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Abstract

In this paper we study the identi�cation and estimation of a class of binary regres-

sions where conditional medians of additive disturbances are bounded between known or

exogenously identi�ed functions of regressors. This class includes several important micro-

econometric models, such as simultaneous discrete games with incomplete information, bi-

nary regressions with censored regressors, and binary regressions with interval data or mea-

surement errors on regressors. We characterize the identi�cation region of linear coe¢ cients

in this class of models and show how point-identi�cation can be achieved in various micro-

econometric models under fairly general restrictions on structural primitives. We de�ne a

novel, two-step smooth extreme estimator, and prove its consistency for the identi�cation

region of coe¢ cients. We also provide encouraging Monte Carlo evidence of the estimator�s

performance in �nite samples.
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1 Introduction

In this paper we study the identi�cation and estimation of a general class of binary regression

models that relax the assumption of median independence of unobservable disturbances.

Speci�cally, the latent outcome in the binary decision is the sum of a linear index function of

regressors and a structural disturbance whose conditional median is bounded between known

or exogenously identi�ed functions of regressors. The paper makes several contributions to

the literature on semiparametric binary response models. First, we show how a variety of

important micro-econometric models can be formulated as binary responses with bounded

median dependence of the errors under quite general conditions. These models include: (i)

simultaneous discrete games with incomplete information, where players�private signals are

independent of each other conditional on observable states, and are median independent

of the regressors; (ii) binary response models with a censored regressor, where additive

structural errors (both in the binary regression and in a latent censored regression) are

symmetric around zero and independent of each other conditional on perfectly observed

regressors; (iii) binary regressions with interval data on one of the regressors, where the error

is median independent of all other perfectly observed regressors and the interval; (iv) binary

regressions with a noisy measure of one of the regressors, where the noise in the measurement

and the structural error are conditionally independent of each other and median independent

of all regressors. Our approach of estimation is novel in the sense that restrictions required to

formulate (and identify) these models as binary regressions with bounded median dependence

are di¤erent from (and in some cases weaker than) those used in the literature so far. Second,

we characterize the convex identi�cation region of coe¢ cients, and derive su¢ cient conditions

for point identi�cation in the motivating models above. Remarkably exact identi�cation can

be achieved under fairly general exclusion restrictions on linear indices and some conditions

on richness of the support of regressors. Our third contribution is to propose a novel two-

step extreme estimator of the identi�ed set of coe¢ cients and prove its consistency. In the

�rst-step, we use kernel regressions to estimate choice probabilities conditional on regressors.

In the second step, we use the �rst-step estimates to construct a sample analog of certain

limiting function that penalizes coe¢ cients outside the identi�cation region with positive

numbers. The estimator is de�ned as minimizers of this sample analog. The estimator is

consistent for the identi�cation region when coe¢ cients are only partially identi�ed. We

also give some encouraging Monte Carlo evidence on the estimator�s performance in �nite

samples in two interesting designs.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
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Section 3 de�nes the class of binary response models with bounded conditional medians,

and shows how various micro-econometric models can be included into this general class

under appropriate restrictions. Section 4 characterizes the identi�cation region of index

coe¢ cients, and proves its convexity. Section 5 de�nes the two-step extreme estimator of

the identi�cation region and proves its consistency. Section 6 speci�es su¢ cient conditions

on structural primitives in motivating submodels that lead to the point-identi�cation of the

coe¢ cients. Section 7 shows Monte Carlo evidence of the estimator�s performance in �nite

samples. Section 8 concludes.

2 Related Literature

Our paper is related to a vast semiparametric literature on binary response regressions where

the latent outcome variable is additively separable in subutility functions of observed regres-

sors and disturbances unobserved by econometricians. Various shape or stochastic restric-

tions have been introduced on the subutility functions and error distributions for identi�ca-

tion and estimation. A most popular identifying assumption is that errors are statistically

independent of regressors. Matzkin (1992) showed under this assumption that a general

subutility function u(X) and distribution of the additive error term F� can be uniquely re-

covered up to a locational normalization from choice probabilities under additional shape

restrictions on u such as monotonicity, concavity and homogeneity. Other authors studied

the estimation of binary response models under statistical independence but with di¤er-

ent restrictions on u(:) (such as Cosslett (1983), Han (1987), Klein and Spady (1993), and

Ichimura (1993)). Another strand of literature studies binary response models under a weaker

assumption of median independence of the disturbances, which allows for heterogeneous dis-

turbances. Manski (1985) showed the linear coe¢ cients can be identi�ed up to scale under

median independence, provided the the support of regressors is rich enough, and proposed

a consistent maximum score estimator. Other authors have studied the asymptotic distrib-

ution and the re�nement of maximum score estimators (see Sherman (1988) and Horowitz

(1992)). Yet another branch of the literature studied the semiparametric e¢ ciency of binary

choice models under various stochastic restrictions. Chamberlain (1986) and Cosslett (1987)

derived semiparametric e¢ ciency bounds for binary choice models under independence, and

Chamberlain (1986) concluded there does not exist any root-N consistent regular estimator

for linear coe¢ cients under the median independence restriction. Chen and Khan (2003)

further showed that in the presence of multiplicative heterogeneity, the semiparametric in-

formation bound is zero even when the homoskedastic component is parametrically speci�ed.
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Our contribution to the literature on binary choices is the identi�cation and consistent es-

timation of coe¢ cients where conditional medians of the error term is only known to be

bounded within certain ranges. This is a weak stochastic restriction that arises naturally in

various important micro-econometric models.

Our paper is also related to previous works on various motivating models listed above.

Aradillas-Lopez (2005) and Bajari, Hong, Krainer and Nekipelov (2007) studied discrete

games with incomplete information under di¤erent sets of restrictions on the players�pri-

vate signals. Our speci�cation of players�payo¤s is the same as in Aradillas-Lopez (2005),

where payo¤s are additively separable in the linear index of subutilities X�i, the private

signals �i, and a constant term that captures the strategic interaction. Our work di¤ers

from Aradillas-Lopez (2005) in that the latter requires private signals to be jointly inde-

pendent from observable states X, while we require them to be independent of each other

conditional on observable states. Thus our speci�cation can accommodate private signals

with heterogeneous distributions across games. Our identi�cation and estimation strategies

are di¤erent from that in Aradillas-Lopez (2005), and are valid in the presence of multiple

equilibria provided all players observed in data follow the same pure-strategy Bayesian Nash

Equilibria. Bajari, Hong, Krainer and Nekipelov (2007) does not impose any restrictions on

how players�payo¤s depend on observable states or on the interaction between their actions.

However, this generality comes at the cost of stronger restrictions on unobservable distur-

bances. Their approach requires players�private signals to be independently and identically

distributed conditional on X, and their distributions must be known to the researcher. In

contrast, we are less restrictive about the unobservable distributions of private signals, while

the identifying power in our approach derives from the additive form of the payo¤ functions.

Manski and Tamer (2002) studied the inference of binary regressions with interval data on

one of the regressors. Compared to their work, our approach is valid under a weaker restric-

tion where the size and location of the interval can depend on both the true value of the

imperfectly observed regressor and the structural disturbance jointly. Rigobon and Stocker

(2007) studied the estimation of a linear regression model where one of the regressors are cen-

sored. They established that there is zero semiparametric information in observations with a

censored regressor, and thus veri�ed there is no fully nonparametric "�x" for estimation of a

multiple regression with censored regressors. Their work suggests more structure is required

to address censored regressors even for the simplest case of linear regressions. Our work �lls

in the gap for binary regressions with censored regressors by modelling them as outcomes in

a censored regression with additive errors that satisfy weak stochastic restrictions mentioned

above.
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3 The Models

Throughout the paper, we use upper cases for random variables and lower cases for their

realized values. Consider a binary choice model:

Y = 1(X� + � � 0); � 2 RK ; � 6= 0 (1)

The conditional median of � is de�ned as:

Med(�jX) = f� 2 R : Pr(� � �jX) � 1

2
;Pr(� � �jX) � 1

2
g

Let SX � RK denote the support of X and FX denote its distribution. The distribution of

the error term satis�es the following stochastic restriction.

BCQ (Bounded Conditional Medians): Conditional on any x 2 SX , � is distributed as
F�jX=x with well-de�ned continuous densities and L(x) � supMed(�jx) and infMed(�jx) �
U(x) a:e:FX , where L(:); U(:) are known functions with L � infx2SX L(x) > �1, U �
supx2SX U(x) < +1.

Under BCQ, the median of error terms may depend on regressors, but the form of such

dependence are known to be within certain boundaries. The restriction includes the classical

median independence Med(�jX) = 0 as a special case when Pr(L(X) = 0 = U(X)) = 1.

It fails if and only if the conditional medians fall outside the interval [L(x); U(x)] for some

x 2 SX with positive probability. Alternatively, this restriction can be represented as:

Med(�jx) \ [L(x); U(x)] 6= ? a:e:FX . We do not require F�jX=x to be strictly increasing

and therefore it may have interval-valued medians (rather than unique medians). A key

identifying restriction is that L(:) and U(:) must be known or can be exogenously identi�ed

and consistently estimated outside the model. This requirement may appear to be quite

restrictive at the �rst sight, but as we argue below, this framework is general enough to

include several interesting models where researchers can attain knowledge of these bounds a

priori.

3.1 Simultaneous discrete games with incomplete information

Consider a simultaneous 2-by-2 discrete game with the same space of pure strategies f1; 0g
for players i = 1; 2. The payo¤ structure is :

0 1

0 0; 0 0; X�2 � �2
1 X�1 � �1; 0 X�1 + �1 � �1; X�2 + �2 � �2
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where X 2 RK is a vector of payo¤-related exogenous states observed by both players and
econometricians, and � � (�1; �2) where �i 2 R1 is an idiosyncratic payo¤-related component
only observed by each player i but not by the rival or econometricians. The joint distribution

of these disturbances conditional on X (denoted F�jX), as well as the structural parameters

� � f�i; �igi=1;2, are common knowledge among both players. Econometricians do not know
�, but know that �i is strictly negative for i = 1; 2, �1 is independent of �2 conditional on X,

and Med(�ijX = x) = 0 for i = 1; 2 for all x.

Let SX denote the support of X, and S�i(x) denote the support of �i conditional on

X = x. A pure strategy for a player is a mapping gi : SX 
 S�i(X) ! f0; 1g. A pure-

strategy Bayesian Nash equilibrium (BNE) is characterized by a pair of set-valued functions

Ai : SX ! S�i(X) such that for all x 2 SX and "i 2 S�i(x), gi(x; "i) = 1("i 2 Ai(x)) (where
1(:) is the indicator function that equals 1 if the event "." happens) and

A�1(x) = f"1 : "1 � x�1 + �1P (�2 2 A�2(x)j"1; x)g
A�2(x) = f"2 : "2 � x�2 + �2P (�1 2 A�1(x)j"2; x)g

In general A�i (x) is a mapping from structural primitives f�i; �igi=1;2 and F�jX=x into subsets
of S�i(x), and is independent of realizations of (�1; �2).

2 We maintain that the data observed

by econometricians are generated by players following pure strategies only, and that �1 and �2
are independent conditional onX withMed(�ijX) = 0 for i = 1; 2. Hence choice probabilities
p(x) � [p1(x) p2(x)] observed from data (where pi(x) � Pr(player i chooses 1jX = x)) must

satisfy the following �xed-point equation in any pure-strategy BNE,�
p1(x)

p2(x)

�
=

�
F�1jX=x(x�1 + p2(x)�1)

F�2jX=x(x�2 + p1(x)�2)

�
(2)

This characterization of BNE is identical with the de�nition of Quantal Response Equi-

librium in McKinley and Palfrey (1995). The latter is a special case of BNE when error

distributions are independent across the choices. The existence of BNE follows from the

Brouwer�s Fixed Point Theorem. Under conditional independence, a generic value of para-

meters �, F�1;�2jX can generate p(x) if and only if it can generate pi(x) in the binary response

Yi = 1(X�i + p�i(X)�i � �i � 0) for i = 1; 2. As in binary response models, �i needs to be
normalized to �1 for i = 1; 2 to attain identi�cation of the other parameters in �i. De�ne
~�i = �p�i(x) � �i. Both decision processes for i = 1; 2 �t in our general framework with

Li(x) = Ui(x) = �p�i(x), where reduced form choice probabilities pi(x) is known to econo-

metricians completely from observable data. In Section 6, we de�ne and prove identi�cation

2More generally, pure-strategies should take the form gi(x; "i) = 1("i 2 Ai("i; x)), but this can be easily
represented as gi(x; "i) = 1("i 2 A�i (x)) with A�i (x) � f"i : "i 2 Ai("i; x)g.
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of (�1; �2) under the conditional independence and median independence, an exclusion re-

striction in the indices X�i, some support conditions on X, L(X) and U(X), as well as some

other regularity conditions on primitives.

Several recent literature have studied the estimation of such static discrete games with

incomplete information, including Aradillas-Lopez (2005) and Bajari, Hong, Krainer and

Nekipelov (2007). Aradillas-Lopez focuses on a case where (�1; �2) are jointly independent

from observable states X. He extends the semiparametric likelihood estimator in Klein and

Spady (1993) to this game-theoretic setup. The uniqueness of BNE is needed for a well-

de�ned likelihood function. Aradillas-Lopez gives su¢ cient and necessary conditions for the

uniqueness of the equilibrium. Bajari et.al (2007) show a general subutility function u(:)

can be identi�ed nonparametrically provided disturbances are independently and identically

distributed across players conditional on X and that F"1;"2jX is completely known to the

researcher. The main limitation of the approach is, of course, distribution of the disturbances

is rarely known to researchers in empirical implementations.

In comparison, our approach of formulating the BNE as a system of two binary regres-

sions with observable median dependence has two advantages. First, the identi�cation of

structural parameters does not require any strong form restrictions on the distribution of

disturbances. In particular, it allows for heterogenous games where the distribution of distur-

bances are related to observable states. Second, multiplicity of the equilibria is not an issue

for estimating the model, as recoverability of parameters does not hinge on the knowledge

of a well-de�ned likelihood function. Instead, identi�cation is solely based on the character-

ization of the outcome in (2) which is shared by all equilibria. In the presence of multiple

pure-strategy Bayesian equilibria, we only require players in the data to follow the same

pure strategy continuous in observable states x. We remain agnostic about the equilibrium

selection mechanism itself.

3.2 Binary response with imperfect data on regressors

(Binary response with censored regressors) Let Y1 = 1(Y �1 � 0), where Y �1 is an unobserved
latent scalar variable

Y �1 = X1�1 + Y21 + �1 (3)

and Y2 = X2�2 + �2, where Y2 2 R1, X1 2 RK1, X2 2 RK2 and 1 > 0. Researchers

can perfectly observe Y1 and (X1; X2), but can only observe censored values of Y2, i.e.
~Y2 � maxfY2; 0g. There may be overlapping coordinates in X1 and X2, and X2 has at least
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one coordinate that is not included in X1. This type of models arise frequently in empirical

applications. One example is individuals�decisions on labor participation, where Y �1 is the

net number of hours an individual can supply after subtracting certain measure of reservation

hours. The covariates in X1 may include social demographic variables and log hourly wage,

and Y2 is the log income from other non-work sources, such as endowment, welfare bene�ts

or spouse income. Often researchers only get to observe censored data on such income. This

happens when people are reluctant to reveal exact amount of income when it is above or

below certain levels. X2 may overlap with X1, but contains at least one element excluded

from X1. For example, X2 may include demographic variables for the individual�s spouse.

The key restriction for point identi�cation is that conditional on (X1; X2), structural

errors (�1; �2) are independent of each other and are both symmetric around 0. First, note

(�1; 1) can only be identi�ed up to scale under these restrictions. To see this, recall the

joint distribution F ~Y2;X2 is su¢ cient for identifying �2 under the symmetry of F�2jX2 (as in

Powell(1984), Powell(1986)). Now let ps(tjx1; x2) � Pr(Y1 = s; ~Y2 = tj X1 = x1; X2 = x2)

for s = 0; 1. For any given set of parameters (�1; �2; 1; F�1jX1;X2 ; F�2jX1;X2) and t > 0,

p1(tjx1; x2) = F�1jX1=x1;X2=x2;�2=t�x2�2(�x1�1 � t1)f�2jX1=x1;X2=x2(t� x2�2) (4)

= F�1jX1=x1;X2=x2(�x1�1 � t1)f�2jX1=x1;X2=x2(t� x2�2)

and for t = 0,

p1(0jx1; x2) = F�1;�2jX1=x1;X2=x2(�x1�1;�x2�2) (5)

= F�1jX1=x1;X2=x2(�x1�1)F�2jX1=x1;X2=x2(�x2�2)

where the second equalities in both (4) and (5) follow from conditional independence. Con-

sider an alternative set of parameters (c�1; �2; c1; F�1jX1;X2(
:
c
); F�2jX1;X2) where c is some

positive constant. By construction, this alternative set generates the same observable distri-

butions p1(:jx1; x2) on [0;+1) for all x1; x2 as the original set of parameters.

After normalizing 1 to 1, (3) can be equivalently represented as

Y �1 = X1�1 +Median(Y2jX1; X2) + u (6)

where u = �2 + �1. By construction, Median(Y2jX1; X2) = X2�2. As �2 is exactly identi�ed

under conditional symmetry of �2 given (X1; X2), the binary decision in (3) with censored

values of Y2 can be equivalently represented as (6) with u symmetrically distributed around

0 conditional on (X1; X2). By de�ning ~� = Med(Y2jX2) + u, the model �ts in our general
class of binary responses with L(X1; X2) = U(X1; X2) =Med(Y2jX2).
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(Binary regressions with interval data) Let Yi = 1(X�+V + � � 0), where X 2 RK , V 2
R. Researchers observe a random sample of (Y;X; V0; V1) and (i) Pr(V0 � V � V1) = 1 and
both V0 and V1 have bounded support; (ii) Med(�jx; v0; v1) = 0 for all (x; v0; v1). Then Y =
1(X� + ~" � 0) where ~� = V + �. It follows from (i) and (ii) that v0 � infMed(~�jx; v0; v1) �
supMed(~�jx; v0; v1) � v1 8(x; v0; v1). Denote the (k + 2)-vectors [X V0 V1] by Z and [� 0 0]

by �. Then the model is reformulated as Y = 1(Z 0�+~� � 0), where L(Z) � infMed(~�jZ) �
supMed(~�jZ) � U(Z) a:e:FZ with L(Z) = V0 and U(Z) = V1. The parameter space now

considered is � = fb 2 Rk+2 : bk+1 = bk+2 = 0g. Thus this model �ts in our class of binary
regressions with bounded conditional medians. The identifying restrictions here are weaker

than those in Manski and Tamer (2002). In addition to the classical median independence

restriction (i.e. Med(�jx; v) = 0 for all x; v), they also require that conditional on the

true (but unobservable) regressor V , the disturbance � is statistically independent from the

random bounds (V0; V1). Among other things, this conditional independence rules out an

interesting case where the size or location of the interval depends on both V and � jointly.

In contrast, our model only requires the median independence of � conditional on X and the

bounds, and allows for such relations.

(Binary regressions with measurement error) Let Y = 1(X1� + X
�
2 + � � 0) where one

of the regressors X�
2 2 R1 can only be measured with an additive error, i.e. X2 = X

�
2 � � is

observed instead of X�
2 . Suppose conditional on (X1; X2), � and � are mutually independent

and both symmetric around 0. Then Y = 1(X1� + X2 + ~� � 0) with ~� = � + � and

Median(~�jX1 = x1; X2 = x2) = 0 for all x1; x2. An empirical example of this model is an

individual�s decision for labor participation. Suppose each individual chooses to participate

in the labor force if and only if he expects his net payo¤s from working or active job searches

to be non-negative. These net payo¤s are determined by potential employer�s perception

of individuals� abilities X�
2 and other demographic characteristics X1 (including gender,

education, previous job experience, etc). LetX2 be a certain noisy measure of the individual�s

ability based on which employers form their perceptions X�
2 (e.g. X2 may be individuals�

scores in standard tests such as SAT). Then the key identifying assumption requires that

noises in the employers�perception (i.e. �) and other unobserved factors which a¤ect the

net payo¤s from labour participation are mutually independent and both symmetric around

0 given demographic features and the test scores.
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4 Partial Identi�cation of �0

In this section, we characterize the identi�cation region of linear coe¢ cients �0 in the general

framework of binary response with median dependence. Specializations into various motivat-

ing models is straightforward. Let � denote the set of conditional distributions F�jX that sat-

isfy BCQ, let �0; F
0
�jX denote the true structural parameters in the model, and p

�(x; �0; F
0
�jX)

denote observed conditional choice probabilities Pr(d = 1jx; �0; F 0�jX). Below we characterize
the set of coe¢ cients b 2 RK which, for some choice of F�jX 2 �, can generate the observed
choice probabilities p�(x) almost everywhere on the support of X (denoted SX). This reveals

the limit of what can be learned about the true parameter �0 from observables under BCQ,

and leads to the de�nition of our two-step extreme estimator. For any generic pair of coe¢ -

cients b and conditional error distribution G"jX , let p(x; b;G"jX) denote the probability that

the person chooses d = 1 given x, b and G"jX (i.e. p(x; b;G"jX) �
R
1(xb + � � 0)dG�jX=x),

and let X(b;G"jX) denote the set fx : p(x; b;G�jX) 6= p�(x; �0; F 0�jX)g.

De�nition 1 The true coe¢ cient �0 is identi�ed relative to b under BCQ if for all F�jX 2 �,
Pr(X 2 X(b; F�jX)) > 0. Furthermore, �0 is observationally equivalent to b under BCQ if

it is not identi�ed relative to b under BCQ. The identi�cation region of �0 is the set of b in

the parameter space that are observationally equivalent to �0 under BCQ.

By construction, the size of the identi�cation region decreases as stronger restrictions

are imposed on the distribution of unobserved disturbances F�jX . Lemma 1 below fully

characterizes the identi�cation region. For the rest of the paper, we use p�(x) as a shorthand

for p�(x; �0; F
0
�jX).

Lemma 1 In the binary response model (1), b is observationally equivalent to �0 under
BCQ if and only if Pr(X 2 �0b) = 0, where

�0b � fx : (�xb � L(x); p�(x) <
1

2
) or (�xb � U(x); p�(x) > 1

2
)g

That F�jX has continuous conditional densities is only a regularity condition in BCQ for

proof of asymptotic properties of our estimators proposed below. It is not necessary for the

identi�cation lemma. Instead, Lemma 1 is valid under a weaker restriction supMed(�jx) 2
Med(�jx) a:e:FX . An immediate implication of Lemma 1 is that the identi�cation region
under BCQ is �0I � fb : Pr(X 2 �0b) = 0g. To understand how Lemma 1 helps with
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estimation and inference, note the characterization of �0I is independent of the unknown

structural elements (�0; F
0
�jX) given the joint distribution FY;X observed. Thus, it can be

used to de�ne a non-stochastic function Q(b) that can be constructed from FY;X only, and

more importantly, is minimized if and only if b is in the identi�cation region. Then an

extreme estimator can be constructed by optimizing a properly de�ned sample analog Q̂n(b).

In general �0I will not be a singleton. The size of identi�cation regions become smaller as

stronger restrictions are imposed on F�jX .

BCQ-2: � has continuous densities conditional on all x 2 SX and L(x) � infMed("jx) �
supMed("jx) � U(x) a:e:FX , where L(:); U(:) are known functions with L � infx2SX L(x) >
�1, and U � supx2SX U(x) < +1.

Corollary 1 In the binary response model (1), the identi�cation region of � under BCQ-2
is �I � fb : Pr(X 2 �b) = 0g, where

�b � �0b [ fx : �xb 62 [L(x); U(x)]; p�(x) =
1

2
g

Median independence is a special case of BCQ-2 when L(x) = U(x) = 0 a:e:FX. Under

median independence, the identi�cation region is �0I � fb : Pr(x 2 �0b) = 0g, where

�0b � fx : (�x0b � 0; p�(x) <
1

2
) or (�x0b � 0; p�(x) > 1

2
) or (�x0b 6= 0; p�(x) = 1

2
)g

Note �0b � �b � �0b when L(x) � 0 � U(x) a:e:FX . Thus �0I � �I � �0I . The exact di¤erence
between sizes of these sets is determined by FX and linear coe¢ cients b considered. The

di¤erence between �I and �0I does not exist if Pr(p
�(X) = 1

2
) = 0.

Corollary 2 Under BCQ, the identi�cation region �0I is convex. Under BCQ-2, the identi-
�cation region �I is convex.

Convexity of identi�cation regions is a desirable property that brings computational ad-

vantages in the estimation and inference using our extreme estimator de�ned below. In par-

ticular, convexity facilitates the estimation of the identi�cation region through grid searches.

Convexity also helps with constructing con�dence regions using the criterion function ap-

proach in Chernozhukov, Hong and Tamer (2008), which relies on recovering the distribution

of the supreme of the objective function over the identi�cation region.
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5 A Smooth Extreme Estimator

We de�ne an extreme estimator for �0 under BCQ-2 by minimizing a non-negative, random

function Q̂n(b) constructed from empirical distribution of (X;Y ). The idea is that the

limiting function of Q̂n(:) as n ! 1 (denoted Q(:)) is equal to zero if and only if b 2 �I ,
where �I is the identi�cation region of � under BCQ-2. Thus the set of minimizers of Q̂n(:)

converge to �I in probability (denoted
p!) under certain metrics between sets, provided

Q̂n
p! Q uniformly over the parameter space. Let � denote the parameter space of interests.

Lemma 2 below de�nes the appropriate limiting function Q(:).

Lemma 2 De�ne the non-stochastic function

Q(b) � E[1(p�(X) � 1=2)(�U(X)�Xb)2+ + 1(p�(X) � 1=2)(�L(X)�Xb)2�]

where 1(:) is the indicator function, a+ � max(0; a) and a� � max(0;�a). Suppose

Prf�X 0b = U(X) or �X 0b = L(X)g = 0 8b 2 �. Then Q(b) � 0 8b 2 � and Q(b) = 0 if

and only if b 2 �I , where �I � � is the identi�cation region of �0 under BCQ-2.

In practice, we replace the indicator function in Q(b) with a certain smoothing function

� : [�1=2; 1=2] ! [0; 1]. Then Corollary 3 below proves the identi�cation region under

BCQ-2 is still characterized as minimizers of the smoothed version of Q(b). The additional

regularity condition necessary for identi�cation under a smooth � is Prfp�(X) = 1
2
g = 0.

Corollary 3 De�ne the non-stochastic function

Q(b) � E[�(p�(X)� 1=2)(�U(X)�Xb)2+ + �(1=2� p�(X))(�L(X)�Xb)2�]

where � : [�1
2
; 1
2
]! [0;+1) is a smoothing function such that �(c) = 0 8c � 0 and �(c) > 0

8c > 0. Suppose Prf�Xb = U(X) or �Xb = L(X)g = 0 8b 2 �, and Prfp�(X) = 1
2
g = 0.

Then under BCQ-2, Q(b) � 0 8b 2 � and Q(b) = 0 if and only if b 2 �I .

Our extreme estimator is de�ned by replacing Q(b) with its sample analog Q̂n(b). In the

�rst step, we use kernel regressions to estimate choice probabilities nonparametrically. In

the second step, a sample analog Q̂n(b) is constructed using the empirical distribution of X

and the �rst-step kernel estimate. The two-step extreme estimator is then de�ned as the

minimizer of Q̂n. For simplicity in exposition, we construct the estimator below for the case
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where all regressors are continuous. Extensions to cases with discrete regressors entail no

conceptual or technical challenge for the estimation, and is omitted.3

De�ne the kernel density estimates for f0(xi) and h0(xi) � E(YijXi = xi)f0(xi) as

f̂(xi) �
1

n�Kn

Pn
j=1;j 6=iK(

xj � xi
�n

); ĥ(xi) �
1

n�Kn

Pn
j=1;j 6=i yjK(

xj � xi
�n

)

where K(:) is the kernel function and �n is the bandwidth chosen. The nonparametric

estimates for p(xi) is p̂(xi) � ĥ(xi)=f̂(xi). Now construct the sample analog of Q(b):

Q̂n(b) =
1

n

Pn
i=1 �(p̂(xi)�

1

2
)[�xib� U(xi)]2+ + �(

1

2
� p̂(xi))[�xib� L(xi)]2�

The two-step extreme estimator is de�ned as:

�̂n = argminb2� Q̂n(b)

When L and U are not perfectly observed (as in the case with interval data on regressors)

but directly identi�ed in data (as in the case with simultaneous games with incomplete infor-

mation, we replace them with �rst-stage estimates L̂ and Û . In general, the true parameter

� may not be point identi�ed (i.e. Q(b) = 0 on a non-singleton set). Therefore we need to

choose a metric for di¤erences between sets prior to the de�nition and proof of consistency

of our extreme estimator. We choose the Hausdor¤ metric as in Manski and Tamer (2002).

This metric between two sets A and B in RK is de�ned as

d(A;B) � max f�(A;B); �(B;A)g , where �(A;B) = supa2A infb2B jja� bjj

where jj:jj is the Euclidean norm. Proposition 1 below proves the two-step extreme estima-
tor is a consistent estimator of the identi�cation region �I under this metric. Regularity

conditions for set consistency are collected below.

PAR (Parameter space) The identi�cation region �I is in the interior of a compact,

convex parameter space �.

RD (Regressors and disturbance) (i) the (K + 1)-dimensional random vector (Xi; "i) is

independently and identically distributed; (ii) the support of X (denoted SX) is bounded,

and its continuous coordinates have bounded joint density f0(x1; :; xK), and both f0(x) and

f0(x)p
�(x) are m times continuously di¤erentiable on the interior of SX with m > k; (iii)

Prf�L(X) = Xbg = 0, Prf�U(X) = Xbg = 0 and Prfp�(X) = 1
2
g = 0.

3The inclusion of discrete regressors a¤ects su¢ cient conditions for the point identi�cation of �. However,

in this section we focus on general partial identi�cation only.
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KF (Kernel function) (i) K(:) is continuous and zero outside a bounded set; (ii)
R
K(u)du

= 1 and for all l1 + :: + lk < m,
R
ul11 :::u

lk
k K(u)du = 0; (iii) (lnn)n�1=2��Kn ! 0 and

p
n(lnn)�2mn ! 0.

SF (Smoothing functions) (i) � : [�1
2
; 1
2
] ! [0; 1] is such that �(c) = 0 8c � 0 and

�(c) > 0 8c > 0; (ii) � is bounded with continuous, bounded �rst and second derivatives on
the interior of the support.

BF (Bounding functions) (i) supx2SX jL̂(x)�L(x)j = op(1) and supx2SX jÛ(x)�U(x)j =
op(1); and (ii) 1

n

Pn
i=1(�L̂(xi)� xib)2� = OP (1) and 1

n

Pn
i=1(�Û(xi)� xib)2+ = OP (1) for all

b 2 �.

Conditions in RD(iii) are regularity conditions for identi�cation. Restrictions in SF (i)

are also essential for the formulation of the identi�cation region as the set of minimizers of

Q. Conditions in RD(i); (ii) and KF imply p̂
p! p uniformly over SX at a rate faster than

n�1=4, which, combined with smoothness property of � in SF (ii), facilitates our proof of

point-wise convergence of Q̂n to Q in probability. Given that Q̂n is convex and continuous

over the convex parameter space �, this point-wise convergence can be strengthened to

uniform convergence over any compact subsets of �. That � is compact and that the

support of X are bounded are technical conditions that simplify the proof of consistency

by making the integrand of the limiting function uniformly bounded over �. However,

this may be stronger than necessary for our consistency result, as we only need Q̂n
p! Q

point-wise in �. Finally, note on most occasions, such as in our examples of discrete games

with incomplete information and binary regressions with imperfect data on regressors, the

bounding functions L(x) and U(x) are either directly observed, or consistently estimated

along with p�(x) from the sample data in the �rst step. Conditions in BF (i) require such

estimates to converge to the truth uniformly over the support of X at an appropriate rate,

and BF (ii) requires sample averages of the di¤erence between the indices and bounds to

be stochastically bounded. These (rather weak) conditions ensure the sample analog Q̂n
converges in probability to Q pointwise.

Proposition 1 Suppose BCQ-2, PAR, RD, TF, KF and BF are satis�ed. Then (i) �̂n
exists with probability approaching 1 and Pr(�(�̂n;�I) > ") ! 0 as n ! 1 for all " > 0;

(ii) Suppose supb2�I jQ̂n(b)j = Op(a
�1
n ) for some sequence of normalizing constants an !1

and let ~�n = fb 2 � : Q̂n(b) � ĉ=ang, where ĉ � anQ̂n(b) with probability approaching 1 and
ĉ=an

p! 0. Then Pr(d(�I ; ~�n) > ")! 0 as n!1.
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The proof proceeds by �rst using the uniform convergence of p̂ to p� to show point-wise

convergence of the convex objective function Q̂n in probability to the (continuous) limiting

function Q on �. Then the convexity of Q̂n and Q implies the point-wise convergence can be

strengthened into uniform convergence in probability over �. This is su¢ cient for showing

part (i) and the consistency of �̂n = argminb2� Q̂n(b) for �0 when �0 is point-identi�ed.

The introduction of the sequence ĉ=an in the de�nition of ~�n in part (ii) is needed to account

for general cases where �I is not a singleton. The perturbed estimator ~�n is consistent for

non-singleton �I in Hausdor¤ metric. We do not derive results on the rate of convergence,

or asymptotic distribution of the estimator. A direction of future research will be to �nd

regularity conditions on the joint distribution of (X; �), and functions �, L and U , so that Q̂n
satisfy conditions for existence of polynomial minorant in Chernozhukov, Hong and Tamer

(2007) and the rate of convergence can be derived.4

6 Point identi�cation of �0

Despite generality in the characterization of �I , exact identi�cation of �0 is possible under

fairly weak conditions on the parameter space, the support of regressors, and the bounding

functions. In this section we �rst specify conditions for point-identi�cation under the gen-

eral framework of binary response with bounded median dependence. Then we discuss in

greater detail how these conditions are satis�ed by more primitive restrictions on structural

parameters in the motivating micro-econometric models.

EX (Exclusion restriction) 9J � f1; 2; :::; Kg such that for all b 2 �, bj = 0 8j 2 J .

SX (Support of X) (a) There exists no nonzero vector � 2 RK�#fJg such that Pr(X 0
�J� =

0) = 1 where X�J � (Xj)j2f1;::;KgnJ ; (b) For all b;~b 2 � and b�J 6= ~b�J , PrfX�J 2
T (b�J ;~b�J)g > 0 where T (b�J ;~b�J) � fx�J : (L;U)\R(x�J ; b�J ;~b�J) 6= ?; x

0
�J(b�J�~b�J) 6=

0g and R(X�J ; b�J ;~b�J) is the random interval with endpoints �X
0
�Jb�J and �X

0
�J
~b�J ; (c)

Pr(a0 < L(X); U(X) < a1jX�J = x�J) > 0 for all open interval (a0; a1) � [L;U ] and almost
everywhere x�J .

The condition EX requires researchers to know which coordinates are included in the in-

dex and restrict the parameter space accordingly. Along with support conditions in SX, these

4The condition on existence of polynomical minorant requires there exist positive constants (�; �; ) such

that for any " 2 (0; 1) there are (�"; n") such that for all n � n", Qn(�) � �[d(�;�I) ^ �] uniformly on
f� 2 � : d(�;�I) � (�"=an)1=g with probability at least 1� ".
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deliver a point-identi�cation of �0 through an extended approach of exclusion restrictions.

Essentially, it su¢ ces to show for all b 6= �0,

Pr

 
"�X�0 � L(X) � U(X) < �Xb"

or "�Xb � L(X) � U(X) < �X�0"

!
> 0

First, SX(a) requires coordinates fXjgj2J to be excluded from all index functions considered
in the parameter space. Then SX(b) requires the support of the other regressors X�J not to

be contained in any linear subspaces. Together they guarantee there is a positive probability

that there is a non-degenerate random interval between the true index and any other index

with b 6= �0 in � (denoted R(x�J ; b�J ;~b�J)). Next, SX(c) requires the excluded regressors
XJ to generate enough variation in the bounding functions even conditional on X�J . This

can be satis�ed when: (i) XJ enters both L(:) and U(:); and (ii) the joint distribution of

these two functions of XJ is so rich that for any given X�J , the probability for both of

them to fall within any open interval on [L;U ] (in particular, the intersection of [L;U ] with

R(x�J ; b�J ;~b�J)) is positive. Thus for all b 6= �0 in �, at least one of the two events above in
Lemma 1 (and Corollary 1) happen with a positive probability. The proof of the proposition

below formalizes this idea.

Proposition 2 Under BCQ-2, EX, and SX, �0 is identi�ed relative to all other b 2 �.

Remark 1 The support conditions in SX are quite general, and in particular, allow for

both discrete coordinates and bounded support of the regressors. This is an important

feature, for the compact support for regressors may come in handy in the proof of root-n

consistency and asymptotic normality of the estimator when �0 is point-identi�ed.

Remark 2 Perhaps a more intuitive explanation of the identifying restrictions is by estab-

lishing a link with those conditions in Manski (1985) under median independence. Suppose

L(x) = U(x) = M(x) for all x 2 SX . Then Y = 1(X�J��J + M(X) + ~� � 0), where

~� � � � M(X) and Med(~�jX) = 0. Hence M(X) can be interpreted as an augmented

regressor, whose coe¢ cient is known to be positive, and normalized to be 1. Proof of Propo-

sition 2 can be interpreted as an extension of Manski�s identifying arguments in our current

framework with bounded median dependence.

For the subsections below, we revisit various motivating models in Section 3, and show

how primitive conditions on model structures can deliver point-identi�cation of �0.
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6.1 Simultaneous games with incomplete information revisited

Consider the 2-by-2 discrete game with incomplete information in Section 3. We need to

extend the de�nition of identi�cation of parameters to accommodate the game-theoretic

framework and, more importantly, the possibility of multiple equilibria. Multiplicity in

Bayesian Nash Equilibria is a concern, as it implies the mapping from structural primitives

to observable distributions may be a correspondence (rather than a function). Let � denote

the parameter space for � � (�i; �i)i=1;2 and let FCMI denote the set of distributions of (�1; �2)

conditional on X (denoted F�1;�2jX) that satisfy the conditional independence and median

independence restrictions speci�ed in Section 3.1. Let p�(X; �0; F 0�1;�2jX) 2 [0; 1]
2 denote the

pro�le of choice probabilities observed for some �0 � (�01; �02) 2 � and F 0�1;�2jX 2 FCMI . For

any (�; F�1;�2jX) 2 � 
 FCMI and x 2 SX , let �(x; �; F�1;�2jX) denote the set of all choice
pro�les p(x) � [p1(x); p2(x)] that solves the �xed point equations in (2). Note �(x; �; F�1;�2jX)
must be a non-empty correspondence for all � 2 �, x 2 SX and F�1;�2jX 2 FCMI by Brouwer�s

Fixed Point Theorem. De�ne {(�; F�1;�2jX ; p�) � fx 2 SX : p�(x) 2 �(x; �; F�1;�2jX)g.

De�nition 2 Given an equilibrium outcome p� observed, � is observationally equivalent (de-

noted
o:e:

~ ) to �0 under FCMI if 9F�1;�2jX 2 FCMI such that PrfX 2 {(�; F 0�1;�2jX ; p
�)g = 1.

The identi�cation region of �0 in � under FCMI is the subset of � 2 � such that �
o:e:

~ �0 un-

der FCMI . We say �
0 is point-identi�ed under FCMI if the identi�cation region of �

0 under

FCMI is �
0.

In words, if there exists a F�1;�2jX 2 FCMI such that (�; F�1;�2jX) can always rationalize

the observed choice probabilities p�(x; �0; F 0�1;�2jX) as one of the solutions of the �xed point

equations in (2), then � is considered observationally equivalent to the true parameter �0

under the CMI restriction. Two remarks about the de�nitions are in order. First, identi-

�cation is always relative to the Bayesian Nash equilibrium outcome p� observed. Second,

the de�nition of "
o:e:

~ " only requires marginal distributions of both players�actions to be

rationalizable by observed equilibria, even though econometricians get to observe the joint

distribution of both players�actions. Obviously, the conditional independence restriction

"�1 ? �2 given X" has the testable implication

Pr(i chooses 1; j chooses 1jX) = Pr(i chooses 1jX) Pr(j chooses 1jX)

Our focus in this paper is on identi�cation rather than testability. We are interested in �nding

out what can be learned about �, given that the model is already known (or assumed) to
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be correctly speci�ed (or equivalently, p� observed are known to be rationalizable by certain

structural primitives).

Below we establish a link between identifying simultaneous Bayesian games and single-

agent binary choice models. Given an equilibrium outcome p� observed, a player i faces

a binary choice with an augmented vector of regressors: Yi = 1f�i � X�i + p
�
�i(X)�ig.

Let �i � (�i; �i) and �i denote the corresponding parameter space. Suppose the model is

correctly speci�ed for some �0; F 0�1;�2jX 2 � 
 FCMI . Let F i
MI denote the set of marginal

distributions of �i corresponding to a certain joint distribution F�1;�2jX in FCMI , and de�ne

{i(�i; F�ijX ; p�) � fx : p�i (x) =
R
1(�i � x�i + p��i(x)�i)dF�ijX=xg for any �i 2 �i.

De�nition 3 Given an equilibrium outcome p� observed, �i is unilaterally observationally

equivalent to �0i (denoted
u:o:e:

~ ) under F i
MI if 9F�ijX 2 F i

MI such that Pr(X 2 {i(�i; F�ijX ; p�))
= 1. The truth �0i is unilaterally point-identi�ed in �i under F i

MI (given p
�) if 8F�ijX 2 F i

MI ,

Pr(X 2 {i(�i; F�ijX; p�)) < 1 for all �i 6= �0i in �i.

Lemma 3 Given an equilibrium outcome p� observed, �
o:e:

~ �0 in � under FCMI if and only

if �i
u:o:e:

~ �0i under F i
MI for both i = 1; 2.

The lemma provides a convenient framework for identifying simultaneous discrete games

with incomplete information by decomposing it into two binary choice models, each with the

rival�s choice probabilities entering the player�s payo¤s as an additional regressor. Equiva-

lently, player i�s decision takes the form of a binary regression with bounded median depen-

dence where L(x) = p�i(x) = U(x). Thus (�
0
�i; �

0
�i) a¤ects the identi�cation of (�

0
i ; �

0
i ) only

through the choice probabilities p��i(; �
0) observed from data. An immediate consequence of

this lemma is that �i can only be identi�ed up to scale for i = 1; 2. Hence we normalize

�i = �1 for i = 1; 2 for the rest of this subsection. (With a slight abuse of notation, we

continue to use � � �1
�2 to denote the parameter space for �01; �02 after normalizing both
�0i to �1.) Below we specify conditions on model primitives to attain point-identi�cation of
(�i)i=1;2.

(CMI) For i = 1; 2, and for all x 2 S(X), the conditional disturbance distributions

F"ijX=x are continuously di¤erentiable for all "i with conditional median 0.

(PS) For i = 1; 2, (i) the true parameter �0i is in the interior of �i, where �i is a convex,

compact subset of RK; (ii) 9hi 2 f1; 2; :::; Kg such that bi;hi = 0, b�i;hi 6= 0 for all bi 2 �i;
(iii) �i < 0 for all �i in the parameter space.
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Under the conditional independence in CMI, outcomes of Bayesian Nash Equilibria are

characterized by pro�les of conditional choice probabilities p = (p1; p2) such that (2) is

satis�ed. The PS assumption requires each player�s payo¤ depends on at least one state

variable that does not a¤ect the rival�s payo¤. This exclusion restriction is instrumental

to our identi�cation strategy, as it implies the rival�s choice probabilities p�i(x) can vary

even when the player�s own subutility X�i is held constant. Such exclusion restrictions arise

naturally in lots of empirical applications. For example, consider static entry/exit games

between �rms located in di¤erent geographical regions. The indices X�i are interpreted as

conditional medians of monopoly pro�ts. There can be commonly observed geographical

features (such as local demographics of the workforce with in a region, etc) that only a¤ect

the pro�tability of the local �rms but not that of others. This restriction, along with median

independence in CMI, enable us to extend the identifying arguments in Proposition 2 to

recover (�i)i=1;2. Yet a major departure from the general framework in Proposition 2 is that

the variability of p(x) now depends on conditions of model structures, and therefore cannot

be simply assumed. Below we specify several primitive conditions on support of X and the

true conditional disturbance distribution F 0�1;�2jX that solves this issue. Let S(W ) denote the

support of any generic random variable W , and let S(W jz) denote the conditional support
of W given a realized value of another generic random variable Z = z.

(DDF) For i=1,2, (i) for all x 2 S(X), F 0"ijx are Lipschitz continuous on the support of
�i with an unknown constant CFi; (ii) there exists an unknown constant K

i
Fj
> 0 such that

supt2R1 jF 0"j j�x�hi ;~xhi (t)� F
0
"j j�x�hi ;xhi

(t)j � Ki
Fj
j~xhi � xhij

for all �x�hi 2 S(X�hi) and xhi ; ~xhi 2 S(Xhij�x�hi); (iii) For all � 2 (0; 1), there exists a
�nite constant C� (independent of x) such that F�ijX(C�jx) < � for all x 2 S(X).

Loosely speaking, DDF-(i) requires conditional distributions of �1; �2 given any x not to

increase too fast, while DDF-(ii) requires the marginal distributions of �1 and �2 given any

�x�hi "not to perturb too much" as xhi changes. DDF-(i) is satis�ed if the true probability

densities are bounded above uniformly for all x, and DDF-(ii) can be satis�ed when �j is

independent of Xhi conditional on X�hi. These two restrictions enable an application of a

version of the Fixed Point Theorem to show choice probabilities pi, as solutions to (2), are

continuous in the excluded regressors Xhi conditional on all the other regressors.

Lemma 4 Suppose PS and DDF (i)-(ii) are satis�ed with jCF1CF2j < 1. Then for all

b = (b1; b2) in the parameter space, there exist solutions fpi(:; b; F 0�1;�2jX)gi=1;2 to the �xed point
equation in (2) such that for i = 1; 2, pi(xhi;�x�hi) is continuous in xhi for any �x�hi 2 S(X�hi)
and xhi 2 S(Xhij�x�hi).
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In the next lemma, we show for any b1; b2 in the parameter space, the support of the

equilibrium outcome pi to be rich enough on [0; 1] given any x�hi, so that there is a positive

probability that pi(X) falls within any open interval on [0; 1]. In particular, this implies

there is positive probability that the true equilibrium outcome observed p�i falls within the

intersection of [0; 1] and the random interval between X�0i and Xbi with bi 6= �0i in �i).

We prove this by using the continuity of p�i and the following regularity conditions on the

distribution and support of Xhi given any �x�hi.

(REG) For i = 1; 2, for all �x�hi 2 S(X�hi), Xhi is continuously distributed on R1 and
Pr(Xhi 2 Ij�x�hi) > 0 for any open interval I in R1.

Lemma 5 Under PS, REG, and DDF, for all b = (b1; b2) in the parameter space, there exist
solutions fpi(:; b; F 0�1;�2jX)gi=1;2 to the �xed point equation in (2) such that for i = 1; 2 and

any (a1; a2) � [0; 1], Prfp�i(X) 2 (a1; a2)j X�hi = �x�hig > 0 for all �x�hi 2 S(X�hi).5

Finally, we need restrictions on the support of X�hi for i = 1; 2 so that for all bi 6= �0i
in �i, there is a positive probability that X�i 6= Xbi and the random interval between X�i
and Xbi intersects with the open interval (0; 1).

(RSX) For i = 1; 2, (i) for all nonzero vector � 2 RK�1, Pr(X 0
�hi� 6= 0) > 0; (ii) there

exists an unknown constant C < 1 such that Pr(minfjX 0bij; jX 0b0ijg � C) > 0 8bi; b0i 2 �i
where �i is the parameter space for bi; (iii) Let Xc

�hi and X
d
�hi denote respectively subvectors

of continuous and discrete coordinates of X�hi. For all S such that P (X
c
�hi 2 S) > 0,

P (Xd
�hi = 0; Xc

�hi 2 �S) > 0 8� 2 (�1; 1) where �S � f~x�hi : ~x�hi = �x�hi for some

x�hi 2 Sg.

Condition RSX-(i) is the standard full-rank restriction on the support of X�hi so that

Pr(X�i 6= Xbi) > 0. RSX-(ii) requires payo¤ indices to be bounded by unknown constants
for all bi 2 �i with probability 1, while RSX-(iii) requires the support of X�hi to be closed

under scalar multiplications with j�j < 1. Restrictions in RSX-(i) maps into part (a) in SX,
while RSX-(ii), (iii) ensure part (b) in SX is satis�ed.

Proposition 3 Under CMI, PS, RSX, REG and DDF, (�01; �
0
2) is point-identi�ed under

FCMI .

5In fact, results in Lemma 4 and 5 are stronger than necessary for proof of identi�cation of (�01; �
0
2),

which only requires results hold for the truth (�01; �
0
2).
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Hence exact identi�cation of (�01; �
0
2) is possible under fairly general restrictions on dis-

tribution of private signals and the support of regressors. The regressors that are included in

both indices can be discrete. Furthermore, the unboundedness of support of Xhi given �x�hi
can also be relaxed if (1) �0�i;hi is known to be bounded away from zero, and (2) DDF-(iii)

is strengthened so that �i have bounded support given all x.

6.2 Binary regressions with imperfect data on regressors revisited

(Binary response with censored regressors) Let FCSI denote the set of conditional distri-
butions of structural errors F�1;�2j(X1;X2) that are symmetric around 0 and satisfy mutual

independence between �1 and �2 conditional on (X1; X2). Let S(X1;X2) denote the sup-

port of (X1; X2) and FY1; ~Y2jX1;X2 denote observable distribution of Y1;
~Y2 conditional on

(X1; X2) 2 S(X1;X2). Let � denote the parameter space for structural coe¢ cients, with

its generic element denoted by � � (�1; �2; 1). The set � could re�ect any exogenous

restrictions on the coe¢ cients, such as knowledge of the sign of some coe¢ cients or scale

normalizations. A feature of � (denoted �(�)) is a function that maps from the parameter

space into some space of features. For example, �(�) could be a subset of � (such as structural

parameters in the binary regression �1) or any real- or vector-valued function of �.

De�nition 4 � is observationally equivalent to �0 under FCSI if 9F�1;�2j(X1;X2); F 0�1;�2j(X1;X2) 2
FCSI such that

FY1; ~Y2j(X1;X2)(:; :; �; F�1;�2j(X1;X2)) = FY1; ~Y2j(X1;X2)(:; :; �
0; F 0�1;�2j(X1;X2))

almost everywhere on S(X1;X2). A feature of the truth �0 2 �, denoted �(�0), is identi�ed
under FCSI in � if �(�) = �(�0) for all � in � that are observationally equivalent to �0

under FCSI .

Obviously � can be the identity function, in which case the identi�cation of �(�0) refers

to point-identi�cation of �0. Any � � (�1; �2; 1) must be observationally equivalent to

�c � (c�1; �2; c1) under FCSI for some constant c > 0.6 We normalize j1j = 1. Let �0

denote the truth. We maintain the following identifying restrictions.

(CDR) (i) The supports of X1 and X2 are both not contained in any linear subspace in

the corresponding Euclidean spaces; (ii) there exists a subvector in X2 (denoted X2J) such

6To see this, consider two sets of parameters (�; F�1;�2j(X1;X2)) and (�c; F c�1;�2j(X1;X2)
), where

F c�1;�2j(X1;X2)
= F�1;�2j(X1;X2)(

:
c ; :).
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that �1J = 0 for all � 2 � and �02J 6= 0; (iii) For all x1 2 S(X1), Pr(X2�02 2 (c0; c1)jx1) > 0
where (c0; c1) is any non-degenerate open interval in R1.

Corollary 4 Suppose 1 > 0 and is normalized to 1. Under CDR, (�01; �
0
2) are identi�ed

under FCSI .

The scale normalization of 1 is necessary for identi�cation of �1 as argued in Section

3. Note that 1 = 1 is more than a scale normalization, for it requires the sign of 1 to be

known to researchers. Such a priori knowledge is often possible in empirical applications.

This allows us to hold Median(Y2jX1; X2) as known while trying to identify �1 in the semi-
reduced form (6) that de�nes Y1. There are no restrictions on the parameter space �.

(Binary regressions with interval data revisited) Consider the binary choice model with

interval data on one of the regressors. The augmented vector of regressors is Z � [X V0 V1] 2
RK+2. Note by construction, ZJ = [V0 V1], and L(Z) = V0, U(Z) = V1, and �J = [0 0].

Let V0 and V1 have unbounded support and the support of X not to be contained in a

linear subspace of RK . Then conditions SX1-(a) and (b) are satis�ed. And � is point
identi�ed if Pr(a0 < L(Z) � U(Z) < a1jX = x) > 0 for all open interval (a0; a1) � R1

and all x 2 S(X). This suggests that conditions in Manski and Tamer (2002) are in fact
su¢ cient for point-identi�cation of the true coe¢ cient � even under the weaker restrictions

of Med(�jx; v0; v1) = 0 only.

7 Monte Carlo Experiments

In this section, we study �nite sample performances of two-step extreme estimators through

Monte Carlo simulations. We consider two designs where linear coe¢ cients are only partially

identi�ed. The �rst design is a binary response model with interval data on one regressor.

The second is a 2-by-2 discrete game with incomplete information. We �nd positive evidence

that our estimator works well in �nite samples under the Hausdor¤ metric.

7.1 Binary response with interval data on a regressor

In this design, Y = 1f�0X0 + �1X1+V + � � 0g with �0 = 1, �1 = �3=2. Support of X0

is f�1; 1; 2; 3g and that of X1 is f12 ; 1;
3
2
; 2g. The support of V consists of 18 grid points
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scattered evenly on [0; 17
3
]. Each of the three regressors fX0; X1; V g are independent of the

other two, and the probability masses are evenly distributed over the �nite, discrete support.

Researchers can not observe V perfectly, but do observe V0 � int(V ) and V1 � int(V ) + 1
(where int(a) is the largest integer smaller than or equal to a). Conditional on observables

(x0; x1; v0; v1), the disturbance � is normally distributed with mean 0 and standard deviation

x1v1. Unlike the design considered in Manski and Tamer (2002), we allow � to depend on the

interval (v0; v1) conditional on v in this design so as to highlight the fact that our estimator

can be consistent under weaker restrictions than conditional independence. The median

independence restriction Median(�jx; v0; v1) is satis�ed. Note all regressors have discrete
supports and the rich support condition in Section 6 is not satis�ed. Given the simple

data generating process, the identi�cation regions of �0 and �1 are characterized by systems

of linear inequalities whose coe¢ cients are known and can be calculated from conditional

choice probabilities Pr(Y = 1jx0; x1; v0; v1). We solve analytically for these identi�cation
regions, and plot them in the �gures below. The identi�ed sets turn out to be not very big,

suggesting a lot can be learned about the true parameters even though supports of regressors

are discrete and far from satisfying su¢ cient conditions for point identi�cation in Section 6.

Below we report the estimator�s performance under di¤erent sample sizes N = 1000 and

N = 3000. We simulate 200 samples by drawing N observations from population randomly

with replacement. We calculate two-step estimates for each of the samples. In the �rst step,

we use standard Naradaya-Watson estimates for choice probabilities conditional on discrete

regressors. We choose �(c) � [max(c; 0)]d as the smoothing function in Q̂n, where d is a

positive integer controlling the smoothness of �. We let ĉ = log n and experiment with

di¤erent choices of sequences of normalizing constants (with an = n1=2 and n respectively)

to check the sensitivity of the performance of our estimator.7 The objective function is

convex in coe¢ cients, thus enabling us to calculate the set estimates in the second step

through a simple two-dimensional grid search. The grid points are evenly scattered in the

parameter space in R2 with grid width 1=10 along both dimensions. As a measure of distance
between the identi�cation region �I and the set estimates ~�I , we record (for each of the

200 set estimates) the proportion of �I covered by ~�I (denoted P1), and the proportion of
~�I covered by �I (denoted P2). This is simply calculated in each sample by dividing the

number of grid points in �I \ ~�I by the number of grid points in �I and the number of grid
points in ~�I respectively.

7That supb2�I
jQ̂n(b)j = Op(n�1=2) follows from applying a Taylor approximation of Q̂n around the true

conditional choice probabilities p�(xi). Then the characterization of �I , the uniform boundedness of the

higher order derivatives of �, (Xb)2� and (Xb)
2
+ over the support of X and a compact parameter space �

implies the result.
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Table 1 reports performance of the estimator in 200 simulated samples with ĉ=an =

n�
1
2 log(n). The parameter spaces considered in the minimization are square areas centered

at true coe¢ cients with lengths equal to 20 on each side. In our simulated samples, all set

estimates are contained in the interior of the parameter space. To measure discrepancies

between the estimates and �I , we report percentiles of (P1; P2), percentiles of maximum

distances from (�0; �1) in ~�I , and the area of estimates out of the 200 simulations.
8

Table 1: an = n1=2 (with grid length=1/10)

(a) N = 1000, d = 2

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:000 0:0085 5:037 3:962

10% 1:000 0:0092 5:281 4:122

25% 1:000 0:0100 5:684 4:555

50% 1:000 0:0113 6:196 5:136

75% 1:000 0:0127 6:928 5:799

90% 1:000 0:0141 7:448 6:317

95% 1:000 0:0146 7:878 6:856

(b) N = 3000, d = 2

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:000 0:0076 5:876 4:912

10% 1:000 0:0081 6:111 5:149

25% 1:000 0:0087 6:365 5:513

50% 1:000 0:0097 6:826 5:983

75% 1:000 0:0105 7:339 6:673

90% 1:000 0:0113 7:651 7:148

95% 1:000 0:0118 7:914 7:585

(c) N = 1000, d = 3

8An alternative measure of the estimation error of ~�I should be its distance from �I in the Hausdor¤

metric. It is computationally intensive to implement through grid searches in each of the simulated samples.

We argue that (1) supb2~�I
jjb��jj is an interesting measure of discrepancies between estimates and truth in

its own right, and (2) given identi�cation regions are small in our designs, supb2~�I
jjb��jj can be interpreted

as a good proxy for the Hausdor¤ distance.
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prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:000 0:0108 4:259 2:832

10% 1:000 0:0117 4:511 3:089

25% 1:000 0:0128 4:940 3:410

50% 1:000 0:0145 5:566 3:997

75% 1:000 0:0170 6:090 4:524

90% 1:000 0:0188 6:605 4:974

95% 1:000 0:0205 7:085 5:358

(d) N = 3000, d = 3

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:000 0:0089 5:661 4:226

10% 1:000 0:0092 5:763 4:447

25% 1:000 0:0100 6:124 4:828

50% 1:000 0:0111 6:530 5:235

75% 1:000 0:0120 6:972 5:818

90% 1:000 0:0130 7:341 6:273

95% 1:000 0:0137 7:631 6:538

Table 1 shows that ~�I covers �I in all simulated samples regardless of the choice of

parameters and sample sizes. On the other hand, the area of ~�I is large relative to �I in all

simulated samples (including those with bigger sizes). These suggest de�ning ~�n as fb 2 � :
Q̂n(b) � n�

1
2 log ng may not be optimal in the sense that the sequence of cuto¤s does not

vanish faster enough. The maximum distance between truth and set estimates varies mostly

between 5 and 7. The choice of the smoothing parameter d has little impact on the coverage

probabilities and the maximum estimation errors. Holding other parameters �xed, the size

of set estimates tends to be greater and P2 tends to be smaller when N = 3000. At �rst

sight, this pattern seems puzzling, with the cuto¤ ĉ=an in the de�nition of �̂I decreasing

in n. However, recall sample sizes also a¤ect precision of �rst-stage kernel estimates p̂(xi).

In smaller samples, it is more likely for the sign of p̂(xi) � 1=2 to be di¤erent from the

truth p(xi)� 1=2 due to estimation errors. As a result, a coe¢ cient b may not be penalized
with a positive number in the estimand when p̂ is estimated with greater precision in larger

samples, but may be penalized in smaller samples. Thus for a �xed level of cuto¤s, ~�I may

exclude more candidates in �I in smaller samples. The disadvantage of a smaller sample

should show up in lower values for Pr(�I � �̂I). In Table 1, this e¤ect is subsumed as P1
is literally degenerate at 1, due to our choice of ĉ=an. However, we note evidence of such a
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disadvantage of smaller samples exists in the �rst columns in panels (a) and (c) in Table 2

below, as the sequence of cuto¤ values vanishes at a faster rate.

To improve the estimator�s performance in terms of coverage probability P2, we consider

choosing a sequence ĉ=an that vanishes faster than n�
1
2 log n. Choosing such a sequence

clearly involves a trade-o¤ between Pr(�I � �̂I) and Pr(�̂I � �I). However, Table 1

shows that Pr(�I � �̂I) is literally degenerate at 1 while Pr(�̂I � �I) remains low in all

simulations, suggesting enough room for trading the estimator�s performance in P1 for P2.

Table 2 reports the performance of the estimator when ĉ=an = n�1 log(n). As in the previous

case, our estimates ~�I are contained in the interior of the parameter space in all simulated

samples.

Table 2: an = n (with grid length=1/10)

(a) N = 1000, d = 2

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 0:035 0:0198 1:208 0:112

10% 0:138 0:0562 1:360 0:154

25% 0:647 0:0883 1:565 0:258

50% 1:000 0:1179 1:803 0:374

75% 1:000 0:1514 2:081 0:522

90% 1:000 0:1850 2:406 0:656

95% 1:000 0:1974 2:704 0:704

(b) N = 3000, d = 2

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:000 0:070 1:572 0:353

10% 1:000 0:074 1:652 0:430

25% 1:000 0:082 1:856 0:519

50% 1:000 0:095 2:140 0:603

75% 1:000 0:111 2:401 0:699

90% 1:000 0:132 2:625 0:773

95% 1:000 0:151 2:711 0:820

(c) N = 1000, d = 3
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prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 0:1810 0:0348 1:709 0:287

10% 0:3707 0:0446 1:803 0:329

25% 0:9483 0:0599 1:989 0:473

50% 1:0000 0:0784 2:265 0:652

75% 1:0000 0:0995 2:642 0:843

90% 1:0000 0:1195 3:091 1:009

95% 1:0000 0:1310 3:394 1:101

(d) N = 3000, d = 3

prctile P1 P2 supb2~�I jjb� �jj Area (10 3 pts)

5% 1:0000 0:0418 2:0522 0:679

10% 1:0000 0:0448 2:2791 0:767

25% 1:0000 0:0493 2:5465 0:889

50% 1:0000 0:0571 2:8723 1:017

75% 1:0000 0:0650 3:1623 1:176

90% 1:0000 0:0751 3:3727 1:295

95% 1:0000 0:0854 3:5078 1:388

Table 2 shows choosing a faster sequence of cuto¤s substantially reduces maximum esti-

mation errors in ~�I as well as the size of ~�I for both sample sizes 1000 and 3000. There is

also a remarkable improvement in performance measured by P2 relative to Table 1. When

the sample size is small at 1000, the new estimator can have a lower coverage probability P1

in the worst cases, as is shown by the 5th, 10th and 25th percentiles reported in panels (a)

and (c) in Table 2. However, this is an acceptable costs for vastly improving performance in

terms of P2, as is shown by comparing with all panels in Table 1. Also note the �rst quartile

of P1 is still high at 65% when d = 2 and 95% when d = 3. Furthermore, panels (b) and

(d) in Table 2 also show that P1 is again degenerate at 1 when N = 3000, which suggest

increasing the sample size to 3000 provides a quick remedy for performance measured by

Pr(�I � �̂I) as ĉ=an vanishes faster at n�1 log(n). Choosing d = 2 seems to be associated
with slightly better performance both in terms of sizes of estimates and the maximum es-

timation errors. We include four �gures to visualize the performance of our estimator. For

the case with N = 3000, an = n and d = 2, Figure 1 and Figure 2 depict the best estimates

as measured by P1 and P2 respectively, and Figure 3 and Figure 4 plot the corresponding

worst estimates.
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7.2 Discrete Games with incomplete information

In this design, we consider a simple 2-by-2 discrete game with incomplete information. There

are three observable state variables X � [X1; X2; X3], each with a �nite support S1 � [1 :

1=3 : 3], S2 � [�1 : 1=2 : 2], and S3 � [�2 : 1=2 : 1] respectively. The states are

independently distributed with the same probability masses for all 343 points in support.

The linear coe¢ cients for players�payo¤s are �1 = [1=2;�1; 0], �2 = [3=5; 0; 5=4] respectively.
The linear coe¢ cients satisfy the exclusion restrictions necessary for point identi�cation

discussed in Section 6. Conditional on observable states, private signals �1; �2 are normally

distributed with mean 0 and standard deviation cX1 (where c is a dispersion parameter

to be controlled for in simulation experiments). As discussed, �1 and �2 are normalized

to be �1 for identi�cation of other parameters. This speci�cation satis�es the conditional
independence and median independence of private signals conditional on observed states,

as well as technical conditions in DDF. In general, �1; �2 can not be exactly identi�ed due

to the �nite support of observable states. By focusing on this design, we are able to gauge

the contribution of rich support to the exact identi�cation of coe¢ cients when all other

conditions in Section 6 are satis�ed.

For each possible value for states, we analytically solve for the Bayesian Nash Equilibria

of the game. In general the Bayesian Nash equilibria may not be unique for a given state.

We treat the solution of �xed points calculated from Matlab�s FMINSEARCH algorithm

as outcome from randomly chosen Bayesian Nash equilibrium. Figure 5 and Figure 6 plot

the induced choice probabilities in equilibrium conditional all possible states with c = 1=2

and 1 respectively. The identi�cation region for (�1; �2) are analytically solved for, and are

plotted in Figure 7-8 and Figure 9-10 for both c = 1=2 and 1. By construction, they are

convex regions around true parameters, with boundaries de�ned by a �nite system of linear

inequalities whose coe¢ cients depend on equilibrium choice probabilities and support of the

states. The magnitude of identi�cation regions of (�1; �2) are small relative to the support of

regressors and the variance of �1; �2. This is positive evidence that a lot can be learned about

the true parameter even under �nite support of observable states. For di¤erent sample sizes

N = 1000, and N = 3000, we simulate 200 samples, each containing N 2-by2 games with

states drawn from multinomial distributions above and player i�s choices are determined

as di;n = 1(Xn�i � p��i(Xn) � �i;n � 0). For each sample, we calculate two-step extreme

estimates. The parameter spaces are square areas centered at true parameters with lengths

equal to 10 on each side. We also record whether set estimates for identi�cation region hit

the boundaries of the parameter space. As before, we use standard Nadaraya-Watson kernel

estimates for discrete regressors in the �rst step. In the second step, ĉ=an � log n=n, and
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minimization is done by a simple grid search over compact parameter spaces. The grid length

is :01 along all four dimensions of (�11; �12; �21; �23). We use the number of grid points as a

proxy measure for the size of the identi�cation region and our set estimates.

The identi�cation regions in designs in (a) and (b) are both very small and are close to

being point-identi�ed sizewise. (There are 7 and 56 grid points in (�1I ;�
2
I) under (a) and 6

and 6 under (b) respectively.) The coverage probability Pr(�I � ~�I) is degenerate at 1 in

both (a) and (b). We report in Table 3 the percentiles of maximum estimation errors and

the sizes of ~�I . In panels (a) and (b), we experiment with di¤erent scale parameter c = 1=2

and 1 which determines variances of � conditional on X, and sample sizes N = 1000 and

3000. The set estimates in all 200 simulated samples under both designs are contained in

the interior of the parameter space. The sizes of estimates in all 200 simulations are also

small relative to the support of latent variables. The maximum estimation errors in both

(a) and (b) are comparable and are both small given the support of regressor as well as the

variance of the errors. There is evidence that the higher estimation errors in the �rst stage

when c = 1 can be o¤set by increasing the sample size to N = 3000.

Table 3 (a) : c = 1=2, N = 1000 (with grid length=1/100)

prctile supb2~�1I
jjb� �1jj Area of ~�1I (10

3 pts) supb2~�2I
jjb� �2jj Area of ~�2I (10

3 pts)

5% 0:982 3:659 1:250 4:934

10% 0:997 4:033 1:261 5:403

25% 1:017 4:615 1:280 6:932

50% 1:035 5:819 1:305 8:801

75% 1:055 7:287 1:332 11:324

90% 1:089 9:296 1:450 13:253

95% 1:191 10:161 1:715 15:015

Table 3 (b) : c = 1; N = 3000 (with grid length=1/100)

prctile supb2~�1I
jjb� �jj Area of ~�1I (10

3 pts) supb2~�2I
jjb� �2jj Area of ~�2I (10

3 pts)

5% 1:067 4:345 1:328 5:996

10% 1:077 4:754 1:337 6:504

25% 1:095 5:803 1:351 7:916

50% 1:111 6:938 1:370 9:889

75% 1:133 8:632 1:389 12:320

90% 1:150 9:984 1:414 14:281

95% 1:164 10:506 1:554 15:839
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8 Conclusion

We have studied the estimation of a class of binary response models where the conditional

median of the disturbances is bounded between known (or exogenously identi�ed) functions

of the regressors. We focus on the case where the latent outcome is additively separable in

a linear index subutility function and a disturbance term. Though the index coe¢ cients are

not exactly identi�ed in general, we can characterize their convex identi�cation regions, and

propose a two-step extreme estimator that estimates the identi�cation region consistently

regardless of point identi�cation. More interestingly, we show how this approach provides a

novel approach of inference of several important micro-econometric submodels under alterna-

tive (and sometimes weaker) assumptions that have not been studied in the literature so far.

We prove point-identi�cation of linear coe¢ cients in these motivating submodels under fairly

general restrictions on structural primitives. Monte Carlo experiments in various designs also

provide encouraging evidence of our estimator�s performance in �nite samples. Directions

for future research include the search for conditions for point-identi�cation when the latent

outcome takes a more general form than linear indices, and the derivation of asymptotic

distribution of the estimator under point identi�cation. Another interesting direction is the

estimation when bounding functions L and U are only known up to certain parametric or

shape restrictions.
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9 Appendix: Proofs

Proof of Lemma 1. Suppose b is such that Pr(X 2 �0b) > 0, and let � denote the set

of F�jX that satisfy BCQ. Then by de�nition, 8x 2 �0b s:t: �xb � L(x) and p�(x) < 1
2
,

p(x; b; F"jX) =
R
1(" � �xb)dF"jX=x � 1

2
8F"jX 2 �. Likewise 8x 2 �0b s:t: �xT b � U(x) and

p�(x) > 1
2
, p(x; b; F"jX) =

R
1(" � �xb)dF"jX=x � 1

2
8F"jX 2 �. As a result 8x 2 �0b; p�(x) 6=

p(x; b; F"jX) 8F"jX 2 �. Therefore Pr(X 2 X(b; F"jX)) > 0 8F"jX 2 �, and � is identi�ed
relative to b under BCQ. Now suppose b is such that Pr(X 2 �0b) = 0. Then Pr(X 2
SXn�0b) = 1 where SXn�0b � fx 2 SX : (�xb � L(x); p�(x) � 1

2
) or (�xb � U(x); p�(x) � 1

2
)

or (�xb 2 (L(x); U(x)))g. Then 8x s:t:�xb � L(x); p�(x) � 1
2
, pick F�jX=x(:; b; p�(x)) s:t: (i)

F�jX=x is continuous in ", L(x) � supMed(�jx) and infMed(�jx) � U(x); (ii)
R
1(xb + � �

0)dF�jX=x = p
�(x). This can be done because �xb � L(x) � supMed(�jx) of F�jX=x requiresR

1(xb + � � 0)dF�jX=x � 1
2
. Likewise 8x s:t: � xb � U(x) and p�(x) � 1

2
, we can pick

F�jX=x(:; b; p
�(x)) s:t: (i) holds and

R
1(xb + � � 0)dF�jX=x = p�(x). And 8x s:t: L(x) <

�xb < U(x), we can always pick F�jX=x(:; b; p�(x)) s:t:
R
1(xb + � � 0)dF�jX=x = p�(x)

(regardless of the value of p�(x)) while (i) still holds. Finally for a given p�(x) and any b

such that Pr(X 2 �0b) = 0, let F�jX(:; b; p�(x)) be such that F�jX=x(:; b; p�(x)) is picked as

above 8x 2 S(X)n�0b. We have shown p(x; b; F"jX) = p�(x) 8x 2 SXn�b (and therefore a:e:FX
as Pr(X 2 �0b) = 0). Hence 9F"jX 2 � s:t: Pr(X 2 X(b; F"jX)) = 0, and b is observationally
equivalent to � under BCQ.

Proof of Corollary 1. The proof is similar to Lemma 1 and is omitted for brevity.

Proof of Corollary 2. Suppose b1 2 �0I ; b2 2 �0I . Then Pr(X 2 �0b1) = Pr(X 2 �0b2) = 0. Let
b� � �b1 + (1� �)b2 for some � 2 (0; 1) and �0b� be de�ned as before for b�. Note 8x 2 �

0
b� ,

either (�xb� � U(x); p�(x) > 1=2) or (�xb� � L(x); p�(x) < 1=2): Consider the former case.
Then it must be p�(x) > 1=2 and "either �xb1 � U(x) or �xb2 � U(x)". This implies either
x 2 �0b1 or x 2 �

0
b2
: Symmetric argument applies to the case (�xb� � L(x); p�(x) < 1=2). It

follows that �0b� � (�0b1 [ �
0
b2
): Then Pr(X 2 �0b�) � Pr(X 2 �0b1) + Pr(X 2 �0b2) = 0, and

b� 2 �0I . The proof of the convexity of �I follows from similar arguments and is omitted for
brevity.

Proof of Lemma 2. By construction, Q(b) is non-negative 8b 2 �. By the law of iterated
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expectations,

Q(b) = E[(�U(X)�Xb)2+ j p�(X) > 1=2] Pr(p�(X) > 1=2)
+ E[(�L(X)�Xb)2� j p�(X) < 1=2] Pr(p�(X) < 1=2)
+ E[(�L(X)�Xb)2� + (�U(X)�Xb)2+ j p�(X) = 1=2] Pr(p�(X) = 1=2)

By de�nition 8b 2 �I , all of the four following events must have zero probability

"�Xb � U(X); p�(X) > 1=2" "�Xb � L(X); p�(X) < 1=2"
"�Xb < L(X); p�(X) = 1=2" "�Xb > U(X); p�(X) = 1=2"

Therefore Q(b) = 0 for all b 2 �I . On the other hand, for any b 62 �I , at least one of the
four events above must have positive probability. Without loss of generality, let the �rst

event occur with positive probability. Then Prf�X 0b = U(X)g = 0 ensures Prf�Xb >
U(X); p�(X) > 1=2g > 0, which implies the �rst term in Q(b) will be strictly positive.

Similar arguments can be applied to prove Q(b) > 0 for b 62 �I if any of the other events
has positive probability.

Proof of Corollary 3. By construction, Q(b) is non-negative 8b 2 �. By the law of iterated
expectations and the condition that Pr(p�(X) = 1

2
) = 0,

Q(b) = E[�(p�(X)� 1
2
)(�U(X)�Xb)2+ j p�(X) > 1=2] Pr(p�(X) > 1=2)

+ E[�(
1

2
� p�(X))(�L(X)�Xb)2� j p�(X) < 1=2] Pr(p�(X) < 1=2)

By de�nition 8b 2 �I , both of the following events must have zero probability

"�Xb � U(X); p�(X) > 1=2" "�Xb � L(X); p�(X) < 1=2"

Note the two events in the proof of Lemma 2 with p�(X) = 1
2
need not be addressed under

current regularity condition. Therefore Q(b) = 0 for all b 2 �I . On the other hand, for any
b 62 �I , at least one of the two events above must have positive probability. Without loss of
generality, let the �rst event occur with positive probability. Then Prf�X 0b = U(X)g = 0
implies Prf�Xb > U(X); p�(X) > 1=2g > 0, which implies the �rst term in Q(b) is strictly

positive for any b 62 �I . Similar arguments can be applied to prove the second term in Q(b)

is strictly positive for all b 62 �I if the other event has positive probability.

Proof of Proposition 1. First, we show supb2� jQ̂n(b) � Q(b)j
p! 0. By Lemma 8.10 in

Newey and McFadden (1994), under RD, TF and K,

supx2SX jp̂(x)� p
�(x)j = op(n�1=4) (7)
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Apply a mean value expansion of Q̂n(b) around p�(xi), L(xi) and U(xi) respectively:

Q̂n(b) =
1

n

Pn
i=1

�
�(p�i �

1

2
)(�xib� Ui)2+ + �(

1

2
� p�i )(�xib� Li)2�

�
+ :::

+
1

n

Pn
i=1

8><>:
264 ~�0i+(�xib� ~Ui)

2
+ � ~�0i�(�xib� ~Li)2�

�2~�i+(�xib � ~Ui)+

�2~�i�(�xib� ~Li)�

375
0 264 p̂i � p�i
L̂i � Li
Ûi � Ui

375
9>=>;

where subscripts i for p; U; L denotes values of these functions at xi, ~pi, ~Ui, ~Li are shorthands

for points on line segments between (pi; p̂i), (Ui; Ûi) and (Li; L̂i) respectively, and ~�i+ �
�(~pi � 1

2
), ~�i� � �(12 � ~pi). Let

�Qn(b) �
1

n

Pn
i=1

�
�(p�i �

1

2
)(�xib� Ui)2+ + �(

1

2
� p�i )(�xib� Li)2�

�
Then for all b 2 �, jQ̂n(b)� �Qn(b)j is bounded between264

1
n

Pn
i=1 j~�0i+(�xib� ~Ui)

2
+ � ~�0i�(�xib� ~Li)2�j

2
n

Pn
i=1 j~�i+(�xib� ~Ui)+j

2
n

Pn
i=1 j~�i�(�xib� ~Li)�j

375
0 264 supx2SX jp̂� p

�j
supx2SX jL̂� Lj
supx2SX jÛ � U j

375
Recall p̂

p! p� uniformly over SX as shown in (7) and L̂
p! L; Û

p! U uniformly over SX by

BF (i). Then the boundedness of �0 over [�1=2; 1=2], the condition BF (ii) and the Law of
Large Numbers together imply Q̂n(b)

p! Q(b) 8b 2 �. Now note Q̂n(b) is continuous and
convex in b over � for all n. Convexity is preserved by pointwise limits, and hence Q is also

convex and therefore continuous on the interior of �. Furthermore, by Andersen and Gill

(1982) (and Theorem 2.7 in Newey and McFadden (1994)), the convergence in probability

of Q̂n(b) to Q(b) must be uniform over �. The rest of the proof follows from arguments in

Proposition 3 in Manski and Tamer (2002) and Theorem 3.1 in Chernozhukov, Hong and

Tamer (2007), and is omitted for brevity.

Proof of Proposition 2. By BCQ-2 and Lemma 1 and Corollary 1, it su¢ ces to show

Pr(X 2 �b) > 0 for all b 6= �0, where �b � fx : (�xb � L(x);�x�0 > U(x)) or (�xb �
U(x);�x�0 < L(x))g. By SX-(a), Pr(X�J(�0;�J�b�J) 6= 0) > 0. Without loss of generality,
let Pr(X�J�0;�J < X�Jb�J) > 0. Then by EX and SX-(b),(c), Pr(�X�0 < L(X) � U(X) <
�Xb) > 0.

Proof of Lemma 3. (Su¢ ciency) Suppose �i
u:o:e:

~ �0i under F i
MI for i = 1; 2. By def-

inition 9 �F�ijX 2 F i
MI such that Prfp�i (X) = �F�ijX(X�i + p

�
�i(X)�i)g = 1 for i = 1; 2.
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Hence Pr(p�(X) 2 �(X; �; �F�jX)) = 1 where �F�jX �
Q
i=1;2

�F�ijX 2 F , and �
o:e:

~ �0 under

FCMI . (Necessity) That �
o:e:

~ �0 under FCMI implies 9 �F�jX 2 FCMI such that Prfp�(X) 2
�(x; �; �F�jX)g = 1. It follows that Prfp�i (X) = �F�ijX(X�i+p

�
�i(X)�i)g = 1 for i = 1; 2, where

�F�ijX are marginal distributions corresponding to �F�jX . By de�nition, this means �i
u:o:e:

~ �0i
under F i

MI for both i = 1; 2.

Proof of Lemma 4. We prove the lemma from the perspective of player 1. The proof for

the case of player 2 follows from the same argument. Fix �x�h1 2 S(X�h1). By de�nition of
a BNE, �

p1(�x�h1 ; xh1)

p2(�x�h1 ; xh1)

�
=

�
F�1j�x�h1 ;xh1 (�x�h1b1;�h1 + xh1b1;h1 � p2(�x�h1 ; xh1))
F�2j�x�h1 ;xh1 (�x�h1b2;�h1 + xh1b2;h1 � p1(�x�h1 ; xh1))

�
(8)

Let C[S(Xh1j�x�h1)] denote the space of bounded, continuous functions on the compact sup-
port S(Xh1j�x�h1) under the sup-norm. By standard arguments, C[S(Xh1 j�x�h1)] is a Ba-
nach Space. De�ne CK1(�x�h1) as a subset of functions in C[S(Xh1j�x�h1)] that map from
S(Xh1j�x�h1) to [0; 1], and are Lipschitz continuous with some constant k � K1. Then

CK1(�x�h1) is bounded in the sup-norm and equi-continuous by the Lipschitz continuity.

Note CK1(�x�h1) is also closed in C[S(Xh1j�x�h1)]. To see this, consider a sequence fn in
CK1(�x�h1) that converges in the sup-norm to f0. By the completeness of C[S(Xh1j�x�h1)],
f0 2 C[S(Xh1 j�x�h1)]. Now suppose f0 62 CK1(�x�h1). Then 9xah1, x

b
h1
2 S(Xh1j�x�h1) such that

jf0(xah1) � f0(x
b
h1
)j > K 0

1jxah1 � x
b
h1
j for some K 0

1 > K1. By convergence of fn, for all " > 0,

jfn(xjh1)�f0(x
j
h1
)j � "

2
jxah1�x

b
h1
j for j = a; b for n big enough. Hence jfn(x

a
h1
)�fn(xbh1 )j

jxah1�x
b
h1
j > K 0

1�"
for n big enough. For any " < K 0

1 �K1, this implies for n big enough, fn is not Lipschitz

continuous with k � K1. Contradiction. Hence CK1(�x�h1) is bounded, equi-continuous, and

closed in C[S(Xh1 j�x�h1)]. By the Arzela-Ascoli Theorem, CK1(�x�h1) is a convex, compact

subset of the normed linear space C[S(Xh1j�x�h1)]. Now substitute the second equation in
(8) into the �rst one, and we have

�p1(xh1) = �F�1jxh1f�x�h1b1;�h1 � �F�2jxh1 [�x�h1b2;�h1 + xh1b2;h1 � �p1(xh1)]g (9)

where �p1 and �F�ijxh1 are shorthand notations for conditioning on �x�h1. Let ��(xh1) denote

the right-hand side of (9). Suppose �p1(xh1) is Lipschitz continuous with constant k � K1 for

some K1 > 0. Then by the de�nition of the Lipschitz constants in DDF (i)-(ii), for all xh1,

~xh1 2 S(Xh1j�x�h1), j��(xh1)� ��(~xh1)j � D(K1)jxh1 � ~xh1j, where

D(K1) � K1
F1
+ (jb2;h1jCF2 +K1CF2 +K

1
F2
)CF1
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Since b2;h1 6= 0 and jCF1CF2j < 1, K1 can be chosen such that D(K1) � K1. Therefore the

right hand side of (9) is a continuous self-mapping from CK1(�x�h1) to C
K1(�x�h1) for the K1

chosen. It follows from Schauder�s Fixed Point Theorem that the solution p1(Xh1;�x�h1) is

continuous in Xh1 for all �x�h1 2 S(X�h1).

Proof of Lemma 5. We �rst prove the case from player 1�s perspective. Fix �x�h1 2 S(X�h1).
then for any b � (b1; b2) in the parameter space � � �1 
�2, and all xh1 2 S(Xh1jx�h1),

�p2(xh1) = �F�2jxh1 [�x�h1b2;�h1 + xh1b2;h1 � �p1(xh1)] (10)

where �pi and �F�2jxh1 are both conditioned on �x�h1. Lemma 4 has shown �p1(xh1) is Lipschitz

continuous with a certain constant on the compact, connected support S(Xhij�x�hi) for all
b 2 �. Then REG, DDF and that b2;h1 6= 0 implies the image of �p2(xh1) is the connected
interval (0; 1) for all b 2 � given �x�h1. By similar arguments, it follows from REG and DDF

that �p2(xh1) de�ned in (10) is also Lipschitz continuous on S(Xh1j�x�h1) for all b 2 �. And
symmetric arguments complete the proof for player 2.

Proof of Proposition 3. We prove for the case of player 1. The case for player 2 follows

from symmetric arguments. Note all any b 2 �, Xh1 impacts p2(X; b) and p1(X; b) but not

X 0b1 (as b1;h1 = 0). By RSX-(i), PrfX
0
�h1(b1;�h1 � �

0
1;�h1) 6= 0g > 0 for all b1 6= �

0
1 in �1.

Hence SX-1 (a) of Proposition 2 is satis�ed. Suppose

PrfX 0

�h1(b1;�h1 � �
0
1;�h1) 6= 0; sgn(X

0

�h1b1;�h1) 6= sgn(X
0

�h1�
0
1;�h1)g > 0

then SX-(b) is automatically satis�ed. Otherwise, without loss of generality, consider the

case Pr(X
0
�h1b1;�h1 > X 0

�h1�
0
1;�h1 > 0) > 0. Then RSX-(ii) and the closedness under

scalar multiplications in RSX-(iii) guarantee that SX-(b) is satis�ed. Let p� denote the

true equilibrium outcome induced by �0 and F 0�1;�2jX , and let �p
�
1(xh1) be a shorthand for

conditioning on �x�h1 . By Lemma 5, Prf�p�2(Xh1) 2 (a1; a2)j�x�h1g > 0 for all (a1; a2) � [0; 1]
and all �x�hi 2 S(X�hi) under REG. That is, Prf�p�2(Xh1) 2 Ib1;�01(X)j�x�hig > 0 for all

�x�hi 2 S(X�hi) and b1 6= �01 in �1, where �p
�
2 is the equilibrium outcome under the truth,

and Ib1;�01(X) is the intersection of (0; 1) with the random interval between Xb1 and X�
0
1.

It follows immediately that SX-(c) is also satis�ed. Proof for the case with player 2 follows

from similar arguments.

Proof of Corollary 4. Note CDR-(i) is the standard full rank condition so that (i) Pr(X1�
0
1 6=

X1b) > 0 for all b 6= �01 in the parameter space and (ii) �
0
2 is exactly identi�ed under
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the conditional symmetry assumption. The exclusion restriction in CDR-(ii) and the rich

support condition in CDR-(iii) then ensures

Pr(
"�X1�

0
1 �Med(Y2jX1; X2) < �X1b"

_ "�X1b �Med(Y2jX1; X2) < �X1�01"
) > 0:

for all b 6= �01.
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Figure 1: 100% of �I covered by ~�I (with N = 3000, an = n, d = 2)

Figure 2: 19% of ~�I covered by �I (with N = 3000, an = n, d = 2)
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Figure 3: 6% of �I covered by ~�I (with N = 3000, an = n, d = 2)

Figure 4: 4% of ~�I covered by �I (with N = 3000, an = n, d = 2)
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Figure 5: Equilibrium outcome for c = 1=2 (randomly selected BNE)

Figure 6: Equilibrium outcome for c = 1 (randomly selected BNE)
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Figure 7: Identi�cation region for �1 with c = 1=2

Figure 8: Identi�cation region for �2 with c = 1=2
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Figure 9: Identi�cation region for �1 with c = 1

Figure 10: Identi�cation region for �2 with c = 1


