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Abstract

We address two issues in nonparametric structural analyses of dynamic binary choice processes

(DBCP). First, the DBCP is not testable and decision makers�single-period payo¤s (SPP) cannot be

identi�ed even when the distribution of unobservable states (USV) is known. Numerical examples

show setting SPP from one choice to arbitrary utility levels to identify that from the other can

lead to errors in predicting choice probabilities under counterfactual state transitions. We propose

two solutions. First, if a data generating process (DGP) has exogenous variations in observable

state transitions, the DBCP becomes testable and SPP is identi�ed. Second, exogenous economic

restrictions on SPP (such as ranking of states by SPP, or shape restrictions) can be used to recover

the identi�ed set of rationalizable counterfactual choice probabilities (RCCP) that are consistent

with model restrictions.

The other (more challenging) motivating issue is that when the USV distribution is not known,

misspeci�cation of the distribution in structural estimation leads to errors in counterfactual predic-

tions. We introduce a simple algorithm based on linear programming to recover sharp bounds on

RCCP. This approach exploits the fact that some stochastic restrictions on USV (such as indepen-

dence from observable states) and economic restrictions on SPP can be represented (without loss of

information for counterfactual analyses) as linear restrictions on SPP and distributional parameters

of USV. We use numerical examples to illustrate the algorithm and show sizes of identi�ed sets of

RCCP can be quite small relative to the outcome space.
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1 Introduction

In a dynamic binary choice process (DBCP), a decision maker�s choice of actions each period

a¤ects future payo¤s through its impact on transitions between current and future states. In

each period, the decision maker chooses an action to maximize the present value of expected

future payo¤s conditional on current states. Structural analyses of DBCP use choice data to

estimate underlying model primitives, and use the estimates to infer agents�choice patterns under

counterfactual decision environments (e.g. when the transitions between observable states, or the

static single-period payo¤s (SPP) are changed.) The model has found wide applications in labor

economics (e.g. Eckstein and Wolpin (1989), Wolpin (1987), Keane and Wolpin (1997)), industrial

organization (e.g. Rust (1987), Pakes, Ostrovsky and Berry (2004), Hendel and Nevo (2006),

Aguirregabiria and Mira (2008)) and �nance (e.g. Burton and Miller (2006)).

A branch of recent literature on DBCP have studied the estimation of parametric DBCP un-

der increasingly complicated extensions, such as unobserved heterogeneity and serial correlation in

the unobserved states. (See Arcidiacono (2003), Brien, Lillard and Stern (2006).) Another branch

studied the nonparametric identi�cation of DBCP. Several recent works established that the DBCP

model is nonparametrically unidenti�ed in the sense that the SPP cannot be uniquely recovered

from the choice patterns observed in data-generating processes (DGP), even when the distribution

of unobserved state variables (USV) is known to researchers. (See Magnac and Thesmar (2002),

Aguirregabiria (2005), Pesendorfer and Schmidt-Dengler (2007)) Berry and Tamer (2006) showed

for the special case of dynamic optimal stopping process (where one of the alternatives is terminal

and yields a payo¤ independent of states) that if USV distribution is known, then the static pay-

o¤ from the non-terminal choice is nonparametrically identi�ed. Another solution for identifying

DBCP model is to introduce an observable outcome variable that can aid the identi�cation. (See

Heckman and Navarro (2007), Aguirregabiria (2008).)

This paper contributes to this branch of literature by showing that the counterfactual choice

probabilities in the DBCP model can be (informatively) partially identi�ed, despite these strong

non-identi�cation results. We �rst motivate our work by providing two new �ndings about limita-

tions of nonparametric DBCP models. First, the DBCP model is not testable without restrictions

on SPP, even when USV distributions are known to researchers. Second, the practice of "setting

the SPP from one of the two choices to an arbitrary constant utility vector in order to identify SPP

from the other choice" is not innocuous for certain type of counterfactual predictions if the actual

SPP is not independent of states in either choices.2 We propose two solutions. First, if a data gen-

erating process (DGP) has exogenous variations in observable state transitions, the DBCP becomes

testable and SPP is identi�ed. To our knowledge, this is the �rst result that taps into exogenous

2When the acutual SPP from one choice is independent of states, then it is innocuous to normalize it to a constant

utility vector (provided there are no other exogenous shape restrictions on SPP).
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variations in state transitions to identify SPP without involving arbitrary assignment of utility

levels to one of the actions.3 Second, we introduce the concept of rationalizable counterfactual

choice probabilities (RCCP). These are de�ned as the counterfactual choice patterns that would

be rationalized, jointly with choices observed in DGP, by primitives that satisfy the nonparametric

model restrictions (such as stochastic restrictions on the USV distribution, or shape restrictions on

SPP). We show how to exhaust the identifying power of such restrictions to recover sharp bounds

(or the identi�ed set) of RCCP e¢ ciently when USV distribution is known.

The second half of the paper is motivated by the need for a dramatic generalization of the idea of

partially identifying RCCP when the USV distribution is not known to researchers. Misspecifying

USV distribution in structural estimations can lead to errors in counterfactual predictions. That is,

model primitives estimated under incorrect parametric assumptions on USV can imply counterfac-

tual outcomes that deviate from true counterfactuals. We introduce a simple, novel algorithm that

can recover the sharp bounds on RCCP in the absence of parametric assumptions on either SPP

or distributions of USV. Our results should not be interpreted as refuting the use of parametric

assumptions in structural estimations of DBCP. Rather, our main objective is to provide a formal

characterization of the limits of nonparametric structural analyses of DBCP models, and o¤er a

powerful framework where stochastic restrictions on USV and exogenous shape restrictions on SPP

are exploited e¢ ciently to derive sharp bounds on rationalizable counterfactual choice probabilities

(RCCP).

Our approach exploits two important features of the DBCP model: First, individuals�dynamic

rationality, both in the DGP and counterfactual decision environment, can be formulated as a

linear, homogenous system of SPP and nuisance parameters that are functionals of the USV dis-

tribution. The choice probabilities, including those observed in DGP and those to be inferred in

the counterfactual context, enter the system of linear restrictions through the coe¢ cient matrix.

Second, stochastic restrictions on USV distributions (such as independence of USV from observ-

able states) can be equivalently represented as linear inequalities of these nuisance (distributional)

parameters, again with choice probabilities in the DGP and counterfactual settings entering the

coe¢ cients. Furthermore, in lots of empirical contexts, SPP are often known to satisfy simple linear

restrictions, such as ranking of SPP among a subset of observable states. Hence identifying the set

of all RCCP amounts to collecting choice patterns that would make such a linear system feasible

with solutions in SPP and the nuisance parameters. This perspective allows us to use a simple

algorithm of linear programming to recover the complete set of RCCP consistent with the DBCP

model by checking whether a choice pattern makes such linear systems feasible. We use several

numerical, simulated examples to show that the algorithm can yield very informative sets of RCCP

in practice.

3See the introduction of Section 3 for di¤erence between this paper and some ealrier papers that discussed the

identifying power of such exogenous variations.
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Our work contributes to the literature on structural analyses of DBCP in two important ways.

First, we measure e¤ects of counterfactual policies directly in terms RCCP and does not involve an

intermediate step of identifying model structures. Second, our approach only requires nonparamet-

ric stochastic restrictions on USV distribution and shape restrictions on SPP. Thus it sheds lights

on the limit of what can be learned about counterfactuals when econometricians choose to remain

agnostic about the functional form of these model structures. More generally the algorithm applies

whenever model restrictions, economic or statistical, can be equivalently represented as systems of

linear inequalities.

The rest of this paper is organized as follows. Section 2 reviews the empirical content of the

dynamic binary choice model and introduce the two new �ndings about limitations of a nonpara-

metric DBCP. Section 3 explains the testability of DBCP and the identi�cation of SPP when there

is exogenous variation in the transition of states and the USV distribution is known. Section 4

introduces a simple method for �nding the identi�ed set of RCCP in the benchmark case where

USV distributions are known. Section 5 explains how to recover the identi�ed set of RCCP when

USV is only known to be independent of observable states and SPP is known to satisfy exogenous

shape restrictions. We illustrate our arguments and algorithms in Section 3,4,5 through several

numerical examples. Section 6 concludes. Details of proofs and implementation of the algorithms

are included in the appendix.

2 The Empirical Content of Dynamic Binary Choice Processes

In this section, we study the testability and identi�cation of the DBCP model when the distrib-

ution of USV is known. We �rst revisited earlier negative identi�cation results in the literature

(Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2007), Aguirregabiria (2008))

which attributed the source of non-identi�cation of SPP to insu¢ cient ranks in a system of linear

equations. Like these previous works, we also focus on discrete supports for observable state vari-

ables (OSV) while leaving support of USV unrestricted. We then introduce two new results: (i)

the DBCP model is not testable without further restrictions on SPP; and (ii) setting SPP from

one of the choices to arbitrary constant utility vectors to identify that from the other can lead to

errors in counterfactual choice patterns predicted if the actual SPP in DGP is not independent

of observable states. We also illustrate our arguments with a numeric example. Our discussions

in this section motivates the two subsequent sections, which address the issues of how to test the

model and partially identify the counterfactuals without assigning arbitrary values to u0.
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2.1 Preliminaries

In this section, we specify the model of dynamic binary choice process (DBCP) and de�ne the

core concepts such as testability and identi�cation of the model. Consider a single-agent, DBCP

in an in�nite horizon. The time is discrete and indexed by t. In each period, the decision maker

observes states St = (Xt; �t) (where �t � (�1t; �0t) 2 R2) with support 
S = 
X;� � RD+2, and
chooses jt from J = f0; 1g.4 The state space 
S is �xed over time. In all periods, the decision

maker observes both Xt and �t, while econometricians only observe Xt, but not �t. The return

for the decision maker each period is �(St; jt) : 
S 
 J ! R1 for all t. Conditional on current
states S and action j, distribution of states in the next period S0 is given by the transition function

Hj(S
0jS) : 
S

S ! [0; 1]. The decision maker has a constant discount factor � 2 (0; 1) forever.

Both � and fHjgj=1;2 are �xed over time. We drop time subscripts due to the time-homogeneity
of �, fHjgj=1;2, 
S. The decision maker chooses a deterministic, Markovian decision rule j(s)
that maximizes the sum of expected present and future payo¤s: E[

P1
s=0 �

s�(St+s; jt+s)jSt; jt].5

We assume � is known to econometricians. In addition, the following restrictions are maintained

throughout the paper.

AS (Additive separability) �(s; j) = uj(x)+ "j for all (x; �; j), where E("j jx) = 0 for all (x; j);

CI (Conditional independence) Hj(s0js) = F�jX("
0jx0)Gj(x0jx) 8s; s02
S, j 2 f0; 1g, where

F�jX(:jx) and Gj(:jx) are conditional distributions of � and X 0 given x 2 
X and j 2 f0; 1g.

DS (Discrete support) The space of observable states is 
X = fx1;x2; ::;xKg, with xk 2 RD

for all k 2 f1; :;Kg.

The transitions G � [G1 G0] are directly recovered from data of observed states and actions

fjt;xtg+1t=0 . Let � � f
X; �;Gg denote model primitives, or decision environments, that are directly
observable to researchers in a DGP. Note AS alone is merely a reparametrization rather than a

substantial restriction � the SPP is the expected single-period payo¤ given x. CI requires that

persistence between current and future states to be fully captured by dynamics between x0 and x,

and current actions a¤ect future states only through fGjgj=0;1. Thus the unknown parameters are
the decision makers�expected single-period payo¤s u � [u0(:) u1(:)] (SPP) and the USV distribution
F�jX.6 We collect some regularity conditions which are necessary only for ensuring the DBCP has

4Throughout the paper I use bold letters to denote vectors and matrices.
5 In general, the optimal policies should be a function of past histories ht = fsjgtj=0. However Strauch (1966)

showed for any history-dependent poilicy and starting state, there always exists a deterministic, Markovian policy

(a policy that depends on the current state only) with the same expeced total discounted payo¤. The implication is

that for analysis of optimal policies, it su¢ ces to focus on Markovian stationary policies. Throughout the paper we

focus on the case where the agent only considers deterministic Markovian policies.
6Given our focus on Markovian policies, CI implies Pr(jt = 1jxt;xt�1; :;x0) = Pr(jt = 1jxt) for all history

(xt;xt�1; :;x0), which is a testable implication itself.
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a well-de�ned static representation.

REG (Regularity Conditions) (i) For j 2 f0; 1g; uj 2 B(
X), where B(
X) is the set of

bounded, continuous, real-valued functions on 
X; (ii) For j 2 f0; 1g; Gj satis�es the Feller
Property;7 (iii) For all x 2
X; j 2 f0; 1g, E[maxk2f0;1gf"t+1;kgjxt; j] <1.

To give a general de�nition of identi�cation, let U , F denote the parameter space of SPP

and USV distributions that satisfy certain generic restrictions (such as parametric speci�cations

of u or F�jX, or stochastic restrictions on F�jX). A DBCP model, and restrictions imposed on its

parameters, are fully summarized by f�; U;Fg. Let p � (p(x1); :; p(xK)) denote a generic vector

of choice patterns, where p(xk) � Pr(J = 1jX = xk). Let �(xk;u; F�jX) denote the set of choice

probabilities for "the decision maker to chooses alternative 1 conditional on xk" that is rationalized

by a generic pair of parameters u; F�jX . Later in this section we shall give an implicit de�nition

of � (which is the solution of a nonlinear system given u; F�jX, and hence in general may be a

correspondence rather than a function).

De�nition 1 A K-vector of choice patterns p is rationalized by (or consistent with) a DBCP

model f�; U;Fg if p(xk) 2 �(xk;u; F�jX;�) for all xk 2 
X for some (u; F�jX) 2 U 
F . Given a
model f�; U;Fg, the set of rationalizable choice patterns, or testable implications, is the set of all
p 2 [0; 1]K that are consistent with f�; U;Fg.

De�nition 2 Given an observed choice pattern p� and a model f�; U;Fg for the DGP, the
identi�ed set of (u; F �jX) is the subset of U 
 F such that p�(xk) 2 �(xk;u; F�jX;�) for all

xk 2 
X. The identi�ed set of u in U under F is the set of all u in U such that 9F�jX 2 F with

p�(xk) 2 �(xk;u; F�jX;�) for all xk 2 
X.

Note the de�nition of identi�cation is always relative to the choice patterns observed in DGP.

We say a model is testable if its testable implications form a strict subset of [0; 1]K (or equivalently,

if there exists p in [0; 1]K such that the corresponding identi�ed set of (u; F�jX) is empty).

2.2 Non-testability and non-identi�cation

We start from a benchmark case where the distribution of USV is completely known to the re-

searcher, and show even in this most restrictive case, the model is neither testable nor identi�ed

without further restrictions on the form of the parameters. The non-identi�cation result was es-

tablished by earlier works of Magnac and Thesmar (2002), Aguirregabiria (2005), Pesendorfer and

Schmidt-Dengler (2007), but the non-testability result is new. We also o¤er a new interpretation

7Gj(x0jx) satis�es the Feller Property if for each bounded, continuous function f : 
X ! R1,
R
f(x0)dGj(x0jx)

is also bounded and continuous in x.
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of what can be identi�ed nonparametrically from the model with knowledge of the USV distribu-

tion: the di¤erence in expected present values between two trivial policies of sticking to one of the

alternatives unconditionally forever.8

Let xk � (xk1; xk2; :; xkD) for k = 1; :;K and pk � p(xk)and p � [p1; :; pK ]. Let the K-by-D

matrix 
X � [x1 x2 :: xK ]0 denote the support of X. Let Gj denote matrices of transitions when

j is chosen, with its (m;n)-th component Gjm;n � Pr(xnjxm; j). Let � � f�;G0;G1;
Xg denote
structural elements of the model that are known or observable to the researcher. De�ne

Gj
1 � limT!1

PT
t=1 �

t[Gj ]t

where [Gj ]t denotes the t-th power ofGj . The limit exists since all entries in the matrix
PT
t=1 �

t[Gj ]t

are monotone sequences of non-negative numbers smaller than 1. Let �� � �0��1, and for a generic
choice pattern p and speci�cation of the distribution of USV F��jX , de�ne Q(p;F��jX) as a K-

vector with Qk � F�1��jxk(pk), and �
0, �1 be K-vectors which depend on p and F��jX, with k-th

coordinates de�ned as

�0k � �0(pk;F��jxk) �
Z Qk

�1
(Qk � s)dF��jxk(s) (1)

�1k � �1(pk;F��jxk) �
Z +1

Qk

[s�Qk]dF��jxk(s)

We shall refer to �0(:;F��jX) as the "truncated surplus function" (TSF) related to the unobservable

state distribution F��jX. Note �0(p;F��jX) � �1(p;F��jX) = Q(p;F��jX) for any (p; F��jX), for
E(��jxk) = 0. Let uj denote a K-vector with its k-th element being the unknown payo¤ function
uj(xk) for j = 0; 1. Let Aj(�) � I+Gj

1 for j = 0; 1 where I is the K-by-K identity matrix.

Lemma 1 Suppose a model f�; U;Fg satis�es AS, CI, DS and REG (i)-(iii). Then for a p�

observed in DGP, the identi�ed set of (u; F�jX) is the subset in U 
Fsuch that:

[A1(�); �A0(�)]
"
u1

u0

#
= [A1(�); A0(�)�A1(�)]

"
Q(p�;F��jX)

�0(p�;F��jX)

#
(2)

The set of solutions to this system of nonlinear equations in p� (denoted as �(xk;u; F�jX)) is

the set of all choice probabilities that can be rationalized by a generic pair of parameters u; F�jX .

With knowledge of F��jX, we can identify the left-hand side of the equation, which is the di¤erence

in present values between two trivial policies of sticking to one of the alternatives unconditionally

forever. An equivalent statement of the lemma is that a choice pattern p� is consistent with a

model f�; U;Fg if and only if it makes the linear system (2) feasible with solutions in u, Q and �0.

The proof is based on the observation that expected (optimal) continuational payo¤s conditional

8 It can be shown that this interpretation is equivalent to the identi�ed feature mentioned in Aguirregabiria (2005).
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on current state x can be decomposed as the sum of a functional of u and a functional of F��jX.9

An immediate corollary of the lemma is that the scale of u and F��jX can not be jointly identi�ed

in any DGP without additional restrictions. To see this, note for any (u, F��jX) consistent with

f�; U;Fg, their scale transformation (~u, ~F��jX) is also consistent with f�; U;Fg, where ~u1 � au1,

~u0 � au0 and ~F��jX(t) � F��jX(
t
a) for all t for some constants a 2 R

1
++. More importantly, note

the transformation only involves a positive constant a independent of (G0;G1) or u. This implies

any scale normalization of F��jX must be innocuous for identifying counterfactual choice patterns

when either u or (G0;G1) are perturbed. Thus, for example, there will be no loss of generality in

assuming F��jX is standard normal, if the true USV distribution is known to belong to the normal

family. The same argument applies for any parametric location-scale families. (Note there already

is a location normalization of F��jX as the assumption AS requires E(��jx) = 0.) Next, we use

Lemma 1 to derive two (very) negative results about the empirical content of the DBCP model.

Proposition 1 Consider a model f�; U; F�jXg that satis�es AS, CI, REG (i)-(iv), and suppose
F��jX is known. Then (i) any p in [0; 1]K is consistent with the model, and (ii) for all p 2 [0; 1]K ,
u is not identi�ed.

Part (ii) was shown in Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2007)

and Aguirregabiria (2005). The proof of part (i) proceeds by showing the linear system in (2)

always has solutions in u regardless of p and F��jX in the right-hand side. This implies the

model is not testable even when F��jX is known, and any choice pattern observed in data can

be rationalized as individuals�optimal behavior given certain structure. This point can be better

illustrated by drawing the analogy with static binary choice models (the special case with � = 0).

The static model is not testable without restrictions on u since for any chosen F��jX, all p 2 [0; 1]K

can be consistent with the model with appropriately chosen u such that u1 � u0= [F�1��jx1(p1); :

; F�1��jxK (pK)]
0. However, the non-testability in the presence of real dynamics (with � > 0) cannot

be taken for granted, for it is not true that a non-homogenous linear system of equations with more

unknowns than equations, such as in (2), are always feasible with solutions. To our knowledge this

is the �rst formal proof of non-testability of the DBCP model.

2.3 Linear restrictions and counterfactuals10

In practical structural estimation, econometricians sometimes set u0 = 0 in order to identify u1.

This is often considered a necessary locational normalization, since the linear system in (2) has

2K equations and K unknowns. However, in this subsection, we show that, when the real u0
in the DGP is not independent of states, setting u0= 0 amounts to imposing a linear restriction

9This idea was initially proposed by Hotz and Miller (1993) in a di¤erent form.
10 I am indebted to Ken Wolpin for detailed comments and discussions that help improve this section. All errors

(if any) are my own.
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that deviates from the truth, and is not an innocuous normalization. We shall show that setting

u0 to an arbitrary utility vector leads to discrepancies between the predicted and the real choice

probabilities in some (but not all) counterfactual contexts.

We consider two classes of counterfactual policy changes: (a) perturbing agents�static payo¤s

each period, or (b) changing transitions between state variables. In both cases, the distribution of

USV is left unchanged. Let f~�;�g denote the counterfactual policies considered, where ~� denotes
new transitions of observable states x and � � (�1;�0) denotes changes in SPP. For a given

model characterized by f�; U;Fg, identifying the set of all rationalizable counterfactual choice
probabilities (RCCP) amounts to �nding all ~p such that an "augmented" linear system consisting

of both (2) and

[A1(~�); �A0(~�)]
"
u1 +�1

u0 +�0

#
= [A1(~�); A0(~�)�A1(~�)]

"
Q(~p;F��jX)

�0(~p;F��jX)

#
(3)

is satis�ed jointly for some u 2 U and F�jX 2 F . (We shall drop F��jX from Q and �0 later for

notational ease.) To simplify our exposition, we will discuss the impact of setting "u0 = 0" on the

two types of counterfactuals separately.

Consider the �rst class of policy changes where SPP is perturbed while � remains the same.

Let B(�) � [A1(�); A0(�)�A1(�)]. Characterize the DGP by the following linear system

A1(�)u1 �A0(�)u0 = B(�)[Q(p�)0;�0(p�)0]0

where p� is the choice outcome observed in DGP. We are interested in predicting dynamic ratio-

nal choice outcomes ~p if uj are perturbed to ~uj � uj + �j for j = 1; 0 respectively. Suppose

econometricians normalize u0 to an arbitrary constant vector �u0 and recover u1 as

�u1 = A1(�)
�1 �B(�)[Q(p�)0;�0(p�)0]0 +A0(�)�u0	 (4)

Then identifying counterfactual choice patterns amounts to �nding ~p such that

A1(�)(�u1 +�1)�A0(�)(�u0 +�0) = B(�)[Q(~p)
0;�0(~p)0]0 ,

B(�)[Q(p�)0;�0(p�)0]0 +A1(�)�1 �A0(�)�0 = B(�)[Q(~p)
0;�0(~p)0]0

The latter equation above is a system of nonlinear equations in ~p that does not depend on the

choice of �u0 given knowledge of �, F�jX and observation of p�. Thus setting u0 = �u0 has no impact

on the set of rationalizable counterfactual outcomes ~p that can be recovered from p� observed,

provided F��jX is known.

Now consider the second class of counterfactuals labelled as type (b) above, where Aj(�) is

perturbed to Aj(~�) while uj are �xed for both j = 1; 2 and F�jX is known. Again, if we normalize
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u0 = �u0, then u1 is recovered as in (4) from the DGP. The counterfactual analyses amount to

recovering ~p such that

~A1�u1 � ~A0�u0 = B(~�)[Q(~p)
0;�0(~p)0]0 ,

~A1A
�1
1 B(�)[Q(p

�)0;�0(p�)0]0+
�
~A1A

�1
1 A0�~A0

�
�u0 = B(~�)[Q(~p)

0;�0(~p)0]0

where ~Aj ;Aj are shorthands for Aj(~�) and Aj(�) respectively and B(~�) � [~A1; ~A0 � ~A1]. (For

simplicity in exposition, we focus on the case where both Aj ; ~Aj are full-rank matrices.) If the

perturbation from � to ~� only involves changing the discount factor from � to ~� while the transition

between observable states Gj are �xed, then
�
~A1A

�1
1 A0�~A0

�
= 0 and setting u0 to any arbitrary

vector �u0 is innocuous. On the other hand, if Gj is perturbed to ~Gj in ~� while � is �xed, then

in general, ~A�11 A�11 A0�~A0 is not trivially a zero matrix. As Example 1 below shows, setting

u0 = �u0 may induce discrepancies between the predicted and the true counterfactual outcomes if�
~A1A

�1
1 A0�~A0

�
(�u0�u�0) 6= 0 (where u�0 denotes the true SPP in the DGP). It can also be shown

that in the special case where the actual u�0 in the DGP is independent of states, then normalizing

u0 to a constant vector in structural estimation is innocuous.11 Below we present a numerical

example of such a scenario.

Example 1 (Impact of arbitrary assignment of u0 on counterfactuals) Consider a simple ex-
ample with K = 3, � = 0:75 and de�ne two sets of transitions Gj ; ~Gj as:

G1 �

264 0 1 0

0 0 1

1 0 0

375 ;G0 �

264 0 0 1

1 0 0

0 1 0

375 ; ~G1 �

264
1
4

1
2

1
4

1
4

1
4

1
2

1
2

1
4

1
4

375 ; ~G0 �

264
1
5

1
5

3
5

3
5

1
5

1
5

1
5

3
5

1
5

375
where G1;G0 are transitions in the DGP, and ~G1; ~G0 are counterfactual transitions under which

choice outcomes are to be inferred. Suppose �� is independent of X and uniformly distributed over

[�1; 1]. Then the quantile function is F�1�� (p) = 2p�1 for p 2 (0; 1) and �0k(pk) = p2k for pk � Pr(j =
1jxk) and pk 2 (0; 1). Suppose the true SPP are u�1 = [1:3; 1:1; 1:7] and u�0 = [1:2; 1:4; 1:0]. Then the
dynamic rationality in both DGP and the counterfactual environments are represented as systems

of quadratic equations in choice probabilities. The actual set of rationalizable counterfactual choice

probabilities (RCCP) is

�(v�) �
(
p 2 [0; 1]3 : B(~�)

3-by-6

�
2p0 � 1 ; p0Diag(p)

�0
6-by-1

= v�
3-by-1

)

11Suppose the actual u�0 = 10c where 1 is a vector of ones and c is a real number, and u0 is normalized to

�u0 = (1
0c)� for some � 2 R1. Then�

~A1A
�1
1 A0�~A0

�
(�u0 � u�0) = 0, ~A�1

1
~A01

0
c = A�1

1 A01
0
c

But the latter must hold by de�nition of Aj = I+G
j
1 = (I� �Gj)�1.
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where Diag(p) is a 3-by-3 diagonal matrix with the diagonal entries being p and

v� � ~A1A
�1
1 B(�)[Q(p

�)0;�0(p�)0]0+
�
~A1A

�1
1 A0�~A0

�
u�0

and B(�), B(~�) are de�ned as above. We shall see there are discrepancies between the sets of

RCCP predicted when the unknowable u�0 is replaced with di¤erent arbitrary assigned vectors in

order to estimate u1, and that these sets also deviate from the actual set of RCCP �(v�).

Suppose econometricians set u0 = �u0 � [0; 0; 0] in estimation. Recall � � (�;G1;G0) and
~� � f�; ~G1; ~G0g. Then u1 is estimated as in (4) and the set of predicted RCCP implied under
this particular choice of �u0 is �(�v) where �v is similar to v�, only with u�0 replaced by �u0. The set

includes a rationalizable counterfactual choice pattern: 12

pc(�u0) = [0:5859; 0:3566; 0:8075]

Now suppose econometricians had speci�ed �u00 = [0:6; 0:7; 0:5]. We choose such �u
0
0 deliberately as

it is proportional to the truth �u0 up to a scale normalization. Then �u01 is estimated as in (4), with

�u0 replaced by �u00. The set of RCCP implied by this choice of �u
0
0 is �(�v

0) where �v0 is similar to v�,

only with u�0 replaced by �u
0
0. This set includes a rationalizable counterfactual choice pattern:

pc(�u00) = [0:5554; 0:3644; 0:8302]

Substitution of pc(�u0) and pc(�u00) into the left-hand side of the equation de�ning the set �(v
�)

veri�es neither of the two is in the set of RCCP. Furthermore, similar calculations show pc(�u0) 62
�(�v0) and pc(�u00) 62 �(�v). This is su¢ cient evidence for discrepancies among the three sets. Thus
this numerical example has shown that in general setting u0 to an arbitrary vector may not be

innocuous for analyzing policy e¤ects of perturbations in state transitions, if the true SPP is not

independent of states. In fact, as we just showed, even a scale multiplication of the true u�0 can

lead to errors in counterfactuals implied. (End of Example 1)

3 Exogenous Variations in OSV Transitions

Our discussions in the previous section suggest that assigning arbitrary values to u0 is not an

innocuous solution for the non-identi�cation and non-testability of the DBCP model. In this

section, we argue that if the DGP reports sources of exogenous variations in the dynamics between

state variables, then this can help identify SPP without further form restrictions on SPP or the USV

distribution. In lots of empirical contexts, individuals are observed to make choices under distinct

environments, where transitions to future states are di¤erent while the expected single period

return remains the same. For example, this is true if dynamic decision processes have observable

12We use the constrained minimization command in Matlab to solve for the choice probabilities.
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heterogeneities that (i) do not enter individuals�single-period payo¤s; (ii) are independent of USV

conditional on observable states; and (iii) a¤ect the transitions between observable states. Below

we de�ne exogenous variation of environments formally, and give examples how they can arise

in empirical contexts. Let f�mgMm=1 denote a collection of decision environments with various
transitions between observable states but identical discount factors � and observable state spaces


X. That is, �m = f�;
X;G0
m;G

1
mg. Researchers observe the DBCP in all �m and the variations

in Gm � [G0
m;G

1
m] are exogenous in the following sense.

EV (Exogenous variation in environments) The SPP u and the USV distribution F�jX remain

the same in all �m, for m = 1; :;M .

For example, consider the dynamic decisions of engine replacement in Rust (1987). A bus

maintenance manager (Mr. Harold Zurcher) in the state of Wisconsin decides how long to operate

a bus before replacing its engine with a new one. This problem is represented as a dynamic binary

choice process, with the state variable xt being the cumulative mileage on a bus since last engine

replacement and a decision variable jt = 1 if Mr. Zurcher decides to replace the bus engine and

jt = 0 otherwise. Suppose Mr. Zurcher is a cost minimizer and his utility each period depends

on labor and costs associated with the engine (maintenance costs if jt = 0 and the costs of a

new engine if jt = 1). Assuming that when a bus engine is replaced, it is "as good as new", the

transition of xt is G(x0jx) = g(xt+1) if jt = 1 and g(xt+1 � xt) if jt = 0, where g(:) is the density
function for distribution of mileages travelled by his bus within one decision period. Now consider

similar decisions made by another maintenance manager of a di¤erent bus route. She is also a cost

minimizer facing the same state variables (labor and engine-related costs on the same market) as

Mr. Zurcher in each period, and shares the same utility function per period. However, she observes

a di¤erent distribution of miles covered each period (denoted ~g), as her bus route serves in di¤erent

communities than his. The di¤erences might be due to di¤erent geographic or demographic features

along the routes. To map this example into our framework, the observed heterogeneities in this

case are captured by dummy or multinomial variables specifying bus routes.

Fang and Yang (2008) use a related but di¤erent assumption of exclusion restrictions where

there exists a pair of observable states such that their SPP are the same while transition to future

states are di¤erent. This allows them to identify the SPP in DBCP with hyperbolic discounting

in the special case where the SPP from one of the actions is independent of states and therefore

can be innocuously normalized to the zero vector. In comparison, the assumption of exogenous

variation in state transitions in this paper is slightly stronger, but allows us to develop two new,

stronger results. (i) we are able to derive speci�c testable implications of the DBCP model (and

nonparametric identi�cation of SPP); and (ii) we can identify SPP in a DBCP model where neither

of the alternatives yield static payo¤s that are independent of observable states. We also specify

the rank conditions in terms of Gj on the transition of observable states that are necessary for

attaining these new results.
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3.1 Testability and identi�cation of SPP

We �rst extend the de�nition of rationalizable choice patterns to the context where DGP reports

exogenous variations in observable state transitions. Let U;F denote generic restrictions on u

and F��jX, and �m � f�;
X;G1
m;G

0
mg denotes the m-th decision environment in the DGP. Let

�(u; F�jX) denote the set of choice probabilities rationalized by a generic pair of parameters (u; F�jX)

(which is de�ned implicitly as the set of solutions to (2) as before).

De�nition 3 An observed choice pattern fp�mgMm=1 2 RM�K is consistent with the model

f�m; U;FgMm=1 if 9u;F��jX in U 
F such that p�m;k 2 �(xk;u; F�jX; f�mgMm=1) for all k in {1,.,K}
and m in {1,.,M}.

Let Am � [A1(�m);�A0(�m)] and Bm � [A1(�m);A0(�m)�A1(�m)]. Denote

�L �

2664
A1

...

AM

3775
MK�2K

; �R �

2664
B1 0 0

0
. . . 0

0 0 BM

3775
MK�2MK

; W �

266666664

Q(p1;F��jX)

�0(p1;F��jX)
...

Q(pM ;F��jX)

�0(pM ;F��jX)

377777775
2MK�1

where pm is the choice pattern observed under �m. Then stacking the linear restrictions across M

decision environments gives us an "augmented" system ofMK linear equations with 2K unknowns

in u. That is

�Lu = �RW

Intuitively, an observed choice pattern fpmgMm=1 is consistent with the model with multiple envi-
ronments if and only if it makes the augmented system feasible with solutions in u. Proposition 2

formalizes this idea.

Proposition 2 Suppose the model f(�m)Mm=1; U; F�jXg satis�es AS, CI, DS, REG (i)-(iv) and

F��jX is known to the researcher. Then (i) fpmgMm=1 is consistent with the model if and only
if Rank(�L) = Rank([�L;�RW]); (ii) Suppose Rank(�L) = 2K � 1, then for any fpmgMm=1
consistent with the model, [u1 u0] is identi�ed under a locational normalization u0;k = c for some

k 2 f1; :;Kg.

Remark 1: What delivers the testability of the DBCP model under multiple environment is
the fact that the highest possible rank of �L is 2K � 1. This is true regardless of the number
of environments M in the model and the form of transitions in fAmgMm=1, as the sum of column

vectors in A1(�m) is always equal to the sum of column vectors in A0(�m) for all m, because both

must add up to be a K-vector of constants 1
1�� by de�nition. Thus any fpg

M
m=1 that leads to

discrepancies between the rank of �L and [�L;�RW] can not be consistent with the DBCP model
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and this is an easily testable implication. It is important to note that the proposition assumes the

knowledge of F�jX .

Remark 2: Part (i) of Proposition 2 suggests a natural approach for testing the rationalizability
of the decision maker using choice patterns observed in a DGP with multiple environments. Suppose

Rank(�L) = r � 2K � 1. Let �(�L) denote the set of all r-by-2K submatrices of �L that have

full rank r. For any � 2 �(�L), and let �c denote the (M �K � r) row vectors that are in �L
but not �. Let m� denote a (M �K � r)-by-r matrix such that m�� = �

c. For any � 2 �(�L),
let �R;� and �R;�c be a r-by-2MK submatrix and a (MK � r)-by-2MK submatrix respectively

formed by picking out rows in �R that correspond to the rows in � and �c respectively. Then an

algorithm based on enumerating all elements in �(�L) can be applied to �nd testable implications

of the DBCP model. In the �rst round, pick any � 2�(�L), and check whether�
m��R;� ��R;�c

�
W = 0 (5)

If the equality holds, then stop and conclude fpmgMm=1 is consistent with the model. Otherwise
proceed to the next round by picking another ~� 2�(�). Then a choice pattern fpmgMm=1 observed
is inconsistent with agents� dynamic rationality if and only if the equality fails to hold for all

� 2�(�L). We leave the construction of statistical tests for dynamic rationality using these testable
implications to future research.) These testable implications do not rely on any restriction on

decision makers�static payo¤s each period.

Remark 3: The algorithm above can be made more e¢ cient by skipping redundant restrictions
as they come up in the iterations. It is easy to see this by considering the computationally most

feasible case with M = 2, K = 3 and r = Rank(�L) = 5 (the highest rank possible for �L by

construction). In this case, we do not need to enumerate all possible 5-by-6 submatrices in �L
that have rank 5. Instead it su¢ ces to check the restriction (5) for any � 2 �(�L) once and there
is no need to check it for any other ~� 2 �(�). This is because by the Fundamental Theorem
of Linear Algebra, the dimension of the null space of the transpose �

0
L must be one. Hence for

any �; ~� 2 �(�L), the row vector m��R;� ��R;�c must be proportional to m~��R;~� ��R;~�c (i.e.

m��R;� ��R;�c = �
�
m~��R;~� ��R;~�c

�
for some � 6= 0). Therefore it is redundant to check (5)

for more than one � in �(�L).

Remark 4: To incorporate additional restrictions on SPP (such as linear inequalities due to
shape restrictions on u � [u1;u0] such as monotonicity or ranking of x by SPP implied by economic
theories), simply append these linear restrictions on u to the system of MK linear equalities and

use the knowledge of F��jX to check whether the fpgMm=1 observed could make the augmented
system feasible with solutions in u.

Remark 5: Observing choice patterns under more than two exogenously varying state transi-
tions can help with identi�cation of u only if they help increase Rank(�L). When Rank(�L) =
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r < 2K � 1, at least 2K � r additional linear equality restrictions on u are needed to uniquely

identify SPP. For instance, locational normalizations of 2K � r elements in u will be su¢ cient for

identifying the other payo¤s in u. Such normalizations are innocuous for counterfactuals.

Example 2 (Testable implications under multiple transitions) Consider the case where the
observable state is a scalar variable, and let K = 3 and � = 0:8. Researchers observe decision

process under the following two environments m = 1; 2:

G1
1 =

264 0 1 0

0 0 1

1 0 0

375 ;G0
1 =

264 0 0 1

1 0 0

0 1 0

375 ;G1
2 =

264
1
4

1
2

1
4

1
4

1
4

1
2

1
2

1
4

1
4

375 ;G0
2 =

264
1
4

1
4

1
2

1
2

1
4

1
4

1
4

1
2

1
4

375
Straightforward substitution of fGmgm=1;2 into�L shows rank(�L) = 5, and Gaussian elimination
shows fpmgm=1;2 is consistent with the model if and only if

Q11 +Q12 +Q13 = Q21 +Q22 +Q23

where Qmk � F�1��jxk(pmk) and pmk � Pr(j = 1jxk; �m). Suppose (�1; �0) are i.i.d. standard Type-I
extreme and jointly independent of X, then Q(p) = ln(p) � ln(1 � p) for all p 2 (0; 1). Hence
fpmgm=1;2 is consistent with the DBCP model if and only if

p11p12p13
(1� p11)(1� p12)(1� p13)

=
p21p22p23

(1� p21)(1� p22)(1� p23)
(6)

Furthermore, normalizing u03 to an arbitrary constant allows us to solve for u1 and (u01; u02)

through backward substitution. Figure 1 plots the set of all choice patterns in [0; 1]3 that satis�es

the testable implications. (End of Example 2)

4 Bounding RCCP with Linear Restrictions on SPP

In other situations where the DGP may not report any exogenous variations in the transition of

observable states, and the DBCP model is neither testable nor identi�ed due to the insu¢ cient rank

issue in (2). Yet it is still possible to extract information from the model structure and restrictions

to recover the identi�ed set of rationalizable counterfactual choice probabilities (RCCP). This is

de�ned as the complete set of all counterfactual choice patterns that, jointly with choice probabilities

observed in DGP, can be consistent with the model restrictions. The size of this set depends on the

transitions in DGP and counterfactual contexts, the form of USV distribution (so far assumed to be

known to econometricians), as well as any a priori restrictions on static payo¤s. Consider Example

2 above. Suppose instead, econometricians observe p1 under G1
1;G

0
1 in the DGP only, and are

interested in learning p2 under counterfactual G1
2;G

0
2 using observables. Then the identi�ed set of

RCCP is simply all p2 2 [0; 1]3 such that (6) holds for the p1 observed. In lots of empirical contexts,
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economic theory may shed lights on some properties of the shape of the static payo¤s each period

even though their speci�c functional forms are not known. For example, researchers might have

reasons to believe the SPP is monotonically increasing or concave in certain coordinates of state

variables, or know how a subset of possible states in 
X rank between themselves in terms of SPP.

Such restrictions can be equivalently represented as linear restrictions on SPP. Then appending

these linear restrictions on SPP to the system of linear equalities (which relate primitives to choice

patterns in both DGP and counterfactual environment) helps recover an even smaller identi�ed set

of RCCP.

Example 3 (Recovering RCCP with linear restrictions on SPP and knowledge of F��jX) Let
K = 3 and �, fGj

1gj=1;0 (transition in DGP), fG
j
2gj=1;0 (counterfactual transition) and USV

distribution F��jX be de�ned as in Example 2. Let the true SPP be

u1 =

264
8
3 log 2�

5
3 log 3�

4
3 log 5 + 10

32
5 log 2 +

2
5 log 3�

8
5 log 5 + 10

16
15 log 2 +

4
15 log 3 +

4
5 log 5 + 10

375 ; u0 =

264
91
15 log 2�

29
15 log 3�

8
5 log 5 + 10

91
15 log 2�

1
15 log 3�

8
15 log 5 + 10

10

375
The choice pattern observed in the DGP is p1 = [13 ;

3
5 ;
1
2 ] while the true counterfactual pattern

is p2 = [15 ;
3
8 ;
5
6 ] (which is unknowable to econometricians).

13 It is straightforward to verify the

testable implication in (6) is satis�ed. An econometrician who analyzes this structural DBCP

model can observe p1; fGj
1gj=1;0 in the DGP, know �,F��jX, and are interested in learning p2

under the (G1
2;G

0
2) of interests. In addition, he also knows some shape restrictions about how the

alternatives compare to each other in terms of SPP for given x�s. That is, he knows u satis�es

u11 < u01 ; u12 < u02 ; u13 > u03

where ujk � uj(xk). Then �nding the identi�ed set of RCCP under (G1
2;G

0
2) simply amounts to

�nding the set of all ~p such that the following linear system is feasible with solutions in u:

A11u1 �A10u0 = A11Q(p1) + (A10 �A11)�0(p1) (7)

A21u1 �A20u0 = A21Q(~p) + (A20 �A21)�0(~p) (8)264 �1 0 0 1 0 0

0 �1 0 0 1 0

0 0 1 0 0 �1

375" u1
u0

#
6�1

> 0
3�1

(9)

where Amj is the shorthand for Aj(�m). First note that setting u0K = �u for any constant �u is

an innocuous location normalization. To see this, just note Am1 u1 � Am0 u0 = Am1 (u1 + 1
0c) �

Am0 (u0 + 1
0c)8c 2 R1 and m = 1; 2, where 10c is a constant vector with all coordinates being c.14

13While choosing the speci�cations for the example, we actually work backwards by �rst choosing p1;p2 that

satisfy the equality testable implications and then solve for u using knowledge of � and F�jX .
14This is because the column vectors in Am

j must add up to be equal to 10( 1
1�� ) for m = 1; 2 and j = 0; 1.
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Hence for any p1; ~p, a vector (u1;u0) solves the linear system if and only if its locational shift

(u1+1
0c;u0 + 10c) is also a solution. The rank of the coe¢ cient matrix formed from (7) and (37)

on the left-hand side is 5 (the highest possible). Thus for any �xed ~p and after normalizing u0K
to 0, the remaining coordinates in u1;u0 can be expressed as nonlinear functions of ~p using the

linear equalities (7), (8). Substituting these expressions into (9) gives us three nonlinear inequalities

involving ~p. We use a grid-search in the space of [0; 1]3 (with grid-width equal to 1
50) to pick out ~p

such that these nonlinear inequalities hold jointly. The collection of all such ~p is our identi�ed set

of RCCP given p1 observed and the knowledge of F��jX. Figure 2.1 shows the set of ~p that has

the identi�ed set of RCCP under the linear restrictions in (9).

By de�nition of RCCP, the more restrictions we impose on u, the smaller the size of the identi�ed

set of RCCP. To illustrate this point, we introduce additional linear restrictions in our exercise.

Suppose in addition to (9), econometricians also know additional shape restrictions that the true

SPP satis�es

u13 � u03 > u01 � u11 > u02 � u12

Then we can simply augment linear inequalities in (9) with"
1 0 1 �1 0 �1
�1 1 0 1 �1 0

#"
u1

u0

#
6�1

> 0
2�1

(10)

Applying the grid-search as before yields a smaller identi�ed set of RCCP shown in Figure 2.2.

(End of Example 3)

The algorithm in Example 3 in principle can be used to incorporate any form of exogenously

given shape restrictions on u (not necessarily linear) in the search for identi�ed set of RCCP. There

is a subtle issue about the practice of setting u0K to an arbitrary constant vector, as this may not be

innocuous under certain restrictions that are di¤erent from those in the example. (In our example

here, it is innocuous because of the form of coe¢ cient matrices in (9) and (10) only.) Formally,

this means there might exists restrictions (such as Cu > d) such that shifting the location of the

solution u may result in a violation of these restrictions. In such cases, we need to refrain from

setting u0K to arbitrary values while trying to recover the identi�ed set of RCCP. On the other

hand, if a linear restriction Cu > 0 is such that any location shifts of a solution u also yields a

solution (e.g. the sum of column vectors is equal to a zero vector as it is in Example 3), then any

location shifts of the solution u must be innocuous, and setting u0K to arbitrary constant c is a

mere locational normalization that does not change the identi�ed set of RCCP recovered. It is

easy to see that exogenous restrictions such as ranking of a subset of the states, or monotonicity or

concavity in certain coordinates all satisfy such a requirement for innocuous location normalization.

Finally, note the identi�ed set of RCCP recovered is interesting in its own right, regardless of

its actual sizes. This is because such a set reveals the limit of robust structural analyses while
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remaining agnostic about SPP. Our method also introduces an e¢ cient framework to exhaust the

identifying power of a priori, nonparametric restrictions. The next section generalizes this idea of

recovering identi�ed sets of RCCP in a more realistic setup where econometricians remain agnostic

about the USV distribution.

5 Bounding RCCP with Unknown USV Distributions

So far we have maintained that the distribution of USV is known. We have argued that if the

actual USV in DGP follows a location-scale family of distributions (such as normal), then choosing

a speci�c location and scale normalization in structural estimation is innocuous for predicting coun-

terfactuals under di¤erent state transitions or SPP. However, in practice, misspecifying USV dis-

tribution to have an incorrect parametric form can lead to errors in counterfactual predictions. We

propose a novel solution to partially identify rationalizable counterfactual choice patterns (RCCP)

while refraining from introducing parametric restrictions on SPP or USV distribution.

Our methodology is based on an observation that decision maker�s dynamic rationality, the

independence of USV from X, as well as some other exogenous shape restrictions on SPP can

be all equivalently expressed as linear restrictions on SPP and �nite-dimension parameters in the

USV distribution without loss of information for counterfactual analyses. The choice probabilities

(both in the DGP and the counterfactuals) enter the linear systems through coe¢ cients. Hence

deriving the identi�ed sets of (or "sharp bounds" on) RCCP amounts to �nding all counterfactual

~p which, combined with p observed in DGP, would make the linear system feasible with solutions

in structural elements (i.e. u and the nuisance parameters in the USV distribution). Then standard

linear programming algorithms can be applied to characterize this identi�ed set of RCCP. We focus

on the independence restriction on USV throughout this section.

SI (Statistical independence) �� is independent from X, and continuously distributed with pos-

itive densities on R1 and Median(��) = 0.

This assumption essentially requires USV to be exogenous noises superimposed on the process

of state transitions, and not to interact with past or current OSV. This assumption is invoked by

lots of empirical works in structural estimation.

5.1 Counterfactual changes in state transitions

Let U;F denote the set of generic restrictions on u and F��jX that are known to econometricians.

Let p1 2 RK (with the k-th coordinate p1;k � p1(xk)) denote choice probabilities observed in a

DGP summarized by f�1; U;Fg with �1 = f�;G1
1;G

0
1g. Econometricians are interested in inferring



19

agents� choice patterns p2 in a counterfactual context �2 � f�;G1
2;G

0
2g where the underlying

primitives u; F��jX are unchanged in U and F . Let � be de�ned as before.

De�nition 4 The identi�ed set of rationalizable counterfactual choice probabilities (RCCP) un-
der f�2; U;Fg is the set of all p2 2 [0; 1]K such that 9(u; F�jX) 2 U
F with p2;k 2 �(xk;u; F�jX;�2)
and p1;k 2 �(xk;u; F�jX;�1) for all xk 2 
X.

In words, the identi�ed set of RCCP is a collection of all outcomes in the counterfactual con-

text that can be rationalized, jointly with p1 observed in DGP, by the same structure (u;F��jX)

satisfying restrictions U;F . In this subsection, let FSI be the set of F��jX that satis�es SI, let

Aj(�) � (I +Gj
1). Let UC denote the set of SPP that satisfy a set of strict linear inequalities

Cu > 0 for some known constant matrix C. We start by giving the su¢ cient and necessary con-

ditions for a choice pattern p to be rationalizable under UC ;FSI and a generic single environment
� � (�;G1;G0). Let �� be a positive constant.

Lemma 2 Suppose AS, SI, DS and REG (i)-(iii) hold. A p 2[0; 1]K is consistent with f�; UC ;FSIg
if and only if the following linear system has solutions in Q ,�0 and u 2UC :

A1(�)u1 �A0(�)u0 = A1(�)Q+ [A0(�)�A1(�)]�0 ; Cu > 0 (11)

Ql � Qk , pl � pk and Qk � 0, pk � 1
2 8 l; k 2 f1; :;Kg (12)

p(k�1)(Q(k) �Q(k�1)) � �0(k) � �
0
(k�1) � p(k)(Q(k) �Q(k�1)) for k � 2 (13)

�0k > 0,
1
2Qk � �0k � �� � pkQk, �

0
k = ��, pk =

1
2 8k 2 f1; :;Kg (14)

where p(k), Q(k), �0(k) are the k-th smallest element in the K-vectors p, Q and �0 respectively.

It is important to note that these linear inequalities in the lemma are not only necessary but

also su¢ cient for a choice pattern p to be rationalizable by a distribution of USV that is only re-

stricted to be independent of X. The necessity follows from the characterization of rationalizability

in Lemma 1 and that when the USV is independent of X, observable states only a¤ect the distribu-

tional parameters in this characterization (i.e. Q and �0) through p. The intuition for su¢ ciency is

that, though F�� is an in�nite-dimensional parameter under SI, it only a¤ects individuals�decisions

through a pair of appropriately chosen, �nite-dimensional (K-) vector of nuisance parameters (i.e.

quantiles and truncated surplus functions). The existence of solutions in u, Q, �0 in the linear

system can be used to construct a rationalizing USV distribution through interpolation.

The result in Lemma 2 is only for a single decision environment, but can be extended easily to

recover the identi�ed set of RCCP, which is an exercise involving two decision environments. By

de�nition of counterfactual analyses, the structure u and F�� are �xed both in the DGP and the

counterfactual context. Thus we can stack the linear systems from the DGP and the counterfactual

context together and recover all counterfactual choice patterns that can be rationalized, jointly with

p1 observed, in the augmented system with solutions in u;Q;�0. The proposition below formalizes
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this idea. Let A(�m) � [A1(�m);�A0(�m)], B(�m) � [A1(�m); A0(�m) �A1(�m)], Qm;l; pm;l
are the l-th coordinate of Qm;pm for m = 1; 2, and p(k), Q(k), �(k) are the k-th smallest elements

in the 2K vectors [p1;p2], [Q1;Q2], [�01;�
0
2] respectively. Let �� be an arbitrary constant.

Proposition 3 Suppose AS, CI, DS, REG (i)-(iv) hold. Let p1 be choice probabilities ob-

served in �1 under restrictions UC ;FSI . The identi�ed set of rationalizable counterfactual choice
probabilities under �2 is the set of p2 such that the following system has solutions in u1;u0 and

fQm;�0mg2m=1 (where u1;u0;Qm;�0m are all K-vectors):"
A(�1)

A(�2)

#
2K-by-2K

"
u1

u0

#
2K-by-1

=

"
B(�1) 0

0 B(�2)

#
2K-by-4K

h
Q01 �001 Q02 �002

i
4K-by-1

0
; Cu > 0 (15)

Qm;l � Qn;k , pm;l � pn;k and Qm;k � 0, pm;k � 1=2 8l; k 2 f1; :;Kg,m;n 2 f1; 2g (16)
p(k�1)(Q(k) �Q(k�1)) � �0(k) � �

0
(k�1) � p(k)(Q(k) �Q(k�1)) for 2 � k � 2K, (17)

1
2Qm;k � �0m;k � �� � pm;kQm;k and �

0
m;k = ��, pm;k =

1
2 and �

0
k > 0 for 2 � k � 2K(18)

Note there are 6K unknowns including (u1;u0;Q1;�01;Q2;�
0
2) in the linear system. In addition

to the shape restrictions Cu > 0, there are 2K equalities in (15) as well as 2K e¤ective inequality

constraints in (16) (which arises from the ordering ofQ1;Q2 and 0), and 4K+1 e¤ective inequalities

in (17) and (18) together (which arise from the upper and lower bounds on di¤erences between

adjacent elements from the ordering of �01;�
0
2; �� and the nonnegativity constraint �

0
(1) > 0). There

might exist a set of p2 that can make the linear system infeasible, depending on the p1 observed

in the DGP as well as environments �1;�2 and shape restrictions C. The identi�ed scope p2 can

be recovered through any linear programming algorithm that checks feasibility of systems of linear

inequalities. (We will give more details about the implementation of the algorithm in the examples

below.)

Some remarks: (1) The proposition can be easily extended to accommodate any generic linear

restrictions on u under SI. Such restrictions may include linearity, monotonicity or concavity

of u in x. (2) Note the maximum possible rank for [A(�1)0;A(�2)0]0 is 2K � 1 by construction.
Some locational normalization on u (such as u0K = 0) can be applied innocuously to simplify

the algorithm in the search of identi�ed scope of RCCP as long as Cu > 0 implies C(u+ 10c)> 0

(which is the case in examples below). (3) The proposition can also be used to test whether a

pro�le of observed choice probabilities fp1;p2g are rationalized in a multiple-environment DGP
given by (�1;�2) under UC and FSI .

Example 4.1 (Identi�ed set of RCCP when the true USV distribution is unknown and Extreme
Type I) Let�s consider exactly the same speci�cation as in Example 3, except that now econome-

tricians do not know USV are i.i.d. extreme type I. Instead, they only know (a) the di¤erence ��

is independent of X and has zero median; and (b) the true SPP satis�es the shape restrictions
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in (9) and (10). We choose to stick to the previous speci�cations, because it is easier to compare

the results below with earlier results when F��jX is known. As in Example 3, the actual choice

probabilities observed under the DGP �1 is p1 = [13 ;
3
5 ;
1
2 ]. If the truth were to be known, the true

counterfactual choice outcome under �2 would be p2 = [15 ;
3
8 ;
5
6 ]. Econometricians are interested

in �nding out all counterfactual outcomes p2 under �2 that could be consistent with the model

restrictions, while remaining agnostic about the parametric form of the USV distribution. We use

a grid-search in the space of [0; 1]3 (with grid-width being 1
20) to pick out ~p that makes the aug-

mented linear systems from DGP �1 and counterfactual environment �2 in Proposition 3 jointly

feasible (given p1 observed). By Proposition 3, the complete set of all such ~p forms the identi�ed

set of RCCP. (We include in the appendix the details in implementing the algorithm pointwise for

a generic element in [0; 1]3.) The result is shown in Figure 3.1. (End of Example 4.1)

The identi�ed set of RCCP recovered under (9), (10) and the knowledge of the i.i.d. extreme

type one USV in Example 3 is a subset of that recovered in Example 4.1 above. The di¤erence in

sizes of the two sets is a graphic illustration of the additional information about counterfactuals

derived from knowing exactly the distribution of USV. To illustrate the generality of our algorithm,

we carry out a similar exercise in Example 4.2 below. Compared with Example 4.1, we experiment

with a di¤erent transition matrix between observable states so that linear equalities due to dynamic

rationality in (15) takes a more complicated form.

Example 4.2 Let � = 0:8 but consider a di¤erent speci�cation of the transition of observable
states

G1
1 =

264 0 0 1

1 0 0

0 1 0

375 ;G0
1 =

264 0 1 0

0 0 1

1 0 0

375 ;G1
2 =

264
1
3 0 2

3

0 1
3

2
3

2
3

1
3 0

375 ;G0
2 =

264
1
3

2
3 0

2
3 0 1

3

0 1
3

2
3

375
and let USV be distributed as extreme type I. Using results in Proposition 2, we can show the

counterfactual outcome must necessarily satisfy

Q11 +
1
10Q12 +

1
2Q13 +

2
5�
0
12 � 2

3�
0
13 = Q21 +

1
10Q22 +

1
2Q23 +

2
5�
0
22 � 2

3�
0
23 (19)

where Qmk = ln pmk � ln(1� pmk), �0mk � � ln(1� pmk) for m = 1; 2 and k = 1; 2; 3. Furthermore

suppose the choice patterns observed in DGP (p1) and the true counterfactual (p2) are :

p1 = (
1
3 ;
3
5 ;
1
2) ; p2 =

�
31=522=552=5

31=522=552=5+6
; 13 ;

3
4

�
which satisfy (19).15 Then backward calculations using the �rst restriction in (15) shows the true

15While setting up the example, we actually choose p1; p22; p23 �rst and use (19) to solve for p21.
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SPP satis�es the following restrictions:

C �

26666664
�1 0 0 1 0 0

0 �1 0 0 1 0

0 0 1 0 0 �1
0 1 1 0 �1 �1
�1 0 �1 1 0 1

37777775
"
u1

u0

#
> 0

Suppose econometricians do not know the true u but know it satis�es these linear restrictions. Then

a new linear system similar to (15)-(18) can be constructed with A(�m) and C de�ned accordingly

in (15), and the identi�ed set of RCCP is the set of all p2 that makes the system feasible. We

implement the same algorithm for checking the feasibility of such linear systems, and Figure 3.2

gives a scatterplot of the recovered set of RCCP. (End of Example 4.2)

5.2 Perturbation in single-period payo¤s

In practice, policy makers often implement changes with known e¤ects on individuals�payo¤s per

period while holding the transition between states �xed. For instance, when payo¤s for individuals

are measured in monetary terms, policy makers can modify static payo¤s u by introducing lump-

sum subsidies (which leads to additive perturbations), or by levying taxes proportional to individual

payo¤s (which leads to multiplicative perturbations). We argue that a slight modi�cation of the

algorithm in the previous section can help recover the identi�ed set of RCCP under this class of

policy changes. Let U;F denote generic restrictions on u and F��jX.

De�nition 5 Suppose p1 is observed in the model f�; U;Fg. The identi�ed set of rationalizable
counterfactual choice probabilities under payo¤ perturbations (denoted �(u)) is the set of p2 2
[0; 1]K such that 9(u; F�jX) 2 U 
 F with p2;k 2 �(xk; �(u); F�jX;�) and p1;k 2 �(xk;u; F�jX;�)

for all xk 2 
X.

Suppose a counterfactual policy perturbs SPP. The size of the percentage changes in each

possible state is known to econometricians even though the true u in the DGP is not. These

changes are summarized as

~u1 = D1u1 ; ~u0 = D0u0

where Dj is a K-by-K diagonal matrix with its (k; k)-th entry being the gross percentage change

in u. There may be additional linear restrictions on u such as in Proposition 3. Proposition 4

below suggests a slight modi�cation of the algorithm in Proposition 3 can be used to recover the

identi�ed set of RCCP in this case. The proof is similar to Proposition 3 and omitted for brevity.

Proposition 4 Suppose AS, CI, DS, REG (i)-(iv) hold. Let p1 be choice probabilities observed
under � and restrictions UC ;FSI . The identi�ed scope of counterfactual outcomes under pertur-
bations D1;D0 (with u and F�� �xed) is the set of p2 such that a linear system that consists of
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(16), (17), (18) and the following linear equations have solutions in u and fQm;�0mg2m=1 (where
Qm;�

0
m are both K-vectors):"
A1(�);�A0(�)

A1(�)D1;�A0(�)D0

#
2K-by-2K

"
u1

u0

#
2K-by-1

=

"
B(�) 0

0 B(�)

#
2K-by-4K

h
Q01 �001 Q02 �002

i
4K-by-1

0

; Cu > 0 (20)

Example 5 (Multiplicative perturbations of SPP) Let � = 0:8 and the transition matrixG1;G0

be de�ned in the same way as G1
2;G

0
2 in Example 2. Let USV be i.i.d. extreme type I. Suppose

p is observed under �;G1;G0 in DGP and we are interested in predicting counterfactual choice

outcomes ~p when �;G1;G0 and F�� are �xed while u is perturbed to ~u in the following way:

~u11 =
8
10u11 ; ~u12 =

9
10u12 ; ~u13 =

11
10u13 ; ~u01 =

11
10u01 ; ~u02 = u02 ; ~u03 =

9
10u03

Suppose the true probabilities in DGP and counterfactual contexts are p1 = [12 ;
3
4 ;
1
5 ] and p2 =

[23 ;
2
5 ;
1
6 ] with the true SPP satis�es:

16

C �

26666664
�1 0 0 1 0 0

0 1 0 0 �1 0

0 0 1 0 0 �1
0 �1 1 0 1 �1
�1 0 �1 1 0 1

37777775
"
u1

u0

#
> 0

We then recover the identi�ed set of RCCP under the multiplicative counterfactual changes by

checking the linear system of (20), (16), (17) and (18). Figure 4 suggests the identi�ed set of

RCCP in this case is much larger relative to Example 4.1 and Example 4.2. This is not surprising,

as the rank of the coe¢ cient matrix on the left-hand side has full rank at 2K. Thus, compared with

the other two examples, there is one fewer equality restrictions resulting from dynamic rationality

alone. (End of Example 5)

Policy-makers may also introduce lump-sum (rather than percentage) changes on SPP (i.e.

~u = u+�) while keeping G1;G0 �xed. Aguirregabiria (2005) suggests if both the changes in SPP

(�) and the USV distribution are known, then the identi�ed set of RCCP would be recovered

directly as the (not necessarily unique) solutions to a system of nonlinear equations

B(�)

"
Q(~p)

�0(~p)

#
= B(�)

"
Q(p)

�0(p)

#
+A(�)

"
�1

�0

#

where � = f�;G1;G0g, A(�) = [A1(�);�A0(�)], B(�) = [A1(�);A0(�) � A1(�)], p is the

choice pattern observed in DGP, and ~p is the RCCP to be solved for. We argue that when USV

16While specifying this example, we actually choose p1 and p2 �rst and then calculate u backwards using (20)

and knowledge of F��.



24

distribution is not known, a slight modi�cation of the algorithm above can be applied to recover

the sharp bounds on RCCP. Moreover, an attractive feature of our approach is that it provides

a convenient way for incorporating exogenous economic restrictions on SPP that take the form

Cu > 0 while recovering the identi�ed set of RCCP. Speci�cally, we can just replace restrictions in

(20) with"
A1(�)u1 �A0(�)u0

A1(�)(u1 +�1)�A0(�)(u0 +�0)

#
=

"
B(�) 0

0 B(�)

# h
Q01 �001 Q02 �002

i0
; Cu > 0

(21)

and collect all p2 such that (21), (16), (17) and (18) are feasible with solutions in u and fQm;�0mg2m=1.

Example 6 (Additive perturbations of SPP) Let �;G0;G1 and F�� be speci�ed as in Example

5 where K = 3. Let the SPP and its counterfactual changes be

u1 =

26664
10 + log

�
2�

23
31 5

6
31

�
10 + log

�
2
14
31 3165�

5
31

�
10 + log

�
2�

53
31 5�

1
31

�
37775 ; �1 =

26664
26
31 + log

�
2
54
31 3

4
31 5�

17
32 6

6
31

�
61
31 + log

�
2
17
31 3�

55
31 5

9
31 6�

5
31

�
37
31 + log

�
2
53
31 5�

23
31 6�

1
31 3�

11
31

�
37775

and u0 = [10; 10; 10], �0 = [1; 2; 1].17 Under these speci�cations, the choice outcomes in the

DGP and under counterfactual changes are respectively p1 = [12 ;
3
4 ;
1
5 ], p2 = [

2
3 ;
2
5 ;
1
6 ]. Suppose an

econometrician observes p1, knows �;G0; G1 and knows that u0 is independent of states. He does

not know the form of u1 or the utility level in u0, or the parametric form of the USV distribution.18

The econometrician is interested in predicting p2 under counterfactual changes �1;�0 while only

knowing �� is independent of X and choose to normalize u0 to the zero vector in structural

estimations.

We apply the algorithm under two scenarios. First, the econometrician are not aware of any

additional shape restrictions on u1;u0. In this case, after imposing the innocuous normalization

u0 = 0, recovering the identi�ed set of RCCP is equivalent to checking the existence of solutions

in fQ;�0gm=1;2 in the linear system

B(�)
h
Q02 �002

i0
�B(�)]

h
Q01 �001

i0
= A1(�)�1 �A0(�)�0 (22)

joint with (16), (17) and (18). (We do not need to check the �rst K equalities in (21) characterizing

the DGP because there are no restrictions on u and rank(A1(�)) = 5 implies the equalities always

have solutions in u regardless of the right-hand side.) The identi�ed set of RCCP is plotted in

Figure 5.1, which covers the actual RCCP as a subset.

17While designing the example, we �rst specify u0 and �0 as well as p1 and p2 that we want the model to generate.

Then we solve for u1 and �1 using the closed form of Q and �0 under the Extreme Type I speci�cation of the USV

distribution.
18Note this is di¤erent from all previous examples and makes the normalization u0 = 0 innocuous.
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Now consider a second scenario where the econometrician still does not know the form of USV

distribution or SPP, but know the true SPP in DGP satis�es the following shape restrictions:

u11 < u10; u12 > u02; u13 < u03 (23)

u03 � u13 > u12 � u02 > u01 � u11 (24)

Then the econometrician can incorporate these additional information into the linear system of

inequalities by appending the following linear inequality to the system (22), (16), (17) and (18):

C1A1(�)
�1B(�)

h
Q01 �001

i0
> 0 (25)

where C1 is the �rst K = 3 columns of the 5-by-6 matrix of coe¢ cients C derived from exogenous

shape restrictions in (23) and (24). The identi�ed set of RCCP in this case is plotted in Figure

5.2. It is slightly smaller than that recovered without the shape restrictions in Figure 5.1. (End of

Example 6)

6 Conclusions

We have proposed new approaches to address two main challenges in nonparametric structural

DBCP models in this paper. Within the benchmark framework where unobservable state distri-

bution is assumed to be known, we �rst show exogenous variations in state transitions can help

derive testable implications of the dynamic binary choice process and identify single-period payo¤s

even when both actions yield static payo¤s that are not independent of observable states. Then

we argue nonparametric shape restrictions on SPP that derive exogenously from economic restric-

tions can be exploited to �nd sharp bounds on the rationalizable counterfactual choice probabilities

that are consistent with the model restrictions. More interestingly, we generalize the approach of

partial identi�cation of RCCP to the more challenging case where USV distribution is not known.

We propose simple algorithms to recover the sharp bounds on RCCP, and use numerical examples

and simulations to show the algorithm is feasible and the resultant bounds on RCCP can be very

informative.

There are several interesting directions for future research. First, search for analytical properties

on the identi�ed sets of RCCP that may help reduce the computational intensity of the algorithm.

Second, extend the algorithm to more general cases with multinomial choices or continuous states.

A third direction is to construct test statistics or estimators based on our identi�cation results, and

show their asymptotic properties.
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7 Appendix

7.1 Proofs of main identi�cation results

Proof of Proposition 1. Proof of (i) : Given any environment � � f�;G0;G1;Sg (� is known) with
F��jX known, (2) is a generally non-homogenous linear system of K equations in 2K unknowns

(u1;u0) for any p in [0; 1]K . Denote the augmented matrix of coe¢ cients of (2) as

~A(p; �; F��jX) �
"
A(�); B(�)

"
Q(p;F��jX)

�0(p;F��jX)

# #
where A(�) � [A1(�);�A0(�)] and B(�) � [A1(�); A0(�)�A1(�)]. The system has solutions in

u if and only if Rank(A) = Rank(~A). Suppose A has full rank K, then Rank(A) = Rank(~A) = K

regardless of the last column in ~A where p enters. Suppose Rank(A) < K. Then by construction

of A;B, any set of basic matrix operations that reduce A to its row echelon form also reduce B to

its own row echelon form, with rows of zeros in B exactly matching the rows of zeros in A. Hence

Rank(A) =Rank(~A) also holds even if Rank(A) < K. Proof of (ii) : follows immediately from

the fact that the number of unknowns in u is greater than the number of equations in the linear

system.

Proof of Proposition 2. Part (i) follows immediately from the fact that the augmented system with

MK linear equations has solutions in 2K unknown parameters in u if and only if the rank of �

is equal to the rank of ~�(fpmgMm=1). Part (ii) follows immediately from the fact that the reduced

row echelon form of every non-zero matrix is unique.

Proof of Lemma 2. (Necessity) Suppose p is consistent with f�; U;FSIg. By the de�nition of
rationalizability and Lemma 1, there exists F�jX 2 FSI such that (11) is satis�ed with some u in
UC , as well as F�� in FSI such that

Q= Q(p;F�jX) � [F�1��jx1(p1); :; F
�1
��jxK (pK)]

and �0= �0(p;F�jX), where the k-th coordinate is de�ned as

�0k � �0(p(xk)) �
Z F�1

��jxk
(pk)

�1
F�1��jxk(pk)� sdF��jxk(s)

Then independence of � of X implies F�1�� (pl) � F�1�� (pk) if and only if pl � pk. That Med(��) = 0

implies F�1�� (pk) � 0 if and only if pk � 1=2. That �0k > 0 8k follows by de�nition of truncated
surplus functions. Note for any pair x, x0 2 
X, �0 can be written as

�0(p(x
0)) = �0(p(x)) +

Z q(x0)

q(x)
F��(s)ds
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where q(x) � F�1�� (p(x)). Thus it is clear from the equation above that the di¤erence between any

pair �0(k�1); �
0
(k) (the k � 1 and k-th smallest among the K coordinates in �0) has to be bounded

between p(k�1)[F
�1
�� (p(k))�F

�1
�� (p(k�1))] and p(k)[F

�1
�� (p(k))�F

�1
�� (p(k�1))]. Also

1
2Q(k) � �0(k)��

� �
p(k)Q(k) must hold for all k, where �� is the true truncated surplus function evaluated at the median

�0(12 ;F��). But then we can simply change the scale of u;Q;�
0 de�ned above by multiplying all

elements in u;Q;�0 with the constant ��=��. This gives solutions that satisfy the linear system

(11), (12), (13) and (14). (Su¢ ciency) We need to show if a p̂ makes the system (11), (12), (13)

and (14) feasible with some solutions û and (Q̂; �̂
0
), then we can construct a USV distribution F̂��

independent of states X such that (a) its quantiles and truncated surplus functions are equal to

Q̂; �̂
0
and (b) p̂ is the dynamic rational choice probabilities given û; F̂�jX . Such a distribution is

conveniently constructed as follows. First, de�ne the p̂k-th quantile as F̂
�1
�� (p̂k) = Q̂k. This will

�x K quantiles of the distribution F̂��. Then interpolating the distribution F̂�� between these K

quantiles so that the truncated surplus functions �0(p̂k; F̂��) = �̂0k. This is always possible precisely

because the vector �̂0, as part of the solution of the linear system in the lemma satis�es (13), (14)

by construction. Therefore, the F̂�� constructed in this way belongs to FSI and have conformable
quantiles and truncated surplus functions. Also, when combined with û 2UC , F̂�� generates the
choice pattern p̂ observed because (11) is satis�ed by construction.

Proof of Proposition 3. (Necessity) Suppose p2 is such that 9u; F�jX in UC 
FSI that satis�es:

p2;k 2 �(xk;u; F�jX;�2)

p1;k 2 �(xk;u; F�jX;�1)

for all xk 2 
X. First note (15) is necessary for p1;p2 to be observed under �1;�2. Furthermore,
by independence of (�;X) and similar arguments for the necessity in Lemma 2, there must be

(Q1;�
0
1;Q2;�

0
2) that satis�es (16), (17) and (18) (Su¢ ciency) Suppose p2 is such that the system

(15), (16), (17) and (18) is satis�ed with some u 2 UC and (Q1;�01;Q2;�
0
2). We can construct a

distribution of disturbance F�� whose quantiles and truncated expectations are conformable with

(Q1;�
0
1;Q2;�

0
2) just as in Lemma 2. Then it follows that there always exists a 2K vector u which,

along with F�� constructed above, can rationalizes (p1;p2) under (�1;�2) respectively.

7.2 Proof of Lemma 1

To prove Lemma 1, we need to �rst prove the results in Lemma A1 and Lemma A2. We adopt the

sup norm on the space of R2-valued functions jjujj1 � supj2f0;1g;x2
X juj(x)j.

Lemma A1 (Rust 1994) Under AS, CI and REG (i)-(iii), the value function of the dynamic

binary decision process has a static representation:

j(s) = argmaxj2f0;1g �j(x;u; F�jX;�) + "j
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where �(x;u; F�jX;�) � [�0(x) �1(x)]0 solves the �xed point equation T � �(x) � [T1(x; �) T0(x; �)],
where

Tj(x; �) � uj(x) + �

Z
maxk2f0;1gf�k(x0) + "0kgdF�jX("0jx0)dGj(x0jx) (26)

To prove Lemma A1, we need some preliminary results collected by Lemma A1.1, Lemma A1.2

and Lemma A1.3 below. Let B2(
X) denote the space of bounded, continuous R2-valued functions,
i.e. B2(
X) = B(
X)
B(
X); where B(
X) is the space of bounded, real-valued functions de�ned
on X:De�ne the norm on B2(
X) as jjf(x)jj = supj2f0;1g;x2
X jfj(x)j.

Lemma A1.1 (B2(
X); jj:jj) is a complete normed vector space.

Proof. Standard and omitted for brevity.

Lemma A1.2 Suppose the operator T : B2(
X) ! B2(
X) satis�es (a) 8f; g 2 B2(
X),

f(x) � g(x) for all x 2 
X implies (T � f)(x) � (T � g)(x) for all x 2 
X (where the inequality is
component-wise in R2); (b) 9� 2 (0; 1):s:t:T � (f(x) + a12) � T � f(x) + �a; 8f 2 B2(
X); a � 0;
x 2 
X (where 12 � [1 1]0). Then T is an contraction mapping with modulus �:

Proof. We need to show that 8f ;g 2 B2(
X); jjT � f � T � gjj � �jjf � gjj:Note:

f � g + jjf � gjj12
=) T � f � T � (g + jjf � gjj12) � T � g + �jjf � gjj12
=) T � f � T � g � �jjf � gjj12

Likewise by interchanging the role of f and bg, we have T � g � T � f � �jjf � gjj12. Combining
the two inequalities proves jjT � f � T � gjj � �jjf � gjj.

Lemma A1.3 (Contraction Mapping) De�ne the operator T � f(x) � [T1(x; f) T0(x; f)], where

Tj(x) � uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x0jx)

Under REG, T is a contraction mapping that maps from B2(
X) into B2(
X).

Proof. Note maxk2f0;1gffk(x)g is bounded since f 2 B2(
X). Also:Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x0jx)

�
Z
maxk2f0;1gffk(x0)gdF"jX("0jx0)dGj(x0jx) +

Z
maxk2f0;1gf"0kgdF"jX("0jx0)dGj(x0jx)

Both terms as well as u(x) are bounded and continuous under REG. Hence T � (f(x)) is bounded
and continuous. Suppose f ;g 2 B2(
X), and f(x) � g(x) for all x 2 
X: Then

Tj(x; f) = uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x0jx)

� uj(x) + �

Z
maxk2f0;1gfgk(x0) + "0kgdF"jX("0jx0)dGj(x0jx) = Tj(x;g)
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And:

Tj(x; f + a12) = uj(x) + �

Z
maxk2f0;1gffk(x0) + a+ "0kgdF"jX("0jx0)dGj(x0jx)

= uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x0jx) + �a

By Lemma A2, the operator T is a contraction mapping.

Now we are ready to prove Lemma A1.

Proof of Lemma A1. By de�nition, the Bellman Equation is:

V (s) = maxj2f0;1g �(s; j) + �

Z
V (s0)dF"jX("

0jx0)dGj(x0jx)

Under AS and CI, V (s) = maxj2f0;1gf�j(x) + "jg, where

�j(x) � uj(x) + �

Z
V (x0; "0)dF"jX("

0jx0)dGj(x0jx)

Substitute expression for V (s) into the de�nition of �j(x) for j 2 f0; 1g,

�j(x) = uj(x) + �

Z
maxj2f0;1gf�k(x0) + "0kgdF"jX("0jx0)dGj(x0jx)

It follows from Lemma A3 that under REG, the operator is well-de�ned for any fu; �; F"jXg, and
that a �xed point �(x) exists.

As a result of Lemma A1, conditional choice probabilities have a static representation:

p(x;u; F�jX;�)=F��jX[��(x;u; F�jX;�)jx] (27)

where �� � �0 � �1 and ��(x) � �1(x)� �0(x), where �j(xt) is the expected return from choosing

j in the current period conditional on xt. In fact, the conditional independence restriction can be

weakened to A2�: Hj(:js) = Hj(:jx);8j; s and the representation result is still valid. Now we are
ready to prove Lemma A2.

Lemma A2 Suppose a model f�; U;Fg satis�es restrictions AS, CI and REG (i)-(iv). For a
given vector of observed choice probabilities p�, the joint identi�cation region of (u; F�jX) is

�I � f(u; F�jX) 2 U 
F : �!(xk;u) = F�1�"jX(p
�(xk)jxk)���(xk;F��jX; p�) 8xk2
Xg (28)

where �!(x;u) � !1(x) � !0(x), ��(x;F��jX; p�) � �1(x) � �0(x); !j(x) and �j(x) are unique

�xed points of following operators:

T! � (!j(x)) � uj(x) + �

Z
!j(x

0)dGj(x
0jx) (29)

T� � (�j(x)) � �

Z
�j(x

0; p�; F�"jX) + �j(x
0)dGj(x

0jx) (30)
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with �d de�ned as

�0(x; p
�; F�"jX) �

Z q(x)

�1
[q(x)� s]dF��jX(sjx)

�1(x; p
�; F�"jX) �

Z +1

q(x)
[s� q(x)]dF��jX(sjx)

where q(x) � F�1�"jX(p
�(x)jx).

Proof of Lemma A2. We need to show that a generic pair (u; F�jX) can generate the same observed

choice probabilities p(x) if and only if it satis�es conditions in the proposition. (Su¢ ciency) Suppose

u;F�jX satis�es the conditions in the proposition. Then for j = 0; 1,

�j(x;uj ; F��jX; p) � !j(x;uj) + �j(x;F��jX; p)

is the unique �xed point for the following operator:

Tj � �j(x;uj ; F��jX; p) = uj(x) + �

Z
�j(x

0;uj ; F��jX; p) + �j(x
0; p; F��jX)dGj(x

0jx)

By our supposition in the proposition, for all x 2
X,

��(x;u; F��jX; p) = �!(x;u) + ��(x;F��jX; p) = F�1��jX(p(x)jx)

Substitution implies

�0(x; p; F��jX) =

Z
maxf��(x;u; F�"jX; p)� s; 0gdF��jX(sjx)

�1(x; p; F��jX) =

Z
maxfs���(x;u; F��jX; p); 0gdF��jX(sjx)

Since E(�j jx) = 0 for all x 2
X, we have for j = 1; 0 and x 2 
XZ
�j(x

0;uj ; F�"jX; p) + �j(x
0; p; F�"jX)dGj(x

0jx)

=

Z
maxk2f0;1gf�k(x0;uk; F��jX; p) + "0kgdF�jX(�0jx0)dGj(x0jx):

Therefore �(x;u; F��jX; p) � [�1(x;u1; F�"jX; p) �0(x;u0; F�"jX; p)]0 is the unique �xed point of
the operator T � (x) � [T1(x; ) T0(x; )], where

Tj(x; ) � uj(x) + �

Z
maxk2f0;1gf k(x0) + "0kgdF�jX("0jx0)dGj(x0jx)

Then the proof of su¢ ciency is completed by noting that by construction, ��(x) = F�1��jX(p(x)jx)
for all x 2
X. (Necessity) Now suppose (u; F�jX) generates p(x). This requires ��(x;u; F�jX) =

F�1��jX(p(x)jx) for all x 2
X, where �(x;u; F�jX) � [�1(x) �0(x)]
0 is the unique �xed point of
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the operator T . Recursive substitution of �(x) into the de�nition of T suggests �j(x;u; F�jX) =

!j(x;uj) + �j(x; p; F��jX) for j = 0; 1. (See Aguirregabiria (2008) for more details.) It follows

immediately F�1��jX(p(x)jx) = �!(x;u) + ��(x;F��jX) for all x 2
X.

The restriction of �nite state spaces is not essential for the result. By �niteness of 
X and

recursive substitution of !j and �j in (28), the identi�cation region can be characterized by the

linear system:where I is the K-by-K identity matrix, and A and B are K-by-2K matrices de�ned

as

A(�) � [(I+G1
1); � (I+G0

1)]

B(�) � [I+ (I+G1
1)�G

1; (I+G0
1)�G

0 � (I+G1
1)�G

1]

= [(I+G1
1); (I+G

0
1)� (I+G1

1)]

When I� �Gj has full rank, I+Gj
1 can be calculated easily as (I� �Gj)�1. This completes the

proof of Lemma 1.

7.3 Details in Implementing the Algorithm for Recovering RCCP

Below we describe detailed steps in implementing the algorithm used to recover the identi�ed set

of RCCP in Example 4.1. (Implementation of the algorithm in Examples 4.2, and Examples 5,6

all follow almost identical steps.) We show how to check whether a candidate vector of choice

probabilities p2 is consistent with the model restrictions and the counterfactual environment �2,

given p1 is observed in the DGP �1.

Step 1: Construct an augmented matrix from coe¢ cients of the linear equations in (15)"
A(�1)

A(�2)

j
j
B(�1) 0

0 B(�2)

#
(31)

where the four matrices fA(�m); B(�m)gm=1;2 are calculated from �, fG1
m;G

0
mgm=1;2. Find the

reduced row echelon form of the matrix in (31) through Gaussian eliminations:26666666664

1 0 0 0 0 �1
0 1 0 0 0 �1
0 0 1 0 0 �1
0 0 0 1 0 �1
0 0 0 0 1 �1
0 0 0 0 0 0

j
j
j
j
j
j

RI1(�1;�2)
r-by-4K

RE1 (�1;�2)
(2K�r)-by-4K

37777777775
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where K = 3 and r = rank(�L) = 5 in Example 4.1, and

RI1(�1;�2) �26666664
0 �3 �4=3 �4=3 0 4=3 1 3 4=3 1=3 0 �1=3
0 �2 �18=5 0 �8=5 8=5 0 3 18=5 0 3=5 �3=5
0 4=15 �1=3 4=15 �4=15 0 0 �4=15 4=3 �4=15 4=15 0

0 �10=3 �29=15 �4=3 �4=15 8=5 0 10=3 29=15 1=3 4=15 �3=5
0 �7=5 �10=3 4=15 �8=5 4=3 0 7=5 10=3 �4=15 3=5 �1=3

37777775
RE1 (�1;�2) �

h
1 1 1 0 0 0 �1 �1 �1 0 0 0

i
(We shall drop the notation �1;�2 for notational ease.) We distinguish equalities from strict

inequalities among the linear restrictions, and this is crucial for our algorithm for reasons that

will become clear later. Let � �
h
Q01 �001 Q02 �002

i0
denote the 12-by-1 vector of unknown

distributional parameters (i.e. Qm;k � F�1�� (pm;k), �
0
m;k � �0(pm;k;F��) �

R Qm;k
�1 (Qm;k� s)dF��(s)

for m = 1; 2 and k = 1; 2; 3). The pick any real number d (e.g. d = 0 for simpler algebra) and set

u0K = d for a locational normalization. Thus u can be expressed as

u = [RI1;R
E
1 ]� + 1

0c

where 10 is a conformable column vector of 1. Then substitute this into exogenous shape restrictions

Cu > 0, and reformulate these restrictions as a system of linear inequalities on �,

C[RI1;R
E
1 ]� > d

I
1 � �C1

0d

Then the statement that "9 u;� that solve (15)-(18)" is equivalent to the statement that "9 � that
satisfy (16), (17), (18) and

C[RI1;R
E
1 ]� > d

I
1 (32)

RE1 � = 0 (33)

", where the strict linear inequalities capture the shape restrictions in C and the equality restrictions

capture the testable implications on p1;p2 under (�1;�2) jointly. The fact that �01;�
0
2 do not enter

the testable implications in (33) is a coincidence solely due to the form of G1
m;G

0
m chosen.

Step 2: For the pair of (p1;p2) considered, formulate restrictions in (16), (17) and (18)) in the
form of linear inequalities and equalities

RI2(p1;p2)� > dI2 (34)

RE2 (p1;p2)� = dE2 (35)

where the matrices of coe¢ cients in the inequality and equality restrictions (denoted RI2 and R
E
2

respectively) are completely determined once (p1;p2) are given. For example, the choice probabil-

ities observed under �1 is p1 = [1=3; 3=5; 1=2] and suppose the hypothetical counterfactual choice



33

outcomes under �2 considered is p2 = [1=5; 1=4; 3=4]. Then the �rst three rows in RI2(p1;p2) that

involves comparing Q11; Q12; �011; �
0
12 is264 �1 1 0 0 0 0 0 0 0 0 0 0

�3=5 3=5 0 1 �1 0 0 0 0 0 0 0

1=3 �1=3 0 �1 1 0 0 0 0 0 0 0

375
with the corresponding �rst three coordinates in the right-hand side vector dI2 is a 3-by-1 zero

vector. Likewise,

RE2 (p1;p2) =

"
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

#

with dE2 = [0; 1] (where we have used the normalization �
0(0:5) = 1).

Step 3: It remains to check the feasibility of the linear system

C[RI1;R
E
1 ]� > d

I
1 ; R

I
2� > d

I
2 (36)

RE1 � = 0 ; R
E
2 � = d

E
2 (37)

where the decision environment (�1;�2) enters RI1;R
E
1 and (p1;p2) enters RI2;R

E
2 . We then

eliminate the equality constraints by substituting out a subvector of � using the reduced row

echelon form of the equality restrictions in (37). This leads to an equivalent representation of the

linear system:
~R~� > ~d (38)

where ~� 2 R ~K is a subvector of � 2R4K after substitution of (37) into (36), and ~R is the corre-

sponding new matrix of coe¢ cients.

Step 4: We check the feasibility of the linear system (38) by solving the following linear

programming problem:

min
~�2R ~K ; t2R1

t (39)

s:t: � ~R~� + ~d � 10t

where 10 is a conformable column vector of 1. If ~R~� > ~d holds for some ~� 2 R4K , then the solution
to (39) must be strictly negative. Otherwise, if for all ~� 2 R ~K at least one of the strict inequalities

in (38) fail to hold, then the solution of (39) must converge to some number t� � 0. We use the

LINPROG command in MatLab to solve this linear programming problem and exclude the p2
considered from the identi�ed scope of counterfactual outcomes under �2 if the solution converges

to t� � 0.
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8 Figures in the Examples

Figure 1: Testable Implications in Example 2

Figure 2.1: RCCP in Example 3 under shape restrictions in (9)
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Figure 2.2: RCCP in Example 3 under shape restrictions in (9) and (10)

Figure 3.1: RCCP in Example 4.1
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Figure 3.2: RCCP in Example 4.2

Figure 4: RCCP in Example 5
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Figure 5.1: RCCP in Example 6 with no shape restriction on SPP

Figure 5.2: RCCP in Example 6 with shape restrictions on SPP
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