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Abstract

In many real world negotiations, from wage contract bargaining to product liabil-
ity disputes, the bargaining parties often interact repeatedly and have the option of
seeking outside judgement. This paper studies a model of repeated bargaining with
a third party to analyze how and why bargaining postures endogenously evolve over
time. A privately informed long-lived player bargains with a sequence of short-lived
players, one at a time. Should the players fail to reach an agreement, an unbiased yet
imperfect third party is called upon to make a judgement. The uninformed short-
lived players learn through two channels: observed behavior of the informed player
(“soft” information) and, if any, verdicts of the third party (“hard” information).
The long-lived player wants to guard his private information by bargaining tough
but at the expense of more information disclosure from the third party. As a result
of the strategic use of these two sources of information, the players’ bargaining pos-
tures change as the uninformed players’ beliefs evolve. Interestingly, as third party
information becomes more precise, the players adopt tough bargaining postures for a
wider range of beliefs. Many repeated bargaining problems can be analyzed in this
framework. In particular, the equilibrium dynamics provide an explanation for the
puzzling contrast between the bargaining postures of Merck and Pfizer in their recent
high-profile product liability litigations. The results also help us understand several
other phenomena documented in the related literature.
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1 Introduction

1.1 Overview

Recently, Merck and Pfizer, two of the largest pharmaceutical manufacturers, have been

involved in a series of high-profile litigations surrounding their painkillers.1 Despite the close

similarity of their cases, the two firms have adopted contrasting approaches to the disputes.

Merck contested every case in court. After losing the first case with a compensation verdict

of $253 million in 2005, it continued to fight and won most of the cases that reached juries

over the following two years. Subsequently, in 2007, the firm agreed to settle further 27,000

cases out of court for $4.85 billion in total, an amount far smaller than analysts and lawyers

predicted at the time of the drug’s withdrawal and, especially, after Merck’s first defeat in

court.2 In sharp contrast, Pfizer sought to settle its disputes before taking any of them to

court.3 How do we reconcile these differences in bargaining postures?

Product liability litigations such as the above drugs cases in fact represent one of many

important applications of bargaining and dispute resolutions that share several distinguish-

ing characteristics. First, many negotiations feature repeated interactions between a large

player and a pool of small players. For example, a landlord often contests with tenants

over the amount of deposit to be returned and a firm routinely faces wage disputes with

its employees. Second, and more importantly, these disputes are rarely resolved by the two

sides alone. Amid the deadlock of a wage dispute, the bargaining parties often turn to a

third party, such as an arbitrator or even a court. When traders disagree on the quality of

goods or the terms of a deal, they hire an expert to make an assessment on their behalf.

Even when transactions are conducted smoothly without outside intervention, the third

party is usually in the shadow of the interaction.

In this paper, we develop a model of repeated bargaining with a third party, or an

“expert”. A long-lived player (e.g. firm) is in dispute with a sequence of short-lived players

(e.g. customers, employees). The long-lived player has private information regarding his

responsibility towards a transfer (e.g. damage compensation, wage increase) to each short-

lived player. He is either “good” or “bad”, with the bad type being more likely to be

1The drugs in dispute are Vioxx for Merck and Bextra and Celebrex for Pfizer. They all belong to the
same class of painkillers known as COX-2 inhibitors.

2Source: New York Times, http://www.nytimes.com/2007/11/09/business/09merck.html
3Source: Wall Street Journal (May 2, 2008).
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responsible. For instance, a firm privately knows whether or not its profits are high enough

to warrant extra wages and a drug company has better knowledge about its own product’s

link to the user’s health problem. In each period, a new short-lived player enters the game

with a claim and makes a demand. If his demand is accepted, the short-lived player receives

the corresponding amount from the long-lived player and leaves the game. But, if the long-

lived player rejects the demand, an expert is called upon to make a decision on their behalf,

at a cost to each party. An expert verdict is publicly observable, and so are the details of

an agreement.

A critical aspect of this model is that expert verdicts are informative, unbiased but

nonetheless imperfect. The “quality” of an expert is measured by the parameter q ∈ (1
2
, 1).

With probability q, he correctly rules a responsible (or non-responsible) long-lived player to

be indeed responsible (or not responsible). The expert is informative since q > 1
2
, imperfect

since q < 1 and unbiased since, independently of the true state, he makes a mistake with

probability 1 − q and the quality q is fixed over time. For example, it could be that an

expert is drawn independently in each period from a pool of experts.

Learning of the uninformed short-lived players arises from two sources: the informed

long-run player’s equilibrium actions and the decisions made by the expert, if any. We

interpret the former as “soft” information and the latter as “hard” information. The

interplay between these two sources of information is the key innovative feature of our

model that generates new, interesting equilibrium dynamics of bargaining postures and

enables us to analyze several empirical observations. We interpret the public belief about

the long-lived player being the good type as his “reputation”. It turns out that the players’

bargaining postures, as well as the interplay between the two sources of information, are

characterized by two threshold levels of reputation, as illustrated by Figure 1 below:

Figure 1: Two thresholds

When reputation is above the upper threshold p∗∗, the short-lived player makes a low

demand and both types of the long-lived player accept it for sure. Here, the short-lived
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player takes a weak bargaining posture, while the long-lived player takes a tough bargaining

posture by never accepting any higher demand. This is where the full benefits of successful

reputation building are reaped by the bad long-lived player. There is no learning on the

part of the short-lived players in this region either from soft or hard information, because

the long-lived player plays a pooling strategy and an agreement is reached without the

expert.

When reputation is intermediate, the short-lived players makes a large demand that the

good type cannot accept since this type expects a lower transfer from expert verdict. The

bad type mimics the good type and also rejects the demand for sure, with the prospect of

a high continuation payoff (or a low expected transfer) in the neighboring high reputation

region. Rejection leads to an arrival of hard information which, in expectation, will reduce

the bad type’s reputation. Here, learning occurs but only through hard information since

the long-lived player’s pooling behavior conveys no soft information. The two parties

adopt incompatible tough bargaining postures and, hence, an agreement cannot be reached

without the third party.

When reputation is below the lower threshold p∗, the bad long-lived player faces a slim

prospect of a high continuation payoff (or a low expected transfer) as the upper threshold is

far away, that is, many pieces of good luck (favorable expert verdicts) are needed to reach

the region where only low demands are made. Thus, he is willing to accommodate the tough

bargaining posture of the short-lived player. In equilibrium, the bad long-lived player builds

reputation by randomizing between tough and weak bargaining postures and, hence, hard

information arrives only occasionally. Here, the impact of hard information is reduced in

the presence of soft information and, in fact, soft information can sometimes revert the

adverse effects of hard information. We fully characterize an open interval within this low

reputation region where a brave rejection enhances reputation even after an unfavorable

expert verdict.

Our results provide an explanation of the contrasting bargaining postures adopted by

the two aforementioned pharmaceutical companies. Merck may have suffered a damage

to its reputation by losing the first case in court, but winning many other cases would

eventually take it to the high reputation region, where cases are settled for a low amount.

Nonetheless, the ex ante benefit from building reputation from a low level is very small, and

it is costly to repeatedly resort to the court. This may well have been the reason behind

Pfizer’s decision.

5



We also examine the effects of the expert quality q and the discount factor on the

players’ bargaining postures. It is shown that, as q goes to 1, the low reputation region

is completely squeezed out by the intermediate region, while the high reputation region

shrinks (yet remain present). Since the players resort to the expert with probability 1 in the

intermediate region, our result may sound counterintuitive: why is a bad long-lived player

more willing to go to expert when the expert will find him out almost surely? The reason

lies in the conflict of interests between the forward-looking and myopic parties. When the

expert is very precise, the short-lived player’s expected payoff from expert verdict increases,

and this makes the demand too high for the long-lived player to tolerate. The long-lived

player is willing to take even a small chance of expert error; after all, a single mistake will

greatly enhance his reputation when hard information is very precise. We show that, as

the long-lived player becomes extremely patient, the low reputation region disappears and

the high reputation region remains unchanged.

We characterize the exact payoff gain from reputation in all Markov equilibria. For low

prior beliefs, the ex ante benefit is small, in contrast to the result of standard reputation

games (e.g. Fudenberg and Levine [8]). It is shown that all equilibria are characterized by

two threshold levels of reputation which determine the payoff bounds. Furthermore, in any

equilibrium, there are two constant levels of demand that could be accepted. Interestingly,

this fact is consistent with observations documented in the legal literature.

1.2 Contributions

Theory of repeated bargaining This paper develops a repeated bargaining model that

explains how and why bargaining postures change over time. Related works on repeated

bargaining include Schmidt [17] and Hart and Tirole [10]. To focus on the repeated in-

teraction, we follow the literature and consider a simple bargaining protocol within each

transaction. What distinguishes our paper from other repeated bargaining models is the

presence of a third party. This feature is important for many applications. Real life transac-

tions seldom involve just a pair of bargainers; the “background” of the bargaining matters.

Experts, institutions and other third parties often influence the outcome of a transaction

indirectly or directly. Note that the involvement of a third party is optional to the players in
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our model. The arrival of hard information is endogenous.4 As we demonstrate in this pa-

per, this realistic feature leads to distinct strategic implications and delievers new insights

about bargaining postures that cannot be captured by the standard repeated bargaining

models.

Theory of reputation Our results enrich the adverse selection theory of reputation

initiated by Kreps, Milgrom, Roberts and Wilson [13] and later developed by, among many

others, Fudenberg and Levine [8]. As Mailath and Samuelson [14] point out, in standard

reputation models, no players actually build reputation in equilibrium; the privately in-

formed player starts pooling with another type from the very beginning of the game and

so “reputation springs to life”. Furthermore, even though reputation can increase the

equilibrium payoff, reputation can always be built.

In many applications, these features are not completely realistic. By introducing the

interplay between soft and hard information, we show non-degenerate equilibrium dynamics

in which reputation can be built and maintained but not always. In our equilibrium, the bad

type attempts to gradually build up his reputation when it is low, but he can successfully do

so only with a probability strictly less than 1. Reputation may move up or down and also,

with a strictly positive probability, the bad type will reveal himself and hence fail to build

reputation. It is worth noting that the bad type reveals himself only when he voluntarily

gives up reputation building; hard information from the expert, due to its imperfectness,

can never lead to full revelation.

Another related work is by Bar-Isaac [3] who considers a repeated signaling model in

which the quality of a seller is imperfectly revealed in each period should he decide to pro-

duce.5 In his model, the buyers purchase the seller’s product at a price equal to the seller’s

expected quality and, thus, a buyer’s response is a continuous and monotone function of the

seller’s reputation level. In contrast, the short-lived players in our model are strategic as in

the other reputation models mentioned above. Indeed, we show that the short-lived players

essentially make one of just two demands in any Markov equilibrium, even though they are

allowed to choose any distribution over the real line. This prediction is actually important

since it clarifies some puzzling observations about the demand distribution documented in

4Deterministic arrival of hard information has been studied in education signaling models (e.g. Kremer
and Skryzpacz [12]).

5See also Bar-Isaac and Tadelis [4] for a comprenhensive survey of economic models on signaling and
reputation.
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the litigation literature (see Section 5). We also note that the equilibrium value function in

our model displays discontinuity, as similarly encountered by Mailath and Samuelson [14].

Our equilibrium construction, however, is entirely different from theirs.

Repeated settlement and litigation An important application of our analysis is

found in repeated litigations with long-lived defendants. The economic significance of

such disputes are often strikingly large. For instance, in the year of 2007 alone, the US

experienced 177 federal securities fraud claims, where auditors and underwriters often face

lawsuits repeatedly, with a total disclosure loss of $151 billion.6 Also, in the US, the

claimed damages involved in medical malpractice litigations totaled $28.7 billion in 2004

and, around the same period, the corresponding amount was about e2.4 billion in Italy.7

Our repeated bargaining model enables us to piece together several empirical observa-

tions identified in the aforementioned product liability litigations, regarding the long-run

relationships between the strength of a case and settlement outcome (Alexander [2]) and

between the strength of a case and trial rate (Palmrose [16]). We shall discuss our contri-

bution to this literature in closer detail in Section 5.

1.3 Plan

The rest of the paper is organized as follows. The next section describes a model of repeated

bargaining with a third party. In Section 3, we construct an equilibrium of the game and,

also, conduct comparative static analysis. Section 4 then presents general characterization

results. Finally, we offer some concluding remarks in Section 5. All technical proofs are

relegated to Appendix.

2 The model

2.1 Description

We consider a discrete time model. Periods are indexed by t = 1, 2, . . .. A single long-lived

player 1 faces an infinite sequence of short-lived players 2, with a new player 2 entering in

every period. Each player 2 brings a claim to player 1.

6Source: Stanford law school securities class action clearinghouse, http://securities.stanford.edu.
7Source: OECD [15].
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Player 1 privately knows his type θ ∈ {G,B}, where G stands for good and B for bad.

Type B is responsible for each claim, while type G is not. The assumption is valid in

applications, such as the aforementioned Merck/Pfizer cases, where the long-lived player

faces repeated disputes all related to some foregone act.8

The stake involved in each claim, denoted by H > 0, is fixed and commonly known.

Alternatively, H could be the expectation of a fixed distribution of uncertain stakes. Each

player 1-player 2 pair attempt to settle their dispute via voluntary bargaining. Should they

fail to reach an agreement, they call upon an external third party, an expert, an arbitrator

or a court, to determine whether player 1 is responsible or not. Both players are committed

to obey the third party’s suggestion: player 1, if judged to be responsible, should pay H

to player 2, and player 2 should receive no transfer otherwise. Seeking a third party incurs

a cost ci > 0 to player i, regardless of the verdict. We shall henceforth refer to the third

party as an “expert”.

The expert is informative, unbiased but imperfect: independently of the true type of

player 1, he makes an error with probability 1− q, where q ∈
(

1
2
, 1

)
is common knowledge.

Specifically, when player 1 is responsible (or not responsible), the expert will incorrectly rule

that the player is not responsible (or responsible) and hence owes nothing (or H) to player

2 with probability 1− q. We shall interpret q as the “quality” of the expert. Furthermore,

we shall assume that the quality of expert judgement is independent of history and, hence,

the expert is non-strategic.9

The timing of the stage game in period t is as follows. Player 2 makes a take-it-or-

leave-it demand st ∈ R, which player 1 can either accept or reject. If st is accepted, then

player 1 transfers st to player 2; if the demand is rejected, an expert is called upon to make

a judgement. At the end of a period, player 2 leaves the game forever.

Note that if player 1 is of type B his expected transfer to player 2 under expert resolution

is equal to qH; if he is of type G the corresponding amount is (1 − q)H. To focus on

interesting cases, it is assumed throughout that c1 + c2 < qH − (1− q)H = (2q − 1)H.

An expert verdict is publicly observable, and so are the details of an agreement.10 The

8See Section 5 for further discussion on this assumption.
9See Section 5 for further discussion on this last assumption.

10As discussed in Section 5, our results are robust to the possibility of (endogenous) confidentiality
agreements. We also note that our assumption is consistent with many cases of actual settlement bargaining
as, for example, in the securities/auditor cases studied by Alexander [2] and Palmrose [16]. The details
of any negotiation process (such as the value of rejected demands) are usually private information known
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first player 2 holds a prior belief, p1 ∈ (0, 1), that player 1 is good. Later short-lived players

update their beliefs from this prior and the public history that they observe. Let pt ∈ [0, 1]

denote player 2’s posterior belief that player 1 is good in period t. This will be sometimes

referred to as player 1’s “reputation.”

2.2 Strategies, payoffs and equilibrium notion

A (behavioral) strategy of player 1 is a mapping from the set of all possible histories that

he can observe at the beginning of each period and the set of all possible demands from

player 2 to probability distributions over the set {A,R}, where A and R denote acceptance

and rejection, respectively.

A (behavioral) strategy of player 2 in period t is a mapping from the set of all possible

histories that he can observe over preceding t− 1 periods to probability distributions over

all possible demands, R.

We focus on perfect Bayesian equilibria in Markov strategies in which any relevant past

history can be summarized by the level of belief that it induces. A Markov strategy for

type θ player 1, rθ, is

rθ : [0, 1]× R→ [0, 1]

such that rθ(p, s) is the probability with which type θ rejects the demand s ∈ R at belief

p ∈ [0, 1].

The Markovian property renders irrelevant the period in which player 2 makes entry

and, hence, we shall write a Markov strategy for player 2, d, simply as

d : [0, 1]→4(R)

such that d(p) ∈ 4(R) for any p ∈ [0, 1].

If (rB, rG, d) is a Makrov strategy profile, we write type θ’s discounted average expected

payment at belief p as V θ(p) with discount factor δ ∈ (0, 1). This involves player 1’s transfers

to player 2s as well as expert costs. Note that we have already surpressed the dependence

of V θ on the strategy profile and the discount factor. Following the reputation literature,

our focus below will be on interesting equilibrium behavior of the bad type. Thus, when the

only to the negotiating parties. But, once a deal is struck, the terms of the deal often enter the public
domain.
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meaning is clear, we shall refer to V B(p) simply as V (p). Player 2 maximizes his expected

stage game payoff while player 1 minimizes his (discounted average) expected payment.

A strategy profile (rB, rG, d), together with a system of beliefs, forms a Makrov perfect

Bayesian equilibrium if the usual conditions are satisfied. See, for instance, Fudenberg and

Tirole [9] for a formal definition. We will invoke a natural restriction of beliefs: when the

type is revealed, the game proceeds as if it has complete information. Note also that the

Markov property of the complete information game implies that the bad type, because his

type is known, will accept a demand equal to the best that he could expect from expert

verdict, that is, qH + c1.
11

3 Equilibrium analysis

3.1 Equilibrium behavior of the good type

If a dispute goes to the expert, good player 1, in expectation, incurs total payment (1 −
q)H + c1. It is then natural that this player 1 should not agree to pay anything above this

amount from bargaining with player 2. We shall assume throughout that, regardless of past

history, the good type accepts a demand if and only if it does not exceed (1 − q)H + c1,

and any observation of deviation from this behavior reveals the bad type. Other similar

strategies with different cutoff levels can also constitute an equilibrium but, as shall be

clear from our analysis and the equilibrium construction, they do not alter our findings.

The cutoff behavior of the good type appears similar to the irrational type’s behavior

in the bargaining model of Abreu and Gul [1]. However, it is important to note that, in

our model, this behavior emerges as part of an equilibrium rather than as an assumption

often imposed in standard reputation models. Whenever we henceforth refer to player 1

without mentioning his type, we shall mean the bad type.

3.2 First intuition

Let us first spell out some intuition. On the one hand, if player 2’s posterior belief (on the

good type) is high, his expected payoff from resolving the dispute via the expert is low and,

moreover, he has to pay a cost to obtain a verdict. Thus, when the belief is sufficiently

11We would have a folk theorem type result if the Markov property is not imposed.
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high, player 2 should make a low demand that will be accepted by both types of player 1

and the dispute is resolved without expert intervention.

If the posterior belief is low, on the other hand, player 2 expects to win a large transfer

if the case goes to the expert. The corresponding expectation of good player 1 is still low

and, therefore, player 2 should make a large demand that the good type will not tolerate.

How should the bad type respond?

If the bad type accepts this demand, he reveals his type and consequently his future

transfers will be high. He cannot therefore accept it with probability 1; otherwise, the

equilibrium belief following rejection must be 1, and the bad type would mimic the good

type by rejecting the demand. The bad type should also be reluctant to reject the large

demand for sure. An expert verdict is imperfect but nonetheless informative (q > 1
2
). Thus,

it will hurt his reputation on average. Moreover, from a very low reputation level, the bad

type needs many pieces of good luck (favorable expert verdicts) in order to reach a level of

reputation high enough that player 2 begins to make low demands.

This suggests that, when his reputation is very low, the bad type should play a mixed

strategy: he rejects the high demand with an interior probability. The role of randomization

here is to mitigate the effect of a non-favorable expert verdict. Since the good type rejects

the demand for sure and the bad type rejects it only occasionally, the act of rejection will

itself enhance player 1’s reputation and may even overturn the effect of a non-favorable

verdict.

Nonetheless, when reputation is sufficiently close to the point beyond which player 2

finds optimal to make a low demand, the bad type may still wish to fully mimic the good

type, reject the high demand with probability 1 and count on the chance that expert verdict

favors him. If he is lucky, his reputation will enter the region in which player 2 makes only

a small demand.

These arguments suggest that the equilibrium can be characterized by two threshold

beliefs that quantify the “low” and “high” reputation regions. This is indeed the case.

3.3 Formal description

We now formally describe the equilibrium characterized by two threshold beliefs, 0 < p∗ <

p∗∗ < 1, confirming our previous intuition.12 As is usual in a bargaining game, player 2 can

12In Section 4 below, we characterize the key properties of all Markov perfect Bayesian equilibria.
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make a demand which he knows will be rejected for sure; let us refer to such a demand as

a losing demand.

Figure 2 below illustrates the equilibrium strategies of the two players around three

belief “regions”. The left panel describes player 2’s demand as a function of the belief;

the right panel illustrates bad player 1’s rejection probability of the equilibrium demand at

each belief level.

Figure 2: Equilibrium strategies

The low reputation region, (0, p∗). This is a region of learning through both soft and

hard information. Player 2 makes a high demand, equal to qH − c2, which the good

type will reject for sure.13 The bad type responds to such a demand by randomization; the

rejection probability is monotonically increasing in p over this region such that, at the lower

threshold p∗, it becomes exactly 1. The act of rejection itself leads to reputation building,

and the subsequent expert signal will also lead to learning from player 2. A favorable

verdict enhances reputation further, while a non-favorable verdict brings reputation back

down.

The intermediate reputation region, (p∗, p∗∗). This is a region of learning through hard

information alone. Here, player 2 makes a losing demand which both types reject with

probability 1. Player 2 does not learn from player 1’s act of rejection per se; rather, the

learning takes place only through the realization of expert verdict.

13The amount of the high demand, qH−c2, at low reputation levels turns out to be a general equilibrium
property. See Section 4.
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The high reputation region, (p∗∗, 1). This is a region of no learning. The full benefit of

reputation is obtained. Player 2 makes a low demand, equal to (1 − q)H + c1, that both

types accept for sure.

The behavior at the two thresholds p∗ and p∗∗ are critical in the equilibrium construction.

In particular, at p∗∗, player 2 mixes between (1 − q)H + c1 and a higher losing demand;

both types of player 1 accept (reject) the low (high) demand for sure. Of course, in order

to display reputational considerations, player 1 has to sufficiently care about the future.

Let δ̄ = c1+c2
(2q−1)H+c1+c2

. We next state the equilibrium formally.

Proposition 1 For any δ > δ̄, the following is the outcome of a Markov perfect Bayesian

equilibrium. There exist two thresholds, 0 < p∗ < p∗∗ < 1, such that:

• If p = 0, player 2 demands qH + c1 with probability 1; player 1 (the bad type) accepts

it with probability 1.

• If p ∈ (0, p∗], player 2 demands qH − c2 with probability 1; player 1 rejects it with

probability r(p), where

r(p) =
p

p∗
1− p∗

1− p
≤ 1.

• If p ∈ (p∗, p∗∗), player 2 makes a losing demand; player 1 rejects it with probability 1.

• If p = p∗∗, player 2 demands (1 − q)H + c1 with probability x and makes a higher

losing demand with probability 1−x for some x ∈ [0, 1); player 1 accepts (1−q)H+c1

with probability 1 and rejects the other demand with probability 1.

• If p ∈ (p∗∗, 1], player 2 demands (1− q)H + c1 with probability 1; player 1 accepts it

with probability 1.

Figure 3 below illustrates bad player 1’s equilibrium (discounted average) expected pay-

ment as a function of the belief. Indeed, the expected payment is decreasing in reputation;

however, it is a discontinuous step function with a finite number of jumps. The key ele-

ment of the equilibrium construction lies in devising continuation payments that provide

correct incentives. Before providing the details of construction, let us first consider the

distinguishing features of reputation in our model.
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Figure 3: Equilibrium payments

The equilibrium displays some interesting features beyond the threshold dynamics.

First, if the game starts with a prior belief in the low reputation region, player 1’s equilib-

rium payment converges to V (0) (the payment under complete information) as the discount

factor goes to 1. The gain from reputation building is small. Second, starting from any

interior prior, the posterior reaches the high reputation region (p∗∗, 1) and then remains

there forever with an interior probability. Reputation can be built. Third, player 1 will

also fail to build reputation with a positive probability; this happens in the low reputation

region (0, p∗) where player 1 randomizes and reveals his type occasionally. Reputation can

be lost. Finally, in the low reputation region where both soft and hard information are

present, soft information can overturn hard information when their forces pull in opposite

directions. In particular, when p is low enough relative to p∗, even after a non-favorable

expert verdict the subsequent posterior at the beginning of the next period will be higher

than the current period’s initial level. Our next Proposition summarizes these findings

formally.

Proposition 2 (Equilibrium properties)

• “The gain from reputation building is small.”

Suppose that p1 ∈ (0, p∗). Then, the reputation gain is V (0)−V (p1) = (1−δ)(c1+c2),

where V (p1) = qH + δc1 − (1− δ)c2 and V (0) = qH + c1.

• “Reputation can be built.”

15



Suppose that p1 ∈ (0, p∗∗]. Then, the probability with which the equilibrium posterior

reaches the region (p∗∗, 1) is positive.

• “Reputation can be lost.”

Suppose that p1 ∈ (0, p∗∗]. Then, the probability with which the equilibrium posterior

falls to 0 is positive.

• “Soft information can overturn hard information.”

Suppose that pt ∈
(

0, p∗(1−q)
p∗(1−q)+(1−p∗)q

)
. Suppose also that, in this period t, player 1

rejects player 2’s demand and the subsequent expert verdict is non-favorable. Then,

we have

pt+1 =
p∗(1− q)

p∗(1− q) + (1− p∗)q
> pt.

We next discuss how the equilibrium responds to shifts in some key parameters. Of

particular interest is how the thresholds change in response to increased patience and

expert quality. We report limit results for technical reasons.

Proposition 3 (Comparative statics)

• As δ goes to 1, p∗ goes to 0; p∗∗ is independent of δ.

• As q goes to 1, p∗ goes to 0; p∗∗ goes to H−c1−c2
H

.

The impact of increased patience falls only on the lower threshold, p∗, which decreases.

Thus, it expands the region in which player 1 fully mimics the good type and rejects the

equilibrium demands for sure, thereby relying solely on expert verdicts. Although expert

resolution, on average, worsens reputation, a more patient long-lived player is willing to try

his luck earlier, in an effort to move into the no-learning region above the upper threshold,

p∗∗, where he incurs only a small amount of transfer.

As the expert quality increases, the intermediate reputation region also expands. But

here, this effect is achieved by a reduced lower threshold and an increased upper threshold,

p∗∗ (whose corresponding limit is less than 1). This first implies that the no-learning region

shrinks, and we may interpret this as suggesting that reputation is indeed more difficult to

build when the expert is more accurate.
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While this last observation is intuitive, the fact that the intermediate region expands

as q goes to 1 is somewhat surprising. This says that, when the expert is very precise, the

parties will almost always resort to external intervention, rather than making voluntary

agreements and saving on expert costs. Why is this? The reason is that when q is very

large a single piece of good luck is all that is needed for player 1 to jump into the no-learning

region and reap the full benefits of reputation. Given this, what player 2 asks for at low

levels of reputation is too much for player 1 to accept.

Figure 4 illustrates the comparative static results in terms of payments with specific

parameter values. The top left-hand side graph here represents the benchmark case when

H = 1, δ = 0.75, q = 0.7, c1 = 0.02 and c2 = 0.1. The next three graphs, going from left

to right in each row, demonstrate how the payments change after an increase in δ, q and,

also, c2, respectively.

Figure 4: Comparative statics

Benchmark
Increasing

IncreasingIncreasing

to

toto
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An increase in δ from 0.75 to 0.9 indeed expands the intermediate region by inducing

more “steps”; the high reputation region and the corresponding payments remain the same

but the lower threshold falls and the payment at the low reputation region is pushed up.

Raising the expert precision from 0.7 to 0.97 shows a more drastic change. The inter-

mediate region is vastly expanded but it involves only one step. Both thresholds move, in

opposite directions. It is more difficult to build reputation and reach the high reputation

region; moreover, the payments during the reputation building process are also higher than

the benchmark. However, should player 1 succeed in reaching beyond the (increased) upper

threshold, the benefits will actually be greater (lower payments).

The final, bottom right-hand side, graph illustrates the effect of an increase in c2 (from

0.1 to 0.17), the expert cost incurred by player 2. Here, at any p, player 1’s payment is

lower, or the same, compared to the benchmark. Thus, making the expert more costly to

player 2 may improve the benefits of player 1’s reputation building.

3.4 Details of construction

We now demonstrate the technique behind the equilibrium construction which we believe

to be innovative and interesting in its own right. The key is to install correct incentives

through continuation payments. It turns out that the right continuation payments take

the form illustrated in Figure 3 above, and finding such values requires a recursive process.

We will describe this process step by step.

Step 1 At p = 0, it is clearly mutually optimal for player 2 to demand qH + c1 and

player 1 to accept it. Once the posterior falls to 0, it remains at this level.

If p is sufficiently high, that is, at p > p∗∗ (we later define p∗∗), given the good type’s

behavior, it is mutually optimal for player 2 to demand (1 − q)H + c1 and (bad) player 1

to accept it.

If p is sufficiently low, that is, at p ∈ (0, p∗] (we later define p∗), the proposed equilibrium

strategies prescribe that player 2 demands qH − c2 and player 1 is indifferent between

rejecting and accepting it. Player 1’s expected payment is then given by what he obtains

from accepting and revealing his type. If player 1’s type is revealed, the demand will be

qH + c1 in every period thereafter (and he is going to accept it) and, therefore, we have,

for every p ∈ (0, p∗],

V (p) = (1− δ)(qH − c2) + δ(qH + c1) = qH + δc1 − (1− δ)c2. (1)
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In the next step, we shall construct continuation payments to support (1) as equilibrium

payments and make player 1 indifferent. But first, let us summarize the continuation

payment for p ∈ [0, p∗] ∪ (p∗∗, 1] in the following illustration.

Figure 5: Step 1

Step 2 We have to make player 1 indifferent between accepting and rejecting the demand

qH−c2 at p ∈ (0, p∗]. Let the rejection probability be such that right after the rejection, but

before the expert verdict, the posterior belief is exactly p∗ (therefore, at p∗, the rejection

probability is 1).

What is the continuation payment from rejecting? In the current period, player 1

expects to spend qH+ c1 from going to the expert. As of the next period, the continuation

payment depends on the outcome of expert verdict. If he obtains an unfavorable verdict

(which happens with probability q), the posterior falls below p∗ but then the continuation

payment is given by equation (1) in Step 1 above. If he obtains a favorable verdict, the

posterior improves to, say, p1 with continuation payment V (p1).14

The indifference condition of player 1 at p ∈ (0, p∗] then requires the following Bellman

equation

V (p) = (1− δ)(qH + c1) + δq [qH + δc1 − (1− δ)c2] + δ(1− q)V (p1). (2)

Equations (1) and (2) pin down V (p1).15 Figure 6 below illustrates these arguments.

14By Bayesian updating, p1 = p∗q
p∗q+(1−p∗)(1−q) .

15It is easy to check that V (p1) > (1− q)H + c1 when δ > δ̄.
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Figure 6: Step 2

Step 3 We now turn to the continuation payment that supports V (p1) in equilibrium.

At p1, the proposed equilibrium requires player 1 to reject player 2’s demand for sure.

The current period’s expected payment is qH + c1. At the next period, if the expert

verdict is favorable, the posterior belief improves to, say, p2, with continuation payment

V (p2); otherwise, the belief goes back to p∗ and the continuation payment V (p∗) is given by

equation (1) above. The Bellman equation that supports V (p1) as an equilibrium payment

is, therefore,

V (p1) = (1− δ)(qH + c1) + δqV (p∗) + δ(1− q)V (p2), (3)

and this delivers V (p2). Figure 7 below summarizes these arguments.

Figure 7: Step 3
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Step 4 By similar arguments, we can derive V (p3) that supports V (p2) in equilibrium

and so forth, and put together the following recursive equation to characterize V (pn) for

any integer n:16

V (pn) = (1− δ)(qH + c1) + δqV (pn−1) + δ(1− q)V (pn+1). (4)

Starting from the two initial conditions V (p∗) and V (p1), the solution to this second-

order difference equation can easily be shown to be strictly decreasing and also divergent.

Therefore, eventually, V (pn) will drop below (1−q)H+c1, the lowest possible continuation

payment in equilibrium. This is illustrated in Figure 8 below.

Figure 8: Step 4

Let N be the smallest integer such that V (pN) > (1 − q)H + c1. Note that V (pN) is

needed in order to support V (pN−1) as an equilibrium continuation payment, but we cannot

use V (pN+1) to support V (pN) if the former is less than (1 − q)H + c1. Recall that the

recursive arguments here are based on player 1 rejecting player 2’s demand for sure. This

16Note that the unbiased expert assumption, that the quality of expert judgement, q, is symmetric across
player 1 types, implies that the posterior updated from pn following a non-favorable verdict is exactly pn−1.
It is straightforward to verify that, for any integer n, if

pn =
pn−1q

pn−1q + (1− pn−1)(1− q)
,

then
pn−1 =

pn(1− q)
pn(1− q) + (1− pn)q

.
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implies that, at pN , player 1 cannot reject player 2’s demand with probability 1 (except in

the degenerate case where V (pN+1) = (1− q)H + c1 exactly).

The critical aspect of the equilibrium, therefore, is that, at pN , player 2 has to randomize

such that some demand is accepted while others are rejected. Indeed, player 2 will be

indifferent exactly at pN = p∗∗.17 If his demand is rejected, player 2’s expected payoff from

going to the expert is p∗∗(1 − q)H + (1 − p∗∗)qH − c2. Therefore, from the indifference

condition p∗∗(1− q)H + (1− p∗∗)qH − c2 = (1− q)H + c1, we uniquely find

p∗∗ =
(2q − 1)H − c1 − c2

(2q − 1)H
∈ (0, 1).

From pN = p∗∗, we backtrack to find p∗; N consecutive unfavorable verdicts from

p∗∗ gives p∗. The exact mixing probability that supports V (pN), or V (p∗∗), is computed in

Appendix. Since we now have p∗ and p∗∗, we can also trace the entire continuation payment

schedule, which takes the form illustrated in Figure 3 above. These details also appear in

Appendix.

4 Some general properties of an equilibrium

The equilibrium constructed in the previous section exhibits a particular behavioral pattern.

We now turn to the question of whether any aspects of the equilibrium apply more generally

to an equilibrium. Our next results characterize some general properties of a Markov perfect

Bayesian equilibrium, while maintaining the following condition:

(C) The good type, regardless of past history, accepts a demand if and only if it does not

exceed (1 − q)H + c1; acceptance of a demand strictly greater than (1 − q)H + c1

reveals that player 1 is bad, both on and off the equilibrium path.

We start by examining the equilibrium strategies. The first result states that bad player

1 must use a cutoff strategy: there is a cutoff level of demand associated with each posterior

belief such that any larger demand is rejected while any lower demand accepted.

Lemma 1 (Cutoff strategy) Fix any δ and any Markov perfect Bayesian equilibrium.

Also, fix any posterior p, and consider a demand s > (1− q)H + c1. The following is true

on or off the equilibrium path:

17We later show that the accepted demand here must be (1− q)H + c1.

22



(1) If type B accepts s with a positive probability, then he must accept any s′ < s with

probability 1.

(2) If type B rejects s with a positive probability, then it must reject any s′ > s with

probability 1.

Next, we obtain a suprising property regarding player 2’s demand in any equilibrium.

There are only two constant demand levels that could be accepted with postive probability

in equilibrium. Any other demands must be either off the equilibrium path or offered

and rejected in equilibrium. This general property has been confirmed in the particular

equilibrium constructed above.

Proposition 4 Fix any δ > δ̄ and any Markov perfect Bayesian equilibrium. Suppose

that, in equilibrium before player 1 reveals his type, player 2 makes a demand which player

1 accepts with a positive probability. Then, the demand is either (1− q)H + c1 or qH − c2.

The demand (1 − q)H + c1 follows from the assumption on the good type’s behavior.

Let us argue that the only other acceptable equilibrium demand is qH− c2. Suppose to the

contrary that a higher demand is acceptable. Then, the acceptance must occur for sure.

This is because, otherwise, player 2 could profitably deviate by demanding slightly less and

the deviation would be met with sure acceptance (since player 1 plays a cutoff strategy).

Player 2 clearly has no incentive to demand anything less than qH − c2 (but greater than

(1−q)H+c1) since only the bad type would accept such a demand and the expected payoff

under expert resolution conditional on player 1 being bad is qH − c2.
Our final result examines player 1’s expected equilibrium payments in any Markov

perfect Bayesian equilibrium. Let p∗∗ = (2q−1)H−c1−c2
(2q−1)H

be the upper threshold belief as

defined in the equilibrium construction in Section 3 above.

Proposition 5 Suppose that δ > δ̄. For any Markov perfect Bayesian equilibrium, there

exists p∗ ∈ (0, p∗∗) such that the following properties hold:

• V (0) = qH + c1.

• For any p ∈ (0, p∗), V (p) = qH + δc1 − (1− δ)c2.

• For any p ∈ (p∗, p∗∗], V (p) ∈ [(1− q)H + c1, qH + δc1 − (1− δ)c2].
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• For any p ∈ (p∗∗, 1], V (p) = (1− q)H + c1.

Thus, we are able to obtain payment bounds for any equilibrium and, moreover, estab-

lish that the lower bound must be achieved when reputation is sufficiently high while the

upper bound is met when reputation is sufficiently low. The proof which utilizes a novel

argument with “downward induction on beliefs” can be found in Appendix.

5 Concluding discussion

In this section, we discuss the key assumptions of the model as well as some related work.

5.1 Robustness to the (un)observability of demands

We have assumed that accepted demands are publicly observable while rejected demands

are not. Our equilibrium in Section 3 is robust to the (un)observability of the details of

bargaining.

It is straightforward to see that the equilibrium continues to be valid when rejected

demands are also publicly observable. Even though we have assumed that short-lived

players do not observe previously rejected demands, it is common knowledge in equilibrium

that the rejected demands must always be qH − c2. Thus, it does not depend on whether

this amount is observable or not.

We can also incorporate unobservability of accepted demands into our model. As is often

the case in litigations, consider the two bargaining sides themselves choosing whether the

amount of transfer will be publicly observable or confidential, should there be an agreement.

Even with this modification to the model our equilibrium is robust under the following

natural specification of belief upon observing a confidential agreement: player 2 assigns

probability 1 to the bad type. This equilibrium survives the refinements such as the intuitive

criterion. After all, it is natural that the good type who is innocent has nothing to hide.

This eliminates any benefit of confidentiality.18

18See Daughety and Reinganum [6][7] for two-period litigation models with endogenous confidentiality
agreements.
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5.2 Relation between type and responsibility

Recall that we have conducted the analysis under the assumption that type B (G) is always

responsible (not responsible) for each claim. Our analysis remains the same by instead

assuming the following structure. For each claim, type G is responsible with probability

q′ < 1
2

and type B is responsible with a probability 1− q′. Player 1 knows his type, but not

his responsibility for each dispute due to some randomness (usual in medical malpractice

cases, for instance). An expert makes a judgement on player 1’s responsibility for each

case with precision q′′. It is readily verified that this is isomorphic to the model above with

expert quality q = q′q′′ + (1− q′)(1− q′′).

5.3 Behavior of the good type

We have focused on equilibria in which the good type accepts a demand if and only if it

does not exceed (1− q)H + c1. This is the maximum expected payment that the good type

can guarantee himself since he always has the option of rejecting an offer. Indeed, using the

same technique in Section 3, we can easily construct other equilibria where the good type’s

cutoff is D, for any D < (1−q)H+c1. The indifference condition that pins down p∗∗ is then

p∗∗(1 − q)H + (1 − p∗∗)qH − c2 = D; the lower threshold p∗ will be adjusted accordingly.

The two levels of demand made by player 2 in the equilibrium will be qH − c2 and D. The

higher level remains the same, as well as the payoff benefit of reputation building for very

small priors. Clearly, this modification to the good type’s behavior does not add any new

insights.

5.4 Other assumptions and extensions

In our model, the bargaining within each period takes a simple format: the uninformed

player makes a take-it-or-leave-it offer. Such simplicity allows us to focus on the long-lived

player’s dynamic incentives, as done also in Schmidt [17], Daughety and Reinganum [6][7]

and others. The one-sided offer by the uninformed player however rules out complex sig-

naling effects. Spier [18] considers settlement bargaining between a single pair of defendant

and plaintiff under more complex bargaining procotols.

Our analysis considers the case in which the long-lived player takes one of two possible

types. As mentioned earlier, this fits a number of applications, including product liability

25



litigations in which a sequence of disputes originate from the same act that a firm has, or is

believed to have, already undertaken. Extending our analysis to the case of multiple types,

nonetheless, offers an interesting direction for future research.

The stake (or the distribution thereof) in each dispute is assumed to be common knowl-

edge. This also seems to be a reasonable description of many applications. For instance,

in securities class actions, the stakes can be traced to the loss in share value. Introducing

private information over the magnitude of the stake, in addition to private information on

responsibility, will significantly complicate the analysis beyond the scope of the present

paper.

We also assume that the the quality of the third party is constant. We could alterna-

tively think of the model with an expert being drawn from a pool of experts with average

quality q in each period.19

5.5 Further contribution to the legal literature

Alexander [2] studies repeated securities class action lawsuits involving underwriters be-

hind similar claims of fraud in computer-related IPOs. She finds that, beyond very few

exceptions, “the cases settled at an apparent ‘going rate’ of approximately one quarter of

the potential damages... a strong case in this group appears to have been worth no more

than a weak one” (Alexander [2], p.500). Thus, the merit of a case, or “the parties’ es-

timates of the strength of the case” (Alexander [2], p500), does not appear to matter for

settlement. Alexander suggests that reputation may play a role here because the securities

class actions often involve long-lived defendants.20 Our results support this observation;

this is exactly what happens in the low reputation region where settlements occur and,

moreover, the amount of settlement is constant over this interval of merits.

We also clarify the puzzle. Although the settlement amount, conditional on agreement,

is independent of merit, settlement is nevertheless meritorious in that the settlement rate

(i.e. the likelihood of settlement) is strictly decreasing in merit over the low reputation

region. This is confirmed by Studdert and Mello [19] who find that, in medical malpractice

19Another possibility is to simply assume that the expert becomes more precise over time as evidence
and verdicts accrue. But, this will make the problem less tractable.

20For instance, Alexander [2] notices that “two prominent investment banking firms stated in their own
prospectuses that in 1986 they were involved in 60 and 73 lawsuits, respectively, over public offerings they
had underwritten” (Alexander [2], p.558). Also, see Palmrose [16].
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litigations, merits do indeed affect the settlement rate. Furthermore, it is observed that

cases favoring neither party, or “close calls”, are more likely to go to court (see Palmrose [16]

and Studdert and Mello [19]). Such cases can be interpreted as corresponding to reputation

levels over, or close to, the intermediate region in our equilibrium, where the bad defendant

rejects plaintiffs’ demands and proceed to trial for sure, or with a very high probability.

Here, the conflict between the defendant’s long-run interest and the plaintiff’s short-run

interest leads to the low settlement rate. The short-lived plaintiffs demand a relatively

high compensation based on his estimate of the case’s strength. However, the long-lived

defendant is forward looking; the high reputation region is within reach and thus he will

only accept a low demand, an amount less than what the plaintiffs are willing to offer.

6 Appendix

6.1 Omitted proofs of Section 3

Proof of Proposition 1

Our proof of this result is based on the following construction. We first need some notation.

Let

Φ1(p) =
pq

pq + (1− p)(1− q)

Φ−1(p) =
p(1− q)

p(1− q) + (1− p)q)
.

That is, when the belief is p, if both types of player 1 go to expert and the verdict is not

liable (or liable), then the increased (or decreased) updated belief is equal to Φ1(p) (or

Φ−1(p)). Notice that Φ−1 (Φ1(p)) = p for any p.

Furthermore, for any positive integer k, define Φk(p) recursively such that Φ2(p) =

Φ1 (Φ1(p)), Φ3(p) = Φ1 (Φ2(p)) and, hence, Φk(p) = Φ1
(
Φk−1(p)

)
. In other words, when

the initial belief is p, if both types of player 1 go to expert k consecutive times and the

verdict favors player 1 on each occasion, then the posterior belief updated from p is Φk(p),

Similarly, we define Φ−k(p) as the posterior reached from p after k successive non-favorable

expert decisions for player 1. Also, let Φ0(p) ≡ p.
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Next, let δ̄ solve the following:

[1− δ̄q][qH + δ̄c1 − (1− δ̄)c2] = (1− δ̄)(qH + c1) + δ̄(1− q)[(1− q)H + c1]. (5)

It is straightforward to observe that such δ̄ must belong to (0, 1).

Fix any δ > δ̄, and consider the profile (rB, rG, d) below, where p∗, p∗∗ ∈ (0, 1) and

player 2’s randomization probability at p∗∗, x, are to be defined later.

First, player 2’s strategy, d, is such that:

• At p = 0, it demands qH + c1 with probability 1;

• At any p ∈ (0, p∗∗), it demands qH − c2 with probability 1;

• At p = p∗∗, it demands (1− q)H+ c1 with probability x and qH− c2 with probability

1− x;

• At any p ∈ (p∗∗, 1], it demands (1− q)H + c1 with probability 1.

Second, type G player 1’s strategy, rG, is such that, for any p, it accepts a demand s if

and only if s ≤ (1− q)H + c1.

Third, we define type B player 1’s strategy, rB:

• At p = 0, it accepts a demand s if and only if s ≤ qH + c1;

• At any p ∈ (0, p∗],

– it rejects any s > qH − c2 with probability 1;

– it accepts any s < qH − c2 with probability 1;

– it rejects qH − c2 with probability r(p), where r(p) satisfies

p∗ =
p

p+ (1− p)r(p)
,

and therefore,

r(p) =
p

p∗
1− p∗

1− p
≤ 1.

(Notice that r(p∗) = 1.)
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• At any p ∈ (p∗, p∗∗],

– it rejects any s > max{ξ(p), (1− q)H + c1} with probability 1;

– it accepts any s ≤ max{ξ(p), (1− q)H + c1} with probability 1, where ξ(p) here

is defined later.

• At any p ∈ (p∗∗, 1],

– it rejects any s > (1− q)H + c1 with probability 1;

– it accepts any s ≤ (1− q)H + c1 with probability 1.

Finally, the belief is updated by Bayes’ rule and the equilibrium strategies whenever

possible. We also assume that the posterior belief assigns probability 1 to type B after an

acceptance of a demand higher than (1− q)H + c1.

We now define p∗, p∗∗ and x. Along the way, the equilibrium payment of type B, V (p),

will also be obtained, as well as ξ(p) for p ∈ (p∗, p∗∗].

Defining p∗∗ At the upper threshold level of belief, p∗∗, player 2 must be indifferent

between demanding (1 − q)H + c1, which is accepted with probability 1, and demanding

qH − c2, which is rejected with probability 1. Thus, it is computed from the equation

(1− q)H + c1 = p∗∗((1− q)H − c2) + (1− p∗∗)(qH − c2),

which yields

p∗∗ ≡ (2q − 1)H − c1 − c2
(2q − 1)H

∈ (0, 1). (6)

Defining p∗ At p∗, type B is indifferent between accepting and rejecting qH − c2. Let

V0 ≡ V (p∗) and Vn ≡ V (Φn(p∗)). Then, since acceptance of the equilibrium demand leads

to revelation, we first have

V0 = (1− δ)(qH − c2) + δ(qH + c1) = qH + δc1 − (1− δ)c2. (7)

Rejection, on the other hand, yields the following:

V0 = (1− δ)(qH + c1) + δqV0 + δ(1− q)V1, (8)
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where the current period expected payment equals qH + c1, the next period continuation

expected payment following a favorable verdict (which takes place with probability 1−q) is

V1 and the corresponding payment following a non-favorable verdict is also V0 (since type

B randomizes at any p < p∗).

Note here that, since we assume (2q− 1)H > c1 + c2, V0 > (1− q)H+ c1 and that, since

δ > δ̄, V1 > (1− q)H + c1 (see (5) above for the definition of δ̄).

Next, consider the equilibrium payment Vn (at p = Φn(p∗)) for any integer n ≥ 1. Here,

since the equilibrium demand is rejected for sure, the continuation payment must satisfy

the following recursive structure:

Vn = (1− δ)(qH + c1) + δqVn−1 + δ(1− q)Vn+1. (9)

Define N = sup{n ∈ Z : Vn > (1 − q)H + c1}, where Z denotes the set of integers; i.e. N

is the largest integer n such that Vn > (1− q)H + c1.

Then, given Claim 1 below, define p∗ = Φ−N(p∗∗) ∈ (0, 1). Since V1 > (1− q)H + c1, N

must be positive and, hence, p∗ < p∗∗ as required by the equilibrium.

Claim 1 (1) Vn is strictly decreasing in n.

(2) N is finte.

Proof. (1) Notice that V0 < qH and V0 is a convex combination of qH + c1 and V1. Then

V1 < V0. Suppose Vn < Vn−1 < · · · < V0 < qH. From (9), Vn is a convex combination of

qH+c1, Vn−1, and Vn+1, and hence Vn+1 < Vn. The monotonicity of Vn follows by induction.

(2) Suppose to the contrary that N is infinite. That is, Vn > (1−q)H+c1 for all n. Then,

since Vn is strictly decreasing, Vn converges to V∞ such that (1− q)H+ c1 ≤ V∞ < qH+ c1.

But, from (9), it follows that V∞ = qH + c1. This is a contradiction.

Defining x At p∗∗, player 2 demands (1− q)H + c1 with probability x and qH − c2 with

probability 1 − x; both types of player 1 accept the first demand with probability 1 and

reject the second demand with probability 1. This implies that the equilibrium posterior

at the next period must be such that:

• if (1− q)H + c1 is accepted then the posterior remains at p∗∗;

• if a demand is rejected, followed by a favorable verdict to player 1, then the posterior

moves up to Φ1(p∗∗); and
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• if a demand is rejected, followed by a non-favorable verdict to player 1, then the

posterior moves down to Φ−1(p∗∗).

Thus, we have

V (p∗∗) ≡ VN = x [(1− δ)((1− q)H + c1) + δVN ] + (1− x)X, (10)

where VN is given by the second-order difference equation (9) with the two initial conditions

V0 and V1 as in (7) and (8) above, and

X ≡ (1− δ)(qH + c1) + δqVN−1 + δ(1− q)((1− q)H + c1). (11)

Claim 2 There exists a unique x ∈ [0, 1) that satisfies (10).

Proof. Simple computation shows that

x =
X − VN

X − (1− δ)((1− q)H + c1)− δVN
.

Note first that VN ≤ X. This follows from comparing (11) above to the recursive

equation

VN = (1− δ)(qH + c1) + δqVN−1 + δ(1− q)VN+1,

where, by assumption, VN+1 ≤ (1−q)H+c1. Also, we have VN > (1−δ)((1−q)H+c1)+δVN

because, again by assumption, VN > (1− q)H + c1. Thus, x ∈ [0, 1).

Equilibrium payments At this juncture, we characterize the equilibrium expected pay-

ments of type B. The following is clear:

• For any p ≤ p∗, V (p) = V0.

• For any p = Φn(p∗) with an integer 1 ≤ n ≤ N , V (p) = Vn; in particular, V (p∗∗) =

VN .

• For any p > p∗∗, V (p) = (1− q)H + c1.

We now pin down payments when p ∈ (p∗, p∗∗) but p 6= Φn(p∗) for any integer 1 ≤ n ≤
N .
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Claim 3 Fix any integer n ∈ [1, N ] and any p, p′ ∈ (Φn−1(p∗),Φn(p∗)). Then, we have

V (p) = V (p′) < V0.

Proof. Consider the following recursive structure: for any integer k,

Wk = (1− δ)(qH + c1) + δqWk−1 + δ(1− q)Wk+1

such that W0 = V0 and WN+1 = (1− q)H + c1, where N is defined as above.

Note that we have

Φ−n(p) = Φ−n(p′) < p∗ and Φ−n+1(p) = Φ−n+1(p′) > p∗;

ΦN−n+1(p) = ΦN−n+1(p′) > p∗∗ and ΦN−n(p) = ΦN−n(p′) < p∗∗.

Thus, it is straightforward to see that

Wn = V (p) = V (p′).

Also, from the same arguments for Claim 1 above, we can show that Wk is strictly

decreasing.

Defining ξ(p) for p ∈ (p∗, p∗∗] Recall that, in specifying player 1’s equilibrium strategy

earlier, we had deferred the definition of ξ(p) at p ∈ (p∗, p∗∗]. Fix any p ∈ (p∗, p∗∗], and

define ξ(p) as satisfying

(1− δ)ξ(p) + δ(qH + c1) = V (p),

where V (p) is the equilibrium payment computed above. It is easily seen that ξ(p) <

qH − c2.

It remains to be shown that the profile (rB, rG, d) defined above, together with the

stated beliefs, constitutes a Markov perfect Bayesian equilibrium.

First, given rB and rG, and the definition of p∗∗, it is straightforward to establish

optimality of player 2 strategy, d. In particular, note that it is never optimal for player 2

to make a demand s ∈ ((1− q)H + c1, qH − c2).
Second, we check optimality of rG, the strategy of type G. This is clear since player

2 never makes a demand less than (1 − q)H + c1, which is precisely the amount that this

type expects to pay in total in case the dispute goes to the expert in any period.

Finally, we check optimality of rB.
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• It is straightforward to check optimality of rB at p = 0.

• Fix any p ∈ (0, p∗]. Suppose first that the demand, s, is less than qH − c2. If type B

accepts this demand, the continuation payment amounts to

(1− δ)s+ δ(qH + c1) < V0,

while, since rejected demands are not observable, the continuation payment from

rejecting continues to be V0. Thus, accepting any s < qH − c2 for sure is optimal. A

symmetric argument establishes that rejecting any s > qH − c2 for sure is optimal.

The rejection probability r(p), supports the indifference conditions captured by (7)

and (8) above.

• Fix any p ∈ (p∗, p∗∗). Here, by Claims 1 and 3 above, we have V (p) < V0, and

accepting the demand qH − c2 yields precisely V0 = (1 − δ)(qH − c2) + δ(qH + c1)

due to revelation. Thus, rejecting the equilibrium demand, qH − c2, is optimal.

• Consider p = p∗∗. If type B accepts the equilibrium demand qH − c2, he reveals his

type and, hence, obtains a continuation payment V0. If he rejects this demand, on

the other hand, he obtains

(1− δ)(qH + c1) + δqVN−1 + δ(1− q)((1− q)H + c1) ≡ X < V0,

where the last inequality can be obtained from the proof of Claim 3 above. Thus, it

is optimal to reject qH − c2.

Next, consider the demand (1 − q)H + c1. Rejection, again, yields a continuation

payment X, while acceptance leads to a payment (1− δ)((1− q)H + c1) + δVN . Since

VN < X and (1− q)H + c1 < X, acceptance is optimal.

• Fix any p ∈ (p∗∗, 1]. Since player 2 plays a pure strategy here, accepting the equilib-

rium demand (1− q)H+ c1 cannot reduce the equilibrium posterior. Thus, accepting

yields a continuation payment (1− q)H + c1. On the other hand, rejection yields, at

best, a continuation payment

(1− δ)(qH + c1) + δ ((1− q)H + c1) ,

implying the optimality of acceptance.
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Proof of Proposition 2

When p1 = 0, it is known that player 1 is the bad type. Therefore, V (0) = qH + c1.

If p1 ∈ (0, p∗), player 1 plays mixed strategies and, hence, his payment is obtained from

assuming that he agrees with player 2 on the first case and reveals his type, i.e. V (p1) =

(1−δ)(qH−c2)+δV (0) = qH+δc1−(1−δ)c2. Therefore, the reputation gain is (1−δ)(c1+c2)

if p1 ∈ (0, p∗). The next three properties follow directly from the equilibrium construction.

Proof of Proposition 3

1. We have already established that p∗∗ is independent of δ (see (6) above). By definition,

p∗ is the posterior belief after N consecutive non-favorable expert decisions starting from

p∗∗. Therefore, to show p∗ goes to 0 as δ goes to 1, it suffices to establish that N(δ) goes

to ∞ as δ goes to 1.

We first note that that V (pn)− V (p0)→ 0 as δ goes to 1 for any fixed n. This follows

directly from the difference equation (4) and its initial conditions. Since V (p0) > (1 −
q)H + c1 even when δ → 1, N(δ) goes to ∞ by definition.

2. It is immediate from the definition of p∗∗ that p∗∗ → H−c1−c2
H

as q → 1. By equation

(2) in the main text, V (p1) → −∞ as q → 1. Therefore, N → 1 as q → 1 and, hence,

p∗ becomes the posterior probability obtained after a single non-favorable expert decision

starting from p∗∗, that is, p∗ = p∗∗(1−q)
p∗∗(1−q)+(1−p∗∗)q . Given the limit of p∗∗, it follows immediately

that p∗ → 0 as q → 1.

6.2 Omitted proofs of Section 4

Proof of Lemma 1

(1) If s is accepted, the continuation (discounted average expected) payment from accepting

s must be at least as good as that from rejecting it.

Since rejected demands are not observable, rejecting any demand results in the same

continuation payment. Also, by (C), accepting any demand strictly above (1 − q)H + c1

leads to the same continuation payment at the next period (equal to qH + c1). Then,

accepting any s′ ∈ ((1− q)H + c1, s) must be strictly better than rejecting it since it yields

a lower immediate payment.
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On the other hand, accepting a demand s′ ≤ (1− q)H + c1 needs not lead to revelation

but the continuation payment at the next period must still be bounded above by qH + c1

and, hence, the same arguments imply that such a demand must also be accepted for sure.

(2) If s is rejected, the continuation payment from rejecting s must be at least as good

as that from accepting it. Rejecting s or s′ results in identical expected payments, both in

the current period and each forthcoming period; on the other hand, while accepting s′ and

s yield the same continuation payment as of the next period, accepting s′ > s involves a

strictly higher stage expected payment than accepting s. Thus, any s′ > s must be rejected

for sure.

Proof of Proposition 4

The proof is by contradiction. We consider the following cases.

Case 0. s < (1− q)H + c1 or s > qH + c1.

Any demand s < (1 − q)H + c1 is dominated by (1 − q)H + c1 since type G accepts

(1− q)H + c1 and player 2’s stage payoff from type B is qH − c2 > (1− q)H + c1 should he

reject (1− q)H + c1. Therefore, in equilibrium, player 2 will not demand s < (1− q)H + c1.

This contradicts the assumption that s is demanded in equilibrium.

If type B accepts a demand s > qH + c1, by (C), he will reveal his type and the

subsequent payment is qH + c1 each period. If he rejects s, his current period expected

payment is qH+ c1 while future expected payments are bounded above by qH+ c1. There-

fore, s > qH + c1, if demanded, will be rejected by type B for sure. This contradicts the

assumption that s is accepted.

Case 1. s ∈ ((1− q)H + c1, qH − c2).
But then, player 2 can profitably deviate by not demanding s and, instead, demanding

any s′ > qH + c1. By (C), type G rejects both s and s′ for sure; from Case 0 above, we

know that type B must also reject s′ for sure. But player 2 expects to earn qH − c2 > s

from type B by seeking an expert and, therefore, would strictly prefer to have s′ rejected

than to have s accepted. This is a contradiction.

Case 2. s ∈ (qH − c2, qH + c1] and type B rejects s with probability r ∈ (0, 1).

But then, consider player 2 deviating by demanding s − ε > qH − c2 instead of s for

some small ε > 0. By Lemma 1, such a demand must be accepted by type B for sure; by
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(C), type G rejects s− ε. The deviation payoff then amounts to

p((1− q)H − c2) + (1− p)(s− ε),

while the corresponding equilibrium payoff is

p((1− q)H − c2) + (1− r)(1− p)s+ r(1− p)(qH − c2).

Thus, such a deviation is profitable if ε < r(s− qH + c2). This is a contradiction.

Case 3. s ∈ (qH − c2, qH + c1] and type B accepts s with probability 1.

Let rB be the given equilibrium strategy of type B, and let s∗ > qH − c2 denote

the supremum of demands that it accepts with probability 1 at p; that is, s∗ = sup{s :

rB(p, s) = 0}.
Then, by Lemma 1, rB(p, s′) = 0 for any s′ ∈ (qH − c2, s∗), and r(p, s′′) = 1 for any

s′′ ∈ (s∗,∞). Therefore, player 2’s payoff is s′ by demanding s′ and qH − c2 < s∗ by

demanding s′′. However, both s′ and s′′ are dominated by s∗ − s∗−s′
2

which is accepted for

sure, yielding a payoff of s∗ − s∗−s′
2

> qH − c2. Therefore, given our arguments against

Cases 0 and 1 above, player 2 will not make a demand other than (1 − q)H + c1 or s∗ in

equilibrium.

Suppose now that player 2 demands s∗ with a positive probability. We shall show that

this is impossible.

On the one hand, if player 2’s equilibrium strategy demands s∗ with a positive probabil-

ity, type B must accept it with probability 1 by the same argument as in Case 2; otherwise,

player 2 could profitably deviate by demanding s∗ − ε instead of s∗ for some small enough

ε > 0.

On the other hand, typeB has an incentive to deviate by rejecting s∗ if δ > c1+c2
(2q−1)H+c1+c2

.

As we have already established, in equilibrium, the demand can only be either (1−q)H+c1

or s∗, where the former demand is accepted for sure by both types and the latter is accepted

for sure by type B while rejected for sure by type G. It then follows that the equilibrium

posterior at the next period after observing rejection in the current period must be 1.

Thus, the deviation results in each subsequent player 2 demanding (1− q)H + c1 and,

hence, the continuation payment

(1− δ)(qH + c1) + δ((1− q)H + c1). (12)
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But, in equilibrium, acceptance of s∗ results in revelation (condition (C)) and, hence, the

continuation payment

(1− δ)s∗ + δ(qH + c1). (13)

Since s∗ > qH−c2 and δ > c1+c2
(2q−1)H+c1+c2

, (13) exceeds (12) and, therefore, the deviation

is profitable. This is a contradiction.

Proof of Proposition 5

We proceed to prove each claim of Proposition 5 in turn. Fix any δ > c1+c2
(2q−1)H+c1+c2

, as

required by Proposition 4, and any Markov perfect Bayesian equilibrium. Also, for ease of

exposition, let V = qH + δc1 − (1− δ)c2. We proceed with the following Lemmata.

Lemma 2 For any p ∈ (0, 1), V (p) ∈
[
(1− q)H + c1, V

]
.

Proof. First of all, the lower bound is immediate since, with condition (C), any demand

less than (1 − q)H + c1 is strictly dominated for player 2 and thus will never occur in

equilibrium.

Next, we establish the upper bound. Let us consider two cases in turn.

First, suppose that every equilibrium demand of player 2 is accepted by type B. Then,

player 2 must play pure strategy (given the assumption that each equilibrium demand is

accepted, player 2 cannot randomize between a low demand and a high demand).

Then, by Proposition 4, the equilibrium demand is either qH − c2 or (1− q)H + c1. If

the demand is (1 − q)H + c1, by condition (C), no belief updating occurs and, therefore,

V (p) = (1− q)H + c1 < V . If the demand is qH − c2, type B reveals himself and hence by

the Markov property

V (p) = (1− δ)(qH − c2) + δ(qH + c1) = V .

Second, suppose that, at p, some equilibrium demand is rejected with a positive proba-

bility. Let s∗ be the infimum of these demands that are rejected by type B at p. By Lemma

1, all demands below s∗ will be accepted and all demands above s∗ will be rejected by this

type.

Note that type B’s equilibrium payment, V (p), is bounded above by rejecting all de-

mands. In particular, given the definition of s∗, the upper bound equals the continuation

payment from rejecting an equilibrium demand s∗ + ε, for some ε ≥ 0.
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But, at the same time, since s∗ + ε occurs and is rejected in equilibrium, type H’s

equilibrium payment at p is bounded above by the continuation payment from accepting

s∗ + ε. Therefore, it must be that

V (p) ≤ (1− δ)(s∗ + ε) + δ(qH + c1),

where qH + c1 is the maximum possible continuation payment.

Now, by the definition of s∗, we can take ε→ 0 and, hence, obtain

V (p) ≤ (1− δ)s∗ + δ(qH + c1). (14)

From (14), we are done if s∗ ≤ qH − c2. We simply note that it is impossible that

s∗ > qH − c2. The reasoning is as follows. Suppose not. By the definiton of s∗, there

exists an equilibrium demand s ≥ s∗ such that s is rejected and player 2 obtains a payoff

of qH − c2. But, by the definition of s∗, any s∗ − ε > qH − c2 will be accepted by type

B which gives player 2 a payoff of s∗ − ε > qH − c2. Therefore, s cannot be demanded in

equilibrium. This is a contradiction.

Lemma 3 Let p∗∗ = (2q−1)H−c1−c2
(2q−1)H

. For any p ∈ (p∗∗, 1), (1 − q)H + c1 is demanded and

accepted for sure.

Proof. By demanding (1− q)H + c1, player 2 obtains a payoff of at least

(1− q)H + c1 (15)

since the good type accepts it and he can obtain qH−c2 > (1−q)H+c1 if the bad type ever

rejects the demand. Note that all lower demands are strictly dominated by (1− q)H + c1.

By demanding qH − c2, player 2 obtains at most

p((1− q)H − c2) + (1− p)(qH − c2) (16)

since type G will reject it, leading to expected payoff of (1 − q)H − c2 for player 2, and

qH−c2 is player 2’s expected payoff regardless of type B’s response. Note that all demands

in ((1− q)H + c1, qH − c2) are weakly dominated by qH − c2, because type G rejects the

demand and player 2’s payoff is lower than qH − c2 if type B ever accepts it.

Now, by Lemma 1 and Proposition 4, any demand greater than qH − c2 is rejected by

both types for sure, which gives player 2 a payoff of p((1 − q)H − c2) + (1 − p)(qH − c2).

38



Therefore, we only need to compare (15) with (16). Since p > p∗∗, the former is larger,

implying that (1− q)H + c1 must be demanded for sure.

Then, since player 2 plays a pure strategy here, and by (C), accepting the equilibrium

demand (1 − q)H + c1 cannot reduce the equilibrium posterior. Thus, accepting yields a

continuation payment (1 − q)H + c1 to type B. On the other hand, rejection yields, at

best, a continuation payment

(1− δ)(qH + c1) + δ ((1− q)H + c1) ,

implying that (1− q)H + c1 is accepted for sure.

In order to pin down our final claim, we first need the following Lemma.

Lemma 4 Consider the state space P ⊂ [0, 1] such that P = P1 ∪P2 ∪P3. Let V (p) be the

discounted average expected payment at p (with discount factor 0 < δ < 1).

At any p ∈ P3, with probability 1 − q the immediate payment is 0 and the new state

becomes p′ = Φ1(p); with probability q, the payment is H and the new state becomes p′′ =

Φ−1(p), where Φ1(·) and Φ−1(·) are as defined in the proof of Proposition 1 above. If p ∈ P1,

V (p) = v1 > 0; If p ∈ P2, V (p) = v2 > 0.

We then have the following: If qH ≥ min{v1, v2}, then V (p) ≥ min{v1, v2} for any

p ∈ P3.

Proof. Suppose not. Let v3 = infp∈P3 V (p). Then, by assumption, v3 < min{v1, v2}. For

any small ε > 0, there exists pε ∈ P3 such that V (pε) < v3 + ε. We know that

V (pε) = (1− δ)qH + δ((1− q)V (p′) + qV (p′′))

≥ (1− δ)qH + δmin{V (p′), V (p′′)}.

Therefore,

min{V (p′), V (p′′)} ≤ δ−1(V (pε)− (1− δ)qH)

≤ δ−1[v3 + ε− (1− δ)v3 + (1− δ)v3 − (1− δ)qH]

< v3 + δ−1[ε+ (1− δ)(v3 − qH)].

Taking ε to 0, we have min{V (p′), V (p′′)} < v3 +δ−1(1−δ)(v3−qH). However, we know

that, by assumption, v3 < min{v1, v2} ≤ qH. It then follows that min{V (p′), V (p′′)} < v3.

This contradicts the definition of v3.

We are now ready to complete the proof of Proposition 5 with the following Lemma.
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Lemma 5 There exists p∗ ∈ (0, p∗∗) such that, for any p ∈ (0, p∗), V (p) = V .

Proof. We shall follow a series of steps.

Step 1. Fix any p < p∗∗, and suppose that player 2 demands (1−q)H+c1 in equilibrium.

Then, type B must reject this demand with a positive probability, and hence the equilibrium

posterior belief after a rejection but before the expert verdict does not exceed p.

Proof of Step 1. Suppose to the contrary that player 1 accepts the demand for sure.

Player 2’s payoff will be (1−q)H+c1. We shall argue that (1−q)H+c1 is strictly dominated

and cannot be an equilibrium demand.

Consider another demand qH − c2. If player 1 is type G, then he will reject it and

player 2’s payoff will be (1− q)H − c2; if player 1 is type B, then whether or not he rejects

qH − c2, player 2 will earn qH − c2 in expectation. Therefore, player 2’s expected payoff is

p(1− q)H + (1− p)qH − c2. Since p < p∗∗, this amount is greater than (1− q)H + c1. That

is, qH − c2 dominates (1− q)H + c1.

Since (1− q)H+ c1 is rejected with positive probability, all higher demands are rejected

for sure by Lemma 1. It follows that in this case rejection reduces the posterior belief.

Step 2. Fix any p < p∗∗. One of the following holds:

(a) V (p) = V ; or

(b) player 1 weakly prefers to reject any equilibrium demand and the equilibrium pos-

terior immediately after the rejection (before the expert verdict) does not exceed p.

Proof of Step 2. There are two cases to consider.

Case 1 : (1− q)H + c1 is demanded with a positive probability in equilibrium.

Then, by Step 1, (b) holds.

Case 2 : (1− q)H + c1 is demanded with probability 0 in equilibrium.

In this case only qH − c2 can be possibly accepted by Proposition 4.

- If type B’s equilibrium strategy prescribes that qH − c2 be rejected for sure, then the

belief will not change after rejection; hence, (b) holds.

- If it prescribes that qH − c2 be accepted with a positive probability, then all demands

greater than (1− q)H + c1 but less than qH − c2 is going to be accepted for sure, and they

are dominated by qH − c2 for player 2 (because only type B accepts these demands).

Now, there are two possibilities here.

First, if qH − c2 is not demanded in equilibrium by player 2, then all equilibrium

demands are rejected and, therefore, belief never changes; hence, (b) holds.
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Second, if qH − c2 is demanded in equilibrium with a positive probability by player 2,

then type B’s continuation payment from rejecting any demand is higher than or equal to

that from accepting qH − c2. The latter amounts to

(1− δ)(qH − c2) + δ(qH + c1) = V .

But, since V (p) ≤ V by Lemma 2, it must be that V (p) = V ; hence, (a) holds.

At this point, for any positive integer k, let pk = Φ−k(p∗∗), as defined in the proof of

Proposition 1 above.

Step 3. Fix any p ∈ [pk+1, pk), and suppose that

V ≥ (1− δk)qH + δk(1− q)H + c1.

Then, we have

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V }.

Proof of Step 3. We employ induction. First, consider any p ∈ [p1, p
∗∗). By Step 2, we

have either V (p) = V or an equilibrium demand is rejected and so V (p) is given by the

continuation payment from the rejection.

In the latter case, clearly, V (p) ≥ (1− δ)(qH + c1) + δ((1− q)H + c1). Thus,

V (p) ≥ min{(1− δ)qH + δ(1− q)H + c1, V }.

Next, assume that, for any p ∈ [pk, pk−1),

V (p) ≥ min{(1− δk)qH + δk(1− q)H + c1, V }.

We want to show that, for any p ∈ [pk+1, pk),

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V }.

Again, given Step 2 above, consider the continuation payment when any equilibrium

demand here is rejected such that the posterior immediately after rejection does not go

above p.

Rejection results in the current period expected payment of qH + c1. If the subsequent

expert verdict is favorable, the next period’s posterior belongs to [pk, pk−1) and, hence, the
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corresponding continuation payoff must be at least min{(1− δk)qH + δk(1− q)H + c1, V },
by assumption.

If the expert verdict is not favorable then the next period’s posterior must belong to

[pk+2, pk+1). By Lemma 4 (taking P3 = [pk+2, pk+1), P1 = [pk, pk−1), P2 = {p : V (p) =

V }\(P1 ∪ P3) ), the corresponding continuation payment must also be bounded below by

min{(1− δk)qH + δk(1− q)H + c1, V }.
Thus, we have

V (p) ≥ min{(1− δ)(qH + c1) + δ
[
(1− δk)qH + δk(1− q)H + c1

]
, V }

= min{(1− δk+1)qH + δk+1(1− q)H + c1, V },

and induction closes the proof of Step 3.

Now, let K be the largest integer such that V ≥ (1− δK)qH + δK(1− q)H + c1. Then,

Step 3 immediately implies that, for any p ∈ [pk+1, pk), k ≥ K, we must have

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V } = V .

Since, by Lemma 2 we already know that V (p) ≤ V for any p ∈ (0, 1), it follows that

V (p) = V for any p < pK .
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