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Abstract

This paper focuses on a situation where the decision-maker prefers to make a

point-decision when the object of interest is interval-identi�ed. Such a situation

frequently arises when the interval-identi�ed parameter is closely related to an

optimal policy decision. To obtain a reasonable decision, this paper slices as-

ymptotic normal experiments into subclasses corresponding to localized interval

lengths, and �nds a local asymptotic minimax decision for each subclass. Then,

this paper suggests a decision that is based on the subclass minimax decisions,

and explains the sense in which the decision is reasonable. One remarkable aspect

of this solution is that the optimality of the solution remains intact even when

the order of the interval bounds is misspeci�ed. A small sample simulation study

illustrates the solution�s usefulness.
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�Ranges are for cattle. Give me a number.�

A remark ascribed to Lyndon B. Johnson, requoted from Manski (2007), p.8.

1 Introduction

Many objects of inference in economics are directly related to decisions that are to be imple-

mented in practice. For example, estimation of willingness-to-pay in discrete choice models

is closely related to transportation and environmental policies or marketing strategies. Also,

optimal treatment decisions are based on the estimated treatment e¤ects in various program

evaluations or medical studies. In such an environment, a point decision about the object

of interest is preferred to a set decision for practical reasons. A natural way to proceed in

this case would be to introduce identifying restrictions for the object of interest and obtain

its reasonable estimator using data. However, the decision-maker faces a dilemma when the

empirical results are sensitive to the identifying restrictions that have no a priori justi�cation

other than that of practical convenience. Relying on the unjusti�able restrictions will erode

the validity of the decision, while shedding them will yield no guidance as to a reasonable

point decision. This paper attempts to address this dilemma by o¤ering an optimal point

decision when the object of interest is interval-identi�ed.

Interval-identi�cation frequently arises when the ultimate object of interest is a reduced

form parameter that is partially identi�ed. Examples abound, including predicted outcomes

with sample-selected observations (Manski (1989)) or with covariates observed to lie in in-

tervals (Manski and Tamer (2002)), local features of a structural function from nonsepara-

ble models (Chesher (2005)), marginal e¤ects from nonlinear panel models (Chernozhukov,

Fernandez-Val, Hahn, and Newey (2009)), and various treatment e¤ects (e.g. Manski (1990),

Manski and Pepper (2002), Battacharya, Shaikh and Vytlacil (2009)). Numerous other ex-

amples are found in the monographs of Manski (2004, 2007).

Providing a point decision when the parameter is interval-identi�ed may sound odd. In-

deed, when we fully know the bounds, choosing a particular value in the identi�ed interval as

a decision cannot be empirically motivated. However, when we do not know the bounds, and

have to rely on their estimators that are subject to certain sampling variations, the question

of how to obtain a reasonable point decision is still empirically relevant, because all the point

decisions in the estimated interval may not be equally supported by the observations.

As far as the author is concerned, optimal inference under partial identi�cation has not

appeared in the literature except for a few researches. Canay (2009) considered inference

under moment inequality models through generalized empirical likelihoods and established

large deviation optimality. Andrews and Jia (2008) recently suggested a moment inequality
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test that has reasonable properties in terms of average asymptotic powers. This paper�s

approach is distinctive in many aspects. Most of all, this paper�s main concern is to �nd a

reasonable point decision when the object of interest is partially identi�ed.

This paper takes candidate point decisions to be in the form of weighted averages of

bound estimators that are potentially irregular and asymptotically biased, and considers a

loss function that is a convex increasing function of the distance between the point decision

and the interval-identi�ed parameter. The allowance for irregular estimators is important

in our context because most bound estimators obtained under the inequality constraint are

irregular inherently.

Asymptotic theory with �xed positive interval length does not capture the �nite sample

situation in which the ratio of the interval length to the �nite sample variance of its estimator

is �nite. Hence this paper considers asymptotic theory under near-identi�cation where the

length of the identi�ed interval in each sequence of experiments shrinks to zero at the rate of
p
n. This approach of near-identi�cation has precedents in Imbens and Manski (2004) and

Stoye (2009a). A similar local parameter approach in the presence of the parameter on the

boundary was employed by Andrews (1999).

To obtain a reasonable point decision, this paper �rst slices asymptotically normal exper-

iments into subclasses according to the localized lengths of the identi�ed interval. For each

subclass, this paper establishes a local asymptotic minimax risk bound, and �nds a local

asymptotic minimax decision. This minimax decision is reduced to a semiparametrically

e¢ cient estimator of the parameter of interest when the parameter is known to be point-

identi�ed. Therefore, the decision can be viewed as a generalization of a semiparametric

e¢ cient estimator under point identi�cation.

When the length of the interval is known, the local asymptotic minimax solution imme-

diately o¤ers a feasible solution. When this is not the case, the local asymptotic minimax

solution depends on the index of the subclass experiment, rendering the solution impractical.

In this situation, this paper proposes that we replace the subclass index by an appropriate

shrinkage estimator. When the loss function is the absolute deviation loss, we prove that the

resulting estimator is a hybrid decision between two extreme subclass minimax decisions.

Remarkably, the hybrid decision remains intact even when one mistakes the upper bound for

the lower bound. Hence knowledge of which of the bound parameters constitutes the upper

or lower bound is only ancillary to the decision.

The main proposal of this paper is the following. When the interval length is small,

one uses a semiparametrically e¢ cient estimator of the object of interest that is computed

under the assumption that the object is point-identi�ed. However, when the interval length

is large, it is optimal to take the average of the e¢ cient upper and lower bound estimators
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as the point-decision.

The inference problem that arises when the parameter of interest is partially identi�ed

has long been noted and addressed in the literature. (e.g. Gilstein and Leamer (1983),

Phillips (1989), and Hansen, Heaton, and Luttmer (1995), to name but a few.) One of

the major approaches in such a situation is to shed the restrictions, and develop inference

procedures for set-identi�ed parameters or the identi�ed set themselves. This approach has

been most notably advanced by numerous researches of Charles Manski (see his monographs

(1995, 2004), and references therein). Recent methodological developments include, among

many researches, inference of interval-identi�ed parameters (Horowitz and Manski (2000),

Imbens and Manski (2004) and Stoye (2009a)) and parameters partially identi�ed by moment

inequalities (Rosen (2008), Andrews and Soares (2007), Andrews and Jia (2008), Pakes,

Porter, Ho and Ishii (2006), Andrews and Guggenberger (2009a,b), Bugni (2007), and Fan

and Park (2007)). A general inference procedure under partial identi�cation has also been

investigated by Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2009), and

Beresteanu and Molinari (2008). Recently Moon and Schorfheide (2009) contrasted Bayesian

and frequentist approaches to inference under partial identi�cation.

The remainder of this paper is organized as follows. In the next section, we introduce

the inferential environment for the interval-identi�ed parameter and discuss examples. The

third section de�nes a decision-theoretic framework, introducing the decision space, loss

functions, and asymptotically normal experiments. The fourth section proposes subclass

local asymptotic minimax optimality and presents a method to construct optimal decisions.

Then in the �fth section, the �nite sample risk properties of this decision are illustrated

through a Monte Carlo simulation study. The sixth section concludes. All the technical

proofs are relegated to the appendix.

2 Point Decisions for an Interval-Identi�ed Parameter

2.1 Decision Making for Interval-Identi�ed Parameters

Suppose that we are given an observable random vector X from P 2 P, where P is a

model, i.e., the collection of probabilities potentially serving as a data generating process

for X: We are interested in knowing about a parameter �0 2 R which is known to lie in an

identi�ed interval, [�L(P ); �U(P )]; where �B(P ) = (�U(P ); �L(P ))> is an R2-valued map on

P. Throughout this paper, (�U ; �L)> denotes a vector in R2, whereas [�L; �U ] denotes an

interval in R.

Interval-identi�cation frequently arises in numerous contexts as mentioned in the intro-
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duction. We discuss three examples where the interest in a point decision of an interval-

identi�ed parameter naturally arises.

Example 1: (Optimal Continuous Treatment Decision) Suppose that �(t) denotes
the treatment e¤ect parameter with continuous treatment t 2 T. For example �(t) is the
expected earnings di¤erential of a worker due to treatment t that is the duration of a person

in the job training program. Or in medical studies, �(t) indicates the expected reduction

in health risks and t denotes the dosage of a new medicine. Suppose further that for each

t 2 T,
�L(t; P ) � �(t) � �U(t; P );

where �L(t; P ) and �U(t; P ) are identi�ed upper and lower bounds. Then, the optimal

treatment e¤ect �� is identi�ed as an interval [�L(P ); �U(P )], where �L(P ) = supt2T �L(t; P )

and �U(P ) = supt2T �U(t; P ). Suppose that an optimal policy rule for '0 which is, for

example, the level of treatment or the entailed budget, etc. is given by '(��; P ) where

'(�; P ) is point-identi�ed. Then, from the decision-maker�s point of view, a reasonable point
decision about �� can be useful. �

Example 2: (Optimal Reserve Price from Auction Models) Suppose that a decision-

maker designs an English auction by setting an optimal reserve price with n bidders. Haile

and Tamer (2003) considered a simple assumption that bidders neither bid more than their

private valuations nor let an opponent win at a price that they would be willing to beat. Us-

ing this assumption, they derived bounds for the bidders�valuation distributions. Then, the

optimal reserve price p� is shown to lie in an interval [pL; pU ], where pL and pU are identi�ed

from the distributions of observed bids. In this situation, the auction designer may want to

prefer a point decision about p� to an interval decision even when it is interval-identi�ed. �

Example 3: (Estimation of Willingness-To-Pay) Many environmental or transporta-

tion analyses require accurate estimates of the willingness-to-pay of consumers who face

di¤erent policy outcomes. In particular, McFadden (1999) explained how one can analyze

willingness-to-pay from a random utility model. One example he considered involves two

policy outcomes; the injury state and the restored state. Then the willingness-to-pay for

the restoration policy is de�ned to be the amount of income that is to be taken from a con-

sumer in the restored state to make her utility the same as that of a consumer in the injury

state. Using the assumption that the indirect utility is linear in the unobserved heterogene-

ity, McFadden (1999) showed that the expected willingness to pay w is interval-identi�ed in

[wL; wU ], where wL and wU are upper and lower bounds involving the choice probabilities

under the injury and the restored states. �

5



Figure 1: Illustrative Distributions of Bound Estimators

As mentioned in the introduction, the problem of making a point decision for an interval-

identi�ed parameter is an empirically relevant question in a �nite-sample situation. We

illustrate this point by a simple example. Suppose that we observe XL � N(�L; �
2
L) and

XU � N(�U ; �
2
U) and the parameter of interest �0 lies in the interval [�L; �U ]. We assume that

XL andXU are independent for simplicity. Figure 1 illustrates three possible cases. Certainly,

when �2L = �2U and �0 is point-identi�ed (as in (A) of Figure 1) so that �0 = �L = �U , an

e¢ cient estimator of �0 is (XL +XU)=2. When �L < �U and �2L = �2U as in (B), this paper

demonstrates that a reasonable point decision continues to be (XL+XU)=2. Intuitively, this

will cease to be the case when �2L 6= �2U , or, say, �
2
L < �2U as in (C) of Figure 1. In this case,

the informative content of XU regarding �U is relatively small, making it intuitive to rely

less on the estimate XU of �U than on XL. One might conjecture that an optimal decision

in this situation will be a weighted average of XL and XU where the weights are given by

�2U=(�
2
L + �

2
U) for XL and �2L=(�

2
L + �

2
U) for XU . Later, we will show that this is indeed the

case only when the length of the interval is small. Even in this simple situation, the answer

is less immediate when XL and XU are correlated.

2.2 Inequality Restrictions on Boundary Parameters

When a parameter is identi�ed in an interval with bounds, say, �1(P ) and �2(P ), we often

know which of the bounds is an upper bound and which a lower bound. When this is not the

case, one might consider using �L(P ) = minf�1(P ); �2(P )g and �U(P ) = maxf�1(P ); �2(P )g.
The main di¢ culty with this choice is, as pointed out by Hirano and Porter (2009) recently,

that the bound parameters are not di¤erentiable in P , preventing us from relying on the

established framework of local asymptotic minimax estimation. Nevertheless, as long as one
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is interested in a point decision about �0, this paper�s proposal does not require knowledge of

the order of the bounds. This is demonstrated in the following way. First, the paper focuses

on the situation where one knows the order of the bounds, and establishes a reasonable

solution. Then it is shown that the decision that is derived remains invariant even when one

interchanges the roles of the upper and the lower bounds.2

3 The Environment for Decision-Making

3.1 Boundary Parameters

We introduce a sequence of experiments that satisfy local asymptotic normality in the sense

of Le Cam. For details, the reader is referred to Strasser (1985) or van der Vaart (1988).

Let B be the Borel �-�eld of R2 and (H; h�; �i) be a linear subspace of a separable Hilbert
space with �H denoting its completion. Let N be the collection of natural numbers. For

each n 2 N and h 2 H, let Pn;h be a probability on (R2;B) indexed by h 2 H, so that

En = (R2;B; Pn;h;h 2 H) constitutes a sequence of experiments. As for En, we assume local
asymptotic normality as follows.

Assumption 1: For each h 2 H,

log
dPn;h
dPn;0

= �n(h)�
1

2
hh; hi;

where �n(�) �(�) (under Pn;0) and �(�) is a centered Gaussian process on H with covariance

function E[�(h1)�(h2)] = hh1; h2i:

The notation  denotes the weak convergence of measures. The local asymptotic nor-

mality of En was introduced by Le Cam (1960). The condition essentially reduces the decision
problem to one in which an optimal decision is sought under a single Gaussian shift exper-

iment E = (R2;B; Ph;h 2 H); where Ph is such that log dPh=dP0 = �(h) � 1
2
hh; hi: The

local asymptotic normality is ensured, for example, when Pn;h = P nh and Ph is Hellinger-

di¤erentiable (Begun, Hall, Huang, and Wellner (1983).) The space H is a tangent space

associated with the space of probability sequences ffPn;hgn�1 : h 2 Hg (van der Vaart
(1991).)

2This procedure is analogous to the usual argument used to show that a likelihood ratio test is a uniformly
most powerful one-sided test of a normal mean. One �rst shows that the test is a most powerful test of simple
null and alternative hypotheses, using the Neyman-Pearson Lemma. Then, it is shown that the test remains
invariant when the alternative hypothesis is altered in one direction, proving that the test is uniformly most
powerful against one-sided alternatives.

7



We introduce a sequence of bound parameters �B(Pn;h) = (�L(Pn;h); �U(Pn;h))> which are

identi�ed under Pn;h for each n � 1 and each h 2 H. The identi�cation here means that the
map �B(�) is point-valued, and not set-valued for each n � 1. We can view the sequence as
a sequence of R2-valued maps on H and write �B;n(h) = (�L;n(h); �U;n(h))>. We let

�n(h) �
p
n(�U;n(h)� �L;n(h)) and �h � lim

n!1
�n(h)

and assume that �h takes values in R for each h 2 H. We also de�ne

�0 � lim
n!1

�n(0) = lim
n!1

p
n f�U;n(0)� �L;n(0)g : (1)

The asymptotic device here sends the interval length to zero at the rate of
p
n; so that the

asymptotic theory maintains the �nite sample feature that the ratio of the interval length

to the variance of its estimator is �nite in the limit.

The sequence of the boundary parameters �B;n(h) are assumed to be regular in the sense

of van der Vaart (1991):3

Assumption 2: There exists a continuous linear R2-valued map on H, _�B = (_�U ; _�U)
>;

such that
p
n(�U;n(h)� �U;n(0); �L;n(h)� �L;n(0))! ( _�U(h); _�L(h))

as n!1:

The continuous linear map _�B is associated with the semiparametric e¢ ciency bound of

the boundary parameter in the following way. Let _�
�
B = (

_�
�
U ;
_�
�
L)
> 2 �H � �H be such that for

each b 2 R2and each h 2 H, b> _�B(h) = hb> _�
�
B; hi. Then for any b 2 R2, jjb> _��Bjj2 represents

the asymptotic variance bound of the parameter b>�B;n (without imposing the inequality

restriction �L;n(h) � �U;n(h)) (e.g. van der Vaart and Wellner (1996), Section 3.11.) For

example, suppose that Pn;h = P nh for some fPh : h 2 Hg and hh1; h2i =
R
h1(x)h2(x)dP0.

Then, by the Riesz representation theorem, there exist _�
�
U 2 �H and _�

�
L 2 �H such that

_�U(h) =

Z
_�
�
U(x)h(x)dP0 and _�L(h) =

Z
_�
�
L(x)h(x)dP0 for all h 2 H.

The maps _�
�
U and _�

�
L are called the e¢ cient in�uence functions of �U;n and �L;n in the

3As pointed out by Hirano and Porter (2009), the bounds in Example 2 do not satisfy Assumption 2
when the number of bidders is di¤erent across the auctions, because the bounds there are nondi¤erentiable.
However, when the number of bidders in the auctions in the sample are large, the bounds can be approximated
by di¤erentiable functionals, and this paper�s framework still applies as an approximate benchmark solution.
A general treatment of the problem accommodating nondi¤erentiable bounds deserves a separate research.
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literature (e.g. van der Vaart (1991)). For future references, we de�ne also

�2U � h _�
�
U ;
_�
�
Ui; �2L � h _�

�
L;
_�
�
Li; and �L;U � h _�

�
L;
_�
�
Ui: (2)

The inequality restriction �L;n(h) � �U;n(h) suggests focusing on a proper subset of H:

For all n � 1;

p
n (�U;n(h)� �U;n(0)) �

p
n (�L;n(h)� �U;n(0))

=
p
n (�L;n(h)� �L;n(0))��n(0):

In the limit with n ! 1, we have _��(h) � ��0 where _�� = _�U � _�L by Assumption 2.

Hence the tangent set under the inequality restriction is given by

HR =
n
h 2 H : _��(h) � ��0

o
: (3)

It is important to note that the tangent set HR is a convex a¢ ne cone, contains a convex

cone, namely, fh 2 H : _��(h) � 0g, but is not a linear space. Suppose that �0 is point-
identi�ed and has an e¢ cient in�uence function ~� associated with HR in the sense of van der

Vaart (1989, 1991). When ~� is contained in the linear span of fh 2 H : _��(h) � 0g, a best
regular estimator which is a regular estimator with asymptotic distribution N(0; jj~�jj2) (after
scale and location normalization) is local asymptotic minimax by Theorem 2.4 of van der

Vaart (1989). This approach does not apply in our case because due to partial identi�cation,

we do not have a well-de�ned in�uence function for �0.

3.2 Loss Functions and Decisions

The main interest lies in a decision that is as close to the object of interest �0 as possible.

Let us introduce the decision space and loss functions L (d; �0).

Assumption 3: (i) The decision space D is given by D = R.

(ii) For each decision d 2 D;
L (d; �0) =  (jd� �0j) ; (4)

where  : [0;1) ! [0;1) is continuous, convex, and increasing and for each M > 0,

minf (�);Mg is uniformly continuous.

The decision space D is taken to be R. Although this might appear innocuous at �rst,

this excludes some important problems such as �nding optimal discrete treatment rules

(Manski (2004), Stoye (2009b), and Hirano and Porter (2008)). The loss function requires
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that  is continuous and convex which is stronger than the standard condition that  is lower

semicontinuous. This additional condition is introduced to deal with partial-identi�cation

by using the so called identi�able maximal risk in Section 4.1.

A reasonable decision will utilize the fact that �0 lies in the identi�able interval. Candi-

date decisions d̂ for �0 are assumed to be linked with boundary estimators in the following

way. Given a boundary estimator �̂B = (�̂U ; �̂L)> 2 R2 of �B = (�U ; �L)>; and a (possibly

stochastic) number �̂ , we de�ne

T (�̂B; �̂) � �̂ �̂U + (1� �̂)�̂L: (5)

We need to specify the nature of the stochastic number �̂ . Let Tn be the collection of random
variables �̂ such that for each h 2 H,

�̂ !P � along fPn;hg

and � is a real number that does not depend on h. For example, the class Tn includes all the
estimators �̂ such that for each h 2 H,

Pn;h fj�̂ � �n(h)j > "g ! 0;

where the sequence �n(h) satis�es that �n(0)! � for some � 2 R and
p
nf�n(h)��n(0)g !

_�(h) for a continuous linear real map _� : H ! R. In the de�nition (5), we do not require

that �̂ take values in [0; 1]. Hence the combination �̂ �̂U+(1� �̂)�̂L is not necessarily a convex
combination of �̂U and �̂L. Moreover, the boundary estimator �̂B (after location and scale

normalization) is allowed to be asymptotically biased for �B.

Definition 1: Let Dn be the collection of random vectors d̂ 2 R in the form d̂ = T (�̂B; �̂);

for some �̂ 2 Tn and some random vector �̂B 2 R2 such that for each h 2 H, there exists a
random vector V h = (V h

U ; V
h
L ) 2 R2 satisfying that

p
n(�̂B � �B;n(h))!d V

h; along fPn;hgn�1;

and suph2H EL(jV h
U j+ jV h

L j) <1.

The class Dn includes as a special case d̂ = T (�̂B; �̂) where
p
n(�̂B � �B;n(h)) is asymp-

totically normal. More importantly, the distribution of V h may not have mean zero and

may vary with the shift h. Therefore we allow the boundary estimator �̂B to be irregu-

lar. The irregularity of the boundary estimator �̂B arises inherently when �̂B is obtained
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under the constraint : �̂L � �̂U , for each n � 1: We illustrate two methods of obtaining a

boundary estimator �̂B satisfying the inequality constraint �̂U � �̂L in �nite samples. Let
��B = (��U ; ��L)

> be an estimator of �B obtained without imposing the inequality constraint
��U � ��L. Since the main point of exposition here is to illuminate the nature of irregularity,
we focus on the case where

p
n(��B � �B;n(h))!d V

where the distribution of V = (VU ; VL) is identical for all h 2 H.

Example 4 (Reflecting Transform) : Consider �̂B = (max
�
��U ; ��L

�
;min

�
��U ; ��L

�
)>:

Then, along the sequence of fPn;hgn�1,

p
n

"
�̂U � �U;n(h)

�̂L � �L;n(h)

#
!d

"
max fVU ; VL ��hg
min fVU +�h; VLg

#
:

The distribution is re�ected on the line f(v1; v2) : v1 � v2 + �h = 0g, and hence absolutely
continuous with respect to the Lebesgue measure. This estimator �̂B satis�es the conditions

in De�nition 1. �

Example 5 (Censoring Transform) : For any 
 2 R; de�ne �̂B � (T 
U(��B); T


L(
��B))

>;

where, letting (a)+ � max(a; 0) as usual,

T 
U(
��B) � 
��U + (1� 
)��L + (1� 
)(��U � ��L)+ and

T 
L(
��B) � 
��U + (1� 
)��L � 
(��U � ��L)+:

It is easy to see that along fPn;hgn�1,

p
n

"
�̂U � �U;n(h)

�̂L � �L;n(h)

#
!d

"
~VU
~VL

#
;

where

~VU = 
VU + (1� 
)VL + (1� 
)[(VU � VL) + �h]+ � (1� 
)�h and

~VL = 
VU + (1� 
)VL � 
[fVU � VLg+�h]+ + 
�h:

Note that the distribution of ( ~VU ; ~VL)> is not regular, and not absolutely continuous in

general. The joint distribution of ( ~VU ; ~VL)> is censored on the half space f(v1; v2) : v1� v2+
�h < 0g: �
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4 Asymptotic Optimal Decisions

4.1 Subclass Experiments and Minimax Optimality

The standard approach of local asymptotic minimax estimation faces di¢ culty due to partial

identi�cation of �0. Since �0 is not point-identi�ed, the risk is not identi�ed either. This may

create an inconvenient situation in which an optimal solution depends on �0. This paper

circumvents this di¢ culty by introducing what we call the identi�able maximal risk :

�h(d̂) = sup
F2(�B;n(h))

Z
Eh

h
L(
p
nfd̂� �g)

i
dF (�); (6)

where F(�B;n(h)) is the collection of probability measures with support in [�L;n(h); �U;n(h)]:
(Throughout the paper, the supremum of a nonnegative quantity over an empty set is set

to be zero.) The identi�able maximal risk is the largest risk possible by any arbitrary ran-

domization of the unidenti�ed parameter �0. The support of the randomization is restricted

to the identi�ed interval [�L;n(h); �U;n(h)]. The identi�able maximal risk is point-identi�ed,

and taken in this paper as the criterion of comparison among di¤erent decisions.

One might consider alternatively the Bayesian approach, by considering instead

�h;G(d̂) =

Z
Eh

h
L(
p
nfd̂� �g)

i
dG(�)

where G is a probability measure that is absolutely continuous with respect to the Lebesgue

measure on R and has a support in [�L;n(h); �U;n(h)]. This choice has the disadvantage

that when the parameter �0 is point-identi�ed so that �L;n(h) = �U;n(h), the risk is reduced

to zero. Therefore, this choice does not ascertain continuity from point-identi�cation to

interval-identi�cation. To avoid this inconvenience, one might consider G such that its

probability measure over the identi�ed interval is normalized to one regardless of the length

of the interval. In this case, the resulting risk may fail to be increasing in the interval-length.

This is odd because naturally the decision should become riskier as the identi�ed interval

becomes longer. As we demonstrate later, the use of the identi�able maximal risk (6) does

not su¤er from these di¢ culties.

The adoption of the identi�able maximal risk does not resolve the matter entirely. Recall

that the tangent set HR is not a linear space. By deliberately focusing on convex subcones in

HR; one may �nd an estimator that is local asymptotic minimax over each convex subcone

as in Example of van der Vaart (1989). This latter approach poses a two-fold di¢ culty in

our situation. First, as mentioned by van der Vaart (1989), p.1492, it is still an unresolved
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matter how one obtains such an estimator in semiparametric models.4 Furthermore, the

choice of convex cones should be done in a way that avoids rendering the minimax problem

trivial. Indeed, when h 2 HR exists such that �h = 1, the maximal risk becomes in�nity
regardless of the decision involved. The constraint arising from our need to avoid triviality

makes it even harder to �nd a generic solution such as one that appeared in Example of van

der Vaart (1989), p.1492. In the light of the di¢ culty in employing the standard minimax

approach, this paper �rst slices the asymptotic normal experiments into subclasses according

to the associated localized interval length �h. Corresponding to each subclass, we �nd a

local asymptotic minimax decision. Then, in the second stage, we replace the subclass index

by a shrinkage type estimator. It is demonstrated that this type of decision has a hybrid

character that performs well both when r ! 0 and when r !1.
For each r 2 [0;1) and each small " > 0; letHn;R(r; ") � fh 2 H : r�" � �n(h) � r+"g:

The set Hn;R(r; ") approximates the hyperplane HR(r) � fh 2 H : �h = rg. The focus is on
the supremum of the identi�able maximal risk over h 2 Hn;R(r; ") for each r 2 [0;1) and
each " > 0;

R"n(d̂; r) � sup
h2Hn;R(r;")

�h(d̂): (7)

The theorem below establishes the local asymptotic minimax risk bound for each r. Let

Z = (ZU ; ZL)
> 2 R2 be a normal random vector such that

Z � N(0;�);

where, with �2U ; �L;U and �
2
L de�ned in (2),

� �
"

�2U
�L;U

�L;U

�2L

#
:

It is worth noting that ��1 is the semiparametric e¢ ciency bound for the boundary vector

�B;n without imposing the inequality restriction �L;n � �U;n. Hence the matrix � can be

found using the usual method of projection in the L2 space (e.g. Begun, Hall, Huang, and

Wellner (1983), Newey (1990) and Bickel, Klaassen, Ritov and Wellner (1993)).

4Due to this di¢ culty, Tripathi (2000) con�ned attention only to regular estimators when he investigated
e¢ cient estimation of a �nite dimensional parameter in the presence of an in�nite dimensional nuisance
parameter under shape restrictions.
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Theorem 1: Suppose that Assumptions 1-3 hold. Then for any d̂ 2 Dn and r 2 [0;1);

lim
"!0

liminf
n!1

R"n(d̂; r) �

8><>:
E
�
L
�
ZL � r

2

�
jZU � ZL = 0

�
if �2� > 0 or r = �0

0 if �2� = 0 and r 6= �0:

:

The minimax risk bound increases in r. This re�ects that deciding on an interval-

identi�ed parameter is riskier than that on a point-identi�ed parameter. As the identi�ed

interval becomes longer, the lowest possible maximal risk also increases. When �2� = 0 and

r 6= �0, the slice HR(r) of the normal experiment becomes empty, and hence the bound is

trivially zero.

A local asymptotic minimax decision is one that achieves the bound in Theorem 1. The

veri�cation of this achievement often requires to prove the uniform integrability condition

for the sequence of decisions. To dispense with such a requirement, we follow the suggestion

by Strasser (1985) (p.480) and consider instead

R"n;M(d̂; r) � sup
h2Hn;R(r;")

�h;M(d̂); (8)

where LM(�) � min fL(�);Mg ; M > 0; and

�h;M(d̂) � sup
F2(�B;n(h))

Z
Eh

h
LM(

p
nfd̂� �g)

i
dF (�):

Then we adopt the de�nition of local asymptotic minimaxity as follows.

Definition 2: (i) A decision ~d(r) is said to be subclass local asymptotic minimax (S -LAM )

at r 2 [0;1), if for all d̂ 2 Dn;

lim
M " 1

lim
"!0

limsup
n!1

R"n;M(
~d(r); r) � E

h
L
�
ZL �

r

2

�
jZU � ZL = 0

i
: (9)

(ii) When ~d(r) does not depend on r and the above inequality holds for all r 2 [0;1), the
decision is said to be uniformly S-LAM.

Since the quantity R"n(d̂; r) involves supremum over Hn;R(r; "), the lower bound in The-

orem 1 holds locally uniformly over r. In other words, for any r 2 R and any rn ! r, the

lower bound in Theorem 1 remains invariant when we replace R"n(d̂; r) in the theorem by

R"n(d̂; rn). Similarly, when a decision ~d(r) is S-LAM in the sense of De�nition 2, the decision
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~d(r) is also locally uniformly S-LAM at r; i.e., for all rn ! r;

lim
M " 1

lim
"!0

limsup
n!1

R"n;M(
~d(r); rn) � E

h
L
�
ZL �

r

2

�
jZU � ZL = 0

i
: (10)

Theorem 1 shows that the minimax risk bound involves the conditional distribution of

ZL � r=2 given ZU � ZL = 0. This form guides our search for a S-LAM decision. Let
~�B = (~�U ; ~�L)

> be a semiparametrically e¢ cient estimator of �B such that

p
n
�
~�B � �B;n(h)

�
!d Z: (11)

This estimator ~�B is a best regular estimator of �B;n(h) (with respect to the tangent set H)

in the sense of van der Vaart (1988). Hence ~�B is an estimator of �B;n(h) obtained without

imposing the inequality constraint �L � �U .

Let �2� � �2U � 2�L;U + �2L, and �L;� � �L;U � �2L: Let �
� be such that

� � �
(
��L;�=�2� if �2� > 0

0 if �2� = 0;

and let �̂ � be a consistent estimator of � �. We require the convergence in (11) to be uniform

in h 2 H:

Assumption 4: (i) suph2H jPn;hf
p
n(~�B � �B;n(h)) � tg � P fZ � tg j ! 0 for each t 2 R.

(ii) For all " > 0; suph2H Pn;h fj�̂ � � � �j > "g ! 0:

The uniform convergence of distributions and the uniform consistency can often be ver-

i�ed using the uniform central limit theorem (Giné and Zinn (1991)). We consider the

following decision:

~d(r) � �̂ �~�U + (1� �̂ �) ~�L +

�
1

2
� �̂ �

�
rp
n
: (12)

This random decision ~d(r) is shown to be S-LAM at r in the following theorem.

Theorem 2: Suppose that Assumptions 1-4 are satis�ed. Then the following holds.

(i) For each r 2 [0;1), ~d(r) is S-LAM at r:

(ii) When � � = 1=2, ~d1=2 � (~�U + ~�L)=2 is uniformly S-LAM.

The result of Theorem 2 immediately applies to the case where the parameter �0 is known

to be point-identi�ed. When the parameter is point-identi�ed so that r = 0, the S-LAM

decision is reduced to ~d(0). One can check that ~d(0) is a semiparametric e¢ cient estimator
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of �0 under the restriction that �L(P ) = �U(P ).5 Hence the estimator in (12) can be viewed

as a generalization of an e¢ cient estimator of �0 to a situation where �0 is interval-identi�ed.

Result (ii) says that when � � = 1=2, ~d1=2 is uniformly S-LAM. For example, when the

semiparametric e¢ ciency bounds for �U and �L are identical, it follows that � � = 1=2. The

estimator ~d1=2 does not depend on r and it is S-LAM uniformly over r 2 [0;1).
When �L;U = 0, we have � � = �2L=(�

2
U + �2L) so that we take �̂

� = �̂2L=(�̂
2
U + �̂2L), where

�̂2L and �̂
2
U are consistent estimators of �

2
L and �

2
U : The S-LAM decision becomes

~d(r) = ~d(0) +
�̂2U � �̂2L
2(�̂2U + �̂2L)

rp
n
, where ~d(0) =

~�U �̂
2
L

�̂2U + �̂2L
+

~�L�̂
2
U

�̂2U + �̂2L
:

Therefore, when �2L < �2U , the �rst component ~d(0) of the S-LAM decision leans toward ~�L
and is close to the S-LAM decision when r is small. However, this leaning e¤ect is o¤set

by the presence of the term r(�̂2U � �̂2L)=(2
p
n(�̂2U + �̂2L)). Hence when the length of the

identi�ed interval is large, the signi�cance of considering the variance components �U and

�L is reduced.

Certainly, ~d(0) is a reasonable decision when r is close to zero, as it is S-LAM when

r = 0. The following result shows that under the absolute deviation loss, the decision ~d1=2 is

approximately S-LAM for large r.

Theorem 3: Suppose that Assumptions 1-4 hold. Furthermore assume that L(x) = jxj.
Then for any rn !1,

lim
M " 1

lim
"!0

limsup
n!1

n
R"n;M(

~d1=2; rn)� E
h
L
�
ZL �

rn
2

�
jZU � ZL = 0

io
= 0:

The above result applies only to the absolute deviation loss. For a general loss function L,

the result depends on the limit behavior of L(x+ y)� L(x) as x!1.
When the researcher does not have reasonable values of r in mind, S-LAM decisions are

not of much practical value. This paper considers

r̂ �
p
n(~�U � ~�L)1fj~�U � ~�Lj > bng; (13)

where bn ! 0 is a sequence such that
p
nbn ! 1. Such a shrinkage estimator r̂ was used

by Stoye (2009a) to construct a uniformly valid con�dence interval for an interval-identi�ed

5In this case, the tangent space is given by H0 = fh 2 �H : hh; _��i = 0g. (e.g. Example
3.2.3 of Bickel, Klaassen, Ritov, and Wellner (1993).) The e¢ cient in�uence function of �0 is given by
_�
�
L � h _�

�
L;
_���ih _���; _���i�1 _��� (or equivalently _�

�
U � h _�

�
U ;
_���ih _���; _���i�1 _���) and the variance bound is given

by �2L � �L;���2� ��;L (or equivalently �2U � �U;���2� ��;U ). This variance bound is achieved by ~d(0).
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parameter. Then this paper proposes the following estimator as a reasonable point-decision:

~d(r̂) = �̂ �~�U + (1� �̂ �) ~�L +

�
1

2
� �̂ �

�
r̂p
n
: (14)

It is interesting to observe that ~d(r̂) is a hybrid of the two decisions ~d1=2 and ~d(0). To see

this, note that when j~�U � ~�Lj > bn;

~d(r̂) = ~d1=2 = (~�U + ~�L)=2:

This means that when the length of the interval is large, we take an average of e¢ cient

estimators of their upper and lower bounds. On the other hand, when j~�U � ~�Lj � bn;

~d(r̂) = ~d(0) = �̂ �~�U + (1� �̂ �) ~�L:

When the length of the interval is small, we take as the decision the e¢ cient estimator ~d(0)

of �0 under point-identi�cation. When the loss is the absolute deviation loss, the use of ~d(r̂)

is reasonable because it approximates a S-LAM decision both when r ! 0 and r !1.

Corollary 1: Suppose that Assumptions 1-4 hold. Then the following holds.

(i) For any rn ! 0,

lim
M " 1

lim
"!0

limsup
n!1

n
R"n;M(

~d(r̂); rn)� E
h
L
�
ZL �

rn
2

�
jZU � ZL = 0

io
= 0:

(ii) Furthermore assume that L(x) = jxj. Then for any rn !1 such that rn=(
p
nbn)!1;

lim
M " 1

lim
"!0

limsup
n!1

n
R"n;M(

~d(r̂); rn)� E
h
L
�
ZL �

rn
2

�
jZU � ZL = 0

io
= 0:

A remarkable aspect of the solution ~d(r̂) is that the solution remains numerically invariant

even if one mistakenly believes that �U � �L and �0 2 [�U ; �L] and implements the solution
accordingly. Indeed, the decisions ~d(0) and ~d1=2 and indicator 1fj~�U � ~�Lj > bng remain
unchanged even when one mistakes �U for �L. Therefore, the optimality property of the

solution ~d(r̂) remains intact regardless of whether one knows the order between �L and �U
or not.
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5 Simulations

The decision ~d(r̂) in this paper is justi�ed based on the asymptotic theory under near-

identi�cation. Hence it is important to investigate whether the concept of asymptotic opti-

mality approximates its �nite sample counterpart reasonably well. In this section, we present

and discuss some simulation results that illuminate the theoretical �ndings of the paper.

The data generating proccess was as follows. Suppose that the econometrician observes

the i.i.d. data set f(XL;i; XU;i)gni=1 with unknown means EXL;i = �L and EXU;i = �U . The

parameter of interest �0 is known to lie in [�L; �U ]: In the simulation study, we generated

XL;i and XU;i as follows:

XL;i = 4aL � (wYL;i + (1� w)Zi)=2 + �L and

XL;i = 4aU � (wYU;i + s� (1� w)Zi)=2 + �U ;

where YL;i � N(0; 1) and YU;i � N(0; 1). The scale parameters aL and aU determine the scale

of observations and were set to be (aL; aU) = (3; 1). The parameters w and s are employed

to vary the degree and the sign of correlation between XL and XU . When s = �1, both
random variables are negatively correlated. The mean vectors �L and �U were chosen to be

�b=2 and b=2, where b denotes the interval length ranging from 0 to 0.5.

The main object of interest is the �nite sample identi�able maximal risk for four types

of decisions: hybrid decision ~d(r̂), ~d1=2; ~d(0); and S-LAM decision ~d(r). As for ~d(r̂); we

considered

r̂ =
p
n(~�U � ~�L)1fj~�U � ~�Lj=�̂� > c=(n1=3 log(n))g;

where �̂� denotes the standard deviation of fXU;i � XL;igni=1 and c is chosen from f2; 4g:
The estimators ~�U and ~�L are taken to be the sample means of fXL;igni=1 and fXU;igni=1. The
estimated weight �̂ � was taken to be

�̂ � = �the sample covariance of fXL;igni=1 and fXU;i �XL;igni=1
the sample variance of fXU;i �XL;igni=1

:

For computational simplicity, the �nite sample identi�able maximal risk was computed to

be the simulated quantity of

sup
p2[0;1]

pE
h
jd̂� �U j

i
+ (1� p)E

h
jd̂� �Lj

i
: (15)

When the �nite sample density of d̂ is quasiconcave, the above quantity coincides with the

identi�able maximal risk de�ned in (6). When this is not the case, the quantity in (6) can
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Figure 2: Finite Sample Identi�able Maximal Risks for Various Decisions

be viewed as approximating (6). The Monte Carlo simulation number was 2000.

As shown in Figure 3, the identi�able maximal risk of the S-LAM decision envelopes

those of the other decisions from below. Hence the S-LAM decision shows its ideal character

in �nite samples. The decision ~d(0) (denoted by �d0�in the �gure) performs as well as the

S-LAM, when the length of the interval is close to zero, but performs poorly when the length

of the interval is large. On the other hand, the decision ~d1=2 (denoted by �d1=2�in the �gure)

performs well when the length of the interval is large, but performs poorly relative to ~d(0)

when the interval length is close to zero. These results show the complementary nature of

the two decisions ~d(0) and ~d1=2. When the length of the interval is close to zero, the decision
~d(r̂) mitigates the relatively poor performance of the decision ~d1=2 as it tends to identify

with d̂(0). On the other hand, when the length of the interval is large, ~d(r̂) moves toward

d̂1=2, retaining its good performance in this situation. When the sample size is large, ~d(r̂)

performs better than d̂(0) for large r and performs better than d̂1=2 when r is close to zero.

The dominance of ~d(r̂) over d̂1=2 under r close to zero entails cost: the �nite sample risk is

higher than that of d̂1=2 in the middle ranges of r.

The performance of the decisions varies depending on the correlation between XL and

XU . This fact is illustrated in Figure 3 where the results from three di¤erent correlations

between XL and XU are considered. We generated the observations with (w; s) = (0:2; 1);

(w; s) = (0:8; 1) and (w; s) = (0:2;�1), resulting in the average sample correlation coe¢ cients
between XL and XU around 0.59, 0.01, and �0.59 respectively. It is interesting to note that
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Figure 3: Finite Sample Risks over Various Correlations between XL and XU

when the observations XL and XU are close to be uncorrelated, the discrepancy between

the �nite sample risk of S-LAM estimator and the other decisions becomes large. However,

when XL and XU are positively or negatively correlated to some degree, all the decisions

of ~d(r̂) and ~d1=2 and ~d(0) become closer to S-LAM. It is interesting to observe that the

�nite sample risk in the case of negative correlation is slightly lower than that in the case of

positive correlation. This contrast becomes starker when we set the correlation coe¢ cients

to closer to 1 and �1 respectively. This is anticipated because the lower bound in Theorem
1, E [L (ZL � r=2) jZU � ZL = 0] becomes lower when ZU and ZL are negatively correlated

than when they are positively correlated. This phenomenon arises intuitively because the

conditioning on ZU = ZL becomes more binding when ZU and ZL are negatively correlated

than when they are positively correlated, resulting in a lower conditional variance of ZL
given ZU = ZL.

6 Conclusion

This paper has developed a notion of an optimal decision for an interval-identi�ed parame-

ter by considering increasing subclasses of experiments. This paper �nds that a subclass

local asymptotic minimax decision is given by an estimator that involves a weighted average

of semiparametrically e¢ cient bound estimators. The development of this paper suggests
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various rami�cations. First, an investigation into ways to construct con�dence sets for the

interval-identi�ed parameter using the local asymptotic minimax decision will be useful. Sec-

ond, an extension to a situation with an identi�ed box with many sides can be of practical

interest. One interesting question in this situation is what class of functionals of the local as-

ymptotic minimax decisions for the box-identi�ed parameter will inherit the local asymptotic

minimaxity of the latter. When this class of functionals is usefully characterized, one can

easily generate local asymptotic minimax decisions for these functionals of the box-identi�ed

parameter from the local asymptotic minimax decision for this parameter.

7 Proofs

7.1 Proofs of the Auxiliary Results

The �rst part of the following lemma is Theorem 3.1 in Fukuda and Uno (2007) which

results from Brunn�s Theorem on convex bodies. (A convex body is a convex compact set

with nonempty interior.) In the following lemma, we de�ne vol to be the Lebesgue measure

on Rd. We say that a set A � Rd is centrally symmetric if A = �A.

Lemma A1: (i) For any convex bodies A and B in Rd, vol(A \ (B + a))1=d is concave in

a 2 fa : A \ (B + a) 6= ?g:
(ii) Suppose further that A and B are centrally symmetric convex bodies in Rd, and that for

some a 2 Rd and c 2 Rnf0g; vol(A \ (B + a)) � vol(A \ (B + ca)):Then, for all centrally

convex C 2 Rd; vol(C \ (B + a)) � vol(C \ (B + ca)):

Proof: (ii) For a = 0; the inequality becomes trivially an equality. For the remainder of

the proof, we assume that a 2 Rnf0g: For c 2 R; let H(c) = fx 2 Rd+1 : xd+1 = cg: Then,
for any convex A, f(c;A) � vol(A \ H(c)) is quasiconcave in c on its support by Brunn�s
Theorem. (e.g. Theorem 5.1 of Ball (1997).) Furthermore, for any centrally symmetric

convex set A and c 2 R; f(c;A) � f(0;A) by Lemma 38.20 of Strasser (1985) and f(c;A) =

f(�c;A): Therefore, for any convex and centrally symmetric A; f(c1;A) � f(c2;A) if and

only if jc1j � jc2j: Since the latter inequality does not involve A, this statement implies that

f(c1;A) � f(c2;A) for some centrally symmetric convex A if and only if (16)

f(c1;C) � f(c2;C) for all centrally symmetric convex C:
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We let

�A = f(x1; � � �; xd; w) : (x1; � � �; xd) 2 A and w 2 [�maxfjcj; 1g;maxfjcj; 1g]g; and
�B = f(x1; � � �; xd; w) : (x1; � � �; xd) 2 B + wa and w 2 [�maxfjcj; 1g;maxfjcj; 1g]g:

Then, observe that �P = �A\ �B is a convex body and centrally symmetric. The assumption of
the lemma is tantamount to f(1; �P ) � f(c; �P ): The wanted result immediately follows from

(16).

Lemma A2: Suppose that f't : t 2 Tg; T � R; is a class of quasiconcave functions such
that for any t; t0 2 T and x1; x2; 't(x1) � 't(x2) if and only if 't0(x1) � 't0(x2): Then, for

any measure � on the Borel �-�eld of T, the function g de�ned by g(�) �
R
't(�)d�(t) is

quasiconcave.

Proof: For any � 2 [0; 1]; g(�x1 + (1� �)x2) �
R
min f't(x1); 't(x2)g d�(t): Without loss

of generality, suppose that 't(x1) � 't(x2): Then, 't(x1) � 't(x2) for all t 2 T: HenceZ
min f't(x1); 't(x2)g d�(t) = min

�Z
't(x1)d�(t);

Z
't(x2)d�(t)

�
= min fg(x1); g(x2)g ;

yielding the wanted result.

Lemma A3: Let V 2 R be any continuous random variable with a quasiconcave density

function that is symmetric around b. Then, for any quasiconvex L : [0;1)! [0;1) that is
symmetric around zero, E [L(V + �)] is quasiconvex in �.

Proof: Write E [L(V + �)] =
R1
0
P fL(V + �) > tg dt =

R1
0
P fV + � 2 RnA(t)g dt, where

A(t) � fz 2 R : L(z) � tg: Observe that

P fV + � 2 A(t)g =
Z 1

0

vol(A(t) \ (fz : f(z) > eg+ b+ �))de;

where f is the joint density of V � b: Let

�(�; t; e) � vol(A(t) \ (fz : f(z) > eg+ b+ �)):

Since fz : f(z) > eg is convex, by Lemma A1(i), � is quasiconcave in � for all e and t:
Since A(t) and fz : f(z) > eg are centrally symmetric and convex for all t and e; we apply
Lemma A1(ii) to �nd that the order of �(�; t; e) in � is preserved through any shifts in e or

t: Therefore, by Lemma A2, E [L(V + �)] is quasiconvex in �:
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Lemma A4: Let V 2 R be any continuous random variable with a quasiconcave density

function that is symmetric around b and for a given s 2 [0;1), let G(s) be the collection of
all the probability measures with a support in the interval [0; s]. Then, for any L : R ! R

that is convex and symmetric around zero,

sup
G2G(s)

inf
c2R

Z
E [L(V + c+ �)] dG(�) � E

h
L
�
V � b� s

2

�i
:

Proof: Since L is quasiconvex, we deduce that by Lemma A3, for any G 2 G(s);

inf
c2R

Z
E [L(V + c+ �)] dG(�) � sup

p2[0;1]
inf
c2R

J(c; p);

where J(c; p) � E [L(V + c+ s)] p + E [L(V + c)] (1 � p). Since G(s) includes two-point
distributions with support in f0; sg, we conclude that

sup
G2G(s)

Z
E [L(V + c+ �)] dG(�) = sup

p2[0;1]
J(c; p)

Hence for the statement of the lemma, it su¢ ces to show that

J(c�; p�) � J(c; p�), for all c 2 R, (17)

where c� � �s=2�b and p� � 1=2, because J(c�; p�) � infc2R J(c; p�) � supp2[0;1] infc2R J(c; p).

To show (17), let ~L(d) = fL(d + s) + L(d)g=2. Then, ~L(d) is symmetric around �s=2:
Since L is convex, so is ~L(d). Observe that

1

2
fE [L(V + c+ s)] + E [L(V + c)]g =

Z 1

0

P
n
~L(V + c) > t

o
dt =

Z 1

0

P fV + c 2 RnA(t)g dt;

where ~A(t) = fz 2 R : ~L(z) � tg: Note that ~A(t) is convex and symmetric around �s=2:
Observe that

P
n
V + � 2 ~A(t)

o
=

Z 1

0

vol( ~A(t) \ (fz : f(z) > eg+ b+ c))de

=

Z 1

0

vol(( ~A(t) + s=2) \ (fz : f(z) > eg+ b+ c+ s=2))de;
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where f is the joint density of V � b: By Lemma 38.20 of Strasser (1985),

vol(( ~A(t) + s=2) \ (fz : f(z) > eg+ b+ c+ s=2))

� vol(( ~A(t) + s=2) \ (fz : f(z) > eg):

The equality follows when b + c + s=2 = 0 or c = �s=2 � b = c�: This proves the result in

(17).

We assume the environment of Theorem 1. Furthermore, we assume that �2� > 0. Choose

fhigmi=1 from an orthonormal basis fhig1i=1 of H. For a 2 Rk, we consider h = �mi=1aihi so

that _�U(h) =
Pm

i=1 ai
_�U(hi) = a> _�U and _�L(h) = a> _�L; where _�U = (_�U(h1); � � �; _�U(hm))>

and _�L = (_�L(h1); � � �; _�L(hm))>: Let ��B and ��� be m� 2 and m� 1 matrices such that

��B �

266664
_�U(h1) _�L(h1)
_�U(h2) _�L(h2)
...

...
_�U(hm) _�L(hm)

377775 and ��� �

266664
_��(h1)
_��(h2)
...

_��(hm)

377775 ; (18)

and �� � (�(h1); � � �; �(hm))>, where � is the Gaussian process that appears in Assumption
1. We assume that m � 2 and ��B is full column rank. We �x � > 0 and let A� 2 Rm �
N(0; I=�) and let F�(ajq) be the cdf of ��A� + ��q where

��q = ���( ��
>
�
���)

�1q and �� � I � ���( ��
>
�
���)

�1 ��>
� :

Finally let L(V h(a)) denote the distribution of V h(a) where V h is the random vector that

appears in De�nition 2 and let Z�(q) = (ZU;�(q); ZL;�(q))> 2 R2 be a random vector distrib-

uted as N(��>B(I � �����1�
��)��q;

��
>
B
�����1�

����B), where ��� = �� + �I. The following result is a

variant of the convolution theorem that appears in Theorem 2.2 of van der Vaart (1989).

Lemma A5: (i) For any � > 0; B 2 B; and q 2 R;

P

�Z
L(V h(a))dF�(ajq) 2 B

�
= P

n
Z
(m)
� (q) +W

(m)
� (q) 2 B

o
;

where W (m)
� (q) 2 R2 is a random vector independent of Z�(q).

(ii) Furthermore, as � ! 1 and m ! 1, Z(m)� (q) weakly converges to the conditional

distribution of Z given Z� = q.
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Proof: (i) Under Pn;h; the local asymptotic normal experiments yield that

V 0
n  V 0 along fPn;0g and V h(a)

n  V 0 � ��>Ba; along fPn;0g:

By Le Cam�s third lemma, P
�
V h(a) 2 B

	
= E[1B(V0 � ��

>
Ba)e

a>��� 1
2
jjajj2 ]: Note that

P

�Z
L(V h(a))dF�(ajq) 2 B

�
=

Z
E
h
1B

n
V0 � ��

>
B(
��a+ ��q)e

(��a+��q)
>��� 1

2
(��a+��q)

>(��a+��q)��
2
a>a
oi
� (�=2�)�m=2 e��

2
a>ada:

After some tedious calculations, we can write the integrand asZ
E
h
1B

n
V0 � ��

>
B

�
��a+ ��q + ����

�1
�
��(�� � ��q)

�o
� cq(�)

i
dN(aj0; ���1� )

=

Z
E
h
1B

n
V0 � ��

>
B(
��a+ (I � �����1� ��)��q + �����1� ����)

o
� cq(�)

i
dN(aj0; ���1� )

where N(�j0; ���1� ) is the cdf of N(0; ���1� ) and

cq(�) = e�
1
2
(�����q)> ����

�1
�
��(�����q)+��>q �� �

�
det(���1� )

	
��m=2e�

1
2
��>q ��q :

Letting W�(q) be a random vector with the distribution:

P fW�(q) 2 Bg = E
h
1B

n
V0 � ��

>
B
�����1�

����
o
� cq(�)

i
;

we obtain the wanted result.

(ii) As �! 0, Z(m)� (q)!d Z
(m)
0 (q) where Z(m)0 (q) 2 R2 is a normal random vector with mean

��
>
B(I � ��)��q = ��

>
B��q and variance ��

>
B
����B. We can choose fhigmi=1 such that as m!1, the

Euclidean distances between ��>B��q and [(�U;�=�
�2
� )q; (�L;�=�

�2
� )q]

> and between ��>B ����B and

the matrix "
�2U � �2U;�=�

2
� �U;L � �U;��L;�=�

2
�

�U;L � �U;��L;�=�
2
� �2L � �2L;�=�

2
�

#

become zero. Hence as m ! 1, the distribution of Z(m)0 (q) converges to the conditional

distribution of Z given Z� = q.
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7.2 Proofs of the Main Results

Proof of Theorem 1: First, we assume that �2� > 0. Fix " > 0 and r 2 [";1):
Let G(s) be the collection of probability measures that have a support in [0; s], and let
S(V ; �) � �VU + (1� �)VL for V = (VU ; VL)> 2 R2. We write V h

n �
p
n(�̂B � �B;n(h)): Fix

M > 0 and a decision d̂ = T (�̂B; �̂): We can write, from some large n on,

�h(d̂) � sup
G2G(�n(h))

Z
Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�) (19)

� sup
G2G(r�")

Z
Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�);

for all h 2 Hn;R(r; "). The second inequality follows because G(s) is increasing in s: Since
�n(h) ! �h as n ! 1, we deduce that for each " > 0; from some large n on, HR(r) �
Hn;R(r; "): Using this and (19), we �nd that

liminf
n!1

sup
Hn;R(r;")

�h(d̂) � liminf
n!1

sup
HR(r)

sup
G2G(r�")

Z
Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�):

Since LM is bounded and continuous, and for each h 2 HR(r);

S(V h
n ; �̂)� (1� �̂)�n(h)!d S(V

h; �)� (1� �)r; along fPn;hgn�1;

we deduce that for each h 2 HR(r),

liminf
n!1

sup
G2G(r�")

Z
Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�)

� sup
G2G(r�")

Z
liminf
n!1

Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�)

= sup
G2G(r�")

Z
Eh
�
LM(S(V

h; �)� (1� �)r + �)
�
dG(�):

The �rst inequality uses Fatou�s Lemma. Since �h = _��(h) + �0, it follows that _��(h) =

r ��0 if and only if h 2 HR(r).

As in the proof of Theorem 3.11.5 of van der Vaart and Wellner (1996), choose an

orthonormal basis fhig1i=1 from �H. Fix m and take fhigmi=1 � H and consider h(a) =
P
aihi

for some a = (ai)mi=1 2 Rm such that h(a) 2 HR(r): Fix � > 0 and let F�(ajq) be as de�ned
prior to Lemma A5 above. Then the support of F�(�jr � �0) is con�ned to the set of a�s
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such that h(a) 2 HR(r). Utilizing the previous result and Fubini�s theorem,

liminf
n!1

sup
h2HR(r)

sup
G2G(r�")

Z
Eh
�
LM(S(V

h
n ; �̂)� (1� �̂)�n(h) + �)

�
dG(�)

�
Z

sup
G2G(r�")

Z
Eh(a)

�
LM(S(V

h(a); �)� (1� �)r + �)
�
dG(�)dF�(ajr ��0)

� sup
G2G(r�")

Z Z
Eh(a)

�
LM(S(V

h(a); �)� (1� �)r + �)
�
dF�(ajr ��0)dG(�)

� sup
G2G(r�")

Z Z
Eh(a)

�
L(S(V h(a); �)� (1� �)r + �)

�
dF�(ajr ��0)dG(�)� qM ;

where qM > 0 is a sequence such that qM ! 0 as M ! 1. The last inequality uses the
condition that suph2H E[L(jV h

U j+ jV h
L j)] <1 in De�nition 2. Using Lemma A5 and letting

q = r ��0, we �nd that the last double integral is equal toZ
E [L(S(Z�(q) +W�(q); �)� (1� �)r + �)] dG(�)

=

Z
E
�
L(ZL;�(q) + �Z�� (q) + S(W�(q); �)� (1� �)r + �)

�
dG(�)

=

Z Z
E
�
L(ZL;�(q) + �Z�� (q) + w � (1� �)r + �)

�
dG(�)dQ�;q(w)

where Z�(q) and W�(q) are as in Lemma A5 and Z�� (q) � ZU;�(q)� ZL;�(q) and Q�;q is the

cdf of S(W�(q); �). The last equality follows because Z�(q) andW�(q) are independent. The

supremum of the last double integral over G 2 G(r � ") is bounded from below byZ Z
E
�
L(ZL;�(q) + �Z�� (q) + w � (1� �)r + �)

�
dG1=2(�)dQ�;q(w);

where G1=2 denotes the two-point distribution with equal masses at f0g and fr � "g. From
the proof of (17) in the proof of Lemma A4, the last term is bounded from below byZ

E

�
L

�
ZL;�(q) + �Z�� (q)� �q �

r � "

2
+ �

��
dG1=2(�)

= E

�
L

�
ZL;�(0) + �Z�� (0)�

r � "

2

��
;

where �q = E
�
ZL;�(q) + �Z�� (q)

�
: The equality above follows because

E
�
L(ZL;�(0) + �Z�� (0)� (r � ")=2)

�
= E

�
L(ZL;�(0) + �Z�� (0) + (r � ")=2)

�
:
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We conclude that

liminf
n!1

sup
Hn;R(r;")

�h(d̂) � E
�
L(ZL;�(0) + �Z�� (0)� (r � ")=2)

�
� qM : (20)

The left-hand side does not depend on � and hence we send � ! 0 on the right-hand side.

As � ! 0 and m ! 1; Z�(0) weakly converges to the conditional distribution of Z given

Z� = 0, where Z� � ZU � ZL. By sending � ! 0 and m ! 1 on the right-hand side of

(20), we conclude that

liminf
n!1

sup
Hn;R(r;")

�h(d̂) � E
�
L(ZL � (r � ")=2)jZ� = 0

�
� qM :

When we send " ! 0, the conditional expectation becomes E
�
L(ZL � r=2)jZ� = 0

�
by

continuity of L. The wanted result then follows by sending M !1.
Let us consider the case where �2� = 0. In this case, if r 6= �0, HR(r) = ?, so that the

lower bound becomes trivially zero. However if r = �0, we proceed as before by replacing

F�(ajq) with ~F�(a) where ~F�(�) denotes the cdf of a normal random vector in R2 with mean

zero and variance I=�. The conditional distribution of Z given Z� = 0 is equal to the

unconditional distribution of Z because EZ� = 0 and V ar(Z�) = �2� = 0. Therefore, we

obtain the wanted result.

Proof of Theorem 2: If �2� = 0 and r 6= �0, the set Hn;R(r; ") converges to an empty

set as " ! 0. Hence R"n;M(d̂; r) converges to zero trivially. In the following we assume that

either �2� > 0 or r = �0. The case with �2� = 0 and r = �0 is simpler as in the proof of

Theorem 1. Hence we focus only on the case where �2� > 0.

(i) Let b̂(r) � (1=2� �̂ �)r; b(r) � (1=2� � �)r, and Zhn �
p
nf~�� �n(h)g. First, observe that

from some large n on, suph2Hn;R(r;") �h;M(
~d(r)) is bounded by

sup
h2Hn;R(r;")

sup
G2G(r+")

Z
Eh

h
LM

�p
n
�
~d(r)� �U;n(h)

�
+ �
�i
dG(�) (21)

= sup
h2Hn;R(r;")

sup
G2G(r+")

Z
Eh

h
LM

�
S(Zhn ; �̂

�)� (1� �̂ �)�n(h) + � + b̂(r)
�i
dG(�)

� sup
h2Hn;R(r;")

sup
G2G(r+")

sup
r�"�s�r+"

Z
Eh

h
LM

�
S(Zhn ; �̂

�)� (1� �̂ �)s+ � + b̂(r)
�i
dG(�):

Observe that by Assumption 4, for each t 2 R,

sup
h2H

���P nS(Zhn ; �̂ �) + b̂(r) � t
o
� P fS(Z; � �) + b(r) � tg

���! 0.
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Since the distribution of S(Z; � �)+ b(r) is continuous, the above convergence is uniform in t

(e.g. van der Vaart (1998)). Thus, using the fact that (1� �̂)s = (1� � �)s+ oP (1) uniformly
in s 2 [r � "; r + "] and in h 2 H, we deduce that

sup
h2H

���P nS(Zhn ; �̂ �) + b̂(r)� (1� �̂ �)s � t
o
� P fS(Z; � �) + b(r)� (1� � �)s � tg

���! 0

uniformly in t and s. Therefore, the limsupn!1 of the last term in (21) becomes the

limsupn!1 of

sup
h2Hn;R(r;")

sup
G2G(r+")

sup
r�"�s�r+"

Z
Eh [LM (S(Z; �

�)� (1� � �)s+ � + b(r))] dG(�)

because LM is bounded and continuous. Since the distribution of Z does not depend on h,

this limsup becomes

sup
G2G(r+")

sup
r�"�s�r+"

Z
E [LM (S(Z; �

�)� (1� � �)s+ � + b(r))] dG(�):

The conditional distribution of ZL given Z� = 0 is a normal distribution. The mean of

ZL + � �Z� is equal to zero and its variance is equal to

�2L + � �2�2� + 2�
��L;� = �2L + � �2�2� + 2�

��L;�

= �2L � �2L;�=�
2
�:

The last quantity is the conditional variance of ZL given Z� = 0. Since S(Z; � �) = ZL+�
�Z�

is normal, the distribution of ZL + � �Z� is equal to the conditional distribution of ZL given

Z� = 0. Therefore,

sup
G2G(r+")

sup
r�"�s�r+"

Z
E [LM (S(Z; �

�)� (1� � �)s+ � + b(r))] dG(�)

= sup
G2G(r+")

sup
r�"�s�r+"

Z
E
�
LM (ZL � s=2� (1=2� � �)s+ � + b(r)) jZ� = 0

�
dG(�)

= sup
G2G(r+")

sup
r�"�s�r+"

Z
E
�
LM (ZL � s=2� (1=2� � �)(s� r) + �) jZ� = 0

�
dG(�)

� sup
G2G(r+")

Z
E
�
LM (ZL � (r + ")=2 + �) jZ� = 0

�
dG(�) + 'M(");

for some function 'M(") � 0 such that lim"!0'M(") = 0. The last inequality is due

to the assumed uniform continuity of LM (�). (See Assumption 3(ii).) By Lemma A3,
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E
�
LM (ZL � (r + ")=2 + �) jZ� = 0

�
is quasiconvex in �. Hence the supremum over G 2

G(r + ") is equal to the supremum over two-point distributions with support in f0; r + "g.
However, the value of E

�
LM (ZL � (r + ")=2 + �) jZ� = 0

�
is identical regardless of whether

� = 0 or � = r + " by the central symmetry of LM and that of the conditional distribution

of ZL given Z� = 0. Hence we bound the last term in the previous display by

E
�
LM(ZL � (r + ")=2)jZ� = 0

�
+ 'M("):

By sending "! 0 and then M !1, we obtain the wanted result.

(ii) The proof is the same as that of (i) only with � � replaced by 1=2: Since ~d1=2 does not

depend on r, the wanted result immediately follows.

Proof of Theorem 3: Following the similar steps as in the proof of Theorem 2 and using

Lemma A3, we �nd that as n!1;

Rn;M( ~d1=2; rn) � sup
G2G(rn+")

Z
E

�
LM

�
ZL +

Z�

2
� rn
2
+ �

��
dG(�)

= E

�
LM

�
ZL +

Z�

2
� rn
2

��
+ 'M(") + o(1)

� E

�
L

�
ZL +

Z�

2
� rn
2

��
+ 'M(") + o(1):

Now, the leading expectation is rewritten as

E

�
L

�
ZL + � �Z� +

�
1

2
� � �

�
Z� � rn

2

��
=

Z
E

�
L

�
ZL +

�
1

2
� � �

�
s�� �

rn
2

�
jZ� = 0

�
d�(s):

The above equality follows because the distribution of ZL + � �Z� is equal to the condi-

tional distribution of ZL given Z� = 0 and ZL + � �Z� and Z� are uncorrelated and hence

independent due to their joint normality. Therefore,

Rn;M( ~d1=2; rn)� E
h
L
�
ZL �

rn
2

�
jZ� = 0

i
�

Z
E

�
L

�
ZL +

�
1

2
� � �

�
s�� �

rn
2

�
� L

�
ZL �

rn
2

�
jZ� = 0

�
d�(s) + 'M(") + o(1):
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The leading integral is written asZ
E

�����ZL + �12 � � �
�
s�� �

rn
2

����� ���ZL � rn
2

��� jZ� = 0� d�(s)
= �

Z �
1

2
� � �

�
s��d�(s) + o(1) as rn !1;

because as rn !1;Z
P

�
ZL +

�
1

2
� � �

�
s�� �

rn
2
> 0jZ� = 0

�
d�(s) ! 0 and

P
n
ZL �

rn
2
> 0jZ� = 0

o
! 0:

However,
R �

1
2
� � �

�
s��d�(s) =

�
1
2
� � �

�
��
R
sd�(s) = 0, yielding the wanted result. .

Proof of Corollary 1: (i) When rn ! 0, j ~d(r̂n)� ~d(0)j = 0 with probability approaching
one. Since R"n;M( ~d(0); rn) involves the supremum over h 2 Hn;R(r; ") and from some large n

on,

Hn;R(rn; ") � Hn;R(r; 2");

we deduce that

lim
M " 1

lim
"!0

limsup
n!1

R"n;M(
~d(0); rn) � lim

M " 1
lim
"!0

limsup
n!1

R"n;M(
~d(0); 0)

as rn ! 0. By Theorem 2(ii) with r = 0, the wanted result follows.

(ii) When rn=(
p
nbn)!1, j ~d(r̂n)� ~d1=2j = 0 with probability approaching one. The wanted

result follows from Theorem 3.
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