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Abstract

This paper studies two-step extremum estimation that involves the first step es-
timation of nonparametric functions of single-indices. First, this paper finds that
under certain regularity conditions for conditional measures, linear functionals of
conditional expectations are insensitive to the first order perturbation of the para-
meters in the conditioning variable. Applying this result to symmetrized nearest
neighborhood estimation of the nonparametric functions, this paper shows that
the influence of the estimated single-indices on the estimator of main interest
is asymptotically negligible even when the estimated single-indices follow cube
root asymptotics. As a practical use of this finding, this paper proposes a boot-
strap method for conditional moment restrictions that are asymptotically valid in
the presence of cube root-converging single-index estimators. Some results from

Monte Carlo simulations are presented and discussed.

Keywords: two-step extremum estimation; single-index restrictions; cube root

asymptotics; bootstrap;

JEL Classifications: C12, C14, C51.

1 Introduction

Many empirical studies use a number of covariates to deal with the problem of endogeneity.
Using too many covariates in nonparametric estimation, however, tends to worsen the quality

of the empirical results significantly. A promising approach in this situation is to introduce a
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single-index restriction so that one can retain flexible specification while avoiding the curse of
dimensionality. The single-index restriction has long attracted attention in the literature. For
example, Klein and Spady (1993) and Ichimura (1993) proposed M-estimation approaches to
estimate the single-index, and Stoker (1986) and Powell, Stock and Stoker (1989) proposed
estimation based on average derivatives. See also Héirdle and Tsybakov (1993), Hérdle, Hall
and Ichimura (1993), Horowitz and Hérdle (1996), and Hristache, Juditsky and Spokoiny
(2001).

Most literatures have dealt with a single-index model as an isolated object, whereas re-
searchers often use it as part of a larger model. This paper considers the following estimation
framework. Let the parameter of interest 3, € R¢ be identified as the unique maximizer of

a population objective function :

Bo = argmaXBQ(B,,uo('; o)), (1)
where fiq(+; A\g) = (,u071('; o)y Mg (5 Xo,s)) " and
105(: M) = BIY D X ;(X) = Xo(+)]

with YU) being the j-th component of random vector ¥ € R’ and X being a random
vector in R4, The real function )\ ; : R — R is a single-index of X. The distributions of
Mo,j(X)’s are assumed to be absolutely continuous.

We assume that i, and Ay are identified and estimated prior to estimating [3,. The
identification is ensured either through a single-index restriction imposed on an identified
nonparametric function or through some auxiliary data set in the sense of Chen, Hong, and

Tarozzi (2008). Then the estimator of 5, can be constructed as

A

B = argmaxQ,. (B, ji(; \)), (2)

where Q, (8, fi(-;\)) is the sample objective function and fi(-; A) is the nonparametric esti-
mator of ji,(-; Ag) using ), an estimator of \o. The function Ao, is either a nonparametric
function or a parametric function. In the latter case, the estimator 5\j is allowed to be either
/n-consistent or n'/3-consistent.

The main finding of this paper is that there is no estimation effect of A upon the as-
ymptotic variance matrix of B under certain regularity conditions. (See Theorem 1 below.)
Newey (1994) explained how the first step estimators affect the asymptotic variance of the
second step estimators. The influence of the first step estimators is represented through a

pathwise derivative of the parameter of interest in the nuisance parameters. However, the



nature of the problem here is different in the sense that the nonparametric function f,(+; o)
depends on A\ through the o-field generated by Ag(X). Therefore, it is not immediately ob-
vious to find the pathwise derivative of the parameter in A\q. Note also that the usual analysis
through an asymptotic linear representation of A does not help either when A follows cube
root asymptotics because such a linear representation does not exist in this case.

First, the paper introduces regularity conditions for conditional measures and show that
under these conditions, linear functionals of py(-; A) have a zero Fréchet derivative in A
(Lemma 2). Using this result, the paper establishes a uniform Bahadur representation of
sample linear functionals of the symmetrized nearest neighborhood (SNN) estimator (Lemma
A1l in the Appendix). Through the uniform representation, it is shown that there is no
estimation effect of upon the asymptotic variance of B )

The asymptotic negligibility of the estimated single-index has broad implications for in-
ference of various semiparametric models. Among other things, the result of this paper
illuminates the asymptotic theory of estimators from certain models that have not appeared
in the literature. Examples are a sample selection model with conditional median restric-
tions and models with single-index instrumental variables that are estimable at the rate of
n'/3. Second, there can be valid bootstrap methods for the inference of 3, even when A
follows cube root asymptotics. This is interesting because bootstrap is known to fail for such
n!/3-converging estimators (Abrevaya and Huang (2005).) This paper proposes a bootstrap
method in the special case of conditional moment restrictions.

A similar finding for \/n-consistent single-index estimators has already appeared in Fan
and Li (1996) in the context of testing semiparametric models. See also Stute and Zhu
(2005) for a related result in testing single-index restrictions. These literatures deal with a
special case where the single-index component is a parametric function with a /n-consistent
estimator. This paper places in the broad perspective of extremum estimation the phenom-
enon of asymptotic negligibility of the estimated single-index and allows for the single-index

3

estimator to be a n'/3-consistent estimator or a nonparametric estimator. Let us conclude

the introduction by discussing some examples.

Example 1 (Sample Selection Model with a Median Restriction) : Consider the

following model:

Y = ByW)+vand
D = 1{/\0(X)Z€},

where \o(X) = X "0. The variable Y denotes the latent outcome and W; a vector of

covariates that affect the outcome. The binary D represents the selection of the vector
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(Y,W7) into the observed data set, so that (Y,W;) is observed only when D = 1. The
incidence of selection is governed by a single index \o(X) of covariates X. The variables v
and e represent unobserved heterogeneity in the individual observation.

The variable ¢ is permitted to be correlated with X but Med(¢|X) = 0. And W is
independent of (v,¢) conditional on the index Ao(X) in the selection mechanism. Therefore,
the individual components of X can be correlated with v. The assumptions of the model
are certainly weaker than the common requirement that (Wj, X) be independent of (v, ¢).
(e.g. Heckman (1990), Newey, Powell, and Walker (1990).) More importantly, this model
does not assume that X is independent of unobserved component ¢ in the selection equation.
Hence we cannot use the characterization of the selection bias through the propensity score
P{D = 1|X(X)} as has often been done in the literature of semiparametric extension of
the sample selection model. (e.g. Powell (1989), Ahn and Powell (1993), Chen and Khan
(2003), and Das, Newey and Vella (2003)).

From the method of Robinson (1988), the identification of (3 still follows if the matrix

E [(X —E[X|D =1, X(X)]))(X - E[X|D =1, M(X))TID = 1]
is positive definite. In this case, we can write for the observed data set (D = 1)
Y =B Wi+ 7(o(X)) +u,

where u satisfies that E[u|D = 1,W;, \o(X)] = 0 and 7 is an unknown nonparametric
function. This model can be estimated by using the method of Robinson (1988). Let
py () = BlY[D =1, (X) = -], and pyy, () = E[W1|D = 1, Ao(X) = -]. Then, we consider a

conditional moment restriction:
E [{Y = 1y Mo(X))} = B AW1 — piy, (Ao(X))}HD = 1, W7, Ag(X)] = 0.

One may estimate 6y in )y using maximum score estimation in the first step and use it in
the second step estimation of 3,. Then the remaining question centers on the effect of the
first step estimator of Ay which follows cube root asymptotics upon the estimator of 3.

Note that the identification of 6y does not stem from a direct imposition of single-index
restrictions on E[Y|D = 1, X = -] and E[Z|D = 1, X = -]. The identification follows from
the use of auxiliary data set ((D = 0), X) in the sense of Chen, Hong, and Tarozzi (2008).
Such a model of "single-index selectivity bias" has a merit of avoiding a strong exclusion
restriction and has early precedents. See Powell (1989), Newey, Powell, and Walk (1990),
and Ahn and Powell (1993). B



Example 2 (Models with a Single-Index Instrumental Variable) : Consider the

following model:

Y = Z'By+e¢, and
D= H{(X) =7},

where \o(X) = X "6, and ¢ and 7 satisfy that E[g|\o(X)] = 0 and Med(n|X) = 0. Therefore,
the index \o(X) plays the role of the instrumental variable (IV). However, the IV exogeneity
condition is weaker than the conventional one because the exogeneity is required only of the
single-index X "6, not the whole vector X. In other words, some of the elements of the vector
X are allowed to be correlated with €. Furthermore, X is not required to be independent
of n as long as it maintains the conditional median restriction. This conditional median
restriction enables one to identify 6y and in consequence ,. Hence the data set (D, X)) plays
the role of an auxiliary data set in Chen, Hong, and Tarozzi (2008).

While there are many ways to estimate (3, we consider the following conditional moment

restriction:

E[Y — E[Z|A(X)]" BolAo(X)] = 0.

We can first estimate \g and E[Z|\(X )] and then estimate (3, by plugging in these estimates

into a sample version of the conditional moment restriction.

Example 3 (Models with Single-Index Restrictions) : There are numerous semipara-
metric models that contain nonparametric estimation of a function E[Y|X] in the first step.
(e.g. Ahn and Manski (1993), Buchinsky and Hahn (1998), Hirano, Imbens, and Ridder
(2003).) The finding of this paper enables one to employ the same asymptotic analysis in

the literature when one imposes a single index restriction:
E[Y|X] = m(X ")

for some unknown function m and parameter v,. We can estimate ~y, using the methods of
inference for single-index models and plug the estimator 4, in the nonparametric estimation
of m. The coefficient estimator 4 is typically y/n-consistent. Then the asymptotic analysis
can be done as if we know the true index parameter ., because the estimation error in 4,

does not affect the asymptotic variance of the parameter of interest.

Some models where an unknown nonparametric function Ag(-) constitutes the condition-

ing variable of a conditional expectation have received attention in the literature.

Example 4 (Matching Estimators of Treatment Effects on the Treated) : Let Y}
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and Yj be potential outcomes of a treated and an untreated individuals and D the treatment
status. The parameter of interest is u; = E[Y; — Yy|D = 1], i.e., the treatment effect on the
treated. Let A\o(X) = P{D = 1|X}, where X is a vector of covariates. Under the condition:

E[YolAo(X), D = 0] = EYgAo(X), D = 1, 3)
we can identify (Heckman, Ichimura, and Todd (1997))
pn = E Y1 —E[Yo|D =0, 0 (X)][D = 1].

Therefore, the parameter of interest y; involves a nonparametric function \g in the condi-
tioning variable. Then, following Heckman, Ichimura and Todd (1998), we can estimate f,
by

= S 1{101. — 1) ; HD; =1} {le‘ — E[Yy|\NX,), D = 0}}, ()

where E[Yy;|A(X;), D = 0] is a nonparametric estimator of E[Yy;|Ao(X;), D = 0] and \(X)
that of \g(X). Therefore, it is important for the asymptotic variance of ji; to analyze the

effect of estimation \. W

The remainder of the paper has three sections. The first section exposits the main
result of this paper and provides heuristics. The second section focuses on the case with
conditional moment restrictions and proposes a valid bootstrap procedure in the presence
of n'/3-converging nuisance parameter estimators. The third section presents and discusses
simulation results and the last section concludes. The appendix contains technical proofs of
the main results and a general uniform Bahadur representation of sample linear functionals
of SNN estimators.

2 The Main Results

2.1 A Motivating Example

To illustrate the main motivation of this paper, we present some simulation results from the

following semiparametric model:
Y; = ZiBy + 70 f (X 00) + &,

where f(v) is unknown, E[g;| X, 0o, Z;] = 0 and 6, is identified and estimated using some

other data sources. We first generated the following fictitious first step "estimator" with
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varied noise levels:

0k200,k+axN(0,1), k’Il,Q,

with a € {0.2,0.4,0.6,1,2,3,4}. We normalized the scale and defined § = 6/||0|| as the first
step "estimator" of 6y. Using Robinson’s procedure, we can write the model as a semipara-
metric conditional moment restriction. Then, in the second step, we estimated 3, from this
restriction. (Details are found in Section 3.)

The data generating process used is as follows. We drew ¢;, v;, w;, €1, and €5, indepen-
dently from N(0,1) and defined

Zz' = v; + w;, and Xk,i =v; + €kis k= 1, 2.

We set 0y = [—0.5, 1]7, 7, = 0, and 3, = 2. The sample size was n = 300 and the Monte
Carlo simulation number was 1000.

The results are shown in Figure 1 which plots the mean absolute error (MAE) and the
mean squared error (MSE) of i against those of 6. The different points in the line represent
results corresponding to the different choices of the noise level a. The results show that the
quality of B is robust to that of @, both in terms of MAE and MSE. The robustness of MSE
of B against that of 0 is remarkable. This paper analyzes this phenomenon and reveals that
it has a generic nature in a much broader context of extremum estimation. In particular,
this robustness enables us to bootstrap B validly even when 0 follows cube root asymptotics

in models of conditional moment restrictions.

2.2 Continuity of Linear Functionals of Conditional Expectations

Conditional expectations that involve unknown parameters in the conditioning variable fre-
quently arise in semiparametric models. Continuity of conditional expectations with respect
to such parameters plays a central role in this paper. In this section, we provide a generic,
primitive condition that yields such continuity. Let X € R be a random vector with sup-
port Sx and let A be a class of R-valued functions on R with a generic element denoted
by A.

Fix Ao € A and let fy(y|A\;, \2) denote the conditional density function of a random
vector Y € R¥ given (\o(X),A(X)) = (A1, \2) with respect to a o-finite measure, say,
wy(-|A1, o). Note that we do not assume that Y is absolutely continuous as we do not
require that wy(-|\;, A2) is a Lebesgue measure. Let Sy be the support of Y and let Sy be
that of (Ag(X), \(X)). We define || - || to be the Euclidean norm in R’ and || - || to be the

sup norm: || f||e =supzesy |f(x)|.



Figure 1: The Robustness of the Second Step Estimator
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Definition 1 : (i) Py = {fi(y],*) : (\,y) € A x Sy} is regular for  : R — R, if for
each A € A and (A, \y) € Sy,

fA(yD‘b;Q) - f/\(y‘j\bj\z) < Cx(y’;\ly;\z)& d€[0,00)

sup
A A2)€8x: A1 =Au[|+|[A2—Az2][<6

where Cy(-|A\1, X2) : Sy — R is such that for some C' > 0,

sup / B AL Ao)wa(dylAs, As) < C.

(y:A1,A2)ESy XSy
(ii)) When Py is regular for an identity map, we say simply that it is regular.

The regularity condition is a type of an equicontinuity condition for functions fy(y|-, "),
(y,\) € Sy xA. Note that the condition does not require that the conditional density function
be continuous in A € A, which is cumbersome to check in many situations. When £, (y|A1, A2)
is continuously differentiable in (A1, \o) with a derivative that is bounded uniformly over
A € A and (YY) has a bounded support, Py is regular for @. Alternatively suppose that
there exists C' > 0 such that for each A € A and (A1, \y) € S,

Al A2

e

sup
(A1, A2) €Se[| A1 = A1 ][+ A2 —A2| <6

< 09,

and E[||@(Y)]||X] < C. Then Py is regular for ¢. The regularity condition for Py yields the



following important consequence. Define

po(7; A) = E[p(Y)MX) = A()],
where ¢ € ® with ® being a class of R7-valued functions on R4 .

Lemma 1 : Suppose that Py is reqular for @ an envelope of ®. Then, for each A € A and
res X,

o (5 20, A) = g (2 M| < ClA(@) = Ao()], and
o (5 20, A) = g (25 M)l < CIA(z) = Ao()),

where p (73 Mo, A) = Elp(Y)[(Ao(X), AM(X)) = (Mo(), A(z))] and C does not depend on X, Ao,

x, or .

Lemma 1 shows that the conditional expectations are continuous in the parameter A\ in
the conditioning variable. This result is similar to Lemma A2(ii) of Song (2008). (See also
Lemma A5 of Song (2009).)

We introduce an additional random vector Z € R?% with a support Sz and a class ¥
being a class of R/-valued functions on R% with a generic element denoted by 7 and its
envelope by 1. As before, we fix g € A, let hy(z|A;, As) denote the conditional density
function of Z given (A\g(X), A(X)) = (A1, o) with respect to a o-finite measure, and define
Pz ={har(z],") : (A, 2) € A x Sz}. Suppose that the parameter of interest takes the form of

Lou(N) = E [, (X5 0)"0(2)] .

We would like to analyze continuity of I', ,,(A) in A € A. When Py and P are regular, we

obtain the following unexpected result.

Lemma 2 : Suppose that Py is reqular for @ and Py is reqular for 1. Then, there ezists
C > 0 such that for each X in A,

Sup(w,w)EtI)X\I/|F<Pﬂ/J(/\) —Loy(Mo) < CfIA - XollZ.
Therefore, the first order Fréchet derivative of T'y () at Ao € A is equal to zero.

Lemma 2 says that the functional I', () is not sensitive to the first order perturbation
of A around Ag. In view of Newey (1994), Lemma 2 suggests that in general, there is no estima-
tion effect of A on the asymptotic variance of the estimator Ty, ;(A) = 1 377 f, (X NT0(Z),

n
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where f1,,(X;; \) denotes a nonparametric estimator of j1,,(X;; A). We explore its implication

in the broader context of extremum estimation.

2.3 The Main Result

In this subsection, we formalize the main results. Let us introduce high-level conditions for

extremum estimation.

Condition A1 : There is an R%valued random function £, () such that
Gu (s 710+, A)) = altus p1g( M) = €, (A5 X)) Tt = 0p(|Ital[?), for any ¢, — 0,

where Q’n(tu M) = Qn(ﬁo + t“l,b) - Qn(ﬁOa :u) and q(t) = Q(BO + t? MO) - Q(ﬂﬂ?MO)‘

Condition A2 : For a nonsingular Q, q(t,) = t,Qt,, + o(||t,||?), for any ¢, — 0.

Condition A1 is known as a stochastic differentiability condition (Pollard (1985)). This
condition can be proved using stochastic equicontinuity arguments or the convexity lemma as
in Pollard (1991). While the presence of ji(-, 5\) may complicate the analysis, the procedure
is standard. (Newey and McFadden (1994)). Under Conditions A1-A2, one can write (See
e.g. the proof of Theorem 3.2.16 of van der Vaart and Wellner (1996))

V(B — By) = Qg (-, N)) + op(1).

To analyze the role of the estimation error in /}(-,5\) for the asymptotic distribution of
B, we need to investigate the right-hand side term. For this, we introduce the following

assumptions.

Condition B1 : There exist a sequence of dx J random matrices { Z; }_; such that {Z;}! , is
ii.d. and

VL€, (i, X)) = €110 Mo))} fzz{ X5 D) = o(Xis M)} + 0p(1). (5)

Condition B2 : &, (p(-, \o)) = f S m2(Si) + op(1), for some R7-valued function 7,
such that En,(S;) = 0 and E||n,(S;)||? < oo, where {S;}"_, are i.i.d. random vectors.

Condition Bl can be checked through the usual linearization of the sample objective
function. When @, (5, 1) is not differentiable in g (in the sense of the usual pointwise

differentiation), we can decompose the problem into that of linearization of Q (3, i) in p and

10



the oscillation property of @, (5, 1) — Q(5, 1) in p to obtain the above result. Condition
B2 says that &, (uo(+, Ao)) is approximated as a normalized i.i.d. sum of mean zero random
vectors.

The effect of (-, 5\) on the asymptotic variance of B is revealed through the analysis of
the right-hand side of (5). For the sake of specificity, we consider symmetrized neighborhood
estimation of fi. Let UY) = 15" 1{\(X;) < \(Xp)} and a(Xp A) = [ (X Ay), - -
e fuy (X A))] T, where

S Y9R, (U(j) _ Uk(;j))
iy (Xis Ay) = —— T
’ ’ Z:’L:I Ky, <Uz'(j) - Uk(:j)>

(6)

and Yi(j) is the j-th component of Y; and Kj(u) = K(u/h)/h and K : R — R is a kernel
function. The estimator ji; is a symmetrized nearest neighborhood (SNN) estimator proposed
by Yang (1981) and studied by Stute (1984). The probability integral transform of Ao ;(X)
turns its density into a uniform density on [0, 1]. Using the probability integral transform
obviates the need to introduce a trimming sequence. The trimming sequence is often required
to deal with the random denominator problem (e.g. Ichimura (1993) and Klein and Spady
(1993)), but there is not much practical guidance for its choice. The use of the probability
integral transform eliminates such a nuisance altogether.

Under regularity conditions, we can apply the uniform Bahadur representation theorem

established in the appendix (Lemma A1) to show that

n

VEL (5 ) = Vi (1o M) + % S (X0) + op(1), (7)

=1

where 0y (X;) = [0, (X0), -+ 1o (X)) 00 0(X0) = 2700 BIZ Doy (X)I(Y = pg,(X0),
and ZZ-(k’j ) is the (k, j)-th entry of Z;. The second term involving n,(X;) is due to the non-
parametric estimation error in 1. However, the Bahadur representation remains the same
regardless of whether we use \g or A in constructing fi. Using this result, we can prove the

following (See Theorem 1 below.)

V(B = By) —a N(0,Q7'2Q7Y), (8)

where ¥ = E [(771 (Xi) +n9(X5)) (n(Xi) + 772(X,~))T] . Hence the asymptotic covariance ma-
trix remains the same with or without the estimation of \g.

We can place this phenomenon in the perspective of Lemma 2. By Condition B1, the

11



effect of \ upon B is revealed through the analysis of the following:
1 n
7 2N — )

with A lying within a shrinking neighborhood A,, of A\g. After subtracting its mean, the above

sum becomes asymptotically negligible through stochastic equicontinuity in A € A,,, leaving

VRE [Z; {p( X3 A) — (X3 Xo)}] -

By Lemma 2, the expectation above is O(||A — Ag||2,), yielding that whenever [|X — Ag||oo =
op(n~1/*), the first order effect of )\ disappears.

To formalize the result, let us introduce some notations and assumptions. Let A; be a
class of functions ); : R% — R such that P{\; € A;} — 1 asn — oo, and A;(§) = {); €
Aj i ||[FyjoN — FojoXjlleo < 3}, where Fy; and F) ; are the cdfs of Ao ;(X) and A;(X).
For a class F of functions, let N (e, F,|| - ||s) be the covering number of F with respect to
|| - ||oo- (See van der Vaart and Wellner (1996) for details.) Denote f)(\j)(y|u0, uy) to be the
conditional density of Y1) given (Uéj U )(\j )) = (up,u1) with respect to a o-finite measure,
where Uéj) = Fp (Mo, (X)) and Uij) = F\;(A;(X)). Similarly, define hg\k’j)(z|u0, u1) to be the
conditional density of Z*7) given (Uéj U )(\j )) = (up, u1) with respect to a o-finite measure.
Let Sg ) be the support of Y) and S(Zk’j ) be the support of Z®* ) and define

PYG) = {7l (\y) € A(0) x 8}, and
PE(8) = {0V Gl) s (Vv 2) € Ay(6) x S5

Then, we introduce the following assumptions.

Assumption G1: (i) Foreach j = 1,---, J, (a) [[\j—= Ao |l = Op(n?), b € (—1/4,1/2], and
(b) for some C; > 0,

’Fg}j(j\1> — F07j(5\2)| S lej\l — 5\2’, fOI' all ;\1, 5\2 € R.

(ii) E[||Y}]|?] < oo and E[||Zi|["] < oo for p > 8.

Assumption G2 : For j =1, - -, J, there exists §; > 0 such that

i) forb; € [0,1) and C; > 0,log N (g, AF ||-||o) < Cie™%, where A = {F\ oA: A€ A;(5:)},
j J Y J j J §\0j

(ii) Py)(5j) and Pf,k’j)((sj), k=1,--- d, are regular (in the sense of Definition 1), and

(iii) sup,ep.1 E[\Y(j)|]Uéj ) — u] < oo, and E[Y () ]Uéj ) — -] is twice continuously differentiable

with bounded derivatives.
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Assumption G3 : (i) K(-) is symmetric, compact supported, twice continuously differen-
tiable with bounded derivatives, [ K (t)dt = 1.
(ii) n'/2h3 + n=Y2h=2(~log h) — 0.

These assumptions are introduced to ensure the asymptotic representation in (7). As-
sumption G1(i) allows A to converge at the rate of n~'/3. Assumption G2 is a regularity
condition for the index functions \;. Assumption G3(i) is satisfied, for example, by a quartic
kernel: K (u) = (15/16)(1 — u?)?1{|u| < 1}. The bandwidth condition in Assumption G3(ii)
does not require undersmoothing; it is satisfied for any h = n~* with 1/6 < s < 1/4.

Theorem 1 : Suppose that Conditions A1-A2 and B1-B2 hold. Furthermore, suppose that
Assumptions G1-G3 hold. Then, the asymptotic normality in (8) follows. Moreover, the

asymptotic covariance matrixz in (8) does not change when we replace A by Ao.

In view of Newey (1994), the result of Lemma 2 suggests that the asymptotic negligibility
of A will not depend on the particular estimation method employed. Indeed, an analogous
result in testing single-index restrictions was obtained by Escanciano and Song (2008) using
series estimation.

Theorem 1 has an important implication for matching estimators based on a propensity

score. Consider the set-up of Example 3 and the matching estimator

= D ic1 1{1-Di =1} ; 1{D; =1} {Yh’ — (X ;\)} ;

where i(X;; A) = Y1, Yo Ka(Us — U)/ Sy Kn(Us = Uy), Ux = 2350 1{A(XG) < A(Xa)},
and A\(X) is a nonparametric estimator of the propensity score Ao(X) = P{D = 1|X}. Then
Theorem 1 tells us that the asymptotic variance of ji; remains the same if we replace A by
Ao-

Another important implication is that there can exist a valid bootstrap method for esti-
mating [, even when \(X;) = A(Xj;;6p), a parametric function, and a /n-consistent estima-
tor 6 of 6 is used in the first step estimation. We suggest one bootstrap method for models

of conditional moment restrictions in the next section.

3 Bootstrap in Models of Conditional Moment Re-

strictions

In this section, we focus on conditional moment restrictions as a special case. For j =
L. J+1,let Ao j(x) = \j(x;600), known up to 6y € R%. Let 3, be identified through the
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following restriction:

E [p(V, 11g(X5 Xo); Bo) W] = 0,

where W = (W, X\g.s+1(X)), (V, Wy, X) € RévFdwitdx j5 an observable random vector and
p(v, 5 B39) + RW*/ — R is known up to 8, € B C R%. The function p,(X;\g) is as
defined in the introduction (below (1)). Note that W is allowed to depend on an unknown
continuous single index Ag s+1(X). This feature is relevant when the IV exogeneity takes the
form of single-index exogeneity, where the instrumental variable takes a form of a single-
index. Examples 1 and 2 in a preceding section belong to this framework.

Given the estimator 6, we let ;\]() =\ ( 0) and assume that 1,(X; \o) is estimated by
(X A) in the first step as in (6). Then we estimate 3, as follows:

2

A - argmln IO‘/;J/J’XH)\ 1 WzSW )

s {3 o <)
f (J+1) ~(THL) .

where W), = (Wyy, U )) and Uy is as defined prior to (6) using {\;41(X;)}™,. The

estimation method is similar to the proposal by Dominguez and Lobato (2004). Let O(9) =

{0 € R . ||0 — 0,y|| < 6}.

Assumption 1 : (i) The sample {(V;, X;,Y;, Wy;)}, is a random sample.

(ii)(a) E[p(V, 1o(X;X0); B)|W] = 0 a.s. iff 5= 5,. (b) B, €int(B) with B compact.

(iii) p(v, u; B) as a function of (u, 8) € R7 x B is twice continuously differentiable with the
first order derivatives pg and p, and the second order derivatives pgg, pg, and p,, such that

Elsupses||p(V; 11(X5 20); A7) < 00, p > 2, for all p € {p, g, P> Psp: Ps,}-
(iv) For some M > 0 and p > 8, E[||Y;||P] < M, E[||S;||’] < M, and

E[Sup( i)EBX[—M,M] Hp,uu( )H ] <00, 4> 47 (9)

where S; = PM(V;, 10 (X5 Ao); Bo)-
Assumption 2 : The estimator § satisfies that ||§ — 0o|| = Op(n~") with r = 1/2 or 1/3.

Assumptions 1(i)-(iii) are standard in models of conditional moment restrictions. The
condition E[||S;||P] < M and (9) in Assumption 1(iv) are trivially satisfied when p(v, y; 5) is
linear in 4 as in Examples 1 and 2. Assumption 2 allows 8 to converge at the rate of n=1/3.

Let S; U) be the j-th entry of S; defined in Assumption 1(iv) and let ZZ-(j ) = (S Wh, U J+1))
it U7 # UY) and 29 = (89, W) it UV = U, We set 9(Z27) = |SY)]. Define
1Y )(y|ug, u1) to be the conditional density of Yi(j given (Uéi-), Ue(i)) = (ug,u1) with respect
to a o-finite measure, where Uéﬂ) = Fy;(Mo;(X;)) and Ué’jl-) = Fp;(N\j(X;;0)) and Fp; and
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Fy ; are the cdfs of Ao j(X) and \;(X;6). Similarly define héj)(z|u0, u1) to be the conditional
density of Zi(j ) given (Ué?, Ue(,jz) ) = (ug, u1) with respect to a o-finite measure. Let Sy ) and
S(Zj) be the supports of Y;(j ) and Zi(j ),

Pyi(0) = {f ) (0,) € ©0) x SY'} and
Pri(0) = {h(z]-,): (8,2) € O() x SY'}.

Assumption 3 : For each j =1,---,J + 1, there exist §; > 0 and C; > 0 such that
(i) foreach j =1, -+, J+1,

[y, (Nj(2501)) — Fo, (N (3 02))| < Cyl|01 — ]|, for all 0,0, € ©(0;),

(ii) for each j =1,-- -, J, Py,(0;) is regular apd P'Z,j(éj) is regular for ¢, and o
iii) for each j = 1,- - -, J, (a) supuconE[[Y.V||UY) = 4] < 00, and (b) E[Y.V|UY) = ] is
( ) J ) y sy Puelo,1] i 0,i ) i 0,i

twice continuously differentiable with bounded derivatives.

Assumption 3(i) is a regularity condition for the index function A;(-;#). Some sufficient
conditions for the regularity of Py, ;(d,) were discussed after Lemma 1. The regularity of
Pz ;(6;) in Assumption 3(ii) can be replaced by a lower level sufficient condition in more
specific contexts. Note that in the case of the sample selection model in Example 1, J = 2,
Ué}i) = Uéi.) = Uéi), and in the case of the model with the single-index instrument in Example
2,J =1, Ué,li) = Uéi). In both cases, S5; is a constant vector of —1’s. Hence it suffices for the
regularity of Py ;(;) that the conditional density function of Wy; given (Ué}i), UG(,li)) = (ug, u1)
is continuously differentiable in (uo, u;) with a derivative uniformly bounded over 6 € ©(4;)
and Wi; has a bounded support. The requirement that 1W3; have a bounded support can
always be made to be fulfilled by using a strictly increasing, continuous and bounded map

G : R — [0,1]% and substituting W5 = G(Wy;) for Wy;.

Theorem 2 : Suppose that Assumptions 1-3 hold. Furthermore, K satisfies Assumption
G3(i) and h satisfies that n*/?h3=1/4 4 n=1/2h=2(—logh) — 0. Then,

V(B = o) = ( / HHTdPW)_l [ Heir

where H(w) = E[ps(Vi; 11o(Xs; Xo); Bo) H{W: < w}], Py is the distribution of W, and ¢ is

a centered Gaussian process on R that has a covariance kernel given by C(wi,ws) =
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E [&;(w1)&;(w2)] with

§i(w) = p(Vi; 1o(Xi; Ao); Bo) L{W: < w} (10)
~SLEBIST W < wh U1 = o, (X 2o ).

The bandwidth condition is slightly stronger than Assumption G3(ii). This condition is
used to ensure Condition Bl as well as (7) in this context. Still the bandwidth condition
does not require undersmoothing. Compared with the asymptotic covariance matrix of
Dominguez and Lobato (2004), the asymptotic covariance matrix contains additional terms
involving Yi(j ) — to.;(Xi; Ao,s) in (10). This is due to the nonparametric estimation error in
i1. The asymptotic covariance matrix remains the same regardless of whether we use the
estimated indices A;(X;; ) or the true indices A;(X;; 6o). This is true even if f follows cube
root asymptotics.

While one can construct confidence sets for [, based on the asymptotic theory, the
estimation of the asymptotic covariance matrix appears complicated requiring a choice of
multiple bandwidths. Alternatively, one might consider bootstrap. Theorem 2 suggests that
there may be a bootstrap method that is valid even when 6 follows cube root asymptotics. As
far as the author is concerned, it is not clear how one can analyze the asymptotic refinement
properties of a bootstrap method in this situation. Leaving this to a future research, this
paper chooses to develop a bootstrap method that is easy to use and robust to conditional
heteroskedasticity. The proposal is based on the wild bootstrap of Wu (1986). (See also Liu
(1988).)

Suppose that fi(X;; \) is a first step estimator defined in (6) and let

w(B) = {W, < Witp(Vi, (X N); B) and

Then, let 7y, = [fl(;), ce fl(,;])]T where
S 10 (02 - 09)
S K (00

A =

and f)l(fzk is the j-th component of p, ;.. This paper suggests the following bootstrap proce-

dure.

Step 1: For b = 1,- -, B, draw i.id. {w;;}/; from a two-point distribution assigning

masses (v/5 +1)/(2v/5) and (v/5 — 1)/(2/5) to the points —(v/5 — 1)/2 and (v/5 + 1)/2.
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Step 2 : Compute {BZ :b=1,---,B} by
n 2
By = arﬁgrgmz {Z (B) = pu(B) + wip { e B) + 7 {Yi — (X M} }
S
and use its empirical distribution to construct the confidence set for j3,,.

The bootstrap procedure is very simple. In particular, one does not need to estimate
or 0 using the bootstrap sample. The estimator fi(X;; 5\) is stored once and repeatedly used
for each bootstrap sample. This computational merit is prominent when the dimension of
the parameter 6, is large and one has to resort to a numerical optimization algorithm for its

estimation as in the case of maximum score estimation.

Theorem 3 : Suppose that Assumptions 1-3 hold. Then,
Ak A . . -1 .
Vn(B, — B) —a (/ HHTdPW> /HCdPW, conditional on {(V;, X, Y;, Wi)},, in P

where H and ¢ are as in Theorem 2.

Theorem 3 shows that the bootstrap procedure is asymptotically valid. Therefore, even

when 6 follows cube root asymptotics, we can still bootstrap B in this situation.

4 A Monte Carlo Simulation Study

4.1 The Performance of the Estimator

In this section, we present and discuss some Monte Carlo simulation results. Based on the

sample selection model in Example 1, we consider the following data generating process. Let
Z’i = Uli — 7”]11/2 and Xz = U2’L' — 772/2

where Uy; is an i.i.d. U[0,1] random variable, Uy; and 7; are random vectors in R* with
entries equal to i.i.d random variables of U[0, 1]. The dimension k is chosen from {3,6}. The

random variable 7, is the first component of n,. Then, the selection mechanism is defined as

where ¢; follows the distribution of 2T; x - de O (X2 + | Xu]) + ¢, ¢ ~ N(0,1), @

denoting the standard normal distribution functlon, and T; is chosen as follows:

17



DGP Al: T; ~ N(0,1) or
DGP A2: T; ~ t distribution with degree of freedom 1.

Hence the selection mechanism has errors that are conditionally heteroskedastic, and in the
case of DGP A2, heavy tailed. Then, we define the latent outcome Y;* as follows:

Y;* = Zlﬁo + Vi,

where v; ~ (¢; + ;) x ® (Z? + |Z;|) with e; ~ N(0,1). We set 6, to be the vector of 2’s and
Bo=2.

We first estimate 6y by using the maximum score estimation to obtain [} Using this 0, we

construct U,,; and

ity Yo x K (O = Oy

/J/Y,j - N and
Zz 1,i#j Kh (U - U”:j)

S iriss Zi X Ko (Oni = Uy

Zz 1,i#j Kh (U - Unvj)

Hz; =

Then, we estimate [ from the following optimization:

n

2
. 1 1~ . . A
f = argmin— Z {ﬁ Zwij (Yi — fry; —{Zi — MZz}ﬁ)} J
i=1

n
ges Mo

where w;; = 1{Z; < Zj}l{Um < ﬁny} Note that we do not resort to numerical optimization,
as B has an explicit form from the least squares problem. The sample sizes were chosen from
{200, 500, 800} and the Monte Carlo simulation number was 2000.

Table 1 shows the performance of the estimators. There are four combinations, according
to whether 6 is assumed to be known (TR) or estimated through maximum score estimation
(ES) and according to whether SNN estimation was used (NN) or usual kernel estimation
was used (KN). For the latter case, we used the standard normal pdf as a kernel. The
bandwidth choice was made using a least-squares cross-validation method, selecting among

ten equal-spaced points between 0 and 1.
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Table 1: The Performance of the Estimators in Terms of MAE and RMSE

k NN-TR NN-ES KN-TR KN-ES

3 MAE 0.4243 0.4234  0.4276 0.4417

DGP Al RMSE | 0.2892  0.2881 0.2942  0.3088

6 MAE | 04089 0.4131 0.4105  0.4202

n = 200 RMSE | 0.2616  0.2653  0.2652  0.2727
3 MAE | 04276 0.4297 0.4298  0.4386

DGP A2 RMSE | 0.2881  0.2890 0.2924  0.2991

6 MAE | 04334 0.4314 0.4331 0.4402
RMSE | 0.2909  0.2874  0.2868  0.3002
3 MAE | 0.2688  0.2696 0.2742 0.2783

DGP Al RMSE | 0.1144  0.1157 0.1193  0.1221

6 MAE | 0.2620 0.2624 0.2616  0.2670

n = 500 RMSE | 0.1093  0.1097 0.1090  0.1130
3 MAE | 0.2827 0.2820 0.2870  0.2894

DGP A2 RMSE | 0.1231  0.1237  0.1270  0.1290

6 MAE | 0.2641 0.2630 0.2636  0.2670
RMSE | 0.1100  0.1089 0.1095  0.1114
3 MAE | 0.2123 0.2124 0.2171 0.2188

DGP Al RMSE | 0.0709  0.0708 0.0737  0.0746

6 MAE | 0.2067 0.2066 0.2072  0.2097

n = 800 RMSE | 0.0670  0.0671 0.0672  0.0691
3 MAE | 0.2204 0.2214 0.2226  0.2268

DGP A2 RMSE | 0.0777  0.0781  0.0795  0.0818

6 MAE | 02112 0.2119 0.2124  0.2147
RMSE | 0.0697  0.0706 0.0706  0.0726

The results show that the performance of the estimators does not change significantly
as we increase the number of covariates from 3 to 6. This indicates that the quality of the
second step estimator B is robust to the quality of the first step estimator f. This fact is
shown more clearly when we compare the performance of the estimator (TR) that uses 6,
and the estimator (ES) that uses 0. The performance does not show much difference between
these two estimators. The performance of the SNN estimator appears to perform slightly
better than the kernel estimator. When the sample size was increased from 200 to 500, the
estimator’s performance improved as expected. In particular the improvement in terms of

RMSE is conspicuous.
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4.2 The Performance of the Bootstrap Procedure

In this subsection, we investigate the bootstrap procedure, using the same model as before.
Table 2 contains finite sample coverage probabilities for the four types of estimators. When
the sample size was 200, the bootstrap coverage probability is smaller than the nominal ones.
When the sample size was 500, the bootstrap methods perform reasonably well.

It is worth noting that the performance difference between the case with true parameter
0o (TR) and the case with the estimated parameter §y (ES) is almost negligible. This again
affirms the robustness of the bootstrap procedure to the quality of the first step estimator 0.
Likewise, the performance is also similar across different numbers of covariates 3 and 6. It is
interesting to note that the estimator NN-ES appears to perform slightly better than KN-
ES. This may be perhaps due to the fact that the probability integral transform in the SNN
estimation has an effect of reducing further the estimation error in 6. A more definite answer
would require an analysis of the second order effect of 6. Finally, the bootstrap performance
does not show much difference with regard to the heavy tailedness of the error distribution

in the selection equation.

5 Conclusion

This paper finds that the influence of the first step index estimators in nonparametric func-
tions is asymptotically negligible. A heuristic analysis was performed in terms of the Fréchet
derivatives of a relevant class of functionals. Hence this phenomenon appears to have a
generic nature. Then this paper proposes a bootstrap procedure that is asymptotically valid
in the presence of first step single-index estimators following cube root asymptotics. The

simulation studies confirm that the method performs reasonably well.

6 Appendix: Mathematical Proofs

Throughout the proofs, the notation C' denotes a positive constant that may assume different

values in different contexts.

6.1 The Proofs of the Main Results

Proof of Lemma 1 : We proceed in a similar manner as in the proof of Lemma A5 of
Song (2009). We show only the first statement because the proof is almost the same for the

second statement.
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Table 2: The Performance of the Proposed Bootstrap Method

k  Nom. Cov. Prob. NN-TR NN-ES KN-TR KN-ES

99% 0.9815 0.9785  0.9825  0.9775

95% 0.9355 0.9360  0.9380  0.9300

DGP Al 90% 0.8835 0.8815 0.8795  0.8755
99% 0.9825 0.9845 0.9800  0.9495

95% 0.9355 0.9380  0.9405  0.9050

n = 200 90% 0.8885  0.8920 0.8915  0.8560
99% 0.9835 0.9830 0.9830  0.9765

95% 0.9425 0.9490 0.9465  0.9330

DGP A2 90% 0.9025  0.8985 0.9005  0.8730
99% 0.9810 0.9835 0.9875  0.9255

95% 0.9415 0.9415 0.9440  0.8800

90% 0.8945 0.8935 0.9015  0.8330

99% 0.9910 0.9905 0.9875  0.9900

95% 0.9395  0.9440 0.9400 0.9470

DGP A1l 90% 0.8980  0.8990  0.8960  0.8900
99% 0.9885  0.9885  0.9880  0.9860

95% 0.9480  0.9445 0.9495  0.9440

n = 500 90% 0.8890  0.8945 0.8975  0.8890
99% 0.9900 0.9885  0.9905  0.9880

95% 0.9485  0.9440 0.9425  0.9395

DGP A2 90% 0.8920  0.8850  0.8870  0.8920
99% 0.9880  0.9880  0.9885  0.9860

95% 0.9435 0.9455 0.9480  0.9435

90% 0.8970  0.9005 0.8965  0.8855

Choose z € Sy and \; € A and let § = |\; — \g|, where A\g = Ao(z) and \; = A\i(z).
We write f1,(A1, M) = pr,(25 M1, Ao) and g, (No) = p,(25X0). Let Py, be the conditional
distribution of (p(Y), X) given A\o(X) = Ao and Eg,, denotes expectation under 7 . Let
A; = H{|N(X) = A;| €36}, 7 =0,1. Note that Eg ,[Ag] = 1 and Eq ,[A;] = 1 as in the proof
of Lemma A5 of Song (2009). Let fi,(A;, Ao) = Eq, [p(Y)A;] /Eo,[A;] = Eo, [0(Y)A)], j =

0,1. Then,

H,%(x; A1; Ao) — (5 )‘0)“

H/‘@(j‘l’j‘(ﬁ o ﬁw(j‘l’ 5‘0)” + H[Lw(;‘l’ o) — 'uso(j‘o)”

(I) + (I1), say.
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Let us turn to (7). By the definition of conditional expectation,
L 5\1+35 o o
iudo) = [ (3 Aa)d By (),

A1—30

where F), (-|\) is the conditional cdf of A\;(X) given A\o(X) = Ao. Note that

||H’go(5\17 5\0) - /190(5\175\0)“ < sup ||H’go(5\1 + U75\0) - ”@(5\17 5\0)”

v€[—38,36]:(\1 +v,5\0)€S>\1

because f;\l 1_+3366 dF\, (A[Ao) = Eg,[A;] = 1. The last term above is bounded by

sup / BN s (A + 0, 30) — Fou (yls Ro)| s (dylAr, o)
v€[—38,38]:(M1+v,A0)ESN, /Sy

< o) H@(Q)HCM (yp‘b ;\U)wx\l (y|5‘17 j‘o)dy < Cs.
Sy

Let us turn to (/) which we write as

[ Eop [p(Y)Ar] = Eop [0(Y)] || = [[Eo . [V A ],

where V' = ¢(Y) — Eq, [¢(Y)] because Eq, [A;] = 1. The term (II) is bounded by the

absolute value of
1436 _ _ o
/ |E [VALA(X) = X, Xo(X) = Ao || dFx, (A o)
A1—30

A1+36
= [ R VNG = A () = o] 4P (3)

1—36

or by (4, similarly as before. This implies that (/1) < Co. R

Proof of Lemma 2 : Let p,,(r) = p,(z;A) and p,o(x) = p,(z; Ao). Similarly define
(&) = pp (5 N) and gy o(2) = 13 Do), where iy (3.2) = B[0(Z)A(X) = Ax)]. Finst
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write

E [0(2)" {11,0(X) = p0(X)}] = B [BIH(Z)AX) A0 {100 (X) = 1o(X)} ]
= E[(BR(2)AX), 2] = 110(X) " (10(X) = E[p(V)AX), Ao(X)])]

E (B [H(Z)AX), o(X)] = 115,0(X)) T (BLo(Y)AC), Ao(X)] = t1,0(X)) ]

B (1,0 T {150(X) = p1,0(X)}]
= E [11,0(X)" {1150 (X) = 1,00 }] + O(UIA = Aol )

by applying Lemma 1 to the first two expectations on the right-hand side of the first equality.

The last expectation is equal to

E [1150(X) " {11,0(X) = E[p(Y)IA(X), Mo(X)]}]
+E [1150(X) T {E [p(Y)IA(X), Mo(X)] = p1g,0(X) }]
= E [y0(X) T {10 (X) = E[p(Y)A(X), Xo(X)]}]
= B [{1y0(X) = 1y (X} {152 (X) = E[p(Y)MX), M(X)]}] -

Applying Lemma 1 again, the last expectation is equal to O(||A — \g||% ). Hence we conclude
that

E [(2)" {10(X) = 1150(X) }] = O([A = Xoll2).

affirming the claim that the Fréchet derivative is equal to zero. B

Proof of Theorem 1 : From the proof of Theorem 3.2.16 in van der Vaart and Wellner
(1996), it can be shown that

V(B = Bo) = Qg (1) + op(1).
Hence it suffces to show (7). Observe that for any \; € A; and A; = ||\ — Ao j|oos
[F55 (A () = Foi (Ao ()]
< P (X) < Aoy(@) + 2451 = P{Ao;(X) < Aoi(w) — 24;} < CA;
by Assumption G1(i)(b). Hence by Assumption G1(i)(a), A;(d,) with &, = n™¥, ¥ €

(1/4,b), contains 5\j with probability approaching one. The result of the Bahadur represen-
tation in Lemma A1 below yields (7). W

23



Proof of Theorem 2 : Write po(z) = pu(x; o) and fi(z) = ju(x; \). Put briefly, 1; =
1{1/1/z < VT/I} and 1; = 1{W; < W;} and

pi(B) = p(Vi, 1o(Xi); B)s pui(B) = pu(Vis 11o(X3); B),
pi(B) = p(Vi, (Xi); B), and pg;(B) = ps(Vi, l( Xi); B).

We first show the consistency of 3. Let Q(f3 = [{E [p,(3)1{W; < w}]}* dPw (w),

@(5)—%2{%2@(5)%} and () Z{ Zpl }

Let anj( ) = 2370 H{N(X550) < A} and Fpj(A) = P{\;(X;;60) < A}, and let g;(u) =
) =

> iy YK (U r(m —u)/ > 1Kh(U(j — u) and g;(u E[YW|Fy;(Xo;(X)) = u]. Note that
||/t — 11o]]0o is bounded by

suPy (o195 (1) — g5 (w)l] + supyenllg; (F, o5 (A (w30))) — g5(Fos (A (w3 60)))]. (11)

The first term is op(1) as in the proof of Lemma A4 of Song (2009) and the second term is
Op(]|0—0o]]) (e.g. see the proof of Lemma A3 of Song (2009).) Therefore, ||ji—io||oo = 0p(1).
Now, for u(X;) lying between fi(X;) and py(X;),

sup 23 .09 - o) < P20l S sup g, (o0l 22
p i=1 P€

5€B n ) n
it — poll2, _
o sup 10, (Vi 11 B)]|
2n ZZI (8,2)€BX[—M,M) e
= OP(1)7

by Assumption 1(iii)(iv).

Note also that from large n on,

su 1, 13
(662 anz )) (13)
s - Z { {Sup\pz H \/P{U(j+1 A, < UGS < UG + ALY,

z 1,i#1
where A, = maxi<i<, SUDpep(9,,6.,) ||Unja+11 JH || 6, = n~Y/3% with small ¢ > 0, and
UT(L"]QZI) = %Z?:L#i {1 (X550) < A (X5 8)} Slmllarly as in the proof of Lemma A3 of
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Song (2009), A,, = Op(d,), so that the last term in (13) is o(1). From (12) and (13),

Q(ﬁ) = Q(ﬁ) + 0p(1), uniformly in 5 € B.

Since p(v, p9(x); B) is Lipschitz in 8 with an L,-bounded coefficient, p > 2, and B is com-
pact, the uniform convergence of Q(3) to Q(j3) follows by the standard procedure. Hence
SUPgep 1Q(3) — Q(B)| = op(1). As in Dominguez and Lobato (2004), this yields the consis-
tency of B :

Now, using the first order condition of the extremum estimation and the mean value

theorem,

V(B = Bo) = Gu(B, i, AWL}) V&, (B, i, {W1}),

where, with 3 lying between 3 and Bo,
X . SR i oo 1< .
1=1 i=1 i—1
X R I 1 oo 1 .
&8 WY = Ez{gx%wm}{ﬁzwo)lu}.
=1 i=1 i=1

Using consistency of 3 and following similar steps in (12) and (13), we can show that
Gn(B, 1, {W}) is equal to

Go(Boy o IWH)) + 0p(1 / H(w) H ()T dPo(w) + 0p (1),

by the law of large numbers. We turn to the analysis of /n&, (5, fi, {W;}). Let puy(X;) =
E[Y;|\(X;;6)] and write

% Z Ibz‘(ﬁo)iil = \/— Z {p(V; )i Bo) — p(Vi, 115(X5); Bo) } 1y

+% Z {p(Viy 15(X2); Bo) — p(Vis 1o(X:); Bo) } L

= Aln + A2n7 say.
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We first deal with A;,, which we write as
1 < .
% Z 0, (Vi, 1 (X); Bo) "1a ((X3) — py( X))

Z SO 3 o (Ve B (7 (X0) = 11,5(X0) ) (1(X0) = p1,(X0))

i=1 r=1 s=1
= Bln+B2n> say,

where fi(X;) lies between fi(X;) and p,(X;). We deal with By, first. By Holder inequality,

_ 1
E[|Baul] < OV {Elsupucisanllon. (Vi is B[4}

{10 =30 (=0 o}
Note that Efsupge(-asum||0,,,(Vis 155 B)[|7] < 00 and
/SX ‘(ﬂr(w) - M«,@(@) (ﬂs(:t) — ,usvé(x)> 1 dPy (z) (14)

q

" dPx ()

— /Dln <ﬂr($> - Mry(;(x)) <ﬂs(l’) . MS,@($)>
—|—/DQH (ﬂr<x) - Mrﬂg(x)) (ﬂs(l’) . Ms,g(x)) 4

where Dy, = {z : |F, 5, (A\(z; 0))—1| > h/2} and Dy, = {x : | E oAz :0)) —1| < 2h}. Using
the steps in (11) and in the proof of Lemma A4 of Song (2009), the first term is bounded by

dpx<l’),

q

T 0p({n V2, o)

(9:(w) = g,5(0) (3:(0) = g,5())

SUDPye(0,1):ju—1|>h/2

_2q_

= Op(wi )

where w,, = n~Y/2h~1y/=logh + h? and g,4(u) = E[Y " |F,,.(\.(X;0)) = u]. Similarly, the

last term in (14) is bounded by C [ €[0.1):fu—1]<h/2 D(u)du, where D(u) is equal to

Do oz | (3+(0) = 9,5(0)) (5(0) = g,(w)) |+ Op({n~"20}71)

q

When [u—1[ < 2h, ‘(gr(u) - gng)(u)) (Qs(u) — g&@(u)) = Op(h%) uniformly over such
u’s. (See Lemma A4 of Song (2009).) The Lebesgue measure of such u’s is O(h). Hence the

last integral in (14) is Op(h®7~D/@=1) We conclude that By, = Op(n'/?{w? + h3~Y1}) =
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op(1) by the condition for bandwidths.
We turn to Bjy,. Suppose that A, 1(X;; 9) < A (X 9) Then,

~ A

1 n
gU < > 1 { (i) < A (X50)}

n,é,i n—1 |
k=1 ki
1 i ) )
Sl 2.1 {)\J“<X’“; 0) < Ar (X3 9)} =U.
k=1,k#

Exchanging the roles of i and [, we find that if Aj1(Xi;0) > Ajyq1(X;0), U;J(;l) > UT(LJ(;II).

Therefore, letting WM = (W, Ue(fl)) and iiﬂ(ﬂ/) = 1{V~V97i < w}, we write

1{VT/, < m} = 11‘,@(17[/@),1)-

Using this, we write
B =7 Y Vo0 )10 XD = ).
Choose any §,, — 0 such that /702 — 0 and n~'/3§,, — oo, and define
ou0,.0) = =3 Vi X W) (ROX) = X0 (0s,0) € BB 80) < S
i=1

where w@,i,u’)@)? T, U)) = pu(”? /1’9(‘7:)7 BO)te,f,@ (ZL’, U)) and
toso(®,w) = Hw < 0I{Fp 1 (Asia(2:0) < Foga(Asa(2:56))}
Consider Hn = {1{F97J+1<)\J+1<I; 0)) S F@}J_A'_l()\(]_t'_l(ff;e))} . (Q,Zf') € B(@g,(sn) X Sx}
Since the indicator functions are bounded and of bounded variation, we apply Lemma A1 of
Song (2009) and Assumption 3(i) to deduce that

log Nyj(g, Hn, || - |]q) < Cloge + C/e, for e > 0. (15)

By Lemma 1 and Assumption 3(i),

10,0, 119, (2); Bo) = £ (v, 114, (2); Bo) |
< Osupgei_u, v Hpuu(vaﬂﬁo)H x |61 — 62|
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Therefore, using this, (9) and (15), we conclude that for ¥ = {¢, , , : (0, 2,w) € B(fp, 0,) X
SX X 8W1}7
log Ny(e, ¥, || - ||q) < Cloge + C/e, for e > 0. (16)

By applying (Step 1) in the proof of Lemma A1 below, we find that 7,,(6,z,w) is equal to

\/—ZZE [ 0.2,w VzaXzaWh)Wez} <Yz(l) Mel(X)> + op(1)

i=1 [=1

- IZZE[ (Ve X6 W US] (Vi = 10,(X)) + 00 (1),

=1 [=1

uniformly over (6,u) € B(6y,0,) %X [0,1], where 7?3,)1@ denotes the [-th component of v, ,,
and ¢0mw =¥ The equality above follows from (Step 2) in the proof of Lemma Al

0o,z,w

below. Therefore, we conclude that

Au = IZZE[ Ve X WU (Y = g (X)) + 0p(1).

i=1 =1 w="o,l

We turn to As,, which we write as
1 n
Ao == 3 i (Ve X W) (5(X5) = l(X0),
i=1

Using previous arguments yielding (16), we can establish a similar bracketing entropy bound
for 7y = {Wpz.0( ) (tte(-) — 1o (+)) : (0, Z,w) € B(0o,d,) x Sx X Sw, }. Following the usual
stochastic equicontinuity arguments and using Lemma 1, Lemma 2 and Assumption 3(i), we
deduce that

|A2n|

IN

SUP(p.z.a) | VIE [V 20 (Viy Xiy W) (11g(Xi) — p1o(X3))] | + 0p(1)
> \/ﬁsup(e ‘E[ 0 (V;vaWh) {19(Xi) = po z)}H
+0(v/nd2%) + 0p(1) = O(v/nd2) + op(1) = op(1),

A

where the supremum is over (0,z,w) € B(0y,d,) X Sx X Sw,. Therefore, letting
1 n
m(w) = % Z:pi(ﬁ())l{wi <w}

iE o0 (B W < w} U] } (v = a2
1 1=1

=
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and collecting the results of Ay, and A,,, we write

Vg, (B, i, {W, Z{ Zpﬁ Xi); B)1 zz} 20(W2) + 0p(1).

Since sup,,cgaw |2n(w)| = Op(1), using (12) and (13) again, we conclude that

Vg, (B, i, {Wi}) ZH (W) 2n(W2) + 0p(1).

The wanted result now follows by applying the weak convergence of z, to ¢ and the continuous

mapping theorem. W

Proof of Theorem 3 : First, define m(8;w) = E [p,(8)I{WV, < w}],
(B W) = =3 [{a®) = (@)} 1+ wio { Bl + 75 dYi — (X0} }] , and
my (B Wy) = —Z {01(Bo) = 21(B)} L+ wip { o1 (Bo) Lk + 10 (Wi {Ys — p1o(X2)}}]

where r(w) = [r(w),- - - (w)]T and rP(w) = E[p,(8,)1{W; < w}|UY]. Then, we

introduce

QL) = 13 (B W, Gh(B) = - > (5 WA
k=1

k=1

and Q(B) = E [m(B; Wy)?]. We first show that the bootstrap estimator is consistent con-
ditional on G, = {(V;,Y;, Xi, W1;)}", in probability. (Following the conventions, we use
notations Op« and op« that indicate conditional stochastic convergences given G,,.) For this,

it suffices to show that
supse | @5 (8) — Q(B)| = op-(1) in P. (17)
For this, we first show that
supses| Q3 (8) — Q(B)| = supse Q5 (8) — Q(B)] + op+(1) in P, (18)

Then the multiplier CLT of Ledoux and Talagrand (1988) (e.g. Theorem 2.9.7 of van
der Vaart and Wellner (1996)) applied to {m;(8;w) : (B,w) € B x R¥W} yields that
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supges| Qi (B) — Q(B)| = op-(1) in P, affirming (17). We turn to (18). We write

i (B; Wi) — g (85 Wi) (19)

= 23 [{a®) B} i~ {Bo) — ) 1] 4

where 7,, is equal to

—Zwm[m B) = pu(Bo) e + Zwlb FaAYE— (X)) — ] (W)Y — (X))

It is not hard to show that the first sum in (19) is op(1) uniformly in (8,k) € B x {1,- -
-,n} using the similar arguments in the proof of Theorem 2. We show that 7,, = op(1). For

a future use, we show a stronger statement:
M, = op(n~7%). (20)

Using the fact that w;; is a bounded, mean-zero random variables independent of the data,
we can follow the steps in the proof of Theorem 2 to show that the leading sum in the
definition of 7,, is op-(n~'/2) in P. We focus on the last sum in the definition of 7, which we

write as
1 — 1<
- Y, (Fy, — (W) — — (X)) — (W X,
n;(«dl,b (P — (W) n;(ﬂl,b [Tzkﬂ( 1) =71 (W) l)]

B %Zw“’{yl = po(XD)} (P — (W) — %sz,szT(Wk){ﬂ(Xz) — 1o(X0)}

=1

_% Zwl,b(ﬁk — (W) H{(X) — po(X0) 3}

=1
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Using arguments used to deal with B,,, in the proof of Theorem 2, we can show that the last

sum vanishes at the rate op-(n/2) in P. As for the first sum,

.

= E —Z{wlb— wzb|gn]}{y MO(XZ)}T(f’lk_Tl(Wk))

B |53 e = OO G090

.

< 0p(n*1/2)>< ZE {wlb— Wlb’gn]} \Qn} 1Y — 1o (X0) ]2

= op(n~1?).

Similarly, we can deduce that the second sum vanishes at the rate o(n~'/2) conditional on

G, in P. Therefore, we obtain (20). This yields that
MAaX1 <k <nSUP(5,u)e pxrw | 1710 (5; W) — 1 (3; Wi)|| = op-(1) in P.

From this, we deduce (18) and that 8, = 8, + op+(1) in P. Clearly, 3, = 3 + op+(1) in
P, because B is consistent.

Now, we turn to the bootstrap distribution of BZ As in the proof of Theorem 2, we can

write
VlBy, — By = GL(B, it AW} " n€s By, i1 {Wi)),
where
GGy in (7)) = {; > sV, *>Ll} {%Zp;w;,mxi);miﬂ} and
=1 =1
- . 1 1 < ik
& (Bys 1, AWi}) = n {nzp,ﬁ 1); By) L }

3

:mw

=1

where f3; lies between BZ and B . Again, similarly as in the proof of Theorem 2, we can show

that

Go(B, i, {W}) = Bo,um{Wz})JrOP*(l) in P
_ /H w)TdP(w) + op(1) + op-(1) in P.
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Note that the only difference here is that we have BZ in place of B . However, BZ is consistent
for 3, just as B is, yielding the first equality in the above.
As for &(B,, f1, {W1}), note that by (20),

VA V) = 23 {%Zpgm,ﬂ(&);@)im}
X {% Zwi,b {pi(ﬁo)lik + r;r(Wk){Y; — ,uO(XZ)}}} + Op*(l) in P.

Similarly as in the proof of Theorem 2, the leading term above is equal to

%ZH(WIO {% sz‘,b {p:(Bo)Lig + ] (Wi){Yi — Mo(Xi)}}} +op<(1) in P.

Let T, (f) = [ f(w w)and I'(f) = [ f(w)dPy (w), where P,, is the empirical measure
of {Wk}k=1- Then, choose any sequence f,. Then, for a subsequence f, such that ||f, —

fllso — 0, for some f, we have

_ / (o () — f(0)) P,y (w) + / F(w)d(Poe (w) — Py (w))
(1) + 04.5.(1),

by the strong law of large numbers. Let
1« :
Fo(w; Gn) = NG > wip [a(B) W < wh + ruw) T{Yi = u(Xi500)}] x H (w).
1=1

Now, by the conditional multiplier central limit theorem of Ledoux and Talagrand (1988),

conditional on almost every sequence G,
F.(+G,) = (.

Therefore, by the almost sure representation theorem (e.g. Theorem 6.7 of Billingsley
(1999)), there is a sequence F),(-) such that F,(-) is distributionally equivalent to F,(-) and

Fn() —4.5. ¢ conditional on almost every sequence G,. Then, by the previous arguments,
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conditional on almost every sequence {S;}];, we have

Lo(Fo(:Ga) —a / C(w) H (1) dPry ().

by the continuous mapping theorem (e.g. Theorem 18.11 of van der Vaart (1998)). B

6.2 Uniform Representation of Sample Linear Functionals of SNIN

Estimators

In this section, we present a uniform representation of sums of SNN estimators that is uniform
over function spaces. Stute and Zhu (2005) obtained a non-uniform result in a different form.
Their proof uses the oscillation results for smoothed empirical processes. Since we do not
have such a result under the generality assumed in this paper, we take a different approach
here.

Suppose that we are given a random sample {(Z;, X;,Y;)}; drawn from the distribution
of a random vector S = (Z,X,Y) € R¥%Hdx+/ Tet S;,Sx and Sy be the supports of
Z,X, and Y respectively. Let A be a class of R-valued functions on R4 with generic
elements denoted by A. We also let ® and ¥ be classes of real functions on R’ and R% with
generic elements ¢ and 1. We fix Ay € A such that A\g(X) is continuous. Then we focus
on g,(u) = E[p(Y)|U = u], where U = Fy(Xo(X)) and Fy(-) is the cdf of \g(X). Similarly,
we define gy(u) = E[Y(Z)|U = u]. Letting F)\(-) be the cdf of A(X), we denote U, =
F\(A(X)). We define fi(y|ug, u1) and hy(z|ug, u1) to be the conditional densities of Y given
(U,Uy) = (ug,u1) and Z given (U, Uy) = (ug, u1) with respect to some o-finite measures, and
let

Py = {filyl): (N y) € A, x Sy} and
Pz = {ha(z|-,7) : (\y) € Ay, x Sz}

Define Uy \; = =5 > i1z HA(X;) < A(Xi)} and consider the estimator:

n

! S (V) K (Ups — 1),

g}%,\yi(u) =
(n—1)fri(w) j=1,j#i

where fyi(u) = (n —1)"' 3" Kp(Upyj — uw). Introduce A, = {A € A: |[FaoA—Fyo

=1,
Mol < 070} for b € (1/4,1/2]. The semiparametric process of focus takes the following
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form:
n

1 :
vaX o) = = Zl G(Z) {8e0i(Unas) = 95U}
with (A, ¢,9) € A, X @, x U,

Assumption A1l : (i) Classes ® and ¥ for some C > 0, p > 8, and by, bg € (0,6/5),
log Ny(e, @, || - ||,) < Ce™®® and log Ny(e, ¥, || - ||,) < Ce™"*, for each e > 0,

and envelopes @ and 1) satisfy that E[|@(Y)[?] < oo and E[|¢)(Z)[?] < oo, and SuPyepo.1) Bl|@(Y)||U =
u] < o0.
(i) For A = {FyoX: X € A,}, some by € (0,1) and C > 0,

log N (g, AL, || - ||oe) < Ce™ for each & > 0.

Assumption A2 : (i) Py is regular for ¢ and Py is regular for 7).

(ii) g,(-) is twice continuously differentiable with derivatives bounded uniformly over ¢ € ®.

Assumption A3 : (i) K(-) is symmetric, compact supported, twice continuously differen-
tiable with bounded derivatives, and [ K (t)dt = 1.
(ii) n'/2h3 + n=Y2h=2(~logh) — 0.

The following theorem offers the uniform representation of v,,.

Lemma A1l : Suppose that Assumptions A1-A3 hold. Then,

up () = = 3 0ulUHV) = g, U} = or(1).

(A, 0)EAR XPX T
Furthermore, the representation remains the same when we replace v, (X, p, V) by v,( Ao, @, V).

Proof of Lemma A1 : To make the flow of the arguments more visible, the proof proceeds

by making certain claims which involve extra arguments and are proved at the end of the

proof. Without loss of generality, assume that the support of K is contained in [—1,1].

Throughout the proofs, the notation Eg, indicates the conditional expectation given S;.
Let gy .\ (u) = E[p(Y)|Uy = u] and gy \(u) = E[(2)|U\ = ul. Define

AP = guaUna){@(Ys) = o (Una)}-
The proof proceeds in the following two steps.
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Step 1: SuP()\,go,w)eAnX@xlIl Vn()‘a ¥, w) - \/Lﬁ Z:'L:I A‘f@(}\)‘ = OP(l)'

Step 2 : Sup (s, e, xoxw | o=

Aoy - arr o} = or().
Then the wanted statement follows by chaining Steps 1 and 2.

Proof of Step 1 : Define p,, (1) = (n — 1)7" >, o Kn(Una; — t)p(Y;) and write
Goni(Unri) — gon(Ur;) as

ﬁgo,A,z‘(Un,M) gtpz\<UM)fM( Uni)
fA(U)\z)
[ﬁp,A,z’(Un,A,i) (UM)f/\z< n)\Z)](f)\(U)\,%) fM< nM))

f)\z( n)\l)f)\(U)\z)
= Ri(\ )+ Ri(\ ), say.

Rii(\ ) =

+

where fy(u) = 1{u € [0,1]}. Put 1 = (\, 9, %) and II,, = A,, x & x ¥, and write

va(m) = %iwzimﬁu, Zw DRE(,

= rln( )_I_/rln( )? e Hn? say.

From the proof of Lemma A3 of Song (2009) (by replacing A and Ay with F) o A there and
using Assumption A1(ii)), it follows that

SUDyeA, SUWPserix [ Funi(A(@)) — FA(A(2))] = Op(n"/?), (21)

where F, ;(A) = -5 e HAXG) < A}. Using (21) and employing similar arguments
around (14) in the proof of Theorem 1, we can show that sup,cy, |5, (7)| = op(1).

We turn to r{ (), which we write as

(n—1) \/_Z Z wA‘P/\UK + \/—Z Z wwa\w{ nyij }

=1 j=1,j%#i =1 j=1,j7%1¢

- Rln(ﬂ-)—i_RQn( )7 say,

where ¥; = U(Z), Dprig = ¢(YV)) = goa(Una), Kpij = Kn(Unag — Unaa) and Kjj =
Ky (Uy; — Uy,i). We will now show that

SUp e, | Ran ()| =1 0. (22)
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Let 5;-\ =Upxi— Ui and dyj; = 5? — 5? and write Ra,(m) as

1 - . ! 1 - - 2 "
mz > ¢iA907>\7inh,z‘jd>\Ji+mZ D ilpnid3 i K

i=1 j=1,j#i i=1 j=1,j#i
= A7) + Ag,(m), say,

where Kj, ,; = h 20K (t)/0t at t = (Ux; — Ux;)/h and

KI/

hyij

= h20*K (t)/ot?

at t = {(1—a;;)(Ur; —Ux;) +aij(Unri — Unr;) }/h, for some a;; € [0, 1]. Later we will show
the following;:

Cl: Supﬂ'EHn|A2n(ﬂ-)| = OP(l)'

We turn to Ay, (7) which we write as

1 n n
mz Z wiA@:)‘vin;L,ij(S;\ (23)

i—1 =14
1 SR
- Z Z ¢iA<p,)\,in}/z,ij5?
(n—1)vn i=1 j=1,j7i

= Bln(ﬂ') + B2n(7r)7 say.
Write By, () as (up to O(n™1))
1 u 1 = / 4
n Z ﬁ Z {wz'AsoJ\»inh,ij —E [¢1A¢7A7inh7ij’U*7j} } (Unrg = Uxj)
j=1 i=1

1 n
+ﬁ ZE [0 73 K i51Un ;] (Unng — Uny)
j=1
= Cln(ﬂ') + an(ﬂ'), say.
As for Oy, (), we show the following later.

C2: sup,cq, |Cin(m)| = op(1).
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We deduce a similar result for By, (7), so that we write
1 n
App(m) = NG > E [8p 00K Ux] (Unay = Usy) (24)
=1

1 n
_% Z E [@biA@,)\,in]’uiﬂU)\,i] (Un7>\7i — U)\,i) —+ OP(]-)
i=1

= Dln(ﬂ')_— Doy (7) 4+ 0op(1), say.

Now, we show that Dy,(7m) and Ds,(m) cancel out asymptotically. As for D;,(7), using
Hoeffding’s decomposition and taking care of the degenerate U-process (e.g. see C3 and its

proof below),

1 < [
% Z/O E [wl‘AW7}\»in}/l,l'j|U)\vj = ul} (1{U)\7Z S ul} — Ul) dU1 + Op(].).
i=1

Using the symmetry of K, we deduce that

1 — [t
Tn Z/ E [%A@,A,UK;L,MWM =] (H{Uy; < w} — wr) duy
j=1"0

Uy — Uz

- %Z [ g0 o) = gt 7 (M2 ) i (1400 < ) = )

Uz — U1

- %Z / 1 / (1) (g () — gpr () K (25 ) s 140 < 01} — ) .

Similarly, using the first order differentiability of g, (), we observe that

1« [!
T2 3 [ BBl = 0] ({0 < w) — w)du
j=1""

Ug — U1

_ %Z [ o (t0) (g () — gpr () K (125 s ({0, < 1} = )

It is not hard to show that the sum above is asymptotically equivalent to

Uy — U

%jz”;/ol /Olgw,x(w) {gp2(u2) = gp(u1)} K’ < ) dus (1{Uy; < w1} — uy) duy.

Therefore, Dy,(7) = Dayp(7)+o0p(1) uniformly over 7 € II,,. We conclude that sup,.cr; [A1n(7)| =
op(1), which completes the proof of (22).
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It suffices for (Step 1) to show that

sup | R (7 \/—Zgw (Oxi{e(Yi) = gon(Uni)}| = op(1). (25)

well,

We define ¢ ,; = qr(Si,S;) = %Ago,/\,in{\j and write Ry, (m) as
. DI (26)
TL 1 \/_ i=1 j=1,j7#1
Let Prij = Pn(Si,S5) = Qnij — Eg, [q;r,ij] - ESJ- [q:{,ij] + E[qg,ij] and define
Un(ﬂ') = Z Z pn kYN
n 1 \/_ i=1 j=1,j#i
Then, {u,(-),7 € II,} is a degenerate U-process. We write (26) as
(n -1 \/— Z Z {ES qn z] ES [qn zy] [qz,zg]} + un(ﬂ-) (27)
1=1 j=1,j#i

We will later show the following two claims.

C3 : sup,q, |\/Lﬁ Z?:l{Esi [qug] - E[qug]H = op(1).
C4 : sup,cq, |un(m)| = op(1).

We conclude from these claims that

’I’L—l \/_Z Z qnl] \}E;ESj[qq:,ij]‘i‘OP(l).

i=1 j=1,j#i

Then the proof of Step 1 is completed by showing the following.

C5: sup,q,

\/Lﬁ Z?:l (ESj [qgu] — ger(Ux){p(Y)) — geo,/\(UM)})‘ =op(1).

Proof of C1 : First observe that maxi<; j<, supycy, ||d3 ;|| = Op(n™) by (21). Let A;; =
2(Y:) + E[@(Y;)|U;] + Mn=". With large probability along with large M > 0, we bound

| Azn ()| by
¢ A” K/l

n_l\/_zz hZJST n_1h3zz

i=1 j=1,j7#i i=1 j=1,j7#i

na

A




where 1, = 1 {|Uy; — Uy,j| < h +Cn"} . We bound the last term again by

]

s 3 (e e ]y Tl

L] |

The leading term is Op(n~'h™%) = op(n~1/2h=3/2) = 0p(1) using the standard U statistics
theory. The second term is equal to O(n~2h=2) = o(1).

Proof of C2 : Note that K’(-/h) is unformly bounded and bounded variation. Let Iy 5 =
{K'(o(-)/h) : (o,h) € I, x (0,00)}, where o),(x) = (FAo A)(x1) —u and Z,, = {oa, :
(A, u) € A, x [0,1]}. By Lemma A1l of Song (2009) and Assumption A1(ii),

log N(&, Ko || 1) < 108 N(e, T, | - [lc) + C e < C=, (28)

Using (28) and following standard arguments, we can easily show that

1 n
NG > i nii Ky — B[00 05K, 51U 5, Uj] }‘
i=1

max
1<j<n
1 1< L
< 3 aSUP(r keIl ks o %Z{%Aw,m‘k(%) — E[;Ap5i5k(X;)|Un 5, U1} = Op(h77).
i=1
By the fact that max;<;j<,, ||6}|| = Op(n~1/2), the wanted result follows because Op(n="/2h~2) =
OP(]_).
Proof of C3 : First we note that
12
B [ sup B, (29
well,

2

1 1
< / {gim(h) +Cn_2b} sup [/ {902 (t2) = g A (1)} Eu(t2 — ta)dtz | diy.
0 0

(@, N)EPX A,

By change of variables, the integral inside the bracket becomes

(1—t1)/h}IAL
/ (Gon(ts + hit2) — gon(0)VEC (t2) dts.
{—t1/h}Vv(-1)

After tedious algebra, we can show that the expectation in (29) is O(h?).
Let J, = {hE[q ;|S; = -] : € I} with an envelope J such that || ||y = O(h*/?™) as
n — o0o. Similarly as in the proof of C2, note that K (-/h) is unformly bounded and bounded
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variation. Let Iy = {K (o (:)/h) : (o,h) € Z,, X (0,00)}. Then by Lemma A1 of Song (2009),
log Ny(e, Ka, [ - [lp) < log N(e, L, || - |so) + Cfe < Ce™™. (30)
Let us define J, = {hq"(-,-) : 7 € II,,}. Observe that for any A\;, Ay € A,,,

19000 (F2 (A1 () = go0 (Fro(A2()))lloe - < ClI(Fx 0 A1) = (), © Ag)[lo and - (31)
19031 (Fr (A1 () = gwpo (Fro 2 (D)) oo < ClI(Fxy 0 Ax) = (Fxy © Ag)|loo,

by Lemma 1. From this, it is easy to show that
log NY(&, o 1 1) < og Ny(/C. [ - [l,) + log Ny(e/C, W, | - 1) + C=~. (32)
Therefore, log Nj(g, T, || - ||p/2) < Ce~eVbeV00) Using this result, we obtain that
log Nj(&, T, || - ||py2) < CemCavoavon),

Then by the maximal inequality of Pollard (1989) (e.g. Theorem A.2 of van der Vaart
(1996)),

E

SUPrer,

% Z {Es.[a7.4] — Ela) a4l } “

O(h(3/2)+1)
< (;/ V1108 Ny(2, T [ - 12)de = O(RE/2X1=0a 000121y — o),
0

because (bg V by V by) < 6/5. Hence we obtain the wanted result.

Proof of C4 : Since p > 8, we can take arbitrarily small A > 0 and take n = 1/4 4+ A such
that n+1/2 <1 —2/p and (bg V by V bp)(1/2 4+ 1) < 1. Then, from the proof of C3,

1

1 ~ (1/2+n)
/ {log Ny(e, I ||p/2)} n de < / O (baVbuVbA){1/240} g o
0 0
By Theorem 1 of Turki-Moalla (1998), p.878,

h Sup |t ()] = op(nt/2W2ENTA/2Y — o (p=ntA/2),
mell,

Therefore, sup,.cp . |1, (7)| = op(n=""2/2h=1) = op(n=Y4=2/2p=1) = 0p(1). Hence the proof

is complete.
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Proof of C5 : We consider the following:

E [sup [Bs [q7] — don (U ) {o(¥)) — gon(Ua )} ) (33)

well,

1 2
= /sup {/ Anw(tl,tz,w)dtl} dFy,(w,ts),
mell, 0

where f -dF), denotes the integration with respect to the joint distribution of (Y;, U, ;) and

Apy(ti, t2,w) = gya(t){p(w) — goa(t) JKu(t — ta)
—gpa(t2){p(w) = goa(t2)}

After some tedious algebra, we can show that the last term in (33) is O(h®) (see the proof

of C3). Following the proof of C3 similarly, we can obtain the wanted result.

Proof of Step 2 : The proof is based on standard arguments of stochastic equicontinuity
(Andrews (1994)). For the proof, it suffices to show that the class

G ={ger(FAACDLe() = gon(FA(AC))) L = (A1) € Ay X @ x U}

has a finite integral bracketing entropy with an Lo, .(P)-bounded envelope for ¢ > 0. Using
(31) and standard arguments, we find that

log Nj(2,G, || - ||pj2) < CeCavbwvba)

Since bg V by V by < 2, the wanted bracketing integral entropy condition follows. We take

an envelope which we choose as

Fai(2,y) = {955, (Faa (Mo(@)) + Mn™"HE(y) + gono (Frs (Mo(2))) + Mn~"}

for some large M. Clearly, this function Fj; is Lo, (P)-bounded by Assumption Al. There-

fore, the process
1 n
—= S {Ar ) = AP (0) — B A7) - AP ()] }
77 2 { A7) =AY ) B [ATY(0) - A7 (0
is stochastically equicontinuous in (A, ¢, 1) € A, x ® x U. (See e.g. Theorem 4 of Andrews

(1994)). Since A, is a shrinking neighborhood of Aq and E[A?"()\) — A?Y()\g)] = 0, we

obtain the wanted result. B
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