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Abstract

In �rst-price auctions with interdependent bidder values, the distributions of private

signals and values cannot be uniquely recovered from bids in Bayesian Nash equilibria.

Non-identi�cation invalidates structural analyses that rely on the exact knowledge of model

primitives. In this paper I introduce tight, informative bounds on the distribution of revenues

in counterfactual �rst-price and second-price auctions with binding reserve prices. These

robust bounds are identi�ed from distributions of equilibrium bids in �rst-price auctions

under minimal restrictions where I allow for a¢ liated signals and both private- and common-

value paradigms. The bounds can be used to compare auction formats and to select optimal

reserve prices. I propose consistent nonparametric estimators of the bounds. I extend the

approach to account for observed heterogeneity across auctions, as well as binding reserve

prices in the data. I use a recent data of 6,721 �rst-price auctions of U.S. municipal bonds

to estimate bounds on counterfactual revenue distributions. I then bound optimal reserve

prices for sellers with various risk attitudes.

KEYWORDS: Structural auction models, interdependent values, a¢ liated signals, partial

identi�cation, counterfactual revenue distributions, U.S. municipal bond auctions
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1 Introduction

In a structural auction model, a potential bidder does not know his own valuation of the

auctioned object, but has some noisy private signal about its value. Bidders make their

decisions conditional on these signals and their knowledge of the distribution of their com-

petitors�private signals and values. A structural approach for empirical studies of auctions

posits the distribution of bids observed can be rationalized by a joint distribution of bidder

values and signals in Bayesian Nash equilibria, and de�nes this joint distribution as the model

primitive. The objective is to extract information about this primitive from the distribution

of bids, and to use it to answer policy questions such as the choice of optimal reserve prices

or auction formats. (See Hendricks and Porter (2007) for a survey.) Depending on whether

bidders would �nd rivals� signals informative about their own values conditional on their

own signals, an auction belongs to one of the two mutually exclusive types : private values

(PV ), and common values (CV ).1 These two types have distinct implications for revenue

distributions under a given auction format.

In this paper I propose tight, informative bounds on counterfactual revenue distributions

that can be constructed from the distribution of bids in a general class of �rst-price auctions

with interdependent values and a¢ liated signals. The counterfactual formats considered

in this paper include both �rst- and second-price auctions with reserve prices.2 Thus I

introduce a uni�ed approach of policy analyses for both PV and CV auctions that does

not require exact identi�cation of model primitives. My method is motivated by several

empirical challenges related to structural CV models. First, several policy questions have

not been addressed outside the restrictive case of PV auctions due to di¢ culties resulting

from non-identi�cation of signal and value distributions.3 For a �xed reserve price, theory

ranks expected revenue for general interdependent value auctions with a¢ liated signals, but

the magnitude of expected revenue di¤erences remains an empirical question.4 Another open

issue is the choice of optimal reserve prices in general interdependent value auctions with

a¢ liated signals and �nite number of bidders.5 Since model primitives cannot be recovered

1I use the term "interdependent values" for a larger class of auctions that encompass both PV and CV

auctions. The formal de�nition of a PV auction is one in which bidders�values are mean independent from

rival signals conditional on their own signals.
2In this paper, I use the term "second-price auctions" exclusively for the sealed-bid format. This does

not include the open formats, or "English auctions".
3For a proof of non-identi�cation, see La¤ont and Vuong (1996).
4The only exception is the case with i.i.d. signals, where expected revenue from �rst-price, second-price

and English auctions are the same regardless of value interdependence.
5An exception is symmetric, independent private value auctions, where the optimal reserve price is
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from equilibrium bids in CV auctions, these questions cannot be addressed as in PV auctions,

where point identi�cation of signal distributions helps exactly recover revenue distributions

in counterfactual formats.6 Second, it is di¢ cult to distinguish PV and CV auctions from

the distribution of bids alone under a given auction format, even though the two have

distinct implications in counterfactual revenue analyses. La¤ont and Vuong (1996) proved

for a given number of potential bidders, distributions of equilibrium bids in CV auctions

can always be rationalized by certain PV structures. Empirical methods that have been

proposed for distinguishing between the two types often have practical limitations. They

either rely on assumptions that may not be valid in some applications (such as exogenous

variations of number of bidders, as in Haile, Hong and Shum (2003)), or they may entail

strong data requirements (an ex post measure of bidder values as in Hendricks, Pinkse and

Porter (2003), or many bids near a binding reserve price as in Hendricks and Porter (2007)).7

Third, the empirical auction literature has not considered the magnitude of the bias if a CV

environment is analyzed with a PV model in counterfactual revenue analyses.

I propose a structural estimation method through partial identi�cation of revenue dis-

tributions to address the questions above. First, the bounds on revenue distributions are

constructed directly from the bids, and do not rely on pinpointing the underlying signal and

value distributions. Second, the bounds only require a minimum set of general restrictions

on value and signal distributions that encompass both PV and CV paradigms. Third, the

bounds are tight and sharp within the general class of �rst-price auctions. The lower bound

is the true counterfactual revenue distribution under a PV structure, while the upper bound

can be close to the truth for certain types of CV models. Hence the distance between the

bounds can be interpreted as a measure of maximum error possible when a CV structure is

analyzed as PV in counterfactual analyses. The bounds can be nonparametrically estimated

consistently. Although I do not provide point estimates of revenue distributions, the bounds

are informative for answering policy questions, as they can be used to compare auction

formats, or to bound revenue maximizing reserve prices. The analysis can be extended to

risk-averse sellers immediately given the sellers�utility functions.

identi�ed from the distribution of equilibrium bids. Levin and Smith (1994) also showed in symmetric �rst-

price auctions, where signals are a¢ liated and values are interdependent through a common unobserved

component, the optimal reserve price converges to the seller�s true value as the number of potential bidders

n goes to in�nity. Yet the theory is otherwise silent about identifying optimal reserve prices with a �nite n.
6See Guerre et.al (2000), Li, Perrigne and Vuong (2002) and Li, Perrigne and Vuong (2003) for details.

Also note in PV auctions, the distribution of signals fXigni=1 are equivalent to the distribution of values
fVigni=1 under the normalization E(VijXi = x) = x.

7A binding reserve price is one that is high enough to have a positive probability of screening out some

bidders.



4

My paper is related to the literature on robust inference in auction models. Haile and

Tamer (2003) use incomplete econometric models to bound the optimal reserve price in

independent PV English auctions, where the equilibrium bidding assumption is replaced

with two intuitive behavior assumptions. In contrast, my paper focuses on �rst-price CV

auctions. Incompleteness here arises from the range of possible rationalizing signal and value

distributions, instead of a �exible interpretation of bids. Hendricks, Pinkse and Porter (2003)

introduce nonparametric structural analyses to CV auctions. They use an ex post measure

of bidder values to test the assumption of equilibrium bidding. They also provide evidence

that the winner�s curse e¤ect dominated the competition e¤ect, leading to less aggressive

bidding in equilibrium as the number of bidders increase. Shneyerov (2006) introduces an

approach for counterfactual revenue analyses in common-value auctions without the need to

identify model primitives. In particular, he shows that for any given reserve price, equilibrium

bids from �rst-price auctions can be used to identify the expected revenues in second-price

auctions with the same reserve price. He also shows how to bound the expected gains in

revenues from English auctions under the general restriction of monotone value functions

and a¢ liated signals.

My paper makes three novel contributions. First, the focus on revenue distributions,

as opposed to distributional parameters such as expectations, allows more general revenue

analyses. Auction theory usually uses expected revenue as a criterion to compare auction

designs, but central tendency may not be justi�able in practice, say if the seller is not

risk-neutral. Knowledge of distributions is necessary for other criteria, such as maximizing

expected seller utility. (A seller may also choose a design to maximize the probability that

revenue falls in a certain range.) Second, bounds on revenue distributions can be constructed

for hypothetical reserve prices. One can then compare reserve prices within �rst-price or

second-price formats. In CV auctions, a counterfactual, binding reserve price r creates

serious challenges in policy analyses. The probability that no one bids higher than r in

equilibrium cannot be pinpointed from bids in the data, since the screening level can not

be identi�ed without further restrictions.8 Moreover, the mapping from equilibrium bids in

the data to those under the counterfactual r cannot be uniquely recovered. I address this

issue by bounding the bid that a marginal bidder under a counterfactual binding r actually

places in equilibrium under the data-generating auction format.9 These bounds in turn lead

to bounds on the revenue distribution under r. Finally, the bounds on revenue distributions

are robust and independent from exact forms of signal a¢ liations and value interdependence,

8A screening level under r is the value of signal such that only bidders with signals higher than the

screening level will choose to submit bids above r in equilibrium. See Section 2 below for a formal de�nition.
9A marginal bidder under r is the one whose signal is exactly equal to the screening level.
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and are identi�ed from the distribution of equilibrium bids alone. This robustness comes

with the price of partial identi�cation of revenue distributions. Nonetheless, one can obtain

informative answers for some policy questions.

The remainder of the paper proceeds as follows. Section 2 introduces bounds on coun-

terfactual revenue distributions in a benchmark model where data is collected from homoge-

nous auctions with exogenous participation. Section 3 de�nes nonparametric estimators for

bounds and proves their pointwise consistency. Section 4 provides Monte Carlo evidence

about the performance of the bound estimators. Section 5 extends the benchmark model

to allow for observable auction heterogeneity and endogenous participation under binding

reserve prices in the data. Section 6 applies the proposed method to U.S. municipal bond

auctions on the primary market. Section 7 concludes.

2 Bounds on Counterfactual Revenue Distributions in

the Benchmark Model

This section focuses on a benchmark case where bids are observed from increasing, symmet-

ric pure-strategy Bayesian Nash Equilibria (PSBNE) in homogenous single-unit �rst-price

auctions with a �xed number of bidders and no binding reserve prices. I show how to use

joint distributions of these bids to construct tight bounds on revenue distributions in coun-

terfactual �rst-price and second-price auctions with a binding reserve price r > 0. Extensions

to cases where bids are observed from heterogenous auctions or auctions with endogenous

participation due to binding reserve prices are discussed in Section 5.

2.1 Model speci�cations

Consider a single-unit, �rst-price auction withN potential risk-neutral bidders and no reserve

price. Each bidder receives a private signal Xi but cannot observe his own valuation Vi. The

distribution of all bids submitted in equilibrium (denoted B0N � fB0
i gi=1;::;N) is observed

from a random sample of independent, identical auctions, but neither Xi nor Vi can be

observed. For simplicity, Xi and Vi are both scalars. Throughout the paper I use upper case

letters to denote random variables, lower case letters for realized values, and bold letters for

vectors. The following assumptions are maintained for the rest of the paper.
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A1 (Symmetric, A¢ liated Signals) Private signals XN�fXigi=1;::;N are a¢ liated with

support SNX � [xL; xU ]N , and the joint distribution FXN
is exchangeable in all arguments.10

A2 (Interdependent Values) A bidder�s value satis�es Vi = �N(Xi;X�i), where �N(:) is a

nonnegative, bounded, continuous function exchangeable inXN�i � fX1; :; Xi�1; Xi+1; :; XNg,
non-decreasing in all signals, and increasing in his own signal Xi over SX � [xL; xU ].

Note A2 implies private signals are drawn from identical marginal distributions on SX ,

and A1 includes private values (PV ) as a special case, where �N(xi;x�i) does not depend

on x�i for all (xi;x�i) 2 SNX . Common values (CV ) correspond to value functions that are
non-degenerate in rival signals X�i. A pure strategy for a bidder under a given auction

structure (N; �N ; FXN
) is a function b0i;N(:; �N ; FXN

) : Xi ! R1+. A pure-strategy Bayesian
Nash equilibrium is a portfolio fb0i;N(:)gi=1;::;N such that for all i, b0i;N(:) is the best response

to fb0j;N(:)gj2f1;::;Ngnfig. (The superscript 0 signi�es that there is no reserve price.) That is,
for all i and x 2 SX ,

b0i;N(x) = argmax
b
E(Vi�bj max

j2f1;:;Ngnfig
b0j;N(Xj) � b;Xi = x) Pr( max

j2f1;:;Ngnfig
b0j;N(Xj) � bjXi = x)

The regularity conditions for existence of such a PSBNE is collected inA3 below. McAdams

(2006) provedA1,2,3 are su¢ cient for the existence of unique symmetric, increasing PSBNE

in �rst-price auctions. The restrictions in A3 are otherwise inessential for the main result

of partial identi�cation in this paper.

A3 (Regularity Conditions) (i) �N(:) is twice continuously di¤erentiable; (ii) The joint

density of fXigi=1;::;N exists on SNX , is continuously di¤erentiable, and 9flow; fhigh > 0 such
that f(x) 2 [flow; fhigh] 8x 2 SNX .

De�nition 1 A joint distribution of bids fb0i;Ngi=f1;::;Ng in �rst-price auctions with no re-
serve price (denoted GB0N ) is rationalized by an auction structure f�N ; FXN

g if GB0N is

the distribution of bids in a symmetric, increasing PSBNE in the auction. Two structures

f�N ; FXN
g and f~�N ; ~FXN

g are observationally equivalent if they generate the same dis-
tribution GB0N in symmetric, increasing PSBNE of �rst-price auctions. The identi�ed set
(relative to GB0N )is the set of all structures that are observationally equivalent given the bid

distribution GB0.

10Let Z be a random vector in RK with joint density f . Let _ and ^ denote respectively component-wise
maximum and minimum of any two vectors in RK . Variables in Z are a¢ liated if, for all z and z0 in RK ,
f(z _ z0)f(z ^ z0) � f(z)f(z0). For a more formal de�nition, see Milgrom and Weber (1982).
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The �rst-order condition in PSBNE is characterized by:

b00N(x) = [vh;N(x; x)� b0N(x)]
fYN jX(xjx)
FYN jX(xjx)

(1)

for all x 2 SX , where Yi;N � maxj2f1;:;NgnfigXj, FYN jX(tjx) � Pr(Yi;N � tjXi = x), and

fYN jX(tjx) denotes the corresponding conditional density. And vh;N(x; y; �N ; FXN
) is a bid-

der�s expected value conditional on winning with a pivotal bid, i.e. E(VijXi = x; Yi;N = y).

The equilibrium boundary condition is b0N(xL) = vh;N(xL; xL). For notational ease, sub-

scripts for bidder indices are dropped due to the symmetry in FXN
and �N . In an increasing

PSBNE where b00N(:) > 0 on SX , Guerre, Perrigne and Vuong (2000) established a link

between the auction structure and GB0N by reformulating (1) using change-of-variable :

vh;N(x; x) = b0N(x) +
GM0

N jB0N (b
0
N(x)jb0N(x))

gM0
N jB0N (b

0
N(x)jb0N(x))

� �(b0N(x);GB0N ) (2)

where Bi;N � b0N(Xi) is bidder i�s bid in equilibrium, Mi;N � maxj 6=i b0N(Xj) is the highest

rival bid for bidder i, GM0
N jB0N (tjb) = Pr(M0

N � tjb0N = b), and gM0
N jB0N (tjb) is the corre-

sponding conditional density.11 Again, indices for bidders are dropped due to symmetry.

Furthermore, subscripts N will also be dropped for the rest of this section and the following

section, as I focus on bid distributions from auctions with a �xed number of bidders.

2.2 Review of literature on PV auctions

In this subsection, I review the literature on identi�cation of signal distributions and op-

timal reserve prices in private value auctions. The objective is to highlight how unique

identi�cation of bidders�signal distributions and screening levels leads to exact knowledge

of the optimal reserve price. This motivates my approach of partial identi�cation when

the screening level can not be exactly pinned down in more general interdependent value

auctions.

Guerre, Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) showed the joint

distribution of bidder values are nonparametrically identi�ed from distribution of equilibrium

bids in �rst-price, PV auctions with no reserve prices. This result holds regardless of the form

of dependence between private signals. The main idea is that in PV auctions, the left-hand

side of (2) is independent from the second argument (the highest rival signal) and therefore

11Following a convention in the literature, I assume the second order conditions are always satis�ed and

thus �rst-order conditions are su¢ cient for characterizing the equilibrium.
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can be normalized to the signal x itself. Hence the inverse bidding function can be fully

recovered from GB0 , for both independent and a¢ liated signals.12 Another simpli�cation

peculiar to PV auctions is that the screening level under a binding reserve price r is equal to

r itself. That is, bidders choose not to bid above r in equilibrium if and only if their private

signals are below r. To see this, note the screening level under r in a general interdependent

value auction is de�ned as :

x�(r) � inffx 2 SX : E(VijXi = x; Yi � x) � rg

If E(VijXi = x; Yi � x) < r for all x 2 SX , let x�(r) = xU . In PV auctions, E(VijXi =

x; Yi � x) = E(VijXi = x) and the normalization E(VijXi = x) = x implies x�(r) = r. Thus

in PV auctions, both the signal distribution FX and x�(r) are exactly recovered from GB0.

In principle, knowledge of FX in PV auctions is su¢ cient for �nding counterfactual

revenue distributions under a binding reserve price r. It follows that the optimal r which

maximizes the expected revenue is also identi�ed. Yet in reality it can be impractical to

implement this fully nonparametric estimation due to data de�ciencies, especially when the

signals are a¢ liated. Li, Perrigne and Vuong (2003) proposed a nonparametric algorithm for

estimating optimal reserve prices that is implemented with less intensive computations. The

idea is to express expected seller revenue under r as a functional of the observed distribution

of equilibrium bids and r. Then optimizing a sample analog of this objective function

over reserve prices gives a consistent estimator of the optimal reservation price. Again the

assumption of private values is indispensable for two reasons. First, it implies x�(r) = r

under appropriate normalizations, which is used for de�ning the objective function; Second,

it ensures full nonparametric identi�cation of the distributions of counterfactual equilibrium

bidding strategies.

This approach cannot be applied to CV auctions with a¢ liated signals immediately be-

cause of two non-identi�cation results. First, the screening level cannot be pinned down

without further restrictions on how bidders�signals and valuations are correlated. Second,

inverse bidding functions can not be recovered without knowledge of �. Hence underly-

ing structure f�; FXg can not be identi�ed. These pose a major challenge for identifying
counterfactual revenue distributions in CV auctions.

12In private value auctions, the conventional normalization of the signals is E(VijXi = x) = x for all x.
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2.3 Observational equivalence of PV and CV

In this subsection I prove the observational equivalence of PV and CV paradigms when GB0

is observed from �rst-price auctions with a �xed number of bidders. That is, GB0 can be

rationalized by a PV structure if and only if it can be rationalized by a CV structure.13 This

preliminary question sheds lights on the scope of bid distributions where a uni�ed approach of

counterfactual analyses for both PV and CV structures is needed. To understand this point,

suppose there could exist certain ~GB0 that would be rationalized only by a PV structure

but not any CV ones. In this case, the issue of �rst-order importance would be to derive

testable implications of all such ~GB0, and then fully recover the underlying PV structures

for those bid distributions satisfying such implications.

The rest of the subsection proves such a ~GB0 cannot exist. Thus a robust approach

of counterfactual analyses that does not count on distinguishing PV and CV structures is

needed for any observed distributions of bids from a given auction structure. Let F denote

the set of joint signal distributions that satisfy A1, and � the set of value functions that

satisfy A2. Let �CV denote a subset of � that is non-degenerate in rival signals X�i. Below

I give necessary and su¢ cient conditions for GB0 to be rationalized by some element of

�CV 
F .

Proposition 1 A joint distribution of bids GB0 observed in �rst-price auctions with non-

binding reserve prices can be rationalized by some f�; FXg 2 �CV 
F if and only if (i) GB0 is
a¢ liated and exchangeable in all arguments; and (ii) �(b;GB0) = b+GM0

i jB0i (bjb)=gM0
i jB0i (bjb)

is strictly increasing on the support of individual bids [b0L; b
0
U ].

Li, Perrigne and Vuong (2002) showed conditions (i) and (ii) are also necessary and suf-

�cient for GB0 to be rationalized by some PV structure. It follows that a GB0 is rationalized

by some PV structures if and only if it is also rationalized by some � 2 �CV . This suggests
that researchers cannot distinguish PV and CV paradigm only using bid distributions from

homogenous auctions with a �xed number of bidders and no reserve prices.14

13La¤ont and Vuong (1996) proved the su¢ ciency as they showed the non-identi�cation of CV auctions.

It remains unanswered whether the converse is true.
14Recent literature in empirical auctions have developed ways to distinguish two structures with aug-

mented data containing bids from more than one auction formats. These include the use of exogenous

variations in the number of bidders as in Haile, Hong and Shum (2003), ex post measures of bidder values

as in Hendricks, Pinkse and Porter (2003), and bid distributions under a strictly binding reserve price as in

Hendricks and Porter (2007).
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2.4 Bounding revenue distributions in counterfactual 1st-price auc-
tions

A conventional criterion for choosing optimal reserve prices is the expected revenue for the

seller. The Revenue Equivalence Theorem states that in auctions with independent private

values, optimal reserve prices are the same for both 2nd-price and 1st-price auctions, and are

independent from the number of potential bidders. On the other hand, there is no theoretical

result about the choice of optimal reserve prices in general 1st-price auctions with a¢ liated

signals, interdependent values, and a �nite number of bidders. The answer depends on the

speci�cs of model primitives and is open for empirical analyses. Besides, expected revenue

is not an appropriate criterion to use if the seller is not risk neutral. Knowledge of revenue

distributions in counterfactual auction formats helps address both concerns. For a binding

reserve price r, I propose informative bounds on FRI(r) that are constructed from GB0 alone.

2.4.1 The link between GB0 and FRI(r)

I start by establishing links between observed bid distributions GB0 and bidders�equilibrium

bidding strategies as well as the distribution of revenues in counterfactual 1st-price auctions

with a binding reserve price r. The equilibrium strategy in �rst-price auctions under a reserve

price r � 0 has a closed form:

br(x; �; FX) = rL(x�(r)jx;FX) +
Z x

x�(r)

vh(s; s; �; FX)dL(sjx;FX) 8x � x�(r)

br(x; �; FX) < r 8x < x�(r)

where L(sjx;FX) � expf�
R x
s
�(u;FX)dug and �(x;FX) � fY jX(xjx)=FY jX(xjx). This sec-

tion focuses on a benchmark model where the bid distribution is observed from auctions

with a �xed number of bidders. Hence the superscript N is suppressed for notational ease.

For any given x on the closed interval SX , L(sjx;FX) is a well-de�ned distribution func-
tion with support [xL; x] and is �rst-order stochastically dominated by the distribution of

the second highest signal (i.e. FY jX(sjx)=FY jX(xjx)).15 The two distributions are identical
when bidders�private signals are i.i.d.. The range of r for nontrivial counterfactual analyses

is SRP � [�0L; �
0
U ], where �

0
k � �(b0(xk);GB0) for k = L;U . This is because for r < �0L,

x�(r) = xL and there is no e¤ective screening of bidders, while for r > �0U , all bidders are

15That L(:jx) is a well-de�ned distribution on [xL; x] is shown in Krishna (2002). Furthermore L(sjx) �
expf�

R x
s

fY jX(ujx)
FY jX(ujx)dug =

FY jX(sjx)
FY jX(xjx) , where the inequality follows from the fact that FY jX(xjz)=fY jX(xjz) is

decreasing in z for all x when signals are a¢ liated.
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screened out with probability 1. Let v0 denote the seller�s own reserve value of the auctioned

asset. For all r 2 SRP and r > v0, the distribution of revenue in counterfactual �rst-price

auctions with a binding reserve price r (denoted RI(r)) is:

FRI(r)(t; ) = 0 8t < v0

= PrfX(1) < x�(r; )g 8t 2 [v0; r)
= PrfX(1) � �r(t; )g 8t 2 [r;+1)

where X(k) denotes the k-th highest out of N signals, �r(t) denotes the inverse function of

the equilibrium strategy br(:) at a given bid level t, and  2 �
 F denotes the underlying

structure (where �
F is the set of primitives that satisfy A1 and A2 ).16 This distribution
would be exactly identi�ed from GB0 if a mapping between the strategy under r and that

with no reserve prices can be fully recovered from GB0. For any rationalizable distribution

GB0 that satis�es conditions (i) and (ii) in Proposition 1, let 	(GB0) denote a subset of

structures in �
F that rationalizes GB0. For notational ease, the dependence of b0 and br

on the structure  2 �
F is suppressed.

Lemma 1 Consider a rationalizable GB0. For all  2 	(GB0) in �rst-price auctions with
any r 2 SRP and x � x�(r; ), br(x; ) = �r(b

0(x; );GB0) where �r solves the di¤erential

equation

�0(b;GB0) = [�(b;GB0)� �(b;GB0)]~�(b;GB0) (3)

for b � b0 (x�(r; ); ), with ~�(u;GB0) de�ned as
gM0jB0 (uju)
GM0jB0 (uju)

and the boundary condition

�(b0(x�(r; ); );GB0) = r.

Thus �r can be constructed from the observed bid distribution GB0 up to an unknown

bid that a marginal bidder under r would place in an auction with no reserve prices (denoted

b0(x�(r))). This is not surprising, as binding reserve prices a¤ect bidding strategies in equi-

librium only through the boundary condition br(x�(r)) = r.17 My construction of bounds on

16By de�nition Pr(RI(r) � t) = 0 for all t < v0. For all t 2 [v0; r), Pr(RI(r) � t) = Pr(RI(r) = v0) =

Pr(X(1) < x�(r)). Note br0(x) > 0 for all r 2 SRP and x > x�(r), and br(x�(r)) = r. Hence br(x) is

invertible on [r;+1), and for t � r, PrfR(r) � tg = PrfX(1) < x�(r)g + PrfX(1) 2 [x�(r); (br)�1(t))g
= Pr(X(1) � �r(t)) for all t 2 [r;+1).

17To see this, note br and b0 are solutions to the di¤erential equation:

b0(x) = [vh(x; x; �; FX)� b(x)]
fYN jX(xjx)
FYN jX(xjx)

with di¤erent boundary conditions b(x�(r)) = r and b(xL) = vh(xL; xL) respectively.
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FRI(r) follows three intuitive steps. First, derive tight bounds on b0(x�(r)) from GB0 under

the general restriction of a¢ liated values and signals, and then substitute the bounds for

the unknown marginal bid in the boundary condition of (3) to get envelops on �r. Next, for

any given level of counterfactual revenue t, invert these envelops to get a possible range of

b0(�r(t)) (the hypothetical bid that a bidder who bids t under reserve price r would place

when there is no reserve price). Finally, use the distribution of winning bids in auctions with

no reserve prices to construct bounds on FRI(r)(t).

2.4.2 Bounds on counterfactual screening levels

I start by deriving the range of possible screening levels under a given binding reserve

price r. Let v(x; y) � E(VijXi = x; Yi � y), and vl(x; y) � E(vh(Y; Y )jXi = x; Yi �
y) =

R y
xL
vh(s; s)

fY jX(sjx)
FY jX(yjx)

ds. In symmetric Bayesian Nash equilibria, v(x; x) is the win-

ner�s expected value if his signal is x (which is the same in both 1st-price and 2nd-price

auctions), and vl(x; x) is the winner�s expected payment in 2nd-price auctions with no re-

serve prices. For all x 2 SX and structures  2 � 
 F , a¢ liation between signals and
values implies vh(x; x; ) � v(x; x; ), and the equilibrium condition in 2nd-price auc-

tions guarantees v(x; x; ) � vl(x; x; ). Let xl(r; ) � argminx2SX [vh(x; x; ) � r]2 and

xh(r; ) � argminx2SX [vl(x; x; )� r]2.

Lemma 2 (i) For all  2 �
F , x�(r; ) 2 [xl(r; ); xh(r; )] for all r 2 SRP ; (ii) For any
rationalizable bid distribution GB0, 9 2 	(GB0) such that xl(r; ) = x�(r; ) for all r 2
SRP . Furthermore, for all " > 0, 9 2 	(GB0) such that supr2SRP jxh(r; )� x�(r; )j � ".

The bounds on the screening level are robust as they are constructed in a general en-

vironment where no restriction is placed on the form of value interdependence and signal

a¢ liations. In other words, the screening level can never fall outside the bounds, provided

bidders�values and private signals are a¢ liated. The true screening level coincides with the

upper bound if the winner �nds his rivals�signals uninformative about his own value. This

includes PV auctions as special cases. On the other hand, it hits the lower bound if the

margin between a winner�s own signal and the highest competing signal reveals no additional

information about his own value. For better intuition behind the bounds, consider special

cases where a bidder�s value function is additively separable between his own signal and the

vector of rival signals. Then the lower and upper bounds on the screening level correspond

to extreme cases of weights (1 and 0 respectively) that a bidder assigns to his own signals

while calculating the expected value conditional on winning.
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Lemma 2 illustrates how the indeterminacy of underlying model structures  leads to

a possible range of screening levels. However, it does not bound on the marginal bid di-

rectly, as both fxk(r; )gk=l;h and the bidding strategy b0(:; ) depend upon the unknown
structure  . Lemma 3 below proposes a way to bound the marginal bid by relating winners�

expected payment in 2nd-price auctions, as well as the equilibrium strategies, to observable

bid distribution GB0. Let SB0 denote the support of equilibrium bids in 1st-price auctions

with no reserve prices. (That is, SB0 � [b0L; b
0
U ] where b

0
k � b0(xk) for k = L;U .) Let

�l(b;GB0) �
R b
b0(xL)

�(s;GB0)
gM0jB0 (sjb)
GM0jB0 (bjb)

ds for b � b0L. For r 2 SRP , de�ne

b0l;r(GB0) � argminb2SB0 [�(b;GB0)� r]2

b0h;r(GB0) � argminb2SB0 [�l(b;GB0)� r]2

Lemma 3 Consider any rationalizable bid distribution GB0. Then (i) for all r 2 SRP

and all  2 	(GB0), b0(x�(r; ); ) 2 [b0l;r(GB0); b
0
h;r(GB0)]; (ii) for all r 2 SRP and

b 2 [b0l;r(GB0); b0h;r(GB0)), 9 2 	(GB0) such that b0(x�(r; ); ) = b.

To understand these results, notice that � and �l can relate observed bid distributions

in equilibria to functionals of the underlying structures vh(:; ) and vl(:; ) through the

�rst-order conditions. More importantly, by construction, they only depend upon model

primitives f�; FXg through the observable GB0 generated in equilibria. Therefore, these
links between vh(:; ), vl(:; ) and GB0 are invariant over the identi�ed set of structures

(i.e. for all  2 	(GB0)). Then inverting these functions at a given binding counterfactual
reserve price r gives bounds on the marginal bid. The bounds are tight and sharp in the

sense that each point between the bounds depicts a marginal bid corresponding to a certain

structure within the identi�ed set (i.e. the set of observationally equivalent structures). In

other words, this range of possible marginal bids have exhausted all information that can

be extracted from the symmetric and a¢ liated properties of the values and signals, for it is

impossible to reduce the distance between the bounds in the absence of additional restrictions

on � and FX.

2.4.3 Bounding the mapping between strategies and FRI(r)

Recall �r solves (3) with an unidenti�ed boundary condition �r (b
0(x�(r; ); );GB0) =

r. By replacing the unknown marginal bid in the boundary conditions with its bounds

fb0k;r(GB0)gk=l;h, we can derive two solutions f�r;k(:;GB0)gk=l;h that are envelops on the
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mapping between strategies b0 and br (only for bidders above the screening level under r).

Again this is due to the fact that reserve prices r (and therefore the marginal bid) enters

bidders�strategies only through boundary conditions. For any revenue level t considered in

a counterfactual 1st-price auction with a binding reserve price r, tight bounds on the hypo-

thetical bid b0 (�r (t; ) ; ) (that a bidder who would bid t under r actually bids in auctions

with no reserve prices) can be derived by inverting the envelops �r;k at t.

Lemma 4 Consider a rationalizable distribution GB0. For k 2 fl; hg and r 2 SRP , let

f�r;k(:;GB0)gk=l;h denote solutions to the di¤erential equation (3) with boundary conditions
�r;k(b

0
k;r(GB0);GB0) = r for b � b0k;r(GB0). De�ne

��1r;k(t;GB0) � arg min
b2[b0k;r(GB0 );b0U ]

[�r;k(b;GB0)� t]2:

Then: (i) for any  2 	(GB0), �r;h(b;GB0) � �r(b; ;GB0) for all b � b0h;r(GB0) and

�r;l(b;GB0) � �r(b; ;GB0) for all b � b0(x�(r; ); ), and �r;k(:;GB0) are increasing on

[b0k;r(GB0); b
0
U ] for k = l; h; (ii) for any revenue t > r, and all b 2 [��1r;l (t;G0B); ��1r;h(t;G0B)),

9 2 	(G0B) such that b0(�r(t; ); ) = b.

The Lemma shows how sharp bounds on the marginal bid lead to sharp bounds on

the hypothetical bid b0(�r(t; ); ) for all revenue level above the counterfactual reserve

price. This in turn will deliver the point-wise sharpness of bounds on revenue distributions

in counterfactual auctions below. A nice property of f�r;kgk=l;h is that �r;l � �r;h is non-

increasing in b for b � b0(xh(r)).18 This implies the length of [��1r;l (t;GB0); �
�1
r;h(t;GB0)] is

decreasing in the revenue level t provided both �r;l and �r;h increase at a moderate rate.

Proposition 2 Consider a rationalizable GB0 and any r 2 SRP with r > v0. Then for

all  2 	(GB0), F l
RI(r)(GB0) �F:S:D: FRI(r)( ) �F:S:D: F

u
RI(r)(GB0), where �F:S:D: denotes

�rst-order stochastic dominance, and

F l
RI(r)(t;GB0) = 0 8t < v0

= Pr(b0(X(1); ) < b0l;r(GB0) 8t 2 [v0; r)
= Pr(b0(X(1); ) � ��1r;l (t;GB0)) 8t 2 [r;+1)

18Proof: Note

�0r;l(b;G
0
B)� �0r;h(b;G0B) = ~�(b;G0B)

"Z b0(xh(r))

b0(xl(r))

r � �(~b;G0B)d~L(~bjb;G0B)
#
� 0

as �(b;G0B) � r for all b � b0(xh(r)) in equilibrium. The inequality is strict if b0(xh(r)) > b0(xl(r)).
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and

F u
RI(r)(t;GB0) = 0 8t < v0

= Pr(b0(X(1); ) < b0h;r(GB0) 8t 2 [v0; r)
= Pr(b0(X(1); ) � ��1r;h(t;GB0)) 8t 2 [r;+1)

The distribution of the highest bid is observed from auctions with no reserve prices.

Therefore the bounds can be nonparametrically constructed from GB0 . Furthermore, it fol-

lows from Lemma 3 and Lemma 4 that for a given revenue level t, any point within the

interval [F l
RI(r)(t;GB0); F

h
RI(r)(t;GB0)) correspond to certain true distribution of counterfac-

tual revenue FRI(r)(t; ) for some  2 	(GB0). In other words, fF k
RI(r)(t;GB0)gk=l;h form

point-wise tight, sharp bounds on the true revenue distributions in counterfactual �rst-price

auctions with a binding reserve price r.

2.4.4 A simpler upper bound of FRI(r)

Below I propose a simpler upper bound on FRI(r) (denoted ~F u
RI(r)) that can be constructed

using observed revenue distributions from auctions with no binding reserve prices (denoted

FRI(0)) as opposed to from GB0. De�ne

~F u
RI(r)(t;FRI(0)) = 0, 8t < v0

= Pr(b0(X(1); ) < r), 8t 2 [v0; r)
= Pr(b0(X(1); ) � t), 8t � r

This simpler upper bound is easy to construct, and is depicted in Graph 1 in the appendix.

It coincides with F u
RI(r) when private signals are independent and identically distributed.

However, if there is strict a¢ liation among the signals, the simpler upper bound will be

less e¢ cient than F u
RI(r) in the sense that

~F u
RI(r) fails to rule out some of the counterfactual

revenue distributions that can not be rationalized by any element in the identi�ed set.

Proposition 3 Consider any rationalizable distribution GB0. Then for all  2 	(GB0) and
r 2 SRP , FRI(r)( ) �F:S:D: F

u
RI(r)(GB0) �F:S:D:

~F u
RI(r)(FRI(0)( )). Furthermore, F

u
RI(r)(GB0) =

~F u
RI(r)(FRI(0)( )) if private signals are independently, identically distributed.

The proof uses the fact that bidders with signals above the screening level x�(r) would bid

higher under the counterfactual binding r than in auctions with no binding reserve prices.
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Intuitively, it is not surprising that ~F u
RI(r) is in general less e¢ cient than F

u
RI(r), since the

latter uses full information from GB0 while the former only uses GB0 indirectly through a

functional of FRI(0). Nonetheless, this simpler upper bound is still interesting for two reasons.

First, the i.i.d. restrictions on private signals is testable in symmetric equilibria using the bid

distribution observed. Hence in practice when signals are tested to be i.i.d., the simpler upper

bound are known to be e¢ cient. Second, when signals are not i.i.d., comparing F u
RI(r)(GB0)

and ~F u
RI(r) illustrates how the a¢ liation of private signals helps narrow down the scope of

possible counterfactual revenue distributions corresponding to the identi�ed set.

2.5 Bounding revenue distributions in counterfactual 2nd-price
auctions

This subsection construct bounds on counterfactual revenue distributions in 2nd-price auc-

tions under reserve price r (denoted FRII(r)) from GB0. Theory predicts for any given reserve

price r, the expected revenues in 2nd-price auctions are at least as high as those in 1st-price

auctions provided bidder signals are a¢ liated. However, the size of this di¤erence is an open

empirical question. In addition, within the format of 2nd-price auctions, theory is silent

about the choice of optimal reserve price r that maximizes expected revenue when signals

are a¢ liated. Knowledge of FRII(r) would help address these open questions.

The equilibrium strategy in 2nd-price auctions under a binding reserve price r is

�r(x; ) = vh(x; x; ) 8x � x�(r; )

�r(x; ) < r 8x < x�(r; )

Consider any structure  2 �
F . For all r 2 SRP and r > v0, the distribution of revenues

in a second-price auction with reserve price r is:19 (for notational ease, dependence of vh and

x�(r) on the structure  is suppressed.)

FRII(r)(t; ) = 0 8t < v0

= Pr(X(1) < x�(r)) 8t 2 [v0; r)
= Pr(X(2) < x�(r)) 8t 2 [r; vh(x�(r); x�(r)))
= Pr(vh(X

(2); X(2)) � t) 8t 2 [vh(x�(r); x�(r));+1)

The link between GB0 and revenue distributions in counterfactual 2nd-price auctions is

easier to see than in 1st-price auctions, since the distribution of b0(X(1); ) and b0(X(2); )

19See the proof of Proposition 3 below for details.
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are both observed. Besides, the bids in 2nd-price auctions with a counterfactual reserve

price r can be exactly recovered for bidders that are known to be unscreened under r. This is

because in Bayesian Nash equilibrium, vh(X;X; ) = � (b0(X; );GB0) for all  2 	(GB0).
However, the non-identi�cation of the marginal bid b0(x�(r)), and therefore the expected

value for the pivotal winner vh (x�(r); x�(r)), makes it impossible for researchers to fully

recover FRII(r). Fortunately, just as in the case of 1st-price auctions, replacing the marginal

bid with fb0k;r (GB0)gk=l;h in the de�nition of FRII(r) leads to point-wise bounds on FRII(r).

Proposition 4 Consider a rationalizable distribution GB0, and any r 2 SRP with r > v0.

Then F l
RII(r)(t;GB0) �F:S:D: FRII(r)(t; ) �F:S:D: F

u
RII(r)(t;GB0) for all  2 	(GB0), where

F l
RII(r)(t;GB0) = 0 8t < v0

= Pr(b0(X(1); ) < b0l;r(GB0)) 8t 2 [v0; r)
= Pr(�(b0(X(2); );GB0) � t) 8t 2 [r;+1)

and

F u
RII(r)(t;GB0) = 0 8t < v0

= Pr(b0(X(1); ) < b0h;r(GB0)) 8t 2 [v0; r)
= Pr(b0(X(2); ) < b0h;r(GB0)) 8t 2 [r; �(b0h;r(GB0);GB0))
= Pr(�(b0(X(2); );GB0) � t) 8t 2 [�(b0h;r(GB0);GB0);+1)

The intuition of the proof is demonstrated in Graph 2. To understand this proposition,

note by the de�nition of the identi�ed set of structures, the highest and second-highest

order statistics of equilibrium bids must be invariant among all  2 	(GB0). Hence the
bounds fF k

RII(r)gk=l;u are functionals of the observed bid distribution GB0 only. In addi-
tion, just as with 1st-price auctions, it follows from the sharpness of fb0k;r(GB0)gk=l;h that
fF k

RI(r)(t;GB0)gk=l;h form point-wise tight, sharp bounds on the revenue distributions in

counterfactual 2nd-price auctions with a binding reserve price r.

3 Nonparametric Estimation of Bounds

In this section, I de�ne three-step estimators fF̂ k
RI(r)gk=l;u for bounds on FRI(r) and FRII(r).

The basic idea is to replace GB0 with its sample analog in estimation. I consider the case
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where data reports all bids submitted in Ln independent, homogenous auctions, each with

n potential bidders and no reserve prices.20

Let SB � [b0L; b
0
U ] denote the support of bids observed in 1st-price auctions with non-

binding reserve prices. For all (m; b) 2 S2B, de�ne:

ĜM;B(m; b) =
1

LnhG

PLn
l=1

1

n

Pn
i=1 1(mil � m)KG(

b� bil
hG

)

ĝM;B(m; b) =
1

Lnh2g

PLn
l=1

1

n

Pn
i=1Kg(

m�mil

hg
;
b� bil
hg

)

where bil and mil are bidder i�s bid and the highest competing bid against him in auction l,

Ln is the total number of auctions with n potential bidders, KG and Kg are symmetric kernel

functions with bounded hypercube supports with each side equal to 2, and hg, hG are the

corresponding bandwidths. It is well known that density estimators are asymptotically biased

near boundaries of the support for some b 2 [b0L; b0L+hg)[ (b0U �hg; b0U ]. Let � � max(hg; hG)
and SB;� = [b0L + �; b0U � �] be an expanding subset of SB (as sample size increases) where

ĜM;B and ĝM;B are asymptotically unbiased. A natural estimators for SB;� is:

ŜB;� � [~bL;~bU ], where ~bL = b̂L + �; ~bU = b̂U � �

where b̂L = mini;l bil and b̂U = maxi;l bil converge almost surely to b0L and b
0
U respectively.

Nonparametric estimators for � and �l are de�ned as:

�̂(b) = b+
ĜM;B(b; b)

ĝM;B(b; b)
; ~GM;B(b; b) =

Z b

~bL

ĝM;B(t; b)dt+ ĜM;B(~bL; b)

�̂l(b) = �̂(~bL)
ĜM;B(~bL; b)

ĜM;B(b; b)
+

Z b

~bL

�̂(t)
ĝM;B(t; b)
~GM;B(b; b)

dt

where ~GM;B and �̂l are de�ned over the random support Ŝ2B;� and ŜB;� respectively. The

�rst-step estimators for fb0k;r(GB0)gk=l;h are de�ned as:

b̂0l;r = argminb2Ŝ�;B [�̂(b)� r]2; b̂0h;r = argminb2Ŝ�;B [�̂l(b)� r]2

In the second step, I �rst construct kernel estimator for �r;l(b) and �r;h(b) on Ŝ�;B using

�rst-step estimates b̂0l;r and b̂
0
h;r. For k = fl; hg, de�ne:

�̂r;k(b; b̂
0
k;r) � rL̂(b̂0k;rjb) +

Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt 8b 2 (b̂0k;r;~bU ]

� r 8b 2 [~bL; b̂0k;r]
20"Independence" here has both economic and statistical interpretations. First, there is no strategic

interaction or learning across the auctions, so that the same �rst-order condition characterizes equilibria in

all auctions. Second, the random vectors of bidders�private information are independent across auctions.

"Homogeneity" means the auctioned object in all auctions have the same commonly observed characteristics.
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where �̂(t) � ĝM;B(t; t)=ĜM;B(t; t) and L̂(tjb) � exp(�
R b
t
�̂(s)ds). Estimators for ��1r;k(t;GB0)

are:

�̂
�1
r;l (t) = argminb2ŜB;� [�̂r;l(b)� t]2; �̂

�1
r;h(t) = argminb2ŜB;� [�̂r;h(b)� t]2

By de�nition, Ŝ�;B � S�;B with probability 1. In the �nal step, bounds on FRI(r) are estimated

as:

F̂ l
RI(r)(t) =

1

Ln

XLn

l=1
1(Bmax

l � �̂
�1
r;l (t)); F̂ u

RI(r)(t) =
1

Ln

XLn

l=1
1(Bmax

l � �̂
�1
r;h(t))

where Bmax
l = maxi=1;::;n bil is the highest bid in auction l.

The three-step estimators above converge in probability to the true bounds F k
R(r)(t;GB0)

over all r and t > r. Below I strengthen restrictions in A1-3 to include all regularity

conditions needed for consistency.

S1 For n � 2, (i) The n-dimensional vectors of private signals (x1l; x2l; ::xnl)
Ln
l=1 are

independent, identical draws from the joint distribution F (x1; ::; xn), which is exchangeable

in all n arguments and a¢ liated with support SX � [xL; xU ]; (ii) F (x1; ::; xn) has R + n,

R � 2, continuous bounded partial derivatives on SnX , with density f(x) � cf > 0 for all

x 2 SnX .

S2 (i) The value function �n(:) : S
n
X ! R+ is positive, bounded, and continuous on

the support; (ii) �n(:) is exchangeable in rival signals X�i, non-decreasing in all signals, and

increasing in own signal Xi over SX . (iii) �n(:) is at least R times continuously di¤erentiable

and �(xL) > 0; (iv) vh(xU ; xU) <1 and d
dX
vh(X;X)jX=xU <1.

In addition to maintaining the identifying restrictions of a¢ liation and symmetry among

signals and values in A1-3, the stronger version S1-2 also includes additional regularity

conditions on the smoothness of model primitives f and �. This will lead to smooth properties

of bid distributions in equilibrium, which in turn, determines asymptotic properties of non-

parametric estimators.

S3 (i) The kernels KG(:) and Kg(:) are symmetric with bounded hypercube supports of

sides equal to 2, and continuous bounded �rst derivatives; (ii)
R
KG(b) = 1, and

R
Kg( ~B; b)d ~Bdb

= 1; (iii) KG(:) and Kg(:) are both of order R + n� 2.

These are standard assumptions on kernels necessary for proving the asymptotic proper-

ties of kernel estimators.

Proposition 5 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4), where cG
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and cg are constants. Suppose S1-3 are satis�ed and R > 2n � 1, then for all r 2 SRP and
t � r, F̂ k

RI(r)(t)
p! F k

RI(r)(t) for k = l; u.

The proof is included in Appendix B, and proceeds in several steps. First, I prove

smoothness of bid distributions in equilibrium. Second, I show the kernel estimators �̂l
and �̂ converge in probability to �l and � uniformly over ŜB;�. Then I use a version of the

Basic Consistency Theorem in Newey and McFadden (1994) that is generalized for extreme

estimators with the objective functions being de�ned on random support) to show b̂0k;r
p! b0k;r

for k = l; h and the relevant reserve prices. Next, I prove �̂k;r(:; b̂0k;r)
p! �k;r(:; b

0
k;r) uniformly

over ŜB;� and again used the generalized Basic Consistency Theorem to show that �̂
�1
r;k(t)

p!
��1r;k(t) for all relevant t. Finally, I use the Glivenko-Cantelli uniform law of large numbers to

show empirical distributions of Bmax
l evaluated at �̂

�1
r;k(t) for k = l; h are consistent estimators

for bounds on FRI(r)(t).

Estimating bounds on revenue distributions in counterfactual 2nd-price auctions follows

similar logic and is straightforward given the constructions above. De�ne:

F̂ l
RII(r)(t) =

1

Ln

XLn

l=1
1(B

(1:n)
l < b̂0l;r) 8t 2 [v0; r)

=
1

Ln

XLn

l=1
1(B

(2:n)
l < �̂

�1
(t)) 8t 2 [r;+1)

and:

F̂ u
RII(r)(t) =

1

Ln

XLn

l=1
1(B

(1:n)
l < b̂0h;r) 8t 2 [v0; r)

=
1

Ln

XLn

l=1
1(B

(2:n)
l < b̂0h;r) 8t 2 [r; �̂(b̂0h;r))

=
1

Ln

XLn

l=1
1(B

(2:n)
l < �̂

�1
(t)) 8t 2 [�̂(b̂0h;r);+1)

where b̂0k;r is de�ned above and �̂
�1
(t) � argminb2ŜB;� [�̂(b)� t]2 for t � r. Pointwise consis-

tency of F̂ k
RII(r)(t) for r � v(xL; xL) and t � r follows directly from similar arguments for

consistency of F̂ k
RI(r)(t), and the fact that �̂(b̂

0
h;r)

p! �(b0h;r;GB0) = vh(xh(r); xh(r); ) for all

 2 	(GB0).

4 Monte Carlo Experiments

Bounds on revenue distributions in counterfactual �rst-price and second-price auctions are

e¢ cient in that they have exhausted all information that can be extracted from GB0 . It is
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impossible to derive a tighter range of possible counterfactual revenue distributions without

introducing further restrictions on how values and signals are related. Exactly how infor-

mative these bounds can be is determined by the unidenti�ed underlying primitives. In

this section, I report analytical as well as Monte Carlo evidence on the performance of our

bound estimators in �nite samples. The objective is to illustrate how the widths of estimated

bounds vary with structural parameters such as the a¢ liation between private signals, the

number of potential bidders n and the reserve price r.

4.1 Analytical impacts of signal a¢ liations

I start with an example where the impact of signal a¢ liations on how bounds on the all-

screening probabilities (the probability that at no bidder bids above the reserve price in

counterfactual formats) can be studied analytically. I use a parametric design where signal

a¢ liations can be controlled.

Design 1 (n = 2 with pure common values and a¢ liated signals) Two potential bidders
compete in an auction with Vi = (X1+X2)=2 for i = 1; 2. Private signals are noisy estimates

of a common random variable, i.e. Xi = X0 + "i for i = 1; 2. For either bidder, his noise

"i is independent from (X0; "�i), and distributed uniformly on [�c; c] for some 0 � c � 0:5.
The common random term X0 is distributed uniformly on [c; 1� c].

The signals have well-de�ned marginal densities with a simple form on [0; 1]. For example,

for c = 0:25, the density function is f(x) = 4x for 0 � x � 0:5 and 4� 4x for 0:5 � x � 1.
(See Simon (2000) for details.) And their correlation coe¢ cient is:

corr(X1; X2) =
var(X0)

var(X0) + var("i)
=

(1� 2c)2
(1� 2c)2 + 4c2

By de�nition, vh(x; x) = x, vl(x; x) = E[X2jX2 � x;X1 = x], and v(x; x) = x+vl(x;x)
2

. In

this design, vl(x; x) has a closed form, and the impacts of signal correlations on the widths

of bounds on the all-screening probability can be studied analytically. The derivation of the

closed form of vl(x; x; c) is included in the appendix.

Figure 1(a) plots vl(x; x; c) and vh(x; x; c) for c = [0:1 0:2 0:3 0:4]. The distance between

vh and vl is non-decreasing in private signals, as vl(x; x) is a truncated expectation and cannot

increase faster than the threshold x itself. Figure 1(b) plots the boundwidth xh(r; c)�xl(r; c)
as a function of reserve prices for each c. For any given reserve price, bounds on screening

levels are narrower as c decreases and correlation increases. Intuitively, this is due to the
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fact that conditional on winning with a pivotal bid, the di¤erence between the winner�s

expected value and his expected payment in a 2nd-price auction decreases as the signals are

increasingly positively correlated. When c = 0:1 and c = 0:2, the boundwidths are invariant

for r high enough. For di¤erent signal correlations, Figure 1(c) plots the size of bounds on

all-screening probabilities in 1st-price auctions as functions of counterfactual reserve prices

considered. That is, FX(1:2)(xh(r; c); c) � FX(1:2)(xl(r; c); c), where X(1:2) is the higher of two

private signals. As the reserve price increases, the size of the bounds are unambiguously

smaller when signals have higher positive correlations. This is explained by the pattern in

Figure 1(b) and the distribution of X(1:2) as plotted in Figure 1(e). Note the probability

mass of X(1:2) is more skewed to the left when signals are less positively correlated. For a

low reserve price r, both xl(r; c) and xh(r; c) are small and the bounds on the screening level

under r are very close in size for all c. On the other hand, as Figure 1(e) shows, X(1:2) has

more probability mass close to 0 for higher positive signal correlations. Hence for r that are

low enough, the size of bounds on the all-screening probabilities in 1st-price auctions is bigger

for c = 0:1. For higher reserve prices r considered, the widths of bounds on the screening

level is greater for higher c (and smaller positive correlations). Besides, the probability mass

of X(1:2) is greater in the relevant range as signals are less positively correlated. Therefore,

the size of bounds on all-screening probabilities in 1st-price auctions under a higher r are

much bigger for auctions with less correlated private signals.

Figure 1(d) plots the widths of bounds on all-screening probabilities in counterfactual

2nd-price auctions as functions of r considered. That is, FX(2:2)(xh(r; c); c)� FX(2:2)(xl(r; c); c)

for various c 2 [0:1; 0:5]. In this case, the boundwidths associated with a smaller c is almost
unambiguously smaller than those with higher c (and smaller correlations). Likewise, the

pattern is explained by arguments as demonstrated in Figure 1(b) and the distribution of

X(2:2) plotted in Figure 1(f). An obvious departure from the case of 1st-price auctions is

that, for auctions with less correlated private signals, the widths of bounds on all-screening

probabilities increase faster as r increases, reaches their peaks around r 2 [0:3; 0:4] and

then decreases faster than in the case of 1st-price auctions. As Figure 1(f) suggests, this is

explained by the fact that when c is higher, there is more probability mass of X(2:2) around

the center of the support, and the tail of the distribution diminishes faster.

4.2 Performance of F̂ k
RI(r) under i.i.d. signals

This subsection focuses on the performance of three-step estimators F̂ k
RI(r) when private sig-

nals are identically and independently distributed. The i.i.d. restriction can be tested in
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empirical analysis by checking the identity of marginal bid distributions and the indepen-

dence of their joint distribution. Also the i.i.d. assumption helps simplify the estimation

procedures. In this subsection, I vary n, r and distributional parameters and study their

impacts on estimator performances.

Design 2 (n � 3 with PCV and i.i.d. uniform signals) Private signals fXgi=1;::;n
are identically, independently distributed as uniform on [0; 1]. The pure common value is

Vi =
Pn

j=1Xj=n.

Design 3 (n � 3 with PCV and i.i.d. truncated normal signals) Private signals fXigi=1;::;n
are identically, independently distributed as truncated normal on [0; 1] with underlying para-

meters (�; �2). The pure common value is Vi =
Pn

j=1Xj=n.21

The two designs �t in the general framework of symmetric, interdependent value auctions,

as independence is a special case of a¢ liation. Note the distribution of the average of signals

depends on n, and therefore the number of bidders are not exogenous to bidders values.

Hence both designs do not meet necessary restrictions for tests distinguishing PV and CV

auctions in Haile, Hong and Shum (2003). Thus it is appealing to adopt our robust approach

of partial identi�cation for these two designs, which does not require distinction between the

two paradigms. I experiment with di¤erent numbers of potential bidders and reserve prices

for Design 2. For each (n; r), I calculate the nonparametric estimates of F̂ k
RI(r) from 1; 000

simulated samples, each containing equilibrium bids submitted in 500 �rst-price auctions.

For Design 2,

b0n(x) =
n� 1
n

(
1

n
+
1

2
)x

and bids are simulated as random draws from a uniform distribution on [0; n�1
n
( 1
n
+ 1

2
)].

For Design 3, I vary distributional parameters � and � in addition to n and r. For each

(n; r; �; �), I replicate the estimator for 1; 000 times, each based on a simulated sample of

500 auctions. For Design 3,

b0n(x) =

Z x

xL

2

n
s+

n� 2
n

'(s)d
F n�1
X (s)

F n�1
X (x)

where '(x) = � � �
�(x��

�
)��(xL��

�
)

�(x��
�
)��(xL��

�
)
and FX(s)

FX(x)
=

�( s��
�
)��(xL��

�
)

�(x��
�
)��(xL��

�
)
. Equilibrium bids are sim-

ulated by �rst drawing 500 � n signals xil randomly from the truncated distribution, and

calculating b0;n(xil) through numerical integrations. I use the classical approach of midpoint

approximations for numerical integrations for the rest of the paper. For both designs and

21This form of value functions introduces a restriction (normalization) on signals, as it requires support

of signals to be the same as that of values.
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each r, the true counterfactual revenue distribution FRI(r) can be recovered by inverting br(:),

which can be calculated with knowledge of their closed forms above. In symmetric equilibria,

bids under both designs are i.i.d.. This can be tested using the distribution of bids observed,

and in practice simpli�es our estimation as �(b;G0Bn) = b + 1
n�1

G0Bn (b)

g0Bn (b)
and �l(b;G

0
Bn
) = b.

The simpli�ed estimator is �̂(b) � b+ 1
n�1

Ĝ0Bn (b)

ĝ0Bn (b)
, where ĜBn(b) =

1
Ln

PLn
l=1

1
n

Pn
i=1 1(bil � b),

ĝ0n(b) =
1

Lnhg

PLn
l=1

1
n

Pn
i=1K(

bil�b
hg
) and Ln is the number of auctions with n bidders. For

estimation, I use the tri-weight kernel K(u) = 35
32
(1 � u2)1(juj � 1).22 Bandwidths hg is

2:98 � 1:06�̂b(nLn)�
1

4n�4 , where �̂b is the empirical standard deviation of bids in the data.

The bandwidths are chosen in line with the consistency proposition in the appendix, while

the constant factor 1:06�̂b is chosen by the "rule of thumb". (See Li, Perrigne and Vuong

(2002) for an example.) The multiplicative factor 2:98 is due to the use of tri-weight kernels.

(See Hardle (1991) for details.)

Figure 2 plots the true revenue distribution FRI(r) in Design 2 and, for di¤erent n and

r, reports the 5th percentile of F̂ l
RI(r) and the 95th percentile of F̂

u
RI(r) out of 1; 000 pairs of

estimates. The two percentiles form an estimate of a conservative 90% pointwise con�dence

interval for the bounds [F l
RI(r); F

u
RI(r)]. (See Haile and Tamer (2003) for an example.) The

true revenue distribution always falls within the interval. The intervals for a lower r are nar-

rower, holding n constant. On the other hand, more potential bidders correspond to tighter

con�dence regions ceteris paribus. To understand the pattern, note the boundwidth of the

all-screening probability is Pr(b0n(X
(1:n)) � r)� Pr(b0n(X(1:n)) � n�1

n
r) = FX(1:n)( n

n�1
2n
n+2

r)�
FX(1:n)( 2nn+2r), which is increasing in r for a given n. For a given r,

1
n�1

2n
n+2

r decreases in n

and this o¤sets the impacts of a rising 2n
n+2

r and a more left-skewed FX(1:n) as competition

increases. The simulations suggest variations in the width of estimated con�dence intervals

are mostly due to impacts of n and r on the boundwidths of FRI(r).

Figure 3 reports FRI(r) and estimates of conservative 90% con�dence intervals for Design

3. Again, the true revenue distribution falls within 90% point-wise conservative con�dence

intervals for the parameters considered. The impacts of n and r on the estimated con�dence

intervals in Design 3 are the same as those for Design 2 in Figure 2. In addition, Figure

3 also shows impacts of distributional parameters � and � on con�dence intervals. First,

holding n, r and � �xed, the con�dence intervals become narrower as � increases. This is

because for all t, E(XjX � t) gets closer to t as the distribution of X is more skewed to the

left. Consequently, x�(r) decreases for a given r, while the distance between vh and vl also

22The triweight kernel is of order 2. In principle when n � 3, kernels used in ĝ0Bn should be of higher

order. But can lead to the issue of negative density estimates. Therefore empirical literature typically ignore

this requirement and use kernels with order 2.
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becomes smaller. As a result, the bound on the all-screening probability is shifted to the left

and becomes tighter. Second, the impact of � on con�dence intervals depends on �, holding

n and r �xed. A higher standard deviation increases the width of con�dence intervals for

signal distributions su¢ ciently skewed to the left, but reduce the width of con�dence intervals

for signal distributions su¢ ciently skewed to the right. The impacts are more obvious for

distributions skewed to the right. This pattern is explained by similar reasons above. Again,

simulations suggest variations in the width of estimated con�dence intervals are mostly due

to impacts of n and r on the size of bounds on FRI(r).

4.3 Performance of F̂ k
RI(r) with a¢ liated signals

When signals are not independently and identically distributed, there are no simpli�ed forms

for �̂ and �̂l, and the full nonparametric estimates in Section 3 apply. In this subsection I

extended Design 1 for n � 3 so that Vi =
Pn

j=1Xj=n, and experiment with the correlation

parameter c to study its impact on the performance of estimators. With n � 3, it is

impractical to derive the analytical form of the inverse hazard rate fY jX;n(uju)=FY jX;n(uju).
To �nd out the true revenue distribution, I replace vh(x; x; c) and L(sjx; c) with their kernel
estimates in a simulated sample of 5 � 105 auctions, and calculate the equilibrium bidding

strategies using these estimates and numerical integrations. The true counterfactual revenue

distribution FRI(r) is then recovered with knowledge of the distribution of the highest signal

X(1:n). For each (c; n), I simulate 200 samples, with each containing 1; 000 simulated �rst-

price auctions. For each r and revenue level t, Figure 4 reports the point-wise 5-th percentile

of F̂ l
RI(r)(t) and the 95-th percentile for F̂

u
RI(r)(t) out of 200 pairs of estimates. This forms

estimates for a conservative 90% con�dence interval for the bounds on FRI(r). Figure 4

shows the true FRI(r) lies within the estimated con�dence interval for r = 0:2 or 0:5, c = 0:2

or 0:4 and n = 3 or 4. Holding r and c constant, the widths of the estimated con�dence

intervals decrease slightly as n increases. For r = 0:2, higher correlation leads to slightly

wider con�dence intervals, whereas for r = 0:5 higher signal correlation leads to obviously

narrower con�dence intervals. Smaller correlations among signals implies the distribution

of X(1:n) is more skewed to the left, and the distance between vl and vh are bigger. These

explain why a higher c leads to wider con�dence intervals when r is high at 0:5. On the

other hand, when r is low at 0:2, the left-skewness of FX(1:n) o¤sets the impact of a wider

bound [xl(r; c); xh(r; c)] due to a higher c, and may lead to a narrower con�dence interval.

Furthermore, the theory also states for x � x�(r; c) the bounds on �r(b0(x; c)) is tighter

as b0(x; c) increases. For t > r, this counteracts the left skewness of FX(1:n) due to lower
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correlations. This is consistent with patterns in Figure 4 where con�dence intervals on

FRI(r) never broaden substantially as revenue level t increases.

5 Extensions

5.1 Heterogenous auctions

In practice, bids are often collected from heterogenous auctions with varied characteristics

of the objects for sale. If commonly observed by all bidders, such heterogeneity a¤ects

bidders�strategies and revenue distributions in counterfactual auctions. If researchers can

completely control for heterogeneity across auctions by using the observables in the data,

then logic for bounds on revenue distributions in homogenous counterfactual auctions extends

immediately. Speci�cally, auctions are homogenous within subsets of the data if such features

(denoted Z) are controlled for, and the same algorithm in the benchmark model extends to

bounds on revenue distributions conditional on such characteristics FRI(r)jZ=z, which can be

constructed from conditional bid distribution G0BjZ=z. However, real challenges can arise

from observable auction heterogeneity is empirical implementation. Constructing bounds on

conditional revenue distributions requires a large cross-sectional data of homogenous auctions

with �xed features z and a �xed number of potential bidders n. This issue of data de�ciency

aggravates as the dimension of z increases. Below I show if signals are independent from

observable heterogeneities conditional on n, and are additively separable from the latter in

the value functions, then it is possible to "homogenize" bids across heterogenous auctions,

thus alleviating the data de�ciency problem.

A1� (Interdependent Values) Vi;N = h(Z0) + �N(Xi;X�i), where h(:) is di¤erentiable,

and �N is bounded, continuous, exchangeable in its last N � 1 arguments, non-decreasing in
all arguments, and increasing in Xi.

A4 (Conditional Independence of X and Z) Conditional on N = n, fXigi=1;::;n is inde-
pendent from Z.

Then a PSBNE in the auction with no binding reserve price is a pro�le of strategies that

solve:

b0i(x; z;n) = argmax
b
E[(Vi � b)1fmax

j 6=i
b0j(Xj;Z) � bgjXi = x;Z = z; N = n]:



27

Under these restrictions, common knowledge of auction features impact strategies of all

bidders in the same way. As the proposition below shows, the separability and the index

speci�cation of value functions are inherited by bidding strategies in equilibria.

Proposition 6 Under A1�, A2, A3 and A4, bidders�equilibrium strategies satisfy : b0i (x; z;n)
= h(z0) + �(x;n) for all x; z and i, where �(x;n) �

R x
xL
�(s;n)dL(sjx;n), and �(s;n) �

E[�(X)jXi = Yi = s;N = n].

Fix the number of potential bidders n, the proposition implies E(b0ijZ = z; N = n) =

h(z0) + E(�(X;N)j N = n), where the second term is a constant independent from Z.

This becomes a single index model, and both Powell, Stock and Stocker (1989) and Ichimura

(1991) showed  can be identi�ed up to scale, and estimated consistently using average

derivative estimators or semiparametric least square estimators. In the special case where

h(:) is known to be the identity function, an OLS regression of bids from heterogenous

auctions on the characteristics z for a �xed n will estimate  consistently. Alternatively,

including dummies for the number of potential bidders in a pooled regression will also give

consistent coe¢ cient estimators for .

A corollary of the proposition is that for any pair of di¤erent features of auctions z and �z,

the equilibrium strategies for a given signal x are related as b0(x; z;n) = b0(x;�z;n)�h(�z0)+
h(z0). Thus when h is known, bids across heterogenous auctions can be "homogenized" at

any speci�c reference level z so that more observations are available for estimating G0B(Z).

Larger sample size leads to better performance of estimators of bounds on FRI(r)jZ=z.

5.2 Binding reserve prices in data

In practice, bids are often collected from homogenous auctions under a commonly known

reserve price r that is high enough to have a positive probability of screening out some of

the bidders. This gives rise to new challenges relative to benchmark cases where there is no

binding reserve price in the data. First, bids from potential bidders that are screened out

may not be observed. Second, data may only include auctions with at least one bid above

r, and exclude those where everyone is screened out (i.e. X(1) < x�(r)). In both cases, the

algorithm in our benchmark model above can not be applied immediately.

In addition, a binding reserve price r in data also reduces the scope of counterfactual

reserve prices that are interesting for counterfactual analyses. To understand this, note
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bids below r reveal no information about underlying signals, as the link between Gr
B and

structures  2 �
F only holds for br(x; ) � r. The data at hand cannot help address the

question how those bidders who only become unscreened under a lower counterfactual price

will act. Hence the logic behind the bounds in our benchmark case only applies to revenue

distributions in counterfactual auctions with r0 > r. As a result, for all r0 < r, x�(r0) is lower

than x�(r) and can not be bounded in its small neighborhoods using equilibrium conditions.

Throughout this subsection, I focus on the bounds for FRI(r). Extensions to bound FRII(r)
is straightforward and omitted.

5.2.1 Unobserved screened bidders

Unobserved bids from bidders who are screened out matter for bounding FRI(r0) (where

r0 > r) only in the sense that they may make the number of potential bidders unobservable.

For now assume auctions with X(1) < x�(r) are also observed in the data. If the number

of potential bidders is known, as is often the case in applications, then the algorithm for

bounding FRI(r) can be applied even if data do not contain bids from bidders that are screened

out. The following lemma generalizes the equilibrium condition (2) for any rationalizable

distributions under a binding reserve price r.

Proposition 7 Consider any distribution of bids Gr
B in �rst-price auctions with a binding

reserve price r. Then for all  2 	(GB0), �(br(x);Gr
B) = vh(x; ) for all x � x�(r; ).

In the presence of binding reserve prices in data, the lower bound on v(x; x; ) can no

longer be identi�ed from Gr
B, as bids lower than r can not be linked to signals through

equilibrium conditions. The solution is to bound v(x; x; ) below by expected payment of a

winner in second-price auctions with a reserve price r. For x � x�(r; ) de�ne

vl;r(x; ) � r
FY jX(x

�(r)jx)
FY jX(xjx)

+

Z x

x�(r; )

vh(s; s; )
fY jX(sjx)
FY jX(xjx)

ds

Then vl;r(x; ) is increasing in x by monotonicity of the value function and a¢ liations be-

tween signals, and v(x; x; ) � vl;r(x; ) for x � x�(r; ) by the equilibrium condition in

second-price auctions with r. (The formal proof is similar to the benchmark case and omit-

ted.) Hence for all r0 > r, x�(r0; ) is bounded by xh;r(r0; ) � argminx2[x�(r; );xU ](vl;r(x; )�
r0)2 and xl;r(r0; ) � argminx2[x�(r; );xU ](vh(x; x; )� r0)2. Then vh(x; x; ) and vl;r(x; ) are
identi�ed from Gr

B for x � x�(r; ) respectively as �(br(x);Gr
B) and

�l;r(b
r(x);Gr

B) � r
Gr
MjB(rjb

r(x))

Gr
MjB(b

r(x)jbr(x)) +

Z br(x)

r

�(~b;Gr
B)

gr
MjB(rjb

r(x))

Gr
MjB(b

r(x)jbr(x))d
~b
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By similar reasoning as in the benchmark case, bounds on the �rr0-mapping (which maps

br(x) into br(x) for x � x�(r0; )) are identi�ed as

�r;r0;k(b
r(x);Gr

B) = r0 ~L(brk;r0jb;Gr
B) +

Z b

br
k;r0

�(~b;Gr
B)d~L(

~bjb;Gr
B)

where brk;r0 � br(xk;r(r
0; )) for k = l; h, and are identi�ed as inverses of �(:;Gr

B) and

�l;r(:;G
r
B) over [r; b

r(xU)] respectively. It can be shown that �r;r0;k(br(:);Gr
B) is increasing

for x � xk;r(r
0), and inverting �r;r0;k(:;Gr

B) at t � r0 gives bounds on br(�r
0
(t)). Thus bounds

on FRI(r0) can be constructed from the distribution of br(X(1)).

5.2.2 Unobserved screened auctions (with X(1) < x�(r))

When data exclude auctions with a reserve price r that screens out all bidders (i.e. X(1) <

x�(r)), we observe the distribution of equilibrium bids br conditional on more than one bidder

bids above r (denoted Gr
BjB(1)�r) as opposed to the unconditional G

r
B. For b > r, Gr

M jB(bjb)
and grM jB(bjb) can still be identi�ed from Gr

BjB(1)>r, and thus bounds on br(x
�(r0)) and the

�r;r0-mapping can be constructed as above. However, Gr
BjB(1)�r can only be used to construct

bounds on FRI(r)jX(1)�r. That is, for any rationalizable G
r
B and  2 	(Gr

B),

Pr(�(B(1)
r ;G

r
B) < r0jB(1)

r � r)

� Pr(X(1) < x�(r0)jX(1) � x�(r))

� Pr(�l;r(B
(1)
r ;G

r
B) < r0jB(1)

r � r)

and for t � r0,

Pr(B(1)
r � ��1r;r0;l(t;G

r
B)jB(1)

r � r)

� Pr(X(1) � �r
0
(t)jX(1) � x�(r))

� Pr(B(1)
r � ��1r;r0;h(t;G

r
B)jB(1)

r � r)

where B(1)
r is shorthand for br(X(1)). The probability that r screens out all bidders Pr(X(1) <

x�(r)) is needed to bound the unconditional distribution FRI(r). It is impossible to identify

this probability solely fromGr
BjB(1)�r without further restrictions on FX. However, the lemma

below shows when bidder signals are i.i.d., Pr(X(1) < x�(r)) can be recovered from Gr
BjB(1)�r

alone. 23

23Under A1, the auction model still has interdependent values even when fXigi2N are independent and

identically distributed.
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Proposition 8 Suppose signals fXigi=1;::N are i.i.d. in �rst-price auctions with N potential

bidders and a binding reservation price r. If both the number of active bidders and N are

observed, then Pr(X(1) < x�(r)) is identi�ed even if auctions with X(1) < x�(r) are not

observed.

5.2.3 About the number of potential bidders

That the number of potential bidders N is observed is crucial to our discussion of data

generated under binding reserve prices so far. This is not an issue in some applications

where N is directly reported in the data, or where good proxies exist. In other applications,

the issue can be subtle. In some cases, neither bidders nor econometricians can observe

N . Then strategic decisions can be modeled as based on bidders� subjective probability

distributions of N given private signals (denoted p(N = njX = x)).

Bidders integrate vh;N , fY jX;N over N with respect to this distribution and make strate-

gic decisions based on these integrated primitives, so the actual number of potential bidders

becomes irrelevant in equilibria. The new equilibrium conditions can also be manipulated

through change of variables to get an analog of (2) that links bid distributions observed

to model primitives. One example is the o¤-continental shelf (OCS) auctions of oil-drilling

rights studied by Hendricks, Pinkse and Porter (2003). In OCS auctions, potential bidders�

decisions to submit bids take multi-stages. The authors endogenize participations by intro-

ducing multiple signals, each corresponding to a stage in the decision-making. Then only

those still active in the last-stage and their signals are relevant to decisions on strategic

bids. The additional restrictions in the model is that decisions to remain active till the

last stage only depends on signals from previous stages, and that conditional on last-stage

signals, the signals in previous stages reveal no information about bidders�values. The logic

of partial identi�cation in benchmark models can be extended in principle to bound revenue

distribution in such equilibria with unobserved potential bidders.

In other applications where bidder signals are i.i.d., the number of potential bidders can

be identi�ed even if data only report the number of actual bidders. This is because in

equilibria, the number of actual bidders is distributed as Binomial (n; p) with p equal to the

screening probability Pr(x � x�(r)). Provided the distribution of bids and actual bidders

are rationalizable,24 both n and p are uniquely identi�ed.

24See Guerre et.al (2000) for conditions for rationalizability.
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6 Application: U.S. Municipal Bond Auctions

Municipal bonds are a chief means of debt-�nancing for U.S. state and county governments.

They are issued to �nance public projects such as construction or renovation of schools

and public transportation facilities. Interest income from municipal bonds are exempt from

federal and local taxes, and hence municipal bonds appeal to investors in high tax brackets.

In 2005, the total par amount of outstanding municipal bonds was $1.8 trillion. 25

6.1 Institutional details

Muni-bonds are identi�ed by issuers and basic features such as coupon rates, maturity dates,

and par amounts.26 Investors valuate muni-bonds based on this information and implied

risks, including credit risks, interest rate risks, and liquidity risks.27 On the primary market,

muni-bonds are issued through �rst-price auctions to potential underwriters (mostly invest-

ment banks). Notices of these competitive sales are posted on major industry publications

such as The Bondbuyer. In practice, issuers usually package a series of bonds for sale in one

auction, and investment banks participate by bidding a single dollar price per $100 par value

for the whole series. The bidder with the highest dollar price wins the right to underwrite

the entire series, and may resell the series on secondary markets with a mark-up. To decide

whether and how to bid, securities �rms assess the creditworthiness of the municipalities

and prospects of the bonds on secondary markets. For issues with a large par amount, in-

vestment banks usually form bidding syndicates, where members share responsibilities for

reselling the bonds as well as the liability for unsold bonds. A syndicate is usually clearly

de�ned for each issuance, as underwriters traditionally stay in the group where they bid on

the last occasion that the issuer came to market. As of 2006, more than 2,100 securities

�rms are registered with the Municipal Securities Regulatory Board and authorized as legal

underwriters. However, only a small number of these �rms are active bidders in competitive

sales. By 1990, 25 leading underwriters managed about 75 percent of the total volume of all

25Source of information : SIFMA(2005)
26A coupon rate is the interest rate stated on the bond and payable to the bondholder on a semi-annual

basis. A maturity date is the date on which the bondholder will receive par value of the bond along with its

�nal interest payment.
27Credit risk measures how likely the issuer is to default on its payment of interests and principals. Interest

rate risk is due to �ucuations in real interest rates that a¤ect the market value of bonds (to both speculators

and long-term investors). Liquidity risk refers to the situation where investors have di¢ culty �nding buyers

when they want to sell, and are forced to sell at a signi�cant discount to market value.
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new long-term issues either as lone bidders or leaders of syndicates.

6.2 Bond values: private or common ?

The bounds proposed introduce an approach of partial identi�cation for policy analyses which

is applicable regardless of underlying paradigms (PV or CV ). This is highly relevant in the

context of muni-bond auctions, as institutional details do not suggest conclusive evidence

for either paradigm. Besides, empirical methods proposed so far for di¤erentiating the two

all have limitations in practice.

The value of bonds for �rms in these auctions are resale prices on secondary markets.

On most occasions bidders on the primary market cannot foresee at what price they can

resell the bonds, and therefore only have noisy estimates. These estimates capture the

syndicates�expectation on how investors on secondary markets interpret bond features, and

depend on their beliefs about the skills of their sales and trading sta¤. The estimates are

also built on companies�perception of how investors view relevant uncertainties such as the

creditworthiness of municipalities and �uctuations of future real interest rates.

The crucial question is whether a bidding syndicate can extract additional useful infor-

mation about bond values if they could access competitors�estimates. The auction is one

with common values if and only if the answer is positive. On some occasions, all participat-

ing �rms manage to pre-sell bonds to secondary investors prior to their actual bidding. Such

auctions �t in the PV paradigm, as all bidders have perfect foresight of their values. On

other occasions, pre-sales are not possible or limited in scope, and �rms can have heteroge-

nous source of information about municipalities�creditworthiness, or di¤erent interpretation

of factors related to bond values. Unless all �rms con�dently believe their own information

or interpretation dominates their competitors�in accuracy, they cannot dismiss competitors�

estimates as uninformative, and auctions are closer to common values.

While the informational environment per se does not justify either PV orCV conclusively,

data limitations also deter empirical e¤orts to discriminate between them. First, there is

reason to believe the number of potential bidders is correlated with bond values. Therefore

the test in Haile, Hong and Shum (2003) cannot be applied, for it requires the variation in

the number of bidders to be exogenous with respect to the distribution of values. Second,

our data does not have ex post measures of bond values that can be used to test whether

vh(x; x) = E(VijBi = b0(xi); B�i = b0(x�i)) is independent from B�i. Finally muni-bond

auctions proceed with no announced reserve prices and therefore the testable restrictions in
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Hendricks, Pinkse and Porter (2003) are not useful.

This paper focuses on an robust approach for policy analyses by bounding counterfactual

revenue distributions under general restrictions that encompass both PV and CV paradigms.

The lower bound point-identi�es counterfactual distributions only when values are private.

On the other hand, if nothing is known about the interdependence between values, then any

point between the bounds can be rationalized as the true counterfactual revenue distribution

by certain structures in the identi�ed set de�ned by the observed bid distribution.

6.3 Data description

The data contains all bids submitted in 6,721 auctions of municipal bonds on the primary

market in the United States between 2004 and 2006. They are downloaded from auction

worksheets at a website of Thompson Financial. The data reports the identity of issuers, the

sale date, the date of the �rst coupon, par values of each bond in a series, coupon rates of

each bond, S&P and Moody�s ratings of each bond, the type of government credit support for

the issuance (general obligation or revenue).28 It also records whether the issuance is bank-

quali�ed.29 In addition, the data includes macroeconomic variables measuring opportunity

costs of investing in bonds.

There are 97,936 bonds in 6,721 series, with an average of 14.5 for each issue. About 70%

of the series have 10 to 20 bonds. The average coupon rate of all bonds is 4.06% and the

average number of semiannual payments is 19.6. I use the par-weighted averages of coupon

rates and numbers of coupon payments as a measure of "overall" interest rates and maturity

for a series. About 90% of all issuances have a weighted average coupon rate between 3%

and 5%. The weighted average maturity is approximately normally distributed with a mean

of 20.8 and a standard deviation of 9.5. The total par of a series ranges from $0.1 million

to $809 million, and is skewed to the right with a mean of $21.4 million and a median of $6

million. About 64.5% of the series are backed by full credit of municipalities, while the rest

28Bonds are categorized into two groups by the degree of credit support from municipalities. General

obligation bonds are endorsed by the full faith and credit of the issuer, whereas revenue bonds promise

repayment from a speci�ed stream of future income, such as that generated by the public project �nanced

by the issue. The latter usually bears higher interest rates due to risk premium.
29The Tax Reform Act of 1986 eliminated the tax bene�ts for commercial banks from holding municipal

bonds in general. But exceptions were made for "bank-quali�ed" bonds, for which commercial banks can

still accrue interests that are tax-exempt. Hence banks have a strong appetite for bank quali�ed bonds that

are in limited supply, and bank quali�ed bonds carry a lower rate than non-bank quali�ed bonds.
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are backed by limited municipal support, such as revenue stream from public works �nanced

by the issuance. In practice, issuers have the option to include reserve prices in the notice

of sale, but few issuers use this option. For each auction, the number of bidding coalitions,

the number of companies within each coalition and their identities are all reported in the

data. The number of syndicates ranges from 1 to 20, with a mean of 5.6 and a standard

deviation of 2.6. Series that received more than 3 but fewer than 7 bids account for 68% of

all auctions.

The dollar prices tendered are not always reported. However, total interest costs for all

bids are always reported.30 I use the following formula to calculate and impute missing dollar

bids :

B = (1 + TIC)�tf �

PQ
q=1

�PTq�1
t=0

Cq=2

(1+TIC
2
)t
+ Pq

(1+TIC
2
)Tq

�
PQ

q=1 Pq
� 100

where q indexes bonds in a series of Q bonds, Tq is the number of semi-annual periods

from the date of �rst coupon until maturity, Cq and Pq are coupon and principal payments

respectively, tf is the time until �rst coupon payment and B is the dollar bid per $100 of face

value. Table 1 summarizes the distribution of all 37,547 bids submitted in 6,721 auctions.

The 1st percentile is $95.32 and the 99th percentile is $109.30. The median is $99.40, the

mean is $99.92, and the standard deviation is $2.76. The median winning dollar bid is $99.66,

the average is $100.01, and the standard deviation is $2.36.

6.4 Homogenization of bids

There is a wide variation of bond features in the data. In competitive sales, syndicates take

these characteristics into account when they bid, and thus strategies across auctions are not

homogenous as the benchmark model posits. In principle bounds still apply to subsets of

homogenous auctions where bond features are controlled. The main empirical challenge in

the implementation is that constructing nonparametric bounds on conditional revenue dis-

tributions require large samples for auctions with �xed speci�c features. Below I tackle this

issue by homogenizing bids across heterogenous auctions. The working assumptions are: (i)

�rms�estimates of bond values are independent from publicly known bond features condi-

tional on the number of participating syndicates; (ii) value functions are additively separable

in private signals and commonly observed bond features. Under these assumptions, marginal

30Total interest cost (TIC) is the interest rate that equates dollar prices with discounted present value of

future cash�ows the series.
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e¤ects of bond characteristics on equilibrium bids are identi�ed. (I discuss a speci�cation test

of these restrictions below.) Thus bids in distinct auctions can be homogenized by removing

di¤erences due to variations in bond features as in Section 5.

In competitive sales with n bidding syndicates, ex ante bond values for a potential bidder

is :

Vil = Z
0
l + �n(Xil;X�il)

where i = 1; ::; n indexes the bidding syndicates, l = 1; 2; ::Ln indexes auctions with n syndi-

cates, Zl is a vector of publicly known features, and Xl = (Xil;X�il) is a Rn-valued random
vector of idiosyncratic signals. This speci�cation re�ects the intuition that marginal e¤ects

of idiosyncratic information (signals Xl) may not interact with those of public information

(bond features Zl). Syndicates in an auction may di¤er in two aspects: the number of mem-

ber �rms, and local presence of �rms�branch o¢ ces in the issuer�s state. Recent empirical

works suggest there is no conclusive evidence that they can lead to informational asymme-

tries.31 Hence I maintain symmetry restrictions of �n and FX as in the benchmark model in

Section 2.

The equilibrium strategy is:

bil(xil; zl;n) = z
0
l + �l(xil; n) (4)

where �(x; n) �
R x
xL
�n(s)dLn(sjx), Ln(sjx) � expf�

R x
s

fY jX;n(uju)
FY jX;n(uju)

dug and �n(s) �E[�N(Xi;X�i)

j Xi = maxj 6=iXj = s; N = n]. Thus strategic bids can be decomposed into two additive

components. The �rst term suggests marginal e¤ects of bond features are invariant to poten-

tial competitions, and the second term captures e¤ects of potential competition on strategic

bids. The signals and competitions interact with each other and their e¤ects cannot be

separated. Regressing bids on bond features and a vector of dummies for the number of

potential bidders will estimate  consistently. That is, in the pooled regression,

bil(xil; zl) = d
0
l� + z

0
l + uil (5)

where dl is a vector of dummies for n, the error term uil is mean independent conditional

on dl and zl.32

31See Shneyerov (2006).
32To see this, �x n, then Proposition 5 shows equilibrium bids are:

bil(n) = 0(n) + z
0
l + "il(xil; n)

where 0(n) � E[�l(Xil; Nl)jNl = n] and "il(xil; n) � �l(xil; n)� 0(n). It follows from the independence of

Xl and Zl conditional on number of bidders that E["il(Xil; Nl)jNl = n;Zl = zl] = 0 for all (nl; zl).
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6.4.1 GLS estimates of index coe¢ cients

When there is intracluster correlation among error terms within auctions, a simple ordinary

least square estimator will be ine¢ cient. This can happen when syndicates� signals Xl

are strictly a¢ liated. One explanation for a¢ liated signals in the �nance literature is the

"herding" e¤ect among research and sales sta¤ across syndicates. For example, researchers

in di¤erent syndicates tend to have similar professional backgrounds or trainings and hence

are inclined to make similar decisions on the choice and weights of value-related factors in

their analyses. Strict a¢ liation among signals could also happen when syndicates�estimates

consist of idiosyncratic noisy measurements of a common, underlying random variable.

Table 2 below reports the GLS estimates and t-statistics of  for equation (5). The

dependent variable is the dollar price bid. The regressors include publicly known bond

features : weighted average coupon rate (wacr), weighted average maturity (wapn), total

par value of the series (totpar), a dummy for whether the series is supported by full municipal

credit (sectype), a dummy for whether the series is bank-quali�ed (BQ), a dummy for whether

the series is rated with investment grade (HR) and two interaction terms type_cr andHR_pn

respectively.33 Butler (2007) suggests local presence of syndicates in the geographical area

of the issuer could also in�uence their private information about the credibility of the issuer

and hence their estimates of the value of the series. Therefore I also include in the regressors

some dummies for the regions, MW (Midwest), NE (New England), SW (Southwest), South

and West, to test the impact of geographic location on bids.

The weighted average coupon rates and maturity are both highly signi�cant at 1% level,

with positive and negative marginal e¤ects respectively. These estimates con�rm the in-

tuition that bond values increase with cash�ows from coupons and decrease as maturity

increases because of higher risks in the �uctuation of interest rate and in�ation. Municipal-

ity support has a signi�cant positive e¤ect on the bids. Controlling for other features, the

average dollar price is $2.47 higher for bonds supported by the full credit of municipalities.

Bond ratings by S&P and Moody�s have no signi�cant impact on bids ceteris paribus. A

possible explanation is that the syndicates�research forces do not consider ratings informa-

tive conditional on their own research on bond values. The dollar bid for bank-quali�ed

series are on average about 84 cents lower than non bank-quali�ed ones. The e¤ect is statis-

tically signi�cant at 1% level. Besides, an increase of $1 million in total par leads to a slight

increase of 1.76 cents in the dollar price. This can be explained by the fact that average

participation costs for a syndicate (e.g. time and e¤ort on research) per $100 in par is lower

33The unit for wapn is 10 semin-annual coupon payments and the unit for totpar is $100 million.
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for issuance with larger par amount. The interaction of sectype and wacr are also highly

signi�cant at 1% level, suggesting marginal e¤ects of coupon rates are lower for series with

full municipal credit supports. There is no conclusive evidence for regional e¤ects on bids

except that dollar prices for series issued in New England are higher on average than those

issued in the Midwest.

6.4.2 Speci�cation tests

Two identifying restrictions in the regression equation (5) are additive separability and con-

ditional independence of bond features and signals in value functions. A testable implication

of these two restrictions is that marginal e¤ects are constant and invariant to the number of

potential bidders. That is, for each n, the following regression equation holds:

bil(n) = 0(n) + z
0
l + "il(xil; n)

where 0(n) � E[�l(Xil; Nl)jNl = n] and "il(xil; n) � �l(xil; n)� 0(n) is mean-independent

conditional on Zl and n. On the other hand, if either restriction is not satis�ed, bidding

strategies are nonseparable in Zl, Xil and n. Consequently, marginal e¤ects of bond fea-

tures on bids change with the number of potential bidders. Therefore we can test the two

restrictions jointly by comparing estimates for auctions with di¤erent numbers of bidding

syndicates.

Table 3(a) reports GLS estimates in regressions for n between 4 and 8. The choice

of regressors z is the same as that in (5). The estimates are consistent across n in signs

and signi�cance. For each signi�cant characteristic of the series, Table 3(b) reports test

statistics for the pair-wise hypotheses that coe¢ cients are the same in the two regressions

with di¤erent n. The statistics are constructed as the ratio of di¤erences between GLS

estimates and the standard error of the di¤erence.34 Under null hypotheses, the test statistics

are asymptotically standard normal.

The results show di¤erences between sizes of estimates are insigni�cant. With the ex-

ception of weighted average coupon rates for n = 4, all other estimates are not signi�cantly

di¤erent from their counterparts under a di¤erent n. There is no statistically signi�cant

evidence against the hypotheses that the value function is additively separable and bond

34Note GLS estimators for di¤erent n are independent, for (Zl; Nl; Xl) are i.i.d. draws from the same joint

distribution. Hence the standard deviation of the di¤erence in two estimators can be consistently estimated

by adding up their standard errors.
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features have no bearing on the distribution of idiosyncratic signals conditional on the num-

ber of participating syndicates.

6.5 Results

6.5.1 Point and interval estimates for F̂ k
RI(r) and F̂ k

RII(r)

This section reports bound estimates on counterfactual revenue distributions for a reference

bond series when there are n = 4 bidding syndicates in the auction. The reference series is

issued in the Midwest, bank-quali�ed, backed by full municipal credit, and has an investment

grade from S&P and the Moody�s. The reference series has a weighted average coupon rate

of 4% and maturity of 5 years, as well as a total par of $4:84 million. These are the medians

of features of the bond series among auctions with 4 bidding syndicates.

Figure 5(a) plots kernel density estimates of the ordered bids that are "homogenized" at

the reference level, which are calculated using GLS estimates in regressions with 4 bidders.

Distributions of the ordered bids are approximately normally distributed with similar stan-

dard deviations and the di¤erences between the median of adjacent ordered bids are between

$0.25 and $0.35 per $100 in par amount. I use the product of tri-weight kernels for estimating

GM;B and gM;B. The choice of bandwidths follows the "rule of thumb" discussed in Monte

Carlo section.35 The data is parse close to the both boundaries even after trimming bids

that are within one bandwidth from the minimum and maximum bids reported. To avoid

poor performances of the kernel estimates of �̂l for lower dollar values, I trim the bids at the

0.5-th and 99.5-th percentile.36 In the data, bids from the same auction are almost always

trimmed together.

Figure 6 plots estimates �̂ and �̂l and suggests the distance between estimates of bounds

on b0(x�(r)) only widens slowly as r increases. That �̂l stays mostly above the 45-degree

line is evidence for strict a¢ liations between private estimates within each auction. Table 4

below summarizes estimated bounds on b0(x�(r)) and the probability that no one bids above

r (hereafter referred to as the all-screening probability) for di¤erent reserve prices.

35The bandwidths hG and hg are respectively 2:98 � 1:06�̂b � (4L4)�
1

4n�5 = 2:43 and 2:98 � 1:06�̂b �
(4L4)

� 1
4n�4 = 2:57.

36The distance between the minimum bid and the 0.5-th percentile is about $5. The number is greater

than the smoothing parameter hg = 2:57 used in the estimation.
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Table 4 : Estimated bounds on the all-screening probability

r b̂0(xl(r)) b̂0(xh(r)) b:w: of b0(x�(r)) F̂ l
RI(r)(r�) F̂ u

RI(r)(r�)

98 97:17 97:89 0:72 0:0540 0:1256

99 98:00 98:83 0:83 0:1488 0:3860

100 98:76 99:73 0:97 0:3609 0:6865

101 99:45 100:60 1:15 0:5935 0:8837

102 100:13 101:39 1:26 0:8074 0:9516

103 100:74 102:14 1:40 0:9042 0:9702

Table 4 suggests marginal bidders under r are estimated to bid lower than r in the scenario

with no binding reserve price. It is consistent with the theoretical prediction that FRI(r)(r) is

less than FRI(0)(r). The di¤erence between the boundwidths of the all-screening probability

for r = 98 and r = 100 is mostly due to the distribution of winning bids with no binding

reserve prices. Figure 5(b) shows the distribution of b(1:4)0 (the winning bid out of 4 bids) has

a larger mass in [b0(xl(100)) b0(xh(100))] = [98:75 99:73] than in [b0(xl(98)) b0(xh(98))] =

[97:17 97:89]. Therefore the bounds on the all-screening probability is much wider for

r = 100 even though bounds on b0(x�(100)) is only slightly wider than those of b0(x�(98)).

For reserve prices between $98 and $103, the solid and dotted lines in the panels of Figure

7 depict point estimates F̂ u
RI(r) and F̂

l
RI(r) respectively. In addition, I construct 100 bootstrap

samples, each containing 1075 auctions drawn with replacement from the estimating data.

For all levels of revenue, I record the 5-th percentile of F̂ l
RI(r) and 95-th percentile of F̂

u
RI(r).

They form a conservative, pointwise 90% con�dence interval of [F l
RI(r); F

u
RI(r)], and are plotted

in Figure 7 as broken lines. In addition, the table below reports the bounds on major

percentiles according to the estimates of bounds on F̂ l
RI(r) and F̂

u
RI(r).

Table 5 : Estimated bounds on quartiles of FRI(r)

r l:b: 1st u:b: 1st l:b: 2nd u:b: 2nd l:b: 3rd u:b: 3rd

98 98:47 98:66 99:18 99:28 99:93 99:98

99 99:08 99:30 99:29 99:54 100:01 100:14

100 v0 v0 v0 100:07 100:14 100:48

101 v0 v0 v0 v0 v0 101:09

Revenue distribution above the reserve price depends on the distribution of b0(x) and the

�r functional mapping b0(x) andG0B into br(x). The densities plotted in Figure 5 (a) illustrate
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homogenized winning bids are approximately normally distributed. Besides, our estimates

of bounds on �r are approximately linear. Therefore bound estimates F̂ k
RI(r)(t) for t > r

increase at decreasing rates, a pattern similar to normal distributions. By construction,

estimates of bounds on the all-screening probabilities are monotone in reserve prices (i.e.

F̂ k
RI(r)(r�) is increasing in r for k = l; u). In addition, our estimates suggest that for any pair

of reserve prices r < r0, F̂ k
RI(r0)(t) < F̂ k

RI(r)(t) for t � r0. This is consistent with the theoretical

prediction that for a given signal above the screening level, �rms bid less aggressively when

the reserve price is lowered. Likewise Figure 8 plots point estimates for revenue distribution

in second-price auctions as well as the 90% con�dence intervals for [F l
RII(r)(t); F

u
RII(r)(t)].

6.5.2 Choice of optimal reserve prices

Knowledge of revenue distributions in counterfactual auctions makes it possible to use other

distribution-based criteria for comparing auction revenues, instead of expectations alone.37

This is especially useful when the seller is known to be risk-averse and expected utilities are

used as criteria.

A natural consequence of our partial approach is that only bounds on these criteria

functions can be calculated. Such bounds on criteria functions are also tight and exhaust

all information possible from equilibrium bids without further restrictions on value functions

and signal distributions. As a result, answers to policy questions above involves comparing

bound estimates rather than point estimates. Bounds on criteria functions can also be used

to bound optimal reserve prices following the logic in Haile and Tamer (2003).

A value for v0 is needed for calculating both upper and lower bounds on E(RI(r)) and

E(RII(r)). This should be measured by the amount of money that a municipality would be

able to raise if it had borrowed through an alternative, next-cheapest channel (i.e. a creditor

that requires the next lowest interests than syndicates in the auctions). The proxy for v0
I use here is $95:71, and it is calculated as the present value per $100 in par of cash �ows

from the coupon and principal payments of a reference bond, with the discount rate being

the 99-th percentile of total interest rates reported in the data.

Figure 9(a) plots estimated upper and lower bounds on E(RI(r)) (denoted Êh(RI(r)) and

Êl(R
I(r)) respectively), which are calculated from F̂ l

RI(r) and F̂
u
RI(r) through discretization

and numerical integration using midpoint approximations. The solid lines plot Êk(RI(r))

37Within �rst-price auctions, each r > v0 can be justi�ed as optimal under the criterion of maximizing

Pr(RI(~r) � r). That is r = argmax~r>v0 Pr(R
I(~r) � r) for all r > v0.
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and the dotted lines plot Êk(RII(r)). The upper bounds of expected revenue correspond to

the case of PV auctions. Note estimates for Êh(RII(r)) are higher than Êh(RI(r)) for almost

all r in the range. This is consistent with the implication of Revenue Ranking Principle:

for a �xed level of r, the expected revenue is higher for second-price auctions when signals

are a¢ liated. For �rst-price auctions, Êh(RI(r)) is maximized at r = $98:68 to be $99:29,

and Êl(R
I(r)) is maximized at r = $96:26 to be $99:16. An argument similar to Haile

and Tamer (2003) suggests the optimal reserve price that maximizes E(RI(r)) must be in

the range [$96:12; $99:21]. For second-price auctions, Êl(RI(r)) and Êh(R
I(r)) are both

maximized at r = $96:57 with the maximum $99:94, thus providing a point estimate for

E(RI(r))-maximizing reserve price. Instead of calculating a range of r that maximizes the

expected revenue, an alternative is to pick r that maximizes either the lower or upper bound

on E(RI(r)). In the case of risk-neutral bidders, estimates for Êl(RII(r)), Êh(RII(r)) and

Êl(R
I(r)) are all close to being monotone, and their maximizers are all close to the boundary

$96.

A major motivation for focusing on revenue distribution in counterfactual analyses is the

risk aversion of the seller. Given any speci�cation of the seller�s utility function (denoted

u(t)), fF̂ k
Rj(r)g

k=l;u
j=I;II can be used to estimate bounds on the seller�s expected utility (denoted

fUk(FRj(r))gk=l;uj=I;II). Like the case with a risk-neutral seller, these bounds can be used to

put a range on an optimal reserve price that maximizes U(FRj(r)), or be used as criteria

themselves for choosing reserve prices.

I consider three speci�cations of the seller�s utility function: uDARA(t) = ln(t) (DARA)

and uCRRA(t) = t1��

1�� with � = 0:6 and 0:9 (CRRA). Figure 9(b), (c) and (d) plot estimated

bounds on the expected utilities in �rst- and second-price auctions (i.e. fUk(FRj(r))gk=l;uj=I;II)

for DARA, CRRA( � = 0:6) and CRRA( � = 0:9) utility functions respectively. Table 6

below summarizes reserve prices that maximize estimated bounds of expected utilities in

�rst-price auctions, as well as estimated bounds on optimal r� maximizing expected utilities.

Table 6 : Optimal reserve prices for �rst-price auctions

ÛDARA
l ÛDARA

h Û�=0:6
l Û�=0:6

h Û�=0:9
l Û�=0:9

h

r(maximizer) 96:19 98:65 96:23 98:68 96:25 98:66

maximum 4:593 4:594 15:711 15:719 15:822 15:824

bounds on r� [96:24; 99:20] [96:17; 99:32] [96:21; 99:20]

In second-price auctions, estimates of bounds on expected utilities under di¤erent spec-

i�cations are all maximized at $96:26, with the maxima being 4:594, 15:743 and 15:808
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respectively. As a result, we get a point estimate of the optimal reserve price r� at $96:26 for

all three speci�cations. Both maximizers across di¤erent speci�cations of utility functions

are close to each other and so are the interval estimates. This is because uDARA, u�=0:6 and

u�=0:9 are all approximately linear for the range of revenues considered in this application.

As a result, estimated bounds on fU(FRj(r))gj=I;II as functions of r are close to being linear
transformations of each other.

On the other hand, estimates for di¤erent u(:) yield di¤erent implications regarding the

choice of format between �rst- and second-price auctions. For DARA utility functions, the

point estimate for the optimal reserve price in second-price auctions is $96:26, with a maxi-

mum ÛDARA(FRII(96:26)) = 4:594. This is equal to the maximized value for ÛDARA
h (FRI(98:65)).

Hence estimates suggests a seller with decreasing absolute risk aversion should prefer second-

price auctions in general, and may be indi¤erent between the two formats if the auction is

known to belong to the PV paradigm. For CRRA utilities with � = 0:6, the implication is

the same as in the case with risk-neutral sellers. However, for CRRA utilities with � = 0:9,

estimates suggest �rst-price auctions should be preferred over second-price ones. The pattern

is due to the fact that FRI(r) always crosses FRII(r) from below for any given r, and u�=0:6

increases faster than u�=0:9.

Finally a technical note is in order. Except for Êh(RI(r)) and Ûh(RI(r)), other estimates

of bounds on fE(Rj(r))gj=I;II and fU(Rj(r))gj=I;II are almost monotonically decreasing in
r. In general this need not be the case in estimation. To see this, note that none of the

estimates fF̂ k(Rj(r))gk=l;hj=I;II reported in Figure 7 and Figure 8 are stochastically ordered in

r. In this incidence, the monotonicity is explained by the fact that our measure of v0 is low

at $95:71 and that estimates b̂r(xh(r0)) are close to r0 for all (r; r0).

7 Conclusion

In structural models of �rst-price auctions, interdependence of bidders�values leads to non-

identi�cation of model primitives. That is, distributions of equilibrium bids observed in a

given auction format can be rationalized by more than one possible speci�cations of signal

and value distributions. While this negative identi�cation result rules out policy analyses

that rely on exact knowledge of primitives, the distribution of bids observed in equilibria

should still convey useful information about primitives that can be extracted for counterfac-

tual revenue analyses. This paper derives bounds on revenue distributions in counterfactual

auctions with binding reserve prices. The bounds are the tightest possible under restrictions
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of interdependent values and a¢ liated signals, and can be used to compare auction formats

or bounds on optimal reserve prices. This approach also addresses the empirical di¢ culty of

di¤erentiating PV and CV paradigms in policy analyses. The bounds can be nonparamet-

rically consistently estimated, and Monte Carlo evidence suggests these estimators also have

reasonable �nite sample performances.

Observed heterogeneity in auction characteristics can be controlled for by conditioning

counterfactual analyses on these auction features. Under the restriction of additive separa-

bility of signals and auction characteristics in value functions, the marginal e¤ects of auction

features can be identi�ed if signals are independent from auction features conditional on

the number of bidders. By removing variations due to observable auction heterogeneity, the

bids across various auctions can be "homogenized" to bids in auctions with given speci�c

features. The issue of data generated under a binding reserve price also does not pose major

challenges to the construction of bounds, provided the data report the number of potential

bidders or good proxies of this number.

Applying this methodology to U.S. municipal bond auctions on the primary market

yields informative bound estimates of revenue distributions in counterfactual auctions with

binding reserve prices. These estimates are then used to bound the reserve prices that

maximize expected revenues for risk-neutral sellers. For risk-averse sellers, bounds on revenue

distributions are also used to bound optimal reserve prices which maximize their expected

utility under di¤erent speci�cations of utility functions.

An interesting direction for future research include extensions of partial-identi�cation

methods for more complicated cases such as asymmetric information among bidders and

unobserved auction heterogeneity. Another promising direction is inference using our three-

step bound estimates. For example, suppose data reports exogenous variations in binding

reserve prices. Then a novel test for private values can be constructed by comparing the

actual revenue distribution under a higher reserve price and the hypothetical upper bound

on the revenue distribution constructed from bids in auctions with lower reserve prices.
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8 Appendix A: Proof of identi�cation results

Proof of Proposition 1. To prove necessity, suppose  2 �CV 
 F generates G0B in such

an equilibrium. Then the support of B is SNB� [b0L; b
0
U ]
N , with b0L � vh(xL; xL; ) and

b0U = b0(xU ; xU ; ). Note 8b 2 [b0L; b0U ]N ,

GB0(b) � Pr(b0(X1; ) � b1; ::; b0(XN ; ) � bN)

= Pr(X1 � �0(b1; ); ::; XN � �0(bN ; ))

� FX(�
0(b; ))

where �0(:; ) denotes the inverse bidding strategy in equilibrium under the structure  and

no binding reserve prices. Symmetric equilibrium and exchangeability of FX implies GB0(b)

must be exchangeable in b for all b 2 SNB . The a¢ liation of B = (b0(X1; ); ::; b0(Xn; ))

follows from the monotonicity of b0(:) and the a¢ liation of X by Theorem 3 in Milgrom

and Weber (1982). The �rst-order condition (2) implies �(b;GB0) = vh(�
0(b; ); �0(b; ); )

8b 2 [b0L; b0U ], where vh (x; x; ) is increasing in x on SX by the de�nition of �CV 
F . Hence
the strict monotonicity of �0(b; ) implies �(b;GB0) is increasing over SB. The proof of

su¢ ciency uses a claim and an example below.

Claim A1 Suppose a rationalizable bid distribution GB0 that satis�es conditions (i) and

(ii) in Proposition 1. Then a structure  = (�; FX) 2 �
F rationalizes GB0 if and only  

satis�es the following �xed-point equation for all x 2 SNX ,

FX(x) = GB0(�
�1(vh(x1; x1; );GB0); ::; �

�1(vh(xN ; xN ; );GB0)) (6)

Proof of Claim A1 Suppose  2 �
F rationalizes such a GB0 in an increasing, symmetric

equilibrium. Then FX(x) = GB0(b
0(x; )) for all x 2 SNX , where b

0(:; ) is the strictly

increasing strategy in equilibrium that solves (2) with the boundary condition b0(xL; ) =

vh(xL; xL; ). Then the rationalizability of GB0 and the monotonicity of � (:;GB0) implies

b0(x; ) = ��1(vh(x; x; );GB0) for all x 2 SX . It follows that (6) must hold. To prove

su¢ ciency, suppose GB0 is symmetric and a¢ liated with the support SNB � [b0L; b
0
U ]
N and

�(:;GB0) is increasing on the marginal support SB. Consider a � = (��; �FX) 2 � 
 F that

satis�es (6). We need to show GB0(b) = �FX(�
0(b; � )) 8b 2 [b0L; b0U ]N , where �0(:; � ) is the

inverse of the bidding strategy in a symmetric, increasing equilibrium b0(:; ) that solves (1)

with the boundary condition b0(xL; � ) = vh(xL; xL; � ).38 The monotonicity of vh(x; x; � ) in

38Existence of symmetric, increasing PSBNE is not an issue since by the de�nition of � and F , they exist
for all  2 �
F .
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x and �(:;GB0) over SB and the choice of � implies GB0(b) = �FX(v
�1
h (�(b;GB0);

� )) for all

b 2 [bL; bU ]N .

Hence it su¢ ces to show ��1(vh(:; :; � );GB0) satis�es the �rst-order conditions in (1) with

the boundary condition ��1(vh(xL; xL; � );GB0) = vh(xL; xL; � ). By the same argument as in

Proposition 1 in Li, Perrigne and Vuong (2002), it can be shown that limb!b0L
�(b;GB0) = b0L

under the rationalizable conditions on GB0. Hence the boundary condition is satis�ed.

Let vh(x) be a shorthand for vh(x; x; � ) and �
�1() for ��1(:;GB0). Furthermore, from the

construction of � ,

�FY jX(xjx) = GM0jB0 [�
�1(�vh(x))j��1(�vh(x))]

�fY jX(xjx) = gM0jB0 [�
�1(�vh(x))j��1(�vh(x))]��1

0
(�vh(x))�v

0
h(x)

Thus ��1(�vh(:)) solves (1) if

�v0h(x)�
�10(�vh(x)) = [�vh(x)� ��1(�vh(x))]

�fY jX(xjx)
�FY jX(xjx)

or equivalently, if

�vh(x) = ��1(�vh(x)) +
GM0jB0 [�

�1(�vh(x))j��1(�vh(x))]
gM0jB0 [�

�1(�vh(x))j��1(�vh(x))]

But this must hold by the de�nition of �(:;GB0). Q.E.D.

Suppose ��(x) = (f~�(xi; yi)gNi=1) for all x 2 SNX , where yi � maxj 6=i xj. That is, bidders�
valuations only depend on his own signal and the highest rival signal. Then vh(x; ��; FX) =

(f~�(xi; yi)gNi=1) for all FX 2 F . Therefore, a distribution GB0 that satis�es conditions (i)
and (ii) is rationalized by any such �� 2 � that satis�es the "maxj 6=iXj-su¢ ciency" with

boundary conditions ~�(xk; xk) = �(b0k) for k 2 fL;Ug, and a signal distribution FX(x) �
GB0(�

�1(~�(x1; x1)); ::; �
�1(~�(xn; xn))).

Proof of Lemma 1. Note the solution to (3) with the boundary condition has the following

closed form:

�r(b
0(x);GB0) � r~L(b0(x�(r))jb0(x)) +

Z b0(x)

b0(x�(r))

�(~b;GB0)d~L(~bjb0(x))

where ~L(~bjb;GB0) � exp
�
�
R b
~b
~�(u;GB0)du

�
. The proof of the lemma uses the monotonicity

and di¤erentiability of b0(:). By change of variables,
fY jX(xjx)
FY jX(xjx)

= b00(x)~�(b0(x);GB0) and for
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all s � x, L(sjx;FX) = ~L(b0(s)jb0(x);GB0). Furthermore, in equilibria vh(x; x; �; FX) =
�(b0(x);GB0) for all x 2 SX . By de�nition, for x � x�(r),

br(x) = rL(x�(r)jx;FX) +
Z x

x�(r)

vh(s; s; �; FX)L(sjx;FX)�(x;FX)dx

= r~L(b0(x�(r))jb0(x);GB0) +
Z x

x�(r)

�(b0(s);GB0)~L(b
0(s)jb0(x);GB0)~�(b0(s);GB0)b00(s)ds

= �r(b
0(x);GB0)

where the last equality follows from a change of variables in the integrand.

Proof of Lemma 2. The a¢ liation of signals and monotonicity of � implies that vh(x; y) is

increasing in x and non-decreasing in y. For all x � y,

vh(x; y) �
Z y

xL

vh(x; s)
fY jX(sjx)
FY jX(yjx)

ds � v(x; y) �
Z y

xL

vh(s; s)
fY jX(sjx)
FY jX(yjx)

ds � vl(x; y)

Therefore vh(xL; xL) = v(xL; xL) = vl(xL; xL) and v is bounded between vh and vl for all

x 2 SX . The proof of strict monotonicity of vh(x; x) in x is standard and omitted. For any
x < x0 on support, the law of total probability implies

vl(x
0; x0) = E(vh(Y; Y )jXi = x0; Yi � x0)

= E(vh(Y; Y )jXi = x0; Yi � x)P (Yi � xjXi = x0; Yi � x0) + :::

E(vh(Y; Y )jXi = x0; x < Yi � x0)P (x < Yi � x0jXi = x0; Yi � x0)

By monotonicity of vh and x0 > x, E(vh(Y; Y )jXi = x0; x < Yi � x0) > vl(x; x). By a¢ liation

of X and Y , E(vh(Y; Y )jXi = x0; Yi � x) � vl(x; x). Therefore vl(x0; x0) > vl(x; x).

Then (i) follows immediately. For the �rst part of (ii), note any rationalizable bid

distribution can also be rationalized by a certain private-value structure. It follows that 9 2
	(GB0), vh(x; x; ) = v(x; x; ). For the second part of (ii), consider �S � f� : �(xi;x�i) =
axi + (1� �)maxj 6=i xj for some a 2 (0; 1)g. By construction, all value functions in �S are
exchangeable and non-decreasing in x�i. Then vh(x; x) = x for all x 2 SX regardless of the
choice of signal distributions. Then de�ne FX(x) � GB0(�

�1(x1;GB0); ::; �
�1(xn;GB0)). The

auction structure (�; FX) rationalizes GB0 in a Bayesian Nash equilibrium with the same FX
regardless of the choice of � 2 (0; 1). By de�nition, v(x; x;�; FX) = �x+ (1� �)E(YijXi =

x; Yi � x) while vl(x; x;�; FX) = E(YijXi = x; Yi � x). Therefore, the distance between v

and vl converges to 0 uniformly over the support SX as � diminishes. It then follows that

8" > 0, 9� small enough such that supr2SRP jxh(r;�; FX)�x
�(r;�; FX)j � " with FX de�ned

above.
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Proof of Lemma 3. By the non-negativity of � in �, x�(0; ) = xL for all  2 � 
 F .
Hence for all x � xL, vh(x; x; ) = �(b0(x; );GB0) and vl(x; x; ) = �l(b

0(x; );GB0) for all

 2 	(GB0) � � 
 F . It follows �(b;GB0) � �l(b;GB0) for all b 2 SB0, and �(b0L;GB0) =

�l(b
0
L;GB0). By the monotonicity of b

0 and the de�nition of xl(r) and xh(r), b0(x�(r; ); ) 2
[b0(xl(r; ); ); b0(xh(r; ); )] for all  2 � 
 F . Furthermore, for all  2 	(GB0) and
r 2 SRP ,

�(b0(xl(r; ); );GB0) = vh(xl(r; ); xl(r; ); )

�l(b
0(xh(r; ); );GB0) = vl(xh(r; ); xh(r; ); )

Note �(; ;GB0) and �l(; ;GB0) are invariant for all  2 	(GB0), and �l is increasing over
SB0 by the monotonicity of vl(x; x) and b0 on SX . Therefore, b0k;r(GB0) = b0(xl(r; ); ) for

k = l; h and all  2 	(GB0), and Claim (i) in the lemma holds.

To prove Claim (ii), consider �� � f� : �(X) = �Xi + (1 � �)maxj 6=iXj for some � 2
(0; 1]g. Then vh(x; x; �) = x for all x 2 SX and � 2 ��. Any rationalizable bid distribution

GB0 can be rationalized by the same signal distribution �FX(x1; ::; xN) � GB0(�
�1(x1;GB0); ::;

��1(xN ;GB0)) for all � 2 (0; 1]. Hence ��
f �FX(GB0)g � 	(GB0). By de�nition, x�(r;�; �FX) =
argminx2SX [r� v(x; x;�; �FX)]2, where v(X;X;�) is continuous in x and �, and x�(r;�; �FX)
is always a single-valued function in r. Hence the Theory of Maximum implies x�(r;�; �FX) is

continuous in � for all r 2 SRP and the �FX chosen forGB0. Furthermore for all � 2 ��
f �FXg,
the equilibrium strategy b0(x; � ) = b0(x; �FX) =

R x
xL
sdL(sjx; �FX) is independent from �.

Thus, � enters the marginal bid b0
�
x�
�
r; � 
�
; �FX

�
only through the screening level, and the

marginal bid is also a continuous function in � for all r 2 SRP and the chosen �FX. Note

the image of a continuous mapping from any connected set is a connected set. Hence to

prove Claim (ii), it su¢ ces to show that the bounds are tight. Consider the case of a private

structure with � = 1. Then

b0(x�(r; 1; �FX); �FX) = b0(xl(r; 1; �FX); �FX) = b0l;r (GB0)

and the lower bound is reached. On the other hand, the proof of part (ii) in Lemma 2 shows

xh(r;�; �FX) can be uniformly close to x�(r;�; �FX) over r 2 SRP for some � small enough.

As the choice of �FX only depends on GB0 and is independent from �, this suggests

supr2SRP jb
0(x�(r;�; �FX); �FX)� b0h;r(GB0)j ! 0

as � # 0. Combining these two results above shows for all r 2 SRP and b 2 [b0l;r(GB0); b0h;r(GB0)),
9 2 	(GB0) such that b0(x�(r; ); ) = b.
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Proof of Lemma 4. Proof of (i): The closed form of solutions with new boundary

conditions is

�r;k(b;GB0) � r~L(b0k;r(GB0)jb;GB0) +
Z b

b0k;r(GB0 )

�(~b;GB0)d~L(~bjb;GB0)

for b � b0k;r(GB0). For any  2 	(GB0) and all x � xl(r; ), vh(x; x; ) � r 8x 2
[xl(r; ); xU ], and it follows

br(x; ) � rL(xl(r; )jx;FX) +
Z x

xl(r; )

vh(s; s; )dL(sjx;FX)

Likewise, for all x � xh(r; ),

br(x; ) � rL(xh(r; )jx;FX) +
Z x

xh(r)

vh(s; s; )dL(sjx;FX)

By non-negativity of �, x�(0; ) = xL and xh(r; ) � x�(r; ) � xl(r; ) � x�(0; ) for all

r 2 SRP . Hence the equation (2) holds for xl(r; ) and xh(r; ). Substitution and the change
of variable show for all x � xl(r; ),

br(x; ) � r~L(b0l;r(GB0)jb0(x; )) +
Z b0(x; )

b0l;r(GB0 )

�(~b;GB0)d~L(~bjb0(x; )) � �r;l(b
0(x; );GB0)

and for all x � xh(r; ),

br(x; ) � r~L(b0h;r(GB0)jb0(x; )) +
Z b0(x; )

b0h;r(GB0 )

�(~b;GB0)d~L(~bjb0(x; )) � �r;h(b
0(x; );G0B)

For all b � b0k;r(GB0) and k = l; h,

�0r;k(b;G
0
B) =

~�(b)

"
�(b)�

 
r~L(b0r;kjb) +

Z b

b0r;k

�(~b)d~L(~bjb)
!#

> 0

It then follows from the monotonicity of the envelops f�r;k(b;GB0)gk=l;h that for all  2
	(GB0), b0(�r(t; ); ) 2 [��1r;l (t;G0B); ��1r;h(t;G0B)].

Proof of (ii): Note for any t > r and  2 	(GB0), b0(�r(t; ); ) is de�ned as the solution
to the following minimization problem:

�r(b
0
r( ); t; GB0) = argmins2[b0r( );b0U ][t� �r(s; b

0
r( ); G

0
B)]

2

where b0r( ) is a shorthand for b
0 (x� (r; ) ; ) and �r is de�ned as before. Fix the revenue

level t and the rationalizable bid distribution G0B. Then b
0
r( ) can be treated as a parameter
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that enters both the constraint set and the objective function, which is continuous in s and

b0r( ). By construction, �
�1
r;k(t;G

0
B) = �r(b

0
k;r(GB0); t; GB0). Furthermore, the Theorem of

Maximum implies �r(b
0
r( ); t; GB0) must be continuous in b

0
r( ) for all t > r. Note by part

(ii) of Lemma 3, for all b 2 [b0l;r(GB0); b0h;r(GB0)), 9 2 	(GB0) such that b0r ( ) = b. It then

follows that for any r > r and for all b 2 [��1r;l (t;G0B); ��1r;h(t;G0B)), 9 2 	(GB0) such that
b0(�r(t; ); ) = b.

Proof of Proposition 2. Recall from the lemmae above that b0(x�(r; ); ) 2 [b0l;r(GB0);
b0h;r(GB0)] for all  2 	(GB0). By construction, �r;k(b0k;r(G0B);GB0) = br(x�(r; ); ) = r.

Hence both f�r;k(b0(:; );G0B)gk2fl;hg are invertible at t � r over the interval [xk(r; ); xU ]

for k 2 fl; hg and  2 	(GB0). It follows that ��1r;l (t;G0B) � b0(b
�1
r (t; ); ) � ��1r;h(t;G

0
B) for

t � r and all  2 	(GB0). The rest of the proof follows immediately.

Proof of Proposition 3. First I prove that all  2 � 
 F and r 2 SRP , equilibrium

strategies b0 and br satisfy: (i) b0(x; ) � br(x; ) 8x � x�(r; ) and (ii) the di¤erence

br(x; ) � b0(x; ) is decreasing in x for all x � x�(r; ). Then it follows immediately from

(i) and (ii) that FRI(r)( ) �F:S:D:
~F u
RI(r)(FRI(0)( )). To prove (i), �rst note in equilibria

br(x�(r; ); ) = r = v(x�(r); x�(r); ) � E(VijXi = x�(r); Yi � x�(r)) � b0(x�(r; ); ),

where the last inequality holds by equilibrium bidding conditions with no binding reserve

prices. Besides, for all x � x�(r; ), br(x; ) < b0(x; ) implies b0r(x; ) > b00(x; ). It follows

from Lemma 2 in Milgrom andWeber (1982) that br(x; ) � b0(x; ) for all x � x�(r; ). For

(ii), it su¢ ces to note sgn(b0r(x; )�b00(x; )) = �sgn(br(x; )�b0(x; )) for all x � x�(r; ).

To see that F u
RI(r)(GB0) �F:S:D:

~F u
RI(r)(FRI(0)) in general, note

FY jX(sjx)
FY jX(xjx)

�F:S:D: L(sjx)
when private signals are a¢ liated. It follows that vl(x; x; ) � b0(x; ) for all x and therefore

xh(r; ) � �0(r; ) for r � b0L and  2 	(GB0). Hence, b0(xh(r); ) � vl(xh(r); xh(r); ) = r

for r 2 [�0L; �l(b0U)]. Furthermore, by a change-of-variables,

�r;h(b0(x; );GB0) = rL(xh(r)jx; ) +
Z x

xh(r)

vh(s; s; )dL(sjx; )

and can be written as a solution for the di¤erential equation

�0(x) = [vh(x; x)� �(x)]
fY jX(xjx)
FY jX(xjx)

with the boundary condition �(xh(r)) = r for this range of r. An application of Lemma 2 in

Milgrom and Weber (1982) shows �r;h(b0(x; );GB0) = rL(xh(r)jx)+
R x
xh(r)

vh(s; s)dL(sjx) �
b0(x) for all x � xh(r; ). Hence �

�1
r;h(t;GB0) � t for t � r and it follows F u

RI(r)(GB0) �F:S:D:
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~F u
RI(r)(FRI(0)( )). For r > �l(b

0
U), the two upper bounds on the all-screening probability

coincide trivially at 1. To show that the bounds collapse into the same one with i.i.d.

signals, it su¢ ces to note that all inequalities in this proof so far will hold with equality as

the two distributions
FY jX(sjx)
FY jX(xjx)

and L(sjx) are the same under i.i.d. signals.

Proof of Proposition 4. Consider any  2 � 
 F . For notational ease, dependence of
x�(r), �r and vh on  is suppressed. By de�nition of v0, PrfRII(r) < v0g = 0. Note

PrfRII(r) = v0g = PrfX(1) < x�(r)g, Prfv0 < RII(r) < rg = 0 and PrfRII(r) = rg =
PrfX(1) � x�(r) ^ X(2) < x�(r)g. Since �r0(x) > 0 for all x 2 [x�(r); xU ] and �r(x�(r)) =
vh(x

�(r); x�(r)) � r, it follows Prfr < RII(r) < vh(x
�(r); x�(r))g = 0. Hence:

FRII(r)(t) = 0 8t < v0

= PrfX(1) < x�(r)g 8t 2 [v0; r)
= PrfX(2) < x�(r)g 8t 2 [r; vh(x�(r); x�(r)))

Next note for all t 2 [vh(x�(r); x�(r));+1), PrfRII(r) 2 [vh(x�(r); x�(r)); t]g = Prfvh(X(2); X(2)) 2
[vh(x

�(r); x�(r)); t]g. Hence for all t in this range,

PrfRII(r) � tg = PrfRII(r) < vh(x
�(r); x�(r))g+ PrfRII(r) 2 [vh(x�(r); x�(r)); t]g

= PrfX(2) < x�(r)g+ Prfvh(X(2); X(2)) 2 [vh(x�(r); x�(r)); t]g
= Prfvh(X(2); X(2)) � tg

This characterizes the counterfactual distribution of RII(r). For any  2 	(GB0) and t < r,

Prfb0(X(1); ) < b0l;r(GB0)g � F l
RII(r)(t;GB0)

� PrfX(1) < x�(r; )g = FRII(r)(t; )

� Prfb0(X(1); ) < b0h;r(GB0)g � F u
RII(r)(t;GB0)

For r � t < vh(x
�(r); x�(r)),

Prfvh(X(2); X(2)) � tg � F l
RII(r)(t;GB0)

� Prfvh(X(2); X(2)) < vh(x
�(r); x�(r))g = FRII(r)(t; )

� Prfb0(X(2)) < b0h;r(GB0)g � F u
RII(r)(t;GB0)

since b0
0
(:) > 0. For t 2 [vh(x�(r); x�(r)); vh(xh(r); xh(r)),

F l
RII(r)(t) � Prfvh(X(2); X(2)) � tg � FRII(r)(t;GB0)

� Prfvh(X(2); X(2)) < vh(xh(r); xh(r))g = FRII(r)(t; )

= Prfb0(X(2)) < b0h;r(GB0)g � F u
RII(r)(t;GB0)
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due to the monotonicity of b0(x) and vh(x; x) in x. For t 2 [vh(xh(r); xh(r));+1),

F l
RII(r)(t) = FRII(r)(t) = F u

RII(r)(t) = Prfvh(X(2); X(2)) � tg

and this is because bids in 2nd-price auctions can be fully recovered from GB0 for those

who are not screened out under r. Finally, we complete the proof by noting 8 2 	(GB0),
vh(x; x; ) = �(b0(x; );GB0) for all x 2 [xL; xU ].

Proof of Proposition 6. Auction characteristics are common knowledge among all bidders.

Hence in symmetric equilibria: (By symmetry among the bidders, bidder indices are dropped

for notational ease.)

@
@X
b(x; z;n) = [~vh(x; z;n)� b(x; z;n)]

fY jX;Z;N (xjx;z;n)
FY jX;Z;N (xjx;z;n)

where ~vh(x; z;n) � E(VijXi = Yi = x; Z = z;N = n), Yi � maxj 6=iXi, FY jX;Z;N(tjx; z;n) �
Pr(maxj 6=iXj � tjXi = x; Z = z;N = n) and fY jX;Z;N(tjx; z;n) is the corresponding condi-
tional density. The equilibrium boundary condition for all (z; n) is b(xL; z;n) = ~vh(xL; z;n).

For every z and n, the di¤erential equation is known to have the following closed form

solution :

b(x; z;n) =

Z x

xL

h(z0) + �(s;n)dL(sjx;n)

Independence of Xi and Z conditional on N implies both �(x;n) and L(sjx;n) are invariant
to z for all s and x. Hence under assumptions A1�,A2 and A4,

b(xL; z;n) = ~vh(xL; z;n) = h(z0) + �(xL;n)

For x > xL, b(x; z;n) = h(z0) +
R x
xL
�(s;n)dL(sjx;n) for all (x; z; n).

Proof of Proposition 7. Di¤erentiating br(x) for x � x�(r) gives

b
0
r(x; )
�(x;FX)

+ br(x; ) = vh(x; x; ) (7)

For all r � 0 and x; y � x�(r),

FY jX(yjx) � Pr(Y � yjx = x) (8)

= Pr(Y < x�(r)jX = x) + Pr(x�(r) � Y � yjX = x)

= Pr(br(Y ) < rjbr(X) = br(x)) + Pr(r � br(Y ) � br(y)jbr(X) = br(x))

� Gr
M jB(br(y)jbr(x))
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The equality of the two terms follows from the facts that Y < x�(r) if and only if br(Y ) < r

and that br(x) is increasing for x � x�(r). Taking derivative of both sides w.r.t. y for

y � x�(r) gives

fY jX(yjx) = b0r(y)g
r
M jB(br(y)jbr(x)) (9)

for all x; y � x�(r). Substitute (9) and (8) into (7) proves the lemma.

Proof of Proposition 8. Let X(i:n) denote the ith largest signal among n potential bidders.

Then Pr(X(2:n) < x�(r)jX(1:n) � x�(r)) is observed. By the i.i.d. assumption, Pr(X(2:n) <

x�(r)jX(1:n) � x�(r)) =
nF n�1

r (1� Fr)

1� F n
r

, where Fr � Pr(Xi � x�(r)). The expression is

increasing in Fr. Therefore Fr is identi�ed, and Pr(X(1) < x�(r)) = F n
r .

9 Appendix B: Consistency of the three-step estimator

The lemma below extends the Basic Consistency Theorem of extreme estimators to those

de�ned over random, compact sets (as opposed to �xed, compact sets). The proof is an

adaptation from that of Theorem 4.1.1 in Amemiya (1985) and is included in Lemma A2 of

Li, Perrigne and Vuong (2003).

Lemma B1 Let Q(:) and Q̂N(:) be nonstochastic and stochastic real-valued functions de-

�ned respectively on compact intervals � � [�l; �u] and �N � [�lN ; �uN ], where Prf[�lN ; �uN ] �
[�l; �u]g = 1 for all N and �kN ! �k almost surely for k = l; u. For every N = 1; 2; :::; let

�̂N 2 �N be such that Q̂N(�̂N) � inf�2�N Q̂N(�) + op(1). If Q(:) is continuous on � with a

unique maximizer on � at �0 2 [�l; �u] and (ii) sup�2�N
���Q̂N(�)�Q(�)

��� p! 0 as N �! +1,
then �̂N

p! �0.

9.1 Regularity properties of GM;B and gM;B

Let fY;X and FY;X denote the joint density and distribution of Yi and Xi respectively. Let

�(:) be the bidding strategy in increasing, pure-strategy perfect Bayesian Nash equilibria.

That is, �(x) =
R x
xL
vh(s; s)dL(sjx) where L(sjx) = expf�

R x
s

fYX(u;u)
FY X(u;u)

dug. The lemma below
gives regularity results about the smoothness of the equilibrium bidding strategy.



53

Lemma B2 Under S1 and S2, (i) � has R continuous bounded derivatives on [bL; bU ] and

�0(:) � c > 0 for some constant on [bL; bU ]; (ii) GM;B and gM;B both have R� 1 continuous
bounded partial derivatives on [bL; bU ]2.

Proof. First, I show that under S1 and S2, the equilibrium bidding function b0(:) admits

up to R continuous, bounded derivatives on [xL; xU ], and b00(:) is bounded below from zero

on SX . Recall b0 solves the di¤erential equation b00(x) = [vh(x; x)� b0(x)]
fY jX(xjx)
FY jX(xjx)

with the

boundary condition b0(xL) = vh(xL; xL). Under S1, the joint density f has R continuous

bounded derivatives on [xL; xU ]. By symmetry of FX,

vh(x; x) =

R x
xL
:::
R x
xL
�(x; x; x3; ::; xn)f(x; x; x3; ::; xn)dx3:::dxnR x
xL
:::
R x
xL
f(x; x; x3; ::; xn)dx3:::dxn

Under S1, the denominator is 0 if and only if x = xL. Since by S2, the product �(:; :; :)f(:; :; :)

also has R continuous, bounded derivatives, vh(x; x) has R + n � 2 continuous, bounded
derivatives on (xL; xU ]. Furthermore, it can be shown that

fY jX(xjx)
FY jX(xjx)

also has R + n � 2
continuous, bounded derivatives on any compact subsets of (xL; xU ]. Therefore, b0(:) has

R + n � 1 continuous, bounded derivatives on any compact subsets of (xL; xU ]. As for the
boundary point xL, the proof proceeds by applying Taylor expansions of f around the zero

vector in the de�nition of
fY jX
FY jX

, L(sjx) and v(x; x), and then showing � has R continuous,

bounded derivatives at x = xL. It is a direct extension from proof of Lemma A2 in Li,

Perrigne and Vuong (2002) and excluded here for brevity. That b0
0
is bounded away from

zero on [xL; xU ] follows from the same arguments as in Lemma A2 in Guerre, Perrigne and

Vuong (2000) and not repeated here.

Let gM;B denote the joint density of equilibrium bids B0 and highest rival bid M0,

and de�ne GM;B(m; b) �
R m
bL
gM;B(~b; b)d~b. The relevant support is S2B = [b0L; b

0
U ]
2 where

b0L = b0(xL) = vh(xL; xL) = �(xL) and b0U = b0(xU). (For notational ease, below I use

vh(x) as a shorthand for vh(x; x).) In equilibrium, b0(v�1h (�(b))) = b for all b 2 SB. Hence

�0(b) = fb00[v�1h (�(b))]v�1
0

h (�(b))g�1 where both v�10h (:) and b00(:) are bounded away from zero

and have R � 1 continuous derivatives under S2. This proves part (i). For part (ii), note
Pr(M � m;B � b) = Pr(Y � v�1h (�(m)); X � v�1h (�(b))) by the monotonicity of b

0(:). Hence

GM;B(m; b) =
@
@B
Pr(M � m;B � b) = v�10h (�(b))�0(b) Pr(Y � v�1h (�(m)); X = v�1h (�(b))),

where Pr(Y � y;X = x) has R+ n� 1 bounded, continuous derivatives on S2X and the �rst
two terms have R� 1 continuous bounded derivatives on [bL; bU ]2 as shown above. Besides,
gM;B(m; b) =

@
@M
GM;B(m; b) = v

�10
h (�(b))�0(b)v�10h (�(m))�0(m)fY;X [v

�1
h (�(m)); v

�1
h (�(b))], where

the joint density fY;X has R + n� 2 bounded, continuous derivatives on S2B and v�10h (:) has

R � 1 continuous derivatives on SX . Hence gM;B(m; b) has R � 1 continuous derivatives on
S2B.
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9.2 Consistency of b̂0l;r and b̂0h;r

The following lemma establishes the rate of uniform convergence of kernel estimates ĜM;B

and ĝM;B to GM;B and gM;B over S2B;�, and ~GM;B to GM;B over Ŝ2B;�. It is a preliminary step

for proving uniform convergence of �̂l, �̂ and �̂l;r, �̂h;r.

Lemma B3 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1-3,

supS2B;� jĜM;B �GM;Bj = O(hR�1G ); supS2B;� jĝM;B � gM;Bj = O(hR�1g )

supb2ŜB;� j ~GM;B(b; b)�GM;B(b; b)j = Op(h
R�1
g )

Furthermore, if R > n,

sup~bL�b;b2SB;� j
ĜM;B(~bL; b)

ĜM;B(b; b)
� GM;B(~bL; b)

GM;B(b; b)
j = Op(h

R�n
g )

Proof. That supS2B;�

���ĜM;B �GM;B

��� = O(hR�1G ) and supS2B;� jĝM;B � gM;Bj = O(hR�1g )

follows from LemmaA5 in Li, Perrigne and Vuong (2002). By triangular inequality, for all b 2
ŜB;�,

��� ~GM;B(b; b)�GM;B(b; b)
��� � R b~bL jĝM;B(t; b)� gM;B(t; b)j dt+

���ĜM;B(~bL; b)�GM;B(~bL; b)
���.

Thus

supb�~bL;b2SB;� j ~GM;B(b; b)�GM;B(b; b)j
� jbU � bLj supt�b;(t;b)2S2B;� jĝM;B(t; b)� gM;B(t; b)j+Op(h

R�1
G ) = Op(h

R�1
g )

since by construction ŜB;� � SB;� with probability 1 and hG < hg for L large enough.

Furthermore, note:

1f~bL � bg
��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

���
� 1f~bL�bg

ĜM;B(b;b)

���ĜM;B(~bL; b)�GM;B(~bL; b) +
GM;B(~bL;b)

GM;B(b;b)

�
GM;B(b; b)� ĜM;B(b; b)

����
� 1f~bL�bg

infb�~bL jĜM;B(b;b)j
����ĜM;B(~bL; b)�GM;B(~bL; b)

���+ ���GM;B(b; b)� ĜM;B(b; b)
����

Thus

sup~bL�b;b2SB;� j
ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)
j

� 1

infb2SB;� jĜM;B(b;b)j

(
sup~bL�b;b2C2� (B)

jĜM;B(~bL; b)�GM;B(~bL; b)j+ :::

sup~bL�b;b2C�(B) jGM;B(b; b)� ĜM;B(b; b)j

)
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where

infb2SB;� jĜM;B(b; b)j � infb2SB;� jGM;B(b; b)j � supb2SB;� jĜM;B(b; b)�GM;B(b; b)j
= infb2SB;� jGM;B(b; b)j+Op(h

R�1
G )

NoteGM;B(b; b) =
R b
bL
:::
R b
bL
g(b; b2; b3; ::; bn) db2:::dbn and g(b1; ::; bn) = f(b0;�1(b1); ::; b

0;�1(bn))

has R continuous derivatives on [b0L; b
0
U ]
n. Since R > n, we can apply a Taylor expansion of

g(:) around (b0L; :; b
0
L) to get GM;B(b; b) = a(b�bL)n�1+o(jb� bLjn�1) with a � g(b0L; ::; b

0
L) >

0. It can then be shown infb2SB;� jGM;B(b; b)j � ��n�1 for some � > 0 and � = max(hg; hG).39

Since R > n and � = hg for L large enough, we have infb2SB;�
���ĜM;B(b; b)

��� � �hn�1g +op(h
n�1
g ).

Since sup~bL�b;b2SB;� jĜM;B(~bL; b)�GM;B(~bL; b)j and sup~bL�b;b2SB;� jĜM;B(~bL; b)�GM;B(~bL; b)j
are both bounded byOp(h

R�1
g ), it follows that sup~bL�b;b2SB;� j

ĜM;B(~bL;b)

ĜM;B(b;b)
�GM;B(~bL;b)

GM;B(b;b)
j = Op(h

R�n
g ).

The next lemma proves the uniform convergence of �̂ and �̂l over the support S
2
B;�.

Lemma B4 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1-3, supb2SB j�̂(b) � �(b)j = Op(h
R�(n�1)
g ) if R > n. Furthermore if R > 2(n � 1),

supb�~bL;b2SB j�̂l(b)� �l(b)j = Op(h
R�2(n�1)
g ).

Proof. Proposition A2 (ii) in Li, Perrigne and Vuong (2002) showed supb2C�(B) j�̂(b) �
�(b)j = Op(h

R�(n�1)
g ). By de�nition, ~bL 2 SB;�. Note :

sup~bL�b;(~bL;b)2S2B;�
j�̂l(b)� �l(b)j

� sup~bL�b;(~bL;b)2S2B;�

����Z b

~bL

�̂(t)
ĝM;B(t;b)
~GM;B(b;b)

dt�
Z b

~bL

�(t)
gM;B(t;b)

GM;B(b;b)
dt

����+ :::

sup~bL�b;(~bL;b)2S2B;�

������̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
�
Z ~bL

bL

�(t)
gM;B(t;b)

GM;B(b;b)
dt

�����
Below I show the two terms converge in probability to 0. By de�nition, ~bL � b0L, andR ~bL
b0L
�(t)

gM;B(t;b)

GM;B(b;b)
dt is bounded between �(b0L)

GM;B(~bL;b)

GM;B(b;b)
and �(~bL)

GM;B(~bL;b)

GM;B(b;b)
. With probability

1,

sup~bL�b;(~bL;b)2S2B;�

������̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
�
Z ~bL

bL

�(t)
gM;B(t;b)

GM;B(b;b)
dt

�����
� maxfsup~bL�b;(~bL;b)2S2B;� T1(b;

~bL); sup~bL�b;(~bL;b)2S2B;�
T2(b; ~bL)g

39For details, see Lemma A6 in Li et.al 2002.
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where T1(b; ~bL) �
����̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
� �(b0L)

GM;B(~bL;b)

GM;B(b;b)

��� and T2(b; ~bL) � ����̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
� �(~bL)

GM;B(~bL;b)

GM;B(b;b)

���.
With probability 1, for all (b;~bL) 2 S2B;� such that b � ~bL,

T1(b; ~bL) �
����̂(~bL)� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

����+ ���GM;B(~bL;b)

GM;B(b;b)

�
�̂(~bL)� �(b0L)

����
where

���GM;B(~bL;b)

GM;B(b;b)

��� � 1 by construction. Thus
sup~bL�b;(~bL;b)2S2B;�

T1(b; ~bL) � sup~bL�b;(~bL;b)2S2B;�

8<:
��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

��� ����̂(~bL)���+ :::����̂(~bL)� �(b0L)
���

9=;
Note

����̂(~bL)��� p! j�(b0L)j < 1 and
����̂(~bL)� �(bL)

��� p! 0 by the uniform convergence of �̂ over

SB;� and that ~bL
p! b0L. By Lemma A3, sup~bL�b;(~bL;b)2SB;�

��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

��� p! 0 if

R > n. Hence sup~bL�b;(~bL;b)2S2B;� T1(b;
~bL)

p! 0 if R > n. That sup~bL�b;(~bL;b)2S2B;� T2(b;
~bL)

p! 0

follows from similar arguments.

By the triangular inequality, for all b � ~bL, and (~bL; b) 2 S2B;������
Z b

~bL

�̂(t)
ĝM;B(t; b)
~GM;B(b; b)

dt�
Z b

~bL

�(t)
gM;B(t; b)

GM;B(b; b)
dt

�����
� 1

inf~bL�b;(~bL;b)2S2B;�
j ~GM;B(b;b)j

8<:
���R b~bL �̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

���+ :::

�(b0U)
��� ~GM;B(b; b)�GM;B(b; b)

���
9=;

where I use
R b
~bL
�(t)

gM;B(t;b)

GM;B(b;b)
dt � �(b0U). Also note

��� ~GM;B(b; b)
��� � jGM;B(b; b)j �

��� ~GM;B(b; b)�GM;B(b; b)
���.

It is shown in Lemma B3 above that infb2SB;� jGM;B(b; b)j � �hn�1g + op(h
n�1
g ) with R > n

and sup~bL�b;(~bL;b)2S2B;� j
~GM;B(b; b)�GM;B(b; b)j = Op(h

R�1
g ). Furthermore for all b � ~bL, and

(~bL; b) 2 S2B;�, ����Z b

~bL

�̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

����
�

Z b

~bL

����̂(t)� �(t)
��� jĝM;B(t; b)j dt+

Z b

~bL

j�(t)j jĝM;B(t; b)� gM;B(t; b)j dt

The boundedness of gM;B and � implies

sup~bL�b;(~bL;b)2S2B;�

����Z b

~bL

�̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

���� = Op(h
R�(n�1)
g )

which is the rate of convergence of supb2SB;�

����̂ � �
���. As a result,

sup~bL�b;(~bL;b)2S2B;�
j
Z b

~bL

�̂(t)
ĝM;B(t;b)
~GM;B(b;b)

dt�
Z b

~bL

�(t)
gM;B(t;b)

GM;B(b;b)
dtj = Op(h

R�2(n�1)
g )
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and converges to zero when R > 2(n� 1).

The proposition below establishes the consistency of b̂0k;r using Lemma B1.

Proposition B1 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1-3, b̂0l;r
p! b0l;r(GB0) if R > n� 1 and b̂0h;r

p! b0h;r(GB0) if R > 2(n� 1) for all r 2 SRP .

Proof. First note that ~bk ! b0k almost surely for k = L;U , and that � �! 0. Hence

b̂L
a:s:�! b0L. It su¢ ces to show that for all r 2 SRP , (i) (�̂(b) � r)2 and (�̂l(b) � r)2 converge

in probability to (�(b) � r)2 and (�l(b) � r)2 uniformly over Ŝ2B;�; and (ii) (�(b) � r)2 and

(�l(b) � r)2 are continuous on [b0L; b
0
U ] with unique minimizers b

0
l;r and b

0
h;r respectively on

[b0L; b
0
U ]. By Lemma B4, supb2SB;� j�̂(b)��(b)j

p�! 0 and supb�~bL;(~bL;b)2S2B;� j�̂l(b)��l(b)j
p�! 0.

And

supb2SB;�

���(�̂(b)� r)2 � (�(b)� r)2
��� � supb2SB;� ����̂2(b)� �2(b)

���+ 2r supb2SB;� ����̂(b)� �(b)
���

where both terms converge to 0 in probability since supb2SB;� �(b) � �(b0U) < 1. Likewise
supb�~bL;(~bL;b)2S2B;�

���(�̂l(b)� r)2 � (�l(b)� r)2
��� p�! 0 by similar arguments. Next, the continu-

ity of (�(b)� r)2 and (�l(b)� r)2 follows from the smoothness of �. Also both �(:;GB0) and

�l(:;GB0) are increasing on [b
0
L; b

0
U ] by the monotonicity of vh(:; :; ) and vl(:; :; ) as well as

b0(:; ) on SX for all  2 	(GB0). Thus for all r 2 SRP , the minimizers of (�(b) � r)2 and

(�l(b)� r)2 are unique on [b0L; b
0
U ].

9.3 Uniform convergence of �̂k;r(:; b̂0k;r)

Lemma B5 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under S1-3

and if R > 2n� 1,

supb2SB;�

����� ĝM;B(b; b)

ĜM;B(b; b)
� gM;B(b; b)

GM;B(b; b)

����� = Op(h
R�2n+1)

Proof. The proof is similar to the last part of Lemma B3. On the support S2B;�,

j ĝM;B

ĜM;B
� gM;B

GM;B
j � 1

jĜM;BjjGM;Bj
�
jGM;Bj jĝM;B � gM;Bj+ jgM;Bj

���ĜM;B �GM;B

����
By Lemma B3, supS2B;� jĜM;B � GM;Bj = Op(h

R�1
G ) and supS2B;� jĝM;B � gM;Bj = Op(h

R�1
g ).

Besides, supS2B;� jGM;Bj <1 and supS2B;� jgM;Bj <1 implies the supremum of the term in the

bracket is Op(h
R�1
g ) as hg > hG for L large enough. Hence supb2SB;� j

ĝM;B(b;b)

ĜM;B(b;b)
� gM;B(b;b)

GM;B(b;b)
j �
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Op(h
R�1
g )

infb2SB;� jĜM;Bj infb2SB;� jGM;Bj , where the two terms in the denominator are bounded below by
�hn�1g + o(hn�1g ) and �hn�1g + o(hn�1g ) respectively by some constant � and �. It follows the

denominator is bounded below by h2n�2g + o(h2n�2g ). Hence supb2SB;� j
ĝM;B(b;b)

ĜM;B(b;b)
� gM;B(b;b)

GM;B(b;b)
j =

Op(h
R�2n+1) and converges in probability to 0 if R > 2n� 1.

Lemma B6 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under S1-

3 and suppose R > 2n� 1, then supb2SB;�
����̂k;r(b; b̂0k;r)� �k;r(b; b

0
k;r)
��� p�! 0 for all r 2 SRP .

Proof. Consider the case where r is in the interior of SRP (or equivalently, b0k;r 2 (b0L; b0U)).
By de�nition, b̂0k;r 2 SB;�, and for sample sizes large enough and � small enough, b0k;r is in

the interior of SB;�. By the triangular inequality,

supb2SB;�

����̂k;r(b; b̂0k;r)� �k;r(b; b
0
k;r)
���

� supb2SB;� 1(b̂
0
k;r � b0k;r)1(b > b0k;r)

����̂k;r(b)� �k;r(b)
���+ :::

supb2SB;� 1(b̂
0
k;r > b0k;r)1(b > b̂0k;r)

����̂k;r(b)� �k;r(b)
���+ :::

supb2SB;� 1(b̂
0
k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])

����̂k;r(b)� r
���+ :::

supb2SB;� 1(b̂
0
k;r > b0k;r)1(b 2 (b0k;r; b̂0k;r]) j�k;r(b)� rj

It su¢ ces to show all four terms (denoted A1, A2, A3 and A4 respectively) converge in

probability to 0 uniformly over b 2 SB;� as sample size increases. For A1,

supb2SB;� 1(b̂
0
k;r � b0k;r)1(b > b0k;r)

����̂k;r(b; b̂0k;r)� �k;r(b; b
0
k;r)
���

� supb0k;r�b�b0U�� 1(b̂
0
k;r � b0k;r)

8><>:
���R bb0k;r �̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt

���+ ::����R b0k;rb̂0k;r
�̂(t)�̂(t)L̂(tjb)dt

����+ r
���L̂(b̂0k;rjb)� L(b0k;rjb)

���
9>=>;

It can be shown supt�b;(t;b)2S2B;�

���L̂(tjb)� L(tjb)
��� p�! 0 using convergence results from previ-

ous lemmae.40 Note for r in the interior of SRP ,

supb0k;r<b�bU�� 1(b̂
0
k;r � b0k;r)r

���L̂(b̂0k;rjb)� L(b0k;rjb)
���

� sup
b0k;r<b�bU��

1(b̂0k;r � b0k;r)r
���L̂(b̂0k;rjb)� L(b̂0k;rjb)

���+ :::

sup
b0k;r<b�bU��

1(b̂0k;r � b0k;r)r
���L(b̂0k;rjb)� L(b0k;rjb)

���
40For details of the proof, see Li, Perrigne and Vuong (2003).
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For su¢ ciently small �, b0k;r > b0L+�. By construction b̂
0
k;r 2 SB;�, and therefore supb0k;r<b�bU�� 1(b̂

0
k;r �

b0k;r)r
���L̂(b̂0k;rjb)� L(b̂0k;rjb)

��� p�! 0. Also by the mean value theorem,

���L(b̂0k;rjb)� L(b0k;rjb)
��� =

���� @@tL(tjb)jt=~b0k;r(b̂0k;r � b0k;r)

����
=

����(~b0k;r)L(~b0k;rjb)��� ���b̂0k;r � b0k;r

���
for some ~b0k;r between b̂

0
k;r and b

0
k;r. The consistency of b̂

0
k;r for b

0
k;r suggests ~b

0
k;r is bounded

away from b0L as sample size increases. Thus both �(~b
0
k;r) and L(~b

0
k;rjb) converge in prob-

ability to some �nite constant since supSB;� jgj < 1 and infSB;� jg0j > c > 0 and hence

supb0k;r�b�bU�� 1(b̂
0
k;r � b0k;r)

���L(b̂0k;rjb)� L(b0k;rjb)
��� is op(1). Next

supb0k;r<b�bU��

�����
Z b

b0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����

�
��b0U � b0k;r

�� supb0k;r�t�b�b0U�� ����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� p�! 0

where the right hand side is op(1) by the uniform convergence of �̂, �̂, and L̂ over SB;� and

S2B;� under S1-3 and the boundedness of �, � and L on the closed interval [b
0
k;r; b

0
U � �].

Finally

sup
b0k;r<b�bU��

1(b̂0k;r � b0k;r)

�����
Z b0k;r

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
�����

� sup
t�b;(t;b)2S2B;�

����̂(t)�̂(t)L̂(tjb)��� 1(b̂0k;r � b0k;r)
���b̂0k;r � b0k;r

���
Note supt�b;(t;b)2S2B;�

����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� p�! 0, and supb0k;r<b�b0U��;t�b;(t;b)2S2B;� 1(b̂

0
k;r �

t � b0k;r) j�(t)�(t)L(tjb)j is bounded with probability approaching 1 as b̂0k;r
p! b0k;r. Therefore

supb0k;r<b�bU��

����R b0k;rb̂0k;r
�̂(t)�̂(t)L̂(tjb)dt

���� = op(1) and it follows A1 = op(1). For A2,

supb2SB;� 1(b̂
0
k;r > b0k;r)1(b > b̂0k;r)

����̂k;r(b)� �k;r(b)
���

� sup
b0k;r<b�b0U��

1(b > b̂0k;r > b0k;r)

8><>:
���R bb̂0k;r �̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt

���+ :::����R b̂0k;rb0k;r
�(t)�(t)L(tjb)dt

����+ r
���L̂(b̂0k;rjb)� L(b0k;rjb)

���
9>=>;

where the supremum of the �rst and last term over b0k;r < b � b0U � � are op(1) by the same
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argument as above, and

supb0k;r�b�bU�� 1(b > b̂0k;r > b0k;r)

�����
Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����

� supb0k;r�b�bU��;(t;b)2S2B;�

����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� ���b� b̂0k;r

��� = op(1)

For A3,

supb2SB;� 1(b̂
0
k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])

����̂k;r(b)� r
���

= supb2SB;� 1(b̂
0
k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])

�����rL̂(b̂0k;rjb)� r +

Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
�����

By construction, b̂0k;r 2 SB;�. The uniform convergence of L̂(tjb) for all t � b on S2B;�, the

continuity of L(tjb) in both arguments, and b̂0k;r
p�! b0k;r suggest supb2SB;� 1(b̂

0
k;r � b0k;r \ b 2

(b̂0k;r; b
0
k;r])

���rL̂(b̂0k;rjb)� r
��� = op(1). Also for large samples, b̂0k;r is bounded away from b0L with

probability approaching to 1 and supb2SB;� 1(b̂
0
k;r � b0k;r\b 2 (b̂0k;r; b0k;r])

���R bb̂0k;r �̂(t)�̂(t)L̂(tjb)dt���
= op(1). For A4, note �k;r is continuous at b0k;r with �k;r(b

0
k;r) = r and is increasing beyond

b0k;r. Hence the consistency of b̂
0
k;r is su¢ cient for A4

p�! 0. In the boundary case where

b0k;r = b0L, it su¢ ces to show the convergence of terms A2 and A4. The same argument above

applies.

9.4 Final step of the proof

Lemma B7 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under S1-3

and suppose R > 2n � 1, for any r 2 Sr, �̂
�1
k;r(t; b̂

0
k;r)

p! ��1k;r(t; b
0
k;r) for k = fl; hg and all

t > r.

Proof. For the range of r 2 SRP and t > r, ��1k;r(t; b
0
k;r) are unique minimizers of [�k;r(b)� t]2

over SB. Lemma B6 showed that supb2SB;�

����̂k;r(b; b̂0k;r)� �k;r(b; b
0
k;r)
��� p�! 0 and �k;r(:; b0k;r)

is also continuous on SB. Also ~bk ! b0k almost surely for k = L;U as sample size increases.

All conditions for Lemma B1 are satis�ed and claim is proven.

Lemma B8 Let F̂n(t) = 1
n

Pn
i=1 1(Zi � t) where fZigni=1 is an i.i.d. sample from a

population distributed as FZ. Then supt2R jF̂n(t) � FZ(t)j
a:s! 0. If FZ(t0) is continuous

at t0 and a sequence of random variable t̂n
p! t0 and t0 is a continuity point of F , then

F̂n(t̂n)
p! FZ(t0).
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Proof. The �rst claim follows from Glivenko-Cantelli Lemma and the proof of the second

claim is standard (e.g. see Theorem 4.1.5 Amemiya 1985).

The proof of Proposition 4 follows directly from results of the lemmae above.

Proof of Proposition 5. By the �rst part of Lemma B8, 1
Ln

PLn
l=1 1(B

max
l � b)converge in

probability to Pr(Bmax
l � b) uniformly over SB. By Lemma B7, �̂

�1
r;k(t)

p! ��1r;k(t) for all r and

t in the stated range of interests. The second part of Lemma B8 proves F̂ l
R(r)(t)

p! F l
R(r)(t)

and F̂ u
R(r)(t)

p! F u
R(r)(t) for given r and t.

10 Appendix D: Derivations for Monte Carlo designs

A. Closed forms of vl(x; x; c) and b0(x; c) in Design 1

Let Xi = X0 + "i for i = 1; 2, where "i are statistically independent from (X0; "�i). Let

"i be uniform on [�c; c] and X0 be uniform on [a; b]. For the closed form of vl and b0, we

need to calculate the conditional expectation vl(t; t) = E(X2jX2 � t;X1 = t) and the inverse

hazard ratio
fX2jX1=t(t)

FX2jX1=t(t)
. For any t1; t2 such that t2 2 [t1 � 2c; t1 + 2c],

fX2jX1=t1(t2) =

Z
S(t1)

fX2jX0=s;X1=t1(t2)fX0jX1=t1(s)ds (10)

=

Z
S(t1)

f"2(t2 � s)fX0jX1=t1(s)ds

where S(t1) = [max(a; t1� c);min(b; t1+ c)] is the support of X0 given X1 = t1. The second

equality follows from the independence of "2 from (X0; "1). The conditional density of X0

given X1 = t1 depends on values of a, b and c. In the case b� a � 2c,

fX0jX1=t1~ Unif [a; t1 + c] 8 t1 2 [a� c; a+ c]

fX0jX1=t1~ Unif [t1 � c; t1 + c] 8 t1 2 [a+ c; b� c]

fX0jX1=t1~ Unif [t1 � c; b] 8 t1 2 [b� c; b+ c]

and for the case b� a < 2c,

fX0jX1=t1~ Unif [a; t1 + c] 8 t1 2 [a� c; b� c]

fX0jX1=t1~ Unif [a; b] 8 t1 2 [b� c; a+ c]

fX0jX1=t1~ Unif [t1 � c; b] 8 t1 2 [a+ c; b+ c]
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Therefore equation (10) suggests conditional on X1 = t1, X2 is distributed as the sum of two

independent uniform variables with support on S(t1) and [�c; c] respectively.

First consider the case b� a � 2c. If t1 2 [a� c; a+ c),

fX2jX1=t1(t2) =
1

2c

�
t2 � a+ c

t1 � a+ c

�
8t2 2 [a� c; t1]

=
1

2c
8t2 2 [t1; a+ c]

=
1

2c

�
t1 + 2c� t2
t1 + c� a

�
8t2 2 [a+ c; t1 + 2c]

If t1 2 [a+ c; b� c],

fX2jX1=t1(t2) =
1

4c2
(t2 � t1 + 2c) 8t2 2 [t1 � 2c; t1]

=
1

4c2
(t1 + 2c� t2) 8t2 2 [t1; t1 + 2c]

If t1 2 (b� c; b+ c],

fX2jX1=t1(t2) =
1

2c

�
t2 � t1 + 2c

b+ c� t1

�
8t2 2 [t1 � 2c; b� c]

=
1

2c
8t2 2 [b� c; t1]

=
1

2c

�
b+ c� t2
b+ c� t1

�
8t2 2 [t1; b+ c]

Next consider the case b� a < 2c. If t1 2 [a� c; b� c],

fX2jX1=t1(t2) =
1

2c

�
t2 � a+ c

t1 � a+ c

�
8t2 2 [a� c; t1]

=
1

2c
8t2 2 [t1; a+ c]

=
1

2c

�
t1 + 2c� t2
t1 + c� a

�
8t2 2 [a+ c; t1 + 2c]

If t1 2 [b� c; a+ c],

fX2jX1=t1(t2) =
1

2c

�
t2 � a+ c

b� a

�
8t2 2 [a� c; b� c]

=
1

2c
8t2 2 [b� c; a+ c]

=
1

2c

�
b+ c� t2
b� a

�
8t2 2 [a+ c; b+ c]
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If t1 2 [a+ c; b+ c],

fX2jX1=t1(t2) =
1

2c

�
t2 � t1 + 2c

b+ c� t1

�
8t2 2 [t1 � 2c; b� c]

=
1

2c
8t2 2 [b� c; t1]

=
1

2c

�
b+ c� t2
b+ c� t1

�
8t2 2 [t1; b+ c]

To sum up, fX2jX1=t1(t1) =
1
2c
8t1 2 [a � c; b + c] for both cases. Furthermore FX2jX1=t1(t1)

can be calculated by integrating the corresponding densities over proper ranges. That is,

FX2jX1=t1(t1) =
R t1
0
fX2jX1=t1(s)ds. Thus both screening level x

�(r; c) can be calculated and

equilibrium bids b0(x�(r; c); c) can be calculated using numerical approximations.

B. Closed form of vl(x; x) in Design 2

Distribution and density of truncated normal distributions (with the underlying normal

distribution being N(�; �) are respectively:

~�(x) =
�(
x� �

�
)� �(xL � �

�
)

�(
xU � �

�
)� �(xL � �

�
)
; ~�(x) =

1

�
�(
x� �

�
)

�(
xU � �

�
)� �(xL � �

�
)

where � and � denote the density and distribution of the parental (untruncated) normal dis-

tribution with mean � and standard deviation �, and (xL; xU) denotes the pair of truncation

points. Suppose X is distributed as truncated normal on (xL; xU), then for all a 2 (xL; xU),

E(XjX � a) �
R a
xL
x~�(x)dx

~�(a)
=

R a
xL

x

�
�(
x� �

�
)dx

�(
a� �

�
)� �(xL � �

�
)

Note

@

@X
�(
x� �

�
) = �(

x� �

�
)(�x� �

�
)
1

�

= ��(x� �

�
)
x

�

1

�
+ �(

x� �

�
)
�

�

1

�

=) �(
x� �

�
)
x

�
= �(

x� �

�
)
�

�
� �

@

@X
�(
x� �

�
)

Then the numerator isZ a

xL

�(
x� �

�
)
�

�
dx�

Z a

xL

�
@

@X
�(
x� �

�
)dx

= �(�(
a� �

�
)� �(xL � �

�
))� �(�(

a� �

�
)� �(

xL � �

�
))
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Therefore

E(XjX � a) �
�(�(

a� �

�
)� �(xL � �

�
))� �(�(

a� �

�
)� �(

xL � �

�
))

�(
a� �

�
)� �(xL � �

�
)

= �� �
�(
a� �

�
)� �(

xL � �

�
)

�(
a� �

�
)� �(xL � �

�
)
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# of bidding syndicates 2 3 4 5 6 7 8 9 10 11
# of auctions 608 971 1075 1007 852 687 531 406 258 158

Average par value ($mil) 4.90 9.22 17.33 23.13 27.02 27.27 30.20 32.68 26.54 33.57
Average price (/ $100 par) 99.17 99.31 99.51 99.97 100.32 100.44 101.00 101.06 101.19 101.64

Average spread 0.87 1.15 1.18 1.20 1.18 1.20 1.07 1.04 1.00 1.01
Average bid  98.73 98.77 98.95 99.42 99.79 99.94 100.53 100.59 100.76 101.22

Std. dev. 1.67 1.84 1.95 2.54 2.58 2.98 2.97 2.90 3.07 2.97
Minimal bid 90.28 85.20 86.47 87.03 86.68 13.26 93.44 91.67 93.94 93.87
Maximal bid 113.93 110.59 108.85 119.16 111.66 114.55 111.45 111.87 128.00 111.45

Table 1(a) : Descriptive Statistics 



Prices All Bids # of bidders # of auctions
Min 91.17 Min 85.20 1 19 0.28

Percentiles Percentiles 2 608 9.05
1 96.74 1 95.32 3 971 14.45
10 97.98 10 97.37 4 1075 15.99
20 98.49 20 98.07 5 1007 14.98
30 98.91 30 98.56 6 852 12.68
40 99.29 40 98.99 7 687 10.22
50 99.66 50 99.40 8 531 7.90
60 100.00 60 99.81 9 406 6.04
70 100.33 70 100.28 10 258 3.84
80 100.91 80 101.14 11 158 2.35
90 102.84 90 103.54 12+ 149 2.22
99 109.06 99 109.30 Total 6721 100.00

Max 128.00 Max 128.00

# of auctions 6,721 # of bids 37,547

WA Coupon Rate Total Par Value (in $million) SecType
Min 0.0100 Min 0.105 Unlimited GO 4334 64.484
1 0.0214 1 0.385 Limited GO 1061 15.786
10 0.0322 10 1.275 Revenue 1326 19.729
20 0.0355 20 2.160
30 0.0377 30 3.200
40 0.0392 40 4.485
50 0.0405 50 6.000
60 0.0419 60 8.581
70 0.0435 70 12.000
80 0.0454 80 20.415
90 0.0481 90 45.000
99 0.0549 99 297.831

Max 0.0671 Max 809.470

Table 1 (b) : Descriptive Statistics



Est Std Err t-stat p-value
wacr 1.520 0.122 12.49 0.00
wapn -1.037 0.061 -17.11 0.00

sectype 2.476 0.458 5.41 0.00
BQ -0.837 0.056 -15.00 0.00

totpar 1.764 0.108 16.32 0.00
type_cr -0.680 0.121 -5.64 0.00

HR 0.221 0.175 1.26 0.21
HR_pn -0.002 0.067 -0.03 0.98

NE 0.428 0.142 3.00 0.00
SW -0.188 0.188 -1.00 0.32

South 0.226 0.121 1.87 0.06
West -0.323 0.149 -2.17 0.03

NE_rating 0.017 0.177 0.10 0.92
SW_rating -0.038 0.231 -0.16 0.87

South_rating 0.309 0.175 1.77 0.08
West_rating 0.389 0.215 1.81 0.07

d3 94.920 0.450 210.97 0.00
d4 94.968 0.445 213.26 0.00
d5 95.323 0.438 217.61 0.00
d6 95.579 0.443 215.91 0.00
d7 95.738 0.438 218.44 0.00
d8 96.128 0.443 216.92 0.00

Number of cluster 5123.00
F( 21,  5122) 86.66
Prob > F 0.00
R-squared 0.43
Root MSE 1.98

Table 2 : Pooled Random Effect Estimates



number of bidders 4 5 6 7 8

Intercept 98.221 95.524 92.578 93.563 95.500
169.540 91.620 76.000 79.570 64.370

WA coupon rate 0.611 1.495 2.205 2.021 1.797
3.790 5.020 6.970 6.280 4.710

WA maturity -0.896 -1.082 -1.025 -0.944 -1.278
-8.690 -7.740 -8.430 -5.090 -5.730

Security Type 0.264 3.297 4.514 3.945 2.180
0.390 3.110 3.960 3.370 1.400

Bank Qualified -0.529 -0.723 -0.694 -0.848 -1.277
-5.510 -6.580 -5.330 -5.820 -6.110

Ratings 0.061 -0.115 0.732 0.435 0.174
0.170 -0.310 1.750 1.010 0.320

Type*WACR -0.051 -0.935 -1.249 -1.036 -0.571
-0.290 -3.330 -4.250 -3.380 -1.430

Ratings*WAPN 0.113 0.219 -0.158 -0.311 0.080
0.900 1.500 -1.210 -1.530 0.330

Par amount 1.423 1.770 1.449 2.200 2.182
6.220 8.390 8.750 8.570 6.430

N.E. 0.065 0.836 0.905 0.149 0.380
0.280 2.810 2.670 0.280 0.860

South -0.225 -0.052 0.747 0.382 0.369
-1.130 -0.220 2.260 0.830 1.060

S.W. -0.638 -0.443 0.116 -0.209 0.109
-2.360 -1.290 0.290 -0.380 0.140

West -0.807 -0.066 0.178 -0.600 -0.364
-3.690 -0.260 0.460 -1.350 -0.590

NE*ratings 0.104 -0.572 -0.107 0.578 -0.120
0.350 -1.590 -0.260 1.010 -0.210

South*ratings 0.506 0.794 0.048 0.349 -0.169
1.570 2.290 0.110 0.680 -0.320

West*ratings 0.943 0.298 0.016 1.037 0.010
2.700 0.660 0.030 1.760 0.010

SW*ratings 0.195 0.103 -0.181 0.308 -0.446
0.520 0.240 -0.350 0.490 -0.520

number of auctions 1075 1007 852 687 531
number of bids 4300 5035 5112 4809 4248

'R-square' 0.29 0.48 0.44 0.43 0.35
'F-statistic' 17.24 30.24 26.26 25.47 15.73
'p-value' 0.00 0.00 0.00 0.00 0.00

Table 3(a) :  GLS estimates for fixed number of potential bidders



WA Coupon Rate
4 5 6 7

4 -
5 -1.924 -
6 -3.336 -1.157 -
7 -2.917 -0.849 0.289 -
8 -2.184 -0.445 0.585 0.318

WA Maturity
4 5 6 7

4 -
5 0.767 -
6 0.575 -0.219 -
7 0.167 -0.424 -0.263 -
8 1.171 0.538 0.733 0.816

Type
4 5 6 7

4 -
5 -1.746 -
6 -2.339 -0.553 -
7 -1.992 -0.290 0.246 -
8 -0.858 0.427 0.866 0.647

Par amount
4 5 6 7

4 -
5 -0.788 -
6 -0.064 0.853 -
7 -1.600 -0.920 0.030 -
8 -1.336 -0.750 -1.453 0.030

Bank Qualified
4 5 6 7

4 -
5 0.945 -
6 0.732 0.853 -
7 -1.600 -0.920 -1.779 -
8 -1.336 -0.750 -1.453 0.030

Table 3(b) : Test of equal indices


	Appendix.pdf
	FiguresAll.pdf
	TableFinal.pdf
	TableFinal1.pdf
	TableFinal2.pdf
	TableFinal3.pdf
	TableFinal4.pdf
	TableFinal5.pdf





