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Abstract

Nonrandom sampling schemes are often used in program evaluation settings to improve
the quality of inference. This paper considers what we call treatment-based sampling,
a type of standard stratified sampling where part of the strata are based on treat-
ment status. This paper establishes semiparametric efficiency bounds for estimators of
weighted average treatment effects and average treatment effects on the treated. This
paper finds that adapting the efficient estimators of Hirano, Imbens, and Ridder (2003)
to treatment-based sampling does not always lead to an efficient estimator. This paper
proposes efficient estimators that involve a different form of propensity score-weighting.
Finally, this paper establishes an optimal design of treatment-based sampling that min-

imizes the semiparametric efficiency bound over the sampling designs.

Key words and Phrases: treatment-based sampling, standard stratified sampling, semi-

parametric efficiency, treatment effects, optimal sampling designs

JEL Classifications: C12, C14, C52.

1 Introduction

Program evaluation studies often adopt nonrandom sampling to improve the quality of inference.
For example, Ashenfelter and Card (1985) analyzed data from the Comprehensive Employment and
Training Act (CETA) training program using a sample constructed by combining subsamples of
program participants and a sample of nonparticipants drawn from the Current Population Survey
(CPS). Also, the studies of Lalonde (1986), Dehejia and Wahba (1998, 1999) and Smith and Todd
(2005) investigated the National Supported Work (NSW) training program where the training
group consisted of individuals eligible for the program and the comparison sample were drawn from

the CPS and the Panel Study of Income Dynamics (PSID) surveys. Numerous studies focused on
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the Job Training Partnership Act (JTPA) training program (e.g. Heckman, Ichimura, Smith and
Todd (1998), Heckman, Ichimura and Todd (1997)). The participants in these data sets typically
represented about 50% in the study sample in comparison to 3% in the population.

The rationale for such nonrandom sampling is often the belief that when the participants con-
stitute a small proportion in the population, sampling relatively more from the participants will
improve the quality of inference. However, this is not an accurate description because we need to
consider also the contribution of the noise in the subsample to the variance of the estimator. (See
Hahn, Hirano, and Karlan (2009) for a similar observation.) This paper makes this point clear by
developing an optimal design of treatment-based sampling which is a kind of standard stratified
sampling with strata based on the treatment status and other covariates.

The main objects of interest in this paper are the weighted average treatment effects and the
average treatment effects on the treated considered by HIR. First, this paper considers observa-
tions from treatment-based sampling, and establishes semiparametric efficiency bounds for these
parameters. Then, the paper proposes efficient estimators. The main challenge in the develop-
ment is that it is not @ priori clear how one can obtain an efficient estimator from the efficiency
bounds, because the usual sample analogue principle does not apply. One might consider adapting
the efficient estimators of Hahn (1998) or Hirano, Imbens, and Ridder (2003) (HIR, hereafter) to
treatment-based sampling using appropriate change of measure as in Tripathi (2008). However,
as this paper demonstrates, this naive adaptation does not work in general. This paper proposes
efficient estimators that involve propensity score-weighting different from HIR.

Finally, this paper finds an optimal design of treatment-based sampling which minimizes the
semiparametric efficiency bound over the sample designs. The analysis makes it clear how the
noise from each subsample contributes to the semiparametric efficiency bound. As a corollary,
a necessary and sufficient condition for a treatment-based sampling to improve on the random
sampling is established when the strata involves only the treatment status. (See Hahn, Hirano and
Karlan (2009) for an optimal design of social experiments in a related context.)

Early literatures on nonrandom sampling have assumed that the conditional distribution of
observations given a stratum belongs to a parametric family. (Manski and Lerman (1977), Manski
and McFadden (1981), Cosslett (1981a, 1981b), Imbens (1992), and Imbens and Lancaster (1996).)
Wooldridge (1999, 2001) studied M-estimators under nonrandom sampling which do not rely on
this assumption.

Closer to this paper, Breslow, McNeney and Wellner (2003) and Tripathi (2008) investigated
the problem of efficient estimation under nonrandom sampling schemes. Tripathi (2008) considered
moment-based models under various nonrandom sampling schemes and proved that the empirical
likelihood estimators adapted to an appropriate change of measure achieve efficiency. The strati-
fied sampling scheme studied by Tripathi (2008) is different from this paper’s set-up because the
identification of the counterfactual quantities in this paper cannot be formulated as arising from
the moment condition of his paper. Neither does this paper’s framework fall into the framework

of Breslow, McNeney and Wellner (2003) who considered variable probability sampling which is



different from the standard stratified sampling studied here.

In the program evaluations literature, there are surprisingly few researches that deal with infer-
ence under treatment-based sampling. Chen, Hong, and Tarozzi (2008) established semiparametric
efficiency bounds in a broader context where one has outcome observations with missing values
and has auxiliary data that aid identification. While the general approach of Chen, Hong, and
Tarozzi (2008) applies to some stratified sampling schemes, it does not here because the event of
missing values involves the treatment status, failing the unconfoundedness condition assumed in
their paper. A paper by Heckman and Todd (2008) offers a nice, simple idea to estimate treatment
effect on the treated under treatment-based sampling without assuming knowledge of aggregate
shares. However, their paper does not focus on efficient procedures.

This paper proceeds as follows. Section two introduces treatment-based sampling data designs
and Section three presents a general discussion on semiparametric efficiency bound when observa-
tions are from treatment-based sampling. Section four establishes semiparametric efficiency bounds
for weighted average treatment effects and average treatment effects on the treated. Section five
investigates efficient estimation. Section six develops optimal treatment-based sampling. Section

seven concludes and the proofs are relegated to the appendix.

2 Treatment-Based Sampling

Treatment-based sampling proceeds as follows. Let D be a random variable that takes values in
{0,1}, where D = 1 means participation in the program and D = 0 being left in the control group.
Let X = (V, W) be a vector of covariates, where W is a discrete random variable taking values from
a finite set W. For example, W may be the vector of dummy variables for the service regions in the
JTPA job training program. The random vector V' can contain continuous or discrete components.
Under treatment-based sampling, a random sample of size N for the discrete vector (D, W) is
first collected. Let Ny, = SN 1{(Ds, W;) = (d,w)}, (d,w) € {0,1} x W. From each subsample
with (D;, W;) = (d,w), a random sample {Y;, V;}:*1* of predetermined size n,,, for a vector (Y, V)
is collected, where Y = 3 13 Yal{D = d} and Y1 denotes the potential outcome of a person
treated in the program and Yy the potential outcome of a person not treated. In this paper, we call
this type of sampling treatment-based sampling as the strata {0,1} x W involve treatment status.
When W; =1 for all 4, so that the strata are constructed based only on the treatment status, we
call this sampling pure treatment-based sampling. Throughout this paper, it is assumed that we do
not have individual observations for (D;, Wl)f\il from the original data set, although we may require
knowledge of aggregate shares pq., = P{(D,W) = (d,w)} for identification of certain parameters.
(See the discussions prior to Theorem 1 in the following section.) While the observations in the
combined sample {(D;, Y;, V;)}I; are independent across i’s, the marginals are not identical. Hence
inference based on random sampling can be misleading.

For an illustration of treatment-based sampling, consider a job training program implemented

in K different service regions. (In the case of the JTPA job training program, there were 16 service



regions.) Let W = {1,2,---, K}, the set of index numbers representing the K service regions, and
W € W the service region index for the worker. Each individual worker has a treatment-region
status represented by the pair (D,W). For example a worker with (D, W) = (0,3) means that
the work is not treated and belongs to Service Region 3. When a service region has very few
workers eligible for the program in the population, one may want to sample treated workers with
a larger proportion than one represented in the population. The extent of the oversampling may
differ across different service regions. Then one combines samples obtained by oversampling or
undersampling the observations of (Y, V) from each (d,w)-subsample. The resulting total sample
is one from treatment-based sampling whose distribution by itself is no longer representative of the
population.

First, note that a likelihood for observations generated from standard stratified sampling can
be viewed as a conditional likelihood from multinomial sampling given {nd,w}d,we({o,l}xW)- As
pointed out by Imbens and Lancaster (1996) (see also Tripathi (2008)), (D, W) is ancillary in both
stratified sampling and multinomial sampling, and hence it suffices for semiparametric efficiency
to consider only multinomial sampling with design probabilities, say, {qa,uw } (d,w)efo,1}xw- Further-
more, {Nd,u }(d,w)e{0,1}xw is a sufficient statistic for multinomial distributions, and hence as far as
semiparametric efficiency is concerned, we can assume that {Qd,w}(d,w)e{o,l}xw are known. We do
not require full knowledge of {qa,w } (d4,w)e{0,13xw for the actual construction of efficient estimators.
The multinomial sampling is used only for the computation of semiparametric efficiency bounds.

Let the observations {(Y;, Vj, D;, W;)}?; for (Y,V,D,W) be generated by the multinomial
sampling scheme using known design probabilities {qq,w}(d,w)e{0,1}xw- In other words, we draw
a stratum (d,w) from {0,1} x W using the multinomial distribution with known probabilities
{4d,w} (d,w)ef0,13xw> and then draw (Y, V') from the subsample with (D, W) = (d,w). We repeat the
procedure until the total sample size becomes n. Unless g, = pa. for all (d, w) € {0,1} xW, the ob-
servations {(Y;, Vi, D;, W;)}; are not i.i.d. draws from P. The observations {(Y;, Vi, D;, W;)}I'_; are
i.i.d., however, under probability @ with density qq.. fy,v|p,w (¥, v|d, w), where fyypw(y,v|d, w)
is the conditional density of (Y, V') given (D, W) = (d,w) with respect to a o-finite measure, say, p.
Therefore, the nature of treatment-based sampling is that we have observations that are i.i.d. from
(@ but the parameter of interest is a functional of P. The notations of expectation and variance
without subscripts are assumed to be under P. Expectation Eg denotes expectation under Q. Ex-
pectation Eg4,, denotes the conditional expectation given (D, W) = (d,w). In pure treatment-based
sampling, we suppress the notation w from subscripts, for example, writing pg instead of pg,, and
E; instead of Eq .

3 Semiparametric Efficiency under Treatment-Based Sampling

In this section, we explain how we can compute the semiparametric efficiency bound for the pa-
rameter, say, ¢(P), under treatment based sampling. The standard theory of efficiency in semi-

parametric models and methods to compute efficiency bounds are well established in the literature.



(See Newey (1990) and Bickel, Klaassen, Ritov, and Wellner (1993) for a review.) Closely related
to this paper, Bickel and Kwon (2001) showed how we can adapt the results based on i.i.d sampling
to a multinomial sampling environment. (See Example 1 there.) To save space, we assume basic
terminologies and concepts in Bickel, Klassen, Ritov, and Wellner (1993) and highlight how the
standard method can be adapted to observations from treatment-based sampling.

Since we know the marginal probabilities qg,,, we consider the following form of regular para-

metric submodels:
ft(zadaw) = f;\DJ/V(Z‘d?w)Qd,wa t € [075)7 € > 07 (1)

where {fé\D,WHd’ w) : t € [0,¢)} denotes aregular parametric submodel passing through fzp w (-|d, w),

the conditional density of Z given (D, W) = (d,w). Then, the parametric submodel {f; : ¢t € [0,¢)}

is associated with a score, s(z,d,w) = $q.,(2) € L2(Q), where sq,, = % log fé|D,W("d7w)‘t=0 de-

notes the score associated with {fg|D7W(-]d,w) :t € [0,e)}. Let T denote the tangent space, i.e.,

the closed linear span of all such scores s for all regular parametric submodels in the form of (1).
There are two situations for the identification of i (P) that this paper considers. The first

situation is where we can identify ¢ (P) only using the conditional distribution of Z given (D, W).

The second situation is where we have knowledge of the aggregate shares pg4,, which is needed to

identify ¢ (P). In both cases, the relevant tangent space is the same 7 and (P) is identified from

the knowledge of @ and {qq,w}(4,w)eDxw.- Hence, we can write

P(P) = ¢g(Q),

for some functional . The parameter of interest wQ(Q) is assumed to be differentiable in @ in
the sense of van der Vaart (1991) and to have de € Ly(Q) such that for all regular parametric
submodels of the form in (1),

Iqo(Qr) -

%f\tzo ~ Eq [@/;Q(Z,D, W)s(Z, D, W)} .
When QZJQ € 7T, we call it an efficient influence function and denote it by 1/122 Then, the semipara-

metric efficiency bound is given by the inverse of

Vis = Var(g(Z D.W) = > duuBau |[$0(2.D,W). (2)
(d,w)eDxW

In this paper, we find zﬂg(Z , D, W) in the following way. First, note that 7 can be also viewed
as the tangent space at P with parametric submodels P, having density f%‘ pw(2ld, w)pgw. We
find 1) p € Ly(P) such that for all regular parametric submodels with density fé‘ pw (2ld, W)pd.w,

Op(F)
ot

=0 = B [0p(2.D,W)s(Z,D,W)] 3)



for some s € 7. Then, observe that
E [{ (2, D,W)s(Z, D, W)} ~ Eg [%(Z, D,W)s(Z,D,W)],

if we take z'ﬂQ (z,d,w) = Vp(z,d, W)Pd.w/qd,w- Hence we find an influence function w; under P such
that ¢E(z,d,w) = ¢;(z,d,w)pd7w/qd’w falls into 7. Thus, ¢E(z,d,w) constructed in this way is

an efficient influence function.

4 Semiparametric Efficiency Bounds for Treatment Effects Para-
meters

The main objects of interest are the weighted average treatment effect, 7,4, and the average

treatment effect on the treated, 7..¢, defined as follows:

__ElX){M Y}
vt E [g(X)]

and T4 = E[Y1 — Yo|D = 1], (4)

where g denotes a weighting function. As pointed out by HIR, T,ate is reduced to T4t when
9(X) = p1(X), where py(X) = P{D = d|X}, d € {0,1}, denotes the propensity score. This paper

adopts the unconfoundedness condition:
(Yo, Y1) 1L DIX, (5)

meaning that (Yp, Y1) is conditionally independent of D given X. Condition (5) is imposed on the
original data set, not on the data from treatment-based sampling.

Under treatment-based sampling, Tqte and Tgeer are not identified without knowledge of the
aggregate shares pg,, because the marginal distribution of X is not identified from the data.
However, under pure treatment-based sampling, we can identify 7, without knowledge of py. In
fact, under (5), the design of pure treatment-based sampling (i.e. the choice of ¢4) does not play a
role in determining the conditional distribution of (Y1, Yp) given X. These facts about identification

are summarized in the following table:

Table: Identification of Treatment Effects Parameters (TS stands for treatment-based sampling)

‘ Twate ‘ Tatet (non-pure TS) ‘ Tatet (pure TS)
Known Aggregate Shares Yes Yes Yes
Unknown Aggregate Shares No No Yes

As Wooldridge (2001) has pointed out, the assumption of known aggregate shares pg,, is mo-
tivated by the sampling environment where Ny ,, is very large relative to the subsample size ng .
Such sampling is reasonable when it is much less costly to gather information about (D, W) than

the outcome Y or full covariates X. In this case, a proper large sample theory would be one with



Ndw/Ndw —p 0. At the level of treatment-based samples, the asymptotic theory implies knowledge

of pd,w~
We introduce some notations:

Bu(X) = E[YilX], 03(X)=E [(Ys— 5,(X)X] ., and
7(X) = EMW|X]-E[Y|X].

Theorem 1 : Suppose that (5) holds, and that g(-) and pq., (d,w) € {0,1} x W, are known.
Then the semiparametric efficiency bound for Tyae under treatment-based sampling is equal to

|7 Sl (Twate), where

. _ 1 p?li,w 2U§(X) 2
Visruee) = OO, 2 o0y + <h0)]

and (g(x) = g(x){7(x) — Twate} — Eq.wlg(X){7(X) — Twate}] with x = (v,w). In particular, when
the sampling is pure treatment-based sampling and pq = qq, Vrs(Twate) = VrS(Twate), where

_ 1 > [o1(X) U%(X) 2
Vistrun) = (et |9 {5100 +po<X>}+de{Zo,1}Cd(X)pd(X)

Theorem 1 implies that knowledge of pg ,, is not ancillary in general. In the special case of pure
treatment-based sampling with p; = g4, we can compare Vyg(Tyate) with the variance bound of
HIR:

_ 2)09 2 . . 2
Vitrawe) = (g (900 {0+ e |+ #7000 = )

Note that Vis(Twate) < VHrr(Twate) and the equality holds if and only if
Eqlg(X){7(X) — Twate}] = 0 for all d € {0, 1}. (6)

Hence knowledge of pg is not ancillary for 7,qte-
Let us turn to 74ze¢. Although 744e¢ is reduced to Tyyae when g(X) = p1(X), we treat it separately
because when g(X) = p1(X), the weighting function g is not known.

Theorem 2 : (i) Suppose that (5) holds and {pyw}(dw)e{o,1}xw are known. Then the semipara-

metric efficiency bound for Tqter under treatment-based sampling is equal to VT_Sl(Tatet), where

- 2 2

P w d ~2 1 —do§(X)p(X

Vrs(Tatet) = > Ed.w [2 {a%(X) + Cl(X)} _ o 22 1)( )
(d,w)e{0,1}xw 1w P Pi Pp(X

and Zd(w) = T(x) — Tatet — Ed,w [T(X) - Tatet] with * = (v,w).



(ii) Suppose that (5) holds and the sampling is pure treatment-based sampling. Then, regardless
of whether we know {pd}de{o,l} or not, the semiparametric efficiency bound for Tater 18 given by
V};%S(Tatet), where

Vers(Tatet) = qllE [03(X) + {7(X) = Taret}*|D = 1] + g Wu} =0l. (1)

q0 f(X]0)2

Under random sampling (i.e., pgw = Gdw), Vrs(Tatet) is smaller than the variance bound in Hahn
(1998) that does not assume knowledge of pg.,. Therefore, the aggregate shares are not ancillary
in general. However, the situation becomes different when the sampling is pure treatment-based
sampling. In this case, the aggregate shares p; are ancillary. Indeed, in pure treatment-based

sampling with pg = g4, Vprs(Tatet) is reduced to

030) | OO0, (100 = Taal i)

b1
Vrs(Tatet) = E [{
e 3 po(X)p? %

which is identical to the variance bound of Hahn (1998) for 7,.¢. Therefore, Vprg(Tatet) can be

viewed as a generalization of the variance bound of Hahn (1998) to pure treatment-based sampling.

5 Efficient Estimation of Weighted Average Treatment Effects

5.1 Propensity Score Estimation

We begin with propensity score estimation. Let fo(z) be the density of X (under Q) with respect
to some o-finite measure, and f(v|d, w) the conditional density function of V' given (D, W) = (d, w).
By Bayes’ rule, the propensity score is identified as

f(’U|d, w)pd,w

Pl ) = o ol wpaw ®)

where pg(v,w) = P{D = d|V = v,IW = w}. The identification of p4(v,w) certainly requires
knowledge of pg -

We consider two consistent estimators of the propensity score that are based on the identification
in (8). Let X = (V1,Va,W) € R, where Vi € X; is continuous and Vo € X, is discrete with
supports X1 C RE1 and X, € R respectively for V; and Va. Define X to be the support of X;. Let
Sgw={1<i<n:(D;,W;) = (d,w)}. Define f(v1,ve|d, w) = ﬁziesd,w Ky (Vii —v1) Vo =
va}, where Kp(s1,- -+ s0,) = K(s1/h,- -+, s1,/h)/h** and K(-) is a multivariate kernel function.

Then, we define

— f(’Ul, U2|d7 w)pd,w (9)
> deqo1y /(v1,v2|d, w)paw

Pa(v,w)



Letting Ly, = pdw 1{(Dl, W;) = (d,w)}, and Ly ; = Lo, + L1,w,i, we can rewrite pg(v, w) as

5\d(vaw)
pa(v,w) = = - ;
)\1<'l),'w) + )\U(U7w)

where \g(v,w) = LS LawiKn (Vi; —v1) 1{Va; = vs}. Therefore, the propensity score esti-
mator is a weighted Nadaraya-Watson estimator. This is intuitive because the probability under
treatment-based sampling is the average of conditional probabilities using different weights.

Alternatively, we can estimate the propensity score using the estimated fraction

n

1

e = D HPL W) = () =
1=
in place of g4.,. Using this, we define ﬁd,w,i = q = 1{(Dy, Ws) = (d,w)}, fzw,z’ = jJO,w,i + j/l,w,ia and
N Ag(v,w
pa(v,w) = (v, w) (10)

5‘1(”7 'LU) + 5‘0(1}7 w)’

Where 5\d('l), 'UJ) = % Z?:l zd,w,iKh (Vh' — 1)1> 1{‘/21 = 'UQ}.

5.2 [Efficient Estimation of Average Treatment Effects

Let us first search for an efficient estimator of T,4t.. The first idea will be adapting the estimator

of HIR to treatment-based sampling:

~

Zwew{iif;:% 1810 i (Vz,ww/pl(v;,w)—%% l-eso,win,z-gm,wmmo(v;,w)}

Po,w 1
wew { w n 1€51w (‘/Z’ w) - qg,w n 1€8S0,w g(‘/;’ w)}

Twate = )

where pg(v, w) is estimated by (9) and in,z‘ =1 {Xd(Vi, w) > 0, : d € {0, 1}} for a positive sequence
0, — 0. When we are under pure treatment-based sampling and py; = qg, Twate 1S reduced to
the estimator of HIR except with a different nonparametric estimator for the propensity score.
In Theorem 2 below, we show that this estimator is consistent and asymptotically normal, but
inefficient in general.

Alternatively, we suggest the following estimator:

S > wew % i€S1 0 Lnig(Vi,w)Yi/p1(Visw) > uew % D icSo.m Ln,ig(Vi, w)Y;/Bo(V;, w)
wate = w T ~ - w T ~ ?
ZweW lelw EiESLw 17L,Zg(‘/7,7 w)/pl(‘/t“ w) ZU}EW Zz:w ZiESo,w 1”’7‘9(‘/;” w)/po(‘/“ w)

where pg(v, w) is as in (10) and 1,,; = 1 {S\d(Vi,w) > 0p : d € {0, 1}} The estimator 7yqte involves
a further weighting of g(V;, w) by pa(Vi, w). Note that 7yqate uses g While Tyate US€S G4 = N /M-

Assumption 1 : There exist a1 € R and ay € R such that 0 < a3 < pi(z) <ag < lforallz € X



such that g(x) # 0.

Assumption 2 : For each (d,w,vs) € {0,1} x W x Xs, the following holds.

(i) f(v1,ve|d, w)||v1|], By(-,v2,w), and g(-,ve,w) are bounded and L; + 1 times continuously differ-
entiable with bounded derivatives on R*! and uniformly continuous (L; 4 1)-th derivatives.

(i) EquY] < 00, Eq,Y] < 00, Eq||Vii]|" < oo, for some r > 4.

(i) pdw: dw € (0,1) and X(gu)ef0,1}xWPdw = E(dw)e{0,1}xWldw = 1.

(iv) For some a > 4, Eg,, [f~*(X;)] < oo for all a € [0,a.

Assumption 3 : (i) K is zero outside an interior of a bounded set, L; + 1 times continuously dif-
ferentiable with bounded derivatives, [ K(s)ds =1, and [ st leLll K (s)ds = 0 for all nonnegative
integers Iy, - - -, Iz, such that Iy +--- 41, < L and [|s} --- leLllK(s)|ds < oo for all nonnegative
integers Iy, - -,lr, such that Iy +--- 41, = L1 + 1.

(ii) v/n{e25,;t + 62} — 0, and 6,,'¢,, — 0, where €, = n~ Y2 "11/2/logn 4 A1 +1,

Assumption 1 is the condition of sample overlap needed for the identification of 7qte. This is
violated when part of X is only observed among the treated or untreated subsamples. (See Heck-
man, Ichimura, and Todd (1997) for a discussion in this regard.) See Khan and Tamer (2009) for
situations where Assumption 1 is violated with p;(x) being arbitrarily close to 0 or 1. Assumption
2 requires that f(-,ve|d,w) is continuous on R¥*. While HIR requires that the density of V; is
bounded away from zero, our Assumption 2 excludes such a case. Assumption 2 (iv) is the tail
condition for the density of Vi;. (See, e.g. Assumption NP7 of Andrews (1995).) Assumption 3(i) is
a standard assumption for higher order kernels. The following theorem establishes the asymptotic

distribution of Tyate and Tyate-

Theorem 3 : Suppose that the condition (5) and Assumptions 1-3 hold. Then

\/ﬁ(%wate - Twate) — d N(O, ‘/1)7 and
\/ﬁ(%wate - Twate) — d N(O, VTS (Twate))7

where

N ;X > pé’“’Ed,w [Q(X)Q {Uﬁ(X) 4 (r(X) — Twate)QH :

2
(dw)e{oa}sw 1w p(X)

When the sampling is random sampling, the asymptotic variance of 74t is reduced to Vg
which is greater than Vg (Twate) in general. Therefore, 7yqte is inefficient. The efficiency is achieved
by an alternative estimator 7,q¢e. The efficient estimator can be used when only G4, = 14, /1 (nOt
¢d,w) is available in the data.

Let us turn to the efficient estimation of 7,.:. In this case, the identification of 7.+ allows us

to formulate Assumption 1 differently:

10



Assumption 1P : There exist a; € R and as € R such that 0 < a3 < p1(z) < ag < 1 for all
reX.

We suggest the following estimator:

3 Pl S wew et 3 i 5.0 Lni1 (Viy w)Yi/Bo(Vi, w)
Fater = - Z > Yi- ST

wEW niw €510 weEW m i€S0,w in,iﬁl(%v w)/ﬁﬂ(‘/u w)

I

where pg(v,w) is estimated by (10). Theorem 4 below establishes that this estimator is efficient.
We saw that in the case of pure treatment-based sampling, the knowledge of py is ancillary.

One might consider alternatively the estimator of HIR that is adapted to pure treatment-based

sampling:

B D ies, Yi— 25 ies, 1.1 (X;)Y3 /Do (X;)

B> ieso L,ip1(Xi) + D ies Loip1(Xi)

While this estimator is efficient (see Theorem 4 below), it requires knowledge of py. Instead, we

Tatet,p =

suggest the following estimator that does not require knowledge of the aggregate shares py:

El > ies, 1nib1(X3)Yi/Po(X;)
16251 Y icsy In,ib1(Xi) /Do(Xi)

_ Z ZESo <{n1 desl JZ}/{nO Zjeso gz})7
VS Sies Ind ({a Ses Kiid o Siesy Kii})

Tatet,p

where Kj; = K, (Vij — Vi;) 1{Va; = Va;}. The estimator Tqer,p is in fact an estimator 74z that is

specialized to pure treatment-based sampling. Hence the estimator is efficient.

Theorem 4 : Suppose that the condition (5) and Assumptions 1P, 2-3 hold. Then,

\/ﬁ(%atet - Tatet) —d N(O, VTS (Tatet))-

Suppose further that we are under pure treatment-based sampling. Then

\/ﬁ(%atet,p - Tatet) — d N(07 VPTS (Tatet)) and
\/’E(%atet,p - Tatet) — d N(07 VPTS (Tatet))-
6 Optimal Design of Treatment-Based Sampling

In this section, we develop an optimal design of treatment-based sampling. Let ¢;(y,v, d,w) be
the efficient influence function of a generic parameter such as 7y4ze Or Tater. Then we can design an

optimal treatment-based sampling as follows. Let
Jaw = VB [Up(V,V, D, W)?

11



We can write the variance bound (under treatment-based sampling) as

Vrs = Z Ja .

(dw)e{0.1}xw b

We can view Jy.,/q4w as the contribution of the (d,w)-subsample to the variance bound.
We define the optimal design to be those {qq,w }(d,w)efo,1}xw such that minimize Vg under the
constraint that qq,, > 0 and Z(d,w)e{o,l}xw Gdw = 1. It is easy to see that the optimal design is

given by

de
T = : : (11)
Z(d,w)e{o,l}xw A% Jaw

The optimal design suggests that we sample from the (d, w)-subsample precisely according to the

"noise" proportion ,/Jg,, of the subsample (d,w) in Z(d’w)e{m}xw \/Jdw- In other words, we
sample more from a subsample that induces more sampling variability to the efficient estimator.

When we have some pilot sample obtained from a two-stage sampling scheme or other data sources
that can be used to draw information about Jg,, the result here may serve as a guide for optimally
choosing the size of the sampling fractions gg.,,.>

Using q;"l’w yields the minimum semiparametric efficiency bound as

2

S Vawy (12)

(dw)e{0,1} xW

The variance in (12) is the minimum variance bound over all the choices of the sampling probabilities
qd,w- The variance (12) can be used to compare different choices of additional stratum variables
Wi.

In the case of pure treatment-based sampling, we can make precise the condition for treatment-
based sampling to yield improved inference than random sampling. Let Vzg be the variance bound
under random sampling, which is equal to Vpg with pg = ¢4. Then it is not hard to see that
Vrs > Vg if and only if

. Ji Ji
< < .
min {pl, A Jo} < ¢1 < max {pl, Ty Jo} (13)

Therefore, it is not always true that sampling more from a subsample of low population proportion
leads to a better result. The improvement hinges on the noise proportion Ji/(J1 + Jy) as well.
When p; happens to coincide with J;/(J1 + Jp), there is no way for treatment-based sampling to

improve upon random sampling. Theorems 1 and 2 allow us to identify Jg,, in (11) for 7,a¢ and

Tatet-

2When it is less costly to sample from a specific subsample from others, we can incorporate an appropriate
differential cost consideration into the optimal design by turning the optimization problem into one subject to certain
inequality constraints.

12



Corollary 1 : Under the conditions of Theorems 1 and 2 respectively for Tyate and Tatet, the

optimal choice of qq., 5 given as follows:

qdw = " (fOT’ T’wate) and qdw = = (fOT’ Tatet)7
2 (dw)ef0,11xw A/ Tdw > (dwyeioryw \ Jdw
where
J* pg,w E |: (X)20¢21<X> + C2(X):| d
w — T v o dw |9 an

& {E[g(X)]}? pA(x) ¢
= d 52 1 —dod(X)p}(X)
Jw:pszw[ (X)) + ¢ (X)) + u .
sw = PhwBau |5 {oH00 + QOO+ 20

In the case of pure treatment-based sampling, the estimation of the optimal design does not

require knowledge of py. Indeed, we define

F(X[1)%05(X)

Ji =E [0}(X) + {7(X) — Tatet}*|D = 1] and Jo = E { f(X10)2

p=0].

Then, Vprs(Tatet) = J1/q1 + Jo/qo- The optimal design of ¢y in Corollary 1 is given by

Vi

q1 (Tatet) = \/JT +7j
1 0

and a necessary and sufficient condition for Vprg(Tatet) < VPrs(Tatet) is given by the condition in
(13) with J; and Jy replaced by J; and Jy. Note that estimation of J; does not require knowledge
of the aggregate shares py.

7 Conclusion

This paper has established semiparametric efficiency bounds for certain average treatment effect
parameters under treatment-based sampling. This paper also proposes efficient estimators for
the parameters. This paper’s finding suggests that under treatment-based sampling, tailoring the
estimators of HIR to treatment-based sampling does not work when the aggregate shares are not
ancillary. An optimal design of treatment-based sampling is also derived. The theory of optimal

design illuminates the role of treatment-based sampling in improving the quality of inference.

8 Appendix: Mathematical Proofs

Proof of Theorem 1 : Let f(y,v,d,w) be the density of (Y,V,D, W) with respect to a o-
finite measure p under P. We use the notations [ -du(w), [-du(v), [-du(y), etc., to denote

the integrations with respect to the marginals of p for the coordinates of w,v,y, etc. Let Q =
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{fyvipw(l)e : fyvipw € Paw,(d,w) € {0,1} x W} and fix Q € Q. Let f(y,v|d,w) be the
conditional density of (Y,V) given (D,W) = (d,w). We use subscripts P and @ for densities
to make it explicit under which probability they are defined when they differ. We do not use the
subscripts for the conditional densities given (D, W) = (d,w) or given (D, W, V) = (d,w,v) because
they remain the same both under P and under Q.

We write the density fq(y,v,d,w) of (Y,V,D,W) under @ as

foly,v,d,w) = f(ylv,d,w)f(v]d, w)qa,w
= falylz) f(v]d, w)qa,w,

where fg p(y|z) is the conditional density of Yy given X; = z under P. The second equality
follows by the unconfoundedness condition. Hence the score s(y,v,d,w) is written as sq(y|x) +
s(vld,w), where [ sq(y|z)fa,p(y|z)du(y) = 0and [ s(v|d, w)f(v|d, w)dp(v,w) = 0. The closed linear
span of such scores constitutes the tangent space 7.

Take a regular parametric submodel fé (y,v,d,w) = f'(y,v|d,w)qq., and let P; be the paramet-
ric submodel with density f*(y, v|d, w)p4,. We need to find P p. The weighted average treatment

effect under P; is written as
ZwGW f f g(’l), ’Ll))y {ft(y’va 17 w) - ft(y’va 07 w)} d“(y)ft(% w)dll'l’(v)

Z(d,w)gpxw Pdw | 9(v,w) fi(v]d, w)dpu(v)
> (gawyepxw | 90 w) { [y fre(ylv, w)du(y) — fyfo,t(y!v,w)du(y)}pd,wft(v!iw)du(v)'

Twate (t) =

Z(d,w)el)xwpd,w J 9(v,w) fe(v|d, w)du(v)

The first order derivative of Tyt (t) with respect to t at ¢ = 0 is equal to

1
B [9(X) (E[Y51(Y]X)|X] — E[Yso(Y]X)|X])]
1
_E[g(X)} E[s(V|D,W)g(X){7(X) — Twate }-
Let
' _ L e (M Biew) (L= D)= By(v,w)
bty ) = et (NGRS rori s B

1
B )
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We can write

Orone®) g (v, v, D, W)s(v, V. D, W) (19
= > E[bp(M VD W)s(Y,V, D, W)|(D, W) = (d,w)| paw
(d,w)eDxW
= > E[b(M VD, W)s(Y,V, D,W)|(D,W) = (d,)| qa
(d,w)eDXW

= Eq [(hg(Y,V, D, W)s(Y, V. D,W)] |

where f[bQ(y, v, d,w) = Vp(y,v,d, W)Pdw/qd.w- Now, observe that ¢Q belongs to the tangent space
7. (This follows from the unconfounded condition.) Therefore, it is an efficient influence function.
Since it is the projection of an influence function on 7 which is a closed linear space of scores, the
efficient influence function is unique. (e.g. van der Vaart (1998), p.363.) Hence the variance bound

is given by its Lo(Q)-norm:
Y EWgY,V.D,W)|(D,W) = (dw)|da

(d,w)eDxW

2
p w <2
= Y “MUE[RL(Y,V,D,W)|(D,W) = (d,w)].
(duw)eDxw b

|
Proof of Theorem 2 : The tangent space in the proof of Theorem 1 remains the same. The
only needed change from Theorem 1 is the computation of the influence function because now

g(z) = p1(z) is not assumed to be known. Let P; be the submodel as in the proof of Theorem 1.

The weighted average treatment effect under P, is written as

ruet®) = Y [ [0l 1) = Ao, 0.0)} du) 0l wpasdute),

weWw

where py(1 = p1,w/{Zwewp1w}. The first order derivative of T4et(t) with respect to ¢ is equal to

E [S(V|D, W){T(X) — TatetHD = 1]
FYE[E[Vs (Y]X)|X,D =1] - E[Ys(Y|X)|X,D = 0]|D =1].

Therefore, we take

bty o) = & {d@ ~By(osw) — & (o, w)

N pl(vvw)(l — d)(y B 50(7)7 UJ)) }
po(v,w) ’

As shown in the proof of Theorem 1, this yields the semiparametric efficiency bound for 74zet.

Let us turn to the situation with pure treatment-based sampling. The tangent space is the
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closed linear span of scores of the form sq(y|z) + s(v|d), where [ sq(y|z)fap(ylz)du(y) = 0 and
[ s(v|d) f(v|d)dp(z) = 0. Write

Fae(t) = / / y (il 1) — fulyl, 0} dp(y) fu(xl Ddp(a).

The first order derivative of T4.(t) with respect to ¢ is equal to

E [s(X|D{7(X) — Tatet }|D = 1]
YE[{E[Ys(Y]X)|X,D = 1] - E[Yso(Y|X)|X,D = 0]}|D = 1].

Therefore, we take

Y {d(y — B1(x) = {7(x) = Tater}) _ pr(x)(1 = d)(y = Bo(x)) }

wP(y7:C> d) = P pO(fB)pl

because E [7(X) — Tatet| D = 1] = 0. Let i/}Q(y, z,d) = p(y, x,d)ps/qq. Now

PjE [(Y1 - B1(X) = {7(X) - Tatet})2|D _ 1}
q1 p%

Ph 4 [P1(X)* (Yo — Bo(X))?
+QOE I po(X)2pi

— ql1E [(Yl — B1(X) = {7(X) — Tater})}|D = 1}
1o [porm(X)?

2
1 - —
+q0E | po(X)2p? (Yo — Bo(X))°|D 0] .

S a4V X. DD =d| =
deD

D=0]

Note that by Bayes’ rule,
pop1(X) _ pof(X[Dpr _ f(X]1)
pipo(X)  pof(X[0)pr  f(X[0)

By plugging in this, we obtain the wanted result. m

Lemma A1l: Suppose that Assumptions 1-3 hold. Then, for each w € W,

max 1ni[p1(Vi,w) = p1(Vi,w)| = Op(en) and
ax 1ni[p1(Vi,w) = pr(Vi,w)| = Op(en).

Proof: We only consider the first statement. For simplicity, we assume that V' = V; and define
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EQ w,ilL1wi) = EQ[L1,w,i|Vi, Wi = w]|fo(V;, w) for simplicity. Let

. 1 n
EQuw,ilL1w,] — Z Ly w,j Kp,ji and
J=1,j#i
1 n
EQuillws] = —— > LujKnji.
=Ly

Hence we can write

EQuilliwi  EQuilliw,]

EQ,w,i[Lw,] B w,i[Luw,]

EQu.ilL1wi] = BouwilL1w.i]
EQ7w7i[Lw7i]EQ7w7i[Lw,i]

n(Vi,w) =1 (Vi,w) =

By applying Theorem 6 of Hansen (2008), we find that uniformly over i € {1, - -, n},
EQuw.ilL1w;i] — BQu,ilL1wi] = Op(en). (16)

Furthermore, observe that

i Equilliw,] — EQuw,ilL1,0,]

: = (17)
" EuilLw B L.
. 2
_ 1 EBowill1iwi] ~ EQ,uw,i[L1,,4] L ,{EQ’“’J[LL“”A B EQ’w’i[Ll’“”i}}
- n,? n,% = .
EQ w,i[Lw,? EQ,w,i[Luw,i)*EQuw,i[Lw,i]
The absolute value of the last term is bounded by
-13 - 2 -2
G ni | BQuilLiwi] — EQuilLiwl| |EQu,ilLuwi] ™|
Using Bayes’ rule, we deduce that
fP(Viv w)
Eo[Lywi|Vi,W; =w] =
Q[ ’LU71| (2] 1 ’lU] fQ(VYz,QU)
and hence
Eq [Eg" (LulVi, Wi = ) 5" (Viyw)] (1)
= Eq[fp"(Viw)] = Y Eaw [f5"(Viw)] qaw < o0

de{0,1}

by Assumption 2(iv). Hence we find that Eq |EqQu,i[Lw:] %] < oo. The last term of (17) is,
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therefore, Op(8,'e2) = op(e,). Combining this with (16),

. R . E Liwi — E Ly
Lni {p1(v,w) — pr(v,w)} = 1p, QoL Q’Z’w[ L]
EQﬂhw [Lw,i]

+ 0P(5n> = OP(gn)-
Hence we obtain the wanted result. m

Lemma A2 : Suppose that S; is a random wvariable such that Eq[|S;|"] < oo, r > 4, and
Eq[Si|Vii = -, (Vai, W) = (v2,w)] is L1+1 times continuously differentiable with bounded derivatives
and uniformly continuous (L1 + 1)-th derivatives.

(i) Suppose that the assumptions of Theorem 3 hold. Then, for d = 0,1,

1= - )
- > Silni (pa(Viyw) — pa(Vi, w))
i=1
Z EQ S "/17W2 = w]jdwz
wl“/rL?W - w]

: Q[Sim’wi = wlpa(Vi, w) Jw,i ~1/2
+n; EQ[Lw,z“/z,Wz:w] +0P(n ),

where Jqwi = Lawi — EQ [Ldw,i|Vi, Wi = w] and Jwi = T1wi + Jo,wi-

(ii) Suppose that the assumptions of Theorem 4 hold. Then,

I s o _
- > Silni (p1(Viy w) — pr(Vi, w))
=1

= Eq[po(Vi,w)p1(Vi, w)Si] (qu ~—Qw  Qow — qo,w) op(n ).
41w qo,w

Proof of Lemma A2 : (i) Observe that by Bayes’ rule,

f(‘/i’l’w) = QI,w(Vi)fQ(Vi)/QLw = QI(Viaw)Qw(V;)fQ(Vi)/QI,wy

where q1,, (Vi) = EqQ[1{(D;, W;) = (d,w)}|Vi], quw(Vi) = EQ[1{W; = w}|Vi] and fg(-) is the density
of V; under . Hence

| B f(Vil1, w)prw
p(Vi,w) = FVilL, w)p1w + f(Vi]0, w)po,w v

((Vi,w)/qrw)prw — BolliwilVi, Wi = w]

ZdED(qd(‘/h 'w)/Qd,w)pd,w EQ [Lw,i“/h sz = w] )

Let Kj; = Kp, (Vij — V1;) 1{Va; = Vi;} for brevity. By adding and subtracting the sum:

32"3 4 Dt i 1w i K
Eq|

wz"/;aWz —U}]ZJ 1]751K 7
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and noting (19), we write

:LZ Silns (p1(Vis w) — P (Vi w)) (20)

{EQL1w1|Vqu—U)] Zyllew,jKji}
- 7251 n,i

[ wz“/;7Wz_w] Z] lj;ézL JKN

= li Siln; B L lVie Wi = u] — 17, 2zt Tl i
n = Eq[Ly|Vi, Wi = w] QL it T T i K
1 isi ‘ Lni 2 g,y L Kji X Lw K

n &=t (Ll Vi, Wi = w] 300 i Koo 20500 jos LwiKGi |7

where 17 ; = {1 > i1 jzi Kji > 0n}. We write the last sum as

Z nzZ] 1,51 HLw,j R ji {127123_1,]7éz w,J ﬂ—EQ[Lw,i“/ia‘/Vi:w]}

1 wz“/sz = w] Z] 1,54 Ly ; Kji Z?:Lj;&iKz
SilniEQ[Lle Vi, Wi = w) >t i Lw i Kji _1/2
= —= : 2 Eq[LwilVi, Wi = w] — 1%, +op(n~Y

n ; E [sznfz;Wz — w]Q Q[ w,z| i 7 ] n,i Z;'L:l,j?éi Kji P( )

n

S 1nzp1 V,,w) Z] lj;ézL JKﬂ —1/2

= Eo[Lw | Vi, Wi = w] — 1* ’ + op(n~?).

ZE wz,‘G:WZ*w] Q[ w’z‘ ' ’ ] " Z;‘L:Lj#ini P( )

The first equality uses Lemma A1l and the second (19). Let

E] 1,5#4 L KJ’L
Z;L:L];éz Kﬂ

Kn,i = EQ[Lw,i|Via W; = ZU] - 1;,1

and write the last sum as

Z S 1nzp1 V:nw)

wz"/zywz—w]
. _72 zpl ‘/sz li j—nz}pl ‘/sz)
- EQ wZ]VZ,WZ—w n i Wi = w]

With large probability, the last sum is bounded by

n

1
Knxn;

by (16), where K, = maxj<i<p |Ky|.- It is not hard to see that K, = Op(1). Note that the

Sipl(‘/;7 U})
EQ[Ly Vi, W; = w]

i = w}fQ(Viuw) < On+en}

2]

’1{EQ[
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expectation Eq of the above sum is bounded by

C (6n + £n)" Eq B [L1,uilVi, Wi = ] [5"(Vi, w)
= O((6n+en)?) =o(n~1?).

Hence we conclude that

n

S 1n1p1(‘/z,'w 1 zpl V;,U) e
n : 21

Applying the similar argument to the second to the last sum of (20) to eliminate in,z‘: we finally

write

1~ s .
- > Sidni (p1(Viyw) = pr(Vi, w))

i=1

: E ‘/ EQ L V.. W, = * 27TL——l ) Ll wjf(}i
() M/ i| Vi ; —1*. J=1371 ,w,
w Z| 19 'U)] { [ ’wﬂ’ b w] n,i

21, Kji

Zpl V;)w) * Z] 1]7é’LL JKJZ —1/2

- E [Lw,i"/%awi :w] -1, o +Op(n )
Z [Luw,i| Vi, Wi = w] { Q ’ Zj:l,j;éz’ Kji

By Lemma B1 below, the difference of the last two terms is asymptotically equivalent to (up to
op(n~/%))

- EQSM,M w]
*E EQ[L1,w,ilVi, Wi = w| — L1,
AR vl b

1 Z EQ S; \v;, Wi = wlps (Vi w)
w7,|v7,7VVz = w]

"Z EQ S m,m WP, ;z”: EqQ[Si|Vi, Wi = wlp1 (Vi, w) Tuw,i
— wl|m7W’L —w] n EQ[Lw,l“/z,Wz :’UJ]

{EQ[Ly,;|Vi,W; = w] — Ly}

=1

using the definitions of J1 ,,; and Jy ;-

ii) First, we let 1,,; = 1 {Eg(Lw|Vi, W; = w) fo(Vi,w) > d,}, and write
; Q ; Q
- ZS 1nz V;,’LU) (V;?w)) (22)

—ZSlmlm (Vi, w) = p(Vi, w)) ZSlm1—1m><ﬁ(m,w>—ﬁ(w,w>).
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By Lemma Al, maxi<i<n |[p(Vi,w) — p(V;, w)| 1ni= Op(en) and hence

. D oISl - 1n,i|] < CEq[1{EqQ(Lw,i|Vi, Wi = w) fo(Vi,w) < 0n}] (23)

IN

COLEqQ [EG" (LuilVi, Wi = w) f5° (Vi w)]
by Markov’s inequality. By (18), the last expectation is finite. Since d%¢,, = o(n~/2) (Assumption
3(ii)), we conclude that

*ZSlm (Viyw) = (Vi w)) ZSlmlm (Viyw) — 5(Viy w)) + op(n~Y2).

As for the leading sum, note that

st Lnilni (B(Vi,w) — p(Vi, w))

S LiwiKyi Y5 Liw K }

1 ~
= - Siln,iln,i 7
n ; 21 Luw i 3 Ly j K

1 z": g1 2j=1 {Ll,w,j - fil,w,j} Kji
— — S
n v iin,iin,d Z?ZI Lw,jsz’

n n 1 1
1. Lo K — _ .
Z:: ilniln JZ:; Lw,j 4 ji { Z?:l Ly i Kj; Z?:l Ly ;K }

3\'—‘

Now, note that as for the second term,

I~ - . 1
= Siluilng: Y LiwjKj - -
n; ; D1 Lw Ky S0 L j K

1
n,itn,i Zn f/ KJZ Z] 1L JKji .

= 7=1

Using Lemma A1, we can write the last sum as

+op(n~Y?).

1 Z si ] VLK | 25 {Lw,j - Lw,j} Kji
n,i 1Lw,ngz Z;LZI Lw,jKji
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Therefore, we can write
1 n
— > Sl {p(X0) — H(X0)}
i=1

1 i S j_ 1 2?21 LO,w,jKji Z?:l {Ll,w,j — Ll,w,j} K]
= B 23’1:1 Loy j K E;;l Ly jKji

> i1 L1w i Kji 251 {LO,w,j - LO,w,j} Kj;

I -
=S Sl
n ; e i L K > i1 L K

1< » po(Vi,w) 3204 {il,w,j - Ll,w,j} Kji
- _ = g1
n ; 1-N,1--N,1 Z;L:l Lw7]KjZ

+ op(n~1?)

1 Z”: Gi 1 Apl(Vzw w) 3T {Lo,w,j - Lo,w,j} Kji
n v iin,iin, qulzl Lw,jKji

+op(n~Y?)

As for the first term, observe that

, { Lw,j — Ll,w,j} Kji
i >t L K
) Do WDy, W) = (1, w) K
(jl,w q1,w ’ ’ Z?:l vajKji

QI(Wv ’UJ)
@ (Vi w)p1,w/q1,0 + 90(Vi, )Po,w/ 90w

+ OP(n—l/Q)

q1 (V;, w)pl,w/Ql,w

+op(n~1/?
q1,w ) a1 (Vi, w)p1,w/q1,0 + q0(Vi, w)Po,w/qo,w ( )

p1(Vi,w) + 0p(n_1/2).

The last equality follows by (19) and the second equality follows because

> (D, Wi) = (1, w) } K
> i1 Luw i Kji
_ g 2= MR W) = (L w)} G/ 35 Wi = wikKG:
e D Luw i Kji) 25— Wi = w} K

q1(Vi,w) —1/4
e + op(n .
a1 (Vi, w)p1w/q1,w + q0(Vi, w)po.w/q0,w ( )

1n,7j 1n,i

Applying the same step to the term

p(Vi,w) 3%, {f/o,w,j - LO,w,j} K
> i1 L Kji ’
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we conclude that

1o - . _
. Z Silniln{D(Xi) — p(X5)}
i1

1 ¢ Q1w — Q1 do,w — 4o _
= =Y Sipo(Vi, w)p1(Vi, w) < w Tl w0 4 op(nTY?).
n i=1 q1,w q0,w

Finally, we write the last sum as

~

Eq [po(Vi, w)p1(V;, w)Si] (qu —fw  Sow T q07w> +op(n~Y?)
q17w qo,w

and complete the proof. m

Lemma A3 : (i) Suppose that the assumptions of Theorem 3 hold, and let €4.4; = Yai — Bq(Vi, w).
Then,

PlLw : 9(Vi,w)Ys  pow - 9(Vi,w)Y;
q1.0M 1n’iﬁ(Vw)_q nzln’iﬁ(Vw)
1w €51 1\(Ve, 0,w €S0, 0\ Vi

_ lzn:g(v )Llwzglwz_izg ‘/;7w Lszf‘:sz

n i1 (‘/zaw ‘/Z’w)
LS (Ve w) (Vi) L + 0p(n )

n 4 - iy iy w,i P .

1=

(ii) Suppose that the assumptions of Theorem 4 hold, and let €q.y; = Y4 — Bq(Vi,w). Then,

plw V;,aw pOw Waw
oI n“ Vz,w oI n2~ m,w)

n
Lw 1€51,w 0w 1€50,w

_ Zg ‘/7,771) Llwzglwz Zg mvaszEsz

1(Vi, w) o(Vi, w)
FES (Vi) (Vi) — B [o(Vio ) (Vi )]} L
=1
3 (Vi) (Vi) — Bo [o(Vi ) (Vi )]} Lo
=1

+E1,w [g(‘/;’ w)T(V;? 'LU)] P1w + EO,w [g(‘/z; ’UJ)T(VZ‘, ’UJ)] Po,w + OP(n71/2)~
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Proof of Lemma A3 : (i) We first write

Z ‘/7,7w o pO,w Z i g(Vuw)Yz
n,? UZYN
& Vu’w) down Lo po(Vi,w)

Lh wn

1~ g(VZ w)YiLhﬂi 1 < g(VZ w)YiLOwi
= — ]_ . ) YWt 1 . 9 W, :A A .
P TURU RS AT

We first write

g i, W }/7,1TL7,L1’U}1, It
A = Z V“,w) +A1na

where

- 1 & . 1 1
An:* V’L;wY-zL wilni ~ - .
= o isstos (50 )

As for flln, note that

1 zn g(Vi, w)Y;Ly i1 .<P1(V§,w _ﬁl(Vi,w)>
n ’ K ,W,1+MN,1 ‘ '
=1

n — (2 (2 ,2W,1 N, %( ,'LU)

I ¢ . pﬂ%w)—@(%w)( 1 1 >
+— V;)w YZL wilni N .
”;g( Milwsln, ) 1 (Vi,w)  p1(Vi,w)

The absolute value of the last sum is bounded by
n

1 A . .
> 9(Vie )L il L
i3 9% w)¥eLsgu In, p1(Vi, w)26

On the other hand, observe that for any ¢ > 0,

- f(Vil1, w)p1w 1
Eq |p1'(Vi,w)| = > Eaw { - : Qdw  (25)
|: ] (dw)e{0,1}xW f(‘/zuv w)pl,w + f(‘/vz’0> w)pO,w

C Z Eg [f(vﬂlvw)iq] Qdw < OO
(dyw)e{0,1}xW

IN

by Assumption 2(iv). Hence by Lemma A1, we find that the sum in (24) is op(n~1/2). We conclude
that

i 19V w)Yilyws ) ~
Ay = Ly SV iy (v, ) — (Vi) + 0p(n ™) (26)

Let Sl = g(‘/lv w)YiLl,w,i/p%(Vvivw)in,i- Thena

B [15iI"] < \/BqY? x \/Eq [py*(Vi,w)].
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Therefore, Eq [|S;]"] < oo. We apply Lemma A2(i) to obtain that the leading sum in (26) is
asymptotically equivalent to (up to o p(nfl/ 2))

729 ‘/zaw EQ YLlwzH/z;Wz—'w]jlwz

27
P2V, w) B L Vi, Wi = ul (27)

i1

(Vi, w)EQ[YiL1 4| Vi, Ws = w,i
L1 Zg w)EQ[YiL1 il w]J, ‘

i:l D1 ‘/Yzyw)EQ[ w,z“fzaWz - ]

Using the fact that

EqlY;

= w| =EYulVi, (Dy, W;) = (1, w)]q1(Vi, w)p1,w/q1,w
= B1(Vi,w)q1(Vi, w)p1w/ 1w
and q1(Vi, w)p1,w/{EQ[Lw,i|Vi, Wi = w]q1,w} = p1(Vi, w) from (19), we write

EQ[YiL1,w,:i|Vi, Wi = w]
EqQ[Ly|Vi,W; = w]

= B1(Vi, w)p1(Vi, w). (28)

Using this, we write the first term in (27) as

_72 9(Vi, ) B1 (Vi w) T1,w,i
p1(Vi,w)

and the second term as (using (19))

1 <& L&
- ;g(m, )81 (Vi w) Jui = — >~ g(Viyw)B1(Viy 0) {Ti i + Toawi} -

=1

Hence the difference in (27) is equal to

1 - g(‘/lvw)/@ (V;,U})po(‘/i,’w) 1 &
-2 V) Trawi+ = ;g(%, w)By (Vi 1) Fo i

Therefore, we conclude that

1 n
gz %7w 61(m7w)~70w1+013( 1/2)

We turn to As, which we write as

1 Z 1n.ig(Vi,0)YiLo .

Ay — =
n pO(Vsz)

- + Ay + 0p(nY?),

=1
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where

- 1 <& . 1 1
An:* V;;w 1nzY;L w,e ~ - .
2 n Zg( ) ’ Oyt <p0(‘/;)w) pO(‘/;)w))

=1

Similarly as before, we write

- 1<
Ao = EZQ(Vi,w)ﬁo(Vi,w)ﬁ,w,i

i=1

1 < g(Vi, Vi, Vi, _
_nzg( ’w)ﬁp(;( w)pl( w) jO,w,i+0P(n 1/2)'

(Vi, w)

Using the arguments employed to show (21) and combining the two results for Ay, and Ag,, we

deduce that

Ay — Ay = _iig(v““’ <B1 V;’leime’w) +,60(Vi7w)> Tw,i
+iizn;g(vi,w (ﬂl Vi w) + (V;’O (‘)/illi‘)/“w)>Jo,w,i+0P(n_1/2)

— —;gg(‘/{,w <61 i, w) = p— V:/’z;u))pl( “w)>\71,w,i
+% gg(Vi?w <T Vi, w pop:)/’%/j)wj; BO(VMU)) Jo.wi + op(n=/?),

using the fact that 7(X) = 5,(X) — Bo(X).
Therefore,

- Vi Y; A V; Y;
P1w Z i 7'g( z>’LU) i Pow Z 1n,ig( Zaw) i

Qo Lo (Vi w) Go.uwn Lot po(Vi, w)

_ Zg V;,'U) Llwzglwz_ Zg ‘/;7wL0wz€sz
1(Vi, w) po(Vi,w)

729 (Vi,w) Ly wify (Vi,w) 1 Z”:g Vi, w) Lo wiBo(Vi, w)
b1 maw) n Pbo Waw)

=1
+% Zg(Vu’w) <T(Vz‘,w)Po]§z/8/7;U7)wJ)r Bo(Vi, w)

=1

> Jowi +op(n?).
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By rearranging the terms, we rewrite

w 2 ) }/; w 2 I3 )/7-,
p1, Z i ’,Q(V w) _ Do, Z i 'Q(V w)

q1Lum " p1(Vi,w)  qown

1€51,w 1€50,w

Zg ‘/;7'UJL1w151wz Zg i, W L()wzg()wz

1(Vi, w) po(Vi, w)
+;§;9(Viaw) 7(Vi,w)L1wi + — ;g i w)T(Viy w) Lo aw i
_1_% gg(ij) (51(‘/%711)) ;lz‘(/f;ﬂﬂ)})m(‘/%,w)) (BolLwilVis Wi = w])
_i; Viow) (T(%’w)poygovf’v?@; ﬁm,w)) (BolLowilVi Wi = w]} + op(n~V).

As for the last two terms, observe that

= {2 i Bt

_{50(‘/%“))
po(‘/;,w)
Vi, w) o, }Q1(Vi,w)p1,w
{pl(VE,’w) (Vi w) 1w

[ Bo(Vi,w) (v }QO(Vi,w)Po,w
Uiy =V S

+ T(Vi7w)} EqQ[Low,i|Vi, Wi = w]

However, by Bayes’ rule,

PLw@(Vi,w)  proqi(Vi,w)fo(Vi,w)  prwf(Vill,w)  p1(Vi,w) fp(Vi,w)

Ge awfeViw) feWhw)  foew) 2
Therefore,
 fr(Vi,w) 51(‘/1‘710)_7_ 0 ) Bo(Vi, w) (Vi w -
= fQ(w,w>{{p1<w,w) W, )}pl(v” ) {po<w,w>+ W, )}m(v” )}
= 0

by the definition of 7(V;,w). Hence we obtain the wanted result.
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(ii) We write

729 ‘/sz Ylnlewz _729 V;,UJ)Y
1(Vi, w) po(Vi, )

729 V;?w Ylnlewz . 729 ‘/uw)YlnzLsz

V;’w ﬁo(‘/;,w)
< Z g ‘/Yzaw Yln Z{L]. w,i Ll,w,’i} 4 Z g(‘/:nw)Y1n Z{Lsz LO,w,i}
p1(Vi, w) n po(Vi, w)

We write the first difference as

{ Zg %7w Ylnlewz_izg V:uw YlnzLsz}
(Vi, w)

pl ‘/Zaw
g ‘/:Mw Ylnlewz g YlnzLsz -1/2
A— - By +
{ Zl PV, w) Z RVow) i tert )

= Jln + JQn + OP(n_1/2)7 say,

where A; = p1(X;)—p1(X;) and B; = po(Xi) —po(X;). One can check that the normalized sums with
trimming factor in,i can be replaced by the same sums but with in,i (with the resulting discrepancy
confined to o p(n_l/ 2)), because §u, is consistent for gq., > 0. As for Ja,, by applying Lemma

A2(ii), we have

J2 |:g Vuw YLl wpo(‘/zaw):| ((jl,w — Q1w N (jO,w - q0,w>
n

p1 ‘/Yzaw) q1,w q0,w
QVuTUYLszpl(V ):| <qAOw_q0w lew_q1w> —1/2
-E : — — = ’ +op(n
N [ po(Vi, w) 0w Q1w ( )
L ,W,T V;, L w,e ‘/iu ] w T w
_ [g(Vl,w { 1,w,iPo( w)+ 0,w,iP1( w)H (fh, q, >
pl(%aw) pO(Waw) q1,w
LlszO(‘/sz) LOwipl(%vw) }:| <C_?Ow _q0w> —1/2
-E 2 v W00 ) | op(n12).
? |:g { pl(VZ’w) po(V;,W) q0,w P( )

On the other hand, as for the last difference in (30), it is equal to

Tlli g Vzaw Y{Llwz) Ll,w,i} 1 Z g Vuw Y{Lsz LO,w,i} + Op(TLil/Q)

pl ‘/7,711) Po ‘/Zaw)

n i=1 b1 VYHU} qi, Do ‘/;7w q0,w

- _E, |:g(vz'aw)YiL1,w,i:| <(11,w—Q1,w> LR [ (Vi,w)YiLo,w,z‘] <Q0,w—QO,w) +op(n~Y2),
p1(Vi, w) q1w po(Vi, w) q0,w

_ lzn:g V;,U) YLlwz <C.?l,w q1w> Zg V;,U) YLsz <qA0,w _q0,w> +0P(n_1/2)
=1
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Combining these results, we conclude that

1 Z g(vza w)nin,iﬁl,w,z . l Z Q(V;’ w)Yi]N-n,ii/O,w,i (31)
n p1(Vi, w) n = po(Vi,w)
— lzg(‘/zaw)y;inll/lwz lzg(‘@w)yzimLsz
n i—1 ﬁl(%; 'U)) n i—1 ﬁO(‘/ia ’IU)
Low,ip1(Vi, w) H <é1 w— Q1 w>
+Eq | 9(Vi,w)Y; 4 =Ly + —2 w — 41,
Q [ ( ) ) { 1w, pO(Vi,w) T

Lw,ipo(Vi, w) H <<§0w—QOw> ~1/2
-E Vi, w)Y; S — 2 Lowi == 7 ) +op(n .
o sy, { Pt gy L] (et ) o017

The last difference is written as

Low,ip1(Vi,w)

it
f

Eq [Q(Vi, w) {_YliLl,w,i + Yo,

Llwip()(w’w) <(j0w _QOw)
~Eq |g(Vi,w) § Vi =R PO g | (o
N |:g< ){ ! p1(Vi, w) OO, q0,w
— Eqlg(Viw) {~{¥1s — Yo} Lrani}] <q“”‘q“”)
LszPl(Vz,w }:| <Cj1w - q1w>
+E [ Vi, w)Ye { :
Q |9(Vi,w)Yo, po(Vi.10)
q0,w — q0,w
_EQ [g(‘/iaw){ylz }/O’L}LO’U)l < . )

Llwzp[)(‘/;vw) }:| < - q0w)
+E ‘/i,w Yl L w,i : .
N |:g( ) ' { O pl(‘/lvw) q0,w

The second and the fourth expectations vanish because

Lo w,ip1(Vi, w) H
pO(‘/ia U))

B [g<w,w>50<v;,w> {—1{<Dz~,Wi> — (Lw))+
= B [(Viw)Bo(Viuw) {p1 (Visw) — py (Visw)}] = 0

Eq [Q(Vz‘,w)yo,i {_Llﬂm‘ +

H{(D;,Wi) = (0,w) }p1(Vi, w) H
po(Vi, w)

and similarly,

L po(Vi, w)
Eq [Q(VLM)YU {LO,w,i - 1;]12‘2712 }]

= E[g(Vi, )81 (Vi,w) {po(Vi, w) = po(Vi, w)}] =
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Furthermore, observe that

Eq [9(Vi, w) {—{Y1i = Yo,i} L1,w,q}]
= —E[g(Vi,w){Y1i — Yo} 1{(Ds,W;) = (1,w)}]
= —E[g(V;,w){81(Vi,w) — Bo(Vi, w) }p1(Vi, w)]
= —E[g(Vi,w)7(Vi,w)p1(Vi, w)]

and similarly,
_EQ [g(VtLa w){}/lz - YU,i}LO,’w,’L'] =-E [g(‘/zv w)T(‘/ia w)pO(‘/la ’UJ)] .

Hence, as for the last two terms in (31), we find that

L w,i ‘/’iv j w w
B [pWi 7 { -y + om0 (e 1)

pO(VYi,w) q1,w
L1,w,ipo(Vi, w) H <@0w—CJOw>
9 |:g( ) { N (V;,U)) O, q0,w

= —Eq[g(Vi,w)r(Vi, ) L1 i) <Q1w—qm

Tiw > — Eq [9(Vi, )7 (Vi, w) Louw.i] (

= B oV oY) (B ) gy o [0V w)r(Vi ) (qow—%w)

Z Lsz pOw .
=1

3

3\'—‘

= _El,w [g(muw>7_(‘/uw)] (Llwz p1 w) EO,w[ (‘/zyw Vvuw

Applying the result of (i) to the first difference of (31), we conclude that the difference in (ii) is

equal to

g i, W Llwzglwz g i, W L0w150wz —-1/2
- _ - r
by ot 1SS o0t st 0,

where

Fn,w = 75 sz,w V;aw)Llwz‘F § QVz,w (‘/i,w)LO,w,i
1 n
-E w W: W: - L w,t w
L [9(Vi, w)T( ’w)]n;:l( Lwi ~ Pluw)
1 n
-E w 2 ) - L w,i w) -
o g5 3 (s = o
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The proof is complete because
1 n
{n > 9V, w)T(Viyw) — Buy [g(Vi, w)r(Vi, w)]} Ly w,i

{ Zg Vi, w)r(Vi,w) — Eo,w[g(vi,w)dvi,w)]}fzo,w,i

+E1,w [ (V;,v ’LU) (‘/7,7 U))] pl,w + EO,w [g(‘/u w)T(‘/h w)] Po,w,
rearranging the terms. m

Proof of Theorem 3 : Note that

R 1 Plw - g(Vi,w)Yi  pow - g(Vi,w)Y;
Twate — Twate = ———— — Lni— - = lni =7~
ware e Eg(X;) u;v q1,wn ze%:w " (Vi,w)  qown Zg: " po (Vi w)
+Rn — Twate;
where

o 1 o
T Zeew s X 9(Viow) Ly Eg(X))
X Z pl,w Z in,zg(‘?’

- -
wew | P ilsr, Pt

w)Y; _ Pow Z i '9<V;77U)Y2
by w) qo,wn e ﬁ()(‘/;h U})

v 1€50,w

Now, since Y, ey £ 30 9(Vi,w)Luw,i = Eg(X;) + Op(n~'/?) and

3 P1w S imgA(VZ"/w)m _ Pow S i 9(Vi, w)Y;
wew | ™ iés nViw)  gown i€S0.w

(Vi,w)Y; (Vi,w)Y;
Yo e s A e 5 SO o)
wew q1,wn €510 uw QOwn €S0, z;w

we find that

1 1
i = {ZwEW}L im1 9(Viyw) Ly _Eg(Xi)}

Pluw g9 Vz,w Po,w 9(Vi, w)Y; ~1/2
X g g — E +op(n ).
wew | D™ = (Vi) qown €S0, po(Vi, w)
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Observing that

Z Prw Z g Vuw Z glvi,w)x; Vz,w Y
wew qlw €51 ‘/sz q0w €S0, V;,’w
= Eg Xi)Twate+OP(n_1/2)

and
1 1
Swew ¥ ie 1g<m,w> - Eg(X))
Dowew i Piet Q(Vu’w)L - Eg(X3)
= - = +op(1),
Eg(X;)? (1)
we can write
_ ZwGVV 711 = 1 g(VH w)Lw,i - EQ(XZ) —1/2
R = - Eg(X ) Twate OP(TL )
- Z Zg Vi, w Ly, iTwate T Twate T OP(n_l/Q).

wEW

Applying Lemma A3(i) to the first sum in (32), we obtain that

N Vi,w)Y; N Vi,w)Y;
pl,w Z i 7'g( 7 ) (. Po,w Z ln,ig( % ) 7 +Rn_7wate

1
Elg(X;)] 2

)y | Bon S5 " (Vi,w)  gown S Po(Vi, w)
L1 wi€1w, Lomé‘om}
g V w { ) ) ) ) _ ) ) k) )
Xz w;\/ ; v pl(‘[iaw) pg(‘/;‘,’w)

Z Zg Vi, w ‘/;7 w) Twate)Lw,i + OP(n_l/2)'
wEW =1

By applying the Central Limit Theorem, we obtain the asymptotic distribution of 7qte-

As for Tyate, Observe that

Twate — Twate (33)
1 P1w = (VYM w pO w }/; ~
— ’ 1, ;= + Ry, — Twate-
Eg(X;) u;\/ 1w ze%:w i pl(%,w now Z ,w) o fwate
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- w 7 Vi,w
whore Bag(Xi) = Doy 25 Tyg, Tne 28 1) = B[g(X,)5,(X,)] /Bg(X,), and

R — { _ 1 }pl,w Z i g(‘/;aw)}/;
" E19(X;) Eg(Xz) Lw o= ’ ﬁl(‘/z:w)
{ 1 1 }po,w S i g(Vi,w)Y;
9(X;)  Eg(Xi) S now s po(Viyw)

nl’w 71631’10
w T ‘/’ia }/tL —
pow g~ g, IRV e () 4 Op(n )
10,w icS, po( z,lU)
7 0,w
Hence
~ 1 1
R, = { }T1E9<X )
Eig(X;) Eg(Xi)
1 1
= - T0Eg(X;) + op(n~1/?)
{EOQ(XZ') E!J(Xi)}
. Elg(Xi) — Eg(X;) EOSJ(Xi) — Eg(X;) -1/2
— Eg(X)) T+ Eg(X)) 7o + op(n )
— Elg(Xi)Tl — Eog(Xi)TO -1/2
= Eg(X)) + Twate +0p(n ).

However, observe that

 Eig(Xi)71 — Eog(Xi)70
Eg(X;)

= _# DPrw 1 (V 7-1 pOw ‘/Z,’LU )
= BRG] = > LS Z"“m,m

n n
wEW LW €51 0w 45,

(34)

By replacing Y;1{(D;,W;) = (1,w)} by 711{(D;, W;) = (1,w)} and Y;1{(D;,W;) = (0,w)} by
Tol{(D;,W;) = (0,w)} in Lemma A3(ii) and noting that Tyae = 71 — 7o, we find that the last

term in (34) is equal to

Twate
“By(X) 2w Z{g Viow) = B lg(Vi, w)]} L,

Twate
Eg(t > 3 (o0h0) = B (Vs 0]} Lo

T1 —

EQ(XZ)

Z {B1,w(9(Vi, w)]p1,w + Eowlg(Vi, w)lpow} + op(n~'/?).
wew
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Observe that for the last term,

T T
1 0 Z { 1w ‘/sz)]plw +E0w[ (Vi,w)]po,w} = Twate-

Therefore, by applying Lemma A3(ii) to the leading term of (33), we conclude that Tyate — Twate
is asymptotically equivalent to (up to oP(n_l/ )

Z Zg i, W Llwzglwz_izg ‘/z,lULszf':sz
Eg(Xz n 1(Vi,w)

i—1 Po,w ‘/l:w)

1
Eg(Xz Z ZZ <1 ‘/zaw Llwz"‘CO(‘/ww)Lsz)

Eg(le) Z {Brwlo (Vi w)r (Vi w)prw + Bowlg (Vi w)7 (Vi )P0} = Twate:

The second to the last term is actually 7,4t cancelling the last 7,4te. The wanted result follows
from the Central Limit Theorem.

Proof of Theorem 4 : (i) We first consider 7qst. Let E; [8y(X;)] = E [Bo(X;)|D; = 1]. Note that

~ 1 w w }/:L B
Tatet — Tatet — — Z pl Po, n z = )) + Rn — Tatet (35)
weW ZESI w 74630 w

where

R = i . Z Po,w pl szw Y;

" pl Z’LUGW % iGSO,w 1n,zﬁ1(maw)/ﬁ0(‘/zaw weW Tlow ZES " pO ‘ZL?w)
Note that Tatet = E1 [Bl(Xl)] — E1 [ﬁO(Xz)],
Po,w Z ) _ Z [ w) _ —-1/2
Z = PowE —|(Di, Wi) = (0,w)| + Op(n™"/%)
wGW zESow w) weW VZ w)
p1(X;) ] —1/2
= E D, =0 + O ,
21D = 0|+ Op(a )
and
w w)Y; Vi,w)Y; _
S e 5 5 P = Y [P0, W) = (0.0)] + 07
wew ! W eS80 w weW PolVi,
p1(Vi, w)Bo(Vi, w .
= 3 B [PORRUE) D w) = 0,0 + Opn7 1)
weW Po( Vi,
P1(X;)Bo(X5) ] 1/2
= E D;=0 4+ Op(n
|: PO(Xz) | Po P( )



However, we can simplify

E[pl( )|D ] 0:E|:p1(Xi>(1_Di):|:E[pl(Xi)]:pl

po(Xi) po(X;)
and
PL(Xi)Bo(Xi) p(X)Bo(X)(1 = D) |
E[ po(Xi) D _0] N E[ po(X;) ] = E [p1(Xi)Bo(Xi)]

Hence we can write

I O LA R
_ 1 ZPOw 3 1m~ )E1[5o( X)) = piEq [B1(X0)] b + Tater + op(n~13).
D1 weW ZESO’UJ 'La )

Plugging this into (35) and defining £4; = Yy — E [84(X;)|D; = 1], we write

. . - p1(Vi,w)ép, _
Tatet — Tatet — —— Z pli €14 — pOi’w Z 1n,zpl~((Z(M —I—Op(ﬂ 1/2> (36)
Lo | v i€S1 0w 10,w i€50,w PolVe,w
_ L Z Plw Z B Po,w p1(Vi, w)éo
1w | Mw i€S1 v 0w €50, po(Vi, w)
Po,w . = mViw) o p1(Vi,w
. Z = Z 5071{1nﬂ~ EV}? g n,i 2 EVH %}
wEW 10,w i€So., pol(Vi,w po(Vi,w
1 Po, . (7 n(Vi,w) p1(Vi,w
o e X (i ) | e
b1 oW 0,w i€Sow bol Vi, w bol Vi, w
= B,—C,—D,+opn 1/2) say
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We consider D, first. Write it as

= — €o,i _
LSy | 0w S po(Vi, w)
1 P0,w . <P1(Vé,w){Po(Vi7w) —ﬁo(Vuw)}) ~1/2
+— —— Eo,i +op(n
P1 u;\} q0,w Z pE(Vi, w) ( )

Apply Lemma A2(i) to write Dy, as (up to op(n~/?2))

72 ZEQ EOZLOwl‘VZ,W—U)]jlwz
n Do VZ,M)EQ[ w,z|V;7Wz —w]

wEW i=1
L Z { Z EQ 507, 7y - w] pl(v;aw)jwz}
wGW =1 pO(V:Law)EQ[ w,'LH/qu = ]

Defining Ay, = B4(Vi,w) — E [B4(X;)|D; = 1], we write the last difference as
= Z {1§:A T }_1 Z {1276 (Vi, w) Ao i, }
Lwew Ui P PLgew Ui e e
because similarly as in (28),

Eq [Eo,iLo,w,i| Vi, Wi = w]
EqQ [Ly|Vi, W; = w]

= po(Vi,w){Bo(Vi,w) — Eq [Bo(Xi)]}
= po(Vi,w)Ap ., and

= {Bo(Vi,w) = By [Bo(Xi)]}p1 (Vi w)
= p1(Vi,w)Aouw,i-

Eq [0,iLow,i|Vi, Wi = w] p1(Vs, w)
po(Vi, w)Eq [Ly,i| Vi, Wi = w]

Applying Lemma A2(i), we write Dy, as (up to op(n=1/2))

Ly Ly iR EulunWimul
pg ‘/z,w EQ[ w,z“G,WZ: ] o

wGW =1

1 P1 V,wE 80 LO ZV,W
v 3 Ly R Eeslond WISl
plweW i1 pO Zaw Q alVi, Wi =w

po(Vi, w) P1

- _i Z { Zpl ‘/“w Aowzjoﬂlhi} + i Z {,rllzpl(viuw)AO,w,ijw,i

wew =1 weWw i=1
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Therefore, D1, + Da, is equal to

— Z {7’1L ZAO,w,ijl,w,i} - i Z {’;ll Zpl(‘/i,w)AO,w,ijw,i}

L wew i—1 Pr ey i—1
‘/7,7w A W, 0
Ly { LT .7}
wGW i=1 pO v
1 1 _
+— Y {an(vi,w)Ao,w,iJw,i} +op(n~'/?)
p1 weW i=1
‘/;aw A w,i —
= Z { ZAszjlwz} - Z { Zpl V 0 jO,w,i} +0P(n 1/2)'
L wew i=1 P1 e i—1 po(Vi, w)

As for the last difference, recall the definition Jy i = Law: — EqQ [La.w,i|Vi, Wi = w] and write it

as

1 L= (Viw)Bow,i
Z { ZAsz 1wz}pl Z {nzpo(Vi’w)LO,w,z}

i:w]}.

wEW wew =1
T Z {n Z Aow,iEQ [L1,w,i|Vi, Wi = w]}
wEW i=1

)

pl ‘/;77~UA0wz

Note that from (29),

w)
E L w,t| Vi = E iy VWi = 37
Eaal i Wi = ] = 20 | l @7
Plw P0,w P1(Vi, w)qo(Vi, w)
= 2 ‘/;’w
quql( )~ q0,w po(Vi,w)
fr(Vi,w)  pow qo(Vi,w)  pow
= Vi,w ’ + = Vi, w
pl( )fQ(Viaw) QO,wPo(V%,w) qo,wQO( )
fp(Vi,w)  fp(Vi,w) fp(Vi,w)
= p ‘/Z'vw - +p V;;,’U) =0.
W) fo W) foVow) TP 0 w)
Therefore,
Dn — Dln‘l'DZn
= Z{ ZAszLlwz}
wEW
(3] Awl —
—z{ T R
wow (i po(Viw)
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Now, we turn to Cy, (in (36)) which we write as

g (V;?w) 2 ﬁl(v;?w) -1/2
- zL w,e nz~7_1niA7
L5 LS it {1 B0 g, PO o0

Loew s Po(Viy w)
- w%:v ;EOZLOMM{%VZ, w)po (qu%o( i§m7w>po<vl,w>}+op(nl/2)
_ wzw ;EOZLOWm{m(vi,w){p;(gx(/%%—ﬁom,w)}}
+wez;v ;mLOW g {{mw,w) ;éa(l&vz)u>}ﬁo<w,w>} s on(n 1),
= w;v ZsolLomm{M%w){ﬁ;%%—ﬁom,w)}}
u;v ;EO Lomiln { S _za%’io&:f)}ﬁm’w)} T op(n~11?)

As for the last term, we apply Lemma A2(ii) to write it as

Vi, w)€o i L 0.0 — Now — _
= Z |:p1 i 0, sz:| <q0,w Q9w  9Lw q1,w> +0P(n 1/2)

L wew po(Vi,w) q0,w Tw
il Z E [p; Vza’w)AOUM] (CIOw e QI’w> +0P(n_1/2)
L o e
because
E [Pl(Vi,w)éo,iLo,w,i] _ Powgp [pl(Vi,w)?fozl{(Du Wi) = (O,w)}]
0 = Q
po(Vi, w) q0,w (Vi w)
Vi,w e
- B [20Ee 1((D W) = (0.0))] = Blpu (Vi w)ead
pU(V;a )

= E[pi1(Vi,w)Aouw,]-

Now, let us turn to B, (in (36)) which we write as

D1 ‘/YzleEO’LLsz
g E €14:L — E + E,,
n { Lt P po(Vi, w) } "

wew

where

Eny

n n ~ z
. s 1 Vi,w)&oi(Lowi — Low.i
Z El,i(Ll,w,i _ Ll,w,i) . E Z pl( i ) O,Z( 0,w,i O,w,z) } )

i=1 i=1 pU(Vi7 w)

SRS

1
2 A
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Now, we focus on F,,. Observe that

=1

1~ Q1w — 41 _
= = E E1iL1 0, (“’w +op(n 1/2)
n q1,w

i=1

_ Q1w — q1, _
= EQ [817Z‘L17w71‘] <1 @ ! w) + Op(n 1/2).
q1,w

As for the last expectation,

Boleriliui = “Bolril{(Di W) = (Lw)}] = By 1{(D;, W) =

I, - 1. w — Q1w ~
- Z&,i(Ll,w,z‘ —Liwg) = - Z&,ipl,w ((11(12(]1> (D, W;) = (1,w)} + op(n~/?)
i=1 Lw

= E[pi(Vi,w) (61 (Vi, w) = E[5,(X3)| Di = 1])] = E [p1(Vi, w) A1 ]

Hence

e~ - —§ _
2 21 = L) = BV )] (B0 ) o),

i—1 q1w

Also,

72171 (Vi w)Z0,i(Lowi — Low,i)
po(Vi, w)

_ p1(Vi, w 50 i (90w — Qo,w
= - Z oV, Lo w,i
i—1 ) w q0,w

= E[pl(%7w)A0,w,i] (W) + Op(n_1/2)'

Therefore, we write FE,, as

- Z E [p1 (Vi, ) A1) (‘hwqw>

b1 weW q1,w
qo0,w — q0w -1/2
- E E pl ‘/17w>Asz] +op ( )
b1 wew q0,w

39



Now, let us collect all the results for B,,, C,, and D,, and plug these into (36) to deduce that

Tatet — Tatet

1 n ~ D1 Vz,w EOzLsz
— Z {nZa,iLl,w,i - Z o %,w) }

wGW i=1
dl,w — 41w q0,w — (j(),w
LS B (V)AL () L S B (Viw) Mg ()
LW q1,w p weyy q0,w
L Z p1 V;,w A()wz] (qo,w — qo,w _ 1w — QI,w>
wGW qo,w qu
p1(Vi, w) A0 _
Ly { A L} 3 { PRI L} 4 op(n2
Loew im1 pl e izl po(Vi,
By consolidating the second, third, and fourth terms, we rewrite
- 1 ~ b1 Vuw EOzLsz
Tatet — Tatet = Z — 281,1L1,w,i - Z
wEW{ni 1 i=1 Po ‘/Z’w)
o — 4
£ 3 B (Viw) (7(Vi,w) — BIr(X0)|Di = 1)) (qq>
p1 wew q1,w
1 < 1 (V;, w) A, _
DI B S S I ] A e
Lo (Vi Pr ew i=1 po(Vi, w)

By writing &4, = Y — 54(X;) + 84(X;) — Eq1 [81(X;)] and splitting the sums, we rewrite

Tatet — Tatet

sz’w Yoi — 5 { L,w,i
- Z{ Zyli—ﬁl(Xz‘))LLw,i— Zpl ) 0(1/;,13§ )) Lo }

wEW =1 i=1
+p11 > {1 > (Bi(X) —Ei [By(X >]>L1,w,z}
weWw i=1
- p1(Vi, w)(Bo(X ) Eq [Bo(X5)])Low,i
A i)
_y (e = Bw
+1%E[p1(%,w) (7(V;,w) — E[r(X;)|D; = 1])] ( o >
. Z { Z{Bo Vi,w) — Eq [Bo(Xi)]}Ll,w,z}
wGW
1 p1(Vi, w){Bo(Vi, w) — BEq [Bo(Xi)]} ' on(n—1/2
+p wew{ Z po(Vé,w) LO,w,z}ﬁL P( )
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Note that
E [p1(Vi,w) (7(Vi,w) — E[7(X3)[Di = 1]))] = E10 [7(Vi,w) — E[7(X3)|Di = 1]] p1,w-
Using this and noting that E [7(X;)|D; = 1] = T4t and cancelling out some terms, we rewrite

Tatet — Tatet

V;’w Yoi — 8 i L,w,i
- Z{ ZYli—ﬁl(Xi))Ll,w,i_ Zpl I O(Vz,u(jg )) Lo }

wEW 1=1 i=1
o Z Z V;’w Tatet)Ll,w,i
wGW i=1
e Z P (V:La w) Tatet] (qu - (jl,w) + OP(TL_l/2)
weEW ngqi,w
1 1 ¢ p1(Vi, w)(Yoi — Bo(Xi)) Low,i
- L S - A - L Y o
p1 wEW{ni:l P po(Vi, w)
1 1 B
+171 Z n Z(T(Vi’ W) — Tatet — Baw [T(Vi,w) = Tatet]) L1w,i + op(n™/?).
weW  i=1

The last equality follows because

1
— Z b1, whi1 ;W V;’ w) Tatet] = —E [(T(XZ) - Tatet) 1{D7, = 1}]
wGW P
= E[r(X;) — Tatet|D; = 1] = 0.

Hence the wanted result follows by the Central Limit Theorem.

(ii) The case of Taterp is a special case of Taer with W =1 for all ¢ = 1, - - -, n. Hence we focus on

T atet,p- We write it as

. 1) m H1 (X Y _
Tatetyp — Tatet = — Z Y, — — Z 1 N e —— - + Ry — Tater + OP(n 1/2)3
P\ @anics L Pof

where Lg; = > cp H{Di = d}pa/qq and

Ry

: L P17 tt—i‘OP(n*l/Q)
2 ate
LS Lnib (X)) {L1i + Lo} P

Tate —
= { Z n,iP1 (X {Lu—i—Loz}} ptlt—i—o]a(n 12y,

3\'—‘

41



Hence we can write 7 gatet p

Gn

— Tatet a8
pl 2 pl (X Tatet —1/2
ZY——Zan N X - Zlnzpl {L11+L01}+0p( )
"ics o7 s, Pof
A Y: _
qﬁl S ¥ Fatrbnpn (60} = 225 1 () {po(X) . Tatet} Top(n~12)
i€S] i€So
oL Z{Y Tatetpl(X ) - Z in,ipl(X ) {Y; + Tatet}
qon - po(Xi)
ZES €S0
P1Tatet Z 1 1 -1/2
In z{pl Z 1n zpl { - = ) } + OP(n )
an - ics, " icSo po(Xi)  po(Xi)
PLS™ Y~ raremi (X Z pi( Yi W B e dop(n12),
qn po(X:)
1€51 zeS
B S Ll () = a0} { e } and
pigon = " ' Ppo(Xi) M
1 T ; p 2
o plql(zet Z Lni{p1(Xs) — p1(X ;;(;1 1 5 Yilni {po(Xi) — po(Xi)}

1€S]

By applying Lemma A2(i), we write F}, as

b Zn: Eq [(Yi/po(Xi) + Tatet) Loi| Xi] Y
pin i1 EQ [L1|XZ] it
L —~ Eq [(Yi/po(Xi) + Tatet) Lo.i| Xi] p1(Xi) 12
T om 2 Eq [Li|Xi] Ji+op(n=""7)
= _72 (Bo(X4) + Tatetpo(Xi)) J1,i
pin £
72 (Bo(X;) + Tatetpo(X:)) p1(Xi) Ti + op(n~/?)
= _IE Z (Bo(Xi) + Tatetpo(Xi)) po(Xi) Jn.i
’mn Z (B0(Xi) + Tatetpo(Xi)) p1(Xi)Joi + op(n~1?).
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Again by applying Lemma A2(i), we write G, as

n

_ Tatet T atet 2
X. A
- Zpl )T+ i ;pl( )T
pl )
+p1n Z jOz
—72101 Xi)Ji + op(n™/?)
T T
= pjt;t Zpl \711 atel Zpl jOz
=1
p1 L —1/2
plnz jﬂz Zm Xi)J,i +op(n 7).

Collecting these results, we write

R 1|1 Y;
Tatet,p — Tatet,p — 171 {TL Z Ll,i{}/i - Tatetpl } . Z Lo zpl {pO(X ) + Tatet}}

—*Z (Bo(Xi) + Taterpo(Xi)) po(Xi) T

pin 4

]Tn Z (Bo(Xi) + Tatetro(Xs)) p1(Xi) Jo,i

n
_ Tatet Tatet
a; Zpl Xi)J,i + a; p1(Xi)* Jo.i
b1 i1 b1 i1
P
plnz 1 jﬂl_izpl j11+0P( 1/2)'
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By rearranging the terms, we rewrite 7atetp — Tatet,p S

Y, — i) 1p1(X;
{ Z{Y B (X }le_Z{{ 5};)0(()(3)}17( )}Lo,z}

=1

—i—il { B1(Xi) = Tatetp1(Xi) — (Bo(Xi) + Tatetpo(Xs)) po(Xi) }L1'
prn —TatetP1(Xi)po(Xi) — p1(X;)Bo(Xi) '

11 {50(Xi)p1(Xz‘)/po( i) + TatetP1(Xi) — (Bo(Xi) + Tatetpo(Xi)) p1(Xi) }Lm

pin —~Tatet1 (X3)? — pH(X:) Bo(Xi)/po(X;)

)

i=1

ﬁz (Bo(X. +ratetpo<x>>%po<xi>ql<xi>

_ZR Z BO + TatetPO(X )) %pl(Xi)qO(Xi)

n
T T
+ at;t Zpl(Xi)pO(Xi)%ql(Xi) - = Zpl(X )Q%qO(X )

h1 q mn =
P1 ) Po 1« -1/2
X)+— > PLoy(Xi) + op(n~12),
me SO0+ S (KX s () + orlo )
Or by cancelling terms out,
. Z {Yi — Bo(Xi)}p1(Xi)
atet,p — Tate = Y L i — L i
Tatet,p — Tatet,p { E { /51 } 1 ”Z 1{ po(Xz') 0,

+7*ZL11{7— Tatet}
— Z (Bo(X2) + Tatetpo( X)) 2rqr(X:)
P n q1

_72 <BO Xi) + TatetP1 (X )) @qo(Xi).

pin s
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We rearrange the terms to write

%atet,p — Tatet = { Z{Y 51 }Ll i— E Z { {Y ﬁ][)]o(()éz)}pl (XZ) } LO,i}

=1

;ﬁ Z Ly {7(Xi) — Tatet}
L Popi(Xi) .
+HﬁZm ( 0(X;) - %mufm&ﬂ

— ZTatet (p() ;Q1(X i) — };]QO(Xz)pl(Xz)>

pln

- ol Y- Be(Xa)m ()
- pi{ Zle{Y B1(Xi)} nZLo,z{ 0 (X)) }}

=1

*5 Z Lyi{7(Xi) — Tatet} -
i—1

The last equality follows because po(X;)q1(Xi)pi/q@1 = p1(Xi)qo(Xi)po/qo (e.g. see (37)). The

wanted result follows by the Central Limit Theorem. m

The following lemma is used to prove Lemma A2(i) and useful for other purposes. Hence we
make the notations and assumptions self-contained here. Let (Z;, H;, X;)_; be an ii.d. sample
from P, where Z; and H; are random variables. Let X; = (X1;, Xo;) € RF1FE2 where Xy; is
continuous and Xo; is discrete, and let K;; = Kj, (X1; — X1;) 1{X2; = Xo;}, Kp(-) = K(-/h)/hl1.
Let X be the support of X; and f(-) be its density with respect to a o-finite measure.

Assumption B1 : (i) For some o > 4, supzcx||z1|| E[|Z|7|X; = (z1,22)] < 00, E[|H;|°] < 00
and E||X;]|7 < oc.

(ii) f(-,x2), E[Z;| X1 = -, Xoi = x2]f(-,x2) and E[H;|X1; = -, Xo; = xa|f(-,22) are L + 1 times
continuously differentiable with bounded derivatives on R** and their (L; + 1)-th derivatives are
uniformly continuous.

(iii) E[f~*(X1;)] < oo for some a > 4.

Assumption B2 : For the kernel K and the bandwidth h, Assumption 3 holds.

Lemma B1 : Suppose that Assumptions B1-B2 hold. Let 13 ; = {(n — 1)t > i Kji > On}
Then

Ui 2z ZiKGi -
sz { [Zi] Xi) — szﬁj AL } = \}H;E[HJXJ {E[Zi| X;] — Zi} + op(1).

j=1.ji Kji

Proof of Lemma B1 : For simplicity, we only prove the result for the case where X; = X1 ; so
that X; is continuous. Let fj(l‘) =L > 1,j2i Kn(X; — z1) and define 1,; = 1{f(X;) > dn}.
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Observe that

1* 7K,
IZH{ 1Z:|X)) — Z?J;]ZZK j}
+—ZH1 { Zi| X;] (( )) ”1Z?=1,j¢iZjKji}

f(Xi)

1 1
S 3 a2
(n— 1 Pl d® F(Xa) - fi(Xa)
= A1n+A2n+A3n7 say.

As for As,, we write it as

1 1
WZHI 2kl X ){f(Xi)_fz‘(Xi)}

1 . 1 1

J=Llj#1

= Bin + Bay, say.
As for By,

_ FiX0) = f(X5)
P = szl Z‘X]{ fi(Xi) }

— FilX) = £(X0)
B \fZHl Z‘X]{ fi(Xi) }

Zﬂl 2% { § <Xi>—f<xi>}{ ok f_&)}

= Cln + C2n, say.

As for Cy,,
Ol < 5 WZ B 121X {£(X) - 10} 5555
SUperis |(2) — (@) o~ | Hill BIZ1X)
SRR Z 159

Since E [f(X;)™*] < oo, we find that E |H;E [Z;|X;] /f(X;)| < oo by Cauchy-Schwartz inequality.
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By Theorem 6 of Hansen (2008), we have

sup |f(z) — f(x)| = Op(en).

zeRL1

Therefore,
|Con| = v/né,, " x Op (&) = op(1).

We turn to Cq,,. We write it as

1 ¢ 1 fi(X0) — fF(X) 1
T 2 HELZiX ’ — N HE[Z]|X;](1-1*,
7L HE J{ o s S HBIZIX (115
= D1y + Doy, say.
Note that
1 & ;o
Don = =3 HE[Z|Xi] 1 (1-13,) + —= > HEZ]X] (1- 1) (1= 1)
vn i=1 Vn —
= Ei, + Eoy, say.
As for Esp,

E[|Ezn|] < CVRE(|L - 1n,4]] < CVndaE [fi(X;) %] — 0,

so that Dg, = E1, 4+ op(1). As for Ey,, note that

El|Bul] < CVAE [l |1 - 15:]] = VAP { fi(X:) < 6, and £(X) 2 60}
< CvVnP {6, < fi(Xi) < 8y + v} +o(1),

where v, — 0 such that \/nv? — 0 and v, /e, — oco. (If we take v, = d,,, then the latter condition
is satisfied by Assumption 3(ii).) The last inequality follows by Theorem 6 of Hansen (2008). The
last quantity is bounded by

Cv/n(6n +v) E [fi(X:) ™% — 0.

Hence Dy, = op(1). Therefore, we can write

1 & 1:;,ifi(Xi) — f(Xi)
Bun = ;HE 1Z;| X] { @) } +op(1).

Following previous steps, it is not hard to show that B, = op(1). Hence we conclude that

Ain + Asp, = op(1).
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We are left with As,. It remains to show that
n
1
Agn = —= Y B[H|X;]{E[Z|Xi] - Zi} + op(1).
Vi
First we write

1 n n
Ay = ———F— qn(Si, Sj)
oDV 2y 2 S

1 n
- 7 ; E [qn(Si, S7)|S;] +
where q(S;, 5j) = Hi {B[Zi| Xi] — Z;} Ky(X; — X3)/f(X;) and S; = (Xi, Zi, H;), and
1 n
Tn = ﬁ ;{qh(si? SJ) —-E [Qh<si7 SJ)‘S]]}

Observe that

n'E (qn(5:,9)?) = n'E [Hf {B[Zi|Xi] — Z; Y {Kn(X; — X0)}? ) £2(X0)

< nl\/E [{Kh(xj - XZ-)}4] = O(n~'h=2l1) = o(1)

by change of variables and by Assumption B2. Therefore, by Lemma 3.1 of Powell, Stock, and
Stoker (1989), r, = op(1). As for E [q,(S;, S;)|S;], we use change of variables, Taylor expansion,
and deduce that

B (1B (o1 (5:, 5))I85] — BIHIX){BLZ|X;] — Z;}] = on™'/2)

The wanted result follows from this. m
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