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Abstract

Nonrandom sampling schemes are often used in program evaluation settings to improve

the quality of inference. This paper considers what we call treatment-based sampling,

a type of standard strati�ed sampling where part of the strata are based on treat-

ment status. This paper establishes semiparametric e¢ ciency bounds for estimators of

weighted average treatment e¤ects and average treatment e¤ects on the treated. This

paper �nds that adapting the e¢ cient estimators of Hirano, Imbens, and Ridder (2003)

to treatment-based sampling does not always lead to an e¢ cient estimator. This paper

proposes e¢ cient estimators that involve a di¤erent form of propensity score-weighting.

Finally, this paper establishes an optimal design of treatment-based sampling that min-

imizes the semiparametric e¢ ciency bound over the sampling designs.

Key words and Phrases: treatment-based sampling, standard strati�ed sampling, semi-

parametric e¢ ciency, treatment e¤ects, optimal sampling designs

JEL Classi�cations: C12, C14, C52.

1 Introduction

Program evaluation studies often adopt nonrandom sampling to improve the quality of inference.

For example, Ashenfelter and Card (1985) analyzed data from the Comprehensive Employment and

Training Act (CETA) training program using a sample constructed by combining subsamples of

program participants and a sample of nonparticipants drawn from the Current Population Survey

(CPS). Also, the studies of Lalonde (1986), Dehejia and Wahba (1998, 1999) and Smith and Todd

(2005) investigated the National Supported Work (NSW) training program where the training

group consisted of individuals eligible for the program and the comparison sample were drawn from

the CPS and the Panel Study of Income Dynamics (PSID) surveys. Numerous studies focused on

1 I would like to express my gratitude to Petra Todd who gave me numerous valuable comments and advice. I also
thank the Co-editor and two referees of Econometric Theory for comments that led to improvements of the paper.
All errors are solely mine. Address correspondence to: Kyungchul Song, Department of Economics, University of
Pennsylvania, 528 McNeil Building, 3718 Locust Walk, Philadelphia, Pennsylvania 19104-6297.
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the Job Training Partnership Act (JTPA) training program (e.g. Heckman, Ichimura, Smith and

Todd (1998), Heckman, Ichimura and Todd (1997)). The participants in these data sets typically

represented about 50% in the study sample in comparison to 3% in the population.

The rationale for such nonrandom sampling is often the belief that when the participants con-

stitute a small proportion in the population, sampling relatively more from the participants will

improve the quality of inference. However, this is not an accurate description because we need to

consider also the contribution of the noise in the subsample to the variance of the estimator. (See

Hahn, Hirano, and Karlan (2009) for a similar observation.) This paper makes this point clear by

developing an optimal design of treatment-based sampling which is a kind of standard strati�ed

sampling with strata based on the treatment status and other covariates.

The main objects of interest in this paper are the weighted average treatment e¤ects and the

average treatment e¤ects on the treated considered by HIR. First, this paper considers observa-

tions from treatment-based sampling, and establishes semiparametric e¢ ciency bounds for these

parameters. Then, the paper proposes e¢ cient estimators. The main challenge in the develop-

ment is that it is not a priori clear how one can obtain an e¢ cient estimator from the e¢ ciency

bounds, because the usual sample analogue principle does not apply. One might consider adapting

the e¢ cient estimators of Hahn (1998) or Hirano, Imbens, and Ridder (2003) (HIR, hereafter) to

treatment-based sampling using appropriate change of measure as in Tripathi (2008). However,

as this paper demonstrates, this naive adaptation does not work in general. This paper proposes

e¢ cient estimators that involve propensity score-weighting di¤erent from HIR.

Finally, this paper �nds an optimal design of treatment-based sampling which minimizes the

semiparametric e¢ ciency bound over the sample designs. The analysis makes it clear how the

noise from each subsample contributes to the semiparametric e¢ ciency bound. As a corollary,

a necessary and su¢ cient condition for a treatment-based sampling to improve on the random

sampling is established when the strata involves only the treatment status. (See Hahn, Hirano and

Karlan (2009) for an optimal design of social experiments in a related context.)

Early literatures on nonrandom sampling have assumed that the conditional distribution of

observations given a stratum belongs to a parametric family. (Manski and Lerman (1977), Manski

and McFadden (1981), Cosslett (1981a, 1981b), Imbens (1992), and Imbens and Lancaster (1996).)

Wooldridge (1999, 2001) studied M -estimators under nonrandom sampling which do not rely on

this assumption.

Closer to this paper, Breslow, McNeney and Wellner (2003) and Tripathi (2008) investigated

the problem of e¢ cient estimation under nonrandom sampling schemes. Tripathi (2008) considered

moment-based models under various nonrandom sampling schemes and proved that the empirical

likelihood estimators adapted to an appropriate change of measure achieve e¢ ciency. The strati-

�ed sampling scheme studied by Tripathi (2008) is di¤erent from this paper�s set-up because the

identi�cation of the counterfactual quantities in this paper cannot be formulated as arising from

the moment condition of his paper. Neither does this paper�s framework fall into the framework

of Breslow, McNeney and Wellner (2003) who considered variable probability sampling which is
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di¤erent from the standard strati�ed sampling studied here.

In the program evaluations literature, there are surprisingly few researches that deal with infer-

ence under treatment-based sampling. Chen, Hong, and Tarozzi (2008) established semiparametric

e¢ ciency bounds in a broader context where one has outcome observations with missing values

and has auxiliary data that aid identi�cation. While the general approach of Chen, Hong, and

Tarozzi (2008) applies to some strati�ed sampling schemes, it does not here because the event of

missing values involves the treatment status, failing the unconfoundedness condition assumed in

their paper. A paper by Heckman and Todd (2008) o¤ers a nice, simple idea to estimate treatment

e¤ect on the treated under treatment-based sampling without assuming knowledge of aggregate

shares. However, their paper does not focus on e¢ cient procedures.

This paper proceeds as follows. Section two introduces treatment-based sampling data designs

and Section three presents a general discussion on semiparametric e¢ ciency bound when observa-

tions are from treatment-based sampling. Section four establishes semiparametric e¢ ciency bounds

for weighted average treatment e¤ects and average treatment e¤ects on the treated. Section �ve

investigates e¢ cient estimation. Section six develops optimal treatment-based sampling. Section

seven concludes and the proofs are relegated to the appendix.

2 Treatment-Based Sampling

Treatment-based sampling proceeds as follows. Let D be a random variable that takes values in

f0; 1g; where D = 1 means participation in the program and D = 0 being left in the control group.

Let X = (V;W ) be a vector of covariates, whereW is a discrete random variable taking values from

a �nite setW. For example, W may be the vector of dummy variables for the service regions in the

JTPA job training program. The random vector V can contain continuous or discrete components.

Under treatment-based sampling, a random sample of size N for the discrete vector (D;W ) is

�rst collected. Let Nd;w =
PN
i=1 1f(Di;Wi) = (d;w)g, (d;w) 2 f0; 1g �W. From each subsample

with (Di;Wi) = (d;w), a random sample fYi; Vig
nd;w
i=1 of predetermined size nd;w for a vector (Y; V )

is collected, where Y =
P
d2f0;1g Yd1fD = dg and Y1 denotes the potential outcome of a person

treated in the program and Y0 the potential outcome of a person not treated. In this paper, we call

this type of sampling treatment-based sampling as the strata f0; 1g �W involve treatment status.

When Wi = 1 for all i; so that the strata are constructed based only on the treatment status, we

call this sampling pure treatment-based sampling. Throughout this paper, it is assumed that we do

not have individual observations for (Di;Wi)
N
i=1 from the original data set, although we may require

knowledge of aggregate shares pd;w = Pf(D;W ) = (d;w)g for identi�cation of certain parameters.
(See the discussions prior to Theorem 1 in the following section.) While the observations in the

combined sample f(Di; Yi; Vi)gni=1 are independent across i�s, the marginals are not identical. Hence
inference based on random sampling can be misleading.

For an illustration of treatment-based sampling, consider a job training program implemented

in K di¤erent service regions. (In the case of the JTPA job training program, there were 16 service
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regions.) Let W = f1; 2; � � �;Kg, the set of index numbers representing the K service regions, and

W 2 W the service region index for the worker. Each individual worker has a treatment-region

status represented by the pair (D;W ). For example a worker with (D;W ) = (0; 3) means that

the work is not treated and belongs to Service Region 3. When a service region has very few

workers eligible for the program in the population, one may want to sample treated workers with

a larger proportion than one represented in the population. The extent of the oversampling may

di¤er across di¤erent service regions. Then one combines samples obtained by oversampling or

undersampling the observations of (Y; V ) from each (d;w)-subsample. The resulting total sample

is one from treatment-based sampling whose distribution by itself is no longer representative of the

population.

First, note that a likelihood for observations generated from standard strati�ed sampling can

be viewed as a conditional likelihood from multinomial sampling given fnd;wgd;w2(f0;1g�W): As

pointed out by Imbens and Lancaster (1996) (see also Tripathi (2008)), (D;W ) is ancillary in both

strati�ed sampling and multinomial sampling, and hence it su¢ ces for semiparametric e¢ ciency

to consider only multinomial sampling with design probabilities, say, fqd;wg(d;w)2f0;1g�W . Further-
more, fnd;wg(d;w)2f0;1g�W is a su¢ cient statistic for multinomial distributions, and hence as far as

semiparametric e¢ ciency is concerned, we can assume that fqd;wg(d;w)2f0;1g�W are known. We do

not require full knowledge of fqd;wg(d;w)2f0;1g�W for the actual construction of e¢ cient estimators.

The multinomial sampling is used only for the computation of semiparametric e¢ ciency bounds.

Let the observations f(Yi; Vi; Di;Wi)gni=1 for (Y; V;D;W ) be generated by the multinomial
sampling scheme using known design probabilities fqd;wg(d;w)2f0;1g�W : In other words, we draw
a stratum (d;w) from f0; 1g � W using the multinomial distribution with known probabilities

fqd;wg(d;w)2f0;1g�W , and then draw (Y; V ) from the subsample with (D;W ) = (d;w):We repeat the
procedure until the total sample size becomes n:Unless qd;w = pd;w for all (d;w) 2 f0; 1g�W, the ob-
servations f(Yi; Vi; Di;Wi)gni=1 are not i.i.d. draws from P: The observations f(Yi; Vi; Di;Wi)gni=1 are
i.i.d., however, under probability Q with density qd;wfY;V jD;W (y; vjd;w), where fY;V jD;W (y; vjd;w)
is the conditional density of (Y; V ) given (D;W ) = (d;w) with respect to a �-�nite measure, say, �.

Therefore, the nature of treatment-based sampling is that we have observations that are i.i.d. from

Q but the parameter of interest is a functional of P: The notations of expectation and variance

without subscripts are assumed to be under P: Expectation EQ denotes expectation under Q. Ex-

pectation Ed;w denotes the conditional expectation given (D;W ) = (d;w): In pure treatment-based

sampling, we suppress the notation w from subscripts, for example, writing pd instead of pd;w and

Ed instead of Ed;w.

3 Semiparametric E¢ ciency under Treatment-Based Sampling

In this section, we explain how we can compute the semiparametric e¢ ciency bound for the pa-

rameter, say,  (P ); under treatment based sampling. The standard theory of e¢ ciency in semi-

parametric models and methods to compute e¢ ciency bounds are well established in the literature.
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(See Newey (1990) and Bickel, Klaassen, Ritov, and Wellner (1993) for a review.) Closely related

to this paper, Bickel and Kwon (2001) showed how we can adapt the results based on i.i.d sampling

to a multinomial sampling environment. (See Example 1 there.) To save space, we assume basic

terminologies and concepts in Bickel, Klassen, Ritov, and Wellner (1993) and highlight how the

standard method can be adapted to observations from treatment-based sampling.

Since we know the marginal probabilities qd;w; we consider the following form of regular para-

metric submodels:

ft(z; d; w) = f tZjD;W (zjd;w)qd;w; t 2 [0; "); " > 0; (1)

where ff tZjD;W (�jd;w) : t 2 [0; ")g denotes a regular parametric submodel passing through fZjD;W (�jd;w);
the conditional density of Z given (D;W ) = (d;w): Then, the parametric submodel fft : t 2 [0; ")g
is associated with a score, s(z; d; w) = sd;w(z) 2 L2(Q); where sd;w = @

@t log f
t
ZjD;W (�jd;w)jt=0 de-

notes the score associated with ff tZjD;W (�jd;w) : t 2 [0; ")g: Let T denote the tangent space, i.e.,

the closed linear span of all such scores s for all regular parametric submodels in the form of (1).

There are two situations for the identi�cation of  (P ) that this paper considers. The �rst

situation is where we can identify  (P ) only using the conditional distribution of Z given (D;W ).

The second situation is where we have knowledge of the aggregate shares pd;w which is needed to

identify  (P ): In both cases, the relevant tangent space is the same T and  (P ) is identi�ed from

the knowledge of Q and fqd;wg(d;w)2D�W.: Hence, we can write

 (P ) =  Q(Q);

for some functional  Q: The parameter of interest  Q(Q) is assumed to be di¤erentiable in Q in

the sense of van der Vaart (1991) and to have _ Q 2 L2(Q) such that for all regular parametric

submodels of the form in (1),

@ Q(Qt)

@t
jt=0 = EQ

h
_ Q(Z;D;W )s(Z;D;W )

i
:

When _ Q 2 T , we call it an e¢ cient in�uence function and denote it by _ 
e
Q: Then, the semipara-

metric e¢ ciency bound is given by the inverse of

VTS � V arQ( _ 
e
Q(Z;D;W )) =

X
(d;w)2D�W

qd;wEd;w

h
_ 
e
Q(Z;D;W )

2
i
: (2)

In this paper, we �nd _ 
e
Q(Z;D;W ) in the following way. First, note that T can be also viewed

as the tangent space at P with parametric submodels Pt having density f tZjD;W (zjd;w)pd;w. We
�nd _ P 2 L2(P ) such that for all regular parametric submodels with density f tZjD;W (zjd;w)pd;w;

@ (Pt)

@t
jt=0 = E

h
_ P (Z;D;W )s(Z;D;W )

i
; (3)
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for some s 2 T . Then, observe that

E
h
_ P (Z;D;W )s(Z;D;W )

i
= EQ

h
_ Q(Z;D;W )s(Z;D;W )

i
;

if we take _ Q(z; d; w) = _ P (z; d; w)pd;w=qd;w: Hence we �nd an in�uence function _ 
e
P under P such

that _ 
e
Q(z; d; w) =

_ 
e
P (z; d; w)pd;w=qd;w falls into T . Thus, _ 

e
Q(z; d; w) constructed in this way is

an e¢ cient in�uence function.

4 Semiparametric E¢ ciency Bounds for Treatment E¤ects Para-

meters

The main objects of interest are the weighted average treatment e¤ect, �wate; and the average

treatment e¤ect on the treated, �atet; de�ned as follows:

�wate =
E [g(X)fY1 � Y0g]

E [g(X)]
and �atet = E [Y1 � Y0jD = 1] ; (4)

where g denotes a weighting function. As pointed out by HIR, �wate is reduced to �atet when

g(X) = p1(X); where pd(X) = PfD = djXg, d 2 f0; 1g, denotes the propensity score. This paper
adopts the unconfoundedness condition:

(Y0; Y1) ?? DjX; (5)

meaning that (Y0; Y1) is conditionally independent of D given X. Condition (5) is imposed on the

original data set, not on the data from treatment-based sampling.

Under treatment-based sampling, �wate and �atet are not identi�ed without knowledge of the

aggregate shares pd;w, because the marginal distribution of X is not identi�ed from the data.

However, under pure treatment-based sampling, we can identify �atet without knowledge of pd: In

fact, under (5), the design of pure treatment-based sampling (i.e. the choice of qd) does not play a

role in determining the conditional distribution of (Y1; Y0) given X: These facts about identi�cation

are summarized in the following table:

Table: Identi�cation of Treatment E¤ects Parameters (TS stands for treatment-based sampling)

�wate �atet (non-pure TS) �atet (pure TS)

Known Aggregate Shares Yes Yes Yes

Unknown Aggregate Shares No No Yes

As Wooldridge (2001) has pointed out, the assumption of known aggregate shares pd;w is mo-

tivated by the sampling environment where Nd;w is very large relative to the subsample size nd;w:

Such sampling is reasonable when it is much less costly to gather information about (D;W ) than

the outcome Y or full covariates X. In this case, a proper large sample theory would be one with
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nd;w=Nd;w !P 0: At the level of treatment-based samples, the asymptotic theory implies knowledge

of pd;w.

We introduce some notations:

�d(X) � E [YdjX] ; �2d(X) � E
�
(Yd � �d(X))2jX

�
; and

�(X) � E [Y1jX]�E [Y0jX] :

Theorem 1 : Suppose that (5) holds, and that g(�) and pd;w; (d;w) 2 f0; 1g � W, are known.
Then the semiparametric e¢ ciency bound for �wate under treatment-based sampling is equal to

V �1TS (�wate); where

VTS(�wate) �
1

fE[g(X)]g2
X

(d;w)2f0;1g�W

p2d;w
qd;w

Ed;w

�
g(X)2

�2d(X)

p2d(X)
+ �2d(X)

�
;

and �d(x) � g(x)f�(x) � �wateg � Ed;w[g(X)f�(X) � �wateg] with x � (v; w): In particular, when
the sampling is pure treatment-based sampling and pd = qd; VTS(�wate) = VRS(�wate); where

VRS(�wate) �
1

fE[g(X)]g2E

24g(X)2��21(X)
p1(X)

+
�20(X)

p0(X)

�
+

X
d2f0;1g

�2d(X)pd(X)

35 :
Theorem 1 implies that knowledge of pd;w is not ancillary in general. In the special case of pure

treatment-based sampling with pd = qd, we can compare VTS(�wate) with the variance bound of

HIR:

VHIR(�wate) �
1

fE[g(X)]g2E
�
g(X)2

�
�21(X)

p1(X)
+
�20(X)

p0(X)

�
+ g2(X)(�(X)� �wate)2

�
:

Note that VTS(�wate) � VHIR(�wate) and the equality holds if and only if

Ed[g(X)f�(X)� �wateg] = 0 for all d 2 f0; 1g: (6)

Hence knowledge of pd is not ancillary for �wate:

Let us turn to �atet: Although �atet is reduced to �wate when g(X) = p1(X), we treat it separately

because when g(X) = p1(X); the weighting function g is not known.

Theorem 2 : (i) Suppose that (5) holds and fpd;wg(d;w)2f0;1g�W are known. Then the semipara-

metric e¢ ciency bound for �atet under treatment-based sampling is equal to V �1TS (�atet); where

VTS(�atet) �
X

(d;w)2f0;1g�W

p2d;w
qd;w

Ed;w

�
d

p21

n
�21(X) +

~�
2
1(X)

o
+
1� d
p21

�20(X)p
2
1(X)

p20(X)

�

and ~�d(x) � �(x)� �atet �Ed;w [�(X)� �atet] with x � (v; w):
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(ii) Suppose that (5) holds and the sampling is pure treatment-based sampling. Then, regardless

of whether we know fpdgd2f0;1g or not, the semiparametric e¢ ciency bound for �atet is given by
V �1PTS(�atet), where

VPTS(�atet) =
1

q1
E
�
�21(X) + f�(X)� �atetg2jD = 1

�
+
1

q0
E

�
f(Xj1)2�20(X)

f(Xj0)2 jD = 0

�
: (7)

Under random sampling (i.e., pd;w = qd;w), VTS(�atet) is smaller than the variance bound in Hahn

(1998) that does not assume knowledge of pd;w: Therefore, the aggregate shares are not ancillary

in general. However, the situation becomes di¤erent when the sampling is pure treatment-based

sampling. In this case, the aggregate shares pd are ancillary. Indeed, in pure treatment-based

sampling with pd = qd; VPTS(�atet) is reduced to

VRS(�atet) � E
��

p1(X)�
2
1(X)

p21
+
�20(X)p

2
1(X)

p0(X)p21

�
+
f�(X)� �atetg2p1(X)

p21

�
which is identical to the variance bound of Hahn (1998) for �atet: Therefore, VPTS(�atet) can be

viewed as a generalization of the variance bound of Hahn (1998) to pure treatment-based sampling.

5 E¢ cient Estimation of Weighted Average Treatment E¤ects

5.1 Propensity Score Estimation

We begin with propensity score estimation. Let fQ(x) be the density of X (under Q) with respect

to some �-�nite measure, and f(vjd;w) the conditional density function of V given (D;W ) = (d;w).
By Bayes�rule, the propensity score is identi�ed as

pd(v; w) =
f(vjd;w)pd;wP

d2f0;1g f(vjd;w)pd;w
; (8)

where pd(v; w) = PfD = djV = v;W = wg. The identi�cation of pd(v; w) certainly requires
knowledge of pd;w:

We consider two consistent estimators of the propensity score that are based on the identi�cation

in (8). Let X = (V1; V2;W ) 2 RL; where V1 2 X1 is continuous and V2 2 X2 is discrete with
supports X1 � RL1 and X2 � RL2 respectively for V1 and V2. De�ne X to be the support of Xi. Let
Sd;w = f1 � i � n : (Di;Wi) = (d;w)g: De�ne f̂(v1; v2jd;w) = 1

qd;wn

P
i2Sd;w Kh (V1i � v1) 1fV2i =

v2g; where Kh(s1; � � �; sL1) = K(s1=h; � � �; sL1=h)=hL1 and K(�) is a multivariate kernel function.
Then, we de�ne

p̂d(v; w) =
f̂(v1; v2jd;w)pd;wP

d2f0;1g f̂(v1; v2jd;w)pd;w
: (9)
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Letting Ld;w;i �
pd;w
qd;w

1f(Di;Wi) = (d;w)g; and Lw;i � L0;w;i + L1;w;i; we can rewrite p̂d(v; w) as

p̂d(v; w) =
�̂d(v; w)

�̂1(v; w) + �̂0(v; w)
;

where �̂d(v; w) = 1
n

Pn
i=1 Ld;w;iKh (V1i � v1) 1fV2i = v2g. Therefore, the propensity score esti-

mator is a weighted Nadaraya-Watson estimator. This is intuitive because the probability under

treatment-based sampling is the average of conditional probabilities using di¤erent weights.

Alternatively, we can estimate the propensity score using the estimated fraction

q̂d;w =
1

n

nX
i=1

1f(Di;Wi) = (d;w)g = nd;w=n

in place of qd;w: Using this, we de�ne L̂d;w;i �
pd;w
q̂d;w

1f(Di;Wi) = (d;w)g; L̂w;i � L̂0;w;i + L̂1;w;i; and

~pd(v; w) �
~�d(v; w)

~�1(v; w) + ~�0(v; w)
; (10)

where ~�d(v; w) = 1
n

Pn
i=1 L̂d;w;iKh (V1i � v1) 1fV2i = v2g:

5.2 E¢ cient Estimation of Average Treatment E¤ects

Let us �rst search for an e¢ cient estimator of �wate. The �rst idea will be adapting the estimator

of HIR to treatment-based sampling:

�̂wate �

P
w2W

n
p1;w
q1;w

1
n

P
i2S1;w 1̂n;ig(Vi; w)Yi=p̂1(Vi; w)�

p0;w
q0;w

1
n

P
i2S0;w 1̂n;ig(Vi; w)Yi=p̂0(Vi; w)

o
P
w2W

n
p1;w
q1;w

1
n

P
i2S1;w g(Vi; w) +

p0;w
q0;w

1
n

P
i2S0;w g(Vi; w)

o ,

where p̂d(v; w) is estimated by (9) and 1̂n;i = 1
n
�̂d(Vi; w) � �n : d 2 f0; 1g

o
for a positive sequence

�n ! 0. When we are under pure treatment-based sampling and pd = qd, �̂wate is reduced to

the estimator of HIR except with a di¤erent nonparametric estimator for the propensity score.

In Theorem 2 below, we show that this estimator is consistent and asymptotically normal, but

ine¢ cient in general.

Alternatively, we suggest the following estimator:

~�wate �
P
w2W

p1;w
n1;w

P
i2S1;w

~1n;ig(Vi; w)Yi=~p1(Vi; w)P
w2W

p1;w
n1;w

P
i2S1;w

~1n;ig(Vi; w)=~p1(Vi; w)
�
P
w2W

p0;w
n0;w

P
i2S0;w

~1n;ig(Vi; w)Yi=~p0(Vi; w)P
w2W

p0;w
n0;w

P
i2S0;w

~1n;ig(Vi; w)=~p0(Vi; w)
;

where ~pd(v; w) is as in (10) and ~1n;i = 1
n
~�d(Vi; w) � �n : d 2 f0; 1g

o
. The estimator ~�wate involves

a further weighting of g(Vi; w) by ~pd(Vi; w): Note that �̂wate uses qd;w while ~�wate uses q̂d;w = nd;w=n:

Assumption 1 : There exist �1 2 R and �2 2 R such that 0 < �1 � p1(x) � �2 < 1 for all x 2 X

9



such that g(x) 6= 0.

Assumption 2 : For each (d;w; v2) 2 f0; 1g �W �X2, the following holds.
(i) f(v1; v2jd;w)jjv1jj, �d(�; v2; w); and g(�; v2; w) are bounded and L1+1 times continuously di¤er-
entiable with bounded derivatives on RL1 and uniformly continuous (L1 + 1)-th derivatives.

(ii) Ed;wY r1 <1, Ed;wY r0 <1, Ed;wjjV1ijjr <1; for some r � 4.
(iii) pd;w; qd;w 2 (0; 1) and �(d;w)2f0;1g�Wpd;w = �(d;w)2f0;1g�Wqd;w = 1:
(iv) For some �a � 4, Ed;w [f��a(Xi)] <1 for all a 2 [0; �a].

Assumption 3 : (i) K is zero outside an interior of a bounded set, L1 +1 times continuously dif-

ferentiable with bounded derivatives,
R
K(s)ds = 1; and

R
sl11 � � �s

lL1
L1
K(s)ds = 0 for all nonnegative

integers l1; � � �; lL1 such that l1 + � � �+ lL1 � L1 and
R
jsl11 � � � s

lL1
L1
K(s)jds <1 for all nonnegative

integers l1; � � �; lL1 such that l1 + � � �+ lL1 = L1 + 1:

(ii)
p
nf"2n��1n + ��ang ! 0; and ��1n "n ! 0; where "n = n�1=2h�L1=2

p
log n+ hL1+1.

Assumption 1 is the condition of sample overlap needed for the identi�cation of �wate. This is

violated when part of X is only observed among the treated or untreated subsamples. (See Heck-

man, Ichimura, and Todd (1997) for a discussion in this regard.) See Khan and Tamer (2009) for

situations where Assumption 1 is violated with p1(x) being arbitrarily close to 0 or 1. Assumption

2 requires that f(�; v2jd;w) is continuous on RL1 . While HIR requires that the density of V1 is

bounded away from zero, our Assumption 2 excludes such a case. Assumption 2 (iv) is the tail

condition for the density of V1i: (See, e.g. Assumption NP7 of Andrews (1995).) Assumption 3(i) is

a standard assumption for higher order kernels. The following theorem establishes the asymptotic

distribution of �̂wate and ~�wate:

Theorem 3 : Suppose that the condition (5) and Assumptions 1-3 hold. Then

p
n(�̂wate � �wate) ! d N(0; V1); and

p
n(~�wate � �wate) ! d N(0; VTS(�wate));

where

V1 �
1

fE[g(X)]g2
X

(d;w)2f0;1g�W

p2d;w
qd;w

Ed;w

�
g(X)2

�
�2d(X)

p2d(X)
+ (�(X)� �wate)2

��
:

When the sampling is random sampling, the asymptotic variance of �̂wate is reduced to VHIR
which is greater than VTS(�wate) in general. Therefore, �̂wate is ine¢ cient. The e¢ ciency is achieved

by an alternative estimator ~�wate: The e¢ cient estimator can be used when only q̂d;w = nd;w=n (not

qd;w) is available in the data.

Let us turn to the e¢ cient estimation of �atet. In this case, the identi�cation of �atet allows us

to formulate Assumption 1 di¤erently:

10



Assumption 1P : There exist �1 2 R and �2 2 R such that 0 < �1 � p1(x) � �2 < 1 for all

x 2 X :

We suggest the following estimator:

~�atet =
1

p1

X
w2W

p1;w
n1;w

X
i2S1;w

Yi �
P
w2W

p0;w
n0;w

P
i2S0;w

~1n;i~p1(Vi; w)Yi=~p0(Vi; w)P
w2W

p0;w
n0;w

P
i2S0;w

~1n;i~p1(Vi; w)=~p0(Vi; w)
;

where ~pd(v; w) is estimated by (10). Theorem 4 below establishes that this estimator is e¢ cient.

We saw that in the case of pure treatment-based sampling, the knowledge of pd is ancillary.

One might consider alternatively the estimator of HIR that is adapted to pure treatment-based

sampling:

�̂atet;p =

p1
q1n

P
i2S1 Yi �

p0
q0n

P
i2S0 1̂n;ip̂1(Xi)Yi=p̂0(Xi)

p0
q0n

P
i2S0 1̂n;ip̂1(Xi) +

p1
q1n

P
i2S1 1̂n;ip̂1(Xi)

:

While this estimator is e¢ cient (see Theorem 4 below), it requires knowledge of pd: Instead, we

suggest the following estimator that does not require knowledge of the aggregate shares pd:

~�atet;p =
1

n1

X
i2S1

Yi �
P
i2S0

~1n;i~p1(Xi)Yi=~p0(Xi)P
i2S0

~1n;i~p1(Xi)=~p0(Xi)

=
1

n1

X
i2S1

Yi �

P
i2S0 Yi

~1n;i

�
f 1n1

P
j2S1 Kjig=f 1n0

P
j2S0 Kjig

�
P
i2S0

~1n;i

�
f 1n1

P
j2S1 Kjig=f 1n0

P
j2S0 Kjig

� ;

where Kji = Kh (V1j � V1i) 1fV2j = V2ig: The estimator ~�atet;p is in fact an estimator ~�atet that is
specialized to pure treatment-based sampling. Hence the estimator is e¢ cient.

Theorem 4 : Suppose that the condition (5) and Assumptions 1P, 2-3 hold. Then,

p
n(~�atet � �atet)!d N(0; VTS(�atet)):

Suppose further that we are under pure treatment-based sampling. Then

p
n(~�atet;p � �atet) ! d N(0; VPTS(�atet)) and

p
n(�̂atet;p � �atet) ! d N(0; VPTS(�atet)):

6 Optimal Design of Treatment-Based Sampling

In this section, we develop an optimal design of treatment-based sampling. Let _ 
e
P (y; v; d; w) be

the e¢ cient in�uence function of a generic parameter such as �wate or �atet: Then we can design an

optimal treatment-based sampling as follows. Let

Jd;w = p2d;wEd;w

h
_ 
e
P (Y; V;D;W )

2
i
:

11



We can write the variance bound (under treatment-based sampling) as

VTS =
X

(d;w)2f0;1g�W

Jd;w
qd;w

:

We can view Jd;w=qd;w as the contribution of the (d;w)-subsample to the variance bound.

We de�ne the optimal design to be those fqd;wg(d;w)2f0;1g�W such that minimize VTS under the

constraint that qd;w � 0 and
P
(d;w)2f0;1g�W qd;w = 1: It is easy to see that the optimal design is

given by

q�d;w =

p
Jd;wP

(d;w)2f0;1g�W
p
Jd;w

: (11)

The optimal design suggests that we sample from the (d;w)-subsample precisely according to the

"noise" proportion
p
Jd;w of the subsample (d;w) in

P
(d;w)2f0;1g�W

p
Jd;w: In other words, we

sample more from a subsample that induces more sampling variability to the e¢ cient estimator.

When we have some pilot sample obtained from a two-stage sampling scheme or other data sources

that can be used to draw information about Jd;w; the result here may serve as a guide for optimally

choosing the size of the sampling fractions qd;w:2

Using q�d;w yields the minimum semiparametric e¢ ciency bound as

8<: X
(d;w)2f0;1g�W

p
Jd;w

9=;
2

: (12)

The variance in (12) is the minimum variance bound over all the choices of the sampling probabilities

qd;w: The variance (12) can be used to compare di¤erent choices of additional stratum variables

Wi:

In the case of pure treatment-based sampling, we can make precise the condition for treatment-

based sampling to yield improved inference than random sampling. Let VRS be the variance bound

under random sampling, which is equal to VTS with pd = qd: Then it is not hard to see that

VRS � VTS if and only if

min

�
p1;

J1
J1 + J0

�
� q1 � max

�
p1;

J1
J1 + J0

�
: (13)

Therefore, it is not always true that sampling more from a subsample of low population proportion

leads to a better result. The improvement hinges on the noise proportion J1=(J1 + J0) as well.

When p1 happens to coincide with J1=(J1 + J0); there is no way for treatment-based sampling to

improve upon random sampling. Theorems 1 and 2 allow us to identify Jd;w in (11) for �wate and

�atet.
2When it is less costly to sample from a speci�c subsample from others, we can incorporate an appropriate

di¤erential cost consideration into the optimal design by turning the optimization problem into one subject to certain
inequality constraints.

12



Corollary 1 : Under the conditions of Theorems 1 and 2 respectively for �wate and �atet, the

optimal choice of qd;w is given as follows:

qd;w =

q
J�d;wP

(d;w)2f0;1g�W

q
J�d;w

(for �wate) and qd;w =

q
~Jd;wP

(d;w)2f0;1g�W

q
~Jd;w

(for �atet),

where

J�d;w =
p2d;w

fE[g(X)]g2Ed;w
�
g(X)2

�2d(X)

p2d(X)
+ �2d(X)

�
and

~Jd;w = p2d;wEd;w

�
d

p21

n
�21(X) +

~�
2
1(X)

o
+
1� d
p21

�20(X)p
2
1(X)

p20(X)

�
:

In the case of pure treatment-based sampling, the estimation of the optimal design does not

require knowledge of pd: Indeed, we de�ne

�J1 = E
�
�21(X) + f�(X)� �atetg2jD = 1

�
and �J0 = E

�
f(Xj1)2�20(X)

f(Xj0)2 jD = 0

�
:

Then, VPTS(�atet) = �J1=q1 + �J0=q0. The optimal design of q1 in Corollary 1 is given by

q1(�atet) =

p
�J1p

�J1 +
p
�J0

and a necessary and su¢ cient condition for VPTS(�atet) � VPRS(�atet) is given by the condition in

(13) with J1 and J0 replaced by �J1 and �J0: Note that estimation of �Jd does not require knowledge

of the aggregate shares pd:

7 Conclusion

This paper has established semiparametric e¢ ciency bounds for certain average treatment e¤ect

parameters under treatment-based sampling. This paper also proposes e¢ cient estimators for

the parameters. This paper�s �nding suggests that under treatment-based sampling, tailoring the

estimators of HIR to treatment-based sampling does not work when the aggregate shares are not

ancillary. An optimal design of treatment-based sampling is also derived. The theory of optimal

design illuminates the role of treatment-based sampling in improving the quality of inference.

8 Appendix: Mathematical Proofs

Proof of Theorem 1 : Let f(y; v; d; w) be the density of (Y; V;D;W ) with respect to a �-
�nite measure � under P . We use the notations

R
�d�(w);

R
�d�(v),

R
�d�(y), etc., to denote

the integrations with respect to the marginals of � for the coordinates of w; v; y, etc. Let Q =
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ffY;V jD;W (�j�)q� : fY;V jD;W 2 Pd;w; (d;w) 2 f0; 1g � Wg and �x Q 2 Q: Let f(y; vjd;w) be the
conditional density of (Y; V ) given (D;W ) = (d;w): We use subscripts P and Q for densities

to make it explicit under which probability they are de�ned when they di¤er. We do not use the

subscripts for the conditional densities given (D;W ) = (d;w) or given (D;W; V ) = (d;w; v) because

they remain the same both under P and under Q:

We write the density fQ(y; v; d; w) of (Y; V;D;W ) under Q as

fQ(y; v; d; w) = f(yjv; d; w)f(vjd;w)qd;w
= fd(yjx)f(vjd;w)qd;w;

where fd;P (yjx) is the conditional density of Ydi given Xi = x under P: The second equality

follows by the unconfoundedness condition. Hence the score s(y; v; d; w) is written as sd(yjx) +
s(vjd;w); where

R
sd(yjx)fd;P (yjx)d�(y) = 0 and

R
s(vjd;w)f(vjd;w)d�(v; w) = 0: The closed linear

span of such scores constitutes the tangent space T .
Take a regular parametric submodel f tQ(y; v; d; w) = f t(y; vjd;w)qd;w and let Pt be the paramet-

ric submodel with density f t(y; vjd;w)pd;w: We need to �nd _ P . The weighted average treatment
e¤ect under Pt is written as

�wate(t) =

P
w2W

R R
g(v; w)y fft(yjv; 1; w)� ft(yjv; 0; w)g d�(y)ft(v; w)d�(v)P

(d;w)2D�W pd;w
R
g(v; w)ft(vjd;w)d�(v)

=

P
(d;w)2D�W

R
g(v; w)

�R
yf1;t(yjv; w)d�(y)�

R
yf0;t(yjv; w)d�(y)

	
pd;wft(vjd;w)d�(v)P

(d;w)2D�W pd;w
R
g(v; w)ft(vjd;w)d�(v)

:

The �rst order derivative of �wate(t) with respect to t at t = 0 is equal to

1

E[g(X)]
E [g(X) (E [Y s1(Y jX)jX]�E [Y s0(Y jX)jX])]

� 1

E[g(X)]
E[s(V jD;W )g(X)f�(X)� �wateg]:

Let

_ P (y; v; d; w) =
1

E[g(X)]
g(v; w)

�
d(y � �1(v; w))

p1(v; w)
� (1� d)(y � �0(v; w))

p0(v; w)

�
(14)

� 1

E[g(X)]
�d(v; w):

14



We can write

@�wate(t)

@t
= E[ _ P (Y; V;D;W )s(Y; V;D;W )] (15)

=
X

(d;w)2D�W
E
h
_ P (Y; V;D;W )s(Y; V;D;W )j(D;W ) = (d;w)

i
pd;w

=
X

(d;w)2D�W
E
h
_ Q(Y; V;D;W )s(Y; V;D;W )j(D;W ) = (d;w)

i
qd;w

= EQ

h
_ Q(Y; V;D;W )s(Y; V;D;W )

i
;

where _ Q(y; v; d; w) = _ P (y; v; d; w)pd;w=qd;w: Now, observe that _ Q belongs to the tangent space

T . (This follows from the unconfounded condition.) Therefore, it is an e¢ cient in�uence function.

Since it is the projection of an in�uence function on T which is a closed linear space of scores, the

e¢ cient in�uence function is unique. (e.g. van der Vaart (1998), p.363.) Hence the variance bound

is given by its L2(Q)-norm:X
(d;w)2D�W

E[ _ 
2
Q(Y; V;D;W )j(D;W ) = (d;w)]qd;w

=
X

(d;w)2D�W

p2d;w
qd;w

E[ _ 
2
P (Y; V;D;W )j(D;W ) = (d;w)]:

Proof of Theorem 2 : The tangent space in the proof of Theorem 1 remains the same. The

only needed change from Theorem 1 is the computation of the in�uence function because now

g(x) = p1(x) is not assumed to be known. Let Pt be the submodel as in the proof of Theorem 1.

The weighted average treatment e¤ect under Pt is written as

�atet(t) =
X
w2W

Z Z
y fft(yjv; 1; w)� ft(yjv; 0; w)g d�(y)ft(vj1; w)pwj1d�(v);

where pwj1 = p1;w=f�w2Wp1;wg: The �rst order derivative of �atet(t) with respect to t is equal to

E [s(V jD;W )f�(X)� �atetgjD = 1]

+E [E [Y s1(Y jX)jX;D = 1]�E [Y s0(Y jX)jX;D = 0] jD = 1] :

Therefore, we take

_ P (y; v; d; w) =
1

p1

�
d(y � �1(v; w)� ~�1(v; w))�

p1(v; w)(1� d)(y � �0(v; w))
p0(v; w)

�
:

As shown in the proof of Theorem 1, this yields the semiparametric e¢ ciency bound for �atet:

Let us turn to the situation with pure treatment-based sampling. The tangent space is the
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closed linear span of scores of the form sd(yjx) + s(vjd); where
R
sd(yjx)fd;P (yjx)d�(y) = 0 andR

s(vjd)f(vjd)d�(x) = 0: Write

�atet(t) =

Z Z
y fft(yjx; 1)� ft(yjx; 0)g d�(y)ft(xj1)d�(x):

The �rst order derivative of �atet(t) with respect to t is equal to

E [s(XjD)f�(X)� �atetgjD = 1]

+E [fE [Y s1(Y jX)jX;D = 1]�E [Y s0(Y jX)jX;D = 0]gjD = 1] :

Therefore, we take

_ P (y; x; d) =

�
d(y � �1(x)� f�(x)� �atetg)

p1
� p1(x)(1� d)(y � �0(x))

p0(x)p1

�
because E [�(X)� �atetjD = 1] = 0: Let _ Q(y; x; d) = _ P (y; x; d)pd=qd: Now

X
d2D

qdE
h
_ 
2
Q(Y;X;D)jD = d

i
=

p21
q1
E

�
(Y1 � �1(X)� f�(X)� �atetg)2

p21
jD = 1

�
+
p20
q0
E

�
p1(X)

2(Y0 � �0(X))2
p0(X)2p21

jD = 0

�
=

1

q1
E
�
(Y1 � �1(X)� f�(X)� �atetg)2jD = 1

�
+
1

q0
E

�
p20p1(X)

2

p0(X)2p21
(Y0 � �0(X))2jD = 0

�
:

Note that by Bayes�rule,
p0p1(X)

p1p0(X)
=
p0f(Xj1)p1
p0f(Xj0)p1

=
f(Xj1)
f(Xj0) :

By plugging in this, we obtain the wanted result.

Lemma A1: Suppose that Assumptions 1-3 hold. Then, for each w 2 W,

max
1�i�n

1̂n;i jp1(Vi; w)� p̂1(Vi; w)j = OP ("n) and

max
1�i�n

~1n;i jp1(Vi; w)� ~p1(Vi; w)j = OP ("n):

Proof: We only consider the �rst statement. For simplicity, we assume that V = V1 and de�ne
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EQ;w;i[L1;w;i] = EQ[L1;w;ijVi;Wi = w]fQ(Vi; w) for simplicity. Let

ÊQ;w;i[L1;w;i] =
1

n� 1

nX
j=1;j 6=i

L1;w;jKh;ji and

ÊQ;w;i[Lw;i] =
1

n� 1

nX
j=1;j 6=i

Lw;jKh;ji:

Hence we can write

p1(Vi; w)� p̂1(Vi; w) =
EQ;w;i[L1;w;i]

EQ;w;i[Lw;i]
� ÊQ;w;i[L1;w;i]
ÊQ;w;i[Lw;i]

=
EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i]
EQ;w;i[Lw;i]ÊQ;w;i[Lw;i]

:

By applying Theorem 6 of Hansen (2008), we �nd that uniformly over i 2 f1; � � �; ng;

EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i] = OP ("n): (16)

Furthermore, observe that

1̂n;i
EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i]
EQ;w;i[Lw;i]ÊQ;w;i[Lw;i]

(17)

= 1̂n;i
EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i]

EQ;w;i[Lw;i]2
+ 1̂n;i

n
EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i]

o2
EQ;w;i[Lw;i]2ÊQ;w;i[Lw;i]

:

The absolute value of the last term is bounded by

��1n 1̂n;i

���EQ;w;i[L1;w;i]� ÊQ;w;i[L1;w;i]���2 ��EQ;w;i[Lw;i]�2��
Using Bayes�rule, we deduce that

EQ[Lw;ijVi;Wi = w] =
fP (Vi; w)

fQ(Vi; w)

and hence

EQ

h
E��aQ (Lw;ijVi;Wi = w)f��aQ (Vi; w)

i
(18)

= EQ
�
f��aP (Vi; w)

�
=

X
d2f0;1g

Ed;w
�
f��aP (Vi; w)

�
qd;w <1

by Assumption 2(iv). Hence we �nd that EQ
��EQ;w;i[Lw;i]�2�� < 1. The last term of (17) is,
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therefore, OP (��1n "2n) = oP ("n). Combining this with (16),

1̂n;i fp1(v; w)� p̂1(v; w)g = 1̂n;i
EQ;v;w[L1;w;i]� ÊQ;v;w[L1;w;i]

EQ;v;w[Lw;i]2
+ oP ("n) = OP ("n):

Hence we obtain the wanted result.

Lemma A2 : Suppose that Si is a random variable such that EQ [jSijr] < 1; r � 4; and

EQ[SijV1i = �; (V2i;W ) = (v2; w)] is L1+1 times continuously di¤erentiable with bounded derivatives
and uniformly continuous (L1 + 1)-th derivatives.

(i) Suppose that the assumptions of Theorem 3 hold. Then, for d = 0; 1;

1

n

nX
i=1

Si1̂n;i (pd(Vi; w)� p̂d(Vi; w))

= � 1
n

nX
i=1

EQ[SijVi;Wi = w]Jd;w;i
EQ[Lw;ijVi;Wi = w]

+
1

n

nX
i=1

EQ[SijVi;Wi = w]pd(Vi; w)Jw;i
EQ[Lw;ijVi;Wi = w]

+ oP (n
�1=2);

where Jd;w;i � Ld;w;i �EQ [Ld;w;ijVi;Wi = w] and Jw;i = J1;w;i + J0;w;i:

(ii) Suppose that the assumptions of Theorem 4 hold. Then,

1

n

nX
i=1

Si1̂n;i (p̂1(Vi; w)� ~p1(Vi; w))

= EQ [p0(Vi; w)p1(Vi; w)Si]

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2):

Proof of Lemma A2 : (i) Observe that by Bayes�rule,

f(Vij1; w) = q1;w(Vi)fQ(Vi)=q1;w = q1(Vi; w)qw(Vi)fQ(Vi)=q1;w;

where q1;w(Vi) = EQ[1f(Di;Wi) = (d;w)gjVi]; qw(Vi) = EQ[1fWi = wgjVi] and fQ(�) is the density
of Vi under Q. Hence

p1(Vi; w) =
f(Vij1; w)p1;w

f(Vij1; w)p1;w + f(Vij0; w)p0;w
(19)

=
(q1(Vi; w)=q1;w)p1;wP
d2D(qd(Vi; w)=qd;w)pd;w

=
EQ[L1;w;ijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
:

Let Kji = Kh (V1j � V1i) 1fV2j = V2ig for brevity. By adding and subtracting the sum:

1

n

nX
i=1

Si

Pn
j=1;j 6=i L1;w;jKji

EQ[Lw;ijVi;Wi = w]
Pn
j=1;j 6=iKji

;

18



and noting (19), we write

1

n

nX
i=1

Si1̂n;i (p1(Vi; w)� p̂1(Vi; w)) (20)

=
1

n

nX
i=1

Si1̂n;i

(
EQ[L1;w;ijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
�
Pn
j=1;j 6=i L1;w;jKjiPn
j=1;j 6=i Lw;jKji

)

=
1

n

nX
i=1

Si1̂n;i
EQ[Lw;ijVi;Wi = w]

(
EQ[L1;w;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i L1;w;jKjiPn

j=1;j 6=iKji

)

+
1

n

nX
i=1

Si1̂n;i

(
1�n;i

Pn
j=1;j 6=i L1;w;jKji

EQ[Lw;ijVi;Wi = w]
Pn
j=1;j 6=iKji

�
Pn
j=1;j 6=i L1;w;jKjiPn
j=1;j 6=i Lw;jKji

)
;

where 1�n;i = 1f 1
n�1

Pn
j=1;j 6=iKji � �ng. We write the last sum as

1

n

nX
i=1

Si
1̂n;i

Pn
j=1;j 6=i L1;w;jKji

EQ[Lw;ijVi;Wi = w]
Pn
j=1;j 6=i Lw;jKji

(
1�n;i

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

�EQ[Lw;ijVi;Wi = w]

)

= � 1
n

nX
i=1

Si1̂n;iEQ[L1;w;j jVi;Wi = w]

EQ[Lw;ijVi;Wi = w]2

(
EQ[Lw;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

)
+ oP (n

�1=2)

= � 1
n

nX
i=1

Si1̂n;ip1(Vi; w)

EQ[Lw;ijVi;Wi = w]

(
EQ[Lw;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

)
+ oP (n

�1=2):

The �rst equality uses Lemma A1 and the second (19). Let

Kn;i = EQ[Lw;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

and write the last sum as

� 1
n

nX
i=1

Si1̂n;ip1(Vi; w)Kn;i

EQ[Lw;ijVi;Wi = w]

= � 1
n

nX
i=1

Sip1(Vi; w)Kn;i

EQ[Lw;ijVi;Wi = w]
� 1

n

nX
i=1

Si
�
1� 1̂n;i

	
p1(Vi; w)Kn

EQ[Lw;ijVi;Wi = w]
:

With large probability, the last sum is bounded by

Kn �
1

n

nX
i=1

���� Sip1(Vi; w)

EQ[Lw;ijVi;Wi = w]

���� 1 fEQ[L1;w;ijVi;Wi = w]fQ(Vi; w) � �n + "ng

by (16), where Kn = max1�i�n jKn;ij. It is not hard to see that Kn = OP (1). Note that the

19



expectation EQ of the above sum is bounded by

C (�n + "n)
�aEQ

h
E��aQ [L1;w;ijVi;Wi = w]f��aQ (Vi; w)

i
= O

�
(�n + "n)

�a� = o(n�1=2):

Hence we conclude that

1

n

nX
i=1

Si1̂n;ip1(Vi; w)Kn;i

EQ[Lw;ijVi;Wi = w]
=
1

n

nX
i=1

Sip1(Vi; w)Kn;i

EQ[Lw;ijVi;Wi = w]
+ oP (n

�1=2): (21)

Applying the similar argument to the second to the last sum of (20) to eliminate 1̂n;i, we �nally

write

1

n

nX
i=1

Si1̂n;i (p1(Vi; w)� p̂1(Vi; w))

=
1

n

nX
i=1

Si
EQ[Lw;ijVi;Wi = w]

(
EQ[L1;w;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i L1;w;jKjiPn

j=1;j 6=iKji

)

� 1
n

nX
i=1

Sip1(Vi; w)

EQ[Lw;ijVi;Wi = w]

(
EQ[Lw;ijVi;Wi = w]� 1�n;i

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

)
+ oP (n

�1=2)

By Lemma B1 below, the di¤erence of the last two terms is asymptotically equivalent to (up to

oP (n
�1=2))

1

n

nX
i=1

EQ[SijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
fEQ[L1;w;ijVi;Wi = w]� L1;w;ig

� 1
n

nX
i=1

EQ[SijVi;Wi = w]p1(Vi; w)

EQ[Lw;ijVi;Wi = w]
fEQ[Lw;ijVi;Wi = w]� Lw;ig

= � 1
n

nX
i=1

EQ[SijVi;Wi = w]J1;w;i
EQ[Lw;ijVi;Wi = w]

+
1

n

nX
i=1

EQ[SijVi;Wi = w]p1(Vi; w)Jw;i
EQ[Lw;ijVi;Wi = w]

using the de�nitions of J1;w;i and Jw;i:

(ii) First, we let 1n;i = 1 fEQ(Lw;ijVi;Wi = w)fQ(Vi; w) � �ng ; and write

1

n

nX
i=1

Si1̂n;i (p̂(Vi; w)� ~p(Vi; w)) (22)

=
1

n

nX
i=1

Si1̂n;i1n;i (p̂(Vi; w)� ~p(Vi; w)) +
1

n

nX
i=1

Si1̂n;i (1� 1n;i) (p̂(Vi; w)� ~p(Vi; w)) :

20



By Lemma A1, max1�i�n jp̂(Vi; w)� ~p(Vi; w)j 1̂n;i = OP ("n) and hence

EQ

"
1

n

nX
i=1

jSij j1� 1n;ij
#
� CEQ [1 fEQ(Lw;ijVi;Wi = w)fQ(Vi; w) � �ng] (23)

� C��anEQ

h
E��aQ (Lw;ijVi;Wi = w)f��aQ (Vi; w)

i
by Markov�s inequality. By (18), the last expectation is �nite. Since ��an"n = o(n�1=2) (Assumption

3(ii)), we conclude that

1

n

nX
i=1

Si1̂n;i (p̂(Vi; w)� ~p(Vi; w)) =
1

n

nX
i=1

Si1̂n;i1n;i (p̂(Vi; w)� ~p(Vi; w)) + oP (n�1=2):

As for the leading sum, note that

1

n

nX
i=1

Si1̂n;i1n;i (p̂(Vi; w)� ~p(Vi; w))

=
1

n

nX
i=1

Si1̂n;i1n;i

(Pn
j=1 L1;w;jKjiPn
j=1 Lw;jKji

�
Pn
j=1 L̂1;w;jKjiPn
j=1 L̂w;jKji

)

=
1

n

nX
i=1

Si1̂n;i1n;i

Pn
j=1

n
L1;w;j � L̂1;w;j

o
KjiPn

j=1 Lw;jKji

+
1

n

nX
i=1

Si1̂n;i1n;i

nX
j=1

L̂1;w;jKji

(
1Pn

j=1 Lw;jKji
� 1Pn

j=1 L̂w;jKji

)
:

Now, note that as for the second term,

1

n

nX
i=1

Si1̂n;i1n;i

nX
j=1

L̂1;w;jKji

(
1Pn

j=1 Lw;jKji
� 1Pn

j=1 L̂w;jKji

)

=
1

n

nX
i=1

Si1̂n;i1n;i

Pn
j=1 L̂1;w;jKjiPn
j=1 L̂w;jKji

8<:
Pn
j=1

n
L̂w;j � Lw;j

o
KjiPn

j=1 Lw;jKji

9=; :

Using Lemma A1, we can write the last sum as

1

n

nX
i=1

Si1̂n;i

Pn
j=1 L1;w;jKjiPn
j=1 Lw;jKji

8<:
Pn
j=1

n
L̂w;j � Lw;j

o
KjiPn

j=1 Lw;jKji

9=;+ oP (n�1=2):

21



Therefore, we can write

1

n

nX
i=1

Si1̂n;ifp̂(Xi)� ~p(Xi)g

= � 1
n

nX
i=1

Si1̂n;i1n;i

Pn
j=1 L0;w;jKjiPn
j=1 Lw;jKji

Pn
j=1

n
L̂1;w;j � L1;w;j

o
KjiPn

j=1 Lw;jKji

+
1

n

nX
i=1

Si1̂n;i1n;i

Pn
j=1 L1;w;jKjiPn
j=1 Lw;jKji

Pn
j=1

n
L̂0;w;j � L0;w;j

o
KjiPn

j=1 Lw;jKji
+ oP (n

�1=2)

= � 1
n

nX
i=1

Si1̂n;i1n;i
p0(Vi; w)

Pn
j=1

n
L̂1;w;j � L1;w;j

o
KjiPn

j=1 Lw;jKji

+
1

n

nX
i=1

Si1̂n;i1n;i
p1(Vi; w)

Pn
j=1

n
L̂0;w;j � L0;w;j

o
KjiPn

j=1 Lw;jKji
+ oP (n

�1=2)

As for the �rst term, observe that

1̂n;i1n;i

1
n

Pn
j=1

n
L̂1;w;j � L1;w;j

o
KjiPn

j=1 Lw;jKji

=

�
p1;w
q̂1;w

� p1;w
q1;w

�
1̂n;i1n;i

Pn
j=1 1f(Dj ;Wj) = (1; w)gKjiPn

j=1 Lw;jKji

=

�
p1;w
q̂1;w

� p1;w
q1;w

�
q1(Vi; w)

q1(Vi; w)p1;w=q1;w + q0(Vi; w)p0;w=q0;w
+ oP (n

�1=2)

=

�
q1;w � q̂1;w

q1;w

�
q1(Vi; w)p1;w=q1;w

q1(Vi; w)p1;w=q1;w + q0(Vi; w)p0;w=q0;w
+ oP (n

�1=2)

=

�
q1;w � q̂1;w

q1;w

�
p1(Vi; w) + oP (n

�1=2):

The last equality follows by (19) and the second equality follows because

1̂n;i1n;i

Pn
j=1 1f(Di;Wi) = (1; w)gKjiPn

j=1 Lw;jKji

= 1̂n;i1n;i

Pn
j=1 1f(Di;Wi) = (1; w)gKji=

Pn
j=1 1fWi = wgKjiPn

j=1 Lw;jKji=
Pn
j=1 1fWi = wgKji

=
q1(Vi; w)

q1(Vi; w)p1;w=q1;w + q0(Vi; w)p0;w=q0;w
+ oP (n

�1=4):

Applying the same step to the term

p1(Vi; w)
Pn
j=1

n
L̂0;w;j � L0;w;j

o
KjiPn

j=1 Lw;jKji
;
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we conclude that

1

n

nX
i=1

Si1̂n;i1n;ifp̂(Xi)� ~p(Xi)g

=
1

n

nX
i=1

Sip0(Vi; w)p1(Vi; w)

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2):

Finally, we write the last sum as

EQ [p0(Vi; w)p1(Vi; w)Si]

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2)

and complete the proof.

Lemma A3 : (i) Suppose that the assumptions of Theorem 3 hold, and let "d;w;i = Ydi��d(Vi; w):
Then,

p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)�(Vi; w)Lw;i + oP (n
�1=2):

(ii) Suppose that the assumptions of Theorem 4 hold, and let "d;w;i = Ydi � �d(Vi; w): Then,

p1;w
n1;w

X
i2S1;w

~1n;i
g(Vi; w)Yi
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

~1n;i
g(Vi; w)Yi
~p0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

fg(Vi; w)�(Vi; w)�E1;w [g(Vi; w)�(Vi; w)]gL1;w;i

+
1

n

nX
i=1

fg(Vi; w)�(Vi; w)�E0;w [g(Vi; w)�(Vi; w)]gL0;w;i

+E1;w [g(Vi; w)�(Vi; w)] p1;w +E0;w [g(Vi; w)�(Vi; w)] p0;w + oP (n
�1=2):
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Proof of Lemma A3 : (i) We �rst write

p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

1̂n;i
g(Vi; w)YiL1;w;i

p̂1(Vi; w)
� 1

n

nX
i=1

1̂n;i
g(Vi; w)YiL0;w;i

p̂0(Vi; w)
= A1n +A2n; say.

We �rst write

A1n =
1

n

nX
i=1

g(Vi; w)Yi1̂n;iL1;w;i
p1(Vi; w)

+ ~A1n;

where

~A1n =
1

n

nX
i=1

g(Vi; w)YiL1;w;i1̂n;i

�
1

p̂1(Vi; w)
� 1

p1(Vi; w)

�
:

As for ~A1n, note that

1

n

nX
i=1

g(Vi; w)YiL1;w;i1̂n;i

�
p1(Vi; w)� p̂1(Vi; w)
p̂1(Vi; w)p1(Vi; w)

�

=
1

n

nX
i=1

g(Vi; w)YiL1;w;i1̂n;i

�
p1(Vi; w)� p̂1(Vi; w)

p21(Vi; w)

�

+
1

n

nX
i=1

g(Vi; w)YiL1;w;i1̂n;i
p1(Vi; w)� p̂1(Vi; w)

p1(Vi; w)

�
1

p̂1(Vi; w)
� 1

p1(Vi; w)

�
:

The absolute value of the last sum is bounded by

1

n

nX
i=1

jg(Vi; w)YiL1;w;ij 1̂n;i
(p1(Vi; w)� p̂1(Vi; w))2

p1(Vi; w)2�n
: (24)

On the other hand, observe that for any q > 0;

EQ

h
p�q1 (Vi; w)

i
=

X
(d;w)2f0;1g�W

Ed;w

"�
f(Vij1; w)p1;w

f(Vij1; w)p1;w + f(Vij0; w)p0;w

��q#
qd;w (25)

� C
X

(d;w)2f0;1g�W
Ed;w

�
f(Vij1; w)�q

�
qd;w <1

by Assumption 2(iv). Hence by Lemma A1, we �nd that the sum in (24) is oP (n�1=2). We conclude

that

~A1n =
1

n

nX
i=1

g(Vi; w)YiL1;w;i
p21(Vi; w)

1̂n;i (p1(Vi; w)� p̂1(Vi; w)) + oP (n�1=2): (26)

Let Si = g(Vi; w)YiL1;w;i=p
2
1(Vi; w)�1n;i: Then,

EQ [jSijr] �
q
EQY 2 �

q
EQ
�
p�41 (Vi; w)

�
:
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Therefore, EQ [jSijr] < 1: We apply Lemma A2(i) to obtain that the leading sum in (26) is

asymptotically equivalent to (up to oP (n�1=2))

� 1
n

nX
i=1

g(Vi; w)EQ[YiL1;w;ijVi;Wi = w]J1;w;i
p21(Vi; w)EQ[Lw;ijVi;Wi = w]

(27)

+
1

n

nX
i=1

g(Vi; w)EQ[YiL1;w;ijVi;Wi = w]Jw;i
p1(Vi; w)EQ[Lw;ijVi;Wi = w]

:

Using the fact that

EQ[YiL1;w;ijVi;Wi = w] = E[Y1ijVi; (Di;Wi) = (1; w)]q1(Vi; w)p1;w=q1;w

= �1(Vi; w)q1(Vi; w)p1;w=q1;w

and q1(Vi; w)p1;w=fEQ[Lw;ijVi;Wi = w]q1;wg = p1(Vi; w) from (19), we write

EQ[YiL1;w;ijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
= �1(Vi; w)p1(Vi; w): (28)

Using this, we write the �rst term in (27) as

� 1
n

nX
i=1

g(Vi; w)�1(Vi; w)J1;w;i
p1(Vi; w)

and the second term as (using (19))

1

n

nX
i=1

g(Vi; w)�1(Vi; w)Jw;i =
1

n

nX
i=1

g(Vi; w)�1(Vi; w) fJ1;w;i + J0;w;ig :

Hence the di¤erence in (27) is equal to

� 1
n

nX
i=1

g(Vi; w)�1(Vi; w)p0(Vi; w)

p1(Vi; w)
J1;w;i +

1

n

nX
i=1

g(Vi; w)�1(Vi; w)J0;w;i:

Therefore, we conclude that

~A1n = �
1

n

nX
i=1

g(Vi; w)�1(Vi; w)p0(Vi; w)

p1(Vi; w)
J1;w;i

+
1

n

nX
i=1

g(Vi; w)�1(Vi; w)J0;w;i + oP (n�1=2):

We turn to A2n which we write as

A2n =
1

n

nX
i=1

1̂n;ig(Vi; w)YiL0;w;i
p0(Vi; w)

+ ~A2n + oP (n
�1=2);
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where

~A2n =
1

n

nX
i=1

g(Vi; w)1̂n;iYiL0;w;i

�
1

p̂0(Vi; w)
� 1

p0(Vi; w)

�
:

Similarly as before, we write

~A2n =
1

n

nX
i=1

g(Vi; w)�0(Vi; w)J1;w;i

� 1
n

nX
i=1

g(Vi; w)�0(Vi; w)p1(Vi; w)

p0(Vi; w)
J0;w;i + oP (n�1=2):

Using the arguments employed to show (21) and combining the two results for ~A1n and ~A2n, we

deduce that

~A1n � ~A2n = � 1
n

nX
i=1

g(Vi; w)

�
�1(Vi; w)p0(Vi; w)

p1(Vi; w)
+ �0(Vi; w)

�
J1;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�1(Vi; w) +

�0(Vi; w)p1(Vi; w)

p0(Vi; w)

�
J0;w;i + oP (n�1=2)

= � 1
n

nX
i=1

g(Vi; w)

�
�1(Vi; w)� �(Vi; w)p1(Vi; w)

p1(Vi; w)

�
J1;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�(Vi; w)p0(Vi; w) + �0(Vi; w)

p0(Vi; w)

�
J0;w;i + oP (n�1=2);

using the fact that �(X) = �1(X)� �0(X):
Therefore,

p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)L1;w;i�1(Vi; w)

p1(Vi; w)
� 1

n

nX
i=1

g(Vi; w)L0;w;i�0(Vi; w)

p0(Vi; w)

� 1
n

nX
i=1

g(Vi; w)

�
�1(Vi; w)� �(Vi; w)p1(Vi; w)

p1(Vi; w)

�
J1;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�(Vi; w)p0(Vi; w) + �0(Vi; w)

p0(Vi; w)

�
J0;w;i + oP (n�1=2):
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By rearranging the terms, we rewrite

p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)�(Vi; w)L1;w;i +
1

n

nX
i=1

g(Vi; w)�(Vi; w)L0;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�1(Vi; w)� �(Vi; w)p1(Vi; w)

p1(Vi; w)

�
(EQ[L1;w;ijVi;Wi = w])

� 1
n

nX
i=1

g(Vi; w)

�
�(Vi; w)p0(Vi; w) + �0(Vi; w)

p0(Vi; w)

�
fEQ[L0;w;ijVi;Wi = w]g+ oP (n�1=2):

As for the last two terms, observe that

Hn �
�
�1(Vi; w)

p1(Vi; w)
� �(Vi; w)

�
EQ[L1;w;ijVi;Wi = w]

�
�
�0(Vi; w)

p0(Vi; w)
+ �(Vi; w)

�
EQ[L0;w;ijVi;Wi = w]

=

�
�1(Vi; w)

p1(Vi; w)
� �(Vi; w)

�
q1(Vi; w)p1;w

q1;w

�
�
�0(Vi; w)

p0(Vi; w)
+ �(Vi; w)

�
q0(Vi; w)p0;w

q0;w
:

However, by Bayes�rule,

p1;wq1(Vi; w)

q1;w
=
p1;wq1(Vi; w)fQ(Vi; w)

q1;wfQ(Vi; w)
=
p1;wf(Vij1; w)
fQ(Vi; w)

=
p1(Vi; w)fP (Vi; w)

fQ(Vi; w)
: (29)

Therefore,

Hn =
fP (Vi; w)

fQ(Vi; w)

��
�1(Vi; w)

p1(Vi; w)
� �(Vi; w)

�
p1(Vi; w)�

�
�0(Vi; w)

p0(Vi; w)
+ �(Vi; w)

�
p0(Vi; w)

�
= 0

by the de�nition of �(Vi; w): Hence we obtain the wanted result.
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(ii) We write

1

n

nX
i=1

g(Vi; w)Yi~1n;iL̂1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi~1n;iL̂0;w;i
~p0(Vi; w)

(30)

=
1

n

nX
i=1

g(Vi; w)Yi~1n;iL1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi~1n;iL0;w;i
~p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)Yi~1n;ifL̂1;w;i � L1;w;ig
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi~1n;ifL̂0;w;i � L0;w;ig
~p0(Vi; w)

:

We write the �rst di¤erence as(
1

n

nX
i=1

g(Vi; w)Yi1̂n;iL1;w;i
p̂1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi1̂n;iL0;w;i
p̂0(Vi; w)

)

+

(
1

n

nX
i=1

g(Vi; w)Yi1̂n;iL1;w;i
p21(Vi; w)

Ai �
1

n

nX
i=1

g(Vi; w)Yi1̂n;iL0;w;i
p20(Vi; w)

Bi

)
+ oP (n

�1=2)

= J1n + J2n + oP (n
�1=2), say,

where Ai = p̂1(Xi)�~p1(Xi) and Bi = p̂0(Xi)�~p0(Xi): One can check that the normalized sums with
trimming factor ~1n;i can be replaced by the same sums but with 1̂n;i (with the resulting discrepancy

con�ned to oP (n�1=2)), because q̂d;w is consistent for qd;w > 0. As for J2n; by applying Lemma

A2(ii), we have

J2n = EQ

�
g(Vi; w)YiL1;w;ip0(Vi; w)

p1(Vi; w)

��
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
�EQ

�
g(Vi; w)YiL0;w;ip1(Vi; w)

p0(Vi; w)

��
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�
+ oP (n

�1=2)

= EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
+
L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
+
L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2):

On the other hand, as for the last di¤erence in (30), it is equal to

1

n

nX
i=1

g(Vi; w)YifL̂1;w;i � L1;w;ig
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YifL̂0;w;i � L0;w;ig
p0(Vi; w)

+ oP (n
�1=2)

= � 1
n

nX
i=1

g(Vi; w)YiL1;w;i
p1(Vi; w)

�
q̂1;w � q1;w

q1;w

�
+
1

n

nX
i=1

g(Vi; w)YiL0;w;i
p0(Vi; w)

�
q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2)

= �EQ
�
g(Vi; w)YiL1;w;i

p1(Vi; w)

��
q̂1;w � q1;w

q1;w

�
+EQ

�
g(Vi; w)YiL0;w;i

p0(Vi; w)

��
q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2):
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Combining these results, we conclude that

1

n

nX
i=1

g(Vi; w)Yi~1n;iL̂1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi~1n;iL̂0;w;i
~p0(Vi; w)

(31)

=
1

n

nX
i=1

g(Vi; w)Yi1̂n;iL1;w;i
p̂1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)Yi1̂n;iL0;w;i
p̂0(Vi; w)

+EQ

�
g(Vi; w)Yi

�
�L1;w;i +

L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
� L0;w;i

���
q̂0;w � q0;w

q0;w

�
+ oP (n

�1=2):

The last di¤erence is written as

EQ

�
g(Vi; w)

�
�Y1iL1;w;i + Y0;i

L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)

�
Y1i

L1;w;ip0(Vi; w)

p1(Vi; w)
� Y0;iL0;w;i

���
q̂0;w � q0;w

q0;w

�
= EQ [g(Vi; w) f�fY1i � Y0;igL1;w;ig]

�
q̂1;w � q1;w

q1;w

�
+EQ

�
g(Vi; w)Y0;i

�
L0;w;ip1(Vi; w)

p0(Vi; w)
� L1;w;i

���
q̂1;w � q1;w

q1;w

�
�EQ [g(Vi; w)fY1i � Y0;igL0;w;i]

�
q̂0;w � q0;w

q0;w

�
+EQ

�
g(Vi; w)Y1i

�
L0;w;i �

L1;w;ip0(Vi; w)

p1(Vi; w)

���
q̂0;w � q0;w

q0;w

�
:

The second and the fourth expectations vanish because

EQ

�
g(Vi; w)Y0;i

�
�L1;w;i +

L0;w;ip1(Vi; w)

p0(Vi; w)

��
= E

�
g(Vi; w)�0(Vi; w)

�
�1f(Di;Wi) = (1; w)g+

1f(Di;Wi) = (0; w)gp1(Vi; w)
p0(Vi; w)

��
= E [g(Vi; w)�0(Vi; w) fp1(Vi; w)� p1(Vi; w)g] = 0

and similarly,

EQ

�
g(Vi; w)Y1i

�
L0;w;i �

L1;w;ip0(Vi; w)

p1(Vi; w)

��
= E [g(Vi; w)�1(Vi; w) fp0(Vi; w)� p0(Vi; w)g] = 0:

29



Furthermore, observe that

EQ [g(Vi; w) f�fY1i � Y0;igL1;w;ig]

= �E [g(Vi; w)fY1i � Y0;ig1f(Di;Wi) = (1; w)g]

= �E [g(Vi; w)f�1(Vi; w)� �0(Vi; w)gp1(Vi; w)]

= �E [g(Vi; w)�(Vi; w)p1(Vi; w)]

and similarly,

�EQ [g(Vi; w)fY1i � Y0;igL0;w;i] = �E [g(Vi; w)�(Vi; w)p0(Vi; w)] :

Hence, as for the last two terms in (31), we �nd that

EQ

�
g(Vi; w)Yi

�
�L1;w;i +

L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
� L0;w;i

���
q̂0;w � q0;w

q0;w

�
= �EQ [g(Vi; w)�(Vi; w)L1;w;i]

�
q̂1;w � q1;w

q1;w

�
�EQ [g(Vi; w)�(Vi; w)L0;w;i]

�
q̂0;w � q0;w

q0;w

�
= �p1;wE1;w [g(Vi; w)�(Vi; w)]

�
q̂1;w � q1;w

q1;w

�
� p0;wE0;w [g(Vi; w)�(Vi; w)]

�
q̂0;w � q0;w

q0;w

�
= �E1;w [g(Vi; w)�(Vi; w)]

1

n

nX
i=1

(L1;w;i � p1;w)�E0;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L0;w;i � p0;w) :

Applying the result of (i) to the �rst di¤erence of (31), we conclude that the di¤erence in (ii) is

equal to
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+ �n;w + oP (n
�1=2);

where

�n;w � 1

n

nX
i=1

g(Vi; w)�(Vi; w)L1;w;i +
1

n

nX
i=1

g(Vi; w)�(Vi; w)L0;w;i

�E1;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L1;w;i � p1;w)

�E0;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L0;w;i � p0;w) :
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The proof is complete because

�n;w =

(
1

n

nX
i=1

g(Vi; w)�(Vi; w)�E1;w [g(Vi; w)�(Vi; w)]
)
L1;w;i

+

(
1

n

nX
i=1

g(Vi; w)�(Vi; w)�E0;w [g(Vi; w)�(Vi; w)]
)
L0;w;i

+E1;w [g(Vi; w)�(Vi; w)] p1;w +E0;w [g(Vi; w)�(Vi; w)] p0;w;

rearranging the terms.

Proof of Theorem 3 : Note that

�̂wate � �wate =
1

Eg(Xi)

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

9=; (32)
+Rn � �wate;

where

Rn �
(

1P
w2W

1
n

Pn
i=1 g(Vi; w)Lw;i

� 1

Eg(Xi)

)

�
X
w2W

8<: p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

9=; :

Now, since
P
w2W

1
n

Pn
i=1 g(Vi; w)Lw;i = Eg(Xi) +OP (n

�1=2) and

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

9=;
=

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p0(Vi; w)

9=;+ oP (1);
we �nd that

Rn =

(
1P

w2W
1
n

Pn
i=1 g(Vi; w)Lw;i

� 1

Eg(Xi)

)

�
X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p0(Vi; w)

9=;+ oP (n�1=2):
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Observing that

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p0(Vi; w)

9=;
= Eg(Xi)�wate +OP (n

�1=2)

and

1P
w2W

1
n

Pn
i=1 g(Vi; w)Lw;i

� 1

Eg(Xi)

= �
P
w2W

1
n

Pn
i=1 g(Vi; w)Lw;i �Eg(Xi)
Eg(Xi)2

+ oP (1);

we can write

Rn = �
P
w2W

1
n

Pn
i=1 g(Vi; w)Lw;i �Eg(Xi)
Eg(Xi)

�wate + oP (n
�1=2)

= � 1

E [g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)Lw;i�wate + �wate + oP (n
�1=2):

Applying Lemma A3(i) to the �rst sum in (32), we obtain that

1

E[g(Xi)]

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

1̂n;i
g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

1̂n;i
g(Vi; w)Yi
p̂0(Vi; w)

9=;+Rn � �wate
=

1

E[g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)

�
L1;w;i"1;w;i
p1(Vi; w)

� L0;w;i"0;w;i
p0(Vi; w)

�

+
1

E[g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)(�(Vi; w)� �wate)Lw;i + oP (n�1=2):

By applying the Central Limit Theorem, we obtain the asymptotic distribution of �̂wate:

As for ~�wate; observe that

~�wate � �wate (33)

=
1

Eg(Xi)

X
w2W

8<: p1;w
n1;w

X
i2S1;w

~1n;i
g(Vi; w)Yi
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

~1n;i
g(Vi; w)Yi
~p0(Vi; w)

9=;+ ~Rn � �wate:
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where ~Edg(Xi) =
P
w2W

pd;w
nd;w

P
i2Sd;w

~1n;i
g(Vi;w)
~pd(Vi;w)

; �d = E [g(Xi)�d(Xi)] =Eg(Xi); and

~Rn �
�

1

~E1g(Xi)
� 1

Eg(Xi)

�
p1;w
n1;w

X
i2S1;w

~1n;i
g(Vi; w)Yi
~p1(Vi; w)

�
�

1

~E1g(Xi)
� 1

Eg(Xi)

�
p0;w
n0;w

X
i2S0;w

~1n;i
g(Vi; w)Yi
~p0(Vi; w)

:

It is not hard to show that

p1;w
n1;w

X
i2S1;w

~1n;i
g(Vi; w)Yi
~p1(Vi; w)

= �1Eg(Xi) +OP (n
�1=2) and

p0;w
n0;w

X
i2S0;w

~1n;i
g(Vi; w)Yi
~p0(Vi; w)

= �0Eg(Xi) +OP (n
�1=2):

Hence

~Rn �
�

1

~E1g(Xi)
� 1

Eg(Xi)

�
�1Eg(Xi)

�
�

1

~E0g(Xi)
� 1

Eg(Xi)

�
�0Eg(Xi) + oP (n

�1=2)

= �
~E1g(Xi)�Eg(Xi)

Eg(Xi)
�1 +

~E0g(Xi)�Eg(Xi)
Eg(Xi)

�0 + oP (n
�1=2)

= �
~E1g(Xi)�1 � ~E0g(Xi)�0

Eg(Xi)
+ �wate + oP (n

�1=2):

However, observe that

�
~E1g(Xi)�1 � ~E0g(Xi)�0

Eg(Xi)
(34)

= � 1

E [g(Xi)]

X
w2W

8<: p1;w
n1;w

X
i2S1;w

~1n;i
g(Vi; w)�1
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

~1n;i
g(Vi; w)�0
~p0(Vi; w)

9=; :

By replacing Yi1f(Di;Wi) = (1; w)g by �11f(Di;Wi) = (1; w)g and Yi1f(Di;Wi) = (0; w)g by
�01f(Di;Wi) = (0; w)g in Lemma A3(ii) and noting that �wate = �1 � �0; we �nd that the last

term in (34) is equal to

� �wate
Eg(Xi)

X
w2W

1

n

nX
i=1

fg(Vi; w)�E1;w [g(Vi; w)]gL1;w;i

� �wate
Eg(Xi)

X
w2W

1

n

nX
i=1

fg(Vi; w)�E0;w [g(Vi; w)]gL0;w;i

��1 � �0
Eg(Xi)

X
w2W

fE1;w[g(Vi; w)]p1;w +E0;w[g(Vi; w)]p0;wg+ oP (n�1=2):
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Observe that for the last term,

�1 � �0
Eg(Xi)

X
w2W

fE1;w[g(Vi; w)]p1;w +E0;w[g(Vi; w)]p0;wg = �wate:

Therefore, by applying Lemma A3(ii) to the leading term of (33), we conclude that ~�wate � �wate

is asymptotically equivalent to (up to oP (n�1=2))

1

Eg(Xi)

X
w2W

(
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0;w(Vi; w)

)

+
1

Eg(Xi)

X
w2W

1

n

nX
i=1

(�1(Vi; w)L1;w;i + �0(Vi; w)L0;w;i)

+
1

Eg(Xi)

X
w2W

fE1;w[g(Vi; w)�(Vi; w)]p1;w +E0;w[g(Vi; w)�(Vi; w)]p0;wg � �wate:

The second to the last term is actually �wate cancelling the last �wate: The wanted result follows

from the Central Limit Theorem.

Proof of Theorem 4 : (i) We �rst consider ~�atet. Let E1 [�0(Xi)] = E [�0(Xi)jDi = 1] : Note that

~�atet � �atet =
1

p1

X
w2W

8<: p1;w
n1;w

X
i2S1;w

Yi �
p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)Yi
~p0(Vi; w)

9=;+ �Rn � �atet; (35)

where

�Rn �
(
1

p1
� 1P

w2W
p0;w
n0;w

P
i2S0;w

~1n;i~p1(Vi; w)=~p0(Vi; w)

) X
w2W

p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)Yi
~p0(Vi; w)

:

Note that �atet = E1 [�1(Xi)]�E1 [�0(Xi)],X
w2W

p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)

~p0(Vi; w)
=

X
w2W

p0;wE

�
p1(Vi; w)

p0(Vi; w)
j(Di;Wi) = (0; w)

�
+OP (n

�1=2)

= E

�
p1(Xi)

p0(Xi)
jDi = 0

�
p0 +OP (n

�1=2);

andX
w2W

p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)Yi
~p0(Vi; w)

=
X
w2W

p0;wE

�
p1(Vi; w)Yi
p0(Vi; w)

j(Di;Wi) = (0; w)

�
+OP (n

�1=2)

=
X
w2W

p0;wE

�
p1(Vi; w)�0(Vi; w)

p0(Vi; w)
j(Di;Wi) = (0; w)

�
+OP (n

�1=2)

= E

�
p1(Xi)�0(Xi)

p0(Xi)
jDi = 0

�
p0 +OP (n

�1=2):
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However, we can simplify

E

�
p1(Xi)

p0(Xi)
jDi = 0

�
p0 = E

�
p1(Xi)(1�Di)

p0(Xi)

�
= E [p1(Xi)] = p1

and

E

�
p1(Xi)�0(Xi)

p0(Xi)
jDi = 0

�
p0 = E

�
p1(Xi)�0(Xi)(1�Di)

p0(Xi)

�
= E [p1(Xi)�0(Xi)]

= E [�0(Xi)Di] = E [�0(Xi)jDi = 1] p1 = E1 [�0(Xi)] p1:

Hence we can write

�Rn =
1

p1

8<:X
w2W

p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)

~p0(Vi; w)
� p1

9=;E1 [�0(Xi)] + oP (n�1=2)
=

1

p1

8<:X
w2W

p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)

~p0(Vi; w)
E1 [�0(Xi)]� p1E1 [�1(Xi)]

9=;+ �atet + oP (n�1=2):
Plugging this into (35) and de�ning ~"d;i = Ydi �E [�d(Xi)jDi = 1], we write

~�atet � �atet =
1

p1

X
w2W

8<: p1;w
n1;w

X
i2S1;w

~"1;i �
p0;w
n0;w

X
i2S0;w

~1n;i
~p1(Vi; w)~"0;i
~p0(Vi; w)

9=;+ oP (n�1=2) (36)

=
1

p1

X
w2W

8<: p1;w
n1;w

X
i2S1;w

~"1;i �
p0;w
n0;w

X
i2S0;w

p1(Vi; w)~"0;i
p0(Vi; w)

9=;
� 1
p1

X
w2W

p0;w
n0;w

X
i2S0;w

~"0;i

�
~1n;i

~p1(Vi; w)

~p0(Vi; w)
� 1̂n;i

p̂1(Vi; w)

p̂0(Vi; w)

�

� 1
p1

X
w2W

8<: p0;w
n0;w

X
i2S0;w

~"0;i

�
1̂n;i

p̂1(Vi; w)

p̂0(Vi; w)
� p1(Vi; w)

p0(Vi; w)

�9=;+ oP (n�1=2)
= Bn � Cn �Dn + oP (n�1=2); say.
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We consider Dn �rst. Write it as

1

p1

X
w2W

8<: p0;w
n0;w

X
i2S0;w

~"0;i

�
p̂1(Vi; w)p0(Vi; w)� p1(Vi; w)p̂0(Vi; w)

p20(Vi; w)

�9=;+ oP (n�1=2)
=

1

p1

X
w2W

8<: p0;w
q0;wn

X
i2S0;w

~"0;i

�
p̂1(Vi; w)� p1(Vi; w)

p0(Vi; w)

�9=;
+
1

p1

X
w2W

8<: p0;w
q0;wn

X
i2S0;w

~"0;i

�
p1(Vi; w)fp0(Vi; w)� p̂0(Vi; w)g

p20(Vi; w)

�9=;+ oP (n�1=2)
= D1n +D2n + oP (n

�1=2); say.

Apply Lemma A2(i) to write D1n as (up to oP (n�1=2))

1

p1

X
w2W

(
1

n

nX
i=1

EQ [~"0;iL0;w;ijVi;Wi = w]J1;w;i
p0(Vi; w)EQ [Lw;ijVi;Wi = w]

)

� 1
p1

X
w2W

(
1

n

nX
i=1

EQ [~"0;iL0;w;ijVi;Wi = w] p1(Vi; w)Jw;i
p0(Vi; w)EQ [Lw;ijVi;Wi = w]

)
:

De�ning �d;w;i � �d(Vi; w)�E [�d(Xi)jDi = 1], we write the last di¤erence as

1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
;

because similarly as in (28),

EQ [~"0;iL0;w;ijVi;Wi = w]

EQ [Lw;ijVi;Wi = w]
= p0(Vi; w)f�0(Vi; w)�E1 [�0(Xi)]g

= p0(Vi; w)�0;w;i and
EQ [~"0;iL0;w;ijVi;Wi = w] p1(Vi; w)

p0(Vi; w)EQ [Lw;ijVi;Wi = w]
= f�0(Vi; w)�E1 [�0(Xi)]gp1(Vi; w)

= p1(Vi; w)�0;w;i:

Applying Lemma A2(i), we write D2n as (up to oP (n�1=2))

� 1
p1

X
w2W

1

n

nX
i=1

p1(Vi; w)EQ [~"0;iL0;w;ijVi;Wi = w]

p20(Vi; w)EQ [Lw;ijVi;Wi = w]
J0;w;i

+
1

p1

X
w2W

1

n

nX
i=1

p1(Vi; w)EQ [~"0;iL0;w;ijVi;Wi = w]

p0(Vi; w)EQ [Lw;ijVi;Wi = w]
Jw;i

= � 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

J0;w;i

)
+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
:
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Therefore, D1n +D2n is equal to

1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

J0;w;i

)

+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
+ oP (n

�1=2)

=
1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

J0;w;i

)
+ oP (n

�1=2):

As for the last di¤erence, recall the de�nition Jd;w;i � Ld;w;i � EQ [Ld;w;ijVi;Wi = w] and write it

as

1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

L0;w;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

�0;w;iEQ [L1;w;ijVi;Wi = w]

)

+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

EQ [L0;w;ijVi;Wi = w]

)
:

Note that from (29),

EQ [L1;w;ijVi;Wi = w]� p1(Vi; w)

p0(Vi; w)
EQ [L0;w;ijVi;Wi = w] (37)

=
p1;w
q1;w

q1(Vi; w)�
p0;w
q0;w

p1(Vi; w)q0(Vi; w)

p0(Vi; w)

= p1(Vi; w)
fP (Vi; w)

fQ(Vi; w)
� p0;w
q0;w

q0(Vi; w)

p0(Vi; w)
+
p0;w
q0;w

q0(Vi; w)

= p1(Vi; w)
fP (Vi; w)

fQ(Vi; w)
� fP (Vi; w)

fQ(Vi; w)
+ p0(Vi; w)

fP (Vi; w)

fQ(Vi; w)
= 0:

Therefore,

Dn = D1n +D2n

=
1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

L0;w;i

)
+ oP (n

�1=2):
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Now, we turn to Cn (in (36)) which we write as

1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i

�
~1n;i

~p1(Vi; w)

~p0(Vi; w)
� 1̂n;i

p̂1(Vi; w)

p̂0(Vi; w)

�
+ oP (n

�1=2)

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
~p1(Vi; w)p̂0(Vi; w)� p̂1(Vi; w)~p0(Vi; w)

p20(Vi; w)

�
+ oP (n

�1=2)

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
~p1(Vi; w)fp̂0(Vi; w)� ~p0(Vi; w)g

p20(Vi; w)

�

+
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
f~p1(Vi; w)� p̂1(Vi; w)g~p0(Vi; w)

p20(Vi; w)

�
+ oP (n

�1=2):

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
~p1(Vi; w)fp̂0(Vi; w)� ~p0(Vi; w)g

p20(Vi; w)

�

+
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
fp̂0(Vi; w)� ~p0(Vi; w)g~p0(Vi; w)

p20(Vi; w)

�
+ oP (n

�1=2)

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i1̂n;i

�
p̂0(Vi; w)� ~p0(Vi; w)g

p20(Vi; w)

�
+ oP (n

�1=2):

As for the last term, we apply Lemma A2(ii) to write it as

1

p1

X
w2W

EQ

�
p1(Vi; w)~"0;iL0;w;i

p0(Vi; w)

��
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�
+ oP (n

�1=2)

=
1

p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�
+ oP (n

�1=2)

because

EQ

�
p1(Vi; w)~"0;iL0;w;i

p0(Vi; w)

�
=

p0;w
q0;w

EQ

�
p1(Vi; w)~"0;i1f(Di;Wi) = (0; w)g

p0(Vi; w)

�
= E

�
p1(Vi; w)

p0(Vi; w)
~"0;i1f(Di;Wi) = (0; w)g

�
= E [p1(Vi; w)~"0;i]

= E [p1(Vi; w)�0;w;i] :

Now, let us turn to Bn (in (36)) which we write as

1

p1

X
w2W

(
1

n

nX
i=1

~"1;iL1;w;i �
1

n

nX
i=1

p1(Vi; w)~"0;iL0;w;i
p0(Vi; w)

)
+ En;

where

En �
1

p1

X
w2W

(
1

n

nX
i=1

~"1;i(L̂1;w;i � L1;w;i)�
1

n

nX
i=1

p1(Vi; w)~"0;i(L̂0;w;i � L0;w;i)
p0(Vi; w)

)
:
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Now, we focus on En. Observe that

1

n

nX
i=1

~"1;i(L̂1;w;i � L1;w;i) =
1

n

nX
i=1

~"1;ip1;w

 
q1;w � q̂1;w

q21;w

!
1f(Di;Wi) = (1; w)g+ oP (n�1=2)

=
1

n

nX
i=1

~"1;iL1;w;i

�
q1;w � q̂1;w

q1;w

�
+ oP (n

�1=2)

= EQ [~"1;iL1;w;i]

�
q1;w � q̂1;w

q1;w

�
+ oP (n

�1=2):

As for the last expectation,

EQ [~"1;iL1;w;i] =
p1;w
q1;w

EQ [~"1;i1f(Di;Wi) = (1; w)g] = E [~"1;i1f(Di;Wi) = (1; w)g]

= E [p1(Vi; w) (�1(Vi; w)�E[�1(Xi)jDi = 1])] = E [p1(Vi; w)�1;w;i] :

Hence
1

n

nX
i=1

~"1;i(L̂1;w;i � L1;w;i) = E [p1(Vi; w)�1;w;i]
�
q1;w � q̂1;w

q1;w

�
+ oP (n

�1=2):

Also,

1

n

nX
i=1

p1(Vi; w)~"0;i(L̂0;w;i � L0;w;i)
p0(Vi; w)

=
1

n

nX
i=1

p1(Vi; w)~"0;i
p0(Vi; w)

�
q0;w � q̂0;w

q0;w

�
L0;w;i

= E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
+ oP (n

�1=2):

Therefore, we write En as

1

p1

X
w2W

E [p1(Vi; w)�1;w;i]

�
q1;w � q̂1;w

q1;w

�
� 1
p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
+ oP (n

�1=2):
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Now, let us collect all the results for Bn; Cn; and Dn and plug these into (36) to deduce that

~�atet � �atet

=
1

p1

X
w2W

(
1

n

nX
i=1

~"1;iL1;w;i �
1

n

nX
i=1

p1(Vi; w)~"0;iL0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

E [p1(Vi; w)�1;w;i]

�
q1;w � q̂1;w

q1;w

�
� 1

p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
� 1
p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�

� 1
p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)
+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

L0;w;i

)
+ oP (n

�1=2)

By consolidating the second, third, and fourth terms, we rewrite

~�atet � �atet =
1

p1

X
w2W

(
1

n

nX
i=1

~"1;iL1;w;i �
1

n

nX
i=1

p1(Vi; w)~"0;iL0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

E [p1(Vi; w) (�(Vi; w)�E[�(Xi)jDi = 1])]
�
q1;w � q̂1;w

q1;w

�

� 1
p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)
+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i
p0(Vi; w)

L0;w;i

)
+ oP (n

�1=2):

By writing ~"d;i = Ydi � �d(Xi) + �d(Xi)�E1 [�1(Xi)] and splitting the sums, we rewrite

~�atet � �atet

=
1

p1

X
w2W

(
1

n

nX
i=1

(Y1i � �1(Xi))L1;w;i �
1

n

nX
i=1

p1(Vi; w)(Y0i � �0(Xi))L0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

(
1

n

nX
i=1

(�1(Xi)�E1 [�1(Xi)])L1;w;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)(�0(Xi)�E1 [�0(Xi)])L0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

E [p1(Vi; w) (�(Vi; w)�E[�(Xi)jDi = 1])]
�
q1;w � q̂1;w

q1;w

�

� 1
p1

X
w2W

(
1

n

nX
i=1

f�0(Vi; w)�E1 [�0(Xi)]gL1;w;i

)

+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)f�0(Vi; w)�E1 [�0(Xi)]g
p0(Vi; w)

L0;w;i

)
+ oP (n

�1=2):
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Note that

E [p1(Vi; w) (�(Vi; w)�E[�(Xi)jDi = 1])] = E1;w [�(Vi; w)�E[�(Xi)jDi = 1]] p1;w:

Using this and noting that E [�(Xi)jDi = 1] = �atet and cancelling out some terms, we rewrite

~�atet � �atet

=
1

p1

X
w2W

(
1

n

nX
i=1

(Y1i � �1(Xi))L1;w;i �
1

n

nX
i=1

p1(Vi; w)(Y0i � �0(Xi))L0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

1

n

nX
i=1

(�(Vi; w)� �atet)L1;w;i

+
1

p1

X
w2W

p1;w
nq1;w

E1;w [�(Vi; w)� �atet] (q1;w � q̂1;w) + oP (n�1=2)

=
1

p1

X
w2W

(
1

n

nX
i=1

(Y1i � �1(Xi))L1;w;i �
1

n

nX
i=1

p1(Vi; w)(Y0i � �0(Xi))L0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

1

n

nX
i=1

(�(Vi; w)� �atet �Ed;w [�(Vi; w)� �atet])L1;w;i + oP (n�1=2):

The last equality follows because

1

p1

X
w2W

p1;wE1;w [�(Vi; w)� �atet] =
1

p1
E [(�(Xi)� �atet) 1fDi = 1g]

= E [�(Xi)� �atetjDi = 1] = 0:

Hence the wanted result follows by the Central Limit Theorem.

(ii) The case of ~�atet;p is a special case of ~�atet with Wi = 1 for all i = 1; � � �; n: Hence we focus on
�̂atet;p: We write it as

�̂atet;p � �atet =
1

p1

8<: p1
q1n

X
i2S1

Yi �
p0
q0n

X
i2S0

1̂n;i
p̂1(Xi)Yi
p̂0(Xi)

9=;+Rn � �atet + oP (n�1=2);
where Ld;i =

P
d2D 1fDi = dgpd=qd and

Rn �
(

1
1
n

Pn
i=1 1̂n;ip̂1(Xi) fL1;i + L0;ig

� 1

p1

)
p1�atet + oP (n

�1=2)

=

(
p1 �

1

n

nX
i=1

1̂n;ip̂1(Xi) fL1;i + L0;ig
)
�atet
p1

+ oP (n
�1=2):
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Hence we can write �̂atet;p � �atet as

1

p1

8<: p1
q1n

X
i2S1

Yi �
p0
q0n

X
i2S0

1̂n;i
p̂1(Xi)Yi
p̂0(Xi)

9=;� �atet
np1

nX
i=1

1̂n;ip̂1(Xi) fL1;i + L0;ig+ oP (n�1=2)

=
1

p1

8<: p1
q1n

X
i2S1

fYi � �atet1̂n;ip̂1(Xi)g �
p0
q0n

X
i2S0

1̂n;ip̂1(Xi)

�
Yi

p̂0(Xi)
+ �atet

�9=;+ oP (n�1=2)
=

1

p1

8<: p1
q1n

X
i2S1

fYi � �atetp1(Xi)g �
p0
q0n

X
i2S0

1̂n;ip̂1(Xi)

�
Yi

p0(Xi)
+ �atet

�9=;
+
1

p1

8<:p1�atetq1n

X
i2S1

1̂n;ifp1(Xi)� p̂1(Xi)g+
p0
q0n

X
i2S0

1̂n;ip̂1(Xi)Yi

�
1

p0(Xi)
� 1

p̂0(Xi)

�9=;+ oP (n�1=2)
=

1

p1

8<: p1
q1n

X
i2S1

fYi � �atetp1(Xi)g �
p0
q0n

X
i2S0

p1(Xi)

�
Yi

p0(Xi)
+ �atet

�9=;+ Fn +Gn + oP (n�1=2);
where

Fn � p0
p1q0n

X
i2S0

1̂n;ifp1(Xi)� p̂1(Xi)g
�

Yi
p0(Xi)

+ �atet

�
and

Gn � 1

p1

8<:p1�atetq1n

X
i2S1

1̂n;ifp1(Xi)� p̂1(Xi)g+
p0
q0n

X
i2S0

p1(Xi)

p0(Xi)2
Yi1̂n;i fp̂0(Xi)� p0(Xi)g

9=; :

By applying Lemma A2(i), we write Fn as

� 1

p1n

nX
i=1

EQ [(Yi=p0(Xi) + �atet)L0;ijXi]
EQ [LijXi]

J1;i

+
1

p1n

nX
i=1

EQ [(Yi=p0(Xi) + �atet)L0;ijXi] p1(Xi)
EQ [LijXi]

Ji + oP (n�1=2)

= � 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi))J1;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p1(Xi)Ji + oP (n�1=2)

= � 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p0(Xi)J1;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p1(Xi)J0;i + oP (n�1=2):
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Again by applying Lemma A2(i), we write Gn as

��atet
p1n

nX
i=1

p1(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2Ji

+
1

p1n

nX
i=1

p1(Xi)�0(Xi)

p0(Xi)
J0;i

� 1

p1n

nX
i=1

p1(Xi)�0(Xi)Ji + oP (n�1=2)

= ��atet
p1n

nX
i=1

p1(Xi)p0(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2J0;i

+
1

p1n

nX
i=1

p21(Xi)�0(Xi)

p0(Xi)
J0;i �

1

p1n

nX
i=1

p1(Xi)�0(Xi)J1;i + oP (n�1=2):

Collecting these results, we write

�̂atet;p � �atet;p =
1

p1

(
1

n

nX
i=1

L1;ifYi � �atetp1(Xi)g �
1

n

nX
i=1

L0;ip1(Xi)

�
Yi

p0(Xi)
+ �atet

�)

� 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p0(Xi)J1;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p1(Xi)J0;i

��atet
p1n

nX
i=1

p1(Xi)p0(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2J0;i

+
1

p1n

nX
i=1

p21(Xi)�0(Xi)

p0(Xi)
J0;i �

1

p1n

nX
i=1

p1(Xi)�0(Xi)J1;i + oP (n�1=2):
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By rearranging the terms, we rewrite �̂atet;p � �atet;p as

1

p1

(
1

n

nX
i=1

fYi � �1(Xi)gL1;i �
1

n

nX
i=1

�
fYi � �0(Xi)gp1(Xi)

p0(Xi)

�
L0;i

)

+
1

p1

1

n

nX
i=1

(
�1(Xi)� �atetp1(Xi)� (�0(Xi) + �atetp0(Xi)) p0(Xi)

��atetp1(Xi)p0(Xi)� p1(Xi)�0(Xi)

)
L1;i

� 1
p1

1

n

nX
i=1

(
�0(Xi)p1(Xi)=p0(Xi) + �atetp1(Xi)� (�0(Xi) + �atetp0(Xi)) p1(Xi)

��atetp1(Xi)2 � p21(Xi)�0(Xi)=p0(Xi)

)
L0;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi))
p1
q1
p0(Xi)q1(Xi)

� 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi))
p0
q0
p1(Xi)q0(Xi)

+
�atet
p1n

nX
i=1

p1(Xi)p0(Xi)
p1
q1
q1(Xi)�

�atet
p1n

nX
i=1

p1(Xi)
2 p0
q0
q0(Xi)

� 1

p1n

nX
i=1

p21(Xi)�0(Xi)

p0(Xi)

p0
q0
q0(Xi) +

1

p1n

nX
i=1

p1(Xi)�0(Xi)
p1
q1
q1(Xi) + oP (n

�1=2):

Or by cancelling terms out,

�̂atet;p � �atet;p =
1

p1

(
1

n

nX
i=1

fYi � �1(Xi)gL1;i �
1

n

nX
i=1

�
fYi � �0(Xi)gp1(Xi)

p0(Xi)

�
L0;i

)

+
1

p1

1

n

nX
i=1

L1;i f�(Xi)� �atetg

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi))
p1
q1
q1(Xi)

� 1

p1n

nX
i=1

�
�0(Xi)p1(Xi)

p0(Xi)
+ �atetp1(Xi)

�
p0
q0
q0(Xi):
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We rearrange the terms to write

�̂atet;p � �atet =
1

p1

(
1

n

nX
i=1

fYi � �1(Xi)gL1;i �
1

n

nX
i=1

�
fYi � �0(Xi)gp1(Xi)

p0(Xi)

�
L0;i

)

+
1

p1

1

n

nX
i=1

L1;i f�(Xi)� �atetg

+
1

p1n

nX
i=1

�0(Xi)

�
p1
q1
q1(Xi)�

p0
q0

p1(Xi)

p0(Xi)
q0(Xi)

�

+
1

p1n

nX
i=1

�atet

�
p0(Xi)

p1
q1
q1(Xi)�

p0
q0
q0(Xi)p1(Xi)

�

=
1

p1

(
1

n

nX
i=1

L1;ifYi � �1(Xi)g �
1

n

nX
i=1

L0;i

�
fYi � �0(Xi)gp1(Xi)

p0(Xi)

�)

+
1

p1

1

n

nX
i=1

L1;i f�(Xi)� �atetg :

The last equality follows because p0(Xi)q1(Xi)p1=q1 = p1(Xi)q0(Xi)p0=q0 (e.g. see (37)). The

wanted result follows by the Central Limit Theorem.

The following lemma is used to prove Lemma A2(i) and useful for other purposes. Hence we

make the notations and assumptions self-contained here. Let (Zi;Hi; Xi)ni=1 be an i.i.d. sample

from P; where Zi and Hi are random variables. Let Xi = (X1i; X2i) 2 RL1+L2 where X1i is

continuous and X2i is discrete, and let Kji = Kh (X1j �X1i) 1fX2j = X2ig; Kh(�) = K(�=h)=hL1 :
Let X be the support of Xi and f(�) be its density with respect to a �-�nite measure.

Assumption B1 : (i) For some � � 4; supx2X jjx1jjL1E[jZij�jXi = (x1; x2)] < 1; E[jHij�] < 1;
and EjjXijj� <1:
(ii) f(�; x2); E[ZijX1i = �; X2i = x2]f(�; x2) and E[HijX1i = �; X2i = x2]f(�; x2) are L1 + 1 times
continuously di¤erentiable with bounded derivatives on RL1 and their (L1 + 1)-th derivatives are

uniformly continuous.

(iii) E [f��a(X1i)] <1 for some �a � 4:

Assumption B2 : For the kernel K and the bandwidth h, Assumption 3 holds.

Lemma B1 : Suppose that Assumptions B1-B2 hold. Let 1�n;i = f(n � 1)�1
Pn
j=1;j 6=iKji � �ng.

Then

1p
n

nX
i=1

Hi

(
E[ZijXi]�

1�n;i
Pn
j=1;j 6=i ZjKjiPn
j=1;j 6=iKji

)
=

1p
n

nX
i=1

E [HijXi] fE[ZijXi]� Zig+ oP (1):

Proof of Lemma B1 : For simplicity, we only prove the result for the case where Xi = X1;i so

that Xi is continuous. Let f̂j(x) = 1
n�1

Pn
j=1;j 6=iKh(Xj � x1) and de�ne 1n;i = 1ff(Xi) � �ng:
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Observe that

1p
n

nX
i=1

Hi

(
E[ZijXi]�

1�n;i
Pn
j=1;j 6=i ZjKjiPn
j=1;j 6=iKji

)

=
1p
n

nX
i=1

HiE[ZijXi]
(
1�

1�n;if̂i(Xi)

f(Xi)

)

+
1p
n

nX
i=1

Hi1
�
n;i

(
E[ZijXi]

f̂i(Xi)

f(Xi)
�

1
n�1

Pn
j=1;j 6=i ZjKji

f(Xi)

)

+
1

(n� 1)
p
n

nX
i=1

Hi1
�
n;i

nX
j=1;j 6=i

ZjKji

(
1

f(Xi)
� 1

f̂i(Xi)

)
= A1n +A2n +A3n, say.

As for A3n, we write it as

1p
n

nX
i=1

Hi1
�
n;iE [ZijXi] f(Xi)

(
1

f(Xi)
� 1

f̂i(Xi)

)

+
1p
n

nX
i=1

Hi1
�
n;i

8<: 1

n� 1

nX
j=1;j 6=i

ZjKji �E [ZijXi] f(Xi)

9=;
(

1

f(Xi)
� 1

f̂i(Xi)

)
= B1n +B2n, say.

As for B1n;

B1n =
1p
n

nX
i=1

Hi1
�
n;iE [ZijXi]

(
f̂i(Xi)� f(Xi)

f̂i(Xi)

)

=
1p
n

nX
i=1

Hi1
�
n;iE [ZijXi]

(
f̂i(Xi)� f(Xi)

fi(Xi)

)

+
1p
n

nX
i=1

Hi1
�
n;iE [ZijXi]

n
f̂i(Xi)� f(Xi)

o( 1

f(Xi)
� 1

f̂i(Xi)

)
= C1n + C2n; say.

As for C2n,

jC2nj � 1

�n
p
n

nX
i=1

����Hi1�n;iE [ZijXi]nf̂i(Xi)� f(Xi)o2 1

f(Xi)

����
�

supx2RL1 jf̂(x)� f(x)j2
�n
p
n

nX
i=1

����Hi1�n;iE [ZijXi]f(Xi)

���� :
Since E

�
f(Xi)

�4� < 1, we �nd that E jHiE [ZijXi] =f(Xi)j < 1 by Cauchy-Schwartz inequality.
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By Theorem 6 of Hansen (2008), we have

sup
x2RL1

jf̂(x)� f(x)j = OP ("n):

Therefore,

jC2nj =
p
n��1n �OP

�
"2n
�
= oP (1):

We turn to C1n. We write it as

1p
n

nX
i=1

HiE [ZijXi]
(
1�n;if̂i(Xi)� f(Xi)

fi(Xi)

)
+

1p
n

nX
i=1

HiE [ZijXi]
�
1� 1�n;i

�
= D1n +D2n, say.

Note that

D2n =
1p
n

nX
i=1

HiE [ZijXi] 1n;i
�
1� 1�n;i

�
+

1p
n

nX
i=1

HiE [ZijXi] (1� 1n;i)
�
1� 1�n;i

�
= E1n + E2n, say.

As for E2n;

E [jE2nj] � C
p
nE [j1� 1n;ij] � C

p
n��anE

�
fi(Xi)

��a�! 0;

so that D2n = E1n + oP (1). As for E1n; note that

E [jE1nj] � C
p
nE
�
1n;i

��1� 1�n;i��� = C
p
nP
n
f̂i(Xi) � �n and f(Xi) � �n

o
� C

p
nP f�n � fi(Xi) � �n + vng+ o(1);

where vn ! 0 such that
p
nv�an ! 0 and vn="n !1: (If we take vn = �n; then the latter condition

is satis�ed by Assumption 3(ii).) The last inequality follows by Theorem 6 of Hansen (2008). The

last quantity is bounded by

C
p
n(�n + vn)

�aE
�
fi(Xi)

��a�! 0:

Hence D2n = oP (1). Therefore, we can write

B1n =
1p
n

nX
i=1

HiE [ZijXi]
(
1�n;if̂i(Xi)� f(Xi)

fi(Xi)

)
+ oP (1):

Following previous steps, it is not hard to show that B2n = oP (1). Hence we conclude that

A1n +A3n = oP (1):

47



We are left with A2n. It remains to show that

A2n =
1p
n

nX
i=1

E [HijXi] fE[ZijXi]� Zig+ oP (1):

First we write

A2n =
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

qh(Si; Sj)

=
1p
n

nX
i=1

E [qh(Si; Sj)jSj ] + rn

where qh(Si; Sj) = Hi fE[ZijXi]� ZjgKh(Xj �Xi)=f(Xi) and Si = (Xi; Zi;Hi); and

rn =
1p
n

nX
i=1

fqh(Si; Sj)�E [qh(Si; Sj)jSj ]g:

Observe that

n�1E
�
qh(Si; Sj)

2
�
= n�1E

h
H2
i fE[ZijXi]� Zjg

2 fKh(Xj �Xi)g2 =f2(Xi)
i

� n�1
r
E
h
fKh(Xj �Xi)g4

i
= O(n�1h�2L1) = o(1)

by change of variables and by Assumption B2. Therefore, by Lemma 3.1 of Powell, Stock, and

Stoker (1989), rn = oP (1): As for E [qh(Si; Sj)jSj ], we use change of variables, Taylor expansion,
and deduce that

E [jE [qh(Si; Sj)jSj ]�E[Hj jXj ] fE[Zj jXj ]� Zjgj] = o(n�1=2):

The wanted result follows from this.
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