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Inference of Signs of Interaction Effects

in Simultaneous Games with Incomplete Information

Abstract

This paper studies the inference of interaction effects, i.e., the impacts of players’ actions

on each other’s payoffs, in discrete simultaneous games with incomplete information. We

propose an easily implementable test for the signs of state-dependent interaction effects

that does not require parametric specifications of players’ payoffs, the distributions of their

private signals or the equilibrium selection mechanism. The test relies on the commonly

invoked assumption that players’ private signals are independent conditional on observed

states. The procedure is valid in the presence of multiple equilibria, and, as a by-product of

our approach, we propose a formal test for multiple equilibria in the data-generating process.

We provide Monte Carlo evidence of the test’s good performance in finite samples. We also

implement the test to infer the direction of interaction effects in couples’ joint retirement

decisions using data from the Health and Retirement Study.

JEL Codes: C01, C72
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1 Introduction

Strategic interaction effects occur when a player’s action choice affects not only his or her

own payoff but also those of other players. In simultaneous discrete games of incomplete

information, each person has a private signal about his or her payoff, while the joint distri-

bution of such private signals is common knowledge among all players. In a Bayesian Nash

equilibrium (BNE), individuals act to maximize their expected payoffs given their knowledge

of these distributions as well as the payoff structure. Such models have found applications

in a wide array of empirical contexts where players are uncertain about their competitors’

payoffs given their own information. These include airing commercials at radio stations

(Sweeting (2008)) and peer effects in recommendations by financial analysts (Bajari, Hong,

Krainer, and Nekipelov (2009)).

Earlier works have studied the identification and estimation of these games using a

wide spectrum of restrictions. These include (but are not limited to) the independence of

private information variables from observable covariates, parametric specification of relevant

distributions or utility functions, or constraints on the set of Bayesian Nash equilibria.1 In

comparison, in this paper we focus on inference of the signs of interaction effects, which are

allowed to be individual-specific and state-dependent, under a minimal set of nonparametric

restrictions on private signals and payoff structures. Our choice of focus is motivated by two

considerations. First, signs of interaction effects alone have important policy implications.

For example, consider the context of couples’ joint retirement decisions as studied by Banks,

Blundell, and Casanova Rivas (2007) and Casanova Rivas (2009). If spouses enjoy retire-

ment more when their partner is retired as well (i.e., interaction effects are positive), then

1Wan and Xu (2010), for example, consider the set of monotone, threshold-crossing Bayesian Nash equi-

libria. Recent work by Grieco (2010) studies a class of games with flexible information structures that also

subsume games with complete information where players know each other’s payoffs for sure. In a similar

spirit, Navarro and Takahashi (2009) suggest a test for the information structure that, among other things,

relies on a degenerate equilibrium selection rule and independence of residuals and observed covariates.
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any exogenous change in retirement provisions that force the wife to delay her retirement

should at the same time also dampen the husband’s incentive to retire. Second, while point

identification and estimation of the full structure of such games inevitably hinge on stochas-

tic restrictions on private signal distributions (such as perfect knowledge or independence)

and parametric specifications of payoffs (such as index specification), inference on signs of

interaction effects can be done under minimal nonparametric restrictions on the structure.

Such inference is valid even in the presence of multiple equilibria and does not invoke any

assumptions on the equilibrium selection mechanism in the data-generating process. This

feature of our procedure is particularly notable, since almost all previous work has relied

on stringent assumptions about equilibrium selection or multiplicity to attain identification

(e.g., the single-equilibrium assumption in Bajari, Hong, Krainer, and Nekipelov (2009)

and Tang (2009), equilibrium uniqueness in Seim (2006) or Aradillas-Lopez (2009), or the

parametric specification of equilibrium selection mechanism as in Sweeting (2008) or other

work).2

We first show how the existence of multiple equilibria in the data can be exploited to

infer the signs of strategic interactions. If private signals are independent from each other

conditional on observed covariates, the joint probability of a profile of actions must be the

product of marginal probabilities for individual actions in any single equilibrium. When

multiple equilibria exist in the data, the choice probabilities observed are mixtures of those

implied in each single equilibrium. We show in Section 3 that signs of correlations between

players’ actions are determined by signs of the strategic interaction effects. As a byproduct,

the correlations also allow us to identify the existence of multiple equilibria in the data (see

below). The assumption of conditional independence of private information is commonly

maintained in the literature on estimation and inference in statistic games with incomplete

2As indicated in Berry and Tamer (2007), another possibility is to resort to partial identification. Ex-

amples of such a strategy under complete information are Beresteanu, Molchanov, and Molinari (2009),

Ciliberto and Tamer (2009), Galichon and Henry (2009) and earlier references cited in Berry and Tamer

(2007).
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information (see, for example, Seim (2006), Aradillas-Lopez (2009), Berry and Tamer (2007),

Bajari, Hong, Krainer, and Nekipelov (2009), Bajari, Hahn, Hong, and Ridder (2009), Brock

and Durlauf (2007), Sweeting (2008) and Tang (2009)).3 The assumption is also common in

the literature on the estimation of dynamic games with incomplete information.

We then generalize these arguments for identifying the signs of interaction effects so

as to allow for the possibility that there is only a unique equilibrium for a given state in the

data. This is done by exploiting an exclusion restriction on the states. The idea relies on

the following simple intuition. Suppose that for some player i, there exists a subvector of

state variables that affect other players’ payoffs or private signals but not his or her own.

Then the correlation between actions chosen by i and others across different realizations

of such “excluded” states must be solely determined by the direction of others’ interaction

effects on i’s payoffs, provided private signals are independent given observed states. Such

exclusion restrictions on state variables arise naturally in many applications. For example,

in a static entry-and-exit game between two firms, it might be plausible to assume that some

idiosyncratic factors affecting Firm A’s costs (such as geographic location) may not enter

Firm B ’s profits or private information directly.

Another contribution of this paper is to introduce formal tests for the presence of

multiple equilibria in the data-generating process. Such tests arise as a natural by-product

of the logic underlying our inference of the signs of interaction effects. Note that the test

for multiple equilibria is of practical importance in structural empirical research. When the

number of players within a game is large, the conditional choice probabilities within a par-

ticular equilibrium may be consistently estimated from average choices in each game (see,

3A recent exception is Wan and Xu (2010), who nevertheless rely on further restrictions on the solution

concept and the environment to obtain identification. To handle the correlation in private types, they rely

on monotone, threshold-crossing equilibrium strategies and impose restrictions on the magnitude of the

strategic interaction parameters (see Assumption A in their paper). In a subsection, Aradillas-Lopez (2009)

also suggests an estimation procedure to handle cases in which the assumption is violated, but relies on the

assumption that a single equilibrium is played in the data.
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for example, Brock and Durlauf (2007), p.58). Nevertheless, when the number of players in

each game is small (as is typically the case in the empirical games literature), the conditional

choice probabilities will not be reliably estimated within individual games. It is then nec-

essary to pool data across games in which the same equilibrium is played so as to estimate

the choice probabilities using more data. In this case, testing for multiple equilibria is of

interest in its own right. Besides, most of the known methods for semiparametric estimation

of incomplete information games (without explicitly specifying an equilibrium selection rule)

has relied on the existence of a single equilibrium in the data (e.g. Aradillas-Lopez (2009),

Bajari, Hong, Krainer, and Nekipelov (2009) and Tang (2009)).4 Hence it is imperative to

devise a formal test for the assumption of unique equilibrium in the data-generating process.

The test we propose in this paper exploits the observation (also mentioned in the paramet-

ric model by Sweeting (2008)) that if private signals are i.i.d. across individuals, players’

actions must be independent in a single equilibrium but correlated when there are multiple

equilibria.

An innovation of our test for multiple equilibria is to use a stepwise multiple testing

procedure to infer whether each individual player has different strategies across the multiple

equilibria in the data-generating process. This is particularly interesting for structural esti-

mation of games involving more than three players, in which a subset of players may stick to

the same strategy across multiple equilibria. Semiparametric methods based on the assump-

tion of a unique equilibrium can still be applied to consistently estimate payoff parameters

for those players who do not switch between strategies in multiple equilibria. Hence, it is

useful to infer the identity of such players from observed distributions of actions.

For a parametric model with constant, state-independent interaction effects, Sweeting

(2008) proposed a procedure to check for multiple equilibria in the data by calculating the

percentage of pairs of players whose actions are correlated. In comparison, we develop

4For an illustration of how misspecification of the equilibrium selection rule can affect inference in a

complete information game with a small number of players, see Honoré and de Paula (forthcoming).
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stronger, new results by extending this intuition in a more general context where individual-

specific interaction effects may depend on the states in unrestricted ways. Besides, our test

also addresses two subtle issues not noted in Sweeting (2008).5 First, our test for multiple

BNE in the data is based on testing whether each individual’s action is correlated with

the total number of competitors choosing the same action. Therefore, our test has power

under alternatives in which multiple BNE exist in the data with only a very small number

of players switching strategies across the multiple equilibria.6 Second, we apply a multiple

testing procedure proposed by Romano and Wolf (2005) to test the joint null hypothesis that

the equilibrium in the data is unique (i.e., that none of the N players has switched between

strategies in the data). Within N − 1 steps, the procedure leads to a decision to reject or

not to reject the joint null. And if the joint null is rejected, the procedure infers the exact

identities of players who have switched between strategies in the data. This test is known

to effectively control the family-wise error rate, or the probability of rejecting at least one of

the true null hypotheses.

The paper proceeds as follows. We present our basic model and empirical character-

ization in the next section. In Section 3, we present the main results on the identification

of the sign of interaction effects. Section 4 outlines general testing procedures for inference.

Monte Carlo experiments and an application to joint retirement are presented in Sections 5

and 6. Section 7 concludes.

5The procedure used in Sweeting (2008) did not prescribe a decision rule to draw conclusions about the

existence of multiple BNE.
6In such a case, the number of players whose actions are correlated pairwise is very small. For example,

if only 3 players out of a group of 30 actively switch between strategies across multiple equilibria in the data,

then the percentage of pairs with correlated actions is only
(
3
2

)
/
(
30
2

)
< 0.0069. The procedure proposed in

Sweeting (2008) would fail to reject the null of a unique equilibrium in the data in this case.

7



2 The Model and Empirical Context

We consider a simultaneous discrete game with incomplete information involving N players.

Each player i chooses an action Di from two alternatives {1, 0}. A vector of states X ∈ RK

is common knowledge among all players. A vector of private information (or “types”) ε ≡

(εi)
N
i=1 ∈ RN is such that εi is only observed by player i. (Throughout the paper we will use

upper case letters for random variables and lower case for their realized values. We use ΩR

to denote the support of any generic random vector R.) Conditional on a given state X = x,

private information ε is jointly distributed according to the CDF Fε|X(.|x). The payoff for

player i from choosing action 1 is U1i(X, εi) ≡ ui(X) + (
∑

j 6=iDj)δi(X)− εi, while the return

from the other action U0i(X, εi) is normalized to 0. Intuitively, ui(X) specifies a base return

from action 1 for player i. Meanwhile δi(X) captures interaction effects on i’s payoff due to

another player j who chooses 1. (This specification subsumes that of Sweeting (2008) in the

context of binary choices, since it allows the interaction effects to depend on states X and

ui, δi to take general forms.) The return functions (ui, δi)
N
i=1 and the distribution (though

not the realization) of private information Fε|X are common knowledge among all players.

We maintain the following major identifying restrictions on Fε|X throughout the paper.

Assumption 1 Conditional on any x ∈ ΩX , εi is independent of (εj)j 6=i for all i and has

continuous, positive densities over the support Ωεi|X=x.

Assumption 1 allows X to be correlated with private information of the players, as

may be desirable in empirical applications. This is a common assumption in the econometric

literature dealing with incomplete information (dynamic and simultaneous) games. A pure

strategy for player i in this Bayesian game is a mapping si : ΩX,εi → {0, 1}. Letting Si(X, εi)

denote an equilibrium strategy for player i, equilibrium behavior prescribes:

Si(X, εi) =

 1, if ui(X) + δi(X)
∑

j 6=i E [Sj(X, εj)|X, εi]− εi ≥ 0

0, otherwise.
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and because of Assumption 1, E [Sj(X, εj)|X, εi] = E [Sj(X, εj)|X] ≡ pj(x).7 Hence, under

this assumption, a Bayesian Nash equilibrium (BNE) in pure strategies (given state x) can

be characterized by a profile of choice probabilities p(x) ≡ [p1(x), . . . , pN(x)] such that for

all x ∈ ΩX ,

pi(x) = Fεi|X

(
ui(x) + δi(x)

∑
j 6=i

pj(x)

)
for all i = 1, 2, ., N (1)

where pi(x) is player i’s probability of choosing action 1 conditional on the state x and Fεi|X

is the marginal distribution of εi conditional on X. Let Lx,θ denote the set of BNE (as

characterized by solutions in p to (1)) for a given x and structure θ ≡ {(ui, δi)i=1,2, Fε|X}.

The existence of pure-strategy BNE for any given x follows from Brouwer’s Fixed Point

Theorem and the continuity of Fεi|X under Assumption 1. In general there may be multiple

BNE, depending on the specifications of Fε|X , ui and δi.

We assume that econometricians have access to a large cross-section of games between

N players. In each game, they observe choices of actions by all players and realized states

x, but do not observe (εi)
N
i=1 or know the form of (ui, δi)

N
i=1 and Fε|X . Our analysis posits

(i) that the structure (ui, δi)
N
i=1 and Fε|X are fixed across all games observed, and (ii) that

the choice data observed is generated by players following the pure strategies prescribed by

BNE. Econometricians are interested in learning (at least some features of) the structure

(ui, δi)
N
i=1 and Fε|X from the observable joint distribution of X and (Di)

N
i=1.

Suppose the choices observed in the data are known to be generated from a single

BNE in the data-generating process for all x ∈ ΩX . This may arise either because the

solution to (1) is unique or because the equilibrium selection in the data-generating process

is degenerate in one of the multiple solutions. Then (1) offers a link between observable

conditional choice patterns and structural elements (ui, δi)
N
i=1, Fε|X . Estimation can be done

7Given Assumption 1, other players’ private types can be easily included in the utility function. If

U1i(X, εi) ≡ ui(X) + fi(X, ε−i) + (
∑

j 6=iDj)δi(X) − εi, Assumption 1 implies that E [fi(X, ε−i)|X, εi] =

E [fi(X, ε−i)|X] and one can simply focus on Û1i(X, εi) ≡ ûi(X) + (
∑

j 6=iDj)δi(X) − εi where ûi(X) ≡

ui(X) + E [fi(X, ε−i)|X].
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under various restrictions on u, δ and Fε|X (see Aradillas-Lopez (2009), Berry and Tamer

(2007), Bajari, Hong, Krainer, and Nekipelov (2009) and Tang (2009) for more details).

This link may nonetheless break down when there are multiple equilibria in the data-

generating process. To see this, let Λx,θ be an equilibrium selection mechanism (i.e. a

distribution over Lx,θ) in the data-generating process that may depend on x and θ. That

Λ depends on x captures the idea that, as stated in Myerson (1991) (pp. 371-2), “. . . in

a game with multiple equilibria, anything that tends to focus the players’ attention on

one particular equilibrium, in a way that is commonly recognized, tends to make this the

equilibrium that the players will expect and thus actually implement. The focal equilibrium

could be determined by any of a wide range of possible factors, including environmental

factors and cultural traditions (which fall beyond the scope of analysis in mathematical game

theory), special mathematical properties of the various equilibria, and preplay statements

made by the players or an outside arbitrator. . . ”

Since X is commonly observed by all players in our model, we allow it to affect the

equilibrium selection mechanism accordingly. For any x such that Lx,θ is not a singleton,

the conditional choice probability observed in the data is a mixture of the conditional choice

probabilities implied by each pure-strategy BNE in Lx,θ. That is, p∗i (x) =
∫
Lx,θ

plidΛx,θ(p
l),

where p∗i (x) is the actual marginal probability that i chooses 1 conditional on x observed

from data, and pl ≡ (pli)
N
i=1 is a generic element in the set of possible BNE Lx,θ, with l

indexing the equilibria in Lx,θ and pli, the marginal probability for i to choose 1 given x

and θ implied in equilibrium l. While the fixed point characterization (1) holds for every

single BNE pl ∈ Lx,θ by definition, it does not necessarily hold for the vector of mixture

marginals p∗ ≡ (p∗i )
N
i=1 observed. Because the data will provide information on the mixtures

of equilibria, not on the individual equilibria themselves, there will be limits to what can be

learned about the structure from the data without imposing additional assumptions. This

point is illustrated in the appendix using results from the literature on identifiability (or lack

thereof) in mixture models.
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Researchers have taken different approaches to deal with the issue of multiple equi-

libria in empirical works. Such strategies include (a) the use of a parametric equilibrium

selection rule; (b) the assumption that only one equilibrium is played in all games; (c) suf-

ficient conditions for uniqueness of the equilibrium; and/or (d) partial identification and

estimation of the identified set. Each of these strategies (which can also be combined) has

some limitations. We are interested in constructing a robust way to test for the existence of

multiple equilibria and to recover the sign of interactions under weak stochastic restrictions

on the distribution of private information.

3 Identifying Signs of Interaction Effects

In this section, we show how to detect the presence of multiple BNE in the data observed

and identify signs of interaction effects δi(x) for any i under a given state x. The sign

reveals the nature of strategic incentives among players. Compared with earlier works, our

sign identification has several innovations and contributions. First, our test does not invoke

any parametric restrictions on players’ preferences or distributions of private information.

Second, it allows the strategic incentives (as captured by the sign of δi) to be a function

of states x. Third, our approach is robust to the presence of multiple BNE. If in fact

the existence of multiple BNE at first precludes complete identification of the structure, it

makes possible the identification of the sign of interaction effects in contrast to states where

equilibrium is unique. This intriguing possibility is outlined, for example, in Manski (1993)8,

and clearly observed in Sweeting (2008).

We first show how to detect the existence of multiple BNE in the data using observed

distributions. Define

γli(x) ≡ El
(∑

j 6=i
Dj|X = x

)
=
∑

j 6=i
plj(x)

8“The prospects for identification may improve if f(·, ·) is non-linear in a manner that generates multiple

social equilibria” (p. 539).
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where El denotes the expectation with respect to the distribution of (Di)
N
i=1 induced in

the equilibrium pl ∈ Lx,θ. Define sign(a) to be 1 if a > 0, −1 if a < 0 and 0 if a = 0.

For any player i ∈ {1, ., N}, let γ̃∗i (x) denote the conditional expectation of the prod-

uct Di(
∑

j 6=iDj) given x observed from the data-generating process. That is, γ̃∗i (x) ≡∫
pl∈Lx,θ

pli(x)γli(x)dΛx,θ(p
l), where θ denotes the true structure, and Λx,θ denotes the equilibrium-

selection mechanism in the data generating process. Let p∗i (x) be the actual probability that

i chooses 1 given x observed in the data (i.e. p∗i (x) =
∫
pl∈Lx,θ

pli(x)dΛx,θ(p
l)), and let γ∗i (x) ≡∑

j 6=i p
∗
j(x). L+

x,θ denotes the subset of Lx,θ that occurs in the data-generating process with

positive probability (i.e., L+
x,θ ≡ {pl : Λx,θ(p

l) > 0}). We say multiple BNE exist in the

data-generating process whenever L+
x,θ is not a singleton.

Proposition 1 Suppose Assumption 1 holds. (i) For any given x, multiple BNE exist in

the data-generating process if and only if γ̃∗i (x) 6= p∗i (x)γ∗i (x) at least for some i; (ii) For all

i and x such that γ̃∗i (x) 6= p∗i (x)γ∗i (x),

sign (γ̃∗i (x)− p∗i (x)γ∗i (x)) = sign(δi(x))

Proof. Under Assumption 1, Di must be independent of
∑

j 6=iDj conditional on x in every

single BNE pl in Lx,θ.

(Sufficiency of (i)) Suppose there is a unique BNE in the data-generating process. That is,

L+
x,θ is a singleton {pl}. Then p∗i (x) = pli(x), γ∗i (x) =

∑
j 6=i p

l
j(x) and γ̃∗i (x) = pli(x)

∑
j 6=i p

l
j(x)

for all i in state x. Hence γ̃∗i (x) = p∗i (x)γ∗i (x) for all i.

(Necessity of (i)) Suppose L+
x,θ is not a singleton in state x. Then there exists at least

some i and pl, pk ∈ L+
x,θ such that pli 6= pki .

9 Also note that for a player such as i, δi(x) must

necessarily be non-zero. By definition,

γ̃∗i (x)− p∗i (x)γ∗i (x) (2)

=

∫
pl∈L+x,θ

pli(x)γli(x)dΛx,θ −
∫
pl∈L+x,θ

pli(x)dΛx,θ

∫
pl∈L+x,θ

γli(x)dΛx,θ

9The choice of l, k in general is specific to i. We suppress this dependence for notational ease.
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Suppose δi(x) > 0. The equilibrium characterization in (1) implies that there exists a strictly

increasing function gi such that γli(x) = gi(p
l
i(x)) ≡

(
F−1
εi|X(pli(x))− ui(x)

)
/δi(x) for each

single pl in Lx,θ.10 Thus for x given, (2) can be written as

γ̃∗i (x)− p∗i (x)γ∗i (x) =

∫ 1

0

gi(z)zdΛ̃i,x,θ(z)−
∫ 1

0

zdΛ̃i,x,θ(z)

∫ 1

0

gi(z)dΛ̃i,x,θ(z)

where z ≡ pli(x) and Λ̃i,x,θ is a distribution of pli(x) induced by the equilibrium selection

mechanism Λx,θ defined on Lx,θ. Thus (2) takes the simple form of the covariance of a

random variable z and a strictly increasing function of itself:

cov(Z, gi(Z)) = E [(Z − E(Z))(gi(Z)− E(gi(Z)))]

= E [(Z − E(Z))(gi(Z)− gi(E(Z)))]

+E [(Z − E(Z))(gi(E(Z))− E(gi(Z)))]

= E [(Z − E(Z))(gi(Z)− gi(E(Z)))]

Because gi is strictly increasing in [0, 1] for given x, we have z1 > z2 ⇒ gi(z1) > gi(z2).

Consequently, (z − E(Z))(gi(z) − gi(E(Z))) > 0 for any z 6= E(Z), and the covariance is

strictly positive, provided the distribution Λ̃i,x,θ is not degenerate on L+
x,θ. Hence γ̃∗i (x) −

p∗i (x)γ∗i (x) > 0 if multiple BNE exist in the data-generating process in state x. The case

with δi(x) < 0 is proved by symmetric arguments. The proof of (ii) is already included in

the proof of (i) above.

In applications, one plausible scenario is that in which δi(x) = δi for any x ∈ Ωx.

In this case, the sign of δi is identified as long as multiple equilibria exist on a set of x

with positive probability. If (P-almost) no x induces multiple equilibria in the data, the

conditional choice probabilities will factor for (P-almost) every x. Consequently, γ̃∗i (x) =

p∗i (x)γ∗i (x), (P-a.e.)⇒ EX(γ̃∗i (X)) = EX(p∗i (X)γ∗i (X)). On the other hand, it is not difficult

to verify that when δi(x) = δi for any x ∈ ΩX and there are multiple equilibria in the

data-generating process, sign(δi) = sign (EX(γ̃∗i (X)− p∗i (X)γ∗i (X))).11

10The form of gi may depend on θ and x in general. We suppress this dependence for notational ease.
11One could use this result to devise a directional test as in Section 4.3 to do inference on interaction signs
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We exploit part (i) in Proposition 1 to devise a test for multiple BNE in the data-

generating process in the Section 4. Part (ii) of the proposition suggests that γ̃∗i (x) −

p∗i (x)γ∗i (x) > 0 only if δi(x) > 0 and there exist multiple BNE in state x in the data-

generating process. However, the reverse of this statement only holds when N = 2. This is

because when N ≥ 3, there can exist i and x such that multiple BNE exist at x in the data-

generating process and δi(x) 6= 0, but pli = p∗i for all pli in L+
x,θ so that γ̃∗i (x) = p∗i (x)γ∗i (x).

The following example illustrates this point.

Example 1 Consider a simple 3-by-2 game involving three players. Suppress the dependence

on x for notational ease. Let u1 = 0.5, u2 = u3 = 0.3611, δi = −1 and εi ∼ N (0.10, 0.252)

for all i. Then there exist (at least) two distinct BNE:

p1 with p1
1 = 0.0611; p1

2 = 0.7756; p1
3 = 0.0107 (3)

p2 with p2
1 = 0.0611; p2

2 = 0.0107; p2
3 = 0.7756

Player 1 chooses alternative 1 with the same probability in both BNE, while both 2 and 3

play different strategies across the two BNE (p1 and p2) with p1
i 6= p2

i for i = 2, 3. ‖

Therefore, part (ii) does not guarantee the identification of signs of δi(x) for all i

and x in general, due to the need to distinguish players who do or do not incur the same

probability for choosing 1 across different equilibria. Let ι(x) ≡ {i : pli(x) = p̄i(x) for some p̄i

in all pl ∈ L+
x,θ}. Obviously p̄i(x) = p∗i (x) for all i ∈ ι(x). Let ιc(x) denote the set of players

not in ι(x). When there is a unique BNE at x in the data-generating process (i.e., L+
x,θ is a

singleton), all players in the game belong to ι(x). When L+
x,θ is not a singleton, ι(x) consists

only of players who choose 1 with the same probability in all pl ∈ L+
x,θ. By construction,

γ̃∗i (x) = p∗i (x)γ∗i (x) if and only if i ∈ ι(x). A corollary to Proposition 1 is that for i and x

such that i ∈ ιc(x), the sign of δi(x) is directly identified as the sign of γ̃∗i (x) − p∗i (x)γ∗i (x).

Additional restrictions are needed in order to identify sign(δi(x)) for i ∈ ι(x). For any

and multiple equilibria. We focus on the more general case of state-dependent interaction effects.
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given x and i, define the equivalence class as Υi(x) ≡ {x′ : ui(x) = ui(x
′), δi(x) = δi(x

′),

Fεi|X=x = Fεi|X=x′}. (There is no loss of generality in introducing this notation, since we

allow the possibility that Υi(x) is a singleton consisting of x only.)

In empirical applications, the equivalence class Υi(x) is often a non-singleton set that

can happen with positive probability for all i, x. For example, consider entry-exit games

involving N firms. The state variables X may include a vector X0 that consists of market- or

sector-wide factors affecting the demand for goods produced. The vector X may also include

a group of mutually exclusive vectors (Xi)
N
i=1 with Xi capturing observable firm-specific

factors that affect only i’s profitability but not its rivals (e.g., Xi may include labor costs

or local regulations pertaining to the geographic location of firm i). The vector of private

information (εi)
N
i=1 may well capture all other firm-specific factors (such as idiosyncratic

costs) affecting profitability and unobservable to opponent firms and econometricians. In

situations in which, given one’s own states, the rivals’ states (such as their labor costs) have

no bearing on one’s own profitability, then εi is independent of X−i given X0, Xi. In such an

environment, Υi(x) = {x̃ : (x̃0, x̃i) = (x0, xi)} where x = (x0, xi, x−i).

Assumption 2 For all i and x s.t. δi(x) 6= 0, ∃ωi(x) ⊂ Υi(x) with positive probability such

that ∀x′ ∈ ωi(x), either (i) i ∈ ιc(x) ∪ ιc(x′) or (ii) i ∈ ι(x) ∩ ι(x′) and p∗i (x) 6= p∗i (x
′).

More intuitively, Assumption 2 is satisfied as long as there is enough variation in the

equivalence class Υi(x) to induce changes in pli(x
′) in equilibria that happen with positive

probability in the data. If Υi(x) is a singleton (for i), this will happen when x induces

multiple equilibria and the pi(x) is not the same in all equilibria. For non-singleton Υi(x),

Assumption 2 may hold even when the equilibrium is unique or when pi(x) is the same

across all equilibria. In some empirical contexts, researchers know a priori which i, x satisfy

δi(x) 6= 0. (For example, when interaction effects are known to be increasing or decreasing

in the number of players choosing the same action together, then δi(x) are non-zero for all

i, x.) In such cases, Assumption 2 can be checked directly using observable distributions as

Proposition 2 suggests below. The following example illustrates in detail how more primitive
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conditions can lead to Assumption 2 in simple examples.

Example 2 Consider a 2-by-2 game with states X ≡ (X0, X1, X2) where Assumption 1

holds and ui, δi, Fεi|X depend only on X0i ≡ (X0, Xi) and not on the other state variables.

The probability for choosing action 1 in equilibrium is given by p1(x)

p2(x)

 =

 Fε1|x01(u1(x01) + δ1(x01)p2(x))

Fε2|x02(u2(x02) + δ2(x02)p1(x))

 (4)

Then Υi(x) ≡ {x′ : x′0i = x0i}. Within this framework, Assumption 2 can be satisfied in a

given state x ≡ (x0, x1, x2) under several different specifications. First, consider the following

specification:

For i = 1, 2, ∃ωi(x) ⊂ Υi(x) with positive probability such that ∀x′ ∈ ωi(x),

Fεj |x0j(uj(x0j) + δj(x0j)t) 6= Fεj |x′0j(uj(x
′
0j) + δj(x

′
0j)t) (5)

for all t ∈ [0, 1] where j 6= i is the identity of the other player. (For example, this inequality

can hold if δj(x0j) = δj(x
′
0j), Fεj |x0j = Fεj |x′0j but uj(x0j) 6= uj(x

′
0j) for all x′ ∈ ωi(x).)

The event “1 ∈ ι(x) ∩ ι(x′) and p∗1(x) = p∗1(x′)” can never happen for any x′ ∈ ω1(x)

whenever δ1(x) 6= 0. Suppose it does. Then pl1(z) = p∗1(z) in all pl ∈ L+
z,θ for z ∈ {x, x′}.

Therefore (4) implies pl2(z) = p∗2(z) in all pl ∈ L+
z,θ for z ∈ {x, x′} and 2 ∈ ι(x) ∩ ι(x′). Then

p∗1(x) = p∗1(x′) and the inequality (5) above suggests p∗2(x) 6= p∗2(x′) for all x′ ∈ ω1(x). This

in turn implies p∗1(x) 6= p∗1(x′) in (4) by definition of x′ ∈ ω1(x) ⊂ Υ1(x) whenever δ1(x) 6= 0.

This contradicts the supposition that p∗1(x) = p∗1(x′). Hence Assumption 2 holds for i = 1 if

δ1(x) 6= 0. Symmetric arguments prove the case with i = 2. ‖

Note that when δi(x) = 0 for either i = 1 or 2, i ∈ ι(x) ∩ ι(x′) and p∗i (x) = p∗i (x
′) for

all x′ ∈ Υi(x). This nevertheless does not violate Assumption 2, which covers only the case

with δi(x) 6= 0.
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Now we resume our discussion of identification of the sign of δi(x). Define

Ψi(x) ≡ E
(
Di,g

∑
j 6=i

Dj,g|Xg ∈ Υi(x)
)
− E(Di,g|Xg ∈ Υi(x))E

(∑
j 6=i

Dj,g|Xg ∈ Υi(x)
)

where g indexes the independent games observed in the data, and Di,g is the decision made

by i in game g.

Proposition 2 Under Assumption 1 and Assumption 2, sign(δi(x)) = sign(Ψi(x)) for all

i, x.

Proof. Let Λx,θ denote the equilibrium selection mechanism defined over L+
x,θ under state

x and let Λ∗x,θ denote
∫

Υi(x)
Λx′,θdF (x′|X ′ ∈ Υi(x)) (where F (.|X ∈ S) is the distribution

of X conditional on X ∈ S). Note that this is a distribution over the augmented support

L∗x,θ ≡ ∪x′∈Υi(x)L+
x′,θ Let Λ∗i,x,θ denote the distribution of pli(x) induced by Λ∗x,θ. Then (1)

and Assumption 2 imply that there exists an increasing (or decreasing) function gi s.t.

pli(x
′) = gi(γ

l
i(x
′)) for all pl ∈ L+

x′,θ and all x′ ∈ Υi(x) if δi(x
′) > 0 (or < 0 respectively).

Specifically, gi(t) ≡ Fεi|X=x′(ui(x
′) + δi(x

′)t) for t ∈ [0, 1]. Note that this function is fixed

for all x′ ∈ Υi(x) due to Assumption 2. Also since ωi(x) happens with a positive probability

under Assumption 2, the distribution Λ∗i,x,θ is non-degenerate. Then note

Ψi(x) =

∫
pl∈L∗x,θ

pli(x)γli(x)dΛ∗x,θ −
∫
pl∈L∗x,θ

pli(x)dΛ∗x,θ

∫
pl∈L∗x,θ

γli(x)dΛ∗x,θ

=

∫ 1

0

gi(z)zdΛ∗i,x,θ(z)−
∫ 1

0

zdΛ∗i,x,θ(z)

∫ 1

0

gi(z)dΛ∗i,x,θ(z)

where z ≡ pli(x). Then the same argument as in Proposition 1 shows Ψi(x) > 0 (or < 0)

whenever δi(x) > 0 (or < 0) for all i, x. When δi(x) = 0, pli(x
′) must be the same for all

pl ∈ Lx′,θ and all x′ ∈ Υi(x), and the distribution Λ∗i,x,θ is degenerate. Hence Ψi(x) = 0.

This completes the proof.

If Assumption 2 fails for some i and x while Assumption 1 still holds, then the

identification of the signs of δi(x) are affected only in the following sense. When Ψi(x) = 0,

we cannot make decisions about the sign of δi(x). This is because either δi(x) = 0 or the
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failure of Assumption 2 for i and x can result in Ψi(x) = 0. However, note on the other

hand, if Ψi(x) > 0 (or Ψi(x) < 0), we can still identify the sign of δi(x) > 0 (or δi(x) < 0

respectively) regardless of Assumption 2.

4 Testing Multiple BNE and Interaction Signs

4.1 A Wald Test for Multiple BNE in the Data-Generating Pro-

cess

Below, we propose a test for the presence of multiple equilibria in the data in an empirical

context where researchers observe states and players’ decisions from a large cross-section of

independent games (indexed by g = 1, ., G), each defined by the same structural elements

(ui, δi, Fεi|X )i≤N . Semiparametric estimation of games with incomplete information typically

refrains from parametric assumptions on primitives or the equilibrium selection mechanism

at the cost of assuming that the data observed are rationalized by the same BNE (see

Aradillas-Lopez (2009), Bajari, Hong, Krainer, and Nekipelov (2009) and Tang (2009)). The

applicability of these semiparametric approaches naturally hinges on validity of the “single

equilibrium” assumption.12 The procedures below formally test the existence of multiple

BNE in the data observed under the maintained assumption of conditionally independent

private signals.

The null hypothesis that “multiple BNE exist in the data for state x” is equivalently

formulated as follows, based on Proposition 1:

H0 : ∆i(x) = 0 ∀i ≤ N (6)

H1 : ∃ i s.t. ∆i(x) 6= 0

12As mentioned in the introduction, “social interaction” models do not rely on this assumption but re-

quire the number of agents in each game to be large so that within equilibrium choice probabilities can be

consistently estimated from average choices in each game.
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where ∆i(x) ≡ γ̃∗i (x)−p∗i (x)γ∗i (x) =
∑

j 6=i {E[DiDj|x]− E(Di|x)E(Dj|x)}. Throughout this

and the next section, we focus on a simple case where X contains only discrete coordinates.

Then the sample analogs of expectations conditional on x are simple sample averages across

games with X = x. We suppress x for notational ease when there is no ambiguity.

Let g index games observed in the data. For any subset I ⊂ {1, ., N}, let DI,g ≡

Πi∈IDi,g and µI ≡ E(DI,g1(Xg = x)). Let µ0 ≡ Pr(Xg = x). Let µ denote a Ñ ≡(
N +

(
N
2

)
+ 1
)
-vector consisting of µ0, µi and µij for all individual i and all pairs i 6= j. For

example, with N = 3, µ ≡ (µ0, µ1, µ2, µ3, µ12, µ13, µ23)′. Define:

µi ≡ (G)−1
∑
g

Di,g1(Xg = x) ; µij ≡ (G)−1
∑
g

Dij,g1(Xg = x)

µ0 ≡ (G)−1
∑
g

1(Xg = x) ; µG ≡ (µ0., µi, ., µij, .)
′

where µG is the vector of sample analogs for µ. By the multivariate central limit theorem,

G1/2(µG − µ)
d−→ N(0Ñ ,Σ) where 0Ñ is a Ñ -vector of zeros and Σ is the corresponding

variance-covariance matrix.

Note that ∆i(x) ≡
∑

j 6=i

(
µij
µ0
− µiµj

µ0µ0

)
. Let TG be a N -vector with its i-th coordinate

defined as

TG,i = ∆̂i(x) ≡
∑
j 6=i

(
µij
µ0
− µi

µ0

µj
µ0

)
Let V denote a N -by-Ñ matrix, with its i-th row Vi defined by the following table (where

µ(m), Vi,(m) denote the m-th coordinates of two Ñ -vectors µ and Vi respectively, and j, k 6= i),

µ(m) µ0 µi µj µij µjk

Vi,(m)

∑
j 6=i(−

µij
µ20

+
2µiµj
µ30

) −
∑

j 6=i
µj
µ20
− µi
µ20

1
µ0

0

Then the Delta Method implies

G1/2(TG −∆)
d−→ N(0N ,VΣV′)

where ∆ ≡ (∆i)
N
i=1. Let Σ̂, V̂ be estimates for Σ,V respectively, constructed by replacing

µ0, µI with non-parametric estimates

µ̂0 = G−1

G∑
g=1

1(Xg = x) µ̂I = G−1

G∑
g=1

[Πi∈IDi,g1(Xg = x)]
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Proposition 3 Suppose the data have G independent games with the same underlying struc-

ture. Then

G(TG−∆)′(V̂Σ̂V̂
′
)−1(TG−∆)

d→ χ2
df=N

Under the null hypothesis, ∆ = 0N and the chi-squared distribution can be used to

obtain critical values for the test statistic GT′G(V̂Σ̂V̂
′
)−1TG.

4.2 Inference of Players Who Switch Between Multiple Strategies

In addition to testing the joint hypothesis that ∆ = 0N in (6), one would also be interested

in finding out the identities of the set of players i in ιc(x), i.e., all those who actively mix

strategies across multiple BNE (indexed by pli(x)). As mentioned in the introduction, this is

interesting in particular for games with more than three players, where a subset of players

may stick to the same strategy across multiple equilibria. Available semiparametric methods

based on the assumption of unique equilibrium can still be applied to consistently estimate

payoff parameters for those players who follow the same strategies across all equilibria in the

game. Therefore it is useful to infer the identity of these players from the distributions of

actions observed.

To accommodate this possibility, we resort to the statistical literature on multiple

comparisons (for a recent survey, see Lehmann and Romano (2005)). This literature considers

decision strategies that aggregate the individual tests for each i conditional on x:

H0
i : ∆i(x) = 0

H1
i : ∆i(x) 6= 0

Given individual test statistics for each of the i ≤ N hypotheses, our objective is to define a

decision rule that controls the family-wise error rate, or the probability of rejecting at least

one of the true null hypotheses. More formally:

FWEP = ProbP{Reject at least one H0
i : ∆i(x) = 0 where i ∈ I0(P )}
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where the subscript P indicates the data-generating process and I0(P ) ⊂ {1, . . . , N} is the

set of indices i of true null hypotheses under P . A multiple testing procedure asymptotically

controls the FWEP at the rate α if lim supG→+∞ FWEP ≤ α for any P .

Well-known methods that asymptotically control for the family-wise error rate include

the Bonferroni and the Holm’s method. Both methods can be described in terms of the p-

values for each of the individual hypotheses (indexed by i) above. We denote these p-values

by p̂G,i. The Bonferroni method at level α rejects i if p̂G,i ≤ α/N . The Holm’s procedure,

which is less conservative than the Bonferroni method, follows a stepwise strategy. (For

notational convenience, we suppress the dependence of the hypotheses and test statistics

on x.) The Holm’s procedure starts by ordering the p-values in ascending order: p̂G,(1) ≤

p̂G,(2) ≤ · · · ≤ p̂G,(N). Let H0
jk

: ∆jk = 0 denote the single hypothesis corresponding to the k-

th smallest p-value (i.e. p̂G,jk = p̂G,(k)). Holm’s stepwise method proceeds as follows. In the

first step, compare p̂G,(1) with α/N . If p̂G,(1) ≥ α/N , then accept all individual hypotheses

and the procedure ends. Otherwise, reject the individual null hypothesis H0
j1

: ∆j1 = 0 and

move on to the second step. In the second step, the remaining N − 1 hypotheses are all

accepted if p̂G,(2) ≥ α/(N−1). Otherwise reject H0
j2

: ∆j2 = 0 and continue to the next step.

More generally, compare p̂G,(k) with α/(N − k + 1) in the k-th step. Accept all remaining

N − (k− 1) hypotheses if p̂G,(k) ≥ α/(N − k+ 1). Otherwise, reject H0
jk

and move on to the

next step. Continue doing so until all remaining hypotheses are accepted, or all hypotheses

are rejected one by one in N steps.

Though less conservative than the Bonferroni method, the Holm’s procedure can still

be improved upon if one takes into account the dependence between the individual test

statistics. To achieve this, we follow recent contributions by van der Laan, Dudoit, and

Pollard (2004) and Romano and Wolf (2005).13 Ordering the test statistics in descending

order, we let TG,(1) ≥ TG,(2) ≥ · · · ≥ TG,(N). In the k-th step, a critical level ck is obtained and

13The following description closely follows the presentation in Romano and Wolf (2005). For similar

strategies controlling generalizations of the family-wise error rate, see Romano and Shaikh (2006). A recent

application of such generalizations is Moon and Perron (2009).
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those hypotheses with TG,· ≥ ck are rejected. Let Rk be the number of hypotheses rejected

after the first k− 1 steps (i.e. the number of hypotheses not rejected at the beginning of the

k-th step). As before, let H0
ik

denote the hypothesis whose test statistic is the k-th largest

(i.e. TG,ik = TG,(k)). Ideally, we want to obtain c1 such that:

c1 ≡ c1(1− α, P ) = inf

{
y : ProbP

{
max

1≤j≤N
TG,(j) −∆ij ≤ y

}
≥ 1− α

}
where all statements are implicitly conditional on X = x. Subsequently, ck is defined as

ck ≡ ck(1− α, P ) = inf

{
y : ProbP

{
max

Rk+1≤j≤N
TG,(j) −∆ij ≤ y

}
≥ 1− α

}
(also conditional on X = x). As pointed out in the references cited, because P is unknown

in practice, we replace P by an estimate P̂G and define

ĉk ≡ ck(1− α, P̂G) = inf

{
y : ProbP̂G

{
max

Rk+1≤j≤N
T ∗G,(j) −∆∗ij ≤ y

}
≥ 1− α

}
(7)

where we follow Romano and Wolf (2005) and use T ∗G,(j) and ∆∗ij to highlight that the

sampling distribution of the test statistics is under P̂G (not P ). The following algorithm

summarizes the stepwise multiple testing procedure we adopt from Romano and Wolf (2005).

Algorithm 1 (Basic Non-studentized Step-down Procedure)

Step 1. Relabel the hypotheses in descending order of the test statistics TG,i. Let H0
ik

denote

the individual null hypothesis whose test statistic is the k-th largest.

Step 2. Set k = 1 and R1 = 0.

Step 3. For Rk + 1 ≤ s ≤ N , if TG,(s) − ĉk > 0, then reject the individual null H0
is.

Step 4. If no (further) null hypotheses are rejected, then stop. Otherwise, let Rk+1 denote

the total number of hypotheses rejected so far (i.e. Rk plus the number of hypotheses rejected

in the k-th step), and set k = k + 1. Then return to Step 3 above.

In addition to estimating ĉk via bootstrap, we also consider an alternative approach that

uses the fact that the test statistics have a normal limiting distribution with a consistently
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estimable variance-covariance matrix.14 We summarize the two approaches for estimating ĉk

in the following algorithms.

Algorithm 2.1 (Computing ĉk Using Bootstrap)

Step 1. Let ik and Rk be defined as in Algorithm 1 above.

Step 2. Generate B bootstrap data sets (typically with B ≥ 1000).

Step 3. From each bootstrap data set (indexed by b), compute the vector of test statistics(
T ∗,bG,1, ., T

∗,b
G,N

)
.

Step 4. For 1 ≤ b ≤ B, compute max∗,bG,k = maxRk+1≤s≤N(T ∗,bG,is − TG,is).

Step 5. Then compute ĉk as the (1− α)-th empirical quantile of the B values {max∗,bG,k}b≤B.

Algorithm 2.2 (Computing ĉk Using Parametric Simulations)

Step 1. Estimate the covariance matrix of the vector of test statistics that corresponds to

hypotheses which are not rejected after the first k−1 steps, i.e. (TG,(Rk+1), TG,(Rk+2), ., TG,(N)).

Denote the estimate by Σ̂k.

Step 2. Simulate a data set of M observations {vm}Mm=1 from the (N − Rk)-dimensional

multivariate normal distribution with parameters (0N−Rk , Σ̂k), where 0k is a k-vector of zeros.

Step 3. Then ĉk is computed as the (1−α)-th empirical quantile of the maximum coordinates

of vm in the simulated data.15

We also use a studentized version of the multiple testing method as in Romano and

Wolf (2005). Let σ̂G,k denote the estimates for the standard deviation of the test statistic

TG,k. To do so, we need an analogue of (7):

d̂k ≡ dk(1− α, P̂G) ≡ inf

{
y : ProbP̂G

{
max

Rk+1≤j≤N
(T ∗G,(j) − TG,ij)/σ̂∗G,ij ≤ y

}
≥ 1− α

}
(8)

where σ̂∗G,i are the estimates for standard deviations of TG,i computed from bootstrap samples.

The studentized stepwise procedure is summarized in the following algorithm. As before, let

Rk denote the total number of hypotheses that are not rejected in the first k − 1 steps.

14See footnote 21 in Romano and Wolf (2005).
15M can be large relative to the number of bootstrap samples B in Algorithm 2.1.
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Algorithm 3 (Studentized Step-down Procedure)

Step 1. Relabel the individual hypotheses in descending order of studentized test statistics

ZG,i ≡ TG,i/σ̂G,i, where σ̂G,i are estimates for standard deviation of TG,i.

Step 2. Set k = 1 and R1 = 0.

Step 3. For Rk + 1 ≤ s ≤ S, if ZG,is > d̂j, then reject the individual null H0
is.

Step 4. If no further individual null hypotheses are rejected, stop. Otherwise, let Rk+1 denote

the total number of hypotheses rejected so far and set k = k+1. Then return to Step 3 above.

The critical values for the studentized stepwise method d̂k are computed by an algorithm

similar to Algorithm 2.1 where standard errors
(
σ̂∗,bG,1, ., σ̂

∗,b
G,N

)
are also computed in Step 3

and max∗,bG,k ≡ maxRk+1≤s≤N(T ∗,bG,is − TG,is)/σ̂
∗,b
G,is

in Step 4.

In Section 5, we report the performance of three tests based on stepwise multiple

testing procedures: (a) the non-studentized test with ĉk computed from parametric simula-

tions; (b) the non-studentized test with ĉk computed via bootstrap; and (c) the studentized

test with d̂k computed via bootstrap. Because our setting corresponds to the smooth func-

tion model with i.i.d. data (Scenario 3.1 in Romano and Wolf (2005)), both strategies yield

consistent tests that asymptotically control the family-wise error rate at level α. This would

obtain from a slight modification in Theorem 3.1 in Romano and Wolf (2005) to accommo-

date two-sided hypotheses as indicated in Section 5 of that paper.

4.3 Inference on Signs of Interaction Effects

This section proposes a simple test for the sign of interaction effects for a player i in a given

state x. It relies on the characterization in Proposition 2 and will hold when x induces

multiple equilibria and choice probabilities vary across equilibria or when there are excluded

regressors as discussed in Section 3. To fix ideas, we focus on the simple case with discrete

X where any x in the support can happen with strictly positive probabilities. For any i, x,

define

Ψ̂i(x) ≡ ψ̂−1
i,x,1ψ̂i,x,2 − ψ̂−2

i,x,1ψ̂i,x,3ψ̂i,x,4

24



where

ψ̂i,x,1 ≡ G−1
∑
g

1{xg ∈ Υi(x)} ; ψ̂i,x,2 ≡ G−1
∑
g

(
Di,g

(∑
j 6=i

Dj,g

)
1{xg ∈ Υi(x)}

)
,

ψ̂i,x,3 ≡ G−1
∑
g

(Di,g1{xg ∈ Υi(x)}) ; ψ̂i,x,4 ≡ G−1
∑
g

((∑
j 6=i

Dj,g

)
1{xg ∈ Υi(x)}

)

When Υi(x) = {x}, Ψ̂i coincides with TG,i introduced in subsection 4.1. In this sense, Ψ̂i

generalizes TG,i for a non-singleton Υi(x). For notational ease, we drop the subscript i, x

from the estimators when there is no ambiguity. Define

Σ̂ ≡


ψ̂1(1− ψ̂1) ψ̂2(1− ψ̂1) ψ̂3(1− ψ̂1) ψ̂4(1− ψ̂1)

ψ̂2(1− ψ̂1) ψ̂5 − ψ̂2
2 ψ̂2(1− ψ̂3) ψ̂5 − ψ̂2ψ̂4

ψ̂3(1− ψ̂1) ψ̂2(1− ψ̂3) ψ̂3 − ψ̂2
3 ψ̂2 − ψ̂3ψ̂4

ψ̂4(1− ψ̂1) ψ̂5 − ψ̂2ψ̂4 ψ̂2 − ψ̂3ψ̂4 ψ̂6 − ψ̂2
4


with

ψ̂5 ≡ G−1
∑
g

Di,g

(∑
j 6=i

Dj,g

)2

1{xg ∈ Υi(x)}


ψ̂6 ≡ G−1

∑
g

(∑
j 6=i

Dj,g

)2

1{xg ∈ Υi(x)}


Also define

V̂ ≡
[
−ψ̂2ψ̂

−2
1 + 2ψ̂3ψ̂4ψ̂

−3
1 ψ̂−1

1 − ψ̂−2
1 ψ̂4 − ψ̂−2

1 ψ̂3

]
where Σ̂ and V̂ are analogous to the objects defined in subsection 4.1. Using the Delta

Method and Slutsky’s Theorem it is straightforward to verify that(
V̂Σ̂V̂

′
/G
)−1/2 (

Ψ̂i(x)−Ψi(x)
)

d−→ N (0, 1)

Testing the sign of δi(x) amounts to testing the following three hypotheses:

H1 : Ψi(x) > 0 H2 : Ψi(x) = 0 H3 : Ψi(x) < 0
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Using the test statistic
√
G(V̂Σ̂V̂

′
)−1/2Ψ̂i(x), we can choose critical regions at the two tails,

each resulting in the rejection of H2 in favor of either H1 or H3.16 Proofs of consistency and

asymptotic levels of the test should readily follow.

5 Monte Carlo Simulations

In this section we explore Monte Carlo experiments to illustrate the strategy presented in

the previous section. The first design reproduces Example 1 and displays multiple equilibria.

We use it to analyze the inference procedure on the existence of multiple equilibria and on

the interaction signs when more than one equilibrium exists. Design 2 displays only one

equilibrium and we use it to illustrate our procedure when multiple equilibria are absent but

an excluded variable exists.

Design 1 We study the finite sample performance of the tests for multiple equilibria in

Section 4 using a simple design of a 3-by-2 game in Example 1. The design is conditional on

some state x and this dependence is suppressed for notational convenience. For some fixed

state, let the players’ baseline payoffs be u1 = 0.5 and u2 = u3 = 0.3611, respectively, and

let δi = −1 and εi ∼ N (µ = 0.1, σ2 = 0.252) for all i. Let λ denote the probability with

which the first Bayesian Nash equilibrium in (3) shows up in the data-generating process.

We experiment with λ = 0.1, 0.25 or 0.5 and sample sizes G = 1000 or 3000.

For any (λ,G), we simulate a data set of players’ binary decisions by letting

Di,g = 1

{
ui −Wg

(∑
j 6=i

p1
j

)
− (1−Wg)

(∑
j 6=i

p2
j

)
− εi,g ≥ 0

}

where in each game g ≤ G, Wg is simulated from a Bernoulli distribution with success

probability λ, εi,g from N (0.1, 0.252) and pls are propensity-scores in the two Bayesian Nash

equilibria. For each (λ,G), we simulate S = 1000 data sets. For each data set, we employ

the stepwise multiple testing procedure as described in Section 4.2, and make a decision to

16This is a directional hypothesis test. For a recent survey, see Shaffer (2006).

26



reject or not to reject the null hypothesis that there is a unique equilibrium in the data-

generating process. We experiment with three different approaches for choosing the critical

level ĉk in Section 4.2: (i) simulation using estimated covariance matrix of TG; (ii) bootstrap;

and (iii) studentized bootstrap (Algorithms 3.2 and 4.2 in Romano and Wolf (2005)). For

meaningful comparison between these three approaches, we use the same number of simulated

multivariate normal vectors in (i) as the number of bootstrap samples drawn in (ii) and (iii)

(which is denoted by B). We experiment with B = 1000, 2000. In Table 1 below, we report

the probability of making a wrong decision (i.e., rejecting H0 for i = 1 or not rejecting H0

for i = 2 or 3) calculated from the S = 1000 simulated data sets in columns RP 1, 2, 3.

Table 2 presents the tests of interaction signs for each of the three players. Since

player 1 has the same conditional choice probabilities in the two equilibria, the test withholds

judgment for most of the simulations. It detects a negative sign for the other two players.

Design 2 In this design, we consider a 3-player-by-2-action game where Assumption 2

is satisfied. The baseline payoff for player i is ui(xi) = 1 + xi where x1 ∈ {−1, 2} and

x2 ∈ {−1/2, 3/2} and x3 ∈ {−1, 3}. The state-dependent interaction effect for i is δi(xi) =

δxi where δ is a parameter that controls the scale of the interaction effect. The private

information εi is uniformly distributed over (−ci, ci), where ci = 2(1 + xi + |δxi|).17 Table

3 lists the marginal choice probabilities, or propensity scores, pi(x) ≡ Pr(i chooses 1|x) in

the unique Bayesian Nash equilibria for each state x ≡ (x1, x2, x3). It is easy to verify that

the Bayesian Nash equilibrium is unique for all x from Table 3, since all εi is uniformly

distributed and all propensity scores are strictly between 0 and 1.

In Design 2, strategic interaction effects are state-dependent and individual-specific.

For player 1, states in the first four rows in Table 3 form an equivalent class, while the other

four rows form another equivalent class. We simulate S = 1000 samples, each with sample

size G = 5000. For each of these samples, we calculate the test statistics T ∗G as defined in

17The parameter ci is chosen this way to ensure there is a unique Bayesian Nash equilibrium under each

state.
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Section 4 and apply the following decision rule. If T ∗G < −1.64, then reject H2 (no interaction

effect) in favor of H3 (negative interaction effect). If T ∗G > 1.64, then reject H2 in favor of

H1 (positive interaction effect). Otherwise, do not reject H2. Table 4 below summarizes

the finite sample performance of our test. The two entries [q1, q3] in the brackets report

percentages of tests in S = 1000 simulations where H2 is rejected in favor of H1 (i.e., q1)

and the percentage of rejections in favor of H3 (i.e. q3), respectively. Recall that the sign of

interaction effects for δi(xi) is the same as the sign of xi in our design as δ > 0.

6 Empirical Illustration

As an application for the methodology outlined in the previous sections, we investigate the

strategic behavior of couples over retirement decisions. A majority of retirees are married

and many studies indicate that a significant proportion of individuals retire within a year

of their spouse. Among the articles documenting the joint retirement of couples (and data

sets employed) one could cite Hurd (1990) (New Beneficiary Survey), Blau (1998) (Retire-

ment History Study), Gustman and Steinmeier (1992) (National Longitudinal Survey of

Mature Women), Michaud (2004) (Health and Retirement Study) and Banks, Blundell, and

Casanova Rivas (2007) (English Longitudinal Study of Ageing). Even though this is espe-

cially the case for couples closer in age, the distribution of differences in retirement timing

between partners typically displays a spike at zero, regardless of the age difference (see, for

instance, Figure 7 and Table 3 in Casanova Rivas (2009)). Following our framework, let δH

denote the effect of the wife’s retirement on the husband and δW denote the effect of the

husband’s retirement on the wife. For a two-player game, it is not hard to show that multiple

equilibria can occur only when sign(δH) = sign(δW ).

We use the Health and Retirement Study for this analysis. The HRS is a panel data

set, representative of non-institutionalized individuals and their spouses. There are currently

eight available waves, covering every two years from 1992 to 2006. The study originally
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started with a cohort of individuals born between 1931 and 1941 (otherwise known as the

HRS cohort). Soon after, the study added individuals in other cohorts. The HRS cohort has

nevertheless been the most commonly studied, not only because more waves of information

are available, but also because the cohort has been more frequently linked to other databases.

We use couples in which at least one partner belongs to this cohort (i.e., born in the 1930s).

Table 5 presents summary statistics on retirement for this cohort during the eight waves

available.

For evidence of informational asymmetries within the couple regarding joint retire-

ment, we present a two-way table with answers by husbands and wives to whether he or she

expects to retire with his or her spouse.18 We view the fact that a substantial proportion of

couples showed opposing predictions as evidence that they are not fully aware of the other

half’s preference for retirement. If they had complete information, they would not have

formed contradicting expectations about the possibility of joint retirement. Using a different

survey focussing on elicited perceptions of spouse and own satisfaction within the marriage,

Friedberg and Stern (2009) also show evidence of information asymmetries within marriage.

Because there are only two players, the statistic G1/2(V̂Σ̂V̂
′
)−1/2TG, calculated as

prescribed in the first subsection of Section 4 is asymptotically standard normal under the

null of no multiplicity and can be used to infer the existence of multiple equilibria and, in

that case, the sign of the interaction effects. The results conditioning on age differences

between husband and wife (husband’s age - wife’s age) are reported in Table 7. The test

statistic is computed as prescribed in the previous sections and positive (negative) values

of the statistic correspond to positive (negative) values of both δH and δW . According to

the results in Section 4, under the null of a unique equilibrium played in the data, the test

statistic we use below should follow a standard normal distribution. We find evidence of

coordination motives between husband and wife for couples in which wives are at most two

years older than the husband across all eight waves of the HRS data. Evidence for couples

18This variable is available for Wave 1 only.
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in which the wife is much older than the husband is weaker. Similar findings obtain with

the other cohorts in the HRS and conditioning variables.

Since the decision to retire may depend on more than the difference in age, we also

perform the analysis above for a set of variables typically used in this literature. We focus on

the fourth wave of the survey (1998), when respondents are in their early sixties. Following

the literature, in addition to age difference, we condition on household wealth (tercile) and

whether at least one member is in poor health. Table 8 presents more detailed information

for these variables in 1998 (Wave 4).

Table 9 presents the test statistics with the conditioning variables mentioned above.

The statistics are inconclusive for couples in which at least one of the partners is in poor

health but tend to confirm our previous results otherwise.

Of course, some caveats apply. First, we assume that the decision problem is static.

This would be reasonable when agents are impatient and/or when moving in and out of

retirement is relatively costless so that individual choices can be treated as a succession

of static decisions. Second, another explanation for the coincidence in retirement decisions

(aside from taste interactions) is that husband and wife receive correlated (unobservable or

omitted) shocks, driving them to retirement at similar times. This is outside the scope of

the model we analyze, since Assumption 1 would then be violated.

7 Conclusion

In this paper we have shown how a condition typically employed in the analysis of simultane-

ous games of incomplete information leads to a simple and easily implementable test for the

signs of interaction effects as well as the existence of multiple equilibria in the data-generating

process. Inference of the signs of state-dependent and individual-specific interaction effects

can be done under minimal assumptions that require only the conditional independence of

private information, and the existence of state variables satisfying appropriate exclusion re-
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strictions. Besides, given that many of the suggested methods for estimating and making

inferences in such environments rely on the assumption that only one equilibrium is played

in the data, this finding is relevant for the implementation of these techniques. With discrete

covariates, such inference is implementable using well-known results in the multiple testing

literature. When a continuous covariate is included, the testing procedure should account

for the boundaries between regions with a different number of equilibria. Finally, the con-

ditional independence assumption is also widely used in the dynamic games of incomplete

information. In those settings, optimal decision rules involve not only equilibrium beliefs

but continuation value functions that may also change across equilibria. Though a detailed

analysis is deferred to future research, we speculate that our results generalize to such games

under certain additional assumptions. In particular, the characterization of optimal policy

rules in that context suggests that the existence of a unique equilibrium in the data can still

be detected by the lack of correlation in actions across players of a given game as presented

in the current paper.19

19With two actions, the optimal policy for a specific equilibrium would prescribe a decision rule like

Si(X, εi) = 1[ui(X) + δi(X)
∑

j 6=i pj(X) + βE(Vi(X
′, ε′i; p1, . . . , pN )|X, εi) − εi ≥ 0] where β is a discount

factor, primed variables refer to the following period and Vi(·) is a continuation value defined by a Bellman

equation where we make explicit the dependence on equilibrium choice probabilities (p1, . . . , pN ) (see for

example display (8) in Aguirregabiria and Mira (2007)). If the equilibrium is unique and Assumption 1

holds, conditional choice probabilities will factor as in the static case.
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Appendix:

Let θ denote the structure (ui, δi)
N
i=1 and Fε|X , and let Lx,θ denote the choice probabilities

profiles corresponding to BNE for a given x and parameter θ. That is, Lx,θ ≡ {p ∈ [0, 1]N : p

solves (1) for θ and the given x}. We let Λx,θ be an equilibrium selection mechanism. The

following proposition illustrates the limits of what can be learned about the structure from

the mixture data without imposing additional assumptions. Let #A denote the cardinality

of set A and define g : [0, 1]N −→ [0, 1]N as

g(p(x);x, θ) ≡

(
pi(x)− Fεi|X(ui(x) + δi(x)

∑
j 6=i

pj(x))

)
i=1,...,N

. (9)

Proposition 4 Assume

det

(
∂g(p(x);x, θ)

∂p(x)

)
6= 0

Then the structure is not identified if #Lx,θ > 2N−2
N

.

Proof. We first show that, for given x, the number of equilibria is finite. An equilibrium

vector p(x) is a fixed point to the mapping depicted on display (1). Equivalently, we represent

it as a solution to the following equation:

g(p(x);x, θ) = 0.

Notice that {0, 1} ∩ Fεi|x(R) = ∅ for any i, given the full support of εi. Consequently, for a

solution vector, pi(x) /∈ {0, 1} and p(x) ∈ (0, 1)N . Since

det

(
∂g(p(x);x, θ)

∂p(x)

)
6= 0

the Implicit Function Theorem directly implies that the set of fixed points to (9) is discrete

(i.e. its elements are isolated points: each element is contained in a neighborhood with

no other solutions to the system). Infinitesimal changes in p(x) will imply a displacement

of g(·;x, θ) from zero, so local perturbations in p(x) cannot be solutions to the system of

equations. Since p(x) ∈ [0, 1]N , the set of solutions is a bounded subset of RN . In RN , every
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bounded infinite subset has a limit point (i.e., an element for which every neighborhood

contains another element in the set) (Theorem 2.42 in Rudin (1976)). Consequently, a

discrete set, having no limit points, cannot be both bounded and infinite. Being bounded

and discrete, the set of solutions is finite.

In this case, the observed joint distribution of equilibrium actions is a finite mixture.

Given Assumption 1, the cumulative distribution function for the observed actions is given

by

Φ(y1, . . . , yN ;x, θ) =
∑
Lx,θ

Λx,θ(p
l(x))Πi∈{1,...,N}(1− pli(x))1−yi

For a given x, the problem of retrieving this cdf and mixing probabilities from observed data

is analyzed by Hall, Neeman, Pakyari, and Elmore (2005). In that paper, the authors show

that the choice and mixing probabilities (pli(x) and Λx,θ) cannot be obtained from observa-

tion of Φ(y1, . . . , yN ;x, θ) if #Lx,θ > 2N−2
N

. Consequently, it is necessary for identifiability

of the relevant probabilities that #Lx,θ ≤ 2N−2
N

. Finally, if the equilibrium-specific choice

probabilities cannot be identified, the utility function and the distribution of private com-

ponents cannot be identified either (or else one could obtain the equilibrium specific choice

probabilities and use those to obtain the mixing distribution from the data).

The condition that det
(
∂g(p(x);x,θ)

∂p(x)

)
6= 0 is likely to be satisfied. With two players,

for example, this determinant equals

1− δ1(x)δ2(x)fε1|X(u1(x) + δ1(x)p2(x))fε2|X(u2(x) + δ2(x)p1(x)).

Also when there are two players, the bound on the number of equilibria implies that, without

further assumptions, the existence of more than one equilibrium precludes identification.
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Table 1: Finite Sample Performance: Tests for Multiple Equilibria

(Target probability for FWE: α = 0.10)

B = 1000 B = 2000

G λ RP1 RP2 RP3 RP1 RP2 RP3

1000 0.50 0.101 0.101 0.095 0.112 0.109 0.111

0.25 0.093 0.094 0.085 0.094 0.096 0.089

0.10 0.107 0.107 0.102 0.114 0.119 0.112

3000 0.50 0.108 0.109 0.105 0.087 0.089 0.083

0.25 0.096 0.097 0.094 0.102 0.105 0.103

0.10 0.093 0.090 0.092 0.111 0.107 0.108

NOTE: Design 1: Number of simulations S = 1000. G is the sample

size. λ specifies the probability that an equilibrium is chosen. RP1,

2 and 3 are rejection frequencies following three tests respectively:

(1) the non-studentized test with ĉk from parametric simulations; (2)

the non-studentized test with ĉk computed via bootstrap; and (3) the

studentized test with d̂k computed via bootstrap.

Table 2: Finite Sample Performance: Test of Signs of Interaction Effects

Brackets include [ q1, q3].

G λ i = 1 i = 2 i = 3

1000 0.50 [0.036, 0.076] [1.000,0.000] [1.000,0.000]

0.25 [0.035, 0.072] [1.000,0.000] [1.000,0.000]

0.10 [0.040, 0.072] [1.000,0.000] [1.000,0.000]

3000 0.50 [0.054, 0.067] [1.000,0.000] [1.000,0.000]

0.25 [0.048, 0.048] [1.000,0.000] [1.000,0.000]

0.10 [0.049, 0.053] [1.000,0.000] [1.000,0.000]

NOTE: Design 1: S is 1000. G is the sample size. λ is the

equilibrium selection probability. q1 is the frequency of rejection of

H2 in favor of H1. q3 is the frequency of rejection of H2 in favor

of H3.
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Table 3: Propensity Scores in Bayesian Nash Equilibria

( p1, p2, p3 in brackets)

x1 x2 x3 δ = 0.8 δ = 0.9 δ = 1

−1 −1/2 −1 [0.3233, 0.5603, 0.3233] [0.3060, 0.5561, 0.3060] [0.2895, 0.5526, 0.2895]

−1 −1/2 3 [0.2523, 0.5288, 0.7098] [0.2223, 0.5196, 0.7144] [0.1927, 0.5111, 0.7183]

−1 3/2 −1 [0.2998, 0.7012, 0.2998] [0.2790, 0.7033, 0.2790] [0.2590, 0.7048, 0.2590]

−1 3/2 3 [0.2101, 0.7262, 0.7231] [0.1710, 0.7323, 0.7300] [0.1316, 0.7376, 0.7360]

2 −1/2 −1 [0.7124, 0.5286, 0.2518] [0.7167, 0.5194, 0.2219] [0.7203, 0.5109, 0.1922]

2 −1/2 3 [0.7479, 0.4754, 0.7477] [0.7593, 0.4541, 0.7599] [0.7704, 0.4322, 0.7717]

2 3/2 −1 [0.7249, 0.7263, 0.2098] [0.7313, 0.7324, 0.1707] [0.7369, 0.7376, 0.1314]

2 3/2 3 [0.7738, 0.7724, 0.7754] [0.7927, 0.7903, 0.7955] [0.8126, 0.8090, 0.8166]

Table 4: Finite Sample Performance: Test of Signs of Interaction Effects

(No. of simulations: S = 1000. Brackets include [ q1, q3].)

G = 5000 G = 10000

δ = 0.8 δ = 0.9 δ = 1.0 δ = 0.8 δ = 0.9 δ = 1.0

X1 = −1 [0.000, 0.469] [0.001, 0.628] [0.000, 0.854] [0.000, 0.717] [0.000, 0.890] [0.000, 0.986]

X2 = −1/2 [0.003, 0.359] [0.000, 0.520] [0.000, 0.714] [0.000, 0.577] [0.000, 0.790] [0.000, 0.925]

X3 = −1 [0.000, 0.483] [0.000, 0.643] [0.000, 0.834] [0.000, 0.702] [0.000, 0.888] [0.000, 0.986]

X1 = 2 [0.323, 0.004] [0.459, 0.000] [0.667, 0.000] [0.484, 0.000] [0.736, 0.000] [0.910, 0.000]

X2 = 3/2 [0.400, 0.000] [0.617, 0.000] [0.817, 0.000] [0.665, 0.000] [0.867, 0.000] [0.979, 0.000]

X3 = 3 [0.300, 0.004] [0.496, 0.000] [0.735, 0.000] [0.545, 0.000] [0.764, 0.000] [0.930, 0.000]

NOTE: q1 is the frequency of rejection of H2 in favor of H1. q3 is the frequency of rejection of H2 in favor of H3.
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Table 5: Summary Statistics (HRS Cohort)

Variable Wave 1 Wave 2 Wave 3 Wave 4
(1992) (1994) (1996) (1998)

Mean N Mean N Mean N Mean N

Joint Ret 0.055 4,754 0.102 4,260 0.139 4,057 0.165 3,834

Only Husband Ret 0.150 0.166 2.13 4,260 0.193 4,057 0.229 3,834

Only Wife Ret 0.064 4,754 0.086 4,260 0.096 4,057 0.097 3,834

Variable Wave 5 Wave 6 Wave 7 Wave 8
(2000) (2002) (2004) (2006)

Mean N Mean N Mean N Mean N

Joint Ret 0.202 3,589 0.256 3,405 0.325 3,185 0.394 2,920

Only Husband Ret 0.259 3,589 0.265 3,405 0.265 3,185 0.259 2,920

Only Wife Ret 0.102 3,589 0.113 3,405 0.096 3,185 0.132 2,920

NOTE: The sample includes couples from the Health and Retirement Study with at least one

partner in the HRS cohort, i.e., born between 1931 and 1941.

Table 6: Joint Retirement
Expectations

Wife

Husband Yes No

Yes 492 146

No 136 349

NOTE: Available for Wave 1 only.
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Table 7: Test of Multiplicity and Interaction Signs

Wave 1 Wave 2 Wave 3 Wave 4

Age Dif (Yrs) Test Stat N Test Stat N Test Stat N Test Stat N

< -5 1.78 155 0.96 145 1.22 137 0.84 123

-5 to -2 1.77 175 2.13 160 1.58 146 2.40 137

-2 to 2 4.38 1,536 6.30 1,407 5.80 1,316 4.94 1,245

2 to 5 4.35 1,305 5.51 1,196 5.05 1,114 4.18 1,038

> 5 5.33 1,870 4.83 1,645 5.73 1,546 5.01 1,468

Wave 5 Wave 6 Wave 7 Wave 8

Age Dif (Yrs) Test Stat N Test Stat N Test Stat N Test Stat N

< -5 1.12 117 0.65 109 0.94 103 0.79 87

-5 to -2 1.23 132 1.67 123 1.03 120 0.66 104

-2 to 2 4.83 1,167 3.91 1,105 3.43 1051 1.87 995

2 to 5 3.39 955 3.47 901 2.48 845 1.74 786

> 5 1.30 1,324 0.92 1,256 2.96 1,166 2.60 1,050

NOTE: The sample includes couples from the Health and Retirement Study with at least one partner in

the HRS Cohort, i.e., born between 1931 and 1941. Age difference is husband’s age minus wife’s age.

The test statistic is G1/2(V̂Σ̂V̂
′
)−1/2TG.
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Table 8: Wave 4 (1998)

Variable N Mean

At least one with college or above 4,011 0.306

Total Household Wealth (Dollars) 4,011 378,591.2

Age (Husband) (Yrs.) 3,919 62.8

Age (Wife) (Yrs.) 3,926 58.8

Poor Health (Husband) 3,919 0.271

Poor Health (Wife) 3,926 0.240

NOTE: The sample includes couples from the Health and

Retirement Study with at least one partner in the HRS co-

hort, i.e., born between 1931 and 1941.
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Table 9: Test of Multiplicity and Interaction Signs

Poor Health (At Least One)
No Yes

Age Diff Total Wealth College Test Stat N Test Stat N
Tercile

1
Yes 1.64 145 1.05 205

No 1.51 69 1.02 17

[−2yrs., 2yrs.]
2

Yes 2.53 203 1.27 87

No 2.00 95 0.82 29

3
Yes 2.42 156 1.14 56

No 1.91 162 0.38 21

1
Yes 2.07 149 1.75 209

No 1.67 35 -0.08 20

(2yrs., 5yrs]
2

Yes 1.40 152 1.52 96

No 0.98 74 0.74 14

3
Yes 1.13 106 1.34 46

No 1.23 115 0.8 22

1
Yes 2.6 223 1.22 337

No 1.74 75 0.83 59

> 5yrs.
2

Yes 2.55 156 0.88 98

No 2.28 113 0.62 39

3
Yes 1.64 113 0.74 55

No 3.10 159 1.33 41

NOTE: The sample includes couples from the Health and Retirement Study with at least one

partner in the HRS cohort, i.e. born between 1931 and 1941. Age difference is husband’s

age minus wife’s age. Tercile 1 is the one with highest total wealth. The test statistic is

G1/2(V̂Σ̂V̂
′
)−1/2TG.
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