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Abstract

Nonrandom sampling schemes are often used in program evaluation settings to

improve the quality of inference. This paper considers what we call treatment-

based sampling, a type of standard strati�ed sampling where part of the strata

are based on treatments. This paper �rst establishes semiparametric e¢ ciency

bounds for estimators of weighted average treatment e¤ects and average treat-

ment e¤ects on the treated. In doing so, this paper illuminates the role of infor-

mation about the aggregate shares from the original data set. This paper also

develops an optimal design of treatment-based sampling that yields the best semi-

parametric e¢ ciency bound. Lastly, this paper �nds that adapting the e¢ cient

estimators of Hirano, Imbens, and Ridder (2003) to treatment-based sampling

does not always lead to an e¢ cient estimator. This paper proposes di¤erent

estimators that are e¢ cient in such a situation.

Key words and Phrases: treatment-based sampling, semiparametric e¢ ciency,

treatment e¤ects.

JEL Classi�cations: C12, C14, C52.

1 Introduction

Program evaluation studies often adopt nonrandom sampling to improve the quality of in-

ference. Typically, participants are oversampled to get a larger number of observations than

would be obtained in a same size random sample. The rationale for treatment-based sampling

1This paper began as a rami�cation from my joint work with Petra Todd. I would like to express my
gratitude to her for numerous kind and valuable comments and advice. All errors are solely mine. Address
correspondence to: Kyungchul Song, Department of Economics, University of Pennsylvania, 528 McNeil
Building, 3718 Locust Walk, Philadelphia, Pennsylvania 19104-6297.
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is to reduce data collection costs and to improve the precision of the estimated treatment

e¤ects. For example, Ashenfelter and Card (1985) analyzed data from the CETA training

program using a sample constructed by combining subsamples of program participants and a

sample of nonparticipants drawn from the CPS. Also, the studies of Lalonde (1986), Dehejia

and Wahba (1998, 1999) and Smith and Todd (2005) investigated the NSW training program

where the training group consisted of individuals eligible for the program and the compari-

son sample were drawn from the CPS and PSID surveys. Numerous studies focused on the

JTPA job training program (e.g. Heckman, Ichimura, Smith and Todd (1998), Heckman,

Ichimura and Todd (1997), Ham and Lalonde (1996)). These studies typically used data set

that oversampled program participants, where the program participants represented about

50% in the study sample in comparison to 3% in the population.

This paper proposes semiparametrically e¢ cient inference procedures under treatment-

based sampling. The sampling scheme that this paper focuses on can be described as

follows. Let D be a random variable that takes values in D = f0; 1g; where D = d

denotes participating in the d-th program. Let X = (V;W ) be a vector of covariates,

where W is a discrete random variable taking values from a �nite set W. Assume that
initially a random sample of size N for the discrete vector (D;W ) is collected and let

Nd;w =
PN

i=1 1f(Di;Wi) = (d; w)g, (d; w) 2 D �W. From each of the Nd;w subsamples, a

random sample fZigni=1 of predetermined size nd;w; (d; w) 2 D�W ; for a vector Z = (Y; V );

is collected, where Y =
P

d2D Yd1fD = dg and Yd denotes a potential outcome of a par-
ticipant in the d-th program. In this paper, we call this type of sampling, treatment-based

sampling as the strata D � W contain treatments.2 When Wi = 1 for all i; so that the

strata are constructed only based on the treatments, we call this sampling pure treatment-

based sampling. (In pure treatment-based sampling, we suppress the subscript of w writing

pd instead of pd;w, for example.) Throughout this paper, it is assumed that the aggregate

shares fNd;w=Ng(d;w)2D�W are the only available information from the original sample of size

N; and we no longer have individual observations for (Di;Wi)
N
i=1 from the original data set.

Although the observations in the combined sample f(Di; Zi)gni=1 are independent across dif-
ferent i�s, the marginals under treatment-based sampling are not identical. Hence inference

based on random sampling can be misleading.

The objects of inference here are counterfactual quantities called weighted average treat-

ment e¤ect and average treatment e¤ect on the treated:

�wate =
E [g(X)fY1 � Y0g]

E [g(X)]
and �atet = E [Y1 � Y0jD = 1] : (1)

2The term, "treatment-based sampling", was borrowed from an anonymous reviewer�s report when the
idea of this paper was submitted as a research proposal to the NSF.
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E¢ cient inference procedures were suggested for these parameters by Hahn (1998) and Hi-

rano, Imbens, and Ridder (2003) (HIR, hereafter) under a random sampling scheme.

The identi�cation of �atet under pure treatment-based sampling does not require knowl-

edge of the aggregate shares pd. However, information about the aggregate shares pd;w is

required for the identi�cation of �wate under treatment-based sampling and that of �atet un-

der treatment-based sampling with addtional strataW. In this case, this paper assumes that
we know the aggregate shares pd;w: As Wooldridge (2001) has pointed out, this assumption

is often motivated by the sampling environment where Nd;w is very large as compared to the

size of subsamples nd;w: This method of sampling is reasonable in many situations where it

is much less costly to gather information about (D;W ) than the outcome Y or covariates X.

In this case, a proper large sample theory would be one with nd;w=Nd;w !P 0: At the level

of treatment-based samples, the asymptotic theory is equivalent to assuming that we know

the aggregate shares pd;w = Pf(D;W ) = (d; w)g. When the aggregate shares are estimated
using other data sources, the inference procedure in this paper should be viewed as one

conditioned on the external information. However, when the object of interest is �atet under

pure treatment-based sampling, we do not assume that the aggregate shares pd are known.

The sampling scheme of this paper is a kind of standard strati�ed (SS) sampling (Imbens

and Lancaster (1996)), and is one of various nonrandom sampling schemes studied in the

literature. Early literatures on nonrandom sampling have assumed that the conditional

probability of Z given a stratum belongs to a parametric family. (Manski and Lerman

(1977), Manski and McFadden (1981), Cosslett (1981a, 1981b), Imbens (1992), and Imbens

and Lancaster (1996).) Wooldridge (1999, 2001) studied M -estimators under nonrandom

sampling which do not rely on this assumption.

Closer to this paper, Breslow, McNeney and Wellner (2003) and Tripathi (2008) inves-

tigated the problem of e¢ cient estimation under nonrandom sampling schemes. Tripathi

(2008) considered moment-based models under various nonrandom sampling schemes and

proved that the empirical likelihood estimators adapted to an appropriate change of mea-

sure achieve e¢ ciency. The strati�ed sampling scheme studied by Tripathi (2008) is di¤erent

from this paper�s set-up because the identi�cation of the counterfactual quantities in this

paper cannot be formulated as arising from the moment condition of his paper. Neither

does this paper�s framework fall into the framework of Brelow, McNeney and Wellner (2003)

who considered variable probability sampling which is di¤erent from the standard strati�ed

sampling studied here. Unlike variable probability sampling, we cannot identify the joint

distribution of observations from the standard strati�ed sampling without full knowledge of

pd;w or some other data sources that ensure the identi�cation of pd;w:

In the vast literature of program evaluations, there are surprisingly few researches that
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deal with inference under treatment-based sampling. Chen, Hong, and Tarozzi (2008) es-

tablished semiparametric e¢ ciency bounds and proposed e¢ cient estimation in a broader

context where one has outcome observations with missing values and has auxiliary data that

aid identi�cation. The approach of Chen, Hong, and Tarozzi (2008) applies to some strati�ed

sampling schemes. However, their framework does not apply here because the elimination

of an observation from the treatment-based sample is based not only on W in the covariate

X but also on the treatment decision D. Hence the unconfoundedness condition assumed in

their paper fails for observations from treatment-based sampling. A paper by Heckman and

Todd (2008) o¤ers a nice, simple idea to estimate �atet under pure treatment-based sampling

without assuming knowledge of aggregate shares. However, their paper does not focus on

e¢ cient procedures.

This paper �rst establishes e¢ ciency bounds for �wate and �atet under treatment-based

sampling. As byproduct, we also obtain a necessary and su¢ cient condition for the sampling

design under which a pure treatment-based sampling scheme o¤ers a better semiparametric

e¢ ciency bound than a random sampling scheme. Furthermore, we characterize optimal

treatment-based sampling that leads to a best semiparametric e¢ ciency bound.

The result of an optimal design of treatment-based sampling is related to a recent paper

by Hahn, Hirano, and Karlan (2008) who suggested an optimal design of social experiments

that is conducive to program evaluations of improved quality. Their paper proposes a two-

stage design of social experiments in which individuals are assigned to treatment based on

their propensity scores and these propensity scores are designed to attain low asymptotic

variance of average treatment e¤ects. However, their paper�s framework is di¤erent from this

paper as it considers observations drawn from the population by random sampling in both

stages. More importantly, unlike their paper, this paper is not concerned with a design of

treatment decision for each individual as it is assumed that the population proportions pd;w
are already given. The primary focus of this paper is on nonrandom sampling of observations

related to treatment programs and its e¤ect upon the inference quality of treatment e¤ects

estimators.

The main challenge in the development of optimal inference in this situation is that it is

not clear a priori how we can obtain an e¢ cient estimator from the computed semiparametric

e¢ ciency bounds. Obviously the usual approach of the sample analogue principle does not

work because the observations are not from random sampling. One might think that one

can apply the e¢ cient estimator of Hahn (1998) or Hirano, Imbens, and Ridder (2008) to

this situation of treatment-based sampling by employing appropriate change of measure as

in Tripathi (2008). However, this paper demonstrates that this approach of naive adaptation

does not work in general. Indeed, it is shown that the adapted version of the weighted average
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treatment e¤ects is ine¢ cient. The main reason is that in this case, the knowledge of the

aggregate shares is not ancillary. This paper proposes a di¤erent estimator that achieves the

semiparametric e¢ ciency bound in this situation. As this paper shows, it turns out that the

weighting by propensity scores in HIR should be modi�ed to achieve e¢ ciency.

The situation of primary relevance in practice appears to be the case where the object of

interest is �atet and the sampling is pure treatment-based sampling. This is the situation that

was of focus in Heckman and Todd (2008). In this situation, we do not require knowledge

of the aggregate shares, for �atet is identi�ed without it. It is shown that in this case, the

knowledge of the aggregate shares pd is ancillary. Hence one might consider an estimator that

is obtained by adapting the estimator of HIR to the pure treatment-based sampling scheme.

It is shown that indeed such an estimator is e¢ cient. However, this estimator requires

knowledge of the aggregate shares for its construction. This paper proposes an alternative

estimator that is e¢ cient and does not require knowledge of the aggregate shares.

This paper proceeds as follows. Section two discusses a general method to �nd semi-

parametric e¢ ciency bounds under treatment-based sampling data designs. Section three

establishes semiparametric e¢ ciency bounds for weighted average treatment e¤ects and aver-

age treatmented e¤ects on the treated. Section four investigates e¢ cient estimation. Section

�ve concludes and the proofs are relegated to the appendix.

2 Treatment-Based Sampling and Semiparametric Ef-

�ciency

2.1 Treatment-Based Sampling

In this section, we discuss a general method of computing semiparametric e¢ ciency bounds

under treatment-based sampling and an optimal design of treatment-based sampling. Sup-

pose we are interested in a certain parameter  (P ) from the distribution P of a random

vector (Z;D;W ); where (D;W ) is a discrete random variable taking values from a �nite set

D �W, and Z = (Y; V ) denotes a vector of outcome variable Y and a covariate vector V:

First, note that a likelihood for observations generated from standard strati�ed sampling

can be viewed as a conditional likelihood from multinomial sampling given fnd;wgd;w2(D�W):

As pointed out by Imbens and Lancaster (1996) (see also Tripathi (2008)), (D;W ) is ancil-

lary in both strati�ed sampling and multinomial sampling, and hence it su¢ ces for semipara-

metric e¢ ciency to consider only multinomial sampling with probabilities fqd;wg(d;w)2D�W .
Furthermore, fnd;wg(d;w)2D�W is a su¢ cient statistic for multinomial distributions, and hence
as long as semiparametric e¢ ciency is concerned, we can assume that the marginal design
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probabilities fqd;wg(d;w)2D�W in multinomial sampling are known. As it will turn out later,

however, we do not require full knowledge of fqd;wg(d;w)2D�W for the actual construction of

e¢ cient estimators.

Let the observations f(Zi; Di;Wi)gni=1 for (Z;D;W ) be generated by the multinomial
sampling scheme using known probabilities fqd;wg(d;w)2D�W : In other words, we draw a

stratum (d; w) from D � W using the multinomial distribution with known probabilities

fqd;wg(d;w)2D�W , and then draw Z conditional on (D;W ) = (d; w) until the total sample size

becomes n: Unless qd;w = pd;w for all (d; w) 2 D � W, the observations f(Zi; Di;Wi)gni=1
are not i.i.d. draws from P: The observations f(Zi; Di;Wi)gni=1 are i.i.d., however, under the
probability Q with density qd;wfZjD;W (zjd; w); where fZjD;W (zjd; w) is the conditional density
of Z given (D;W ) = (d; w): Therefore, the situation of treatment-based sampling is that

we have observations that are i.i.d. from the probability Q but the parameter of interest is

a functional of the probability P: The notations of expectation and variance without sub-

scripts are assumed to be the expectation and variance under P: Expectation Ed;w denotes

the conditional expectation given (D;W ) = (d; w):

2.2 Semiparametric E¢ ciency under Treatment-Based Sampling

In this section, we explain how we can compute the semiparametric e¢ ciency bound for the

parameter  (P ): The standard theory of e¢ ciency in semiparametric models and methods

to compute e¢ ciency bounds are fairly well established and exposited in the literature. (See

Newey (1990) and Bickel, Klaassen, Ritov, and Wellner (1993) for a review.) Closely related

to this paper, Bickel and Kwon (2001) showed how we can adapt the results based on i.i.d

sampling to a multinomial sampling environment. (See Example 1 there.) To save the space,

we assume basic terminologies and concepts in Bickel, Klassen, Ritov, and Wellner (1993)

and highlight how the standard method can be adapted to observations from treatment-based

sampling.

Since we know the marginal probabilities qd;w; we consider the following form of regular

parametric submodels:

ft(z; d; w) = f tZjD;W (zjd; w)qd;w; t 2 [0; "); " > 0; (2)

where ff tZjD;W (�jd; w) : t 2 [0; ")g denotes a regular parametric submodel passing through
fZjD;W (�jd; w); the conditional density of Z given (D;W ) = (d; w): Then, the parametric sub-
model fft : t 2 [0; ")g is associated with a score, s(z; d; w) = sd;w(z) 2 L2(Q); where sd;w =
@
@t
log f tZjD;W (�jd; w)jt=0 denotes the score associated with ff tZjD;W (�jd; w) : t 2 [0; ")g: Let

T denote the tangent space, i.e., the closed linear span of all such scores s for all regular
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parametric submodels in the form of (2).

There are two situations for the identi�cation of  (P ) that this paper considers. The

�rst situation is where we can identify  (P ) only using the conditional distribution of Z

given (D;W ). The second situation is where we have knowledge of the aggregate shares pd;w
which is needed to identify  (P ): In both cases, the relevant tangent space is the same T
and  (P ) is identi�ed from the knowledge of Q and fqd;wg(d;w)2D�W.: Hence, we can write

 (P ) =  Q(Q);

for some functional  Q: The parameter of interest  Q(Q) is assumed to be Fréchet di¤eren-

tiable and to have _ Q 2 L2(Q) such that for all regular parametric submodels of the form

in (2),
@ Q(Qt)

@t
jt=0 = EQ

h
_ Q(Z;D;W )s(Z;D;W )

i
:

When _ Q 2 T , we call it an e¢ cient in�uence function and denote it by _ 
e

Q: Then, the

semiparametric e¢ ciency bound is given by the inverse of

VTS � V arQ( _ 
e

Q(Z;D;W )) =
X

(d;w)2D�W

qd;wEd;w

h
_ 
e

Q(Z;D;W )
2
i
: (3)

In this paper, we �nd _ 
e

Q(Z;D;W ) in the following way. First, note that T can be also

viewed as the tangent space at P with parametric submodels Pt having density f tZjD;W (zjd; w)pd;w.
We �rst �nd _ P 2 L2(P ) such that for all regular parametric submodels with density

f tZjD;W (zjd; w)pd;w;
@ (Pt)

@t
jt=0 = E

h
_ P (Z;D;W )s(Z;D;W )

i
; (4)

for some s 2 T . Then, observe that

E
h
_ P (Z;D;W )s(Z;D;W )

i
= EQ

h
_ Q(Z;D;W )s(Z;D;W )

i
;

if we take _ Q(z; d; w) = _ P (z; d; w)pd;w=qd;w: Hence we �nd an in�uence function _ 
e

P under

P such that _ 
e

Q(z; d; w) =
_ 
e

P (z; d; w)pd;w=qd;w falls into T . Thus, _ 
e

Q(z; d; w) constructed in

this way is an e¢ cient in�uence function.

2.3 Optimal Design of Treatment-Based Sampling

The conventional wisdom tells us that when the proportion of a subsample in the population

is small, sampling relatively more from the subsample may improve the quality of inference.
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However, this is not an accurate description because we need to consider also the contribution

of the noise in the subsample to the variance of the estimator. (See Hahn, Hirano, and Karlan

(2008) for a similar observation.) Based on the variance bound in (3), we can develop a theory

of an optimal design of treatment-based sampling.

Once we identify _ 
e

P (z; d; w) =
_ 
e

Q(z; d; w)qd;w=pd;w; we can design an optimal treatment-

based sampling as follows. Let

Jd;w = p2d;wEd;w

h
_ 
e

P (Z;D;W )
2
i
:

Then, we can write the variance bound as

VTS =
X

(d;w)2D�W

Jd;w
qd;w

:

We can view Jd;w=qd;w as the contribution of the (d; w)-subsample to the variance bound.

The contribution decreases in qd;w which naturally captures the fact that by sampling more

from the (d; w)-th subsample, we can reduce the sampling variability to the estimator that

is contributed by the subsample. Then, the natural question is concerned with the optimal

design of treatment-based sampling. We de�ne the optimal design to be those fqd;wg(d;w)2D�W
such that minimize VTS under the constraint that qd;w � 0 and

P
(d;w)2D�W qd;w = 1: It is

easy to see that the optimal design is given by

q�d;w =

p
Jd;wP

(d;w)2D�W
p
Jd;w

: (5)

Therefore, the optimal design of treatment-based sampling suggests that we sample from the

(d; w)-subsample precisely according to the "noise" proportion of
p
Jd;w in

P
(d;w)2D�W

p
Jd;w:

In other words, we sample more from a subsample that induces more sampling variability to

the e¢ cient estimator. When we have some pilot sample obtained from a two-stage sampling

scheme or other data sources that can be used to draw information about Jd;w; the result

here may serve as a guidance for optimally choosing the size of the sampling fractions qd;w:3

Using the optimal design of treatment-based sampling q�d;w yields the minimum semipara-

3The results here are predicated on the assumption that it is equally costly to sample from the (d;w)
subsample for each (d;w) 2 D �W. However, sometimes, it may be less costly to sample from a speci�c
subsample from others. In this case, we can incorporate an appropriate di¤erential cost consideration into
the optimal design by turning the optimization problem into one subject to certain inequality constraints.
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metric e¢ ciency bound for  (P ) as8<: X
(d;w)2D�W

p
Jd;w

9=;
2

: (6)

The variance in (6) is the minimum variance bound over all the choices of the sampling

probabilities qd;w: The variance (6) can be used to compare di¤erent choices of additional

stratum variables Wi:

In the case of pure treatment-based sampling, we can make precise the condition for

treatment-based sampling to yield improved inference than random sampling. Let VRS be

the variance bound under random sampling, which is equal to VTS with pd = qd: Then it is

not hard to see that VRS � VTS if and only if

min

�
p1;

J1
J1 + J0

�
� q1 � max

�
p1;

J1
J1 + J0

�
: (7)

Therefore, it is not always true that sampling more from a subsample of low population

proportion leads to a better result. Improvement by treatment-based sampling hinges on

the noise proportion J1=(J1 + J0) as well. When p1 happens to coincide with J1=(J1 + J0);

there is no way for treatment-based sampling to improve strictly upon random sampling.

While the optimal design of treatment-based sampling clari�es the role of treatment-

based sampling in improving the quality of inference, there is a caveat obvious yet worth

mentioning. The results of the optimal design are justi�ed only for large samples, where

we can obtain a reliable estimate of Jd;w for each (d; w) 2 D � W. When the suggested
optimal proportion of the (d; w)-subsample is too small to the extent that the asymptotic

justi�cation of the estimate of Jd;w is cast in doubt, the optimal design suggested here can

lead to a grossly suboptimal choice.

3 Semiparametric E¢ ciency Bounds

3.1 Preliminary Discussion

We turn back to the set-up of program evaluations introduced in the beginning of this paper.

This paper assumes the unconfoundedness assumption:

(Y0; Y1) ?? DjX: (8)
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Under the unconfoundedness condition, a variety of treatment e¤ect parameters are identi-

�ed. For example, consider the weighted average treatment e¤ect:

�wate =
E [g(X)fY (1)� Y (0)g]

E [g(X)]
=
E [g(X)Y jD = 1]� E [g(X)Y jD = 0]

E [g(X)]
: (9)

As pointed out by HIR, the weighted average treatment e¤ect is reduced to �atet when we

take g(X) = p1(X):

In treatment-based sampling, the weighted average treatment e¤ect is not identi�ed with-

out knowledge of the marginal probabilities pd;w, because the marginal distribution of X is

not identi�ed from the data in this case. However, when the sampling is pure treatment-based

sampling, we can identify the average treatment e¤ect on the treated:

�atet = E [Y1 � Y0jD = 1] = E [E [Y1jX;D = 1]� E [Y0jX;D = 0] jD = 1] ; (10)

without knowledge of pd: In fact, one can show that under (8), the design of pure treatment-

based sampling (i.e. the choice of qd) does not play a role in determining the conditional

distribution of (Y1; Y0) given X:

When the treatment-based sampling has an additional dimension for the strata, i.e.,

W ; here, the knowledge of pd;w is required for identi�cation of �atet. This is because the

conditional distribution of X given D = 1 is not identi�ed from the observations from

treatment-based sampling without knowledge of pd;w:

3.2 E¢ ciency Bound for Weighted Average Treatment E¤ect

In this section, we establish the semiparametric e¢ ciency bound for �wate under treatment-

based sampling. The e¢ ciency bound under treatment-based sampling can be di¤erent from

that of Hahn (1998) or HIR for three reasons. First, the observations are from treatment-

based sampling, not from random sampling. Second, the procedure in this paper assumes

that we know marginal probabilities pd;w (except for �atet under pure treatment-based sam-

pling) while Hahn (1998) or HIR do not assume it. Third, the unconfoundedness condition

(8) is imposed on the original data set, not on the observations from treatment-based sam-

pling. The unconfoundedness condition a¤ects the semiparametric e¢ ciency bound here,

but not in the same way when the conditions are imposed directly on the observations.

In the computation of the e¢ ciency bound, we do not assume that the propensity scores,

either p1(X) under P or q1(X) under Q; are known, as this is not plausible in practice.

While �atet can be identi�ed as �wate with g(X) = p1(X) as noted by HIR, we need to it

separately because for �wate, g(X) is assumed to be known, while for �atet; g(X) = p1(X) is
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not. Furthermore, in the case of pure treatment-based sampling, the identi�cation of �atet
does not require knowledge of the aggregate shares pd, in contrast to �wate: Hence we present

the results for �ate in a separate subsection that follows. We introduce some notations:

�d(X) � E [YdjX]
�2d(X) � E

�
(Yd � �d(X))

2jX
�
; and

�(X) � E [Y1jX]� E [Y0jX] :

Theorem 1 : Under (8), the semiparametric e¢ ciency bound for �wate under treatment-
based sampling is equal to V �1

TS (�wate); where

VTS(�wate) �
1

fE[g(X)]g2
X

(d;w)2D�W

p2d;w
qd;w

Ed;w

�
g(X)2

�2d(X)

p2d(X)
+ �2d(X)

�
;

and �d(x) � g(x)f�(x)� �wateg � Ed;w[g(X)f�(X)� �wateg] with x � (v; w): In particular,
when sampling is pure treatment-based sampling and pd = qd; VTS(�atet) = VRS(�atet); where

VRS(�wate) �
1

fE[g(X)]g2E
"
g(X)2

�
�21(X)

p1(X)
+
�20(X)

p0(X)

�
+
X
d2D

�2d(X)pd(X)

#
:

The results of Theorem 1 show that knowledge of pd;w is not ancillary in general. In the

special case of pure treatment-based sampling where the sampling is random sampling, i.e.,

pd = qd, we can compare our results with that of HIR who found the variance bound to be

VHIR(�wate) �
1

fE[g(X)]g2E
�
g(X)2

�
�21(X)

p1(X)
+
�20(X)

p0(X)

�
+ g2(X)(�(X)� �wate)

2

�
;

where pd(X) � PfD = djXg; �2d(X) � E [(Yd � �d(X))
2jX], and �d(X) � E [YdjX] :

Therefore, VTS(�wate) � VHIR(�wate) and the equality holds if and only if

Ed[g(X)f�(X)� �wateg] = 0 for all d 2 D: (11)

This result implies that knowledge of marginal probabilities pd is not ancillary for �wate:

The ancillarity of the aggregate shares is not merely a matter of a theoretical concern.

The ancillarity is closely related to the question of whether the estimators of Hahn (1998)

or HIR could serve as a guidance for e¢ cient estimators under treatment-based sampling.

The non-ancillarity of the aggregate shares in Theorem 1 suggests that the answer will be

negative because the knowledge of the aggregate shares was not assumed in Hahn (1998) or

11



HIR. This will be con�rmed later when we develop e¢ cient estimators.

3.3 E¢ ciency Bound for Treatment E¤ects on the Treated

Let us turn to �atet: The following theorem o¤ers the semiparametric e¢ ciency bound under

treatment-based sampling.

Theorem 2 : (i) Suppose that (8) holds and fpd;wg(d;w)2D�W are known. Then the semi-

parametric e¢ ciency bound for �atet under treatment-based sampling is equal to V �1
TS (�atet);

where

VTS(�atet) �
X

(d;w)2D�W

p2d;w
qd;w

Ed;w

�
d

p21

n
�21(X) +

~�
2

1(X)
o
+
1� d

p21

�20(X)p
2
1(X)

p20(X)

�

and ~�d(x) � �(x)� �atet � Ed;w [�(X)� �atet] with x � (v; w):

(ii) Suppose that (8) holds and the sampling is pure treatment-based sampling. Then, re-

gardless of whether we know fpdgd2D or not, the semiparametric e¢ ciency bound for �atet
is given by V �1

PTS(�atet), where

VPTS(�atet) =
1

q1
E
�
�21(X) + f�(X)� �atetg2jD = 1

�
+
1

q0
E

�
f(Xj1)2�20(X)

f(Xj0)2 jD = 0

�
: (12)

Under random sampling where pd;w = qd;w, VTS(�atet) is smaller than the variance bound

of Hahn (1998) that does not assume knowledge of pd;w: Therefore, the aggregate shares are

not ancillary in general. However, the situation becomes di¤erent when the sampling is pure

treatment-based sampling. In this case, the aggregate shares pd are ancillary. Indeed, in

pure treatment-based sampling with pd = qd; the variance bound is reduced to

VRS(�atet) � E
��

p1(X)�
2
1(X)

p21
+
�20(X)p

2
1(X)

p0(X)p21

�
+
f�(X)� �atetg2p1(X)

p21

�
which is nothing but the variance bound of Hahn (1998) for �atet: Therefore, the variance

bound in (12) can be viewed as a generalization of the variance bound of Hahn (1998) to

pure treatment-based sampling.

3.4 Optimal Design of Treatment-Based Sampling

The semiparametric e¢ ciency bounds depend on the sampling design qd;w; and as discussed

before, we can develop an optimal design of treatment-based sampling. Theorems 1 and 2

12



allow us to identify Jd;w in (5) in this context of estimating average treatment e¤ects.

Corollary 1 : Suppose that we are under the conditions of Theorems 1 and 2. Then the
optimal choice of qd;w(�wate) for �wate and qd;w(�atet) for �atet are given by

qd;w(�wate) =

p
J�d;wP

(d;w)2D�W
p
J�d;w

and qd;w(�atet) =

q
~Jd;wP

(d;w)2D�W

q
~Jd;w

;

where

J�d;w =
p2d;w

fE[g(X)]g2Ed;w
�
g(X)2

�2d(X)

p2d(X)
+ �2d(X)

�
and

~Jd;w = p2d;wEd;w

�
d

p21

n
�21(X) +

~�
2

1(X)
o
+
1� d

p21

�20(X)p
2
1(X)

p20(X)

�
:

We can apply the discussions in Section 2.3 in this situation. The optimal treatment-

based sampling for �wate is reduced to random sampling if Jd;w is the same for all (d; w) 2
D �W. Even if the marginal probability pd;w is relatively small, we do not necessarily have
to sample relatively more from the subsample (D;W ) = (d; w) if the information from the

subsample is strong enough.

In the case of pure treatment-based sampling, the estimation of the optimal design does

not require knowledge of pd: Indeed, we de�ne

�J1 = E
�
�21(X) + f�(X)� �atetg2jD = 1

�
and �J0 = E

�
f(Xj1)2�20(X)

f(Xj0)2 jD = 0

�
:

Then, VPTS(�atet) = �J1=q1 + �J0=q0. The optimal design of q1 in Corollary 1 is given by

q1(�atet) =

p
�J1p

�J1 +
p
�J0

and the necessary and su¢ cient condition for VPTS(�atet) � VPRS(�atet) is given by as a

condition in (7) with J1 and J0 replaced by �J1 and �J0: Note that estimation of �Jd does not

require knowledge of the aggregate shares pd:
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4 E¢ cient Estimation of Weighted Average Treatment

E¤ects

4.1 Propensity Score Estimation

In this section, we focus on the propensity score. Let f(x) be the density ofX with respect to

some �-�nite measure, and f(vjd; w) be the conditional density function of V given (D;W ) =
(d; w). By the Bayes�rule, the propensity score is identi�ed as

pd(v; w) =
f(vjd; w)pd;wP
d2D f(vjd; w)pd;w

: (13)

While we can identify f(vjd; w) nonparametrically using the (D;W ) = (d; w) subsamples

in the treatment-based sample, the identi�cation of pd(v; w) certainly requires knowledge of

pd;w:

We consider two consistent estimators of the propensity score that are based on the

identi�cation in (13). Let X = (V1; X2) 2 RL and X2 = (V2;W ); where V1 2 RL1 is

continuous and X2 2 RL2 is discrete. Let Sd;w = f1 � i � n : (Di;Wi) = (d; w)g: De�ne
f̂(v1; v2jd; w) = 1

qd;wn

P
i2Sd;w Kh (V1i � v1) 1fV2i = v2g; where Kh(s1; � � �; sL1) = K(s1=h; � �

�; sL1=h)=hL1 and K(�) is a multivariate kernel function. Then, we de�ne the estimator of
the propensity score pd(x1; x2) as

p̂d(v; w) =
f̂(v1; v2jd; w)pd;wP
d2D f̂(v1; v2jd; w)pd;w

: (14)

Let Ld;w;i � pd;w
qd;w
1f(Di;Wi) = (d; w)g; and Lw;i � L1;w;i+L2;w;i:We can rewrite the estimator

as

p̂d(v; w) =

Pn
i=1 Ld;w;iKh (V1i � v1) 1fV2i = v2gPn
i=1 Lw;iKh (V1i � v1) 1fV2i = v2g

:

Therefore, the propensity score estimator is a weighted Nadaraya-Watson estimator. This

is intuitive because the probability under treatment-based sampling is the average of condi-

tional probabilities using di¤erent weights.

Alternatively, we can estimate the propensity score using the estimated fraction q̂d;w =
1
n

Pn
i=1 1f(Di;Wi) = (d; w)g = nd;w=n in place of qd;w: Using this, we de�ne

~pd(v; w) �
Pn

i=1 L̂d;w;iKh (V1i � v1) 1fV2i = v2gPn
i=1 L̂w;iKh (V1i � v1) 1fV2i = v2g

; (15)

where L̂d;w;i � pd;w
q̂d;w
1f(Di;Wi) = (d; w)g and L̂w;i � L̂1;w;i + L̂2;w;i:

14



4.2 E¢ cient Estimation of Weighted Average Treatment E¤ect

In this section, we search for an e¢ cient estimator. The �rst idea in this pursuit will be that

we obtain by adapting the estimator of HIR to treatment-based sampling:

�̂wate �

P
w2W

n
p1;w
q1;w

1
n

P
i2S1;w g(Vi; w)Yi=p̂1(Vi; w)�

p0;w
q0;w

1
n

P
i2S0;w g(Vi; w)Yi=p̂0(Vi; w)

o
P

w2W

n
p1;w
q1;w

1
n

P
i2S1;w g(Vi; w) +

p0;w
q0;w

1
n

P
i2S0;w g(Vi; w)

o ,

where p̂d(v; w) is estimated by (14). Observe that when pd;w = qd;w and W is a singleton,

the estimator �̂wate is precisely reduced to the estimator of HIR except with a di¤erent

nonparametric estimator for the propensity score. Therefore, this estimator is a generalization

of the estimator of HIR to the treatment-based sampling. In Theorem 2 below, we show

that this estimator is consistent and asymptotically normal, but ine¢ cient.

Alternatively, we suggest the following estimator:

~�wate �
P

w2W
p1;w
n1;w

P
i2S1;w g(Vi; w)Yi=~p1(Vi; w)P

w2W
p1;w
n1;w

P
i2S1;w g(Vi; w)=~p1(Vi; w)

�
P

w2W
p0;w
n0;w

P
i2S0;w g(Vi; w)Yi=~p0(Vi; w)P

w2W
p0;w
n0;w

P
i2S0;w g(Vi; w)=~p0(Vi; w)

;

where ~pd(v; w) is as in (15). The estimator ~�wate involves a further weighting of g(Vi; w)

by ~pd(Vi; w): It is worth noting that the estimator �̂wate uses the true marginal probability

qd;w under Q while the estimator ~�wate uses its estimator q̂d = nd=n:

We formalize the results that have been discussed so far. We introduce the following

assumptions. Let X be the support of X and f(�) be its density with respect to a �-�nite
measure.

Assumption 1 : For [a; b] � (0; 1), p1(x) 2 [a; b] for all x in the set fx 2 X : g(x) 6= 0g.

Assumption 2 : (i) (a) f(�) is bounded away from zero on X :
(b) f(�; x2), p1(�; x2); �0(�; x2); �1(�; x2); and g(�; x2) are L1 + 1 times continuously di¤eren-
tiable with bounded derivatives.

(ii)(a) EY 2
1 <1 and EY 2

0 <1; (b) for either d = 1 or d = 0; supx2Xpd(x)jjxjjL1 <1; and

(c) jg(�)j is bounded.
(iii) pd;w 2 (0; 1) and qd;w 2 (0; 1) for all (d; w) 2 D � W and �(d;w)2D�Wpd;w = 1 and

�(d;w)2D�Wqd;w = 1:

Assumption 3 : (i)K is zero outside an interior of a bounded set, L1+1 times continuously

di¤erentiable with bounded derivatives,
R
K(s)ds = 1; and

R
sl11 � � � s

lL1
L1
K(s)ds = 0 for all

nonnegative integers l1; � � �; lL1 such that l1 + � � �+ lL1 � L1 and
R
jsl11 � � � s

lL1
L1
K(s)jds <1

for all nonnegative integers l1; � � �; lL1 such that l1 + � � �+ lL1 = L1 + 1:
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(ii)
p
n�1=2h�L1 log n+ n1=2hL1+1 ! 0 as n!1:

Assumption 1 is the condition of sample overlap needed for the identi�cation of �wate.

This is violated when g(X) = 1 and part of X is only observed among the treated or

untreated subsamples. (See Heckman, Ichimura, and Todd (1997) for a discussion in this

regard.) Assumptions 2(b) controls the tail behavior of either p1(x) or p0(x): This condition

is satis�ed when X is bounded. Assumption 3(i) is a standard assumption for a higher order

kernel. The following theorem establishes the asymptotic distribution of �̂wate and ~�wate:

Theorem 3 : Suppose that the condition (8) and Assumptions 1-3 hold. Then

p
n(�̂wate � �wate) ! d N(0; V1); and

p
n(~�wate � �wate) ! d N(0; VTS(�wate));

where

V1 �
1

fE[g(X)]g2
X

(d;w)2D�W

p2d;w
qd;w

Ed;w

�
g(X)2

�
�2d(X)

p2d(X)
+ (�(X)� �wate)

2

��
:

When the treatment-based sampling is random sampling , the asymptotic variance V of

�̂wate is reduced to VHIR which we saw that it is less than VTS(�wate): Therefore, the re-

sult of Theorem 3 shows that even when the estimator of HIR is modi�ed to accommodate

treatment-based sampling, the estimator is still ine¢ cient. The main reason for the ine¢ -

ciency seems to lie in the fact that the aggregate shares pd are not ancillary. Indeed, when

the sampling is random sampling, V1 is reduced to VHIR(�wate): The e¢ ciency is achieved

by an alternative estimator ~�wate: The e¢ cient estimator uses estimated fractions q̂d;w and

hence can also be used when only the estimated fraction q̂d;w = nd;w=n is available in the

data.

4.3 E¢ cient Estimation of Average Treatment E¤ect on the Treated

Let us turn to e¢ cient estimation of �atet. In this case, the identi�cation of �atet allows us

to formulate Assumption 1 di¤erently:

Assumption 1P : For [a; b] � (0; 1), p1(x) 2 [a; b] for all x 2 X :

This assumption is weaker than Assumption 1 when g(X) = 1:We suggest the following
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estimator:

~�atet =
1

p1

X
w2W

p1;w
n1;w

X
i2S1;w

Yi �
P

w2W
p0;w
n0;w

P
i2S0;w ~p1(Vi; w)Yi=~p0(Vi; w)P

w2W
p0;w
n0;w

P
i2S0;w ~p1(Vi; w)=~p0(Vi; w)

;

where ~pd(x) is estimated by (15). We will show that this estimator is e¢ cient.

We saw that in the case of pure treatment-based sampling, the knowledge of pd is ancillary.

One might consider alternatively the estimator of HIR that is adapted to pure treatment-

based sampling:

�̂atet;p =

p1
q1n

P
i2S1 Yi �

p0
q0n

P
i2S0 p̂1(Xi)Yi=p̂0(Xi)

p0
q0n

P
i2S0 p̂1(Xi) +

p1
q1n

P
i2S1 p̂1(Xi)

:

The estimator reduces to that of HIR when the sampling is random sampling, i.e., pd = qd:

In a theorem below, we will show that this estimator is e¢ cient. However, this estimator

requires knowledge of the aggregate shares pd: Instead, we suggest the following estimator

that does not require knowledge of the aggregate shares in this case.

~�atet;p =
1

n1

X
i2S1

Yi �
P

i2S0 ~p1(Xi)Yi=~p0(Xi)P
i2S0 ~p1(Xi)=~p0(Xi)

=
1

n1

X
i2S1

Yi �

P
i2S0 Yi

�
f 1
n1

P
j2S1 Kjig=f 1n0

P
j2S0 Kjig

�
P

i2S0

�
f 1
n1

P
j2S1 Kjig=f 1n0

P
j2S0 Kjig

� ;

where Kji = Kh (V1j � V1i) 1fV2j = V2ig: The estimator ~�atet;p is in fact an estimator ~�atet
that is specialized to pure treatment-based sampling. Hence the estimator is also e¢ cient.

Theorem 4 : Suppose that the condition (8) and Assumptions 1P, 2-3 hold. Then,

p
n(~�atet � �atet)!d N(0; VTS(�atet)):

Suppose further that we are under pure treatment-based sampling. Then

p
n(~�atet;p � �atet) ! d N(0; VPTS(�atet)) and

p
n(�̂atet;p � �atet) ! d N(0; VPTS(�atet)):

5 Conclusion

This paper has established semiparametric e¢ ciency bounds for certain average treatment

e¤ects parameters under treatment-based sampling. This paper has also developed an opti-
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mal design of treatment-based sampling. The theory of optimal design illuminates the role of

treatment-based sampling in improving the quality of e¢ cient inference. Lastly, this paper

has suggested e¢ cient estimators. This paper�s �nding suggests that under treatment-based

sampling, tailoring the estimators of HIR to treatment-based sampling works only when the

aggregate shares are ancillary.

6 Appendix: Proofs

Proof of Theorem 1 : We need to �nd _ 
e

Q(z; d; w): Let Q = ffZjD;W (�j�)q� : fZjD;W 2
Pd;w; (d; w) 2 D�Wg and �x Q 2 Q: Let f(zjd; w) be the conditional density of Z = (Y; V )
given (D;W ) = (d; w) and let z = (y; v): We use subscripts P and Q for densities to make

it explicit under which probability they are de�ned when they di¤er. We do not use the

subscripts for the conditional densities given (D;W ) = (d; w) or given (D;W; V ) = (d; w; v)

because they are identical both under P and under Q:

We write the density fQ(y; v; d; w) of (Y; V;D;W ) underQ as fd;P (yjx)f(vjd; w)qd;w where
fd;P (yjx) is the conditional density of Ydi given Xi = x under P: The second equality follows

by the unconfoundedness condition. Hence the score s(y; v; d; w) is written as sd(yjx) +
s(vjd; w); where

R
sd(yjx)fd;P (yjx)dy = 0 and

R
s(vjd; w)f(vjd; w)dx = 0: The closed linear

span of such scores constitutes the tangent space T .
Take a regular parametric submodel f tQ(y; v; d; w) = f t(y; vjd; w)qd;w and let Pt be the

parametric submodel with density f t(y; vjd; w)pd;w: We need to �nd _ P . The weighted

average treatment e¤ect under Pt is written as

�wate(t) =

P
(d;w)2D�W

R
g(v; w)

�R
yf1;t(yjv; w)dy �

R
yf0;t(yjv; w)dy

	
pd;wft(vjd; w)dvP

(d;w)2D�W pd;w
R
g(v; w)ft(vjd; w)dv

:

The �rst order derivative of �wate(t) with respect to t at t = 0 is equal to

1

E[g(X)]
E [g(X) (E [Y s1(Y jX)jX]� E [Y s0(Y jX)jX])]

� 1

E[g(X)]
E[s(V jD;W )g(X)f�(X)� �wateg]:

Let

_ P (y; v; d; w) =
1

E[g(X)]
g(v; w)

�
d(y � �1(v; w))

p1(v; w)
� (1� d)(y � �0(v; w))

p0(v; w)

�
(16)

� 1

E[g(X)]
�d(v; w):
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We can write

@�wate(t)

@t
= E[ _ P (Y; V;D;W )s(Y; V;D;W )] = EQ

h
_ Q(Y; V;D;W )s(Y; V;D;W )

i
; (17)

where _ Q(y; v; d; w) = _ P (y; v; d; w)pd;w=qd;w: Now, observe that _ Q belongs to the tangent

space T . (This follows from the unconfounded condition.) Hence the variance bound is given
by its L2(Q)-norm.

Proof of Theorem 2 : The tangent space in the proof of Theorem 1 remains the same.

The only needed change from Theorem 1 for this case is the computation of the in�uence

function because now g(x) = p1(x) is not assumed to be known. Let Pt be the submodel as

in the proof of Theorem 1. The weighted average treatment e¤ect under Pt is written as

�atet(t) =
X
w2W

Z Z
y fft(yjv; 1; w)� ft(yjv; 0; w)g dyft(vj1; w)pwj1dv;

where pwj1 = p1;w=f�w2Wp1;wg: The �rst order derivative of �atet(t) with respect to t is equal
to

E [s(V jD;W )f�(X)� �atetgjD = 1]

+E [E [Y s1(Y jX)jX;D = 1]� E [Y s0(Y jX)jX;D = 0] jD = 1] :

Therefore, we take

_ P (y; v; d; w) =
1

p1

�
d(y � �1(v; w)� ~�1(v; w))�

p1(v; w)(1� d)(y � �0(v; w))

p0(v; w)

�
:

As shown in the proof of Theorem 1, this yields the semiparametric e¢ ciency bound for �atet:

Let us turn to the situation with pure treatment-based sampling. The tangent space is

the closed linear span of scores of the form sd(yjx) + s(vjd); where
R
sd(yjx)fd;P (yjx)dy = 0

and
R
s(vjd)f(vjd)dx = 0: Write

�atet(t) =

Z Z
y fft(yjx; 1)� ft(yjx; 0)g dyft(xj1)dx:

The �rst order derivative of �atet(t) with respect to t is equal to

E [s(XjD)f�(X)� �atetgjD = 1]

+E [fE [Y s1(Y jX)jX;D = 1]� E [Y s0(Y jX)jX;D = 0]gjD = 1] :
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Therefore, we take

_ P (y; x; d) =

�
d(y � �1(x)� f�(x)� �atetg)

p1
� p1(x)(1� d)(y � �0(x))

p0(x)p1

�
because E [�(X)� �atetjD = 1] = 0: Let _ Q(y; x; d) = _ P (y; x; d)pd=qd: NowX

d2D

qdE
h
_ 
2

Q(Y;X;D)jD = d
i
=

1

q1
E
�
(Y1 � �1(X)� f�(X)� �atetg)2jD = 1

�
+
1

q0
E

�
p20p1(X)

2

p0(X)2p21
(Y0 � �0(X))

2jD = 0

�
:

By Bayes�rule, p0p1(X)=(p1p0(X)) = f(Xj1)=f(Xj0); and hence plugging in this, we obtain
the wanted result.

Lemma A1 : Suppose that Si is a random variable such that E[S2i ] < 1 and E[SijV1i =
�; X2i = x2] is L1 + 1 times continuously di¤erentiable with bounded derivatives.

(i) Suppose that the assumptions of Theorem 3 hold. Then, for d = 0; 1;

1

n

nX
i=1

Si (pd(Vi; w)� p̂d(Vi; w))

= � 1
n

nX
i=1

EQ[SijVi;Wi = w]Jd;w;i
EQ[Lw;ijVi;Wi = w]

+
1

n

nX
i=1

EQ[SijVi;Wi = w]pd(Vi; w)Jw;i
EQ[Lw;ijVi;Wi = w]

+ op(n
�1=2);

where Jd;w;i � Ld;w;i � EQ [Ld;w;ijVi;Wi = w] and Jw;i = J1;w;i + J0;w;i:

(ii) Suppose that the assumptions of Theorem 4 hold. Then,

1

n

nX
i=1

Si (p̂1(Vi; w)� ~p1(Vi; w))

= EQ [p0(Vi; w)p1(Vi; w)Si]

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):

Proof of Lemma A1 : (i) Observe that by Bayes�rule,

f(Vij1; w) = q1;w(Vi)fQ(Vi)=q1;w = q1(Vi; w)qw(Vi)fQ(Vi)=q1;w;

where q1;w(Vi) = EQ[1f(Di;Wi) = (d; w)gjVi]; qw(Vi) = EQ[1fWi = wgjVi] and fQ(�) is the
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density of Vi under Q. Hence

p1(Vi; w) =
f(Vij1; w)p1;w

f(Vij1; w)p1;w + f(Vij0; w)p0;w
(18)

=
(q1(Vi; w)=q1;w)p1;wP
d2D(qd(Vi; w)=qd;w)pd;w

=
EQ[L1;w;ijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
:

Let Kji = Kh (V1j � V1i) 1fV2j = V2ig for brevity. Observe that

1

n

nX
i=1

Si (p1(Vi; w)� p̂1(Vi; w)) (19)

=
1

n

nX
i=1

Si
EQ[Lw;ijVi;Wi = w]

(
EQ[L1;w;ijVi;Wi = w]�

Pn
j=1;j 6=i L1;w;jKjiPn

j=1;j 6=iKji

)

+
1

n

nX
i=1

Si

( Pn
j=1;j 6=i L1;w;jKji

EQ[Lw;ijVi;Wi = w]
Pn

j=1;j 6=iKji

�
Pn

j=1;j 6=i L1;w;jKjiPn
j=1;j 6=i Lw;jKji

)
+ op(n

�1=2):

We write the last sum as

� 1
n

nX
i=1

Sip1(Vi; w)

EQ[Lw;ijVi;Wi = w]

(
EQ[Lw;ijVi;Wi = w]�

Pn
j=1;j 6=i Lw;jKjiPn
j=1;j 6=iKji

)
+ op(n

�1=2)

using (18). By Lemma B1 below, the last two terms in (19) are asymptotically equivalent

to (up to op(n�1=2))

� 1
n

nX
i=1

EQ[SijVi;Wi = w]J1;w;i
EQ[Lw;ijVi;Wi = w]

+
1

n

nX
i=1

EQ[SijVi;Wi = w]p1(Vi; w)Jw;i
EQ[Lw;ijVi;Wi = w]

using the de�nitions of J1;w;i and Jw;i:

(ii) First, we write p̂(Xi)� ~p(Xi) asPn
j=1

n
L1;w;j � L̂1;w;j

o
KjiPn

j=1 Lw;jKji

+
nX
j=1

L̂1;w;jKji

(
1Pn

j=1 Lw;jKji

� 1Pn
j=1 L̂w;jKji

)

= �
Pn

j=1 L0;w;jKjiPn
j=1 Lw;jKji

Pn
j=1

n
L̂1;w;j � L1;w;j

o
KjiPn

j=1 Lw;jKji

+

Pn
j=1 L1;w;jKjiPn
j=1 Lw;jKji

Pn
j=1

n
L̂0;w;j � L0;w;j

o
KjiPn

j=1 Lw;jKji

+ op(n
�1=2):
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Therefore, we can write p̂(Xi)� ~p(Xi) as

p1(Vi; w)
Pn

j=1

n
L̂0;w;j � L0;w;j

o
KjiPn

j=1 Lw;jKji

�
p0(Vi; w)

Pn
j=1

n
L̂1;w;j � L1;w;j

o
KjiPn

j=1 Lw;jKji

+ op(n
�1=2)

As for the last term, we can write 1
n

Pn
j=1

n
L̂1;w;j � L1;w;j

o
Kji=

Pn
j=1 Lw;jKji as

�
p1;w
q̂1;w

� p1;w
q1;w

�Pn
j=1 1f(Di;Wi) = (1; w)gKjiPn

j=1 Lw;jKji

=

�
p1;w
q̂1;w

� p1;w
q1;w

�
q1(Vi; w)

q1(Vi; w)p1;w=q1;w + q0(Vi; w)p0;w=q0;w
+ op(n

�1=2)

=

�
q1;w � q̂1;w

q1;w

�
q1(Vi; w)p1;w=q1;w

q1(Vi; w)p1;w=q1;w + q0(Vi; w)p0;w=q0;w
+ op(n

�1=2)

=

�
q1;w � q̂1;w

q1;w

�
p1(Vi; w) + op(n

�1=2) (by (18).)

Dealing with
Pn

j=1

n
L̂0;w;j � L0;w;j

o
Kji=

Pn
j=1 Lw;jKji similarly, we conclude that

p̂(Xi)� ~p(Xi) = p0(Vi; w)p1(Vi; w)

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):

Therefore, we write the di¤erence in (ii) as

EQ [p0(Vi; w)p1(Vi; w)Si]

�
q̂1;w � q1;w

q1;w
� q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):

Lemma A2 : (i) Suppose that the assumptions of Theorem 3 hold, and let "d;w;i = Ydi �
�d(Vi; w): Then,

p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)�(Vi; w)Lw;i + op(n
�1=2):
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(ii) Suppose that the assumptions of Theorem 4 hold, and let "d;w;i = Ydi � �d(Vi; w): Then,

p1;w
n1;w

X
i2S1;w

g(Vi; w)Yi
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

g(Vi; w)Yi
~p0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

fg(Vi; w)�(Vi; w)� E1;w [g(Vi; w)�(Vi; w)]gL1;w;i

+
1

n

nX
i=1

fg(Vi; w)�(Vi; w)� E0;w [g(Vi; w)�(Vi; w)]gL0;w;i

+E1;w [g(Vi; w)�(Vi; w)] p1;w + E0;w [g(Vi; w)�(Vi; w)] p0;w + op(n
�1=2):

Proof of Lemma A2 : (i) We �rst write

p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)YiL1;w;i
p̂1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL0;w;i
p̂0(Vi; w)

= A1n + A2n; say.

We �rst write A1n = 1
n

Pn
i=1 g(Vi; w)YiL1;w;i=p1(Vi; w) +

~A1n; where

~A1n =
1

n

nX
i=1

g(Vi; w)YiL1;w;i

�
1

p̂1(Vi; w)
� 1

p1(Vi; w)

�
:

The term on the right-hand side is equal to

1

n

nX
i=1

g(Vi; w)YiL1;w;i
p21(Vi; w)

(p1(Vi; w)� p̂1(Vi; w)) + op(n
�1=2); (20)

by the fact that supx2X jp̂1(x) � p1(x)j = Op(n
�1=2h�L1=2

p
log n + hL1+1) = op(n

�1=4): The

uniform convergence is due to Theorem 4 of Hansen (2008) and the last convergence rate is

due to Assumption 2(ii). We plug Si = g(Vi; w)YiL1;w;i=p
2
1(Vi; w) in Lemma A1(i) to obtain

that the leading sum in (20) is asymptotically equivalent to (up to op(n�1=2))

� 1
n

nX
i=1

g(Vi; w)EQ[YiL1;w;ijVi;Wi = w]J1;w;i
p21(Vi; w)EQ[Lw;ijVi;Wi = w]

(21)

+
1

n

nX
i=1

g(Vi; w)EQ[YiL1;w;ijVi;Wi = w]Jw;i
p1(Vi; w)EQ[Lw;ijVi;Wi = w]

:
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Using the fact that

EQ[YiL1;w;ijVi;Wi = w]

EQ[Lw;ijVi;Wi = w]
= �1(Vi; w)p1(Vi; w); (22)

we write the di¤erence in (21) as

� 1
n

nX
i=1

g(Vi; w)�1(Vi; w)p0(Vi; w)

p1(Vi; w)
J1;w;i +

1

n

nX
i=1

g(Vi; w)�1(Vi; w)J0;w;i:

Therefore, we conclude that

~A1n = �
1

n

nX
i=1

g(Vi; w)�1(Vi; w)p0(Vi; w)

p1(Vi; w)
J1;w;i

+
1

n

nX
i=1

g(Vi; w)�1(Vi; w)J0;w;i + op(n
�1=2):

On the other hand, A2n = 1
n

Pn
i=1 g(Vi; w)YiL0;w;i=p0(Vi; w) +

~A2n; where

~A2n =
1

n

nX
i=1

g(Vi; w)YiL0;w;i

�
1

p̂0(Vi; w)
� 1

p0(Vi; w)

�
:

Similarly as before, we write

~A2n =
1

n

nX
i=1

g(Vi; w)�0(Vi; w)J1;w;i

� 1
n

nX
i=1

g(Vi; w)�0(Vi; w)p1(Vi; w)

p0(Vi; w)
J0;w;i + op(n

�1=2):

Combining the two results and using the fact that �(X) = �1(X)� �0(X); we conclude

~A1n � ~A2n = � 1
n

nX
i=1

g(Vi; w)

�
�1(Vi; w)� �(Vi; w)p1(Vi; w)

p1(Vi; w)

�
J1;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�(Vi; w)p0(Vi; w) + �0(Vi; w)

p0(Vi; w)

�
J0;w;i + op(n

�1=2):
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Plugging in this result and rearranging terms, we write

p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p̂0(Vi; w)

=
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)�(Vi; w)L1;w;i +
1

n

nX
i=1

g(Vi; w)�(Vi; w)L0;w;i

+
1

n

nX
i=1

g(Vi; w)

�
�1(Vi; w)� �(Vi; w)p1(Vi; w)

p1(Vi; w)

�
(EQ[L1;w;ijVi;Wi = w])

� 1
n

nX
i=1

g(Vi; w)

�
�(Vi; w)p0(Vi; w) + �0(Vi; w)

p0(Vi; w)

�
fEQ[L0;w;ijVi;Wi = w]g+ op(n

�1=2):

As for the last two terms, observe that

Hn �
�
�1(Vi; w)

p1(Vi; w)
� �(Vi; w)

�
EQ[L1;w;ijVi;Wi = w]

�
�
�0(Vi; w)

p0(Vi; w)
+ �(Vi; w)

�
EQ[L0;w;ijVi;Wi = w]

=

�
�1(Vi; w)

p1(Vi; w)
� �(Vi; w)

�
q1(Vi; w)p1;w

q1;w

�
�
�0(Vi; w)

p0(Vi; w)
+ �(Vi; w)

�
q0(Vi; w)p0;w

q0;w
:

However, by Bayes�rule,

p1;wq1(Vi; w)

q1;w
=
p1;wq1(Vi; w)fQ(Vi; w)

q1;wfQ(Vi; w)
=
p1;wf(Vij1; w)
fQ(Vi; w)

=
p1(Vi; w)fP (Vi; w)

fQ(Vi; w)
: (23)

Using this result and the de�nition of �(Vi; w); we can show that Hn = 0: Hence we obtain

the wanted result.
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(ii) We write

1

n

nX
i=1

g(Vi; w)YiL̂1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL̂0;w;i
~p0(Vi; w)

(24)

=
1

n

nX
i=1

g(Vi; w)YiL1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL0;w;i
~p0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)YifL̂1;w;i � L1;w;ig
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YifL̂0;w;i � L0;w;ig
~p0(Vi; w)

:

We write the �rst di¤erence as

1

n

nX
i=1

g(Vi; w)YiL1;w;i
p̂1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL0;w;i
p̂0(Vi; w)

+
1

n

nX
i=1

g(Vi; w)YiL1;w;i
p21(Vi; w)

Ai �
1

n

nX
i=1

g(Vi; w)YiL0;w;i
p20(Vi; w)

Bi + op(n
�1=2);

where Ai = p̂1(Xi)� ~p1(Xi) and Bi = p̂0(Xi)� ~p0(Xi): Then, by applying Lemma A1(ii), we

have

1

n

nX
i=1

g(Vi; w)YiL1;w;i
p21(Vi; w)

Ai �
1

n

nX
i=1

g(Vi; w)YiL0;w;i
p20(Vi; w)

Bi

= EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
+
L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
+
L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):

On the other hand, as for the last di¤erence in (24),

1

n

nX
i=1

g(Vi; w)YifL̂1;w;i � L1;w;ig
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YifL̂0;w;i � L0;w;ig
p0(Vi; w)

+ op(n
�1=2)

= �EQ
�
g(Vi; w)YiL1;w;i

p1(Vi; w)

��
q̂1;w � q1;w

q1;w

�
+ EQ

�
g(Vi; w)YiL0;w;i

p0(Vi; w)

��
q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):
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Combining these results, we conclude that

1

n

nX
i=1

g(Vi; w)YiL̂1;w;i
~p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL̂0;w;i
~p0(Vi; w)

(25)

=
1

n

nX
i=1

g(Vi; w)YiL1;w;i
p̂1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)YiL0;w;i
p̂0(Vi; w)

+EQ

�
g(Vi; w)Yi

�
�L1;w;i +

L0;w;ip1(Vi; w)

p0(Vi; w)

���
q̂1;w � q1;w

q1;w

�
�EQ

�
g(Vi; w)Yi

�
L1;w;ip0(Vi; w)

p1(Vi; w)
� L0;w;i

���
q̂0;w � q0;w

q0;w

�
+ op(n

�1=2):

The last di¤erence is written as

EQ [g(Vi; w) f�fY1i � Y0;igL1;w;ig]
�
q̂1;w � q1;w

q1;w

�
+EQ

�
g(Vi; w)Y0;i

�
L0;w;ip1(Vi; w)

p0(Vi; w)
� L1;w;i

���
q̂1;w � q1;w

q1;w

�
�EQ [g(Vi; w)fY1i � Y0;igL0;w;i]

�
q̂0;w � q0;w

q0;w

�
+EQ

�
g(Vi; w)Y1i

�
L0;w;i �

L1;w;ip0(Vi; w)

p1(Vi; w)

���
q̂0;w � q0;w

q0;w

�
:

Observe that

EQ [g(Vi; w)Y0;i f�L1;w;i + L0;w;ip1(Vi; w)=p0(Vi; w)g] = 0 and

EQ [g(Vi; w)Y1i fL0;w;i � L1;w;ip0(Vi; w)=p1(Vi; w)g] = 0:

Also note that

EQ [g(Vi; w) f�fY1i � Y0;igL1;w;ig] = �E [g(Vi; w)�(Vi; w)p1(Vi; w)] and
�EQ [g(Vi; w)fY1i � Y0;igL0;w;i] = �E [g(Vi; w)�(Vi; w)p0(Vi; w)] :

Hence, the di¤erence of the last two terms in (25) is equal to

�E1;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L1;w;i � p1;w)� E0;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L0;w;i � p0;w) :

Applying the result of (i) to the �rst di¤erence of (25), we conclude that the di¤erence in
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(ii) is equal to

1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0(Vi; w)

+ �n;w + op(n
�1=2);

where

�n;w � 1

n

nX
i=1

g(Vi; w)�(Vi; w)L1;w;i +
1

n

nX
i=1

g(Vi; w)�(Vi; w)L0;w;i

�E1;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L1;w;i � p1;w)

�E0;w [g(Vi; w)�(Vi; w)]
1

n

nX
i=1

(L0;w;i � p0;w) :

The wanted result follows by rearranging the terms.

Proof of Theorem 3 : Note that

�̂wate � �wate =
1

Eg(Xi)

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p̂0(Vi; w)

9=; (26)

+Rn � �wate + op(n
�1=2);

where

Rn �
�

1P
w2W

1
n

Pn
i=1 g(Vi; w) fL1;w;i + L0;w;ig

� 1

Eg(Xi)

�

�
X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p0(Vi; w)

9=; :

We can write

Rn = �
1

E [g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)Lw;i�wate + �wate + op(n
�1=2):
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Applying Lemma A2(i) to the �rst sum in (26), we obtain that

1

E[g(Xi)]

X
w2W

8<: p1;w
q1;wn

X
i2S1;w

g(Vi; w)Yi
p̂1(Vi; w)

� p0;w
q0;wn

X
i2S0;w

g(Vi; w)Yi
p̂0(Vi; w)

9=;+Rn � �wate

=
1

E[g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)

�
L1;w;i"1;w;i
p1(Vi; w)

� L0;w;i"0;w;i
p0(Vi; w)

�

+
1

E[g(Xi)]

X
w2W

1

n

nX
i=1

g(Vi; w)(�(Vi; w)� �wate)Lw;i + op(n
�1=2):

By applying the Central Limit Theorem, we obtain the asymptotic distribution of �̂wate:

As for ~�wate; observe that

~�wate � �wate (27)

=
1

Eg(Xi)

X
w2W

8<:p1;w
n1;w

X
i2S1;w

g(Vi; w)Yi
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

g(Vi; w)Yi
~p0(Vi; w)

9=;+ ~Rn � �wate:

where ~Edg(Xi) =
P

w2W
pd;w
nd;w

P
i2Sd;w

g(Vi;w)
~pd(Vi;w)

and � d = E [g(Xi)�d(Xi)] =Eg(Xi);

~Rn �
�

1

~E1g(Xi)
� 1

Eg(Xi)

�
� 1Eg(Xi)

�
�

1

~E0g(Xi)
� 1

Eg(Xi)

�
� 0Eg(Xi) + op(n

�1=2)

= �
~E1g(Xi)� 1 � ~E0g(Xi)� 0

Eg(Xi)
+ �wate + op(n

�1=2):

Observe that

�
~E1g(Xi)� 1 � ~E0g(Xi)� 0

Eg(Xi)
(28)

= � 1

E [g(Xi)]

X
w2W

8<:p1;w
n1;w

X
i2S1;w

g(Vi; w)� 1
~p1(Vi; w)

� p0;w
n0;w

X
i2S0;w

g(Vi; w)� 0
~p0(Vi; w)

9=; :

By replacing Yi1f(Di;Wi) = (1; w)g by � 11f(Di;Wi) = (1; w)g and Yi1f(Di;Wi) = (0; w)g
by � 01f(Di;Wi) = (0; w)g in Lemma A2(ii) and noting that �wate = � 1 � � 0; we �nd that
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the last term in (28) is equal to

� �wate
Eg(Xi)

X
w2W

1

n

nX
i=1

fg(Vi; w)� E1;w [g(Vi; w)]gL1;w;i

� �wate
Eg(Xi)

X
w2W

1

n

nX
i=1

fg(Vi; w)� E1;w [g(Vi; w)]gL0;w;i � �wate + op(n
�1=2):

Therefore, by applying Lemma A2(ii) to the leading term of (27), we conclude that ~�wate �
�wate is asymptotically equivalent to (up to op(n�1=2))

1

Eg(Xi)

X
w2W

(
1

n

nX
i=1

g(Vi; w)L1;w;i"1;w;i
p1(Vi; w)

� 1

n

nX
i=1

g(Vi; w)L0;w;i"0;w;i
p0;w(Vi; w)

)

+
1

Eg(Xi)

X
w2W

1

n

nX
i=1

(�1(Vi; w)L1;w;i + �0(Vi; w)L0;w;i) :

The wanted result follows from the Central Limit Theorem.

Proof of Theorem 4 : We �rst consider ~�atet. Let E1 [�0(Xi)] = E [�0(Xi)jDi = 1] : Note

that

~�atet � �atet =
1

p1

X
w2W

8<:p1;w
n1;w

X
i2S1;w

Yi �
p0;w
n0;w

X
i2S0;w

~p1(Vi; w)Yi
~p0(Vi; w)

9=;+ �Rn � �atet;

where

�Rn �
(
1

p1
� 1P

w2W
p0;w
n0;w

P
i2S0;w ~p1(Vi; w)=~p0(Vi; w)

)X
w2W

p0;w
n0;w

X
i2S0;w

~p1(Vi; w)Yi
~p0(Vi; w)

:

We write

�Rn =
1

p1

8<:X
w2W

p0;w
n0;w

X
i2S0;w

~p1(Vi; w)

~p0(Vi; w)
E1 [�0(Xi)]� p1E1 [�1(Xi)]

9=;+ �atet + op(n
�1=2):

30



Using this and de�ning ~"d;i = Ydi � E [�d(Xi)jDi = 1],

~�atet � �atet =
1

p1

X
w2W

8<:p1;w
n1;w

X
i2S1;w

~"1;i �
p0;w
n0;w

X
i2S0;w

p1(Vi; w)~"0;i
p0(Vi; w)

9=; (29)

� 1
p1

X
w2W

p0;w
n0;w

X
i2S0;w

~"0;i

�
~p1(Vi; w)

~p0(Vi; w)
� p̂1(Vi; w)

p̂0(Vi; w)

�

� 1
p1

X
w2W

8<:p0;w
n0;w

X
i2S0;w

~"0;i

�
p̂1(Vi; w)

p̂0(Vi; w)
� p1(Vi; w)

p0(Vi; w)

�9=;+ op(n
�1=2)

= Bn � Cn �Dn + op(n
�1=2); say.

We consider Dn �rst. Write it as

1

p1

X
w2W

8<: p0;w
q0;wn

X
i2S0;w

~"0;i

�
p̂1(Vi; w)� p1(Vi; w)

p0(Vi; w)

�9=;
+
1

p1

X
w2W

8<: p0;w
q0;wn

X
i2S0;w

~"0;i

�
p1(Vi; w)fp0(Vi; w)� p̂0(Vi; w)g

p20(Vi; w)

�9=;+ op(n
�1=2)

= D1n +D2n + op(n
�1=2); say.

Apply Lemma A1(i) to write D1n as (up to op(n�1=2))

1

p1

X
w2W

(
1

n

nX
i=1

EQ [~"0;iL0;w;ijVi;Wi = w]J1;w;i
p0(Vi; w)EQ [Lw;ijVi;Wi = w]

)

� 1
p1

X
w2W

(
1

n

nX
i=1

EQ [~"0;iL0;w;ijVi;Wi = w] p1(Vi; w)Jw;i
p0(Vi; w)EQ [Lw;ijVi;Wi = w]

)
:

De�ning �d;w;i � �d(Vi; w)� E [�d(Xi)jDi = 1], we write the last di¤erence as

1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
;

because similarly as in (22),

EQ [~"0;iL0;w;ijVi;Wi = w]

EQ [Lw;ijVi;Wi = w]
= p0(Vi; w)�0;w;i and

EQ [~"0;iL0;w;ijVi;Wi = w] p1(Vi; w)

p0(Vi; w)EQ [Lw;ijVi;Wi = w]
= p1(Vi; w)�0;w;i:
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Applying Lemma A1(i), we write D2n as (up to op(n�1=2))

� 1
p1

X
w2W

1

n

nX
i=1

p1(Vi; w)EQ [~"0;iL0;w;ijVi;Wi = w]

p20(Vi; w)EQ [Lw;ijVi;Wi = w]
J0;w;i

+
1

p1

X
w2W

1

n

nX
i=1

p1(Vi; w)EQ [~"0;iL0;w;ijVi;Wi = w]

p0(Vi; w)EQ [Lw;ijVi;Wi = w]
Jw;i

= � 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i

p0(Vi; w)
J0;w;i

)
+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
:

Therefore, D1n +D2n is equal to

1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i

p0(Vi; w)
J0;w;i

)

+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;iJw;i

)
+ op(n

�1=2)

=
1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iJ1;w;i

)
� 1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i

p0(Vi; w)
J0;w;i

)
+ op(n

�1=2):

As for the last two terms, note that from (23),

EQ [L1;w;ijVi;Wi = w]� p1(Vi; w)

p0(Vi; w)
EQ [L0;w;ijVi;Wi = w] (30)

=
p1;w
q1;w

q1(Vi; w)�
p0;w
q0;w

p1(Vi; w)q0(Vi; w)

p0(Vi; w)

= p1(Vi; w)
fP (Vi; w)

fQ(Vi; w)
� fP (Vi; w)

fQ(Vi; w)
+ p0(Vi; w)

fP (Vi; w)

fQ(Vi; w)
= 0:

Therefore,

Dn = D1n +D2n

=
1

p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)

� 1
p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i

p0(Vi; w)
L0;w;i

)
+ op(n

�1=2):
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Now, we turn to Cn (in (29)) which we write as

1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i

�
~p1(Vi; w)

~p0(Vi; w)
� p̂1(Vi; w)

p̂0(Vi; w)

�
+ op(n

�1=2)

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i

�
~p1(Vi; w)fp̂0(Vi; w)� ~p0(Vi; w)g

p20(Vi; w)

�

+
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i

�
fp̂0(Vi; w)� ~p0(Vi; w)g~p0(Vi; w)

p20(Vi; w)

�
+ op(n

�1=2)

=
1

p1

X
w2W

1

n

nX
i=1

~"0;iL0;w;i

�
p̂0(Vi; w)� ~p0(Vi; w)g

p20(Vi; w)

�
+ op(n

�1=2):

As for the last term, we apply Lemma A1(ii) to write it as

1

p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�
+ op(n

�1=2):

Now, let us turn to Bn (in (29)) which we write as

1

p1

X
w2W

(
1

n

nX
i=1

~"1;iL1;w;i �
1

n

nX
i=1

p1(Vi; w)~"0;iL0;w;i
p0(Vi; w)

)
+ En;

where

En �
1

p1

X
w2W

(
1

n

nX
i=1

~"1;i(L̂1;w;i � L1;w;i)�
1

n

nX
i=1

p1(Vi; w)~"0;i(L̂0;w;i � L0;w;i)

p0(Vi; w)

)
:

Now, we focus on En. Observe that

1

n

nX
i=1

~"1;i(L̂1;w;i � L1;w;i) =
1

n

nX
i=1

~"1;iL1;w;i

�
q1;w � q̂1;w

q1;w

�
+ op(n

�1=2)

= E [p1(Vi; w)�1;w;i]

�
q1;w � q̂1;w

q1;w

�
+ op(n

�1=2):

Also,

1

n

nX
i=1

p1(Vi; w)~"0;i(L̂0;w;i � L0;w;i)

p0(Vi; w)

= E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
+ op(n

�1=2):
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Therefore, we write En as

1

p1

X
w2W

E [p1(Vi; w)�1;w;i]

�
q1;w � q̂1;w

q1;w

�
� 1
p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
+op(n

�1=2):

Now, let us collect all the results for Bn; Cn; and Dn and plug these into (29) to deduce

that

~�atet � �atet

=
1

p1

X
w2W

(
1

n

nX
i=1

~"1;iL1;w;i �
1

n

nX
i=1

p1(Vi; w)~"0;iL0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

E [p1(Vi; w)�1;w;i]

�
q1;w � q̂1;w

q1;w

�
� 1

p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q0;w � q̂0;w

q0;w

�
� 1
p1

X
w2W

E [p1(Vi; w)�0;w;i]

�
q̂0;w � q0;w

q0;w
� q̂1;w � q1;w

q1;w

�

� 1
p1

X
w2W

(
1

n

nX
i=1

�0;w;iL1;w;i

)
+
1

p1

X
w2W

(
1

n

nX
i=1

p1(Vi; w)�0;w;i

p0(Vi; w)
L0;w;i

)
+ op(n

�1=2)

By rearranging terms and after some algebra, we rewrite

~�atet � �atet

=
1

p1

X
w2W

(
1

n

nX
i=1

(Y1i � �1(Xi))L1;w;i �
1

n

nX
i=1

p1(Vi; w)(Y0i � �0(Xi))L0;w;i
p0(Vi; w)

)

+
1

p1

X
w2W

1

n

nX
i=1

(�(Vi; w)� �atet � Ed;w [�(Vi; w)� �atet])L1;w;i + op(n
�1=2):

Hence the wanted result follows by the Central Limit Theorem.

(ii) The case of ~�atet;p is a special case of ~�atet with Wi = 1 for all i = 1; � � �; n: Hence we
focus on �̂atet;p: We write it as

�̂atet;p � �atet =
1

p1

(
p1
q1n

X
i2S1

Yi �
p0
q0n

X
i2S0

p̂1(Xi)Yi
p̂0(Xi)

)
+Rn � �atet + op(n

�1=2);
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where Ld;i =
P

d2D 1fDi = dgpd=qd and

Rn �
�

1
1
n

Pn
i=1 p̂1(Xi) fL1;i + L0;ig

� 1

p1

�
p1�atet + op(n

�1=2)

=

(
p1 �

1

n

nX
i=1

p̂1(Xi) fL1;i + L0;ig
)
�atet
p1

+ op(n
�1=2):

Hence we can write �̂atet;p � �atet as

1

p1

(
p1
q1n

X
i2S1

Yi �
p0
q0n

X
i2S0

p̂1(Xi)Yi
p̂0(Xi)

)
� �atet
np1

nX
i=1

p̂1(Xi) fL1;i + L0;ig+ op(n
�1=2)

=
1

p1

(
p1
q1n

X
i2S1

fYi � �atetp1(Xi)g �
p0
q0n

X
i2S0

p1(Xi)

�
Yi

p0(Xi)
+ �atet

�)
+ Fn +Gn + op(n

�1=2);

where

Fn � p0
p1q0n

X
i2S0

fp1(Xi)� p̂1(Xi)g
�

Yi
p0(Xi)

+ �atet

�
and

Gn � 1

p1

(
p1�atet
q1n

X
i2S1

fp1(Xi)� p̂1(Xi)g+
p0
q0n

X
i2S0

p1(Xi)

p0(Xi)2
Yi fp̂0(Xi)� p0(Xi)g

)
:

By applying Lemma A1(i), we write Fn as

� 1

p1n

nX
i=1

EQ [(Yi=p0(Xi) + �atet)L0;ijXi]

EQ [LijXi]
J1;i

+
1

p1n

nX
i=1

EQ [(Yi=p0(Xi) + �atet)L0;ijXi] p1(Xi)

EQ [LijXi]
Ji + op(n

�1=2)

= � 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p0(Xi)J1;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p1(Xi)J0;i + op(n
�1=2):
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Again by applying Lemma A1(i), we write Gn as

��atet
p1n

nX
i=1

p1(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2Ji

+
1

p1n

nX
i=1

p1(Xi)�0(Xi)

p0(Xi)
J0;i

� 1

p1n

nX
i=1

p1(Xi)�0(Xi)Ji + op(n
�1=2)

= ��atet
p1n

nX
i=1

p1(Xi)p0(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2J0;i

+
1

p1n

nX
i=1

p21(Xi)�0(Xi)

p0(Xi)
J0;i �

1

p1n

nX
i=1

p1(Xi)�0(Xi)J1;i + op(n
�1=2):

Collecting these results, we write

�̂atet;p � �atet;p =
1

p1

(
1

n

nX
i=1

L1;ifYi � �atetp1(Xi)g �
1

n

nX
i=1

L0;ip1(Xi)

�
Yi

p0(Xi)
+ �atet

�)

� 1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p0(Xi)J1;i

+
1

p1n

nX
i=1

(�0(Xi) + �atetp0(Xi)) p1(Xi)J0;i

��atet
p1n

nX
i=1

p1(Xi)p0(Xi)J1;i +
�atet
p1n

nX
i=1

p1(Xi)
2J0;i

+
1

p1n

nX
i=1

p21(Xi)�0(Xi)

p0(Xi)
J0;i �

1

p1n

nX
i=1

p1(Xi)�0(Xi)J1;i + op(n
�1=2):

By rearranging the terms and going through some algebra, we obtain that

�̂atet;p � �atet =
1

p1

(
1

n

nX
i=1

L1;ifYi � �1(Xi)g �
1

n

nX
i=1

L0;i

�
fYi � �0(Xi)gp1(Xi)

p0(Xi)

�)

+
1

p1

1

n

nX
i=1

L1;i f�(Xi)� �atetg :

The last eqaulity follows because p0(Xi)q1(Xi)p1=q1 = p1(Xi)q0(Xi)p0=q0 (e.g. see (30)). The

wanted result follows by the Central Limit Theorem.

The following lemma is used to prove Theorem 4 and useful for other purposes. Hence
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we make the notations and assumptions self-contained here. Let (Zi; Hi; Xi)
n
i=1 be an i.i.d.

sample from P: Let Xi = (X1i; X2i) 2 RL1+L2 where X1i is continuous and X2i is discrete,

and let Kji = Kh (X1j �X1i) 1fX2j = X2ig; Kh(�) = K(�=h)=hL1 : Let X be the support of

Xi and f(�) be its density with respect to a �-�nite measure.

Assumption B1 : (i)(a) For some s > 2 and q � L1; supx2XE[jjZijjsjXi = x] < 1;

supx2X jjxjjqE[jjZijjjXi = x] <1 and E[jjHijj2] <1:

(ii)(a) 0 < " <infx2Xf(x) for some " > 0, and

(b) f(�; x2); E[ZijX1i = �; X2i = x2] and E[HijX1i = �; X2i = x2] are L1+1 times continuously

di¤erentiable with bounded derivatives.

Assumption B2 : For the kernel K and the bandwidth h, Assumption 2 holds.

Lemma B1 : Suppose that Assumptions B1-B2 hold. Then we have the following:

1p
n

nX
i=1

Hi

(
E[ZijXi]�

Pn
j=1;j 6=i ZjKjiPn
j=1;j 6=iKji

)
=

1p
n

nX
i=1

E [HijXi] fE[ZijXi]� Zig+ op(1):

Proof of Lemma B1 : The proof proceeds similarly as the proof of Lemma A1 of Song
(2009). We brie�y sketch the steps here. We con�ne ourselves to the case where X contains

a vector X1 of continuous variables. The proof for the case with X discrete is much simpler

and omitted. First, let f̂(x) = 1
n

Pn
i=1Kh(X1i � x1)1fX2i = x2g and note that

sup
x2X

jf̂(x)� f(x)j = Op(
p
n�1h�L1 log n+ hL1+1) and

max
1�i�n

���nj=1;j 6=iZjKji=�
n
j=1;j 6=iKji � E[ZijXi]

�� = Op(
p
n�1h�L1 log n+ hL1+1)

by Theorem 4 of Hansen (2008). By Assumption B2(ii), the last convergence rates are

op(n
�1=4): Hence from the argument of the proof of Lemma A1 of Song (2009), it su¢ ces to

show that

1p
n

nX
i=1

Hi

f(Xi)

(
E[ZijXi]

n� 1

nX
j=1;j 6=i

Kji �
1

n� 1

nX
j=1;j 6=i

ZjKji

)

=
1p
n

nX
i=1

E [HijXi] fE[ZijXi]� Zig+ op(1)

because the right-hand side is Op(1) and the density of X1 is bounded above zero. Write the
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left-hand side as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

qh(Si; Sj)

where qh(Si; Sj) = Hi fE[ZijXi]� ZjgKh(X1j �X1i)1fX2j = X2ig=f(Xi);

and Si = (Xi; Zi; Hi): Note that by Assumption B1(i), we write E [qh(Si; Sj)jSi = �s] ; �s =
(�x; �v; ��) as

E [E [qh(Si; Sj)jXj; Si] jSi = �s] (31)

=
��

f(�x)

Z
fE[ZijXi = �x]� E [ZjjXj = (x1; x2)]gKh(x1 � �x1)1fx2 = �x2gdF (x1; x2)

= ��

Z
fE[ZijXi = �x]� E [ZjjXj = (�x1 + hv; �x2)]gK(v)dv +Op(h

L1+1) = Op(h
L1+1);

due to the higher order property of the kernel. The Op(hL1+1) terms are uniform over �s in

the support of Si: Therefore,

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

qh(Si; Sj) =
1p
n

nX
i=1

E [qh(Si; Sj)jSj] + rn +Op(
p
nhL1+1);

where rn = 1p
n

Pn
i=1fqh(Si; Sj)� E [qh(Si; Sj)jSj]g: Observe that

n�1E
�
kqh(Si; Sj)k2

�
= n�1E

�
Hi fE[ZijXi]� Zjg2Kh(X1j �X1i)1fX2j = X2ig=f2(Xi)

�
= O(n�1h�L1) = o(1)

by change of variables and by Assumption 3(ii). Therefore, by Lemma 3.1 of Powell, Stock,

and Stoker (1989), rn = op(1): Note that

E [qh(Si; Sj)jSj = �s] = E [E [qh(Si; Sj)jXi; Sj] jSj = �s]

=

Z
�

f(x1; x2)
fE[ZijXi = (x1; x2)]� �vgKh(�x1 � x1)1f�x2 = x2gdF (x1; x2; �)

=
X
x22X2

Z
� fE[ZijXi = �x]� �vgKh(�x1 � x1)1f�x2 = x2gdF (�jx1; x2)dx1 +Op(h

L1+1)

= E[HjjXj = �x] fE[ZjjXj = �x]� �vg+Op(h
L1+1);

where the Op(hL1+1) term is uniform over �s: The wanted result follows from this.
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