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Abstract

This paper studies the identification of a simultaneous equation model involving duration measures.

It proposes a game theoretic model in which durations are determined by strategic agents. In the absence of

strategic motives, the model delivers a version of the generalized accelerated failure time model. In its most

general form, the system resembles a classical simultaneous equation model in which endogenous variables

interact with observable and unobservable exogenous components to characterize a certain economic envi-

ronment. In this paper, the endogenous variables are the individually chosen equilibrium durations. Even

though a unique solution to the game is not always attainable in this context, the structural elements of the

economic system are shown to be semiparametrically point identified. We also present a brief discussion of

estimation ideas and a set of simulation studies on the model.
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1 Introduction

This paper investigates the identification of a simultaneous equation model involving du-

rations. We present a game theoretic setting in which spells are determined by multiple

optimizing agents in a strategic way. As a special case, our proposed structure delivers the

familiar proportional hazard model. In a more general setting, the system resembles a classi-

cal simultaneous equation model in which endogenous variables interact with each other and

with observable and unobservable exogenous components to characterize a certain economic

environment. In our case, the endogenous variables are the individually chosen equilibrium

durations. In this context, a unique solution to the game is not always attainable. In spite

of that, the structural elements of the economic system are shown to be semiparametrically

point identified.

The results presented here have connections to the literatures on simultaneous equa-

tions and statistical duration models as well as to the recent research on incomplete econo-

metric models that result from structural (game theoretic) economic models (Berry and

Tamer (2006)). The paper also adds to the research on time-varying explanatory variables

in duration models. In that literature the time–varying explanatory variable is considered

to be “external” (see, for instance, Heckman and Taber (1994) or Hausman and Woutersen

(2006)). In a recent paper, Abbring and van den Berg (2003) consider a model where a

duration outcome depends on a time-varying explanatory variable, another duration vari-

able, and endogeneity arises through association between the unobserved heterogeneity term

affecting the two durations. One can think of the contribution of this paper as providing an

alternative framework that allows for endogeneity.

There are many situations in which two or more durations interact with each other.

Park and Smith (2006), for instance, cite circumstances in which late rushes in market entry

occur as some pioneer firm creates a market for a new service or good. In our model,

the decision by the pioneer is understood as having an impact on the attractiveness of the

market to other potential entrants. In another related example, Fudenberg and Tirole (1985)

examine technology adoption by a set of agents. In their setting, the adoption time by one

agent affects the preferred timing chosen by the other agent in a number of ways. Under some

circumstances, a “diffusion” equilibrium arises, in which players adopt the new technology

sequentially. For other parametric configurations, concomitant adoption occurs and there

are many equilibrium times at which this occurs. Our model allows for similar results where

sequential timing choices arise under some realizations of our game and concurrent spells
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occur as multiple equilibria for other realizations. Peer effects in durations also play a

natural role in some empirical examples. In de Paula (2006), soldiers in the Union Army

during the American Civil War tended to desert in groups. Mass desertion could be thought

of as lowering the costs of desertion, direct and indirect, as well as reducing the combat

capabilities of a military company. Another example involves the decision by adolescents to

first consume alcohol, drugs or cigarettes or to drop out of high school. In this case, the

timing chosen by one individual would have, for potentially many reasons, an effect on the

decisions of others in a given reference group.

The examples above typically result in concurrent timing decisions with positive prob-

ability. Let Ti and Tj denote the duration variables for two individuals i and j, and suppose

that we are interested in the distribution of Ti conditional on Tj, P(Ti ≤ t|Tj = tj) (and

vice versa). From a statistical viewpoint, one might specify a reduced–form model for the

conditional distributions as

P(Ti ≤ t|Tj = tj) =

{
Fi(t)(1− πi(tj)) if t < tj

Fi(t)(1− πi(tj)) + πi(tj) otherwise.

where i 6= j, Fi(·) is a continuous CDF and πi(·) is between 0 and 1. In other words, condi-

tional on Tj, Ti has a continuous distribution, except that there is a point mass at Tj. One

can motivate such a distribution by a model in which three types of events occur. The first

two “fatal events” lead to terminations of the spells for individuals 1 and 2, respectively,

and the third will lead both spells to terminate. These “shock” models, introduced by Mar-

shall and Olkin (1967), have been used in industrial reliability and biomedical statistical

applications (see, for example, Klein, Keiding, and Kamby (1989)). In these models the

relationship between the durations is driven by the unobservables, but no direct relationship

exists between them. This is similar to the dependence between two dependent variables in

a “seemingly unrelated regressions” framework. In economics, it is interesting to consider

models in which durations depend on each other in a structural way, allowing for an interpre-

tation of estimated parameters closer to economic theory. This is the aim of our paper. As

such, the difference between Marshall and Olkin’s model and ours is similar to the difference

between seemingly unrelated regressions and structural simultaneous equations models.

To achieve this, we formulate a very simple game theoretic model with complete in-

formation where players make decisions about the time at which to switch from one state

to another. Our analysis bears some resemblance to previous studies in the empirical games

literature, such as Bresnahan and Reiss (1991) and, more recently, Tamer (2003). Bresnahan
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and Reiss (1991), building on pioneering work such as Heckman (1978), analyze a simulta-

neous game with a discrete number of possible actions for each agent. A major pitfall in

such circumstances is that “when a game has multiple equilibria, there is no longer a unique

relation between players’ observed strategies and those predicted by the theory” (Bresnahan

and Reiss (1991)). Given large enough supports for the unobservable components in the eco-

nomic model, this situation is pervasive for the class of games they analyze. Tamer (2003)

characterizes this particular issue as an “incompleteness” in the model and shows that this

nuisance does not necessarily preclude point identification of the deep parameters in the

model.. Our model also possesses multiple equilibria and, like Tamer, we also obtain point

identification of the main structural features. This is possible because certain realizations of

the stochastic game we analyze deliver unique equilibrium outcomes with sequential timing

choices while multiplicity occurs if and only if spells are concomitant. We are then able to

obtain point identification using arguments similar to the ones used to obtain identification

in mixed proportional hazards models (see, for example, Elbers and Ridder (1982)).

Since the econometrician observes outcomes for two agents, our model is a multiple

duration model. If multiple durations for a given individual were recorded, such as unem-

ployment spells for workers or time intervals between transactions for assets, panel duration

observations would provide leverage both in terms of identification and subsequent estima-

tion (see Honoré (1993), Horowitz and Lee (2004) and Lee (2003)). In that literature, sub-

sequent spells are typically observed for a given individual. Here parallel individual spells1

are recorded for a given game, and some elements in our analysis can be made game-specific,

mirroring the appearance of individual specific effects in the panel duration literature.

We use a continuous time setting. This corresponds to the traditional approach in

econometric duration studies and statistical survival analysis. Many game theoretic models

of timing are also set in continuous time. The framework can be understood as the limit

of a discrete time game. As the frequency of interactions increases, the setting converges

to our continuous time framework, which can in turn be seen as an approximation to the

discrete time model. The exercise is thus in line with the early theoretical analysis by

Simon and Stinchcombe (1989), Bergin and MacLeod (1993) and others and with most of

the econometric analysis of duration models (e.g. Elbers and Ridder (1982), Heckman and

Singer (1984), Honoré (1990), Hahn (1994), Ridder and Woutersen (2003), Abbring and

van den Berg (2003)). See also van den Berg (2001).

1See Hougaard (2000) and Frederiksen, Honoré, and Hu (2007).
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The remainder of the paper proceeds as follows. In the next section we present the

economic model. Section 3 investigates the identification of the many structural compo-

nents in the model. The fourth section discusses extensions and alternative models to our

main framework. Section 5 briefly discusses estimation strategies and the subsequent section

presents a few simulation exercises to illustrate the consequences of ignoring the endogene-

ity problem introduced by the interaction or mistaken choices for the equilibrium selection

mechanism. We conclude in the last section.

2 The Economic Model

The economic model consists of a system of two individuals who interact. Information is

complete for the individuals. Each individual i chooses how long to take part in a certain

activity by selecting a termination time Ti ∈ R+, i = 1, 2. Agents start at an activity that

provides a utility flow given by the positive random variable Ki ∈ R+. At any point in

time, an individual can choose to switch to an alternative activity that provides him or her

a flow utility U(t,xi) where the vector xi denotes a set of covariates.2 This utility flow is

incremented by a factor eδ when the other agent switches to the alternative activity. We

assume that δ ≥ 0. Since only the difference in utilities will ultimately matter for the

decision, there is no loss in generality in normalizing the utility flow in the initial activity to

be a time-invariant random variable.

In order to facilitate the link of our study to the analysis of duration models, we

adopt a multiplicative specification for U(t,xi) as Z(t)ϕ(xi) where Z : R+ → R+ is a strictly

increasing, absolutely continuous function such that Z(0) = 0. Assuming an exponential

discount rate ρ, individual i’s utility for taking part in the initial activity until time ti given

the other agent’s timing choice Tj is:∫ ti

0

Kie
−ρsds+

∫ ∞
ti

Z(s)ϕ(xi)e
1(s≥Tj)δe−ρsds

The first–order condition for maximizing this with respect to ti is based on:

Kie
−ρti − Z(ti)ϕ(xi)e

1(ti≥Tj)δe−ρti (1)

where 1A is an indicator function for the event A. This may not be equal to zero for

any ti since it is discontinuous at ti = Tj. Given the opponent’s strategy, the optimal

2The introduction of (“external”) time-varying covariates would have to be fully foreseen by the individ-

uals.
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behavior of an agent in this game consists of monitoring the (undiscounted) marginal utility

Ki − Z(t).ϕ(xi).e
1(t≥Tj).δ at each moment of time t. As long as this quantity is positive the

individual participates at the initial activity, and he or she switches as soon as the marginal

utility becomes less than or equal to zero.

As mentioned previously, the relative flow between the inside and outside activities

is the ultimate determinant of an individual’s behavior. As is the case with the familiar

random utility model, our model identifies relative utilities. For example, suppose that the

destination state is retirement, with utility flow given by Z1(t)ϕ(xi), and that the utility

flow in the non-retirement state is KiZ2(t)ϕ(xi) (where Ki represents initial health, t is

age, and xi is a set of covariates, and we abstract from the interaction term eδ). This

would be observationally equivalent to a model where the utility flow in the current state

is Ki and utility in the outside activity is Z(t)ϕ(xi) with Z(t) ≡ Z1(t)/Z2(t) and ϕ(xi) ≡
ϕ1(xi)/ϕ2(xi).

Taking into account the interaction effect represented by δ, one appropriate concept

for optimality is that of mutual best responses.

We start by considering the optimal Ti of individual i given that individual j has

chosen Tj. It is clear from (1) that

T1 = inf{t1 : K1 − Z(t1).ϕ(x1).e1(t1≥T2).δ < 0} (2)

T2 = inf{t2 : K2 − Z(t2).ϕ(x2).e1(t2≥T1).δ < 0}

In the absence of external influence (δ = 0), the individual switches at Ti = Z−1(Ki/ϕ(xi))

or

lnZ(Ti) = − lnϕ(xi) + εi︸︷︷︸
≡ln ki

which is a semi-parametric generalized cccelerated failure time (GAFT) model like the one

discussed in Ridder (1990). For example, if Z(t) = λsαi , ϕ(xi) = exp(x′iβ) and Ki ∼ exp(1),

the cumulative distribution function is given by

FTi(t) = P[(Kie
−x′iβ/λ)1/αi ≤ t]

= P(Ki ≥ tαiλe−x′iβ)

= 1− exp(−tαiλ exp(x′iβ))

and the model corresponds to a proportional hazard duration model with a Weibull baseline

hazard.
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When δ > 0, the solution of (2) depends on the outcome of (K1, K2). There are five

scenarios depicted in Figure 1.

Figure 1: Equilibrium Regions

To understand the alternative scenarios, we first define T i and T i, i = 1, 2 as the

values that set expression (1) to zero when e
1(ti≥Tj) = eδ and when e

1(ti≥Tj) = 1, respectively:

T i = Z−1(Kie
−δ/ϕ(xi)), i = 1, 2

T i = Z−1(Ki/ϕ(xi)), i = 1, 2

Because δ > 0, T i < T i, i = 1, 2. If t < T i then Z(t)ϕ(xi)−Ki < Z(t)ϕ(xi)e
δ−Ki < 0, and

as a result agent i wouldn’t like to switch activities regardless of the other agent’s action.

Analogously, if T i < t < T i, then Z(t)ϕ(xi)e
δ −Ki > 0 but Z(t)ϕ(xi)−Ki < 0, and agent i

would switch along with the other agent but not if the other player does not switch. Finally,

if t > T i, then Z(t)ϕ(xi)−Ki > 0 and the agent is better off switching at a time less than t.

In region 1 of Figure 1, T1 < T2 and the equilibrium is unique. This is because the

region is such that K1/ϕ(x1) < K2e
−δ/ϕ(x2) and hence T 1 < T 2. Here, for any t less than

T 1, K2 − Z(t)ϕ(x2)eδ is greater than zero and agent 2 has no incentive to switch even if

agent 1 has already switched. Also K1 − Z(t)ϕ(x1) is greater than zero and agent 1 would

not switch either. Once t > T 1, then K1 − Z(t)ϕ(x1) is strictly less than 0 and agent one

will prefer to have switched earlier, no matter what action the second agent might take. It

is therefore optimal for agent 1 to switch at T1 = T 1. This in turn induces agent 2 to switch

at T2 = T 2 > T1.
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In region 2, T1 = T2 and there are multiple equilibria. This region is given by

K1/ϕ(x1) > K2e
−δ/ϕ(x2) and K2/ϕ(x2) > K1e

−δ/ϕ(x1). This implies that T 1 > T 2 and

T 2 > T 1. To see that individuals will stop simultaneously and there are many equilibria, let

T = max (T 1, T 2)

and

T = min
(
T 1, T 2

)
Because T 1 > T 2 and T 2 > T 1, we have that T ≤ T . We now consider three cases depending

on t’s location relative to T and T . For t < T , let j be the agent such that T = T j. Since

t < T j he would not be willing to switch regardless of the action of the other agent, whom

we denote by i. Also since t < T i, this individual will not switch either given that individual

j does not switch. Hence no agent switches in this region. For T ≤ t ≤ T , (T )i ≤ t ≤ T i for

each agent. At each point in time in the interval, an agent can therefore do no better than

the alternative activity if the other agent has already switched. Hence, any profile such that

T ≤ T1 = T2 ≤ T will be an equilibrium. Finally, for T < t, T i < t for both individuals

and each has an incentive to decrease his or her switching time toward T regardless of what

the other agent does. Hence, simultaneous switching at any t in the interval [T , T ] is an

equilibrium.

Region 3 is similar to region 1. the only difference is that the subscripts have been

exchanged. In this region, T2 < T1 and the equilibrium is unique.

The final two cases are when K1/ϕ(x1) = K2/e
δϕ(x2) or K1/ϕ(x1) = K2/e

δϕ(x2).

In these cases, the equilibrium is unique and individuals switch simultaneously.Since K1

and K2 are continuous random variables, these regions occur with probability zero and we

therefore skip a detailed analysis. Regions 1 and 3 also deliver a unique equilibrium. In

region 2, a simultaneous switch at any t in [T , T ] would be an equilibrium. This interval

will be degenerate if δ is equal to zero. It is also important to note that region 2 can be

distinguished from regions 1 and 3 by the econometrician, since this will be used in the

identification of the model.

We end this section with a brief discussion on the multiple equilibria encountered in

region 2. In our approach, we are agnostic as to which of these equilibria is selected. Some

of the solutions in that region may be singled out by different selection criteria nevertheless.

The Nash solution concept we use is equivalent to that of an open-loop equilibrium (as dis-

cussed, for example, in Fudenberg and Tirole (1991), Section 4.7): one in which individuals
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condition their strategies on calendar time only and hence commit to this plan of action at

the beginning of the game. If individuals can react to events as time unfolds, a closed-loop

solution concept that here would be equivalent to subgame perfection would single out the

earliest of the Nash equilibria, in which individuals switch at T . Intuitively, an optimal strat-

egy in region 2 contingent on the game history would prescribe switching simultaneously at

any time between T and T . Faced with an opponent carrying such a (closed-loop) strategy,

an individual might as well switch as soon as possible to maximize his or her own utility flow.

This outcome also corresponds to the Pareto-dominant equilibrium. Under this information

structure, the equilibria displayed in our analysis would still be Nash, but not necessarily

subgame-perfect. In selecting one of the multiple equilibria that may arise, the early equi-

librium is nevertheless a compelling equilibrium and we give it special consideration in the

simulation exercises performed later in the paper.

Other selection mechanisms may nonetheless point to later equilibria among the many

Nash solutions available. The switching decision is irreversible. Players need to know when

to act and do so in a coordinated way: to take the initiative a person needs to be confident

that he or she will not be acting alone. This coordination risk may lead to later switching

times. For this reason, we remain agnostic as to which Nash equilibrium is selected.

3 Identification

In this section we ask what aspects of the model can be identified by the data once one

recognizes the endogeneity of choices and abstains from an equilibrium selection rule. The

proof strategy is similar to that in, for example, Elbers and Ridder (1982) and Heckman and

Honoré (1989) on the events T1 < T2 and T1 > T2.

The subsequent analysis relies on the following assumptions:

Assumption 1 K1 and K2 are jointly distributed according to G(·, ·), where G(·, ·) is a

continuous cumulative distribution function with full support on R2
+. Furthermore, its cor-

responding probability density function g(·, ·) is bounded away from zero and infinity in a

neighborhood of zero.

Assumption 2 The function Z(·) is differentiable with positive derivative.

Assumption 3 At least one component of xi, say xik, is such that supp(xik) contains an

open subset of R.
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Assumption 4 The range of ϕ(·) is R+ and it is continuously differentiable with non–zero

derivative.

In Assumption 1, we require that g(0, 0) be bounded away from zero and infinity.

This assumption is related to assumptions typically used in the MPH/GAFT literature

with respect to the distribution of the unobserved heterogeneity component. To see this,

consider a bivariate mixed proportional hazards model with durations Ti, i = 1, 2 that are

independent conditional on observed and unobserved covariates. The integrated hazard is

given by Z(·)ϕ(xi)θi, i = 1, 2 with Z(·) as the baseline integrated hazard; ϕ(xi), a function

of observed covariates xi; and θi, a positive unobserved random variable. In other words, for

this model,

Z(Ti)ϕ(xi) = K̃i/θi ≡ Ki, i = 1, 2

where K̃i follows a unit exponential distribution (independent of x’s and θ’s). See, for

example, Ridder (1990). Let f(·, ·) denote the joint probability density function for (θ1, θ2).

Then the joint density for (K1, K2), g(·, ·), is:

g(k1, k2) =

∫
R+

∫
R+

θ1θ2e
−k1−k2f(θ1, θ2)dθ1dθ2.

This gives g(0, 0) = E(θ1θ2). This will be positive. Our requirement that it be finite is then

essentially the finite mean assumption in the traditional mixed proportional hazards model

identification literature.

Assumptions 2-4 are stronger than necessary. Most important, the appendix shows

that for some of the results one can allow xi to have a discrete distribution. The identification

of ϕ(·) uses variation in at least one component of xi. More variation in xi nevertheless is

certainly helpful in identifying ϕ(·) as we can condition on subvectors at different levels and

use variation in individual components to identify the function.

The following results establish that assumptions 1-4 are sufficient (though not nec-

essary in many cases) for the identification of the different components in the model. We

begin by analyzing ϕ(·).

Theorem 1 (Identification of ϕ(·)) Under Assumptions 1 and 2, the function ϕ(·) is

identified up to scale if supp(x1,x2) = supp(x1)× supp(x2).

Proof. Consider the absolutely continuous component of the conditional distribution of

(T1, T2), the switching times for the agents, given the covariates x1,x2. Using the fact that
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T1 = Z−1(K1/ϕ(x1)) and T2 = Z−1(K2e
−δ/ϕ(x2)) when T1 < T2, we can use the Jacobian

method to obtain the probability density function for (T1, T2) on the set {(t1, t2) ∈ R2
+ : t1 <

t2}. It is given by:

fT1,T2|x1,x2(t1, t2|x1,x2) = λ(t1)ϕ(x1)λ(t2)ϕ(x2)eδg(Z(t1)ϕ(x1), Z(t2)ϕ(x2)eδ)

where

Z(t) =

∫ t

0

λ(s)ds, i = 1, 2.

Given two sets of covariates (x1,x2) and (x′1,x
′
2) we obtain that

lim
(t1,t2)→(0,0)

t1<t2

fT1,T2|x1,x2(t1, t2|x′1,x′2)

fT1,T2|x1,x2(t1, t2|x1,x2)
= lim

(t1,t2)→(0,0)

t1<t2

ϕ(x′1)ϕ(x′2)g(Z(t1)ϕ(x′1), Z(t2)ϕ(x′2)eδ)

ϕ(x1)ϕ(x2)g(Z(t1)ϕ(x1), Z(t2)ϕ(x2)eδ)

=
ϕ(x′1)ϕ(x′2)

ϕ(x1)ϕ(x2)
(3)

where the last equality uses the fact that limt→0 Z(t) = 0. Setting x2 = x′2 identifies ϕ(·) up

to scale. �

The condition that supp(x1,x2) = supp(x1)× supp(x2) is stronger than necessary for

the identification of ϕ(·). In order to identify ϕ(x1)/ϕ(x′1) all we need is to be able to find

x2 such that (x1,x2) and (x′1,x2) are in the support. Under certain circumstances, such as

in interactions between husband and wife, the players in the games sampled may be easily

labeled, say i = 1, 2. The proof strategy also allows ϕ(·) to depend on i. We also point

out that xi is not required to contain continuously distributed components. Finally, the

identification of ϕ(·) from (3) would still hold even if the players shared the same covariates

x1 = x2 = x as long as ϕ(·) is the same for both.

Having identified ϕ(·), we can establish the identification of δ.

Theorem 2 (Identification of δ) δ is identified under Assumptions 1-4 .

Proof. Consider the probability

P(T1 < T2|x) = P(lnK1 − lnK2 + δ < lnϕ(x1)/ϕ(x2)).

Since ϕ(·) is identified up to scale, as one varies x1 and x2, the probability above traces the

cumulative distribution function for the random variable W = lnK1 − lnK2 + δ. Likewise,

the probability

P(T1 > T2|x) = P(lnK1 − lnK2 − δ > lnϕ(x1)/ϕ(x2))
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traces the survivor function (and consequently the cumulative distribution function) for the

random variable lnK1 − lnK2 − δ = W − 2δ. Since this is basically the random variable

W displaced by 2δ, this difference is identified as the (horizontal) distance between the two

cumulative distribution functions that are identified from the data (the events T1 > T2 and

T1 < T2 conditioned on x). Figure (2) illustrates this idea.

Figure 2: Identification of δ

From this argument, the parameter δ is identified. �

In the proof of Theorem 2, Assumption 1 is invoked to guarantee the identification of

ϕ(·). If this function is identified for other reasons, we can dispense with this assumption.

Finally we establish the identification of Z(·) and G(·, ·), the join distribution of K1

and K2.

Theorem 3 (Identification of Z(·) and G(·, ·)) Under Assumptions 1-4, the function Z(·)
is identified up to scale, and the distribution G(·, ·) is identified up to a scale transformation.

Proof. We first consider identification of Z(·). On the set {(t1, t2) ∈ R2
+ : t1 < t2}, consider

the function

h(t1, t2,x1,x2) =

∫ t1

0

∫ ∞
t2

fT1,T2|x1,x2(s1, s2|x1,x2)ds2ds1

=

∫ t1

0

∫ ∞
t2

λ(s1)ϕ(x1)λ(s2)ϕ(x2)eδg(Z(s1)ϕ(x1), Z(s2)ϕ(x2)eδ)ds2ds1

Consider the change of variables:

ξ1 = Z(s1)ϕ(x1) ξ2 = Z(s2)eδϕ(x2)

and rewrite h as

h(t1, t2,x1,x2) =

∫ Z(t1)ϕ(x1)

0

∫ ∞
Z(t2)eδϕ(x2)

g(ξ1, ξ2)dξ1dξ2
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Then notice that
∂h/∂t1
∂h/∂x1k

=
λ(t1)ϕ(x1)

Z(t1)∂kϕ(x1)

and we have that

CZ(s)ϕ(x1)/∂kϕ(x1)

is identified where C is a constant. Given the identification of ϕ(·) up to scale, one obtains

that Z(·) is also identified up to scale (the constant C).

We next turn to identification of G(·, ·). Note that h defines the cumulative distribu-

tion function of (K1,−K2), which can be traced out since Z(t1)ϕ(x1) and Z(t2)eδϕ(x2) are

varied (making sure that t1 < t2). Since δ is identified and Z(·) and ϕ(·) are identified up

to scale, the distribution of (K1,−K2) is identified up to a scale transformation. Finally, as

(K1,−K2) 7→ (K1, K2) is a one-to-one mapping, the distribution of (K1, K2) is identified up

to a scale transformation. �

The mechanics of the proof suggests that we can also allow Z(·) to depend on i as

is the case with ϕ(·), but both the characterization of the equilibrium in section 2 and the

identification argument for the δs below assume Z(·) to be the same for both individuals.

As in the previous result, the identification would still hold were the covariates for the two

agents identical for a given draw of the game (x1 = x2 = x). The requirement that xi

contain a continuously distributed component is not necessary either. In the appendix we

display an alternative proof that dispenses with that assumption.

4 Extensions and Alternative Models

In this section, we discuss results for some variations on the model depicted in section 2.

4.1 Individual–specific δ

As mentioned earlier, in certain problems (such as the interaction between husband and

wife) players may be easily labeled. In this case, one may consider different δs for different

players: δi, i = 1, 2. The previous result would render identification for δ1+δ2. The following

establishes the identification of δ1 − δ2 and hence of δi, i = 1, 2.

Theorem 4 (Identification of δi, i = 1, 2) δi, i = 1, 2 are identified under Assumptions

1-4.
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Proof. The sum δ1 + δ2 is identified according to the arguments in the previous theorem.

Define

c1 ≡
lims→0

k>1
fT1,T2|x1,x2(s, ks|x1,x2)

lims→0
k>1

fT1,T2|x1,x2(ks, s|x1,x2)

=
lims→0

k>1
λ(s)λ(ks)ϕ(x1)ϕ(x2)eδ2

lims→0
k>1

λ(ks)λ(s)ϕ(x1)ϕ(x2)eδ1

=
ϕ(x1)ϕ(x2)eδ2

ϕ(x1)ϕ(x2)eδ1
× lim

s→0
k>1

λ(s)λ(ks)

λ(ks)λ(s)

= eδ2−δ1

which identifies δ2 − δ1. This and the previous result identify δi, i = 1, 2. �

4.2 Common Shock

Since we do not impose independence between K1 and K2, some association in the latent

utility flow obtained in the initial activity is allowed. Another source of correlation may be

represented by the arrival of a common shock that drives both individuals to the outside

activity concurrently. Even under such extreme circumstances, some aspects of the structure

remain identified.

A natural way to introduce this non-strategic shock in the model would follow the

motivation behind Cox and Oakes (1984). Assume that a common shock that drives both

spells to termination at the same time happens at a random time V > 0. Denote the

probability density function of V by h(·). Individuals switch for two possible reasons: either

they deem the decision to be optimal as in the original model; or they are driven out of

the initial activity by the common shock. If both individuals are still in the initial activity

when the shock arrives, they both switch simultaneously. If one of them switches before

the shock arrives, the second one is driven out of the initial activity earlier than he or she

would have voluntarily chosen.3 In keeping with the notation used so far, let Ti be the

switching time chosen by individual i and T̃i = min{Ti, V }, the switching time observed by

the econometrician. We then have the following result:

3The optimal switching times derived in section 2 would still hold. Should the realizations of V happen

after that chosen time, the individual would have no incentives to wait. If v arrives earlier than the optimal

time, there would be no incentive to anticipate the switch nor would there be anything to be done about it

after the shock.
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Theorem 5 (Identification of ϕ(·) with Common Shocks) Suppose Assumptions 1 and

2 hold and supp(x1,x2) = supp(x1)× supp(x2). Furthermore assume that the common shock,

V , is independent of xi, Ki, i = 1, 2. Then the function ϕ(·) is identified up to scale.

Proof. The proof is similar to that of Theorem 1. Consider the absolutely continuous

component of the conditional distribution of (T̃1, T̃2), the observed switching times for the

individuals, given the covariates x1,x2. As in the proof for Theorem 1 and using the definition

of T̃i = min{Ti, V }, we can obtain that the probability density function for this pair on the

set {(t̃1, t̃2) ∈ R2
+ : t̃1 < t̃2} is given by:

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x1,x2) = λ(t̃1)ϕ(x1)λ(t̃2)ϕ(x2)eδg(Z(t̃1)ϕ(x1), Z(t̃2)ϕ(x2)eδ)P(V > t̃2)

+λ(t̃1)ϕ(x1)h(t̃2)

∫ ∞
t̃2

g(Z(t̃1)ϕ(x1), Z(s)ϕ(x2)eδ)ds

where

Z(t) =

∫ t

0

λ(s)ds, i = 1, 2.

Given two sets of covariates (x1,x2) and (x′1,x2) we can again obtain that

lim
(t̃1,t̃2)→(0,0)

t̃1<t̃2

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x′1,x2)

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x1,x2)

=
ϕ(x′1)

ϕ(x1)

using the assumption that limt→0 Z(t) = 0. So, ϕ(·) is identified up to a scale transformation.

�

The assumption that supp(x1,x2) = supp(x1)× supp(x2) is stronger than necessary. The

proof strategy also allows ϕ(·) to depend on i.

Theorem 5 establishes that it is possible to identify the effects of covariates in a model

that also allows for common shocks. We next address the question of whether our strategic

model is generically distinguishable from the model proposed in Marshall and Olkin (1967).

We do this in a setting without covariates. This is equivalent to allowing for covariates in a

completely general way and then conditioning on them.

Marshall and Olkin (1967) present a model with three types of shock: one leading to

joint spell termination and two leading to individual spell terminations. The corresponding

survivor function is given by:

S (t1, t2) = exp (−H1 (t1)−H2 (t2)−H12 (max (t1, t2)))
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where Hi, i = 1, 2 represent the integrated hazards for the two individual shocks and H12

denotes the integrated hazard for the joint shock.4 We will assume H1, H2 and H12 are

continuously differentiable and strictly increasing with H1 (0) = H2 (0) = H12 (0) = 0 and

limt→∞H1 (t) = limt→∞H2 (t) = limt→∞H12 (t) = ∞. In other words, the durations until

each shock are continuously distributed, strictly positive and finite random variables.

This leads to the following density on R2
+ − {(t1, t2) ∈ R2

+ : t1 = t2}:

f (t1, t2) =

{
(H ′1 (t1) +H ′12 (t1))H ′2 (t2) exp (−H1 (t1)−H2 (t2)−H12 (t1)) t1 > t2

H ′1 (t1) (H ′2 (t2) +H ′12 (t2)) exp (−H1 (t1)−H2 (t2)−H12 (t2)) t1 < t2

For comparison, a version of our model without covariates would define outside utility func-

tions for individuals 1 and 2 as

Z1 (t) eδ1(t>t2)

and

Z2 (t) eδ1(t>t1) ,

respectively. The inside utility flows are given by Ki (i = 1, 2). In order to simplify the

comparison to Marshall and Olkin (1967) we assume that the Ki’s are independent unit

exponential random variables. We will assume that Z1 and Z2 are continuously differentiable

and strictly increasing with Z1 (0) = Z2 (0) = 0 and limt→∞ Z1 (t) = limt→∞ Z2 (t) = ∞.

In other words, in the absence of the other player, each agent would have a continuously

distributed, strictly positive and finite duration.

When T1 > T2

K1 = Z1 (T1) eδ = Z̃1 (T1)

K2 = Z2 (T2) .

This yields the following density for t1 > t2:

eδZ ′1 (t1)Z ′2 (t2) exp
(
−Z1 (t1) eδ − Z2 (t2)

)
and analogously the density is

eδZ ′1 (t1)Z ′2 (t2) exp
(
−Z1 (t1)− Z2 (t2) eδ

)
when t1 < t2. For the two models to coincide when t1 > t2, we would need that

(H ′1 (t1) +H ′12 (t1))H ′2 (t2) exp (−H1 (t1)−H2 (t2)−H12 (t1)) =

eδZ ′1 (t1)Z ′2 (t2) exp
(
−Z1 (t1) eδ − Z2 (t2)

)
.

(4)

4In the original paper, Hi(t), i = 1, 2 and H12(t) are linear functions of time.
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Taking logs and differentiating with respect to t2 implies that

H ′′2 (t2)

H ′2 (t2)
−H ′2 (t2) =

Z ′′2 (t2)

Z ′2 (t2)
− Z ′2 (t2) ∀t2.

Integrating, exponentiating and integrating again yields

exp (−H2 (t2)) = c1 exp (−Z2 (t2)) + c2

Using H2(0) = Z2(0) = 0 yields c1 + c2 = 1. The assumption that limt→∞H2 (t) =

limt→∞ Z2 (t) = ∞ yields c1 = 1. Hence H2(t) = Z2(t). A symmetric argument leads

to H1(t) = Z1(t).

Replacing these in expression (4) and rearranging, we obtain that:

exp(eδ) = (1 + Z ′12(t1)/Z ′1(t1)) exp(−Z1(t1)− Z12(t1)− Z1(t1)eδ)

Taking limits as t1 → 0 we get:

lim
t1→0

Z ′12(t1)

Z ′1(t1)
= exp(eδ)− 1⇔ lim

t1→0

Z ′1(t1)

Z ′12(t1)
= (exp(eδ)− 1)−1

Analogously,

lim
t2→0

Z ′2(t2)

Z ′12(t2)
= (exp(eδ)− 1)−1.

Now note that the strategic model implies that

T1 ≥ Z̃−1
1 (K1)

T2 ≥ Z̃−1
2 (K2)

and consequently

P (T1 ≤ s, T2 ≤ s) ≤ P
(
Z−1

1

(
K1e

−δ) ≤ s, Z−1
2

(
K2e

−δ) ≤ s
)

= P
(
K1 ≤ Z1 (s) eδ, K2 ≤ Z2 (s) eδ

)
=

(
1− exp

(
−Z1 (s) eδ

)) (
1− exp

(
−Z2 (s) eδ

)) (5)

for all s. At the same time, Marshall-Olkin’s model would yield

P (T1 ≤ s, T2 ≤ s) = (1− exp (−H12 (s))) + (1− exp (−H1 (s))) (1− exp (−H2 (s)))−
− (1− exp (−H12 (s))) (1− exp (−H1 (s))) (1− exp (−H2 (s))) .

(6)
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Now let

a(s) = exp (−Z1 (s)) = exp (−H1 (s))

b(s) = exp (−Z2 (s)) = exp (−H2 (s))

c(s) = exp (−H12 (s)) .

Suppressing the argument, s, (5) and (6) imply that

c(ab− b− a) + 1 ≤ (1− aexp(δ))(1− bexp(δ)).

For s > 0, the left-handside expression is positive, since it is the joint cumulative distribution

at t1 = t2 = s for the Marshall-Olkin model. Then,

1 ≤ (1− aexp(δ))(1− bexp(δ))

c(ab− b− a) + 1

Taking limits as s→ 0:

1 ≤ lim
s→0

(1− aexp(δ))(1− b(s)exp(δ))

c(s)(a(s)b(s)− b(s)− a(s)) + 1

= lim
s→0

−a′δaexp(δ)−1(1− bexp(δ))− b′δbexp(δ)−1(1− aexp(δ))

a′bc+ ab′c+ abc′ − b′c− bc′ − a′c− ac′

where the equality uses l’Hôpital’s rule and arguments are omitted for notational convenience.

Divide numerator and denominator in the last expression by Z ′12(s) and notice that

lim
s→0

a(s) = lim
s→0

b(s) = lim
s→0

c(s) = 1

and

lim
s→0

a′(s)

Z ′12(s)
= lim

s→0

b′ (s)

Z ′12 (s)
= −(exp(eδ)− 1)−1.

The last line follows from a′(s) = −Z ′1(s)a(s) and b′(s) = −Z ′2(s)b(s) plus the fact that

lims→0
Z′1(s)

Z′12(s)
= lims→0

Z′2(s)

Z′12(s)
= (exp(eδ)− 1)−1. We can similarly obtain that lims→0

c′(s)
Z′12(s)

=

−1. These then imply that for the numerator

lim
s→0

[
− a′

Z ′12

eδaexp(δ)−1(1− bexp(δ))− b′

Z ′12

eδbexp(δ)−1(1− aexp(δ))

]
= 2(exp(eδ)− 1)−1eδ × 1× (1− 1) = 0.
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The denominator on the other hand yields

lim
s→0

[
a′

Z ′12

bc+ a
b′

Z ′12

c+ ab
c′

Z ′12

− b′

Z ′12

c− b c
′

Z ′12

− a′

Z ′12

c− a c′

Z ′12

]
= −(exp(eδ)− 1)−1 − (exp(eδ)− 1)−1 − 1 + (exp(eδ)− 1)−1 + 1 + (exp(eδ)− 1)−1 + 1

= 1.

This leads to the contradiction 1 ≤ 0, and the two models cannot be observationally equiv-

alent.

As will be seen shortly, the Marshall-Olkin model is closer to the strategic model

with an additive externality than to the model where it is multiplicative. It is therefore also

interesting to investigate whether such a model is distinguishable from the Marshall–Olkin

model. We specify that the outside utility for agents 1 and 2 equals

Z1 (t) + Z12(t)1(t>t2)

and

Z2 (t) + Z12(t)1(t>t1),

respectively. Here, the externality is allowed to be a non–decreasing, time–dependent func-

tion Z12. The inside utility flows are again given by independent unit exponential random

variables, Ki, i = 1, 2. When T1 > T2

K1 = Z1 (T1) + Z12(T1) = Z̃1 (T1)

K2 = Z2 (T2)

Consequently, the density of (T1, T2) when t1 > t2 is:

(Z ′1 (t1) + Z ′12 (t1))Z ′2 (t2) exp (−Z1 (t1)− Z2 (t2)− Z12 (t1))

and analogously we obtain that the density is

Z ′1 (t1) (Z ′2 (t2) + Z ′12 (t2)) exp (−Z1 (t1)− Z2 (t2)− Z12 (t2))

when t1 < t2. If Zi(t) = Hi(t), i = 1, 2 and Z12(t) = H12(t) the two models coincide for

t1 6= t2. This is why we consider it more natural to compare the Marshall-Olkin model

to the additive specification of the strategic model. An argument similar to that for the

multiplicative model yields that the two coincide for t1 6= t2 only if Zi(t) = Hi(t), i = 1, 2

and Z12(t) = H12(t). Note then that the strategic model implies that

T1 ≥ Z̃−1
1 (K1)

19



T2 ≥ Z̃−1
2 (K2)

and consequently

P (T1 ≤ s, T2 ≤ s) ≤ P
(
Z̃−1

1 (K1) ≤ s, Z̃−1
2 (K2) ≤ s

)
= P

(
K1 ≤ Z̃1 (s) , K2 ≤ Z̃2 (s)

)
=

(
1− exp

(
−Z̃1 (s)

))(
1− exp

(
−Z̃2 (s)

))
= (1− exp (−Z1 (s)− Z12 (s))) (1− exp (−Z2 (s)− Z12 (s))) .

(7)

Defining a, b and c as before,and noting that now c = exp (−H12 (s)) = exp (−Z12 (s)), (7)

and (6) imply that

c ≥ 1⇒ Z12 (s) ≤ 0.

This can only happen if Z12(s) = 0 and there are no simultaneous exits in either model.

4.3 Gradual Interaction5

In our original model, the impact of an agent’s transition on the utility flow (e
1(s≥Tj)δ) of the

other individual is immediate and permanent. This may be convenient in many situations.

Consider for instance two nearby retail establishments contemplating price changes to the

goods they sell. If one of the stores changes its prices, we would expect its competitor

to follow suit without much delay, if any. Other examples may call for a more gradual

effect. Consider, for example, two people deciding to adopt a new operating system, and one

benefits from having other users of the operating system with whom to share applications

and knowledge about the program. If it takes time for one individual to learn and adjust to

a new operating system, the benefits provided by another user may accrue gradually. This

variation may be captured by assuming that the relative utility flow for individual i at a

time t is given by:

Z(t)ϕ(xi)e
δ(t−Tj) −Ki

where δ(t−Tj) is an increasing function with δ(t−Tj) = 0 for t < Tj. If δ(·) is a continuous

function, the probability of simultaneous transitions is zero (region 2 collapses) but the

endogeneity is still present.

There are now two relevant possibilities: T1 > T2 and T1 < T2 (as mentioned, T1 = T2

occurs with zero probability). The first–order conditions for agents 1 and 2 are:

Z(Ti)e
δ(Ti−Tj) = Ki/ϕ(xi), i 6= j = 1, 2.

5We thank a referee for suggesting this extension.
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Consider first the case where T1 > T2. Here,

T2 = Z−1(K2/ϕ(x2))

T1 = Z−1
∗ (K1/ϕ(x1);T2)

where Z∗(s; t) = Z(s)eδ(s−t) and we denote its inverse with respect to the first argument for

a given t, Z−1
∗ (·; t). T1 > T2 will occur if

T1 = Z−1
∗ (K1/ϕ(x1);Z−1(K2/ϕ(x2)) > Z−1(K2/ϕ(x2)) = T2

which is equivalent to

K1/ϕ(x1) > Z∗(Z
−1(K2/ϕ(x2));Z−1(K2/ϕ(x2))) = K2/ϕ(x2).

We obtain analogously that T2 > T1 when K2/ϕ(x2) > K1/ϕ(x1). This makes sense: the

person for whom the inside activity utility flow is higher switches states later. An argument

like Theorem 1 can then be used to obtain identification of ϕ(·) up to scale. The following

result establishes the identification of Z(·), G(·, ·) (both up to scale transformations) and

δ(·).

Theorem 6 (Identification of Z(·), G(·, ·) and δ(·) with Gradual Interaction) If δ(·)
is increasing and differentiable, then under Assumptions 1-4: the function Z(·) is identified

up to scale, the distribution G(·, ·) is identified up to a scale transformation and δ(·) is

identified .

Proof. We first consider identification of Z(·). As in Theorem 3, on the set {(t,∆t) ∈ R2
+},

consider the function

h(t,∆t,x1,x2) =

∫ Z(t)ϕ(x1)

0

∫ ∞
Z(t+∆t)eδ(∆t)ϕ(x2)

g(ξ1, ξ2)dξ1dξ2.

As in Theorem 3, this function is the probability that agent 1 switches before t and that

agent 2 leaves after t+ ∆t. Now, define

h(t,x) = lim
∆t→0
∆t>0

h(t,∆t,x,x).

Then notice that

∂h/∂t

∂h/∂kx
=

λ(t)ϕ(x)[
∫∞
Z(t)ϕ(x)

g(Z(t)ϕ(x), ξ2)dξ2 −
∫ Z(t)ϕ(x)

0
g(ξ1, Z(t)ϕ(x))dξ1

Z(t)∂kϕ(x)
[∫∞

Z(t)ϕ(x)
g(Z(t)ϕ(x), ξ2)dξ2 −

∫ Z(t)ϕ(x)

0
g(ξ1, Z(t)ϕ(x))dξ1

]
=

λ(t)ϕ(x)

Z(t)∂kϕ(x)
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and the proof proceeds as in Theorem 3.

To identify G(·, ·), note that

h(t,x1,x2) = lim
∆t→0
∆t>0

h(t,∆t,x1,x2)

defines the cumulative distribution function of (K1,−K2), which can be traced out as

Z(t)ϕ(x1) and Z(t)ϕ(x2) are varied. Since Z(·) and ϕ(·) are identified up to scale, the dis-

tribution of (K1,−K2) is identified up to a scale transformation. Finally, since (K1,−K2) 7→
(K1, K2) is a one-to-one mapping, the distribution of (K1, K2) is identified up to a scale

transformation.

Finally, to identify δ(·) consider:

∂h/∂∆t

∂h/∂x2k

=
ϕ(x2) (λ(t+ ∆t) + Z(t+ ∆t)δ′(∆t))

∂kϕ(x2)Z(t+ ∆t)

or, equivalently:

δ′(∆t) =
∂h/∂∆t

∂h/∂x2k

∂kϕ(x2)

ϕ(x2)
− λ(t+ ∆t)

Z(t+ ∆t)

which, given the boundary condition δ(0) = 0, identifies δ(·). �

5 Estimation Strategies

Consider first the case where G(·) is known. In the absence of interaction effects (δ) and

when G(·) is a unit exponential, this would correspond to a classical proportional hazard

model. The probability of the event {T1 < T2} this is:

P(T1 < T2|x1,x2) = P(K1ϕ(x2)eδ/ϕ(x1) < K2|x1,x2) (8)

=

∫ +∞

0

∫ +∞

ξ1ϕ(x2)eδ/ϕ(x1)

g(ξ1, ξ2)dξ2dξ1

and a similar expression would hold for {T2 < T1}. Assume that Z(·), ϕ(·) and g(·, ·) are

modelled up to the (finite-dimensional) parameters α, β and θ respectively (Z(·) ≡ Z(·;α),

ϕ(·) ≡ ϕ(·; β) and g(·, ·) ≡ g(·, ·; θ)). Given data on the realization of the game analyzed

in section 3 of this paper and pooling the observations with T1 = T2, we then obtain the
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likelihood function

L(α, β, θ, δ) ≡ Πt1<t2

{
∂tZ(t1;α)ϕ(x1; β)∂tZ(t2;α)ϕ(x2; β)eδ

×g(Z(t1;α)ϕ(x1; β), Z(t2;α)ϕ(x2; β)eδ; θ)
}

×Πt1>t2

{
∂tZ(t1;α)ϕ(x1; β)∂tZ(t2;α)ϕ(x2; β)eδ

×g(Z(t1;α)ϕ(x1; β)eδ, Z(t2;α)ϕ(x2; β); θ)
}

×Πt1=t2

{
1−

∫ +∞

0

∫ +∞

ξ1ϕ(x2;β)eδ/ϕ(x1;β)

g(ξ1, ξ2; θ)dξ2dξ1

−
∫ +∞

0

∫ +∞

ξ2ϕ(x1;β)eδ/ϕ(x2;β)

g(ξ1, ξ2; θ)dξ1dξ2

}
where Πt1<t2 ,Πt1>t2 and Πt1=t2 denote the product over the observations for which t1 < t2,

t1 > t2 and t1 = t2. We use the fact that, for sequential switching (t1 < t2 or t1 > t2),

there is a unique equilibrium so we know the contribution to the likelihood. For the event

in which termination times coincide, we cannot map the duration to a unique (K1, K2) and

we therefore ignore the exact duration and the contribution to the likelihood function is

P(T1 = T2|x1,x2). Under standard assumptions, this likelihood function provides us with an

estimator for the parameters of interest in this model. We conjecture that a sieves approach,

for instance, may be adapted to obtain a more general estimation procedure.6

The probability in (8) can also be used to obtain an estimator for ϕ(·; β) and δ without

the assumption that Z(·) is the same across games as long as it is the same for players within

the same game. Assume initially that G(·, ·) is the bivariate CDF for two independent unit

exponential random variables: G(k1, k2) = (1− e−k1)(1− e−k2)1(k1,k2)∈R2
+

. Then

P(Ti < Tj|x1,x2) = P(Z−1(Ki/ϕ(xi)) < Z−1(Kje
−δ/ϕ(xj))|x1,x2)

= P(Kiϕ(xj)e
δ/ϕ(xi) < Kj|x1,x2)

=

∫ ∞
0

e−ki
∫ ∞
kiϕ(xj)eδ/ϕ(xi)

e−kjdkjdki

=

∫ ∞
0

e−ki−kjϕ(xj)e
δ/ϕ(xi)dk1

=
1

1 + ϕ(xj)eδ/ϕ(xi)
=

elogϕ(xi)−logϕ(xj)−δ

1 + elogϕ(xi)−logϕ(xj)−δ

6In general, we expect a non–parametric estimator to converge at a slower rate than
√

N as is the case

for unrestricted non–parametric estimators in the duration literature (see- for instance- the discussion in

Heckman and Taber (1994)).
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Taking ϕ(x; β) = exp(x′β), for example, this becomes Λ ((xi − xj)
′β − δ). where Λ(·) is the

CDF for the logistic distribution.

If we then define the variable Y by

Y =


1 if T1 < T2

2 if T1 = T2

3 if T1 > T2

,

then

P(Y ≤ 1|x1,x2) = Λ((x1 − x2)β − δ),

P(Y ≤ 2|x1,x2) = Λ((x1 − x2)β + δ).

This corresponds to an ordered logit on Y with explanatory variables x1 − x2 and

cutoff points at −δ and δ. If we take G(·, ·) to be the bivariate log-normal CDF, an ordered

probit is obtained.

When G(·, ·) is unknown, but the same across games

P(Y ≤ 1|x1,x2) = H((x1 − x2)β − δ) (9)

P(Y ≤ 2|x1,x2) = H((x1 − x2)β + δ)

where H(w) = P(lnK1 − lnK2 ≤ w). Various authors have proposed alternative estimation

procedures for the estimation of this semiparametric ordered choice model (for instance,

Chen and Khan (2003), Coppejans (2007), Klein and Sherman (2002), Lee (1992), and

Lewbel (2003)). If G is game-specific, then (9) can be estimated by a version of Manski’s

maximum score estimator (Manski (1975)).7

Finally, we note that if G(·), and hence H(·), is known, δ is identified even if x1 = x2,

since

δ = −H−1(P(T1 < T2|x)).

6 The Effect of Misspecifications

In this section we briefly examine the effect of misspecifications in the economic model or

equilibrium selection process on the estimation of the parameters of interest. Throughout

K1 and K2 are assumed to be independent unit exponentials.

7This would require a quantile restriction on K1 −K2 conditional on (x1,x2)
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6.1 Ignoring Endogeneity

This subsection investigates the consequences of treating an opponent’s decision as exogenous

in a parametric version of our model. The first data–generating process is defined by Z (t) =

tα, ϕ(xi) = exp (β0 + β1xi), (α, β0, β1, δ) = (1.0,−3.0, 0.3, 0.3) and(
x1

x2

)
∼ N

([
0

0

]
,

[
2 1

1 2

])
.

When the model gives rise to multiple equilibria (and hence simultaneous exit), a specific

duration is drawn from a uniform distribution over the possible duration times.8 Tables 1

and 2 present the results based on 1000 replications of data sets of size 1000. Table 1 is based

on a correctly specified likelihood that groups all ties occurring in realizations of region 2 in

the previous discussion of the model. Table 2 presents results from a maximum likelihood

estimation for agent 1 taking agent 2’s action as exogenous.

TABLE 1: Incorporating Endogeneity

True Bias RMSE Median Median

Value Bias Abs.Err.

α 1.000 0.001 0.019 0.000 0.013

β0 −3.000 0.000 0.067 −0.001 0.045

β1 0.300 0.000 0.018 0.000 0.012

δ 0.300 −0.001 0.023 −0.001 0.016

TABLE 2: Weibull. Dependent variable T1

True Bias RMSE Median Median

Value Bias Abs.Err.

α 1.000 −0.079 0.084 −0.080 0.080

β0 −3.000 0.076 0.116 0.078 0.087

β1 0.300 −0.005 0.027 −0.005 0.019

δ 0.300 0.523 0.530 0.524 0.524

8We experimented with different selection rules and these made no appreciable difference to the results

we present here.
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As expected, the maximum-likelihood estimator that incorporates endogeneity per-

forms well, whereas the Weibull estimator that assumes that the other agent’s action is

exogenous performs poorly. Specifically, the effect of the opponent’s decision is grossly

over-estimated. Treating the other agent’s action as exogenous also biases estimates toward

negative duration dependence. Both of these are expected. In the first case, δ is biased be-

cause the estimation does not take into account the multiplier effect caused by the feedback

between T1 and T2. The assumption of exogeneity also leads to a downward bias on duration

dependence as duration lengths reinforce themselves: a shock leading to a longer duration

by one agent will tend to lengthen the opponent’s duration and hence further reduce the

hazard for the original agent. Likewise, some bias is found in the estimation of β1: changing

xi leads to a change in Ti, which affects Tj and feeds back into Ti. Ignoring this channel also

introduces bias.

The results in Tables 1 and 2 assume symmetry between the two agents in the model.

The next design changes this by changing the joint distribution of (x1,x2) to(
x1

x2

)
∼ N

([
1

0

]
,

[
2 1

1 2

])

This makes the first agent likely to move first. When multiple equilibria were possible, an

equilibrium was selected as in the previous exercise. The overestimation bias on δ is of a

similar magnitude as before. The effect on the estimation of α is different for each individual

given the asymmetry in the distribution of the x’s.

TABLE 3: Incorporating Endogeneity

True Bias RMSE median median

Value bias abs.err.

α 1.000 0.000 0.019 0.000 0.012

β0 −3.000 0.000 0.067 0.000 0.045

β1 0.300 0.000 0.017 0.000 0.011

δ 0.300 0.000 0.024 0.000 0.017
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TABLE 4: Weibull. Dependent variable T1

True Bias RMSE median median

Value bias abs.err.

α 1.000 −0.065 0.071 −0.066 0.066

β0 −3.000 0.049 0.107 0.052 0.075

β1 0.300 −0.002 0.026 −0.002 0.018

δ 0.300 0.523 0.530 0.524 0.524

TABLE 5: Weibull. Dependent variable T2

True Bias RMSE median median

Value bias abs.err.

α 1.000 −0.095 0.099 −0.095 0.095

β0 −3.000 0.083 0.121 0.083 0.087

β1 0.300 −0.007 0.027 −0.008 0.018

δ 0.300 0.530 0.537 0.531 0.531

6.2 Equilibrium Selection

In this subsection, we examine the effect of equilibrium selection assumptions in the esti-

mation of a parametric version of the model. The data–generating process for all the re-

sults below are based on Z (t) = tα, ϕ(xi) = exp (β0 + β1x1i + β2x2) and (α, β0, β1, β2, δ) =

(1.35,−4.00, 1.00, 0.50, 1.00), where xi1, i = 1, 2 represents an individual specific covariate

and x2, a common covariate. These three variables are independent standard normal random

variables. A total of 1000 replications with sample sizes of 2000 observations (games) were

generated.

Tables 6 through 10 differ in the way equilibrium is selected when there are multiple

equilibria. Aside from the column indicating the value of each of the parameters, each of

the tables presents median bias and median absolute error for three alternative estimators:

the maximum likelihood estimator that pools equilibria without selecting the equilibrium; a

maximum likelihood estimator that assumes the earliest equilibrium (T ) is played when there

are multiple equilibria; and a maximum likelihood estimator that takes the latest equilibrium

(T ) as the selected equilibrium in case there are many equilibria.
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In Table 6, the latest equilibrium (T ) is selected. As expected, the estimator cor-

responding to the results in the last two columns performs the best, since it assumes the

correct selection rule generating the data. Pooling equilibria in the estimation seems to do an

appreciably better job than the estimator that incorrectly assumes the equilibrium selection

criterion as the earliest possible equilibrium: although the estimates for β1 and δ present

similar median bias and absolute error, the other parameters appear to present much less

bias in the estimator that pools the equilibria. The estimator for the constant term β0 seems

to be particularly biased downward when T is assumed to be selected. This makes sense: by

assuming an earlier selection scheme the constant is below the true parameter, lowering the

hazard and thus increasing the durations to match the data.

TABLE 6: T Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.018 0.053 −0.025 0.046 0.011 0.041

Constant −4.000 −0.036 0.160 −0.168 0.189 −0.028 0.129

δ 1.000 −0.003 0.060 −0.001 0.059 0.001 0.054

β1 1.000 0.014 0.059 −0.015 0.052 0.005 0.046

β2 0.500 0.006 0.043 −0.033 0.043 0.006 0.038

Table 7 displays a design where the earliest equilibrium (T ) is picked. Here the middle

estimator, which correctly assumes the selection scheme generating the data, is as expected

the best of the three. The improvement of the pooling estimator over the one that wrongfully

assumes the selection mechanism seems even more compelling than in the previous case. The

effect of mistaken equilibrium selection on the constant term is again fairly large: in order

to accommodate an equilibrium selection rule that chooses later equilibria than the ones

actually played, the hazard are overestimated, which lowers the duration.
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TABLE 7: T Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.007 0.049 0.008 0.040 −0.014 0.042

Constant −4.000 −0.017 0.158 −0.012 0.125 0.321 0.321

δ 1.000 0.005 0.062 0.005 0.062 −0.137 0.137

β1 1.000 0.006 0.058 0.007 0.046 −0.013 0.046

β2 0.500 0.003 0.042 0.002 0.038 0.006 0.039

In Table 8, an equilibrium is randomly selected according to a uniform distribution on

[T , T ], as was the case in the previous subsection. The performance of the pooling estimator

is noticeably better in comparison to the two other estimators except for the estimation on

α, the Weibull parameter.

TABLE 8: U [T , T ] Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.010 0.048 −0.001 0.041 0.006 0.040

Constant −4.000 −0.025 0.152 −0.125 0.154 0.116 0.150

δ 1.000 0.005 0.062 0.008 0.060 −0.065 0.071

β1 1.000 0.011 0.060 0.003 0.046 0.007 0.045

β2 0.500 −0.002 0.044 −0.020 0.041 0.002 0.038

Table 9 shows the case in which the earliest equilibrium is selected when the common

variable x2 is greater than zero, whereas the latest equilibrium is picked when x2 is less

then zero – this amplifies the effect of this variable on the hazard beyond the impact already

present in the multiplicative ϕ(·) term. In this case, the pooling estimator fares better across

all the parameters.
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TABLE 9: T · 1(x2 > 0) + T · 1(x2 ≤ 0) Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.009 0.051 −0.015 0.043 −0.007 0.042

Constant −4.000 −0.032 0.154 −0.095 0.146 0.161 0.177

δ 1.000 0.002 0.057 0.005 0.058 −0.069 0.075

β1 1.000 0.008 0.059 0.085 0.086 0.065 0.070

β2 0.500 0.007 0.042 −0.016 0.040 0.006 0.037

Finally, Table 10 displays results for a selection mechanism that picks T when this

quantity is greater than 10 and selects T when T is less than 10. Again the pooling estimator

seems to be the superior one when comparing median bias and median absolute error for the

parameters of interest.

TABLE 10: T · 1(T > 10) + T · 1(T ≤ 0) Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.014 0.048 0.057 0.059 0.051 0.056

Constant −4.000 −0.030 0.143 −0.253 0.254 0.020 0.129

δ 1.000 0.009 0.067 −0.006 0.061 −0.091 0.095

β1 1.000 0.012 0.061 −0.039 0.056 −0.024 0.048

β2 0.500 0.001 0.042 −0.023 0.041 0.002 0.038

In sum, either ignoring the strategic interaction in the model by assuming exogeneity

or misspecifying the equilibrium selection mechanism may lead to erroneous inference.

7 Conclusion

In this article we have provided a new motivation for simultaneous duration models that relies

on strategic interactions between agents. The paper thus relates to the previous literature on

empirical games. We presented an analysis of the possible Nash equilibria in the game and
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noticed that it displays multiple equilibria, but in a way that still permits point identification

of structural objects.

The maintained assumption in the paper is that agents can exactly control their

duration. Heckman and Borjas (1980), Honoré (1993) and Frijters (2002) consider statistical

models in which the hazard for one duration depends on the outcome of a previous duration

and Rosholm and Svarer (2001) consider a model in which the hazard for one duration

depends on the simultaneous hazard for a different duration. It would be interesting to

investigate whether a strategic economic model in which agents can control their hazard

subject to costs will generate incomplete econometric models and what the effect of this

would be on the identifiability of the key parameters of the model.
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Honoré, B. (1990): “Simple Estimation of a Duration Model with Unobserved Hetero-

geneity,” Econometrica, 58(2).
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Appendix

We present a proof for identification of Z(·) that dispenses with the assumption that xi

contains a continuously distributed covariate as in Theorem 3. Specifically assume that xi

takes two values, a and b. By Theorem 1, ϕ(·) is identified up to scale. Normalize ϕ (a) = 1

and ϕ (b) < 1. The proof parallels that in Elbers and Ridder (1982). Consider the function:

B(s) =

∫ s

0

∫ ∞
Z(t)eδϕ(x2)

g(ξ1, ξ2)dξ1dξ2, for all t ≥ 0.

which is implicitly also a function of δ, g(·), Z(·) and ϕ(x2). When evaluated at Z(t)ϕ(x1)

this function provides the probability that agent 1 leaves before t and agent 2 leaves after

t. This function is increasing and, consequently, invertible (holding fixed the other implicit

arguments).

Assume that Z(·) is not identified. Then, there is a pair (Z̃, B̃) such that

B(Z(t)) = B̃(Z̃(t)), for all t ≥ 0 (10)

B(Z(t)ϕ (b)) = B̃(Z̃(t)ϕ (b)), for all t ≥ 0. (11)

From equation (10),

ϕ (b) Z̃(t) = ϕ (b) B̃−1(B(Z(t))), for all t ≥ 0

and from equation (11),

Z̃(t)ϕ (b) = B̃−1 (B(Z(t)ϕ (b))) , for all t ≥ 0

and, consequently,

B̃−1(B(ϕ (b)Z(t))) = ϕ (b) B̃−1(B(Z(t))), for all t ≥ 0. (12)

Defining f = B̃−1 ◦B we have from equation (12) that

f(ϕ (b) s) = ϕ (b) f(s), for all s ≥ 0

and consequently that f(0) = 0. Proceeding as in Elbers and Ridder (1982), this implies

that

f(ϕ (b)n s) = ϕ (b)n f(s), for all s ≥ 0 and all n.

Differentiating with respect to s and rearranging:

f ′(s) = f ′(ϕ (b)n s), for all s ≥ 0 and all n.
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Since ϕ (b) < 1, taking the limit as n→∞,

f ′(s) = f ′(0) ≡ c

which, along with f(0) = 0, implies that

B̃−1 ◦B(s) = cs, for all s

establishing that B̃(cs) = B(s), for all s. Using equation (10) we obtain that B̃(cZ(t)) =

B̃(Z̃(t))⇒ cZ(t) = Z̃(t) for all t.
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