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Abstract

One of the approaches to compare forecasts is to test whether the loss from a benchmark

prediction is smaller than the others. The test can be embedded into the general problem

of testing functional inequalities using a one-sided Kolmogorov-Smirnov functional. This

paper shows that such a test generally su¤ers from unstable power properties, meaning

that the asymptotic power against certain local alternatives can be much smaller than

the size. This paper proposes a general method to robustify the power properties. This

method can also be applied to testing inequalities such as stochastic dominance and

moment inequalities. Simulation studies demonstrate that tests based on this paper�s

approach perform quite well relative to the existing methods.
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1 Introduction

Assessing and comparing a multiple number of forecasts is important in practice, in particular, in

macroeconomics and �nance. Since the seminal paper by Diebold and Mariano (1995), there has

been a rapidly growing interest in comparing di¤erent forecasting models in terms of their relative

out-of-sample forecast performance. West (1996) o¤ered a formal analysis of inference about the

out-of-sample predictions, and White (2000) developed a framework to compare multiple forecasting

models. Hansen (2005) o¤ered a general way to improve the power of the test of predictive ability.

Giacomini and White (2006) proposed out-of-sample predictive ability tests that can be applied

to conditional evaluation objectives. In the meanwhile, evaluation of density forecasts has also

drawn interest in the literature. See early contributions by Diebold, Gunther, and Tay (1998),

Christo¤ersen (1998), and Diebold, Hahn, and Tay (1999). Density forecasts have been further

analyzed by Amisano and Giacomini (2007), and Bao, Lee, and Salto¼glu (2007), among others.

Comparing relative predictive ability can be embedded into the general problem of testing

functional inequalities of the following type:

H0 : e(m) � 0; for all m 2M and (1)

H1 : e(m) > 0; for some m 2M,

where e(m) is an unknown but estimable real function on a setM � Rd: For example, we can take

e(m) = �(0)� �(m)

where �(m) denotes a risk associated with prediction based on the m-th candidate forecasting

model and �(0) a risk due to prediction based on a benchmark model. Then the alternative

hypothesis states that there exists a model that performs strictly better than the benchmark model.

More speci�cally, suppose that the object of forecast is a � -ahead quantity Y� and there are M
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number of candidate forecasts 'm(Fm) where Fm is the information used by the forecast 'm: The

framework includes the situation with parameter uncertainty in forecasting models because the

uncertainty is random to the extent Fm is. Then, we may be interested in evaluating the forecasts

by comparing

�(m) = E[fY� � 'm(Fm)g2]:

The expectation above is with respect to the joint distribution of variables constituting the infor-

mation Fm and Y� : Alternatively, �(m) can be taken to be a risk associated with a functional of a

density forecast. For instance, we may take

�(m) = E

�Z
log(fm(yjFm)=f(y))f(y)dy

�
;

where fm(�jFm) is the m-th density forecast using the information Fm and f is the true density

of Y� : The expectation above is with respect to the distribution of variables constituting Fm: The

quantity �(m) is the expected Kullback-Leibler divergence based on the m-th density forecast. Let

�(0) be the expected Kullback-Leibler divergence for the benchmark model. Then, testing (1) using

e(m) = �(0) � �(m) is tantamount to testing whether the benchmark forecast is optimal among

the candidate forecasts. (See Bao, Lee, and Salto¼glu (2007) and Amisano and Giacomini (2007),

and )

Although most applications assume a �nite M, the paper�s proposal is not con�ned to this

assumption. More importantly, the testing problem of (1) has many other examples beyond that of

comparing forecasting models. While these examples are not pursued in this paper, it is still worth

mentioning them. The �rst example is testing stochastic dominance of one variable by the other.

(See, e.g., Davidson and Duclos (2000), Barret and Donald (2003), and Linton, Massoumi, and

Whang (2005).) Testing conditional or unconditional positive dependence also falls into the testing

framework of (1). For example, see Cawley and Phillipson (1999) and Chiappori and Salanié (2000)

in the context of contract theory and Denuit and Scaillet (2004) in �nancial econometrics. Third,
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testing moment inequalities also belongs to this framework (e.g. Chernozhukov, Hong, and Tamer

(2007), Rosen (2006), Moon and Schorfheide (2007), Andrews and Guggenberger (2006). Such tests

can be used to construct a con�dence set for an unknown, partially identi�ed true parameter.

The usual method of testing (1) involves replacing e by an estimator ê and taking an appropriate

functional of it to form a test statistic. This paper speci�cally focuses on the one-sided Kolmogorov-

Smirnov (KS) test statistic:

TK = snsupm2Mê(m); (2)

where sn !1 is a normalizing sequence to prevent degeneracy in the limit under the null hypoth-

esis. The testing framework is not restricted to an i.i.d. data set-up, as this paper�s results concern

only the limiting Gaussian experiments.

First, this paper shows that there exist a class of Pitman local alternatives against which the

asymptotic power of the test in (2) is below the level of the test. WhenM is in�nite, the asymptotic

power is arbitrarily close to zero against certain local alternatives. When the null hypothesis is

of the form: e(m) = 0 for all m 2 M, the poor power property of nonparametric tests against

certain alternatives is well-known in the literature. For example, Janssen (2000) showed that in

that situation, a nonparametric test has a nearly trivial asymptotic power, i.e. an asymptotic power

close to the level �; except for a �nite dimensional space of local alternatives. In contrast, this

paper �nds that when it comes to testing (1), the asymptotic power of the one-sided KS test is

even more unstable, as the power becomes close to zero under certain local alternatives.

Given the extremely unstable power property, one may ask whether there is a way to alleviate

this problem. This question leads to the main contribution of this paper. First, this paper identi�es

a complementary test that shows good power against alternatives under which the one-sided KS

test has poor power. Then, this paper proposes a test that couples this complementary test with

the one-sided KS test.

This paper is not the �rst to point out the poor power property of the one-sided KS test for the

inequality models. Hansen (2005) studied testing predictive ability among forecasting models as in
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White (2000) and showed the poor power phenomenon of the one-sided KS test through excellent

illustrations. Hansen (2005) also suggested a way to improve the asymptotic power property of the

tests. His idea of improving the power is general and, in fact, related to some later literatures on

testing moment inequalities such as Andrews and Soares (2007) (whereM is �nite) and Linton, Song

and Whang (2008) (where M is in�nite). On the other hand, this paper�s suggestion is di¤erent

from his approach. While the power improvement by his approach is by transforming a test toward

an asymptotic similar test, this paper suggests robustifying the power of the test by coupling it with

a test that has complementary asymptotic power properties. Therefore, the suggestion of Hansen

(2005) is not competitive with this paper�s approach. When a test of functional inequalities is not

asymptotically similar, one may �rst �nd an asymptotically similar test by applying the method

of Hansen (2005) or Linton, Song, and Whang (2008), and then, robustify the power of the test

by employing the hybrid test that this paper suggests. This point is exempli�ed in the simulation

studies.

The paper is organized as follows. The next section establishes asymptotic biasedness for one-

sided KS tests of functional inequalities. This section also motivates and introduces a method of

hybrid tests. Section 3 applies this method to testing predictive abilities, and presents some results

from simulation results. Section 4 concludes. Some technical proofs are in the Appendix.

2 Asymptotic Bias of One-Sided KS Tests

In this section, we present the result of unstable power property of the one-sided KS test. To de�ne

the scope of the result, we need to introduce some notations. For a subset M � Rd; let l1(M) be

the space of bounded functions onM; equipped with the sup norm jj � jj1 : jjf jj1 =supm2Mjf(m)j

for all bounded functions f onM. For any functions f; g 2 l1(M); we write f � g if f(m) � g(m)

for all m 2M: We are interested in an unknown function e 2 l1(M), especially whether e � 0 or
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not. Let �K be a one-sided Kolmogorov-Smirnov functional on l1(M): for each � 2 l1(M),

�K� � sup
m2M

�(m):

We turn to the hypothesis testing of (1). For given e0 2 l1(M) such that e0 � 0, we take M0

to be the zero-set M0 = fm 2M : e0(m) = 0g. As long as the nondegenerate limiting distribution

of the one-side KS test is concerned, it su¢ ces to consider the collection of probabilities under the

the null hypothesis (1) such that e = e0 for some e0 � 0 that has nonempty zero-set M0. We let

�K0 be �K with the domain restricted to l1(M0); i.e., for any � 2 l1(M0);

�K0 � � sup
m2M0

�(m):

We introduce Pitman local alternatives. Let A0 = f� 2 l1(M) : �K0 � > 0g and AK0 � A0 be

such that for all � 2 A0 there exists �1 2 AK0 satisfying �1 � �: For given � 2 AK0 , Pitman local

alternatives in the direction � are de�ned as a sequence of probabilities under which

e(m) = e0(m) + �(m)=sn (3)

for some e0 2 l1(M) such that e0 � 0 and for some normalizing sequence sn ! 1: Let ê(m) be

an estimator of e(m) such that as n!1;

snê =) � in l1(M0); under H0, (4)

snê = snfê� eg+ sne =) � + � in l1(M0); under (3),

where � is a Gaussian process in l1(M0). The weak convergence =) can be established using the

(functional) central limit theorem or the standard empirical process theory in many examples.

Hansen (2005) o¤ers intuitive illustrations that show asymptotic bias of the one-sided KS test
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Figure 1: Examples of e(m) Associated with Low Power for the One-sided KS Test

for the case where M = f1; 2g. However, it is not intuitively obvious whether such properties will

extend to arbitrary M. To illustrate this point, we consider two examples of alternatives for e(m)

shown in Figure 1. While the power is a¤ected by the height of e(m0) at m0, it also hinges on the

values that e(m) takes on the remaining area. Suppose that the height of e(m) at m = m0 is the

same for both alternatives, and that in most of the remaining area of M0 outside a neighborhood

of m0; e(m) takes negative values as shown in Figure 1. The extent of this negativity a¤ects the

asymptotic power in two opposite ways. A further negativity will reduce the power because the

area of m�s such that �(m) + �(m) � �(m) tends to be larger than the area of m�s such that

�(m)+ �(m) > �(m): But this e¤ect is o¤set by the fact that the probability of the maximizer of �

and the maximizer of � + � being close to each other becomes smaller as e(m) takes more negative

values in the remaining area. Therefore, the total e¤ect of negativity of e(m) on the remaining area

is ambiguous.

The proposition below establishes that the test TK de�ned in (2) su¤ers from asymptotic bias

against certain local alternatives in general. Therefore the observation by Hansen (2005) extends
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to a substantial degree of generality.

Proposition 1 : For a subset M0 � M, let � be a separable centered Gaussian process in

l1(M0) with uniformly continuous sample paths and V ar(�(m)� �(s)) 6= 0 for m 6= s in M0:

(i) For (potentially stochastic) cn;� � 0 with limn!1 P
�
TK > cn;�

	
� � under H0, there exists

� � AK0 such that

lim
n!1

P�
�
TK > cn;�

	
< �;

where P� denotes the sequence of probabilities under (3).

(ii) Furthermore, assume that there exists m0 2 M0 such that Pf�(m0) = 0g = 1: Then, for

(potentially stochastic) cn;� > 0 with limn!1 P
�
TK > cn;�

	
� � under H0,

inf�2AK0 lim
n!1

P�
�
TK > cn;�

	
= 0.

The condition V ar(�(m)��(s)) 6= 0; m 6= s; is satis�ed by almost all Gaussian processes whose

sample paths are not constant functions. The separability condition for the Gaussian process � is

a technical measurability condition. (See a footnote in van der Vaart and Wellner (1996), p.98.)

Proposition 1(i) tells us that the one-sided KS test is asymptotically biased against certain local

alternatives. As shown in the proof of Proposition 1(i), the collection of shifts � under which the

test is asymptotically biased is not contained in a �nite-dimensional subspace of l1(M) when M

is in�nite. The second result (ii) shows that the minimum asymptotic power is equal to zero when

�(m0) is almost everywhere equal to zero at some point m0. The latter condition is satis�ed by

Brownian motions and Brownian bridges, and many other Gaussian processes whose sample paths

begin at zero. However, the extreme result of (ii) does not apply when � is a nondegenerate,

stationary Gaussian process or when M0 is a �nite set.

The power property of a one-side KS test can be improved by transforming the test into one

that is asymptotically similar. A test of (1) is called asymptotically similar, if the asymptotic
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rejection probability is identical to the level � whenever supm2M e(m) = 0: In particular, whenM0

is compact, a test is asymptotically similar if limn!1 PfTK > c�g = � for all the probabilities P

such thatM0 is nonempty. It is well known that asymptotically unbiased tests are asymptotically

similar, or equivalently, asymptotically nonsimilar tests are asymptotically biased. (e.g. Strasser

(1985) p.429. See also Hansen (2003).) In fact, one can improve the power of an asymptotically

nonsimilar test by transforming it into an asymptotically similar one. (e.g. Hansen (2005), Linton,

Massoumi and Whang (2005), and Linton, Song, and Whang (2008)). However, the unstable power

phenomenon of the one-sided KS test in Proposition 1 still arises regardless of whether a test is

asymptotically similar or not. This is because the result allows M0 to be a proper subset of M.

2.1 Power Robusti�cation via Coupling

2.1.1 A Complementary Test

The result of the previous section showed that the asymptotic power of a one-sided KS test can be

very poor against certain local alternatives. We construct a hybrid test that tends to have a robust

power property. The construction is in two steps. First, we identify a complementary test that has

a better power property against local alternatives under which the one-sided KS test has a very

poor power. Second, we couple the one-sided KS test with the complementary test to construct a

new hybrid test.

As for a complementary test, we consider the following hypothesis testing problem:

HS
0 : e(m) � 0 for all m 2M; or e(m) � 0 for all m 2M; (5)

HS
1 : e(m) > 0 for some m 2M and e(m) < 0 for some m 2M:

We de�ne a symmetric functional �S on l1(M) as follows:

�S(�) = minf�K(�);�K(��)g:
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The use of this type of functional was proposed by Linton, Massoumi, and Whang (2005) in the

context of testing stochastic dominance. Given ê, a test statistic for testing (5) can be constructed

as

TS = �S(snê). (6)

For testing the null hypothesis in (1), the test TS is complementary to TK : TS tends to have a

greater power than TK against local alternatives that give TK a very poor power. We illustrate this

point by considering the following example. Let M = f1; 2g: Given observations Z1 and Z2 which

are positively correlated and jointly normal with a mean vector � = (�1; �2); we are interested in

testing

H0 : �1 � 0 and �2 � 0

H1 : �1 > 0 or �2 > 0:

Consider TK = max(Z1; Z2) and TS = minfmax(Z1; Z2);max(�Z1;�Z2)g: Complementarity

between the tests TK and TS are illustrated in Figure 2 in a form borrowed from Hansen (2005).

The illustration is based on a least favorable con�guration (LFC) in which we read critical values

from the distribution with �1 = 0 and �2 = 0: Hence M0 = f1; 2g: The ellipses in Figure 2

indicate representative contours of the joint density of Z1 and Z2; each corresponding to di¤erent

distributions denoted by A, B, and C. While A represents the null hypothesis under LFC, B and

C represent alternatives. Under the alternative B; the rejection probability of the test TK can be

lower than that under A; implying the biasedness of the test. (This is illustrated by the dark area

of ellipsis B in the left panel which is smaller than the dark area of ellipsis A in the same panel.)

However, the rejection probability of the test TS against this alternative B is better as indicated

by a larger dark area in the corresponding ellipsis on the right panel. (This contrast may be less

stark when Z1 and Z2 are negatively correlated.) Hence against B; test TS has a better power

than test TK : This order of performance is reversed in the case of an alternative C where the test
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Figure 2: Complementarity between TK and TS

TS has a power close to zero while the test TK has a power close to 1.

2.1.2 Coupling

The complementary test cannot replace the one-sided KS test because it will su¤er from a similar

kind of poor power properties as in Proposition 1 only against a di¤erent kind of local alternatives.

We construct a hybrid test by coupling the complementary test and the one-sided KS test so that

the resulting test may have balanced power properties. For each � 2 [0; 1] and 
 2 [0; �]; we

introduce the following hybrid test of the null hypothesis in (1).

Reject H0 if TS > cSn;�(
) (7)

or

if TS � cSn;�(
) and T
K > cKn;�(
);
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where cSn;�(
) and c
K
n;�(
) are threshold values such that

limn!1PfTS > cSn;�(
)g = 
 and

limn!1PfTS � cSn;�(
) and T
K > cKn;�(
)g = �� 
:

The hybrid test runs along a locus between the two tests TK and TS as we move 
 between 0 and

� : when 
 is set to be close to �, the hybrid test becomes close to TS , and when 
 is set to be close

to 0; it becomes close to TK : The power-reducing e¤ect of the negativity of e(m) on most values of

m is counteracted by the positivity of �e(m) on most values of m. (Figure 3.) By coupling with

TS ; the hybrid test shares this counteracting e¤ect to an extent depending on 
; with the e¤ect

of power reduction attenuated relative to TK : In practical situations, this paper simply proposes

using 
 = �=2: Simulation studies in this paper suggest that this choice of 
 yields a hybrid test

that performs reasonably well.

In general, we cannot evaluate the critical values cSn;�(
) and c
K
n;�(
) from the limiting distri-

butions of test statistics TS and TK : This feature is not something created anew by the coupling

method; in general, tests TK and TS are asymptotically non-pivotal except for special cases. We

can compute the approximate critical values cS�n;�(
) and c
K�
n;�(
) using bootstrap or subsampling.

For example, we simulate the bootstrap distribution P � of (TS ; TK) by generating (TS�b ; TK�b )Bb=1:

Using the empirical distribution of fTS�b gBb=1, we compute cS�n;�(
) such that

P �fTS�b > cS�n;�(
)g = 


where P � denotes the bootstrap distribution of TS�b : Using this cS�n;�(
); we �nd c
K�
n;�(
) such that

P �fTS�b � cS�n;�(
) and TK�b > cK�n;�(
)g = �� 
:
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Figure 3: An Example of e(m) and Its Re�ection

Then, the bootstrap-based test can be described as

Reject H0 if TS > cS�n;�(
)

or

if TS � cS�n;�(
) and T
K > cK�n;�(
):

The method of coupling hardly entails additional computational cost. The computational cost in

most cases lies in having to compute ê�(m) using the bootstrap samples, which is a step common

in the other bootstrap-based tests. Once ê�(m) is computed, �nding TK�b and TS�b and obtaining

bootstrap critical values are straightforward.
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3 Testing Predictive Ability

3.1 Background

In this section, we apply the coupling approach to testing predictive ability. Suppose that we are

given M models and want to know whether any of these models performs better than a certain

benchmark model in terms of forecasting. Suppose that e(m); m = 1; � � �;M; denotes the relative

predictive performance of the m-th model to the benchmark model, so that e(m) � 0 means that

the benchmark model performs better than the m-th model. For example, let �(m) be a risk

associated with using the m-th forecast as illustrated in the introduction, and de�ne

e(m) = �(0)� �(m):

The null hypothesis and the alternative hypothesis are written as

H0 : e(m) � 0 for all m = 1; � � �;M; and

H1 : e(m) > 0 for some m = 1; � � �;M:

Using the data set, we estimate ê(m): Under regularity conditions, [
p
nê(1); � � �;

p
nê(M)] is as-

ymptotically jointly normal. As Giacomini and White (2006) showed, this is true under general

conditions even when the parameter uncertainty does not vanish as the sample size increases.

White (2000) and Hansen (2005) suggested the following test statistics respectively:

TRC =
p
nmax1�m�M ê(m) and

TSPA =
p
nmax1�m�M ê(m)=!̂m;

where !̂2m is an estimated asymptotic variance of ê(m): To obtain approximate critical values, we

generate the bootstrap version fe�b(m)gMm=1; b = 1; 2; � � �; B; from observations. De�ne c�RC� to be
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the �-th quantile of f
p
nmax1�m�Me�b(m)gBb=1: Then an �-level one-sided KS test is obtained as:

Reject if and only if TRC > c�RC� .

This is a test suggested by White (2000). Next, we consider the test suggested by Hansen (2005).

Given the bootstrap quantities fe�b(m)gBb=1; we de�ne

�e�1;b(m) = e
�
b(m)� ê(m)� 1

n
ê(m) � �

p
(!2m=n)2 log log n

o
: (8)

Let c�SPA� to be the �-th quantile of fmax1�m�M
p
n�e�1b(m)=!mgBb=1: Then an �-level test of Hansen

(2005) is de�ned to be

Reject if TSPA > c�SPA� :

The construction of a hybrid test that this paper proposes proceeds as follows. First, de�ne the

complementary test:

TS =
p
nmin fmax1�m�M ê(m)=!̂m;max1�m�M � ê(m)=!̂mg :

We can construct a hybrid test by coupling TS with TK or coupling TS with TSPA: We propose

using the latter approach given the result of Hansen (2000). More speci�cally, take �e�1;b(m) as in

(8), and construct

�e�2;b(m) = �e�b(m) + ê(m)� 1
n
�ê(m) � �

p
(!2m=n)2 log log n

o
and

T �Sb = min
�
max1�m�M

p
n�e�1;b(m)=!̂m;max1�m�M

p
n�e�2;b(m)=!̂m

	
:

Let c�S�=2 be the �=2-th quantile of fT
�S
b gBb=1. De�ne T �b = T �SPAb 1fT �Sb � c�S�=2g and take c

�H
�=2 to
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be the �=2-th quantile of fT �b gBb=1: Then, the hybrid test is de�ned as

Reject if TS > c�S�=2 or

if TS � c�S�=2 and T
SPA > c�H�=2:

In the next section, we investigate the �nite sample performance of the hybrid test by simulation

studies.

3.2 Simulations

The simulation design is based on Hansen (2005), and is composed of two parts. First, we focus on

the local alternatives considered by Hansen (2005) and compare three types of tests, a test (Reality

Check: RC) of White (2000), a test (Superior Predictive Ability: SPA) of Hansen (2005) and this

paper�s proposal (Hybrid). To provide a background for the simulation design, suppose that �m;t�h

is a forecasting value that is made h periods in advance using the m-th model and �t is the realized

value. Then, the relative performance can be represented as L(�t; �m;t�h) for some loss function

L. Suppose that �0;t�h is a forecast using a benchmark model. Let L(�t; �m;t�h) be the loss from

the forecasting through the m-th model and we simply write Lm;t = L(�t; �m;t�h): Then we let

e(m) = E [L0;t � Lm;t] : For m = 1; 2; � � �;M and t = 1; 2; � � �; n; we draw

Lm;t � i.i.d. N(�(m)=
p
n; �2m)

for constants �(m) and �2m =
1
2 exp (arctan(�(m))) :We set �(0) = 0. The sum ê(m) =

1
n

Pn
m=1fL0;t�

Lm;tg follows N(�(m)=
p
n; !2m); where !

2
m � 1+ 1

2�(m) +
1
4�
2(m)� 7

12�
3(m): (See Hansen (2005),

p.373, for details.) As for �(m); we consider two di¤erent schemes: alternatives with local positivity

and alternatives with local positivity and local negativity.
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Table 1: Empirical Size of Tests of Predictive Abilities under DGP A (k = 50; n = 200)
� = 0:05 � = 0:10

� �1 RC SPA Hybrid RC SPA Hybrid

0 0 0.0530 0.0535 0.0480 0.1035 0.1065 0.1000
1 0 0.0130 0.0165 0.0360 0.0335 0.0380 0.0580
2 0 0.0075 0.0120 0.0305 0.0195 0.0255 0.0530
3 0 0.0065 0.0120 0.0315 0.0085 0.0195 0.0395
5 0 0.0020 0.0125 0.0280 0.0035 0.0175 0.0305

3.2.1 Alternatives with Local Positivity

The �rst scheme is identical to the experimentation of Hansen (2005), where �(m) is given as

follows:

DGP A: �(m) =

8>>>><>>>>:
0; if m = 0

�(1); if m = 1

�(m�1)
M�2 ; if m = 2; � � �;M;

where � and ��(1) are chosen from f0; 1; 2; 3; 5g. Hence the remaining M � 1 models are inferior

to the benchmark model with their relative performance ordered as M �M � 1 � � � � � 2:

When �(1) = 0; no alternative forecasting model strictly dominates the benchmark model,

representing the null hypothesis. When �(1) < 0; the model 1, having relative expected loss equal

to �(1); performs better than the benchmark model. Hence this case corresponds to the alternative

hypothesis. The magnitude � controls the extent to which the inequalities �(m) � 0; m = 2; � � �;M;

lie away from binding. When � = 0; the remaining inequalities for models 2 throughM are binding,

i.e., e(m) = 0 for all m = 2; � � �;M: In the simulation studies, the sample size is 200 and the number

of Monte Carlo simulations and the bootstrap Monte Carlo simulations 2000.

Tables 1 and 2 show the size of simulation results with M = 50 and M = 100 under DGP

A. The test RC has lower type I error as the design parameter � increases. For example, when

� = 5; the rejection probability of the test RC is 0.2% when the nominal size is 5%. This extremely
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Table 2: Empirical Size of Tests of Predictive Abilities under DGP A (k = 100; n = 200)
� = 0:05 � = 0:10

� �1 RC SPA Hybrid RC SPA Hybrid

0 0 0.0565 0.0585 0.0565 0.0930 0.0970 0.1025
1 0 0.0065 0.0090 0.0300 0.0300 0.0375 0.0595
2 0 0.0060 0.0065 0.0235 0.0145 0.0250 0.0450
3 0 0.0020 0.0085 0.0205 0.0085 0.0160 0.0365
5 0 0.0010 0.0080 0.0185 0.0080 0.0255 0.0380

conservative size of the test RC is signi�cantly improved by the test SPA of Hansen (2005) which

shows the type I error of 1.25%. The hybrid approach provides a signi�cant improvement over the

test SPA, yielding type I error of 2.8% in this case. The improvement is prominent throughout the

values of � = 1; 2; � � �; 5:

The improvement of the rejection probability by the hybrid approach is not without cost in

general: it is attained by reducing the rejection probability against certain other alternatives. The

theoretical results of this paper predict that the power of the hybrid test can be inferior to the test

TSPA of Hansen (2005) when � = 0, because the one-sided KS test has a strong power against such

alternatives. The simulation results in Table 1 indeed show that the rejection probability of the

hybrid test is midly lower than that of TSPA: However, the reduction in the rejection probability

appears to be only of minor degree. In the case of both nominal sizes 5% and 10%, the rejection

probability of the hybrid test is even closer to the nominal size than the other tests.

Tables 3-4 show the power of the three tests. As expected, the reduction in power for the hybrid

test is shown in the case of � = 0: However, the reduction in power appears only marginal. It is

interesting to see that the rejection probability of the hybrid test is even better than the test RC

when �(1) = �2;�3; and �5 in this case. As the inequalities move farther away from binding

while maintaining the violation of the null hypothesis, the performance of the hybrid test becomes

prominently better. For example, when � = 2 or 3 and �(1) = �3; the test RC of White (2000)
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Table 3: Empirical Power of Tests of Predictive Abilities under DGP A (k = 50; n = 200)
� = 0:05 � = 0:10

� �1 RC SPA Hybrid RC SPA Hybrid

�1 0.0665 0.0720 0.0675 0.1100 0.1175 0.1235
0 �2 0.1775 0.2030 0.1915 0.2600 0.2895 0.2810

�3 0.4755 0.5400 0.5120 0.6005 0.6485 0.6260
�5 0.9835 0.9890 0.9870 0.9910 0.9940 0.9925
�1 0.0275 0.0320 0.0620 0.0640 0.0760 0.1120

1 �2 0.1305 0.1695 0.2185 0.1840 0.2300 0.2765
�3 0.4395 0.5160 0.5805 0.5690 0.6370 0.6915
�5 0.9800 0.9900 0.9905 0.9895 0.9930 0.9955
�1 0.0285 0.0405 0.0820 0.0490 0.0685 0.1265

2 �2 0.1120 0.1765 0.2855 0.1860 0.2550 0.3540
�3 0.4525 0.5595 0.6805 0.5455 0.6490 0.7435
�5 0.9760 0.9880 0.9965 0.9920 0.9960 0.9975
�1 0.0210 0.0375 0.0800 0.0340 0.0655 0.1120

3 �2 0.1175 0.1855 0.2860 0.1765 0.2870 0.3725
�3 0.4470 0.6055 0.7275 0.5305 0.6755 0.7575
�5 0.9755 0.9890 0.9970 0.9860 0.9960 0.9985
�1 0.0115 0.0390 0.0750 0.0200 0.0735 0.1060

5 �2 0.0955 0.2230 0.3110 0.1620 0.3250 0.3860
�3 0.4095 0.6300 0.7220 0.5145 0.7290 0.7765
�5 0.9720 0.9950 0.9965 0.9870 0.9975 0.9980
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Table 4: Empirical Power of Tests of Predictive Abilities under DGP A (k = 100; n = 200)
� = 0:05 � = 0:10

� �1 RC SPA Hybrid RC SPA Hybrid

�1 0.0660 0.0690 0.0620 0.1010 0.1070 0.1120
0 �2 0.1300 0.1485 0.1355 0.2170 0.2425 0.2230

�3 0.4210 0.4870 0.4480 0.5140 0.5680 0.5490
�5 0.9725 0.9845 0.9805 0.9825 0.9910 0.9900
�1 0.0230 0.0265 0.0480 0.0390 0.0515 0.0850

1 �2 0.0870 0.1180 0.1655 0.1370 0.1820 0.2400
�3 0.3685 0.4590 0.5210 0.4675 0.5440 0.6165
�5 0.9630 0.9800 0.9845 0.9790 0.9900 0.9915
�1 0.0100 0.0230 0.0500 0.0265 0.0455 0.0805

2 �2 0.0990 0.1430 0.2370 0.1265 0.1910 0.2685
�3 0.3375 0.4490 0.5925 0.4440 0.5570 0.6565
�5 0.9630 0.9855 0.9900 0.9820 0.9925 0.9970
�1 0.0155 0.0280 0.0525 0.0180 0.0440 0.0745

3 �2 0.0650 0.1275 0.2085 0.1140 0.2105 0.2810
�3 0.3440 0.4695 0.6130 0.4345 0.5850 0.6635
�5 0.9630 0.9900 0.9965 0.9765 0.9925 0.9970
�1 0.0075 0.0340 0.0555 0.0125 0.0570 0.0750

5 �2 0.0565 0.1675 0.2375 0.1090 0.2410 0.2830
�3 0.2925 0.5410 0.6280 0.4045 0.6540 0.6970
�5 0.9515 0.9885 0.9940 0.9680 0.9955 0.9985
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and the test SPA of Hansen (2005) reject the null hypothesis about 45% and 60% respectively.

But the hybrid approach rejects the null hypothesis about 73 %. When the number of candidate

modelsM is increased to 100, the results show a similar pattern as shown in Table 2. These results

demonstrate that the approach of hybrid test proposed in this paper performs reasonably well in

�nite samples.

3.2.2 Alternatives with Local Positivity and Local Negativity

The hybrid test was shown to perform very well relative to the other two tests under Design

A. However, Design A mainly focuses on alternatives such that the test RC tends to have weak

power. In this section, we consider an alternative design that has alternatives in a more balanced

way. The main focus in this design is on the cost of power robusti�cation by the hybrid approach

when the other tests perform well. To investigate this, we consider the following scheme: for each

m = 1; � � �;M;

DGP B1: �(m) = r � f�(�8m=M)� 4=5g;

DGP B2: �(m) = r � f�(�8m=M)� 1=2g; and

DGP B3: �(m) = r � f�(�8m=M)� 1=5g;

where � is a standard normal distribution function and r is a positive constant running in an equal

spaced grid in [0; 5]: This scheme is depicted in Figure 4. DGP B1 represents the situation where

there is only a small portion of models that perform better than the benchmark model and DGP

B3 the situation where there is a large portion of models that perform better than the benchmark

model. The general discussion of this paper predicts that the hybrid test has a relatively strong

power against the alternatives under DGP B1 while it has a relatively weak power against the

alternatives under DGP B3.

The results of the simulation studies are shown in Figure 5. Under DGP B3, all three tests
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Figure 4: The Three Designs of �(m)

perform equally well. It is worth noting that for the power of the hybrid test (in solid line) is slightly

below those of the other two tests. However, this reduction in power appears to be only marginal.

This is indeed so when we compare the gain in the power of the hybrid test against the other two

types of alternatives, DGP B1 and DGP B2. In this case, the test of Hansen (2005) has a better

power than the test RC, as expected from Hansen (2005). Remarkably, the hybrid approach shows

conspicuously better power than the other two tests. We conclude that as long as the simulation

designs used so far are concerned, the power gain by the hybrid approach is considerable while its

cost as a reduction in power under other alternatives is only marginal. This attests to the bene�t

of the hybrid approach.

4 Closing Remarks

This paper draws attention to the fact that the one-sided KS test of functional inequalities is asymp-

totically biased. To alleviate this problem, this paper proposes an approach of hybrid test where

22



Figure 5: Rejection Probabilities at 5% of Testing Predictive Ability
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we couple the one-sided KS test with a symmetrized complementary test of a weaker hypothesis.

Through simulations, it is shown that this approach yields a test with robust power behavior.

This paper�s approach can be applied in numerous di¤erent ways. First, one may couple the

one-sided KS test with a di¤erent complementary test, as far as the nature of the complementarity

is made clear. Second, we may apply a similar procedure to one-sided tests involving functionals

other than Kolmogorov-Smirnov functional. For example, one might consider a one-sided version

of Cramér-von Mises type functional. Third, the approach can be applied to numerous other tests

of inqualities beyond predictive ability tests. The question of which modi�cation or extension is

suitable often depends on the context of the application.

5 Appendix

The following lemma is crucial for the result of unstable power for the one-sided KS test.

Lemma 1: Let �; M0 and AK0 be as in Proposition 1. Then, for each (potentially stochastic)

c � 0; each m0 2M0; " 2 (0;1) and K 2 R; there exists � 2 AK0 such that

P
�
�K0 (� + �) > c

	
< P f�(m0) > c� "g+ "=K:

Proof of Lemma 1: Fix " > 0; K > 0; and m0 2M0: De�ne Jx0 = fm 2M0 : jjm�m0jj � xg;

x 2 [0;1); and Jx1 =M0nJx0 : Fix " 2 (0; 1]: Take b 2 (0;1) such that

P
�
�K0 (�) � c+ b

	
� 1� "

4K
: (9)

De�ne �(�) = fm 2 M0 : �
K
0 (�) = �(m)g: By Lemma 2.6 and the proof of Theorem 2.7 of Kim

and Pollard (1990), �(�) is a singleton and, being identi�ed with its unique member, and it is
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measurable. Observe that �K0 (� � �(m0)) is a continuous random variable, which yields that

Pf�(�) 2 J00g = Pf�(�) = m0g = Pf�K0 (�) = �(m0)g = 0:

Since Pf�(�) 2 Jx0 g = Pfjj�(�)�m0jj � xg is increasing and right-continuous in x and Pf�(�) 2

J00g = 0; we can �nd x1 > 0 such that for all x 2 (0; x1];

Pf�(�) 2 Jx0 g �
"

4K
: (10)

Since � is a separable Gaussian process, we �nd x2 > 0 such that for all x 2 (0; x2];

Pf
���K0 (� � �(m0);J

x
0 )
�� > "=2g � 2

"
E
����K0 (� � �(m0);J

x
0 )
��� < "

4K
; (11)

where �K0 (� � �(m0);J
x
0 ) = supm2Jx0 �(m) � �(m0): (e.g. Corollary 2.2.8 of van der Vaart and

Wellner (1996).) We take x = minfx1; x2g:

We �x this x and de�ne Dx(m) = ("=2)1fm 2 Jx0 g � b1fm 2 Jx1 g and

�x(�) = fm 2M0 : �
K
0 (� +Dx) = (� +Dx)(m)g:

Now, observe that for any � � Dx;

P
�
�K0 (� + �) � c

	
� P

�
�K0 (� +Dx) � c; �x(�) 2 Jx1

	
:

We can write the last term as A1n +A2n where

A1n = Pf�K0 (� +Dx) � c;�K0 (�;Jx0 ) + "=2 � �K0 (�)� b; �x(�) 2 Jx1 g and

A2n = Pf�K0 (� +Dx) � c;�K0 (�;Jx0 ) + "=2 > �K0 (�)� b; �x(�) 2 Jx1 g:
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Consider A1n which we write as

Pf�K0 (�) � c+ b;�K0 (�;J
x
0 ) + "=2 � �K0 (�)� b; �x(�) 2 Jx1 g

= Pf�K0 (�;Jx0 ) + "=2 + b � �K0 (�) � c+ b; �x(�) 2 Jx1 g

> Pf�(m0) + "+ b � �K0 (�) � c+ b; �x(�) 2 Jx1 g � "=(4K);

where the last inequality follows by (11). As for A2n; we bound it from below by

Pf�K0 (�;Jx0 ) � c� "=2;�K0 (�;Jx0 ) + "=2 > �K0 (�)� b; �x(�) 2 Jx1 g

� Pf�(m0) � c� ";�K0 (�) < �(m0) + "+ b; �x(�) 2 Jx1 g � "=(4K)

� Pf�K0 (�) < �(m0) + "+ b; �x(�) 2 Jx1 g � Pf�(m0) > c� "g � "=(4K):

Combining these together, we deduce that

P
�
�K0 (� +Dx) � c; �x(�) 2 Jx1

	
� Pf�K0 (�) � c+ b; �x(�) 2 Jx1 g � Pf�(m0) > c� "g �

2"

4K

� Pf�K0 (�) � c+ bg � Pf�(m0) > c� "g �
3"

4K

� 1� Pf�(m0) > c� "g � "=K

by (10) and (9). This gives the wanted result.

Proof of Proposition 1 : (i) Note that

1� � � P
�
�K0 � � c�

	
� P f�(m0) � c�g :

Since the distribution function of �(m0) is strictly increasing due to Gaussianity, we can take "1 > 0
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and K > 0 such that

P f�(m0) � c� � "1g+ "1=K > 1� �:

(Note that this is true even when �(m0) = 0 because we can take " 2 (0; c�):) Therefore, by Lemma

1, P�
�
�K0 � > c�

	
< �, yielding the wanted result with A1 = A("1):

(ii) By the weak convergence assumption,

limn!1P�
�
TK > c�

	
= P�

�
�K0 � > c�

	
:

It su¢ ces to show that for each " > 0; there exists � 2 AK0 ; such that

P�
�
�K0 � > c�

	
< ":

Due to the condition that Pf�(m0) > c�g = 0; this is precisely what Lemma 1 says.

References

[1] Amisano G. and R. Giacomini (2007), "Comparing density forecasts via weighted likelihood

ratio tests," Journal of Business and Economic Statistics, 25, 177-190.

[2] Andrews, D. W. K. and P. Guggenberger (2007), "Hybrid and size-corrected subsample mod-

els," CFDP 1606.

[3] Andrews, D. W. K. and G. Soares (2007), "Inference for parameters de�ned by moment in-

equalities using generalized moment selection," CFDP1631.

[4] Bao, Y., T-H., Lee, and B. Salto¼glu (2007), "Comparing density forecast models," Journal of

Forecasting, 26, 203-225.

27



[5] Barret, G. F. and S. G. Donald (2003), "Consistent tests for stochastic dominance," Econo-

metrica, 71, 71-104.

[6] Cawley, J. and T. Phillipson (1999), "An empirical examination of information barriers to

trade insurance," American Economic Review 89, 827-846.

[7] Chernozhukov, V., H. Hong, and E. Tamer (2007), "Estimation and con�dence regions for

parameter sets in econometric models. Econometrica, 75, 1243-1284.

[8] Chiappori, P-A, and B. Salanié (2000), "Testing for asymmetric information in insurance

markets," Journal of Political Economy 108, 56-78.

[9] Christo¤ersen, P. F. (1998), "Evaluating interval forecasts," International Economic Review,

39, 841-861.

[10] Davidson, R. and J. Y. Duclos (2000), "Statistical inference for stochastic dominance and

measurement for the poverty and inequality," Econometrica, 68, 1435-1464.

[11] Denuit, M. and O. Scaillet (2004), "Nonparametric tests for positive quadrant dependence,"

Journal of Financial Econometrics, 2, 422-450.

[12] Diebold, F. X., T. A. Gunther, and A. S. Tay (1999), "Evaluating density forecasts with

applications to �nancial risk management," International Economic Review, 39, 863-883.

[13] Diebold, F. X., J. Hahn, and A. S. Tay (1999), "Multivariate density forecast evaluation and

calibration in �nancial risk management: high-frequency returns on foreign exchange," Review

of Economics and Statistics, 81, 661-673.

[14] Diebold, F. X. and R. S. Mariano (1995), "Comparing predictive accuracy," Journal of Busi-

ness, and Economic Statistics, 13, 253-263.

[15] Giacomini, R. and H. White (2006), "Tests of conditional predictive ability," Econometrica,

74, 1545-1578.

28



[16] Hansen, P. R. (2003), "Asymptotic tests of composite hypotheses," Working Paper.

[17] Hansen, P. R. (2005), "Testing superior predictive ability," Journal of Business and Economic

Statististics, 23, 365-379.

[18] Fan, Y. and S. Park (2007), "Con�dence sets for some partially identi�ed models," Working

Paper.

[19] Janssen, A. (2000), "Global power functions of goodness of �t tests," Annals of Statistics, 28,

239-253.

[20] Kim, J. and D. Pollard (1990), "Cube root asymptotics," Annals of Statistics 18, 191-219.

[21] Linton, O., E. Maasoumi, and Y-J. Whang (2005), "Consistent testing for stochastic dominance

under general sampling schemes," Review of Economic Studies 72, 735-765.

[22] Linton, O. K. Song, and Y-J. Whang (2009), "An improved bootstrap test of stochastic dom-

inance," Forthcoming in Journal of Econometrics.

[23] Moon, R. H. and F. Schorfheide (2009), "Estimation with overidentifying inequality moment

restrictions," Forthcoming in Journal of Econometrics.

[24] Rosen, A. (2008), "Con�dence sets for partially identi�ed parameters that satisfy a �nite

number of moment inequalities," Journal of Econometrics, 146, 107-117.

[25] Strasser, H. (1985). Mathematical Theory of Statistics. Walter de Gruyter, New York.

[26] West, K. D. (1996), "Asymptotic inference about predictive ability," Econometrica, 64, 1067-

1084.

[27] White, H. (2000), "A reality check for data snooping," Econometrica, 68, 1097-1126.

29


