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Abstract

This paper develops a dynamic stochastic general equilibrium model where �rms

are imperfectly informed. We estimate the model through likelihood-based methods

and �nd that it can explain the highly persistent real e¤ects of monetary disturbances

that are documented by a benchmark VAR. The model of imperfect information nests

a model of rational inattention where �rms optimally choose the variances of signal

noise, subject to an information-processing constraint. We present an econometric

procedure to evaluate the predictions of this rational inattention model. Implementing

this procedure delivers insights on how to improve the �t of rational inattention models.
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Fernández-Villaverde, Dirk Krueger, Bartosz Máckowiak, Frank Schorfheide, and Mirko Wiederholt for very
helpful comments and discussion. I am grateful for comments from participants at the Midwest Macro
Meetings 2008, the 23rd Annual Congress of the European Economic Association, Upenn Macro Lunches
and Upenn Econometric Lunches.

1



A Likelihood Anaylsis of Models with Information Frictions 2

1 Introduction

This paper develops and estimates a dynamic stochastic general equilibrium (DSGE) model

where agents are imperfectly informed, as in Woodford (2002). This type of model is well-

suited to explaining highly persistent real e¤ects of money and delayed e¤ects on in�ation

(Woodford, 2002), which are documented by VAR studies (Christiano et al., 1999, Stock

and Watson, 2001, Christiano et al., 2005). Furthermore, this model has another appealing

feature as it nests a simple model of rational inattention where �rms optimally choose what to

pay attention to, subject to an information-processing constraint à la Sims (2003). Whether

these models can generate sluggish real e¤ects of nominal shocks hinges upon the parameter

values that determine how informed agents are. A shortcoming of the literature is the lack of

empirical guidance in selecting these parameter values. We try to counter this shortcoming

by estimating these parameters through Bayesian methods.

The paper contributes to the existing literature along three dimensions. First, we show

that the estimated model of imperfect information à la Woodford (2002) can account for

the strongly persistent real e¤ects of monetary disturbances that characterize the impulse

response functions of a benchmark VAR. Second, we present an econometric procedure that

evaluates whether the predictions of the rational inattention model are supported by the

data. Third, by implementing this procedure, we gain insights into how to improve the �t

of rational inattention models.

Following Woodford (2002), we assume that �rms do not perfectly observe any realiza-

tions of the model variables. There are two state variables in the model: the aggregate

technology and the monetary policy stance. Firms observe idiosyncratic noisy signals re-

garding the state variables and solve a signal extraction problem in order to keep track

of the model variables. Since the signal is noisy, �rms do not immediately learn the oc-

currence of monetary disturbances. As a result, the price level fails to adjust enough to

entirely neutralize the real e¤ects of nominal shocks (Lucas, 1973). Moreover, because of
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the idiosyncratic nature of the signals, in the aftermath of a shock �rms are also uncertain

about what other �rms know that other �rms know... that other �rms know about that

shock. This feature of the model is termed imperfect common knowledge. When �rms �nd

it optimal to react to changes of endogenous variables (e.g., in the presence of strategic

complementarity in price setting), a problem of forecasting the forecast of others of the

type envisioned by Townsend (1983b) arises. This feature of the model has been shown to

amplify the persistence in economic �uctuations (Townsend, 1983a, 1983b; Hellwig, 2002;

Adam, 2008; Angeletos and La�O, 2008; Rondina, 2008; and Lorenzoni, forthcomingA), and

in the propagation of monetary disturbances to real variables and prices (Phelps, 1970; Lu-

cas, 1972; Woodford, 2002; Adam, 2007; Gorodnichenko, 2008; Máckowiak and Wiederholt,

2008; Nimark, 2008; Paciello, 2008; and Lorenzoni, forthcomingB).1

We evaluate the �t of the model with imperfect common knowledge. For this purpose,

we introduce a model that deviates from the one of imperfect common knowledge in only

two respects: (1) all agents are perfectly informed, and (2) �rms can optimally adjust their

prices only at random periods, as in Calvo (1983). The last assumption is common to a very

large number of models that have been used as workhorses for monetary policy studies over

the last 25 years. We �t both models to a data set that includes U.S. per capita GDP and

the U.S. GDP de�ator. First, we �nd that the model with imperfect common knowledge �ts

the data better than the Calvo model. Second, the model with imperfect information can

largely accommodate the persistent real e¤ects of monetary shocks implied by a benchmark

VAR. Third, when we replace the mechanism of imperfect common knowledge with that of

sticky prices à la Calvo, we observe that such persistence substantially drops.

We modify the model of imperfect common knowledge so as to allow �rms to optimally

choose the variances of signal noise given an information-processing constraint à la Sims

(2003). This model of rational inattention is nested into the model with imperfect common

1See Mankiw and Reis (2002a, 2002b, 2006, 2007), and Reis (2006a, 2006b, 2009) for models with infor-
mation frictions that do not feature imperfect common knowledge but can generate sizeable persistence.
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knowledge. The former model makes predictions over the variances of the signal noise. In the

latter model these variances are instead structural parameters whose values are learned from

the data by estimating the model. We introduce and implement an econometric procedure

that allows us to assess to what extent the predictions of this simple model of rational

inattention are supported by the data. We �nd that these predictions are rejected by the

data to some extent. Moreover, this exercise delivers interesting insights on how to improve

the �t of rational inattention models. In this respect, we observe that capital accumulation

would be an important feature to be added to these models.

The procedure to evaluate the predictions of the model of rational inattention can be

summarized in four steps. First, we sample with replacement the posterior draws for the

parameters of the model with imperfect common knowledge. Second, for each sampled

draw, we measure how much information �rms acquire per unit of time in the model with

imperfect common knowledge. Third, for each sampled draw, we solve the model of rational

inattention by using the output of the second step to determine the tightness of �rms�

information-processing constraint. Fourth, we evaluate whether the variances of signal noise

predicted by the two models are similar.

We depart from Woodford (2002) in two respects. First, our empirical strategy is

likelihood-based, while Woodford (2002) calibrates the parameters of his model. Second,

Woodford�s model has one rather than two shocks. Having an additional shock allows us to

get around the problem of stochastic singularity when we evaluate the likelihood function.

Speci�cally, we consider a nominal shock and an aggregate technology shock.

This paper is also related to the literature of rational inattention (Sims, 2003, 2006;

Luo, 2008; Paciello, 2008; Van Nieuwerburgh and Veldkamp, 2008; Woodford, 2008; and

Máckowiak and Wiederholt, forthcoming). Máckowiak and Wiederholt (2009) introduce a

model where �rms optimally decide howmuch attention to pay to aggregate and idiosyncratic

conditions, subject to a constraint on information �ows. When they calibrate their model
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to match the average absolute size of price changes observed in micro data, they �nd that

nominal shocks have sizeable and persistent real e¤ects.

The rest of the paper is organized as follows. Section 2 presents both the model with

imperfect common knowledge and the model of rational inattention, as well as the Calvo

model. Some features of the �rst two models are explored in section 3. Section 4 deals with

the empirical analysis. In section 5, we conclude.

2 The models

In this section we describe three DSGE models. The �rst model is a model with imperfect

common knowledge (henceforth, ICK model). In this model, information-processing fric-

tions are modelled by assuming that �rms have to solve a signal extraction problem in order

to estimate the state of the aggregate technology and that of monetary policy. A feature of

this model is that �rms take the stochastic process of signals as given. In the second model

(henceforth, rational inattention model) �rms solve the same signal extraction problem

as in the ICK model but they are allowed to optimally choose the variances of signal noise,

subject to an information-processing constraint of the type used in Sims (2003). In the

third model (henceforth, Calvo model) all agents have perfect information but they can

re-optimize their prices only at random periods, as in Calvo (1983). In the �rst part of this

section we introduce the equations common to all the models. In the remaining part of the

section, we analyze the speci�c features of the three models.

2.1 The common structure

The economy is populated by households, �nal goods producers (or producers), intermediate

goods �rms (or �rms), a �nancial intermediary, and a monetary authority (or central bank).

Households derive utility from consumption of �nal goods and disutility from supplying labor
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to the intermediate goods �rms. Furthermore, households face a cash-in-advance (CIA)

constraint. The �nal goods producers are perfectly competitive with a CES production

function. The intermediate goods �rms operate in a monopolistic competitive environment

with a production function that is linear in its unique input, which is labor. Furthermore,

there are two shocks: an aggregate productivity shock that a¤ects intermediate goods �rms�

technology and a monetary policy shock.

At the beginning of period t, the households inherit the entire money stock of the economy,

Mt. They decide howmuch moneyDt to deposit at the �nancial intermediary. These deposits

yield interest at rate RH;t� 1. The �nancial intermediary receives household deposits and a

monetary injection from the monetary authority, which it lends to �nal goods producers at

rate RF;t� 1. The intermediate goods �rms hire labor services from households and produce

their output. The �rms sell their output to the �nal goods producers and use the proceeds

to pay wages, WtHt, where Wt is the nominal hourly wage, and Ht is hours worked, and

dividends, �t, to households. Households�cash balance increases to Mt �Dt +WtHt + �t.

The CIA constraint requires that households pay for all consumption purchases with the

accumulated cash balances. The producers sell the �nal goods to households and then pay

back their loans. Finally, households receive back their deposits inclusive of interest rate and

the net cash in�ow of the �nancial intermediary as dividend �bt .

2.1.1 The representative household

The representative household solves the problem:

max
fCt;Ht;Mt+1;Dtg

Et
1X
s=0

�s [lnCt+s � �Ht+s]

such that
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PtCt �Mt �Dt +WtHt +�t (1)

0 � Dt (2)

Mt+1 = (Mt �Dt +WtHt +�t � PtCt) +RH;tDt +�
b
t (3)

where Ct is the amount of the �nal good consumed at time t, Pt is the price of the �nal good

at time t, and � is the discount factor.

2.1.2 The technology of the intermediate goods �rms

Every intermediate goods �rm has the same technology:

Yi;t = AtNi;t (4)

where Yi;t is the output produced by the �rm i at time t, andNi;t is the labor input demanded

by �rm i at time t.

We further assume that the aggregate productivity At follows a random walk with drift:

lnAt = ln a+ lnAt�1 + �a"a;t (5)

where "a;t v N (0; 1). Finally, it turns out to be useful to de�ne:

at � lnAt � ln a � t (6)

2.1.3 The �nal goods producers

The representative �nal goods producer combines a continuum of intermediate goods indexed

by i 2 [0; 1] by using the CES technology:
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Yt =

�Z 1

0

(Yi;t)
��1
� di

� �
��1

(7)

where the parameter � is assumed to be strictly larger than unity.

The producer takes input prices P it and output price Pt as given. Furthermore, it has to

borrow the cash needed to pay the intermediate goods �rms at rate RF;t� 1. Hence, its cost

function is
�R

P itYi;tdi
�
RF;t. Pro�t maximization implies that the demand for intermediate

goods will be:

Yi;t =

�
P it
Pt

���
Yt (8)

where the competitive price of the �nal good Pt is given by

Pt =

�Z �
P it
�1��

di

� 1
1��

(9)

2.1.4 The �nancial intermediary

The �nancial intermediary solves the trivial problem:

max
fLt;Dtg

Et

" 1X
s=0

�s
�bt+s
Qt+s+1

#
(10)

st

�bt = Dt +RF;tLt �RH;tDt � Lt +Xt (11)

Lt � Xt +Dt (12)

whereQt is the time 0 value of a unit of the consumption good in period t to the representative

household and Xt =Mt+1 �Mt is the monetary injection.
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2.1.5 The monetary authority

The monetary authority sets the growth rate of money so as to ensure that a log-linear

combination of output and price level follows an exogenous process of the following type:

� ln�t = (1� ��) �
� + ��� ln�t�1 + ��"�;t (13)

with "�;t v N (0; 1) and

ln �t = � lnYt + lnPt (14)

where � stands for the �rst-di¤erence operator, the degree of smoothness in conducting

monetary policy �� is such that �� 2 [0; 1). �� is a parameter that represents the long-run

average growth rate of ln �t. Moreover, the monetary policy shock "�;t is assumed to be

orthogonal to the productivity shock "a;t. Finally, it is useful to denote:

mt � ln �t � �� � t (15)

2.2 ICK model

In the ICK model, intermediate goods �rms do not face any cost when they adjust their

prices. Nonetheless, they cannot observe any realizations of the model variables. Firms

observe idiosyncratic noisy signals concerning the state of technology lnAt and that of mon-

etary policy ln �t. Therefore, they will estimate the model variables by using the history of

realizations of their signals. For tractability, it is assumed that the other agents perfectly

observe the past and the current realizations of the model variables.

The intermediate goods �rms solve:
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max
P it

E
�
�tQt

�
P itYi;t �WtNi;t

�
jI it
�
; 8t 2 f1; 2; :::g (16)

st:

Yi;t =

�
P it
Pt

���
Yt; Yi;t � AtNi;t (17)

I it =
�
fzi;�gt�=�1 ;�I

�
(18)

whereQt is the time 0 value of a unit of the consumption good in period t to the representative

household, which is treated as exogenous by the �rm. I it is the information set available to

�rm i at time t. This set contains the history of the idiosyncratic signals fzi;�gt�=�1 and the

vector of model parameters �I , that is

�I � (�; ��; �; ln a;��; �; �; ��; �a; �e1 ; �e2) (19)

It is important to emphasize that we assume that at time 0 �rms are endowed with an in�nite

sequence of signals. This assumption simpli�es the analysis. Furthermore, the equilibrium

laws of motion of all model variables are assumed to be common knowledge among �rms.

Firm i�s signal model is

264 z1;i;t

z2;i;t

375 =
264 mt

at

375+
264 e1;i;t

e2;i;t

375 (20)

where zi;t � [z1;i;t; z2;i;t]0 ; ei;t � [e1;i;t; e2;i;t]0 and

ei;t
iidv N (0;�e) ; �e =

264 �2e1 0

0 �2e2

375 (21)

Note that at and mt are the state variables of the model and the signal noises e1;i;t and e2;i;t
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are assumed to be iid across �rms and time.

Assuming that the two signals are orthogonal may be considered a strong assumption.

After all, �rms might learn about a given state variable by processing signals concerning

the other state variable. We �nd, however, that relaxing this assumption of orthogonality of

signals does not substantially a¤ect the main predictions of the estimated model.

Finally, one should notice that, as in Woodford (2002), �rms are assumed to perfectly

observe neither the amount of labor hired Ni;t nor the quantity sold Yi;t. They are able to get

information about these variables indirectly through their estimates of the state variables.

2.3 The rational inattention model

The model of rational inattention relies on three fundamental assumptions. First, informa-

tion about all model variables is freely available to decision makers. Second, information

needs to be processed before being used for decision-making. Third, intermediate goods

�rms face limitations on the amount of information they can process per unit of time. As

a result, �rms will optimally decide how much information they want to acquire about each

variable that matters for their price-setting decisions. For tractability, it is assumed that the

other agents do not face any information-processing constraints.

In full-�edged models of rational inattention (e.g., Máckowiak and Wiederholt, forthcom-

ing), agents optimally choose the stochastic process of signals, subject to an information-

processing constraint à la Sims (2003). Unlike these models, we parametrically restrict the

set of signal processes that �rms can select. Speci�cally, we assume that �rms optimally

choose among signals that follow a "true state plus white noise Gaussian error" process.

Hence, what �rms are allowed to choose are the variances of signals in equations (20)-(21).

Nevertheless, one can show that the signal process (20)-(21) is not optimal if pro�t function

is not quadratic or � is not equal to unity (Máckowiak and Wiederholt, forthcoming, sections

6 and 7). We introduce these parametric restrictions for tractability. Moreover, we assume
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that �rms can choose the stochastic process of signals at time 0 but they cannot reconsider

their decision thereafter. In section 3:2, we will show that this last assumption is not critical

for our results.

At period zero, �rms allocate their attention by solving:

max
�e1;i; �e2;i

E

" 1X
t=1

�tQt
�
P �i;tYi;t �WtNi;t

�
jI it

#
; (22)

st

P �i;t = argmax
P it

E
�
�tQt

�
P itYi;t �WtNi;t

�
jI it
�

(23)

Yi;t =

�
P �i;t
Pt

���
Yt; Yi;t � AtNi;t (24)

I it =
�
fzi;�gt�=�1 ;�R

�
(25)264 z1;i;t

z2;i;t

375 =
264 mt

at

375+
264 e1;i;t

e2;i;t

375 (26)

ei;t
iidv N (0;�e) ; �e =

264 �2e1;i 0

0 �2e2;i

375 (27)

�m;i;t + �a;i;t � �; any t > 0 (28)

where �R is a vector including all the parameters of the model,

�R � (�; ��; �; ln a;��; �; �; ��; �a; �) (29)

The variables �m;i;t and �a ;i;t denote the information �ow from signal z1;i;t to the state of

monetary policy, mt, and that from signal z2;i;t to the state of technology, at, respectively.

Moreover, the parameter � quanti�es the overall amount of information �rms can process in

each period. Finally, we de�ne the vector zi;t � [z1;i;t; z2;i;t]0.
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Notice that �rms have to solve two problems: a price-setting problem and a problem of

how to allocate their attention between the two state variables. In the problem of allocating

the attention, �rms optimally choose the variances of signal noise. Notice that when �rms

decide how to allocate their attention, they are aware that this choice will a¤ect the objective

function (23) and in turn the optimal price-setting policy. Moreover, conditional to these

variances of signal noise, rationally inattentive �rms face the same price-setting problem as

that in the ICK model.

The information set (25) is of the same type as that in the ICK model. Equations (26)-

(27) restrict the set of signal processes that can be chosen by �rms to be "true state plus

white noise Gaussian error" processes. The information-processing constraint (28) sets an

upper bound � 2 R+ on the overall amount of information �rms can gather at any time t.

We de�ne the information �ows �m;i;t and �a;i;t in this constraint as follows:

�m;i;t � H
�
mtjzt�11;i

�
�H

�
mtjzt1;i

�
(30)

�a;i;t � H
�
atjzt�12;i

�
�H

�
atjzt2;i

�
(31)

where H
�
mtjz�1;i

�
and H

�
atjz�2;i

�
are the conditional entropies of the state variable mt and

at, given the history of signals up to time � , z�i . In information theory (Shannon, 1948),

entropy is an axiomatic measure of conditional uncertainty about random variables (Ash,

1990). For instance, the entropy of mt conditional to the sequence of signals zt1;i is given byR1
�1 log2

�
p
�
mtjzt1;i

��
p
�
mtjzt1;i

�
dmt, where p

�
mtjzt1;i

�
is the conditional probability density

function of mt. Since all shocks and noise in the model are Gaussian, one can show that the

following results hold:

H
�
mtjz�1;i

�
� 1

2
log2

�
2�e � V AR

�
mtjz�1;i

��
(32)
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H
�
atjz�2;i

�
� 1

2
log2

�
2�e � V AR

�
atjz�2;i

��
(33)

See Cover and Thomas (1991). The unit of measure of these conditional entropies and

consequently that of information �ows �m;i;t and �a;i;t is 1 bit.2 Moreover, as in the ICK

model, we assume that the equilibrium laws of motion of all variables are common knowledge.

2.4 A sticky price model à la Calvo (1983)

In the Calvo model all agents perfectly observe the past and current realizations of the

model variables. Moreover, the prices charged by each �rm are re-optimized only at random

periods. The key (simplifying) assumption is that the probability that a given �rm will adjust

its price within a particular period is independent of the state of the model, the current price

charged, and how long ago it was last re-optimized. Firms that do not re-optimize index

their prices at the balance-growth-path in�ation rate.

We assume that only a fraction (1� �p) of �rms re-optimize their prices, while the re-

maining �p fraction does not reset them. The problem of the intermediate goods �rms that

are allowed to adjust their prices in period t is:

max
P it

Et
1X
s=0

�sp�
t+sQt+s

�
P it �MCt+s

� Yi;t+s
Pt+s

(34)

st:

MCt+s =
Wt+s

At+s
; Yi;t+s =

�
P it
Pt+s

���
Yt+s (35)

where Qt+s is the marginal utility of a unit of consumption at time t + s in terms of the

utility of the representative household at time t, andMCt+s stands for the nominal marginal

costs in period t + s. We consider only the symmetric equilibrium at which all �rms will

2If we had used the natural logarithm instead of the logarithm of base two in equation (32)-(33), these
quantities would have been measured in nats.
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choose the same optimal price P it = P �t . On aggregate, we have

P 1��t =
h
(1� �p)P

�(1��)
t + �p (��Pt�1)

1��
i

(36)

where �� is the balance-growth-path (gross) in�ation rate. We denote �C as the set of

parameters of the Calvo model:

�C � (�; ��; �; ln a;��; �; �; �p; ��; �a) (37)

3 Log-linearization and features of the models

All the models presented in the previous section are log-linearized before being solved. The

exogenous processes (5) and (13) induce both a deterministic and a stochastic trend to all

endogenous variables, except labor. We will detrend the non-stationary variables before

log-linearizing the models. It is useful to de�ne the stationary variables as follows:

yt �
Yt
At
; pt �

A�t Pt
�t

; pit =
A�t P

i
t

�t
(38)

In order to log-linearize the models with information frictions,3 we take the following

steps. First, we derive the price-setting equation by solving the intermediate goods �rms�

problem in both models with information frictions. Second, we transform the variables

according to the de�nitions (38). Third, we log-linearize the resulting price-setting equation

around the perfect-information symmetric steady state. Henceforth, when we refer to the

three models we mean their log-linear approximations.

3How to log-linearize and solve the Calvo model is standard and hence omitted. We use the routine
gensys developed by Sims (2002) to numerically solve this model.
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3.1 Quantifying the size of information frictions in the ICK model

The following de�nitions turn out to be useful for evaluating the size of the information

frictions in the log-linear ICK model.

De�nition: Firms� overall level of attention { is the amount of information that �rms

process about both state variables in the unit of time.

De�nition: Firms�allocation of attention to a given state variable is the ratio of the amount

of processed information about that state variable to the overall level of attention.

The overall level of attention { is de�ned as { � �m+�a, where �m and �a are computed

exactly as the information �ows in equations (30)-(33). The quantities {, �m and �a turn out

not to vary across periods and �rms4 and are all measured in bits. Moreover, the allocation

of attention to the state of technology �a can be computed as follows: �a � �a
{ .

Characterizing the parameter { and�a for the log-linearized ICKmodel requires comput-

ing the conditional variances of mt and at in equations (32)-(33) for a given set of parameters

�I . In order to numerically pin down these variances, one has to apply the Kalman �lter to

the state-space model whose transition equations are given by equations (5) and (13) and

the measurement equations are de�ned by equations (20)-(21). We can concisely represent

this result through the mapping �I :

({; �m; �a)0 = �I (�I) (39)

We denote the pair of information �ows (�m; �a) as �rms�allocation of attention in the ICK

model.
4Since �rms are assumed to receive in�nitely many signals at time t = 0, the conditional variances

V AR
�
mtjz�1;i

�
and V AR

�
atjz�1;i

�
, � 2 ft; t� 1g any t > 0, do not change over time. Moreover, in the ICK

model, these conditional variances are the same across �rms because �rms face the same variances of signal
noise and all shocks are Gaussian. If these variances do not change across periods and �rms, neither do
information �ows �m and �a. See equations (32)-(33).
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3.2 Some property of the rational inattention model

In the log-linear rational inattention model, �rms�pro�t function is log-quadratic. It can

be shown that when the pro�t function is quadratic, the optimal signal is Gaussian (Sims,

2003). This implies that the assumption we made in section 2:3 that signals follow a Gaussian

process is not critical.

In section 2:3, we also assumed that �rms decide their allocation of attention at time 0.

They are not allowed to reconsider the allocation of attention in any subsequent periods.

If �rms� pro�t function is quadratic, this assumption does not give rise to a problem of

time inconsistency of �rms�policies. The reason behind this result is as follows.5 When

�rms�pro�t function is quadratic, it can be shown that the allocation-of-attention problem

(22)-(28) turns out to be that of choosing the variances of signal noise so as to minimize

the conditional variance of the pro�t-maximizing price under perfect information (i.e., when

�!1). This conditional variance does not change over time in periods t > 0 because �rms

receive an in�nite sequence of signals at time t = 0 and the rational inattention model is

linear and Gaussian. Therefore, the objective function of the allocation-of-attention problem

does not change over time, and hence, �rms do not have any incentives to reconsider their

allocation of attention in periods t > 0.

Moreover, if their pro�t function is quadratic, the optimal variances of signal noise can

be shown to be the same across �rms. Since all shocks are Gaussian and �rms receive an

in�nite sequence of signals at time t = 0, the conditional variance of the pro�t-maximizing

price under perfect information is the same for all �rms. Therefore, in a quadratic-Gaussian

framework, the objective function of the allocation-of-attention problem is the same across

�rms. Thus, every �rm will �nd it optimal to choose the same allocation of attention. The

optimal variances of signal noise will be denoted
�
��e1
�2
and

�
��e2
�2
.

5A more detailed proof of this result is provided in Máckowiak and Wiederholt (2009).
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3.3 Nestedness of the ICK and the rational inattention model

For any given � 2 R+, the rational inattention model is nested within the ICKmodel and sets

restrictions upon the variances of signal noise, �2e1 and �
2
e2
, in the latter model. Equivalently,

for given � 2 R+, the rational inattention model can be seen as casting restrictions upon

�rms�allocation of attention (�m; �a) in the ICK model through the mapping �I . Therefore,

we can parsimoniously represent these restrictions by means of the following mapping:

(��m; �
�
a)
0 = �R

�
~�R; �

�
(40)

where we denote the ��m; �
�
a as the information �ows predicted by the rational inattention

model and the set ~�R as the set of parameters in �R except �. Note that ~�R is a subset of

�I .

The following two facts are useful for removing the degree of freedom associated with

assigning a value to the parameter �. First, as showed in section 3:1, given the parameter

values of the ICKmodel, we can quantify the overall level of attention { in this model through

the mapping �I . Second, when the objective function of the allocation-of-attention problem

is quadratic, the information-processing constraint (28) is always binding. Therefore, we can

eliminate the degree of freedom by restricting the parameter � to be equal to �rms�overall

level of attention, {, in the ICK model. Hence we can rewrite the mapping (40) as follows:

(��m; �
�
a)
0 = �R

h
~�R;{

i
(41)

where { is determined by the function �I in equation (39). Finally, note that the mapping

�R is now a function of only the parameters in �I .
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3.4 Solving linear models with information frictions

A typical challenge in �nding a rational expectation equilibrium (REE) in models with imper-

fect common knowledge is dealing with an in�nite-dimensional state vector. Hence, �nding

an REE in the models with information frictions would require characterizing in�nitely many

equilibrium laws of motion (in�nite regress). This task is clearly unmanageable. In the two

models with information frictions, this problem solely arises when there is strategic comple-

mentarity in price-setting. Moreover, in these two models this issue can be elegantly resolved

as in Woodford (2002) who suggests a method that can be applied to numerically solve the

ICK model.

The rational inattention model is solved in four steps. First, we guess the values of the

variances of signal noise, �2e1 and �
2
e2
. Second, given this guess, we numerically characterize

the law of motion of the price level exactly as we do when solving the ICK model. Third,

we obtain the optimal variances of signal noise,
�
��e1
�2
and

�
��e2
�2
, by solving the quadratic

approximation of the allocation-of-attention problem in (22)-(28). Fourth, we check whether

the guess made in the �rst step is correct, that is, whether



�ej � ��ej




 < ", for j 2 f1; 2g

with " > 0 and small. If this criterion is not satis�ed, we do another loop by setting �ej = ��ej ,

for j 2 f1; 2g. Otherwise, we stop.

4 Empirical analysis

This section contains the econometric analysis of the paper. We take the ICK model and the

Calvo model to the data through Bayesian techniques. We do not directly estimate the ra-

tional inattention model, since obtaining a reliable approximation of posterior distributions

does not turn out to be possible. Nevertheless, we present and implement an econometric

procedure that formally evaluates to what extent the predictions of the rational inattention

model over �rms�allocation of attention are supported by the data. This exercise is inter-
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esting for two reasons. First, as shown by Woodford (2002), �rms�allocation of attention

crucially a¤ects the di¤erential responsiveness of prices to di¤erent types of disturbances

in models with information processing frictions. Second, this exercise can detect sources of

misspeci�cation of rational inattention models and delivers insights on how to improve the

�t of models of this variety.

4.1 The data

The data are quarterly and range from the third quarter of 1954 to the fourth quarter of 2005.

We use the U.S. per capita real GDP and the U.S. GDP de�ator from Haver Analytics (Haver

mnemonics are in italics). Per capita real GDP is obtained by dividing the nominal GDP

(GDP) by the population 16 years and older (LN16N ) and de�ating using the chained-price

GDP de�ator (JGDP). The GDP de�ator is given by the appropriate series (JGDP).

4.2 Measurement equations

Denote the U.S. per capita real GDP, and the U.S. GDP de�ator as fGDPt; t = 1; 2; :::Tg,

and fDEFLt; t = 1; 2; :::Tg, respectively. The measurement equations are:

lnGDPt = byt + at + ln a � t+ ln y (42)

lnDEFLt = bpt +mt � �at + (�
� � � ln a) � t+ ln p (43)

where the subscript b means log-deviations of a variable from its perfect-information sym-

metric steady-state value, ln y is the logarithm of the steady-state value of yt, and ln p is the

logarithm of the steady-state value of pt.

The Kalman �lter can be used to evaluate the likelihood function of the models. Yet,

the �lter must be initialized and a distribution for the state vector in period t = 0 has
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to be speci�ed. As far as the vector of stationary state variables is concerned, we use

their unconditional distributions. We cannot initialize the vector of non-stationary state

variables (i.e. mt; at) in the same manner, since their unconditional variance is not de�ned.

We follow the approach introduced by Chang et al. (2007), who propose to factorize the

initial distribution as p (s1;t) p (s2;t), where s1;t and s2;t are the vector of stationary and non-

stationary variables, respectively. They suggest setting the �rst component p (s1;t) equal to

the unconditional distribution of s1;t, whereas the second component p (s2;t) is absorbed into

the speci�cation of the prior.

4.3 Priors for the model parameters

We use the same prior distributions for those parameters that are common across models.

We �x the value of � equal to 10. This implies a mark-up of about 11%, which is in line

with what is suggested by Woodford (2003). Table 1 elicits the prior distributions for the

parameters used in both the ICK model and the Calvo model.

In the ICK model, the parameter � entirely gauges the strategic complementarity in price

setting, which is measured by
�
1� ��1

�
. As shown by Woodford (2002), this crucially a¤ects

the persistence in the mechanism of shock propagation in the ICK model. Hence, we set

a broad prior for this parameter in order to educe its value from the likelihood. The prior

median is set at � = 6:67 so that the model exhibits the degree of strategic complementarity

suggested by Woodford (2003).

We note that, conditional to �, we observe ln �t. Hence, the autoregressive parameter

of monetary policy, ��, the standard deviation of the monetary policy shock, ��, and the

trend �� are directly estimated when � is set equal to its prior median. We center the priors

for these three parameters accordingly. Furthermore, we set broad prior intervals for these

parameters.

The prior of the standard deviation of the productivity shock, �a, is centered at 0:007.
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This value is regarded as plausible by the real business cycle literature (Prescott, 1986).

Moreover, we center the prior for ln a consistently with the estimated linear trend of the

U.S. per capita real output.

In absolute terms, we set the priors for standard deviations of signal noise, �e1 , and

�e2, so as to ensure that signals are quite informative about the business-cycle variations

of model variables.6 In relative terms, these prior speci�cations are chosen so as to make

each signal equally informative about the corresponding state variable. More speci�cally, we

want the prior median of the allocation of attention, �a, to be approximately equal to 0:5.

The 90% con�dence interval for �a is broad, ranging from 0:16 to 0:88. The rationale of

such a large con�dence range is that allocation of attention is a crucial parameter a¤ecting

the di¤erential responsiveness of prices to di¤erent types of disturbances. Thus, we aim at

learning the value of �a from the likelihood.

The discount factor, �, is well known in the literature, and hence we set its prior standard

deviation relatively small. The prior con�dence interval for � includes 0:99, which is a

plausible discount factor when the model periods are interpreted as quarters (Woodford,

2002). The prior for the Calvo parameter �p is centered at 0:67, implying an average duration

of price contracts of three quarters. This value is regarded as consistent with the survey

evidence discussed in Blinder et al. (1998). The parameter � is not identi�able, since we do

not have hours worked among our observables.

4.4 Posteriors for parameters in the ICK and the Calvo model

Given the priors and the likelihood functions implied by the models, a closed-form solution

for the posterior distributions for parameters cannot be derived. However, we are able to

evaluate the posteriors numerically through the random-walk Metropolis-Hastings algorithm.

6We achieve that by setting the prior medians of the coherences between the process of the state variables,
in �rst di¤erence, and their corresponding signals such that these are not smaller than 0:50 at business-cycle
frequencies (3-5 years). The coherence ranges from 0 to 1 and measures the degree to which two stationary
stochastic processes are jointly in�uenced by cycles of a given frequency (Hamilton, 1994).
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How these procedures apply to macro DSGE models is exhaustively documented by An and

Schorfheide (2007). We generate 1; 000; 000 draws from the posteriors. The posterior medians

and 95% con�dence intervals are shown in table 2. The posterior median of the Calvo

parameter �p implies that �rms reset their prices about every four years. This frequency

of price adjustments is implausible, according to the existing microeconometric analyses on

price changes. Nonetheless, this result is not surprising. In fact, it is well-known that small-

scale DSGE models with sticky prices à la Calvo can match the persistence of the macro

data only with price contracts of very long duration (Bils and Klenow, 2004). We might �x

this problem by setting a tighter prior for the Calvo parameter, but we �nd that this would

seriously undermine the �t of the Calvo model.

The coe¢ cient
�
1� ��1

�
controls the degree of strategic complementarity in price set-

tings. As shown by Woodford (2002), this coe¢ cient is very important, since it a¤ects the

persistence of the IRFs of output and price level to structural shocks. The prior median

of strategic complementarity
�
1� ��1

�
was set at 0:84. Hence, Bayesian updating points

toward a lower strategic complementarity than what is conjectured in the prior. This tends

to reduce the persistence in the mechanism of shock propagation.

Moreover, the posterior median of the signal-to-noise ratio regarding the state of monetary

policy, �e1=��, is large relative to that associated with the state of technology, �e2=�a. These

estimates imply that the signal regarding the state of technology conveys more information

than the signal concerning the state of monetary policy. In table 2, we also report the

posterior moments for the allocation of attention (i.e. {, �m, and �a) in the ICK model. We

�nd that �rms can process up to 0:27 bits per quarter. About 84% of the overall level of

attention is allocated to the state of technology. In every quarter, �rms acquire 0:04 bits of

information about the state of monetary policy and 0:23 bits about the state of technology.
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4.5 Evaluating the �t of the ICK model

In this section, we assess how accurately the ICK model �ts the data relative to the Calvo

model. Moreover, we introduce a VAR that can be considered a benchmark because it �ts

the data better than these two DSGE models. We then evaluate the ICK model and the

Calvo model in terms of their capability of accommodating features of the IRFs implied by

the identi�ed VAR.

4.5.1 MDD-based comparisons

From a Bayesian perspective, the issue of whether the ICK model �ts the data better than

the Calvo model can be addressed by comparing the marginal data densities (MDDs) of

these two models (Kass and Raftery, 1995 and An and Schorfheide, 2007). Let us denote

the ICK model and the Calvo model with MI and MC , respectively. The data used for

estimation are denoted by ~Y = flnGDPt; lnDEFLt ; t = 1; : : : Tg. The MDDs for the ICK

model, P
�
~Y jMI

�
, and the Calvo model, P

�
~Y jMC

�
, are de�ned as:

P
�
~Y jMI

�
=

Z
L
�
�I j ~Y ;MI

�
p (�I jMI) d�I (44)

P
�
~Y jMC

�
=

Z
L
�
�C j ~Y ;MC

�
p (�C jMC) d�C (45)

where L (�) stands for the likelihood function, and p (�j�) denotes the posterior distribution.

The model with the largest marginal data density is the one that �ts the data better. We

use Geweke�s harmonic mean estimator (Geweke, 1999) to approximate the MDDs of these

two DSGE models.

Moreover, we also consider a VAR(4):

~Yt = �0 +�1
~Yt�1 +�2

~Yt�2 +�3
~Yt�3 +�4

~Yt�4 + �t (46)
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where ~Yt = [lnGDPt; lnDEFLt]
0 and �� � E (�t�0t). We �t this VAR(4) to the same data

set as that presented in section 4:1. The Minnesota random walk prior (Doan et al., 1984)

is implemented in order to obtain a prior distribution for the VAR parameters. Moreover,

we obtain 100; 000 posterior draws through Gibbs sampling. In order to compute the MDD

of the VAR model we apply the method introduced by Chib (1995).

Table 3 shows that the two DSGE models are clearly misspeci�ed, since the VAR strongly

outperforms both of them in �tting the data. Nonetheless, the ICK model can be regarded

as the best model in approximating the true probability distribution of the data generat-

ing process under the Kullback-Leibler distance (Fernández-Villaverde and Rubio-Ramírez,

2004).

4.5.2 IRF-based comparisons

We will assess the reliability of both the ICK model and the Calvo model in predicting how

observables react to structural shocks. Since the VAR �ts the data better than the two

DSGE models, we can use the former as a valid benchmark to compare the IRFs of the

latter. This exercise has the potential to highlight important sources of misspeci�cation of

these two DSGE models.

Let us consider the VAR(4) we introduced in the previous section. As a �rst step, we

need to identify the shocks of this VAR. To �x notation, let us denote with �� the matrix

such that �t = ��ut, where ut = ["�;t; "a;t]
0 is the vector of structural shocks in the DSGE

models. We can decompose �� = AA0 and introduce an orthonormal matrix ~
, which is

characterized by the rotation parameter ~' 2 (��; �]. Hence, we can write �� = A~
 (~').

The problem of identi�cation boils down to that of characterizing the rotation parameter ~'.

Natural candidates of identi�cation schemes for the VAR can be derived from the re-

striction (14). Nonetheless, we �nd that solely using this restriction delivers VAR IRFs of

output to nominal shocks with implausibly large persistence. Mixing conditions derived from
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the monetary policy setting of the two DSGE models and restrictions, which are consistent

with other large-scale VAR studies, �xes this problem. The restrictions are presented in

table 4. In this table, the monetary policy (MP) restriction is derived from the condition

(14). Restriction A is consistent with the �ndings of Christiano et al. (2005), who estimate

a large-scale VAR. Restriction B accords with both the ICK model and the Calvo model

where real e¤ects of monetary disturbances vanish in the long run. The purpose of the last

restriction is to curb the excess persistence that would otherwise a¤ect the VAR IRF of

real output to nominal shocks. Let us express the rotation parameter that satis�es the MP

restriction as ~'�. Moreover, for a given set of VAR parameters (�;A), the restrictions A

and B characterize a set of values for the hyperparameter ~', which we denote as ~�. If this

set ~� is not empty, let us de�ne M connected subsets
n
~�i

oM
i=1

and their lower and upper

bounds
h
~�
L

i ;
~�
H

i

i
, such that ~� = [Mj=1~�i. The prior for ~'j�;A is speci�ed as follows: if ~�

is an empty set for given VAR parameters (�;A), prob (~' = ~'�j�;A) = 1. If ~� is not an

empty set for given VAR parameters (�;A),

prob (~' = ~'�j�;A) = 1

2
(47)

prob
�
~' 2 ~�j�;A

�
=
1

2
(48)

prob
�
~' 2 ~�ij�;A; ~' 2 ~�

�
=
1

M
(49)

~'j�;A;
�
~' 2 ~�i

�
v U

h
~�
L

i ;
~�
H

i

i
(50)

where U
h
~�
L

i ;
~�
H

i

i
stands for the uniform distribution with mass between ~�

L

i and ~�
H

i . Since

the data are not informative about ~', we trivially have that
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p
�
~'j�;A; ~Y

�
= p (~'j�;A) (51)

As a result, the joint posterior will be

p
�
~';�;Aj ~Y

�
= p

�
~'j�;A; ~Y

�
� p
�
�;Aj ~Y

�
(52)

Note that the conditional posteriors on the right-hand-side are known. Therefore, we can

draw from the joint posterior by using some data-augmentation-based Monte Carlo methods.

In order to fully characterize the MP restriction, we need to set a value for �. The

posterior medians of � implied by the ICK model and the Calvo model di¤er. It seems

appropriate to �x � = 2, since this value lies between the posterior medians in the two

DSGE models. Nevertheless, all the results below do not signi�cantly change by setting

values for � within an interval ranging from 1:80 and 2:16.

The IRFs of real output and in�ation to a two-standard-deviation nominal shock implied

by the VAR and the two DSGE models are plotted in �gures 1 and 2, respectively. As also

found by other studies (e.g., Christiano et al., 2005), the VAR-based IRFs document highly

persistent real e¤ects of monetary disturbances. Figure 1 highlights that the Calvo model

does not seem to be well-suited to accounting for such strong persistence, whereas the ICK

model appears to be substantially more successful in this respect. Moreover, it is worthwhile

noticing that the IRF of real output implied by the ICK model peaks three quarters after

the occurrence of the shock, exactly as suggested by the benchmark VAR. On the contrary,

the Calvo model predicts that the largest response of real output arises two quarters after

the occurrence of the shock.

The VAR IRFs emphasize the presence of delayed e¤ects of monetary shocks on in�ation,

which can be partially accommodated by the two DSGE models. Furthermore, we obtain

that the IRFs of in�ation implied by the two DSGE models basically overlap except at time
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0. The contemporaneous response of in�ation to a monetary policy shock seems to be better

captured by the ICK model. Moreover, the IRF of in�ation implied by the VAR reaches its

peak after four quarters, while, according to the two DSGE models, this happens after three

quarters.

Finally, by following Schorfheide (2008), we compute the relative reaction of in�ation

and output in response to a monetary disturbance implied by the ICK model, the Calvo

model, and the VAR. This exercise makes the IRFs in �gures 1 and 2 comparable with those

implied by other DSGE models that have been estimated in the literature. We �nd that a

1% increase in output due to a monetary policy shock triggers an increase in the quarter-

to-quarter in�ation rate that ranges from 8-9 basis points for both the ICK model and the

Calvo model, as well as the VAR. Schorfheide (2008) reports that a number of leading New

Keynesian DSGE models predicts that this ratio ranges from 7 to 140 basis points. Thus,

the degree of price �exibility predicted by the models presented in this paper is consistent

with the New-Keynesian literature, even though it is relatively small.

4.6 Evaluating the predictions of the rational inattention model

In section 3:3, we showed that the rational inattention model is nested within the ICK model

and sets restrictions on �rms�allocation of attention (�m, �a) of the ICKmodel. The mapping

�R in equation (41) summarizes these restrictions. Since this mapping �R is a function of

only the parameters in �I , we can use the posterior draws for the ICK model parameters so

as to approximate the posterior distributions for the rational inattention model�s predictions

over ��m and �
�
a. More precisely, we implement the following procedure:

1. Sample with replacement the posterior draws we obtained when we estimated the ICK

model and denote them as
n
�
(j)
I

oM
j=1
.

2. For each sampled draw �
(j)
I , compute �rms� allocation of attention, {(j); �

(j)
m ; �

(j)
a ,
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through the mapping �I in equation (39). Store the draws
n
�
(j)
I ;{(j)

oM
j
.

3. For each sampled draw �(j)I and associated level of attention {(j), use the mapping �R

in equation (41) in order to get the vector (��m; �
�
a), that is

(��m; �
�
a)
(j) = �R

h
~�
(j)
R ;{

(j)
i

(53)

where ~�(j)R includes the j-th draw of parameters that belongs to ~�R, de�ned in section

3:3. Recall that ~�R is a subset of �I .

In practice, we set the total number of draws M equal to 1; 000. In �gure 3 we plot

the posterior draws for parameters �m; �a implied by the ICK model (�lled circles) and

those for the rational inattention model�s predictions ��m; �
�
a (empty squares) as well as the

45-degree line (dashed). All the plotted draws from p
�
�m; �aj ~Y

�
lie above the 45-degree

line. This result accords well with the �ndings presented in section 4:4: the estimated ICK

model predicts that �rms allocate most of their attention to the state of technology. The

rational inattention model predicts a rather balanced allocation of attention between these

two shocks.

Two main factors drive the optimal allocation of attention in the rational inattention

model. First, ceteris paribus, �rms will allocate more attention to that state variable that

a¤ects more �rms�expected pro�t function. Second, ceteris paribus, �rms pay more attention

to the state variable whose dynamics are more volatile because it is harder to keep track of it.

Recall that the posterior median of the standard deviation of monetary shocks is larger than

that of technology shocks (see table 2). Hence, the second e¤ect acts to push the posterior

draws for the restricted parameters ��m; �
�
a below the 45-degree line in �gure 3. If the second

e¤ect were prevailing, the rational inattention model would predict that �rms allocate more

attention to the state of monetary policy. We do not observe such an outcome in �gure 3.

Therefore, the two e¤ects act in opposite directions.
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Finally, since the allocation of attention predicted by the rational inattention model is

very balanced between the two state variables, we conclude that the two e¤ects almost

completely o¤set each other. This insight suggests that even though the predictions of the

rational inattention model seem to be at odds with the data, there is room for improvement.

After all, the extent to which the state of technology a¤ects �rms�expected pro�ts is de-

termined by only one parameter, that is, �. Making �rms�pro�t function less stylized has

the potential to improve the �t of the model. For instance, if one allowed �rms to accumu-

late capital, their expected pro�t function would be relatively more a¤ected by technology

shocks. Thus this would reinforce the �rst e¤ect in a way that would push the posterior

draws in �gure 3 above the 45-degree line.

5 Concluding remarks

We introduce a DSGE model with imperfect common knowledge in the sense of Woodford

(2002). The peculiar feature of this model is that �rms do not perfectly observe the real-

izations of model variables. What �rms observe is the history of idiosyncratic noisy signals

regarding the state variables of the model, which are the aggregate technology and the mon-

etary policy stance. Firms have to estimate the dynamics of the model variables by solving

a signal extraction problem.

We �t this model to a data set that includes U.S. per capita GDP and the U.S. GDP

de�ator. We obtain the following results. First, when one replaces the more popular Calvo

sticky pricing with the mechanism of imperfect common knowledge, the �t of the DSGE

model improves. Second, we �nd that the mechanism of imperfect common knowledge

improves upon that of sticky pricing in accounting for the persistence of real e¤ects of

monetary disturbances. Third, in the estimated model the reaction of real variables to

nominal shocks is very persistent, since �rms are found to be rather uninformed about the

state of monetary policy.
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That �rms are widely unaware about monetary policy stance raises interesting questions.

A natural question is: why do �rms disregard the variability of the monetary policy stance,

even though information about it seems to be cheaply available in advanced economies?

According to the theory of rational inattention introduced by Sims (2003), free availability

of a piece of information does not necessarily mean that agents will decide to pay attention

to it. Hence, from a theoretical standpoint, the rational inattention theory seems to be

well-suited to explaining why �rms are uninformed about monetary policy even though it

would be very cheap for them to become informed.

To further investigate this issue, we present a simpli�ed rational inattention model that is

nested into the model with imperfect common knowledge. Moreover, we introduce an econo-

metric procedure that allows us to assess whether the predictions of this rational inattention

model are supported by the data. We �nd that its predictions are rejected to some extent

by the data. We point out that it is worthwhile to redo this exercise with a full-�edged

model of rational inattention, where the signal process is less parametrically restricted (e.g.,

Máckowiak and Wiederholt, forthcoming) or �rms�pro�t function is less stylized (e.g., al-

lowing �rms to accumulate capital). But the lack of fast and automated routines to solve

rational inattention models is a bottleneck that must be relieved in order to be able to do

this exercise.

Finally, when we solve the model with information frictions, we restrict signals to be

Gaussian. Sims (2006) and Lewis (2008) warn that, in models with rational inattention, such

an assumption has a signi�cant impact on agents�behavior, especially if information frictions

are large. Thus, considering non-Gaussian signals is likely to a¤ect the predictions of models

with information-processing frictions. Nonetheless, some of these expansions may involve

substantial technical complications. For instance, solving models with non-Gaussian signal

noise may require using sequential Monte Carlo �lters (Fernández-Villaverde and Rubio-

Ramírez, 2007).
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Máckowiak, B., Wiederholt, M., 2008. Business cycle dynamics under rational inattention, North-
western University Mimeo.
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Tables and Figures (intended for publication)

Table 1: Prior distributions
Name Range Density Median 90% Interval
�� [0; 1) Beta 0:50 [0:18; 0:83]
ln a R Normal 0:00 [�0:41; 0:41]
�� R Normal 0:00 [�0:41; 0:41]
� R+ Gamma 6:67 [0:78; 12:31]

100�� R+ InvGamma 8:60 [1:60; 46:60]
100�a R+ InvGamma 0:70 [0:51; 0:87]
100�e1 R+ InvGamma 18:52 [12:66; 25:63]
100�e2 R+ InvGamma 1:00 [0:34; 2:63]
� [0; 1) Beta 0:99 [0:98; 0:99]
�p [0; 1) Beta 0:67 [0:50; 0:83]
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Table 2: Posterior distributions
ICK Model Calvo Model

Name Median 95% Interval Median 95% Interval
�� 0:24 [0:14; 0:34] 0:06 [0:04; 0:08]

100 ln a 0:45 [0:36; 0:55] 0:44 [0:29; 0:59]
100�� 1:69 [1:39; 1:98] 1:85 [1:49; 2:19]
� 1:80 [1:39; 2:21] 2:16 [1:56; 2:73]

100�� 1:57 [1:23; 1:92] 1:93 [1:41; 2:44]
100�a 0:75 [0:58; 0:90] 1:24 [0:99; 1:48]
100�e1 36:82 [20:74; 52:21] � �
100�e2 2:45 [1:37; 3:45] � �
� 0:99 [0:98; 0:99] 0:99 [0:99; 0:99]
�p � � 0:94 [0:92; 0:95]�

1� ��1
�

0:44 [0:31; 0:56] � �
�e1=�� 22:40 [15:56; 31:26] � �
�e2=�a 3:16 [2:43; 4:04] � �
�m 0:04 [0:03; 0:06] � �
�a 0:23 [0:17; 0:29] � �
{ 0:27 [0:21; 0:34] � �
�a 0:84 [0:80; 0:89] � �

We use every 1,000 posterior draws to compute the posterior moments of �m, �a,
{, and �a
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Table 3: Logarithms of Marginal Data Densities (MDDs)
Models

ICK Calvo VAR(4)
log MDD 1539:01 1530:36 1727:04

Table 4: Restrictions for identifying the VAR

MP Restriction: �@GDPt
@"�;t

+ @DEFLt
@"�;t

= 0

Restriction A:
���@GDPt+j+1@"�;t

���� ���@GDPt+j@"�;t

��� > 0; any j 2 f1; 2g

Restriction B: @GDPt+50
@"�;t

< 0:005

Restrictions refer to a two-standard-deviation monetary shock. t denotes quarters.
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Appendix (not for publication)

A Log-linear approximation of the Calvo model

Here the equilibrium equations of the Calvo model are presented:

cmct = byt (54)

bpt + �byt = 0 (55)

ŵt � ŷt = 0 (56)

�at = �a"a;t (57)

�mt = ���mt�1 + ��"�;t (58)

�̂t = �Et�̂t+1 + �pcmct �  p [��at � (1� �)�mt] (59)

b�t = bpt � bpt�1 (60)

and

�p � (1� �p�) (1� �p)

�p
(61)

 p �
�
1� 2�p
�p

�
(62)

� �
�
1� �p
�p

+ �p�

�
�

 p
(63)

where the subscript b means log-deviations of a variable from its �exible-price steady-state

value, and mct denotes real marginal costs.
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B Solving the models with information frictions

In section B.1, we introduce some notation in order to be able to refer to �rms�higher-order

beliefs. In section B.2, we outline how one can apply the method introduced by Woodford

(2002) to solve the ICKmodel. We need to solve this model in order to evaluate the likelihood

function. In section B.3, we present a method that solves the rational inattention model.

We have to solve this model in order to characterize the restriction mapping �R in equation

(41).

B.1 Notation of high-order beliefs

Let us consider an arbitrary stochastic variable xt. Firm i�s expectations of order zero are

the variable itself, i.e., x(0)t (i) � xt. Firm i�s �rst-order expectations are denoted as

x
(1)
t (i) � E

�
xtjI it

�
(64)

Average �rst-order expectations can be computed as follows

x
(1)
t �

Z
x
(1)
t (i) di (65)

Firm i�s second-order expectations are �rm i�s �rst-order expectations of the average

�rst-order expectations, or more concisely

x
(2)
t (i) � E

h
x
(1)
t jI it

i
(66)

By rolling this argument forward we obtain the average m-th order expectation,

x
(m)
t �

Z
x
(m)
t (i) di (67)

Moreover, �rm i�s (m+ 1)-th order expectations are its expectations of the average m-th

order expectation,
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x
(m+1)
t (i) � x

(m)
tjt (i) � E

h
x
(m)
t jI it

i
(68)

Firms�price-setting equation can be shown to be:

lnP it =
�
1� ��1

�
lnP

(1)
t (i) + ��1 ln �

(1)
t (i)� lnA

(1)
t (i)� ln y (69)

where lnP (1)t (i), ln �(1)t (i), and lnA
(1)
t (i) stand for �rm i�s �rst-order expectations of lnPt,

ln �t, and lnAt, respectively.

By aggregating across �rms we obtain the price equation

lnPt =
�
1� ��1

�
lnP

(1)
t + ��1 ln �

(1)
t � lnA(1)t � ln y (70)

where lnP (1)t , ln �(1)t , and lnA
(1)
t are the average �rst-order expectations of lnPt, ln �t, and

lnAt, respectively.

Iterating on equation (70) by repeatedly taking conditional expectations and averaging

across �rms yields the law of motion of the price level:

lnPt =

" 1X
j=1

�
1� ��1

�j�1
��1

�
ln �

(j)
t � � lnA

(j)
t

�#
� � ln y (71)

B.2 Solving the ICK model

For a given set of parameters �I , the transition equations of the ICK model are:

byt = ���1bpt (72)

bpt = r0Xt (73)

Xt = BXt�1 + but (74)

where
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Xt �
�
X0
t

... F0t

�0
, r� [�1; 0; 1; 1; 0;�1]0 (75)

Ft �
1X
j=1

�
1� ��1

�j�1
��1X

(j)
t (76)

Xt � [mt;mt�1; �at] (77)

B �

24 B3x3 03x3

G3x3 H3x3

35 ; b =

�
b 0... d0

�0
(78)

B �

26664
1 + �� ��� 0

1 0 0

0 0 1

37775 ; b �

26664
�� 0

0 0

0 ��a

37775 ; ut = ["�;t; "a;t]
0 (79)

ut
iidv N (0; I2) , for all t (80)

where I2 is a 2� 2 identity matrix,

G = ekBy; d = ek� 1
2 ; H = B� ekBy (81)ek � '0k;' �

�
��1 � I3

...
�
1� ��1

�
� I3
�0

(82)

� =

24 �� 0

0 �a

35 (83)

D �
h
D1

... 02x3
i
; D1 =

24 1 0 0

0 0 1=�

35 (84)

where By �
h
B01

1
�
B03

i0
and Bj stands for the j-th row of B and k is the steady-state

matrix of Kalman gains which is well-known to be equal to

k = PD0 [DPD0 +�e]
�1 (85)
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with �e de�ned as in (21) for the ICK model. The variance and covariance matrix P solves

the following algebraic Riccati equation:

P = B
h
P�PD0 [DPD0 +�e]

�1
DP

i
B
0
+ bb

0
(86)

A loop to numerically �nd an REE for the ICK model is as follows. Given a set of

parameter values and a guess for the Kalman-gain matrix k0, one has to characterize the

matrices G, H, and d. Then, one has to solve the algebraic Riccati equation (86) for

P and to obtain a new Kalman-gain matrix k� through equation (85). Then if the new

Kalman-gain matrix is su¢ ciently close to the guess, one has just found the �xed point and

stops; otherwise, one goes through another loop by using the matrix k� as a new guess for

the Kalman-gain matrix. Once a �xed point is found, one can use the resulting Kalman-

gain matrix in order to fully characterize the state-space system described in (72)-(84).

Computationally, �nding this �xed point turns out to be very fast and this makes the ICK

model suitable for estimation.

B.3 Solving the rational inattention model

The following algorithm allows one to solve the rational inattention model. Given a set of

parameter values for �R,

1. GUESS: Guess �e1 and �e2.

2. DETERMINING THE EQUILIBRIUM TRANSITION EQUATION OF

FIRMS�STATE SPACE MODEL: Use the parameter values:

f�; ��; �; ln a;��; �; �; ��; �ag � �R

as well as the guessed parameters �e1 and �e2 to apply the method shown in Appendix

A1. Store the variance-covariance matrix P, de�ned in equation (86).

3. SOLVE FIRMS�ATTENTION PROBLEM: Solve the quadratic approximation

of �rms�attention problem:
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�
��e1 ; �

�
e2

�
= argmin V AR

�
lnP �i;tjzti

�
(87)

st

H
�
mtjzt�11;i

�
�H

�
mtjzt1;i

�
+H

�
atjzt�12;i

�
�H

�
atjzt2;i

�
� � (88)

where lnP �i;t is the log of optimal price set by �rm i at time t under perfect information

(i.e., �!1), which can be shown to be:

lnP �i;t =
�
1� ��1

�
lnPt + ��1 ln �t � lnAt + ��1 ln �p (89)

Notice that one can rewrite the objective function as

V AR
�
lnP �i;tjzti

�
=

�
1� ��1

�2
V AR(lnPtjzti) + ��2V AR

�
mtjzti

�
+ V AR

�
atjzti

�
(90)

+2��1
�
1� ��1

�
cov

�
mt lnPtjzti

�
� 2

�
1� ��1

�
cov

�
lnPtatjzti

�
All these conditional variances and covariances are obtained from the matrix P that

we characterized at step 2. Note that the equilibrium law of motion of the price level

(71) implies that

V AR(lnPtjzti) = u0E
h
XtX

0
t

i
u (91)

with u � [0; 0; 0; 1; 0;�1]0. Moreover, denote the (i; j) element of the matrix P as

P(i; j). It is easy to see that
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V AR
�
mtjzti

�
= P(1; 1); V AR

�
atjzti

�
= P(3; 3)

cov
�
mt lnPtjzti

�
= P(4; 1)�P(6; 1);

cov
�
lnPtatjzti

�
= P(4; 3)�P(6; 3)

Finally, from equations (30)-(33), we observe that the information-processing con-

straint (88) can also be numerically characterized by using the matrix P from step

2.

4. CHECK THE GUESS: Check if



��ej � �ej




 � ", with j 2 f1; 2g, and " > 0 small.

If this criterion is not satis�ed, go back to step 1 by setting �ej = ��ej ; j 2 f1; 2g.

Otherwise stop.


