nonregular parameters in this paper are not asymptotically admissible, which

eventually means that one may be able to obtain other minimax decisions that improve on

the decisions given in this paper.4 This issue is left to a future research.

7 Appendix: Mathematical Proofs

We begin by presenting a lemma which is a generalization of Lemma A5 of Song (2009). Let

[�1;1] and [�1;1]d be one-point compacti�cations of R and Rd respectively. Conver-

gence in distribution !d in the proof is viewed as in the one-point compacti�cations. We

assume the environment of Theorem 1. Choose fhigmi=1 from an orthonormal basis fhig1i=1
of H. For p 2 Rm, we consider h(p) � �mi=1pihi so that _�j(h(p)) =

Pm
i=1

_�j(hi)pi; where _�j
is the j-th element of _�: Given a d � k full column rank matrix (d � k) �, let �� and � be

m� d and m� k matrices such that

�� �

266664
_�1(h1) _�2(h1) � � � _�d(h1)
_�1(h2)

_�2(h2) � � � _�d(h2)
...

...
...

_�1(hm)
_�2(hm) � � � _�d(hm)

377775 and � �

266664
_�(h1)

0�
_�(h2)

0�
...

_�(hm)
0�

377775 : (20)

We also de�ne �� � (�(h1); � � �; �(hm))0, where � is the Gaussian process that appears in
Assumption 3. We assume that m � d and �� is full column rank. We �x � > 0 and let A� be

a m� 1 random vector with distribution N(0; Im=�) and let F�;q(�) be the cdf of ��A� + ��q;
where

��q � �(�0�)�1q and �� � Im � �(�0�)�1�0;

and q 2 Rk. Then, it is easy to check that for almost all realizations of A�, for each

j = 1; � � �; k;
�0 _�

��
��A� + ��q

�0 �h� = q;

4Note that in the case of estimating truncated normal means, Moors (1981) showed that the constrainted
MLE is not admissible. Charras and Eeden (1991) established general conditions that so-called "boundary"
estimators are inadmissible.
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where �h = (h1; ���; hm)0. Suppose that �̂ is a sequence of estimators such that for each h 2 H,

V h
n �

p
n
n
�̂ � �n(h)

o
!d Lh;

where Lh is a potentially de�cient distribution. Finally let Z(m)� (q) 2 Rd be a random vector

distributed as N(��0(Im� �����1� ��)��q; ��
0 �����1�

����), where ��� = ��+�Im. The following result

is a conditional version of the convolution theorem that appears in Theorem 2.2 of van der

Vaart (1989). (See also Theorem 2.7 of van der Vaart (1988).)

Lemma A1: (i) For any � > 0 and q 2 Rk;Z
Lh(p)dF�;q(p) = Z(m)�;q �M

(m)
�;q ;

where Z(m)�;q denotes the distribution of Z
(m)
� (q);M(m)

�;q a potentially de�cient distribution on

Rd; and � the convolution of distributions.
(ii) Furthermore, as �rst �! 0 and then m!1, Z(m)� (q) weakly converges to the conditional

distribution of Z given �0Z = q.

Proof: The proof is essentially the same as that of Lemma A5 of Song (2009).

We assume the situation of Lemma A1. Suppose that �̂ 2 R is a sequence of estimators

such that along fPn;0g

p
nf�̂ �  (�n(0))g ! d V and

p
nf�̂ �  (�n(h))g ! d V �  ( _�(h) + � )

for some nonstochastic vector � 2 [�1;1]d such that  (� ) = 0, and V 2 [�1;1]d is a
random vector having a potentially de�cient distribution. Let F�(�) be the cdf of A�. Let Lh 
be the limiting distribution of

p
nf�̂�  (�n(h))g in [�1;1]d along fPn;hg for each h 2 H.

Then the following holds.

Lemma A2: For any � > 0; the distribution
R
Lh(p) dF�(p) is equal to that of  (Z

(m)
� (q) +

W
(m)
� (q) + � ); where W

m
� (q) 2 [�1;1]d is a random vector having a potentially de�cient

distribution independent of Z(m)� (q).

Proof: Applying Le Cam�s third lemma, we �nd that for all B 2 B1; the Borel �-�eld of
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[�1;1],

Lh(p) (B) =

Z
E
h
1B(v �  (��

0
p+ � ))e

p0��� 1
2
jjpjj2
i
dL0 (v)

=

Z
E
h
1 �1(�B)(��

0
p+ � � v)ep

0��� 1
2
jjpjj2
i
dL0 (v);

where  �1(�B) = fx 2 [�1;1]d :  (x) 2 �Bg. Following the proof of Theorem 2.7 of van
der Vaart (1988) and going through some algebra, we obtain the wanted result.

Proof of Theorem 1: We �rst solve for the case where ' is an identity map. Suppose

that �̂ 2 R is a sequence of estimators. By Prohorov�s Theorem, for any subsequence of fng,
there exists a further subsequence fn0g such that along fPn0;0g

p
n0f�̂ � a0�n0(0)g ! d Va,

p
n0f�̂ � a0�n0(h)g ! d Va � a0 _�(h);

p
n0f�n(0)� a0�n0(0)g ! �a;

for some nonstochastic vector �a 2 [�1;1]d such that a0�a = 0, and a random vector

V0 2 [�1;1]d having a potentially de�cient distribution, and along fPn0;hg for each h 2 H,

p
n0f�̂ � a0�n0(h)g !d Vh;a

for some random vector Vh;a in [�1;1]d. For the rest of the proofs, we focus on such a
subsequence and write n instead of cumbersome n0. Let _�n;a(h) �

p
nf�n(h) � a0�n(h)g:

Then,
_�n;a(h)! _�a(h);

where _�a(h) � _�(h)� a0 _�(h) + �a: We de�ne for r 2 Rd,

H(r) =
n
h 2 H : _�a(h) = r

o
.

Without loss of generality, we assume that a1, the �rst element of a is not zero, and let

a = [a1; a
0
2]
0 where a1 2 R and a2 2 Rd�1 and similarly write r = [r1; r02]

0 and �a = [�a;1; �
0
a;2]

0:

De�ne A1 = Id � 1da0. From the fact that a01d = 1, it turns out that the restriction

A1Z = r � �a is equivalent to the restriction that

AZ = r2 � �a;2
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for A = �(Id�1 � 1d�1a02)[1d�1;�Id�1]:
Using similar arguments in the proof of Theorem 1 of Song (2009), we deduce that

liminf
n!1

sup
h2H"

n(r)

Z
Eh

h
�
����pnf�̂ �  (�n(h))g

����i �(r)dr
= liminf

n!1
sup

h2H"
n(r)

Z
Eh

h
�
����pnf�̂ � a0�n(h)�  (�n(h)� a0�n(h))g

����i �(r)dr
� sup

h2H(r)

Z
Eh [� (jVh;a �  (r)gj)]�(r)dr:

Since a0� is a regular parameter, we use Lemma A1 and follow the proof of Theorem 1 of

Song (2009) to bound the above supremum from below byZ Z
E
�
�M (ja0Z + w �  (r)j) jAZ = r2 � �a;2

�
dF (w)�(r)dr; (21)

where F is the (potentially defective) distribution. Using the joint normality of Z and

computing the covariance matrix, one can easily show that a0Z and AZ are independent, so

that we can write the above double integral as (by Fubini Theorem)Z Z
E [�M (ja0Z + w �  (r)j)]�(r)drdF (w) (22)

� inf
c2[�1;1]

Z
E [�M (ja0Z + c�  (r)j)]�(r)dr:

The integral is bounded and continuous in c 2 [�1;1]. Hence the integral remains the
same when we replace infc2[�1;1] by infc2R : By increasing M " 1, we establish that

lim
"!0

liminf
n!1

Z
R"
n(�̂; r)�(r)dr � inf

c2R

Z
E [� (ja0Z + c�  (r)j)]�(r)dr:

Now, consider the general case where ' is not an identity map but a contraction map such

that, without loss of generality, '(y) = y for all y 2 [k0;1) for some k0 2 R. Fix arbitrary
s 2 R and de�ne sn = s+

p
n(k0+ "). De�ne Hs(r) = fh 2 H(r) :limsupn!1f

p
na0�n(h)�

sng < �"g and H"
n(r; s) = fh 2 H"

n(r) :  (�n(h)) 2 [k0;1)g \Hs(r). Then,

lim
"!0

liminf
n!1

Z
R"
n(�̂; r)�(r)dr (23)

� lim
"!0

liminf
n!1

Z
sup

h2H"
n(r)

Eh

h
�M

����pnf�̂ � (' �  )(�n(h))g����i �(r)dr
� lim

"!0
liminf
n!1

Z
sup

h2H"
n(r;s)

Eh

h
�M

����pnf�̂ �  (�n(h))g
����i �(r)dr:
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Note that h 2 H"
n(r; s) for all n � 1 if and only if

p
n (�n(h))�

p
na0�n(h)!  ( _�a(h)) =  (r):

This means that when r is such that
p
n(k0 + ") � sn <  (r) (i.e. �s <  (r)), for each

h 2 Hs(r),  (�n(h)) 2 [k0;1) from some large n on. Hence from some large n on, Hs(r) �
H"
n(r; s), whenever r is such that �s <  (r). We bound the last term in (23) from below by

lim
"!0

liminf
n!1

Z
sup

h2Hs(r)
Eh

h
�M

����pnf�̂ �  (�n(h))g
����i 1 f�s <  (r)g �(r)dr

�
Z

sup
h2Hs(r)

Eh [�M (jVh;a �  (r)j)] 1 f�s <  (r)g�(r)dr:

The integral is monotone increasing in s. Hence by sending s!1, we obtain the boundZ
sup

h2H(r)
Eh [�M (jVh;a �  (r)j)]�(r)dr:

Following the previous arguments, we can obtain the wanted bound. �

For a given M > 0, de�ne

E� =

�
c 2 [�M;M ] : Q�(c) � inf

c2[�M;M ]
Q�(c)

�
;

where Q�(c) =
R
E [�M (ja0Z + c�  (r)j)]�(r)dr: De�ne c�� to be such that

c�� =
1

2
fmaxE� +minE�g :

The quantity c�� is a population version of ~c
�
�.

Lemma A3: Suppose that Assumptions 1-2 hold. Then for any " > 0;

sup
h2H

Pn;h fj~c�� � c��j > "g ! 0;

as n!1 and L!1.

Proof: Let the Hausdorf distance between the two sets E1 and E2 in R denoted by

dH(E1; E2). First we show that dH(E�; ~E�) !P 0 as n ! 1 and L ! 1 uniformly

over h 2 H. Let E"
� = fx 2 [�M;M ] : supy2E� jx� yj � "g. The proof can be proceeded as

in the proof of Theorem 3.1 of Chernozhukov, Hong and Tamer (2007), where it su¢ ces to

29



show that for any " > 0;

(a) infh2H Pn;h
n
supc2E� ~Q�(c) � infc2[�M;M ]

~Q�(c) + �n;L

o
! 1

(b) supc2 ~E�Q�(c) < infc2[�M;M ]nE"�Q�(c) + oP (1),

as n!1 and L!1; where the last term oP (1) is uniform over h 2 H.
We �rst consider (a). De�ne

~Q�(c; �a) =
1

L

LX
i=1

Z
�M (j�a0�i + c�  (r)j)�(r)dr and

Q�(c; �a) = E

�Z
�M (j�a0�i + c�  (r)j)�(r)dr

�
Let '(�; �a; c) =

R
�M (j�a0� + c�  (r)j)�(r)dr and TM = f'(�; �a; c) : (�a; c) 2 S1 � [�M;M ]g:

The class TM is uniformly bounded, and by Lemma 22(ii) of Nolan and Pollard (1987), it is

Euclidean, and hence P -Donsker. Therefore

sup
(�a;c)2S1�[�M;M ]

f ~Q�(c; �a)�Q�(c; �a)g = OP (1=
p
L) as L!1:

The randomness of ~Q�(c; �a) has nothing to do with h 2 H because it is with regard to the

simulated draws f�ig. Hence the convergence above is uniform over h 2 H.
By Assumptions 5 and 6(i), we have ân = a + OP (n

�1=2) uniformly over h 2 H. From

the Lipschitz continuity of � and  ; we conclude that

sup
c2[�M;M ]

f ~Q�(c; â)�Q�(c)g = OP (1=
p
L+ 1=

p
n) as n!1 and L!1 (24)

uniformly over h 2 H. From this (a) follows because �n;L
p
n!1 as n!1 and �n;L

p
L!

1 as L!1.
We turn to (b). By (24), with probability approaching 1 uniformly over h 2 H;

supc2 ~E�Q�(c) � supc2 ~E�
~Q�(c) � supc2 ~E�Q�(c) + oP (1)

� supc2E�Q�(c) + oP (1)

< infc2[�M;M ]nE"�Q�(c) + oP (1):

This completes the proof of (b). Since (a) implies infh2H Pn;hfE� � ~E�g ! 1 and (b) implies
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infh2H Pn;hf ~E� � E"
�g ! 1; we conclude that for any " > 0,

suph2HPn;h
n
dH(E�; ~E�) > "

o
! 0; as n!1 and L!1:

Observe that

j~c�� � c��j =
1

2

���max ~E� +min ~E� �maxE� �minE����
=

1

2

����max
y2 ~E�

fy �maxE�g � min
x2E�

n
x�min ~E�

o����
=

1

2

����max
y2 ~E�

min(y � E�)� min
x2E�

max
n
x� ~E�

o���� :
We write the last term as

1

2

����max
y2 ~E�

min(y � E�) + max
x2E�

min
n
~E� � x

o���� � 1

2

�
max
y2 ~E�

d(y; E�) + max
x2E�

d( ~E�; y)

�
;

where d(y; A) = infx2A jy � xj. The last term is bounded by dH(E�; ~E�). Hence we obtain

the wanted result. �

Proof of Theorem 2: De�ne ��� = â0~� + ~c��=
p
n and let �n;a(h) =

p
nf�n(h)� a0�n(h)g

and Zn(h) =
p
n(~� � �n(h)). Observe that

p
n
�
��� �  (�n(h))

	
=

p
n
�
��� � a0�n(h)

	
�  (rn(h))

=
p
nâ0f~� � �n(h)g+ ~c�� �  (rn(h)) +

p
n (â� a)0 �n(h)

= â0Zn(h) + ~c
�
� �  (�n;a(h)) +

p
n (â� a)0�n;a(h):

The last equality uses the fact that

p
n (â� a)0 �n(h) = (â� a)0

p
nf�n(h)� a0�n(h)g

= (â� a)0�n;a(h);

where the �rst equality follows because â; a 2 S1. Since ' is a contraction map, for each
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r 2 Rd; from some large n on,

R"
n;M(

~��; r)

= sup
h2H"

n(r)

Eh
�
�M(j

p
nf'(���)� (' �  )(�n(h))gj)

�
� sup

h2H"
n(r)

Eh
�
�M(j

p
nf��� �  (�n(h))gj)

�
� sup

h2H"
n(r)

sup
r�"�s�r+"

Eh
�
�M(jâ0Z + ~c�� �  (s) + (â� a)0 sj)

�
:

By Assumption 6 and Lemma A3, for each t 2 R;

Pn;h fâ0Zn(h) + ~c�� � tg ! P fa0Z + c�� � tg

uniformly over h 2 H. Since a0Z + c�� is continuous, the above convergence is uniform over

t 2 R. Using this uniform convergence and the fact that �M is continuous and bounded,

limsup
n!1

R"
n;M(

~��; r) � sup
r�"�s�r+"

E [�M(ja0Z + c�� �  (s)j)] :

Using Fatou�s Lemma,

limsup
n!1

Z
R"
n;M(

~��; r)�(r)dr

�
Z
limsup
n!1

R"
n;M(

~��; r)�(r)dr �
Z

sup
r�"�s�r+"

Eh [�M(ja0Z + c�� �  (s)j)]�(r)dr:

By sending "! 0 and using continuity of E [�M(ja0Z + c�� �  (s)j)] in s,

sup
r�"�s�r+"

E [�M(ja0Z + c�� �  (s)j)]! E [�M(ja0Z + c�� �  (r)j)] :

We use the bounded convergence theorem to conclude that

limsup
n!1

Z
R"
n;M(

~��; r)�(r)dr �
Z
E [�M(ja0Z + c�� �  (r)j)]�(r)dr

= inf
c2[�M;M ]

Z
E [�M(ja0Z + c�  (r)j)]�(r)dr;

by the de�nition of c��. By sending M !1, we obtain the wanted result. �
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We introduce some notations. De�ne jj � jjBL on the space of functions on Rd :

jjf jjBL = sup
x6=y

jf(x)� f(y)j=jjx� yjj+ sup
x
jf(x)j:

For any two probability measures P and Q on B; de�ne

dP(P;Q) = sup

�����Z fdP �
Z
fdQ

���� : jjf jjBL � 1� : (25)

Proof of Theorem 3: As in the proof of Theorem 1, we �rst consider the case of ' being

an identity. We write

p
nf�̂ �  (�n(h))g

=
p
nf�̂ �  (�n(0))g �

p
n (�n(h)� �n(0) + �n(0)�  (�n(0)))

=
p
nf�̂ �  (�n(0))g �  (

p
n(�n(h)� �n(0)) + �n; )

where �n; =
p
nf�n(0) �  (�n(0))g. Applying Prohorov�s Theorem, we note that for any

subsequence of fPn;0g, there exists a further subsequence along which

p
nf�̂ �  (�n(0))g ! d V and

p
n0f�̂ �  (�n0(h))g ! d V �  ( _�(h) + � );

under h 2 H, where V is a random vector and � is a nonstochastic vector in [�1;1]d.
From now on, it su¢ ces to focus only on these subsequences.

Using Lemma A2 and following the arguments of the proof of Theorem 1 of Song (2009),

we obtain that

sup
�2	

lim
"!0

liminf
n2N(�;")

Rn(�̂) � sup
�2	
E [�M (j (Z +W + �)j)]

� sup
r2[�M;M ]d

E
�
�M (j (Z +W + r �  (r))j) 1

�
W 2 [�M;M ]d

	�
:

The main part of the proof is the proof of the inequality : for any M > 0;

sup
r2[�M;M ]d

E
�
�M (j (Z +W + r �  (r))j) 1

�
W 2 [�M;M ]d

	�
(26)

� inf
w2Rd

sup
r2[�M;M ]d

E [�M (j (Z + w + r �  (r))j)] :

Once this inequality is established, we send M !1 to complete the proof.
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For brevity, we write

sup
r2[�M;M ]d

E
�
�M (j (Z +W + r �  (r))j) 1

�
W 2 [�M;M ]d

	�
� sup

r2[�M;M ]d

Z
�g(w; r)dF (w);

where �g(w; r) = E
�
g(Z + w + r �  (r))1

�
w 2 [�M;M ]d

	�
and g(x) = �M(j (x)j); and F

denotes the cdf of W .

Take K > 0 and let RK = fr1; � � �; rKg � [�M;M ]d be a �nite set such that RK become

dense in [�M;M ]d as K !1: De�ne FM to be the collection of distributions whose support

is restricted to [�M;M ]d. Then FM is uniformly tight. Note thatZ
�g(w; r)dF (w)

is Lipschitz in r uniformly over F 2 FM . Therefore, for any �xed � > 0, we can take RK

independently of F 2 FM such that

max
r2RK

Z
�g(w; r)dF (w) � sup

r2[�M;M ]d

Z
�g(w; r)dF (w)� � (27)

Since FM is uniformly tight, by Theorems 11.5.4 of Dudley (2002), FM is totally bounded
for dP de�ned in (25). Hence we �x " > 0 and choose F1; � � �; FN such that for any F 2 FM ,
there exists j 2 f1; � � �; Ng such that dP(Fj; F ) < ". For Fj and F such that dP(Fj; F ) < ",����maxr2RK

Z
�g(w; r)dF (w)� max

r2RK

Z
�g(w; r)dFj(w)

���� � max
r2RK

jj�g(�; r)jjBL":

Since �g(�; r) is Lipschitz continuous and bounded, maxr2RK
jj�g(�; r)jjBL < 1: We let CK =

maxr2RK
jj�g(�; r)jjBL. Therefore,

inf
F2FM

max
r2RK

Z
�g(w; r)dF (w) � inf

1�j�N
max
r2RK

Z
�g(w; r)dFj(w)� CK": (28)

By Lemma 3 of Chamberlain (1987), we can select for each Fj and for each rk 2 RK a

multinomial distribution Gj;k such thatZ
�g(w; rk)dFj(w) �

Z
�g(w; rk)dGj;k(w)� �k;j
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where �k;j can be taken to be arbitrarily small. Hence

inf
F2F

max
r2RK

Z
�g(w; r)dF (w) � inf

1�j�N
max
1�k�K

Z
�g(w; rk)dGj;k(w)� CK"� �k;j: (29)

Then let WK;N be the union of the supports of Gj;k, j = 1; � � �; N and k = 1; � � �; K. The
setWK;N is �nite. Let FK;N be the space of discrete probability measures with a support in
WK;N . Then,

inf
1�j�N

max
1�k�K

Z
�g(w; rk)dGj;k(w)

� inf
G2FK;N

max
r2RK

Z
�g(w; r)dG(w)

= inf
G2FK;N

max
r2RK

Z Z
g(z + w �  (r))d�r(z)dG(w);

where �r is the distribution of Z + r. For the last infG2FK;N maxr2RK
, we regard g(Z1 +

w �  (r)) as a loss function with Z1 representing a state variable distributed by �r with

�r parametrized by r in a �nite set RK . We view r as the parameter of interest and the

conditional distribution of Z1 + W given Z1 as a randomized decision. The conditional

distribution of Z1 +W given Z1 = z is equal to the distribution of z +W , because W and

Z1 are independent. The distribution G 2 FK;N has a common �nite support WK;N and

the distribution associated with �r is atomless. Hence, by Theorem 3.1 of Dvoretzky, Wald,

and Wolfowitz (1951), the last infG2FK;N maxr2RK
is equal to that with randomized decisions

replaced by nonrandominzed decisions, enabling us to write it as

inf
w2WK;N

sup
r2RK

Z
g(z + w �  (r))d�r(z)

= inf
w2WK;N

sup
r2RK

E [�M(j (Z + w + r)�  (r)j)] :

Since E [�M(j (Z + w + r)�  (r)j)] is continuous in w and r, we send �k;j ! 0; "! 0 and

then � ! 0 to conclude from (27), (28), and (29) that

inf
F2FM

sup
r2[�M;M ]d

Z
E [g(Z + w + r �  (r))] dF (w)

� inf
w2WK;N

sup
r2[�M;M ]d

E [�M(j (Z + w + r)�  (r)j)]

� inf
w2Rd

sup
r2[�M;M ]d

E [�M(j (Z + w + r)�  (r)j)] :

Therefore, we obtain (26). �
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Proof of Theorem 4: Let Qmx(w) = supr2Rd E [�M(j (Z + w + r)�  (r)j)] and, taking
a large number M > 0, de�ne

w�mx =
1

2
fmaxEmx +minEmxg

where Emx = fw 2 [�M;M ]d : Qmx(w) � infw2[�M;M ]d Qmx(w)g: Since ' is a contraction
map, it su¢ ces to de�ne

��mx =  (~�) +
~w�mxp
n

and establish that

lim
M!1

sup
�2	

lim
"!0

lim sup
n2N(�;")

sup
h2H

Eh
�
�M
�p

n
����mx �  (�n(h))

���� (30)

achieves the bound. (See the proof of Theorem 2.) First, observe that

sup
h2H

Eh
�
�M
�p

n
����mx �  (�n(h))

����
= sup

h2H
Eh

h
�M

�p
n
��� (~�) + ~w�mx �  (�n(h))

����i
= sup

h2H
Eh

h
�M

���� (pnf~� � �n(h)g+ ~w�mx +
p
nf�n(h)�  (�n(h))g)

����i
� sup

h2H
sup
r2Rd

Eh

h
�M

���� (pnf~� � �n(h)g+ ~w�mx + r �  (r))
����i :

Consistency of ~w�mx for w
�
mx can be shown as in the proof of Lemma A3. Since

p
nf~� �

�n(h)g+ ~w�mx !d Z+w
�
mx uniformly over h and �M is uniformly continuous, we deduce that

the limit in (30) is bounded by

sup
r2Rd

E [�M (j (Z + w�mx + r �  (r))j)]

= inf
w2[�M;M ]d

sup
r2Rd

E [�M (j (Z + w + r)�  (r)j)] :

Hence the proof is complete. �

Recall that a function f : Rd ! R is positive homogeneous of degree k if for all x 2 Rd

and for all u � 0, f(ux) = ukf(x):

Definition 2: (i) De�ne A to be the collection of maps � : Rd ! R such that for some

positive integer m,

�(x) =

mX
j=1

cj�j(x) + c0;
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where c0 and cj�s are real numbers and �j�s are positive homogeneous functions of degree

1 � kj � m.

(ii) De�ne AEQ to be the collection of maps � : Rd ! R such that � 2 A and for any x 2 Rd

and c 2 R, �(x+ c) = �(x) + c.

Note that A is the a¢ ne space of positive homogeneous functions, and AEQ is a subset

of A that includes only location equivariant members of A.

Lemma A4: Every function in AEQ takes the form of �1(�) + c; where c is a constant and

�1 is positive homogeneous of degree 1.

Proof : Let AEQ(m) be the collection of maps � : Rd ! R such that

�(x) =
mX
j=1

cj�j(x) + c0; (31)

where c0 and cj�s are constants and �j�s are positive homogeneous functions of degree 1 �
j � m, and for any x 2 Rd and c 2 R, �(x + c) = �(x) + c. Without loss of generality, let

us assume that �j is homogeneous of degree j.

It su¢ ces to show that for every positive integer m, AEQ(m) = AEQ(1): We de�ne the

following property for any map � in the form (31).

(Property A): We say � in the form (31) satis�es Property A if for each j = 1; � � �;m; there
exists a constant �j such that for any c 2 R,

�j(x+ c)� �j(x) = �jc (32)

for all x 2 Rd, and
Pm

j=1 �jcj = 1; �j 6= 0:

Consider the situation with m = 1. Then, �1 is positive homogeneous of degree 1. By

taking �1 = 1, we �nd that �1 satis�es Property A due to location equivariance. Hence all

the members of AEQ(1) satisfy Property A.

Fix arbitrary positive integer m1 such that all the ��s in AEQ(m1) satisfy Property A.

Take � 2 AEQ(m1 + 1) such that

�(x) =

m1+1X
j=1

cj�j(x) + c0:
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Choose c 6= 0 and write

c = �(x+ c)� �(x) =

m1+1X
j=1

cj f�j(x+ c)� �j(x)g (33)

=

m1X
j=1

cj f�j(x+ c)� �j(x)g+ cm1+1 f�m1+1(x+ c)� �m1+1(x)g :

The �rst equality follows from location equivariance of �. Since a decision of the formPm1

j=1 cj�j(x) belongs to AEQ(m1) and all the members of AEQ(m1) satisfy Property A,

m1X
j=1

cj f�j(x+ c)� �j(x)g = c

m1X
j=1

cj�j = c (34)

using the condition that
Pm1

j=1 cj�j = 1. Hence we have (from (33))

cm1+1 f�m1+1(x+ c)� �m1+1(x)g = 0:

If cm1+1 6= 0, �m1+1 is location invariant. However, location invariance is not possible when

�m1+1 is positive homogeneous of degree k � 1. Therefore cm1+1 = 0. We conclude that

AEQ(m1) = AEQ(m1 + 1). By rolling back the arguments for AEQ(m1 � 1) and AEQ(m1)

and so on, we deduce that AEQ(m) = AQ(1) for any m � 1. �

Lemma A5: Suppose that V is a random vector in Rd (with a tight distribution) and

� 2 AEQ. If there exists no c 2 R such that �(x) =  (x) + c for all x 2 Rd, then for each

M > 0,

sup
r2Rd

E [�M(j�(V + r)�  (r)j)] =M:

Proof: Fix m > 0 and choose � 2 AEQ(m). By Lemma A4, we can write

�(x) = �1(x) + c1

for some c1 2 R, where �1(x) is positive homogeneous of degree 1. Take any M > 0. Under

the assumption of the lemma, for every c 2 R, there exists �r 2 Rd such that �(�r) 6=  (�r)+ c.

We take c = c1 and �r 2 Rd such that �1(�r) 6=  (�r). Let � = �1(�r) �  (�r): Using positive

homogeneity of �1 with degree 1, we can write the supremum in Lemma A5 as

sup
r2Rd

E [�M (j�1(V + ur)�  (ur)j)]

= sup
r2Rd

E [�M (u j�1(V=u+ r)�  (r)j)] for any u > 0.
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Then choosing r = �r, we bound the last term from below by

E [�M(u j (V=u+ �r)�  (�r) + �j)]
� E [�M(maxfu j�j � u j (V=u+ �r)�  (�r)j ; 0g)]
� �M

�
maxfu j�j � usupz2[�K;K] j (z=u+ �r)�  (�r)j ; 0g

�
P fjjV jj � Kg

�E [�M(maxfu j�j � u j (V=u+ �r)�  (�r)j ; 0g)1fjjV jj > Kg] ;

for any K > 0: As for the last term, as K !1;

E [�M(maxfu j�j � u j (V=u+ r)�  (r)j ; 0g)1fjjV jj > Kg]
� MPfjjV jj > Kg ! 0:

Since  is uniformly continuous, we have as u!1;

usupz2[�K;K] j (z=u+ �r)�  (�r)j = o(u) and u j�j ! 1:

Hence from some large u on,

�M (maxfu j�j � o(u); 0g)P fjjV jj � Kg =MP fjjV jj � Kg ;

because �(y)!1 as y !1. By sending K !1, we obtain the wanted result. �

Proof of Theorem 5: Choose �̂n 2 DAV
n;M such that �̂n is asymptotically equivalent to

'(a0~� + c��=
p
n) for some c��. From the proofs of Theorems 1 and 3, we can show that

sup
�2	

lim
"!0

liminf
n2N(�;")

Rn(�̂) � sup
r2Rd

E [�M (ja0Z + c�� + r �  (r))j)] :

Since a0Z + c�� is not of the form  (Z) + c when  is not di¤erentiable, Lemma A5 implies

that the last supremum is equal to M . Hence the local asymptotic minimax risk bound is

in�nity by sending M !1 in the lemma, and the decision �̂n cannot achieve the minimax

risk bound that is achieved by ~�mx. �
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