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Abstract

This paper proposes a novel specification for residual earnings that allows for a
lifetime profile in the persistence and variance of labor income shocks. We show the-
oretically that the statistical model is identified and estimate it using data from the
PSID. We strongly reject the hypothesis of a flat life-cycle profile for persistence and
variance of persistent shocks, but not for the variance of transitory shocks. Shocks
to earnings are only moderately persistent (around 0.75) for young individuals. Per-
sistence rises with age up to unity until midway in life and decreases to around 0.95
toward the end of the life cycle. On the other hand, the variance of persistent shocks
exhibits a U-shaped profile over the life cycle (with a minimum of 0.01 and a maximum
of 0.045). Our estimate of persistence, for most of the working life, is substantially
lower than typical estimates in the literature. We investigate the implications of these
profiles for consumption-savings behavior with a standard life-cycle model. Under
natural borrowing limits, the welfare cost of idiosyncratic risk implied by the age-
dependent income process is 32% lower compared to an AR(1) process without age
profiles. This is mostly due to a higher degree of consumption insurance for young
workers, for whom persistence is moderate. The results hold qualitatively for an
economy with no borrowing, although the difference between specifications is smaller
(23%). We conclude that the welfare cost of idiosyncratic risk is overstated.
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1 Introduction

How does the persistence of earnings change over the life cycle? Do workers at different

ages face the same variance of idiosyncratic shocks? These questions are central to many

economic decisions in the presence of incomplete financial markets. Uninsured idiosyncratic

risk affects the dynamics of wealth accumulation, consumption inequality, and the effec-

tiveness of self-insurance through asset accumulation. Thus, income risk is an important

object of study for quantitative macroeconomics. Moreover, the age profile of persistence

can be informative about the economic mechanisms governing earnings dynamics. For these

purposes, we propose a novel process for idiosyncratic earnings that allows for a life-cycle

profile in the persistence and variance of earnings shocks.

Two important determinants of labor income risk are persistence and variance of shocks.

The persistence governs how long the effect of a shock lasts. For example, in the case of

an unexpected health problem, this represents the time to full recovery. The variance, on

the other hand, captures the magnitude by which shocks affect earnings. The goal of this

paper is to estimate the lifetime profiles of these two components.

We are motivated by the observation that changes in earnings occur for different reasons

over life span. For young workers, mobility because of a mismatch or demand shocks to

occupations might play an important role (Kambourov and Manovskii (2008)). Midway

through a career, settling down into senior positions as well as bonuses, promotions or

demotions may account for earnings dynamics. Older people are more likely to develop

health problems that reduce their productivity. These changes differ in nature, and more

specifically, in persistence and magnitude. Thus, we suspect that variance and persistence

of shocks are not flat throughout a lifetime.

In our analysis, we decompose residual earnings into an individual-specific fixed effect,

a persistent component and a transitory component. The fixed effect captures permanent

differences among individuals. The persistent component captures lasting changes in earn-

ings and it is modeled as an AR(1) process. The transitory component encompasses both

measurement error and temporary changes in earnings and is i.i.d. The novel feature of our

specification is that both the persistence parameter of the AR(1) process and the variance

of innovations to transitory and persistent components are age specific. Besides allowing

for age profiles, we also account for changes in variances over time. This paper, to our best
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knowledge, is the first study that estimates a lifetime profile of persistence and variance.1

We next turn to identification. Particularly, which features of the data tell us how

changes in earnings vary in persistence and variance over the lifetime? We show that

these profiles can be identified using the variance covariance structure of levels of earnings.

Intuitively, we identify the profile of persistence by tracking the covariance structure over

lags for a given age. The variance of persistent shocks is obtained by exploiting the variation

in the covariance structure over age for a given lag. Finally, the variance of transitory shocks

is recovered from the variance structure. The proof is rigorously discussed in Appendix A.

Using earnings data from the PSID, we first estimate a nonparametric specification,

i.e., without imposing any functional form on the lifetime profiles. Our results reveal that

persistence follows a hump shape over the working life. Young agents face only moderately

persistent shocks; e.g., 70 percent of a shock received during the early years in the labor

market dies out over the next 5 years. Shocks for workers midway through their careers are

more enduring. If the shock was received at age 40, 85 percent of it would still remain after

5 years. On the other hand, we find a U-shaped profile for the variance of persistent shocks:

A shock of one standard deviation implies a 26% change in annual earnings for a 24 year

old. The corresponding number for a 40 year old is only 12%. These are obviously sizable

differences. For the variance of transitory shocks, we do not find a significant pattern.2

We then ask the question of whether these life-cycle profiles are statistically significant.

To tackle this question, we proceed in two ways. First, we estimate a quadratic function

for the age profiles and test whether the coefficients on the linear and quadratic terms are

zero. Then, in order to complement this approach, we also estimate life-cycle profiles by

partitioning the working life into 3 stages. Here we assume that persistence and variance

are constant within a stage but might differ from one to the other. Again, we test whether

the profile of persistence and the variance of persistent shocks are flat over the lifetime.

Both of these tests strongly reject the hypothesis of a flat profile for persistence and the

variance of persistent shocks.

The estimates of persistence in the literature are close to unity.3 Our age-specific es-

1Meghir and Pistaferri (2004) allow for an age profile in the variance of permanent and transitory shocks.
They don’t find evidence for a nontrivial profile.

2In our specification, transitory shocks also capture classical measurement error. Therefore, it is not
surprising to find a flat profile for transitory shocks.

3Estimates of specifications that account for the heterogeneity in income growth rates find lower levels
of persistence. In particular, Guvenen (2009) estimates persistence at around 0.82.
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timate of persistence lies substantially below 1 for most of the lifetime. We argue that

the high persistence in the literature is driven by targeting the almost linear increase in

lifetime earnings inequality. Namely, estimation avoids lower levels of persistence, which

would imply a concave rise in inequality. The age-dependent income process can capture

the linear shape without high levels of persistence. This is possible because of the inverse

relationship between persistence and the variance of labor income shocks that our estimates

reveal. When persistence goes up with age, the additional increase it induces in inequality

is compensated by a decrease in the variance and vice versa.

We then investigate the economic implications of the age-dependent income process.

In particular, we are interested in the insurability of labor income shocks and the welfare

costs of idiosyncratic risk. To address these issues, we consider a standard life-cycle model

that features incomplete financial markets and a social security system. We compare the

consumption-savings implications of the age-dependent income process with a standard

AR(1) process (with constant persistence and variance) under natural borrowing constraints

(NBC) as well as zero borrowing constraints (ZBC).

For the NBC economy, we find that both of the processes imply very similar consumption

and asset profiles. However, they differ significantly in the degree of consumption insurance

against persistent shocks. We measure the level of insurance as the fraction of shocks

to earnings that do not lead to consumption changes (Blundell, Pistaferri, and Preston

(2008)). Around 44% of persistent shocks translate into consumption growth under the age-

dependent process compared to 60% under the AR(1) specification. Most of this difference

comes from young workers for whom the degree of insurance is as high as 70% under the

age-dependent process as opposed to 30% under the AR(1) process. This is due to the level

of persistence, which is particularly low for young workers under the age-dependent process.

It is well known that persistence is an important determinant of insurance; transitory shocks

are easily insured by borrowing (e.g., Kaplan and Violante (2008), Gourinchas and Parker

(2002)). In the presence of very persistent shocks, agents refrain from borrowing against

the possibility of a long sequence of low income states. Insurance against such shocks is,

therefore, mostly through assets. This is not possible for young agents, since they don’t have

enough wealth. Persistence is fairly moderate for young workers under the age-dependent

income process, which explains the higher insurance coefficients early in careers.

Note that the low levels of persistence under the age-dependent process are compensated

by the larger variances of shocks. On the one hand, lower persistence implies better insur-
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ability. On the other hand, larger variance implies more instability. In order to evaluate

this tradeoff quantitatively, we compare the welfare costs of idiosyncratic risk implied by

the age-dependent process with a standard AR(1) process. We find sizable differences: An

agent living in the AR(1) economy is willing to give up around 14.85% of her consumption

every period in return for perfect insurance as opposed to only 9.97% for an agent under

the age-dependent income process.

As discussed above, the differences in welfare costs are mostly due to higher insurability.

The fact that the age-dependent income process results in larger insurance coefficients relies

crucially on the extent of borrowing limits. In order to quantify the effect of borrowing

limits, we study the ZBC economy. The degree of consumption insurance goes down by a

significant amount, especially for young workers, under the age-dependent specification, for

whom insurance falls from around 70% to 26%. This shows the importance of borrowing

constraints for young workers.

The decrease in the degree of insurance does have welfare consequences: Welfare costs

increase compared to the NBC economy for both of the specifications. For the age-dependent

process, costs go up from 9.97% to 12.5%, whereas for the standard AR(1) process they

increase to 16.37%. The increase is larger for the age-dependent process, lowering the

differences between the two processes. However, welfare costs are still significantly lower

under the age-dependent income process.

1.1 Related Literature

Our paper’s contribution is twofold. First, we contribute to the literature that models id-

iosyncratic earnings risk. These reduced-form models are used as an input in macroeconomic

models with heterogeneous agents. Different specifications will induce different economic

decisions; therefore, one needs a good measure of labor income risk. A large body of this

literature has been devoted to finding the ‘right’ specification. A partial list of such papers

includes Lillard and Willis (1978), Lillard and Weiss (1979), MaCurdy (1982), Abowd and

Card (1989) and Baker (1997), although none of the papers above have investigated the

lifetime profiles of persistence and variances. Our paper fills that void.

A notable exception is Meghir and Pistaferri (2004), which estimates a process with a

fully permanent component, an MA(q) component where q is estimated from the data, and

a fully transitory component. Their focus is on conditional heteroskedasticity in permanent
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and transitory shocks. Similar to our paper, they also allow for age profiles in the variance of

permanent and transitory shocks. However, unlike our paper, they do not allow persistence

to change over the life cycle. They find no evidence in favor of an age profile. In this paper,

we argue that it is crucial to allow persistence to change with age.

Another paper related to ours is Hause (1980). Using data on Swedish white collar

workers, he estimates a process that has an AR(1) component with time specific persistence

and variance of shocks. Since his data set contains only workers born in 1943, it is not clear

whether these profiles are age or time-specific. Our paper takes advantage of the rich panel

structure of the PSID and separates changes over time from changes over the life cycle.

Recently, Guvenen (2009) argues for the existence of growth rate heterogeneity and finds

evidence against unit roots. The evidence he brings forward is twofold. First, he points to

the convexity in the variance profile of earnings. Second, he exploits the increase in higher

order covariances. He argues that these can be captured through growth rate heterogeneity

but not by highly persistent shocks. The age-dependent income process can inherently

capture these features of the data without growth rate heterogeneity.

Another approach is to make use of economic choices. Guvenen (2007), Kjetil Storeslet-

ten (2004) and Guvenen and Smith (2009) are papers that bring consumption data into the

picture to make inference about the nature of income risk. Cunha, Heckman, and Navarro

(2004) use schooling decisions and decompose residual earnings into a component that is

foreseen and acted upon (heterogeneity) and a component that is unanticipated (shocks).

Feigenbaum and Li (2008) also makes this distinction and measure income uncertainty as

the variance of income forecasting errors at different ages. They find a U-shaped uncer-

tainty profile over the life cycle. Altonji, Smith, and Vidangos (2009) consider a structural

approach to estimate a joint model of earnings, employment, job changes, wage rates, and

work hours.

We also contribute to the literature on consumption insurance. Blundell, Pistaferri, and

Preston (2008) develop and apply a methodology to measure the degree of consumption

insurance against permanent and transitory shocks. Kaplan and Violante (2008) argue

that the lifetime profile of insurance coefficients in the data is not consistent with a life-

cycle model that features a standard AR(1) process, since this implies that the insurance

profile follows the profile of assets, which is roughly increasing over the life cycle. However,

Blundell, Pistaferri, and Preston (2008) find a roughly flat insurance profile in the data.
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We claim that under the age-dependent income process proposed in this paper, the profile

of insurance need not be increasing.

The rest of the paper is organized as follows: In Section 2 we describe the statistical

model that we estimate, discuss its identification and present our results. Section 3 presents

the life-cycle model that is used to study the consumption-savings implications of the age-

dependent process and compares its welfare consequences to a standard AR(1) process.

Finally, Section 4 concludes.

2 Empirical Analysis

In this section we describe the statistical model that we estimate for earnings. We start with

a simple age-dependent income process and discuss its identification. We then introduce the

full-blown model, but the proof of identification is left to the appendix. Empirical results

are discussed at the end of this section.

2.1 An Age-Dependent Income Process

Let ỹih be the residual component of earnings of individual i at age h, which is obtained by

running cross-sectional regressions of earnings on observables.4 The details of this first-stage

regression are presented later. Residual income is decomposed into a fixed effect, an AR(1)

component, and a transitory component. This representation is simple, yet it captures the

salient features of the data well. Therefore, it is widely used in the literature.5 This paper

extends the standard specification to allow for a lifetime profile in the persistence parameter,

the variance of persistent and transitory shocks:

4Some papers, such as Guvenen (2009), use potential experience as the explanatory variable instead of
age which is defined as age−max(schooling, 12)− 6. This is used as a proxy for actual experience in order
to avoid endogeneity issues. We use age since potential experience is collinear with it. We carried out the
same analysis with potential experience and the results hold qualitatively and are reported in Appendix
C.2.

5Some papers, including Meghir and Pistaferri (2004) and Hryshko (2008) allow for a fixed effect, a
permanent component (unit root), a fully transitory component and a persistent component that is modeled
either as an MA (q) or AR (1).
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ỹih = αi + zih + εih (1)

zih = ρh−1z
i
h−1 + ηih

ηih ∼ iid(0, σ2
η,h) εih ∼ iid(0, σ2

ε,h)

Here, αi is an individual-specific fixed effect that captures the variation in initial con-

ditions such as innate ability. εih is a fully transitory component that encompasses both

measurement error and temporary changes in earnings such as bonuses and overtime pay.6

zih is the persistent component of idiosyncratic income at age h that captures lasting changes

in earnings such as promotions and health status. Each period the individual is hit by a

persistent shock of size ηih. The magnitude of this shock is governed by the variance σ2
η,h

and the extent to which it lasts is determined by the persistence parameter ρ. The key

innovation of our paper is to allow for an age profile in the variance of shocks, σ2
η,h and σ2

ε,h,

as well as in the durability of the persistent shocks, ρh.

The age profiles capture the idea that changes in earnings occur for different reasons

throughout the life span. For example, young households experience high mobility because

of a mismatch or demand shocks to occupations. On the other hand, middle-aged workers

settle down into senior positions and experience promotions or demotions that lead to

changes in earnings. As for older people, the causes of earnings instability are more likely

to be health problems. These sources of earnings dynamics differ in nature, and more

specifically, in persistence and magnitude. Thus, we suspect that the variance and the

persistence of shocks are not flat throughout the lifetime. Rather than imposing constant

parameters throughout the lifetime, we let the data speak for itself.

Having introduced the age-dependent income process, an immediate concern is one of

identification. Which features of the data tell us how changes in earnings vary in variance

and persistence over the lifetime? The identification discussion allows us to connect the sta-

tistical model to the moments in the data and makes the estimation procedure meaningful.

Intuitively, we identify the profile of persistence by tracking the covariance structure over

lags for a given age. The variance of persistent shocks is obtained by exploiting the varia-

tion in the covariance structure over ages for a given lag. Finally, the variance of transitory

6These changes are potentially correlated with future promotions. However, we follow the literature and
assume that these shocks are i.i.d. in nature.
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shocks is recovered from the variance structure.

The next proposition establishes that the income process (1) is identified and provides

a formal proof:

Proposition 1: Specification (1) is identified in levels up to the normalization that

ρ1 = ρ2.

Proof: We use the variance-covariance structure in levels that is implied by specification

(1) and outline a strategy to identify the parameters of the statistical model. Below we

present this variance-covariance structure.

var
(
ỹih
)

= σ2
α + var

(
zih
)

+ σ2
ε,h h = 1, . . . , H (2)

cov
(
ỹih, ỹ

i
h+n

)
= σ2

α +

(
h+n−1∏
j=h

ρj

)
var

(
zih
)
, (3)

h = 1, . . . , H − 1 n = 1, . . . , H − n

var
(
zih
)

= ρ2
h−1var

(
zih−1

)
+ σ2

η,h h = 1, . . . , H (4)

Let’s first assume that we know the variance of the fixed effect, σ2
α, and show that we

can identify all the remaining parameters. Then we come back to argue that the unused

moment conditions are enough to pin down σ2
α.

Let’s start with the identification of ρh. Note that we can construct cov
(
ỹih, ỹ

i
h+n

)
− σ2

α

since we assume σ2
α is known. (3) implies [cov(ỹi1, ỹ

i
1+n) − σ2

α]/[cov(ỹi1, ỹ
i
h) − σ2

α] = ρn.

This pins down ρh for h = 2, 3, . . . , H − 1. Since ρh is already pinned down for h > 1,

cov
(
ỹih, ỹ

i
h+1

)
− σ2

α = ρhvar (zih) recovers var (zih) for h > 1. Note that it is not possible to

identify ρ1 and var (zi1) separately. We make the identifying assumption that ρ1 = ρ2. This

then pins down var (zi1). Using the information contained in (2), we recover σ2
ε,h ∀h. Finally,

we use (4) to identify σ2
η,h ∀h.7

2.2 Full Model

In order to better account for earnings dynamics, we extend the basic specification intro-

duced in the previous section by incorporating time effects.

7The result in proposition 1 tells us that σ2
ε,H and σ2

η,H are unidentified. This is to be anticipated, since
distinguishing between persistent changes and transitory changes requires us to observe the individual for
several periods (at least one) after the change and see how long the change affects the wage. Obviously, for
the last age this is not possible.
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Let yih,t denote the log of annual earnings of individual i of age h at time t. To obtain the

residual income ỹih,t, we run cross-sectional first-stage regressions of earnings on observables.

More specifically,

yih,t = f
(
X i
h,t; θt

)
+ ỹih,t (5)

The first component in this specification, f is a function of age and schooling and

captures the life-cycle component of earnings that is common to everyone. X i
h,t is a vector

of observables that includes a cubic polynomial in age and an education dummy, indicating

whether the individual has a college degree. The parameter θ is indexed by t to allow the

coefficients on age and schooling to change over time and captures changes in returns to

age and schooling that took place over time.

Figure 1 plots the evolution of residual inequality for the U.S. during our sample period

of 1967-1995. It is obvious that there is a significant change in residual inequality starting

in the late 1970s. Ignoring the changes that took place over time might bias our estimates of

the age profile of shocks. In particular, changes that occur over time can be misinterpreted

as changes during the life cycle. The rich panel structure of the PSID helps us to distinguish

life-cycle effects from time effects: We observe individuals with a given age at different points

in time, and thus at a given year, we observe individuals of different ages. This allows us

to separate what is due to calendar time from a life-cycle phenomenon. For this particular

reason, it is important to have a large number of cohorts in order to accurately separate

these effects. This observation will guide our sample selection process, as we will explain in

2.3.

Here we follow Gottschalk and Moffitt (1995), who argue that significant changes took

place in the variance of transitory shocks as well as persistent shocks and modify (1) as:

ỹih,t = αi + zih,t + φtε
i
h (6)

zih,t = ρh−1,t−1z
i
h−1,t−1 + πtη

i
h

ηih ∼ N
(
0, σ2

η,h

)
εih ∼ N

(
0, σ2

ε,h

)
,

where φt and πt represent time loading factors for transitory and permanent shocks, respec-

tively.8

8This implicitly assumes that changes over time have affected everyone at the same age in the same way.
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Figure 1: Residual Inequality over Time

We leave the formal identification proof for the generalized version to Appendix A, since

it doesn’t provide any further insight. Here is a heuristic argument. The loading factors on

persistent shocks, πt, will be identified through the changes in the covariances over time.

The difference in the covariances between age 1 and age 2 at different points in time must

have come from the change in the respective loading factors. Once we have pinned down

the profile of πt’s we then look at the variance profile over time for a given age h. Changes

in this variance can be due to a change in the variance of the transitory component or the

persistent component. Since we have already identified the profile of π, whatever remains

unexplained will be picked up by φ, the time profile of transitory shocks. Once we control for

the time effects in the variance and covariance structure, the identification of the parameters

governing the age profile follows from the previous result.

A related approach would be to control for cohort effects. It is reasonable to think

that different cohorts face different economic environments; thus the changes in the residual

variance structure may be due to the fact that there are different cohorts at different points

in time. It would be better to allow for cohort effects and time effects in variances at the

same time but this is not possible because age, time and cohort are perfectly collinear.
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Therefore, we take the stand that everything other than the age profile is well captured

by the time loading factors. Heathcote, Storesletten, and Violante (2005) provide some

evidence that time effects are more pronounced than cohort effects.9

2.3 Data and Sample Selection

This section briefly describes the data and the variable definitions used in the empirical

analysis. We use the first 29 waves of the Panel Study of Income Dynamics (PSID). We

estimate our model using both annual earnings and average hourly wage of male heads of

households as the measure of labor income. Here, we present the results for earnings data.

Estimation results for wage data are reported in Appendix C.1; the results are qualitatively

the same. We include an individual in our baseline sample if he satisfies the following

criteria for 3 not necessarily consecutive years: (i) the individual has reported positive

labor earnings and hours, (ii) his age is between 24 and 60, (iii) he worked between 520 and

5110 hours during the calendar year, and (iv) had an average hourly wage between $2 and

$400 in 1993 dollars. We also exclude people from the poverty sub-sample in 1968 (SEO).

These criteria are fairly standard in the literature and leave us with 4380 individuals and

53,864 observations. Sample statistics are in Appendix B.

We exclude individuals younger than 24 to control for young part-time workers. Adults

older than 60 are also left out to control for the phenomenon known as early retirement. The

early retirement of the elderly increases the variance of residual earnings by a substantial

amount, since some people quit their jobs for low-paying, less intensive jobs. We did our

analysis for a sample between ages 20 and 65; our results are even stronger for this sample.

Some of the changes in persistence and variance that we observe for that sample might be

driven by young individuals who move from part-time to full-time employment or by older

individuals who are heterogeneous in retirement age. Therefore, in our baseline case, we

present the conservative results. We report the results for the larger sample in Appendix

C.2.

9Another issue regarding our econometric analysis is measurement error. It has been widely documented
that earnings in the PSID contain substantial measurement error. In this paper, we assume that transitory
changes capture also the measurement error. The true size of transitory shocks is not distinguishable from
the measurement error once we assume fully transitory errors. Meghir and Pistaferri (2004) decompose
residual income into a completely permanent component, a transitory component that is modeled as MA (q)
and an i.i.d. component that they assume to be measurement error. Bound and Krueger (1991) provide
evidence in favor of somewhat persistent measurement errors.
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Another issue with our sample selection criteria is the minimum number of years. Our

choice is guided by the identification argument presented in 2.2. Recall that we need to

observe people of the same age at different points in time (and vice versa). Requiring

individuals to stay longer in the sample decreases the number of cohorts that we have in

the data, since it gets rid of the early cohorts.10

2.4 Estimation Results

In this section, we present our estimation results. The emphasis is on the existence of a

nontrivial lifetime profile. Estimation is done in levels by minimizing the distance between

the moments from the theoretical variance-covariance structure and the corresponding mo-

ments in the data. In particular, we target all the variance and covariance terms over age,

cov
(
ỹih, ỹ

i
h+n

)
, and over time cov

(
ỹit, ỹ

i
t+n

)
, but we adopt a minimum number of contri-

butions rule to eliminate moments that are not reliable. More precisely, we target only

those moments to which at least 150 individuals contribute. This leaves us with more than

1000 moments. For small sample considerations explained in Altonji and Segal (1996), our

minimum distance estimator employs the identity matrix as the weighting matrix.

We start by estimating the lifetime profile of shocks and persistence nonparametrically,

i.e., without imposing any functional form on the lifetime profiles. The dots in Figure 2

show 3-year moving averages for the nonparametric estimation. The results reveal substan-

tial changes in these parameters over the life cycle. The top panel shows the results for

persistence. It reveals an interesting fact: Early in life, shocks are moderately persistent.

Persistence starts around 0.75 for young individuals, increases with age up to unity by the

age of 45 and then slightly decreases to around 0.95 until the end of working life.11 The

differences also appear to be economically large (although a more precise evaluation needs

to await the consumption model in Section 3). For example, more than 70% of a change in a

24-year-old’s earnings dies out in 5 years. This number is only around 15% for a 40-year-old

individual.

10Of course, another source of worry is the sample size; if we were to require individuals to remain in the
sample longer, we would end up with fewer observations. This is important for us, since we are increasing
the number of parameters of the specification along the life-cycle dimension.

11Persistence for the last two points in the plot appears to be outliers. This is mainly driven by the last
age’s point estimate.
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Figure 2: Estimation Results

The variance of persistent shocks (see the middle panel of Figure 2) follows the opposite

pattern. Early in life, shocks are larger compared to in the 40s. The variance starts around

0.05, decreases to around 0.01 by age 35 and remains roughly flat for 10 years. Shocks toward

the end of the life cycle are larger, which manifests itself in a variance of around 0.035. These

differences again appear to be economically large; a one-standard-deviation persistent shock
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implies a 26% change in earnings at age 24, whereas a one standard deviation shock implies

only a 12% rise for a 40 year old.

The bottom panel of Figure 2 plots the variance of transitory shocks. Note that there

is no obvious pattern for transitory shocks. This is not very surprising, since the transitory

component absorbs the classical measurement error, which we would expect to be flat. In

what follows, we take the variance of the transitory component to be constant over the life

cycle.

2.5 Comparison with the Literature

We now compare the age-dependent process with the standard case, i.e., a specification

consisting of a fixed effect, an AR(1) component where the persistence and variance of

shocks are constant throughout life, and an i.i.d. transitory component with constant

variance. In order for these cases to be comparable, we estimate this model using our data.

The dashed lines on Figure 2 show the point estimates for persistence, variance of persistent

and transitory shocks. Our estimate of persistence, 0.978, is in line with the estimates in

the literature, which range from 0.96-1.0. It is surprising to see that for most of the life

cycle, persistence in the age dependent process is significantly lower than the estimate of

persistence for the benchmark case. As the examples above have shown, these differences

can be economically significant. We will make this point clear in Section 3.

In what follows, we will argue that targeting the lifetime profile of inequality in the data

results in an upward bias in persistence if one does not allow for age-specific persistence

and variance. To do so, we compute the lifetime profile of inequality from the data. To

control for time effects in variances, we compute the variance of residuals for each age-year

bin, ̂var(ỹh,t). We then regress these on a full set of age and year dummies and report age

dummies.12 The resulting profile is shown in Figure 3.13

This figure shows a steady rise in inequality of around 20 log points. The increase is

particularly steep after age 35. Let’s look at the corresponding moments from the model.

12In order not to have too few individuals contributing to these variances, we include an individual in an
age-year bin if he is within 2 years of that age.

13Some papers choose to control for cohort effects rather than time effects when reporting lifetime profile
of inequality. We have decided to control for time effects for the sake of consistency, since the estimation
controls for time effects.
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In the absence of a lifetime profile in the variance of shocks and persistence, which is the

case for a standard AR(1) process, the corresponding theoretical moments will be given by

var(ỹh) = σ2
α + σ2

η

h−1∑
j=0

ρ2j + σ2
z0
ρ2h + σ2

ε ,

where σ2
z0

represents the initial variance of the persistent component. So long as ρ < 1,

residual inequality has a well-defined limit, say, var∗(ỹh). It can easily be shown that var(ỹh)

will converge to var∗(ỹh) from below in a concave fashion.14 The degree of concavity is more

pronounced the farther away ρ is from unity. In the case of a unit root, the variance profile

will be linearly increasing, regardless of var∗(ỹh). Figure 3 obviously implies that the fit

would be poor if ρ is far away from 1. Targeting these moments results in an upward bias

and drives ρ close to 1 because of misspecification.
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Figure 3: Lifetime Profile of Residual Inequality

At this point, it is worth stressing that the age-dependent income process does not

need to contain unit roots or very high levels of persistence to match the inequality profile.

Figure 3 also plots the smoothed inequality profile implied by our estimates. The model

does capture the increase in lifetime inequality even if persistence for young individuals is

very low. The mechanism is due to the inverse relationship between persistence and the

14Here we implicitly assume that var(ỹ0) < var∗(ỹh), which is necessary to have an increasing lifetime
profile.
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variance of labor income shocks. When persistence goes up with age, the additional increase

it induces in inequality is compensated by a decrease in the variance and vice versa. In this

manner, the model is able to replicate the increase in the empirical variance profile with

lower levels of persistence.

Guvenen (2009) estimates a process that allows individuals to differ in growth rates of

earnings. He finds support for significant heterogeneity in income growth rates and shows

that ignoring this heterogeneity introduces an upward bias into the estimate of persistence.

This paper shows that even if one takes the alternative view that agents are subject to

similar income profiles, accounting for age-specific persistence and variances reduces the

estimates of persistence significantly.

The evidence he brings forward is twofold: First, he points to the convexity in the

variance profile of earnings and argues that this feature of the data indicates the presence

of growth rate heterogeneity. Second, he exploits the shape of higher order covariances,

which features an increase in higher lags. This, he argues, can be captured through growth

rate heterogeneity but not by highly persistent shocks. It is worthwhile to note that the

age-dependent income process can inherently capture these features of the data without

growth rate heterogeneity.

As we mentioned in 1.1, Meghir and Pistaferri (2004) also allow for age effects while

modeling conditional variances of transitory and persistent shocks, which are found to be

insignificant. Since their specification assumes fully permanent shocks, i.e., persistence is

constant at unity, it lacks the inverse relationship between variance and persistence that is

crucial in our results. A flat profile in persistence suppresses the nontrivial lifetime profile

in variance.

2.6 Significance Tests

We now turn to the question of significance. Are these shapes statistically significant?

Rather than making age-by-age comparisons using our nonparametric estimates, we want

to see whether there is a significant pattern that is not flat. For this purpose, we proceed

in two ways. First, we conjecture a quadratic function for the age profiles of the persistence

and variance of persistent shocks and estimate its parameters from the data. This assumes

that life-cycle effects are smooth in age. Yet, time effects are modeled nonparametrically;
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i.e., there are separate loading factors for each year. More specifically, we estimate:

xh = γx,0 + γx,1h+ γx,2h
2 ,

where x is the variable of interest, such as ρ and σ2
η. The quadratic polynomial is flexible

enough to capture the profiles shown in Figure 2. We then test the hypothesis that the age

pattern is flat (γx,1 = γx,2 = 0). The results of the estimation and the test are presented in

Table 1. The implied age profiles of the persistence and variance of shocks are plotted in

Figure 2. Note that these line up well with the nonparametric estimates.15

Table 1: which Estimation and Test Results for Quadratic Specification

x γx,0 γx,1 γx,2 γx,1 = γx,2 = 0

ρ
0.7638 0.0190 -0.000495 0.0204

(0.0713) (0.0073) (0.00015)

σ2
η

0.0367 -0.0029 0.00007 0.0000
(0.0056) (0.0005) (0.00001)

σ2
α

0.0833 N/A N/A N/A
(0.0226)

σ2
ε

0.0702 N/A N/A N/A
(0.0120)

* The numbers in brackets are standard errors.
** The last column reports the p-values of the corresponding test.

The first two rows of Table 1 show the results for persistence and variance. We note that

both the coefficient of the linear and the quadratic term (γ1 and γ2) are significant at the

95% confidence level. Also, the joint test of a flat profile is rejected for both persistence and

variance with p-values of 0.0204 and 0.0000, respectively. Thus, based on the polynomial

estimation, we conclude that these profiles are significant.

In order to complete the picture, we choose a specification that is in between the poly-

nomial and the nonparametric specifications. We consider a model in which working life is

divided into 3 stages. This model restricts persistence and variance to be constant within

an interval but allows them to differ from one to the other. The bins correspond to ages

15As explained before, we assume a constant profile of variance for transitory innovations.
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24-33, 34-52 and 53-60. More specifically, for x = ρ or σ2
η :

xh =


δx,1 if h ∈ [24, 33]

δx,2 if h ∈ [34, 52]

δx,3 if h ∈ [53, 60]

These intervals give flexibility to the model in capturing arbitrary changes in parameters

over the life cycle without disrupting the parsimonious structure. Furthermore, we do not

want to bias the results by imposing a misspecified functional form. In this sense, this

complements the results from the polynomial estimation. Time effects are still modeled

nonparametrically. Figure 4 provides estimation results for this case along with 95% confi-

dence intervals. The results, once again, point to the same shape. The variance of persistent

shocks follows a U-shape and the persistence is hump shaped. Confidence intervals show

that persistence in the second age bin is significantly larger than in the first one. The dif-

ference in persistence between the second and third bins is, however, not significant. As for

the variance, the second bin has a significantly lower variance than the other two bins. To

be more formal, we test the hypotheses H0 : ρ1 = ρ2 = ρ3 and H0 : σ2
η,1 = σ2

η,2 = σ2
η,3. The

results are summarized in Table 2.16

Table 2: Estimation and Test Results for Age Bins

δx,1 δx,2 δx,3 δx,1 = δx,2 δx,2 = δx,3 δx,1 = δx,2 = δx,3

ρ
0.8326 0.9648 0.9458 0.0001 0.5060 0.0002

(0.0243) (0.0158) (0.0280)

σ2
η

0.0333 0.0144 0.0308 0.0002 0.0057 0.0000
(0.0064) (0.0036) (0.0057)

σ2
α

0.0956 N/A N/A N/A N/A N/A
(0.0136)

σ2
ε

0.0632 N/A N/A N/A N/A N/A
(0.0114)

* The numbers in brackets are standard errors.
** The last three columns report the p-values of the corresponding tests.

Once again, we reject the hypothesis of a flat profile for persistence and variance with

16We experimented with different age bins. Results are robust with respect to local changes.
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p-values of 0.0002 and 0.0000, respectively. In the case of persistence, the rejection comes

from the difference of the first age bin from the second and third age bins; persistence for

the second bin is not significantly different from that of the third bin. For variance, the

second bin is significantly lower than the first and third, although there is no significant

difference between the first and the last bin.
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Figure 4: Results for Age Bins

3 A Life-Cycle Model of Consumption and Savings

There is a large literature that rejects full insurance for the US economy (Cochrane (1991),

Mace (1991), Attanasio and Davis (1996)) making the nature of labor income risk an im-

portant object to study. This paper so far has established the existence of a nonflat lifetime

profile in persistence and variance of shocks. We now investigate their economic implica-
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tions. In particular, we are interested in the insurability of labor income shocks and the

welfare costs of idiosyncratic risk under different specifications for earnings. To address

these issues, we consider a standard life-cycle model that features incomplete financial mar-

kets and a social security system and compare the implications of the age-dependent income

process with a standard AR(1) process. There are several reasons to expect different conse-

quences. First, as we have discussed above, the age-dependent income process implies lower

persistence but larger shocks for young agents. Kaplan and Violante (2008) show that for

reasonably calibrated versions of a Bewley model, the insurability of shocks is decreasing in

persistence. Therefore, one might expect a higher level of insurance for young agents under

the age-dependent income process than the standard process. This will imply lower welfare

costs of risk compared to the benchmark case. On the other hand, shocks to earnings are

larger for young agents, which in turn results in larger welfare costs. Ultimately, whether

welfare costs are larger or smaller becomes a quantitative question.

We now describe the model that we use to study these questions. The economy is

populated by a continuum of agents that have preferences over consumption that are ordered

according to

E
H∑
h=1

βhu
(
cih
)

(7)

where cih denotes the consumption of agent i at age h. They engage in labor market activities

for the first R years of their life and retire afterward. After retirement, they live up to a

maximum age of H.

Financial markets are incomplete in that agents can buy and sell only a risk-free bond.

Letting r denote the risk-free interest rate and aih denote the asset level of individual i of

age h, the budget constraint is given by

cih +
aih+1

1 + r
= aih + yih , (8)

where yih is the labor earnings at age h. Agents are allowed to borrow up to an age-dependent

level, denoted by Āh. We assume that everyone of the same age faces the same borrowing

limit and we experiment with two extreme cases: a natural borrowing limit and a zero

borrowing limit.17 It is important to investigate these two cases for the question we have

17The natural borrowing limit is the maximum amount that an agent can pay back with future earnings
for sure.
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in mind, because the evaluation of the tradeoff between persistence and variance of shocks

depends crucially on the extent of the borrowing limit. Namely, if borrowing limits are loose,

the not-so-persistent but large shocks to young agents can be well insured by borrowing.

On the other hand, in the case of tight borrowing limits, the magnitude of shocks matters

more.

While in the labor market, agents’ earnings have two components. The deterministic

part is common to everyone and follows a quadratic polynomial in age. The idiosyncratic

component captures individual earnings risk and is modeled as discussed in 2.1:

lnyih = γ0 + γ1h+ γ2h
2 + ỹih (9)

ỹih ∼ (1)

We consider the implications of two specifications for the income process: i) the age-

dependent income process and ii) an AR(1) process with constant persistence and variance

of shocks over the lifetime: ρh = ρ, σ2
h = σ2 ∀h.

There is a social security system that pays a pension after retirement.18 We model the

retirement salary as a function of the fixed effect and the persistent component of income

in the last period, ln yih = Φ(αi, ziR). This function is modeled as in Guvenen, Kuruscu,

and Ozkan (2009) and is set to mimic the properties of the US social security system. Its

details are discussed in 3.1.

Let Vh (aih, α
i, zih, ε

i
h) denote the value function of an agent at age h ≤ R, with asset hold-

ings aih, fixed effect αi, persistent component of labor income zih and transitory component

of income εih. The agent’s programming problem can be written recursively as

V i
h

(
aih, α

i, zih, ε
i
h

)
= max

ai
h+1,c

i
h

u
(
cih
)

+ βEVh+1

(
aih+1, α

i, zih+1, ε
i
h+1

)
s.to (8) and (9)

aih+1 ≥ −Āt+1

Upon retirement, the agent has a constant stream of income from social security and

faces no risk. His problem is given by:

18Since this is a partial equilibrium framework, we do not model social security taxes and do not consider
the government’s budget.
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V i
h

(
aih, α

i, ziR
)

= max
ai

h+1,c
i
h

u
(
cih
)

+ βVh+1

(
aih+1, α

i, ziR
)

s.to (8)

lnyih = Φ(αi, ziR)

aih+1 ≥ − ¯Ah+1

3.1 Calibration

One period in our model corresponds to a calendar year. Agents enter the economy at

age 24, retire at 60 and are dead by age 84. We assume CRRA preferences and set the

parameter of relative risk aversion to 2.19 We take the risk-free interest rate to be 3%.

As suggested by Kjetil Storesletten (2004), among others, the crucial part of our cal-

ibration is to pin down the discounting parameter β. We set this parameter to match an

aggregate wealth to income ratio of 3. This is important, since the amount of wealth held

by individuals affects the insurability and welfare costs of labor income shocks. We define

aggregate wealth as the sum of positive asset holdings and aggregate income is the sum of

labor earnings (excluding retirement pension).

The deterministic component of earnings is estimated using the PSID data. It has

a hump-shaped profile where earnings grow by 60% during the first 25 years and then

decrease by 18% until the end of the working life. For the residual component of earnings,

we consider two specifications: the age-dependent and the AR(1) processes. The first is

calibrated according to the quadratic specification reported in Table 1. The parameters of

the latter come from our estimates in Figure 2.

In a realistic model of the retirement system, a pension would be a function of lifetime

average earnings, but this would introduce one more continuous state variable to the problem

of the household. We refrain from doing so, since this would complicate the model without

adding any further insight for our purposes. In our model, the retirement pension is a

function of predicted average lifetime earnings. We first regress average lifetime earnings on

last period’s earnings net of the transitory component and use the coefficients to predict an

individual’s average lifetime earnings, denoted by ŷLT (αi, ziR). Following Guvenen, Kuruscu,

and Ozkan (2009) we use the following pension schedule:

Φ(αi, ziR) = a ∗ AE + b ∗ ŷLT (αi, ziR) ,

19This is within the range of estimates in the literature (Gourinchas and Parker (2002), Cagetti (2003)).
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where AE is the average earnings in the population. The first term is the same for everyone

and captures the insurance aspect of the system. The second term is proportional to ŷLT

and governs the private returns to lifetime earnings. We set a = 16.78%, and b = 35.46%.

We discretize all three components of earnings using 61, 11, and 11 grid points for

the persistent component, transitory component, and fixed effect, respectively. The value

function and policy rules are solved using standard techniques on an exponentially spaced

grid for assets of size 100. The economy is simulated with 50, 000 individuals.20

3.2 Simulation Results

In this section, we report the implications of different specifications on consumption behav-

ior. For every specification, we calibrate the discounting factor, β, to match an aggregate

wealth to income ratio of 3. We first start by showing the results for the economy with

natural borrowing constraints (NBC). The resulting discount factors for the age-dependent

and AR(1) processes are 1/(1 + 0.041) and 1/(1 + 0.042), respectively (see Table 3). Figure

5 shows mean asset and consumption profiles. Note that the asset and consumption profiles

are very similar for both specifications.21 However, even though agents are more impatient

in the AR(1) economy, consumption growth of young individuals is steeper. This points to

the differences in precautionary motives (Carroll (1997)).

Figure 6 shows the inequality profiles of consumption implied by the two income pro-

cesses. Recall from Figure 3 that the initial level of earnings inequality is lower for the

AR(1) process, but that the increases over the lifetime are roughly equal.22 Thus, we focus

on the increase in consumption inequality rather than levels: The increase implied by the

AR(1) process is 21 log points, whereas the age-dependent income process implies a rise of

only 17 log points. This shows that the shocks in the age-dependent process economy are

more insurable.

20The number of grids for the income process is sufficient, since simulated earnings are very close to
theoretical earnings. We find that increasing the grid for assets does not change Euler errors significantly.
Also, increasing the number of people we simulate does not change the model statistics. We conclude that
the current precision is sufficient.

21The model is able to generate a hump-shaped profile for consumption, as reported in Krueger and
Fernandez-Villaverde (2009), but the timing of the hump is later. This fit can be improved by adding
mortality risk or health shocks in older ages (Palumbo (1999)).

22The increase in the AR(1) process is only 0.01 higher.
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Figure 5: Mean Asset and Consumption Profiles for NBC
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Figure 6: Consumption Inequality for NBC

To make this point clearer, we provide a measure of insurance against persistent shocks

and investigate the differences between the two processes. Following Kaplan and Violante

(2008) and Blundell, Pistaferri, and Preston (2008), we compute the degree of consumption

insurance at age h as:

φh = 1− cov(∆cih, η
i
h)

var(ηih)
,
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where ηih is the persistent shock faced by worker i at age h. This measures the amount of

change in earnings that does not translate into consumption growth. Figure 7 plots φh over

the life cycle for both processes. It is obvious that persistent shocks from the age-dependent

process are better insured throughout the lifetime. On average, 56% of persistent shocks

are insured under the age-dependent process, whereas the corresponding number for the

AR(1) process is only 40%. Strikingly, most of this difference comes from younger adults.

Recall that for them the level of persistence is particularly low under the age-dependent

process. It is well known in the literature that persistence is an important determinant

of insurance. Transitory shocks are easily insured by using the risk-free bond (Kaplan

and Violante (2008)). On the other hand, in the presence of a very persistent component,

agents abstain from borrowing because of the possibility of a long series of bad income states.

Insurance against such shocks is, therefore, mostly through assets. This is not possible for

young agents since, on average, they are poor. Under the age-dependent income process,

persistence is fairly moderate for young workers, implying insurance coefficients as large as

70%.
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Figure 7: Insurance against Persistent Shocks
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Another striking difference between the two processes is the profiles of insurance coef-

ficients. In the AR(1) process, the profile of insurance tracks the profile of assets. This is

consistent with the previous explanation, since persistence is constant and high throughout

the working life and insurance mainly depends on the amount of assets. Blundell, Pistaferri,

and Preston (2008) approximate insurance coefficients against permanent shocks in the data

and find that this is roughly flat over the life cycle.23 Thus, the profile of insurance implied

by an AR(1) process is not consistent with the data (Kaplan and Violante (2008)). The

left panel of Figure 7 shows, however, that the age profile of insurance in a Bewley model

need not track the profile of assets. Note that the profile of assets under the age-dependent

process is very similar to the one under AR(1), but the insurance profiles are drastically

different. This is solely due to the profile of persistence. Young agents, as explained above,

have access to better insurance since shocks are not very persistent. Insurance decreases

with age in the early part of the working life, since persistence increases. After age 40, on

the other hand, agents have enough assets so that the change in persistence has virtually no

effect on the profile of insurance and thus insurance increases due to the increase in assets.

3.3 Welfare Implications

We now turn to welfare costs of idiosyncratic risk under the two processes. Recall that

the low levels of persistence under the age-dependent process is compensated by the larger

variance of shocks (bottom panel of Figure 2). On the one hand, lower persistence implies

better insurability. On the other hand, larger variance implies more instability. In order

to evaluate this tradeoff quantitatively, we compute the fraction of lifetime consumption

that an individual would be willing to give up in order to live in an economy with complete

markets.24 The results are reported in Table 3.

23They develop an approximation to insurance coefficients in a life-cycle model assuming that residual
earnings consist of a completely permanent and a fully transitory component and that there are no borrowing
constraints.

24The formula for welfare costs, χ, is given by

χ = 1−
(

V

VComplete

)1/(1−γ)

,

where V is the expected lifetime utility in the economy for which welfare costs are calculated, VComplete
is the expected lifetime utility in the complete markets economy and γ is the coefficient of relative risk
aversion in the CRRA utility function (γ = 2).
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Column 3 shows the welfare costs of not being able to insure against idiosyncratic risk

as well as fixed effects. The first two rows correspond to the age-dependent and AR(1)

processes, respectively. The age-dependent income process delivers lower welfare costs,

even though the level of inequality at the end of the life cycle is lower for the AR(1) process

(see Figure 3). At this point it is not clear how much of these differences is driven by shocks

and how much is driven by permanent differences. In order to properly account for the costs

of shocks, we compute the welfare cost of idiosyncratic shocks only.25 These are reported

in Column 4. The differences between welfare costs are now even larger: An agent living in

the AR(1) world is willing to give up 15% of her consumption every period in order to have

perfect insurance. The same number is only 10% for an agent in the age-dependent world.

We conclude that the effect of lower persistence dominates the effect of larger instability.

To say the least, these are sizable differences.

Table 3: Welfare Costs under Different Income Processes

Natural Borrowing Limit

(1) (2) (3) (4) (5)
β wealth

income
Shocks+Fixed Shocks Insurance

Age-Dependent 1/(1 + 0.0410) 2.9994 15.73% 9.97% 0.56

AR(1) 1/(1 + 0.0420) 3.0001 16.71% 14.85% 0.40

Experiment 1 1/(1 + 0.0414) 2.9995 19.06% 13.51% 0.39

Experiment 2 1/(1 + 0.0418) 2.9994 19.08% 13.55% 0.41

Tight Borrowing Limit

Age-Dependent 1/(1 + 0.0561) 3.0009 18.84% 12.53% 0.39

AR(1) 1/(1 + 0.0562) 3.0008 18.51% 16.37% 0.31

Experiment 1 1/(1 + 0.0549) 3.0013 20.83% 14.72% 0.30

Experiment 2 1/(1 + 0.0558) 3.0009 21.01% 14.90% 0.31

There is a caveat in this analysis: The increase in earnings inequality over the working

life is slightly higher in the AR(1) process (0.1997 vs. 0.1863). Also, the level of inequality

25We follow Kjetil Storesletten (2004) and ask how much an agent with the average fixed effect would be
willing to give up in order to live in the economy with complete financial markets.
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at the beginning of life is lower for the AR(1) process. In order to correct for these, we

modify the parameters of the AR(1) process such that the inequality at the beginning and

the end of the lifetime is the same for both processes. More specifically, we adjust the

variance of the fixed effect in order to match the inequality at the beginning. To match

the increase we do the following two experiments: First, we keep the persistence the same

but decrease the variance of persistent shocks from 0.0143 to 0.0129. Second, we keep the

variance the same but decrease persistence from 0.978 to 0.9747. The last two rows in the

top panel report the results for these experiments, respectively.

Note that the results for both experiments are very close. Since we increased the variance

of fixed effects, the overall costs of inequality increased compared to the second row (from

16.7% to 19.1%). In addition, since the increase in inequality over the lifetime is now lower,

the welfare costs of shocks are lower, too. However, they are still substantially larger than

the welfare costs under the age-dependent specification. The difference in welfare costs

almost corresponds to 4% of lifetime consumption.

As explained above, the driving force for welfare differences is insurability. The fact that

the age-dependent income process results in larger insurance coefficients relies crucially on

the extent of borrowing limits. Young agents would have little ability to insure even against

moderately persistent shocks if they cannot borrow freely. In other words, the evaluation

of the tradeoff between durability and magnitude might reverse. In order to quantify how

much it matters, we take it to the extreme and redo the same analysis for an economy where

there is no borrowing at all.26 The bottom panel of Table 3 presents the results.

The last column reveals that, as expected, insurance goes down by a significant amount.

The right panel of Figure 7 plots the lifetime profile of insurance coefficients for the ZBC

economy. Note that the difference between the age-dependent and AR(1) processes is

significantly smaller compared to the NBC economy. The difference between the NBC and

ZBC economies is substantially striking for young individuals, for whom insurance falls from

around 70% to 26%. The main mechanism of insurance for young agents under the age-

dependent process is borrowing. Since this is not allowed in the ZBC economy, insurance

goes down tremendously.

The decrease in the degree of insurance will have welfare consequences. Column 4 on the

bottom panel of Table 3 shows the welfare costs of idiosyncratic risk for the ZBC economy.

26For the case with tight borrowing constraints, the complete markets economy in the welfare calculations
is the one with full insurance against income risk but with no borrowing.
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As expected, welfare costs have increased compared to the NBC economy for both of the

specifications. Note that the increase is larger for the age-dependent process, and thus, the

differences between the two processes are now lower. However, it is still the case that welfare

costs are lower for the age-dependent process. These results hold also with the experiments

explained above. We conclude that the evaluation of welfare costs is substantially different

for the two processes; however, the margin depends on the amount of borrowing allowed.

Our findings have implications for the Credit CARD Act of 2009. One of the provisions

of this act restricts individuals under the age of 21 from obtaining credit cards without the

consent of their parents. If shocks were completely permanent, then access to credit would

be less crucial since they would not use the option of borrowing. This paper presented

evidence that young agents face very large variances of income shocks that are moderately

persistent. We show that using credit lines in such an environment can go a long way as an

insurance mechanism. Thus, having access to credit is crucial for young individuals.

4 Conclusion

In the presence of incomplete financial markets, the nature of labor income risk becomes

an important determinant of individual decision making. In this paper, we propose a novel

specification for labor income risk that allows the persistence and variance of shocks to

change over the lifetime. We show theoretically that the statistical model is identified and

estimate it using data from the PSID. We find evidence for a nonflat profile in the persistence

and variance of persistent shocks, but not in transitory shocks. Our results reveal that

persistence follows a hump shape over the working life: It starts at 0.75, increases up to

unity by age 40 and then slightly decreases to around 0.95. On the other hand, the variance

of persistent shocks exhibits a U-shaped profile (with a minimum of 0.01 and a maximum

of 0.045).

We investigate the implications of these profiles for consumption and savings behavior

with a life-cycle model. We find that under natural borrowing constraints, the welfare costs

of idiosyncratic risk implied by the age-dependent income process is significantly lower com-

pared to a standard AR(1) process. This is mostly due to a higher degree of consumption

insurance for young workers, for whom persistence is low. Namely, the low level of per-

sistence allows agents to insure themselves against persistent shocks by borrowing. This

mechanism relies crucially on the extent of borrowing limits. In order to quantify the effect
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of borrowing limits, we study an economy with no borrowing. The results are qualitatively

the same, although the difference between specifications in the ZBC economy is smaller.

We conclude that the welfare cost of idiosyncratic risk is overstated.

Our findings have implications for the Credit CARD Act of 2009. One of the provisions

of this act restricts young individuals from obtaining credit cards. According to this paper,

young agents face very large variances of income shocks that are moderately persistent.

This makes access to credit crucial for them.

The benefits of public insurance policies are commonly based on the gains from redis-

tribution, which can be proxied by the welfare costs of inequality. This paper presented

evidence that once the researcher accounts for the age-dependent nature of labor income

risk, welfare costs are much smaller.

An interesting future work would be to investigate the economic mechanisms behind

these life-cycle profiles. In particular, why does persistence follow a hump-shaped profile?

Similarly, what causes the U-shaped pattern in the variance of persistent shocks? It is

plausible to think that upon entering the labor market, young individuals change jobs

frequently in order to find the right match. This may cause low persistence and high

variance. Another potential explanation might be the salary structure. For young workers

a large fraction of earnings may be due to bonus payments causing large transitory changes,

whereas promotions that come later in life result in more persistent changes for middle-aged

workers. These are stories that may generate the low levels of persistence observed for young

workers in the data. In future work, we plan to investigate these mechanisms and use the

results developed in this paper to quantify their relative importance.
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APPENDICES

A Identification

Here, we provide the proof of identification for the full model (6). Again, we will make use

of the variance-covariance structure implied by this model. This structure is given by:

var(ỹih,t) = σ2
α + var(zih,t) + φ2

tσ
2
ε,h (10)

cov(yih,t, y
i
h+n,t+n) = σ2

α + ρhρh+1 · · · ρh+n−1var
(
zih,t
)

(11)

var(zih,t) = ρ2
h−1var(z

i
h−1,t−1) + π2

t σ
2
η,h (12)

Proposition: The process in (6) is identified up to the normalizations that ρ1 = ρ2, π1 =

φ1 = φH = 1 and σ2
η,H = σ2

η,H−1.

Proof: The proof is very similar to the one for the simpler specification. We start by

assuming that we know the variance of the fixed effect, σ2
α, and show that we can identify all

the remaining parameters. Then we come back to argue that the unused moment conditions

are enough to pin down σ2
α.

Note that since we assume that σ2
α is known, we can construct cov

(
ỹih,t, ỹ

i
h+n,t+n

)
− σ2

α.

(11) implies
[
cov
(
ỹih,t, ỹ

i
h+2,t+2

)
− σ2

α

]
/
[
cov
(
ỹih,t, ỹ

i
h,t+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . , H − 2.

This pins down the whole profile of ρh for h = 2, 3, . . . , H − 1 except for ρH .27 Note also

that by normalization ρ1 = ρ2.

Now, our goal is to recover the schedule of var
(
zih,t
)
. Once we recover these, we can

use (12) to identify the loading factors and variances of persistent shocks, {πt}t=Tt=1 and{
σ2
η,h

}h=H−1

h=1
. Note that

cov
(
ỹih,t, ỹ

i
h+1,t+1

)
− σ2

α

ρh
= var

(
zih,t
)

(13)

Since ρh is pinned down for h ≥ 1, (13) recovers var
(
zih,t
)

for h = 1, . . . , H − 1, t =

1, . . . , T − 1. Please note that var(ziH,t) for t = 1, .., T and var(zih,T ) for h = 1, .., H are not

identified yet.

27Note that ρH does not enter the variance-covariance profile at all, so it is, in fact, not a parameter of
the model.
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At this point there are many unused covariances, e.g., cov
(
ỹi2,2, ỹ

i
5,10

)
just to name one.

One of these will suffice to identify σ2
α.

Now, we are ready to identify the loading factors and variances of persistent shocks.

Since var(zi0,t) = 0, var
(
zi1,t
)

= π2
t σ

2
η,1. Using the normalization that π1 = 1, we get σ2

η,1.

Tracking var
(
zi1,t
)

along t identifies πt for t = 2, . . . , T − 1. Consequently, tracing (12)

along the age dimension identifies σ2
η,h for h = 2, . . . , H − 1. By assumption σ2

η,H = σ2
η,H−1

which gives us var(ziH,1).

Now let’s identify σ2
ε,1 using equation 10 for h = 1 and t = 1. Then again using equation

10 for h = 1, t = T we can get var(zi1,T ). Equation 12 for h = 1 and t = T pins down πT .

Now we have recovered the entire πt profile.

The unidentified parameters so far are the lifetime profile of transitory variances and

their respective loading factors over time. We will show that the information contained in

10 is sufficient to identify both of these parameters, thanks to our identifying assumptions

of φ1 = 1 and φT = 1. An immediate consequence of 10 is

var(ỹih,1)− σ2
α − var(zih,1) = σ2

ε,h for h = 1, . . . , H

identifying σ2
ε,h over the life cycle (except for H−1). Fixing h, tracking 10 over t, and using

the fact that we already identified all the parameters except the profile of loading factors

on transitory variances, it is easy to see that φt can be recovered for h = 2, . . . , H − 1.

B Data

We use the first 29 waves of the Panel Study of Income Dynamics (PSID). We include an

individual in our baseline sample if he satisfies the following criteria for 3 not necessarily

consecutive years: (i) the individual has reported positive labor earnings and hours, (ii)

his age is between 24 and 60, (iii) he worked between 520 and 5110 hours during the

calendar year, and (iv) had an average hourly wage between a preset minimum and a preset

maximum.28 We also exclude people from the poverty sub-sample in 1968 (SEO). These

criteria are fairly standard in the literature and leave us with 4380 individuals and 53,864

observations. Tables 4 and 5 present some summary statistics.

28The minimum is set at $2 and the maximum is at $400 in 1993 and is scaled for other years using
average growth rate of wages.
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C Robustness

C.1 Results with Wage Data

Recall that the paper presented results using earnings data. One concern with earnings is

that dynamics that are in reality due to changes in hours can be interpreted as shocks. This

requires us to check the robustness of our results using data on wages. Wage in our data

set is defined as the ratio of annual earnings to hours worked during that year. Figures 8

and 9 show the results for wage data.
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Figure 8: Results for Wages
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Figure 9: Results for Wages with Age Bins
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The following tables present point estimates as well as the results of significance tests.

Table 6: Estimation and Test Results for Quadratic Specification (Wage Data)

x γx,0 γx,1 γx,2 γx,1 = γx,2 = 0

ρ
0.7862 0.0163 -0.00034 0.0061**

(0.0534)* (0.0053) (0.0001)

σ2
η

0.0495 -0.0033 0.000076 0.0031
(0.0068) (0.0007) (0.000017)

σ2
α

0.0695 N/A N/A N/A
(0.0148)

σ2
ε

0.0597 N/A N/A N/A
(0.0118)

* The numbers in brackets are standard errors.
** We report the p-values.

Table 7: Estimation and Test Results for Age Bins (Wage Data)

δ1 δ2 δ3 δ1 = δ2 δ2 = δ3 δ1 = δ2 = δ3

ρ
0.8774 0.9706 0.9558 0.0000** 0.4762 0.0000

(0.0159)* (0.0121) (0.0176)

σ2
η

0.0280 0.0133 0.0243 0.0001 0.0368 0.00015
(0.0052) (0.0033) (0.0048)

σ2
α

0.0699 N/A N/A N/A N/A N/A
(0.0092)

σ2
ε

0.0522 N/A N/A N/A N/A N/A
(0.0122)

* The numbers in brackets are standard errors.
** We report the p-values.

C.2 Results with Potential Experience for Ages 20-64

Now, we check the robustness of our findings with respect to age criteria. Recall that we

required an individual to be between the ages of 24 and 60. Here, we present the results

for the sample with individuals between 20 and 64. Recall, also, that we used age as the

variable that defines the life cycle. Here, we use potential experience as an alternative.29

29This also means that we use potential experience instead of age in our first-stage regressions.
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Figure 10: Results for Potential Experience
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Figure 11: Results for Potential Experience with Age Bins

The following tables present point estimates as well as the results of significance tests.

Table 8: Estimation and Test Results for Quadratic Specification: Potential Experience

x γx,0 γx,1 γx,2 γx,1 = γx,2 = 0

ρ
0.6052 0.0289 -0.00054 0.0000**

(0.0708)* (0.0054) (0.00009)

σ2
η

0.0943 -0.0071 0.00015 0.0055
(0.0153) (0.0011) (0.000023)

σ2
α

0.0940 N/A N/A N/A
(0.0198)

σ2
ε

0.0699 N/A N/A N/A
(0.0179)

* The numbers in brackets are standard errors.
** We report the p-values.
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Table 9: Estimation and Test Results for Age Bins: Potential Experience

δ1 δ2 δ3 δ1 = δ2 δ2 = δ3 δ1 = δ2 = δ3

ρ
0.8184 0.9693 0.9218 0.0001** 0.1397 0.0006

(0.0384)* (0.0159) (0.0293)

σ2
η

0.0351 0.0129 0.0386 0.0038 0.0004 0.00018
(0.0052) (0.0033) (0.0048)

σ2
α

0.0983 N/A N/A N/A N/A N/A
(0.0183)

σ2
ε

0.0996 N/A N/A N/A N/A N/A
(0.0186)

* The numbers in brackets are standard errors.
** We report the p-values.
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