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Abstract

We argue for incorporating the financial economics of market microstructure into

the financial econometrics of asset return volatility estimation. In particular, we use

market microstructure theory to derive the cross-correlation function between latent re-

turns and market microstructure noise, which feature prominently in the recent volatil-

ity literature. The cross-correlation at zero displacement is typically negative, and

cross-correlations at nonzero displacements are positive and decay geometrically. If

market makers are sufficiently risk averse, however, the cross-correlation pattern is

inverted. Our results are useful for assessing the validity of the frequently-assumed

independence of latent price and microstructure noise, for explaining observed cross-

correlation patterns, for predicting as-yet undiscovered patterns, and for making in-

formed conjectures as to improved volatility estimation methods.
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1 Introduction

Recent years have seen substantial progress in asset return volatility measurement, with im-

portant applications to asset pricing, portfolio allocation and risk management. In particular,

so-called realized variances and covariances (“realized volatilities”), based on increasingly-

available high-frequency data, have emerged as central for several reasons.1 They are,

for example, largely model-free (in contrast to traditional model-based approaches such as

GARCH), they are computationally trivial, and they are in principle highly accurate.

A tension arises, however, linked to the last of the above desiderata. Econometric theory

suggests the desirability of sampling as often as possible to obtain highly accurate volatility

estimates, but financial market reality suggests otherwise. In particular, microstructure

noise (MSN) such as bid/ask bounce associated with ultra-high-frequency sampling may

contaminate the observed price, separating it from the latent (“true”) price and potentially

rendering naively-calculated realized volatilities unreliable.

Early work (e.g., Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev,

Diebold and Ebens (2001), Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and

Shephard (2002b), Andersen, Bollerslev, Diebold and Labys (2003)) addressed the sampling

issue by attempting to sample often, but not “too often,” implicitly or explicitly using the

volatility signature plot of Andersen, Bollerslev, Diebold and Labys (2000) to guide sampling

frequency, typically resulting in use of five- to thirty-minute returns.2

Much higher-frequency data are usually available, however, so reducing the sampling

frequency to insure against MSN discards potentially valuable information. To use all in-

formation, more recent work has emphasized MSN-robust realized volatilities that use re-

turns sampled at very high frequencies. Examples include Zhang, Mykland and Aı̈t-Sahalia

(2005), Bandi and Russell (2008), Aı̈t-Sahalia, Mykland and Zhang (2005), Hansen and

Lunde (2006), Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a), and Barndorff-

Nielsen, Hansen, Lunde and Shephard (2008c). That literature is almost entirely statistical,

however, which is unfortunate because it makes important assumptions regarding the nature

of the latent price, the MSN, and their interaction, and purely statistical thinking offers

little guidance. A central example concerns the interaction (if any) between latent price and

MSN. Some authors such as Bandi and Russell assume no correlation (perhaps erroneously),

1Several surveys are now available, ranging from the comparatively theoretical treatments of Barndorff-
Nielsen and Shephard (2007) and Andersen, Bollerslev and Diebold (2009) to the applied perspective of
Andersen, Bollerslev, Christoffersen and Diebold (2006).

2The volatility signature plot shows average daily realized volatility as a function of underlying sampling
frequency.
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whereas in contrast Barndorff-Nielsen et al. (2008a) and Barndorff-Nielsen, Hansen, Lunde

and Shephard (2008b) allow for correlation (perhaps unnecessarily).

To improve this situation, we explicitly recognize that MSN results from the strategic

behavior of economic agents, and we push toward integration of the financial economics of

market microstructure with the financial econometrics of volatility estimation. In particular,

we explore the implications of microstructure theory for the relationship between latent

price and MSN, characterizing the cross-correlation structure between latent price and MSN,

contemporaneously and dynamically, in a variety of leading environments, including those

of Roll (1984), Glosten and Milgrom (1985), Kyle (1985), Easley and O’Hara (1992), and

Hasbrouck (2002).3

We view this paper as both a general “call to action” for incorporation of microstruc-

ture theory into financial econometrics, and a detailed analysis of the fruits of doing so in

the specific and important context of volatility estimation, where the payoff is several-fold.

Among other things, attention to market microstructure theory enables us to assess the likely

validity of the independence assumption, to offer explanations of observed cross-correlation

patterns, to predict the existence of as-yet undiscovered patterns, and to make informed

conjectures as to improved volatility estimation methods.

We proceed as follows. In section 2 we provide an overview of various market microstruc-

ture models and introduce our general framework, which nests a variety of such models, and

we provide a generic (model-free) result on the nature of correlation between latent price and

MSN. In sections 3 and 4 we provide a detailed analysis of models of private information,

and we distinguish two types of latent prices based on the implied level of market efficiency,

treating strong form efficiency in section 3 and semi-strong form efficiency in section 4. We

draw some implications of our findings for empirical work in section 5, and we conclude in

section 6.

2 General Framework and Results

Here we introduce a general price process, relate it to existing market microstructure models,

and derive a generic result on the correlation between latent price and MSN.

3For insightful surveys of the key models, see O’Hara (1995) and Hasbrouck (2007).
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2.1 Price and Noise Processes

Let p∗t denote the (logarithm of the) strong form efficient price of some asset in period t.

This price, strictly exogenous and at time t known only to the informed traders, follows the

process

p∗t = p∗t−1 + µ∗
t + σεt, (1)

εt ∼iid (0, 1), (2)

where µ∗
t denotes its drift.

Let qt denote the direction of the trade in period t, where qt = +1 denotes a buy and

qt = −1 a sell. Using this, the semi-strong form efficient price, which summarizes the current

knowledge of the market maker, is

p̃t = ˜̃pt + λtqt. (3)

λt ≥ 0 captures the response to asymmetric information revealed by trade direction qt, and

˜̃pt is the expected efficient price before the trade occurs. This price evolves according to

˜̃pt = p̃t−1 + µ̃t + ct, (4)

where µ̃t is its drift, and ct summarizes information about p∗t−1 revealed in period t. We use

the term “latent price” as a general term comprising both types of efficient prices.

Assuming that the (logarithm of) price quotes are symmetric around the expected efficient

price before the trade,4 the (logarithm of the) observed transaction price can be written as

pt = ˜̃pt + stqt, (5)

where st is one-half of the spread. In particular, the bid price is pbid
t = ˜̃pt − st, the ask price

is pask
t = ˜̃pt + st, and the mid price is pmid

t = ˜̃pt.

We define returns as price changes net of drift. Strong form efficient returns are therefore

∆p∗t ≡ p∗t − p∗t−1 − µ∗
t = σεt, (6)

4We use the approximation ln(P + S) = ln
(

P
(

1 + S
P

))

= p + ln
(

1 + S
P

)

≈ p + S
P ≡ p + s, where P and

S denote price and spread before taking the natural logarithm.
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semi-strong form efficient returns are

∆p̃t ≡ p̃t − p̃t−1 − µ̃t = λtqt + ct, (7)

and market returns are

∆pt ≡ pt − pt−1 − µ̃t = ∆˜̃pt + stqt − st−1qt−1

= ∆p̃t + (st − λt)qt − (st−1 − λt−1)qt−1. (8)

In absence of persistent bubbles the drift of all three prices must be equal in the long run.

We thus set µ∗
t = µ̃t ≡ µt.

Microstructure noise (MSN) is the difference between the observed market return and

the latent return.5 Depending on whether one considers the strong form efficient return or

the semi-strong form efficient return, the noise is defined either as strong form noise

∆ut ≡ ∆pt − ∆p∗t , (9)

or as semi-strong form noise

∆ut ≡ ∆pt − ∆p̃t. (10)

As we show in this paper, these two types of noise differ fundamentally in their cross-

correlation properties. It is therefore essential for a researcher to be clear in advance what

type of latent price the object of interest is, because each type of efficiency requires different

procedures to remove MSN appropriately.

A convenient estimator of the variance of the strong form efficient return, σ2, is the

realized variance (Andersen, Bollerslev, Diebold and Labys 2001). Realized variance during

the time interval [0, T ] is defined as the sum of squared market returns over the interval, i.e.

as

V ar(∆pt) =
T
∑

t=1

∆p2
t . (11)

In the presence of MSN, the realized variance is generally a biased estimate of the vari-

ance of the efficient return, σ2. To see this, decompose the noise into two components, i.e.

∆ut = ∆uba
t + ∆uasy

t . The first component, ∆uba
t , is assumed to be uncorrelated with the

latent price of interest, reflecting for example the bid/ask bounce. The second component,

5We assume throughout that market prices pt adjust sufficiently fast such that the noise process ∆ut is
covariance stationary.
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∆uasy
t , is correlated with the efficient price, and reflects for example the effect of asymmetric

information. Realized variance can now be decomposed – here shown for the strong form

efficient price – as

V ar(∆pt) = V ar(∆p∗t + ∆uba
t + ∆uasy

t )

= σ2 + V ar(∆uba
t ) + V ar(∆uasy

t ) + 2Cov(∆p∗t , ∆uasy
t ). (12)

The bias of the realized variance can stem from any of the last three terms, which are all

nonzero in general. Realized variance estimation under the independent noise assumption

accounts for the second and third positive terms, but ignores the last term, which is typically

negative (Hansen and Lunde 2006). Correcting the estimates for independent noise only al-

ways reduces the volatility estimate. But because such a correction ignores the last term,

which is the second channel through which asymmetric information affects the realized vari-

ance estimate, the overall reduction might be too much. Further, serial correlation of noise,

or equivalently a cross-correlation between noise and latent returns at nonzero displacement,

requires the use of robust estimators for both the variance and the covariance terms. In

this paper we determine what correlation and serial correlation market microstructure the-

ory predicts, and how market microstructure theory can be useful for obtaining improved

estimates of integrated variance.

2.2 Institutional Setting

Price and noise processes as defined in the previous subsection suffice to mechanically derive

expressions for their cross-correlation. However, this reduced form setup does not give much

guidance about sign and time pattern of these cross-correlations. Without any microstruc-

ture foundation a purely statistical MSN correction blindly removes any kind of correlation.

It may unintentionally remove part of the information component of the price, thereby intro-

ducing a new type of bias into the “corrected” price series. A more careful noise correction

removes only noise patterns that can be traced back to market microstructure phenomena.

For this reason we provide in this section a general setup, which contains many market

microstructure models as special cases. These models allow us to determine the sign and

describe the pattern of cross-correlations due to MSN. These are the patterns that in our

view any serious MSN correction must remove, not more, and not less.

As we will see, the key determinants of the shape of the cross-correlation function between

latent returns and MSN are market structure and the market maker’s loss function.
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2.2.1 Market Microstructure

Whereas the strong form efficient price is exogenous, the semi-strong form efficient price and

the market price are the outcome of the market participants’ optimizing behavior. Generally

speaking, the market price depends on the information available about the strong form

efficient price and the market participants’ response to this information. The information

process matters in two ways: First, via its information content, and second, via the time span

in which it is not publicly known but valid. The price updating rule determines how, and

how quickly, market prices respond to new information. Of particular importance is whether

the market maker can quote prices dependent on the direction of trade, i.e. whether he can

charge a spread, because direction-dependent quotes allow prices to react instantaneously.

Let Ωt denote all public information available at time t. In particular the market maker

has no information beyond Ωt.
6 For convenience of exposition we use

Assumption 1 The probability density function of εt is symmetric around its zero mean,

monotonically increasing on ] −∞; 0] and monotonically decreasing on [0;∞[.

We analyze limit-order markets, populated by informed and uninformed traders. There

are many market makers7 which are in perfect competition with each other, and which serve

as counterparty to all trades. The timing of information and actions in any given period, t,

which is infinitely often repeated, is as follows:

1. p∗t−1 becomes public information, thus
{

p∗t−1

}

∈ Ωt.

2. p∗t changes randomly.

3. The market maker observes Ωt which contains at least all transaction prices and trades

up to the previous period, i.e. {pi, qi} ∈ Ωt ∀i < t. Ωt may contain additional

information about the current strong form efficient price, p∗t , for example the direction

of the price innovation, {sgn(εt)}.

4. The market maker quotes a pricing scheme for period t, i.e. a mid price pmid
t > 0 and

a spread 2st ≥ 0. The market maker is bound to transact one unit at this price.

6Drift µt, variance σ2 and probability density function of εt are public knowledge. We assume perfect
memory, Ωi ⊂ Ωt ∀i ≤ t, and that given the information set Ωt the market participants’ optimizing behavior
determines a unique market price p(Ωt), with corresponding market return ∆p(Ωt,Ωt−1).

7At least there needs to be one market maker and many potential competitors.
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5. If informed traders are present (or “active”), they observe p∗t and the market maker

pricing scheme {pmid
t , st}. If based on their private knowledge p∗t > pask

t ≡ pmid
t + st,

then they try to buy an infinite amount, whereas if p∗t < pbid
t ≡ pmid

t − st, they try to

(short-) sell an infinite amount. However, the market maker fills the demand only up

to his commitment limit, one unit. If a transaction takes place, the transaction price

is pt = pask
t or pt = pbid

t , respectively. If neither buy nor sell is profitable, or if informed

traders are not active in this period, then no informed trade occurs.

6. If there was no informed trade in step 5, uninformed traders trade randomly for exoge-

nous reasons. For these traders buying at pask
t and selling at pbid

t has equal probability,

which allows market makers to earn the spread without risk. Denote this constant

income per period by π = π(st). Uninformed traders are the only source of revenue of

the market maker.

7. If private information is valid for only one period, then the market continues with step

1. Otherwise, if information remains private for T > 1 periods, no further information

is revealed at this moment and the market continues with step 3. Eventually after T

loops p∗t becomes public information and the market continues with step 1.

A second assumption helps us in greatly simplifying the model without affecting its basic

behavior.

Assumption 2 Ex ante (t = 0) buys (qt = +1) and sells (qt = −1) are equally likely,

so that E(qt) = 0. There is no “momentum” in uninformed trading, and thus trades are

not serially correlated beyond the time of a strong form efficient price change, that is,

E(qκT+τ1|qκT−τ2) = 0 ∀κ ∈ Z,∀τ1 ≥ 0,∀τ2 ≥ 1.

This setup has an immediate implication. If no informed traders are present in the

market, then E (qtεt−τ ) = 0 ∀t, ∀τ , because uninformed trades are unrelated to p∗t . In

contrast, for informed trades E(qtεt−τ ) ≥ 0 ∀t,∀τ ≥ 0, because informed traders buy only

if the strong form price increased, and sell if it fell. Taken together, and using Jensen’s

inequality, it holds that

0 ≤ E (qtεt−τ ) ≤ E (|εt|) ≤ 1, ∀t,∀τ. (13)

Having detailed the market microstructure, we now describe the behavior of the market

maker.
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2.2.2 The Market Maker

The loss function of the market maker pins down the optimal spread size and the response

to a trade, and is thus a key determinant of the sign of the cross-correlations. Before trading

occurs, the market maker has a belief about p∗t , summarized by the prior probability density

function f(p∗t ). We require f(p∗t ) = f(p∗t−1 +µt + εt) to be consistent with Assumption 1 and

denote the corresponding cumulative distribution function with F (·). Let p and p denote

the lower and upper end of the support of p∗t that the market maker has determined by

previous experimentation.8 We define the loss function of a market maker with risk aversion

parameter n ≥ 1 as

l̆n(x) = − |x|n . (14)

The market maker’s per period loss is a function of disadvantageous differences between

the strong form efficient price and the transaction price in periods of informed trading. In

periods without any informed trading the market maker’s loss is zero.9 The expected loss in

period t when the market price is set at pt is10

Ln

(

pt, p, p, F (·)
)

= E (ln(pt − p∗t ))

= −
∫ p

p

|pt − p∗t |n f (p∗t ) µ (pt, p
∗
t ) dp∗t , (15)

where µ (pt, p
∗
t ) = Prob (informed trade|p∗t , pt).

The higher the risk aversion n, the more sensitive is the expected loss, E (ln(pt − p∗t )),

to the support of p∗t , that is, to p and p. A well-known result is that the optimal choice

for a risk neutral market maker (n = 1) is to set pt equal to the median of f(·), and for a

modestly risk averse market maker (n = 2) to the mean. An extremely risk averse (n → ∞)

market maker minimizes his expected loss at the price in the middle of the support of f(·),
i.e. pt =

p+p

2
.11 If f(·) is unbounded on one side, this pt is infinite.

8In the first period, either p and p are known, or are set to p = −∞ and p = ∞.
9More comprehensive and realistic loss functions are possible, of course. For example, the loss function

may be defined over all market maker income per period, not just over deviations from the income from
uninformed trading. However, this would add extra complication without changing the effect of risk aversion
on market maker behavior.

10 Ln(pt, p, p, F (·))1/n is related to the ℓn metric. However, it differs in that it is reweighted, and sums
over infinitely many elements. In particular, for n → ∞ we have

Ln→∞(pt, p, p, F (·))1/n = −sup
{

|pt − p∗t | , p∗t ∈
{

p|p ≤ p ≤ p, f(p) > 0
}}

= −sup
{

|pt − p| ,
∣

∣pt − p
∣

∣

}

.

11See section 3.3.3.
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Between any two changes in the strong form efficient price the market maker chooses the

pricing scheme
{

pmid
t , st

}

such that his discounted loss-adjusted profit

Πt(p, p, F ) = E

[

(1 − δ)
∞
∑

i=0

δiπ(st+i)

]

+ Vt(pt
, pt, Ft) (16)

is maximized. δ denotes the market maker’s discount factor, and Vt(·) is the total expected

loss from trades with informed traders from period t onwards. The following assumption

pins down the market marker behavior further.

Assumption 3 Perfect competition among market makers implies that the market maker

earns zero expected profit on each transaction, which pins down the spread 2st, and the market

makers’ revenue π(st) from transactions with uninformed traders. Individual market makers

take the spread as given.

Note that in general the spread must exceed the expected adverse selection effect, i.e.

st > λt, because the market maker must cover his processing cost on top of the adverse

selection cost. Under Assumption 3 the market maker’s profit maximization problem (16)

reduces to minimizing his expected loss from trades with informed traders, which can be

written in recursive form as

Vt(pt
, pt, Ft) =

∑

Ω̃t+1

P (Ω̃t+1) max
pbid,pask

[

Ln(pbid, p
t+1

, pbid, F̃t+1)

+ δVt+1(pt+1
, pbid, F̃t+1|p

bid

p
t+1

)
(

F̃t+1(p
bid) − F̃t+1(pt+1

)
)

+ δVt+1(p
bid, pask, F̃t+1|p

ask

pbid )
(

F̃t+1(p
ask) − F̃t+1(p

bid)
)

+ δVt+1(p
ask, pt+1, F̃t+1|pt+1

pask )
(

F̃t+1(pt+1) − F̃t+1(p
ask)
)

+ Ln(pask, pask, pt+1, F̃t+1)
]

, (17)

where F̃t+1 is the (Bayesian) update of Ft using information Ω̃t = Ωt\Ωt−1, F̃ (x)|x2
x1

is the

cumulative distribution F̃ of x conditional on x ∈ [x1, x2], pt+1 and p
t+1

are the updated

upper and lower bound of this distribution, P (Ω̃) is the probability that the market maker

observes the signal Ω̃, and pbid ≡ pbid
t+1(pt+1

, pt+1, F̃t+1) and pask ≡ pask
t+1(pt+1

, pt+1, F̃t+1).

If Ω̃t+1 contains only information about period t and earlier, but no signal about t + 1

values, and if the spread is fixed at a constant, then the market maker’s problem becomes

independent of time and his only choice variable is the location of the spread interval, pmid.
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(17) simplifies to

V (p, p, F ) = max
pmid

[

Ln

(

pmid − s, p, pmid − s, F
)

+ δV
(

p, pmid − s, F |pmid−s
p

)

(

F
(

pmid − s
)

− F
(

p
))

+ δV (pmid − s, pmid + s, F |pmid+s
pmid−s

)
(

F (pmid + s) − F (pmid − s)
)

+ δV
(

pmid + s, p, F |p
pmid+s

)

(

F (p) − F
(

pmid + s
))

+ Ln

(

pmid + s, pmid + s, p, F
)]

, (18)

where pmid ≡ pmid(p, p, F ).

The recursive problem (17) encompasses most cases that we discuss in this paper. Un-

fortunately, (17) and even (18) are hard to solve – in general the policy functions pbid(·) and

pask(·) are not available in closed form.12

In the following sections we look at specializations of the general market maker problem

(17) and examine the effect of various model setups on the cross-correlation function. For

both strong form and semi-strong form efficient returns we first examine the multiperiod

case (δ 6= 0), where private information is not revealed until after many periods. We then

specialize to the one-period case (δ = 0), a case where private information becomes public,

and worthless, after only one period.

2.3 Cross-Correlations Between Latent Price and MSN

We focus in this paper on the cross-correlation between latent returns and noise contem-

poraneously and at all displacements. Throughout, we refer to this quantity simply as the

“cross-correlation”.

Proposition 1 (General cross-correlations) Under the price processes given by (1)–(5)

the contemporaneous cross-correlation ρ0 is positive only if the market return, ∆pt(Ωt, Ωt−1),

is more volatile than the latent return, that is, for strong form efficient returns

Corr(∆p∗t , ∆ut) > 0 ⇔ E(∆pt∆p∗t ) > V ar(∆p∗t ) ⇔ Corr(∆pt∆p∗t ) >

√

V ar(∆p∗t )

V ar(∆pt)
, (19)

12For characterizations of the general solution see Aghion, Bolton, Harris and Jullien (1991) and Aghion,
Espinosa and Jullien (1993). Their solution shows that in general optimal learning requires λt in (3) to vary
over time.
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and for semi-strong form efficient returns

Corr(∆p̃t, ∆ut) > 0 ⇔ E(∆pt∆p̃t) > V ar(∆p̃t) ⇔ Corr(∆pt∆p̃t) >

√

V ar(∆p̃t)

V ar(∆pt)
. (20)

The cross-correlation ρτ at displacement τ ≥ 1 is positive if and only if the current market

price responds stronger in the direction of a previous latent price change than the current

latent price itself, that is, for strong form efficient returns

Corr(∆p∗t−τ , ∆ut) > 0 ⇔ E(∆pt∆p∗t−τ ) > 0, (21)

and for semi-strong form efficient returns

Corr(∆p̃t−τ , ∆ut) > 0 ⇔ E(∆pt∆p̃t−τ ) > E(∆p̃t∆p̃t−τ ). (22)

Proof: See appendix A.

The importance of Proposition 1 stems from its generality. Without referring to any

specific model of market participants’ behavior, it nevertheless isolates the conditions on

∆pt(Ωt, Ωt−1) that determine the cross-correlation pattern. The next step, of course, is to

characterize the properties of ∆pt(Ωt, Ωt−1) in the leading models of market microstructure.

We now do so, treating in turn strong form and semi-strong form efficient prices.

3 Strong form Correlation

Here we characterize cross-correlations in an environment of strong form efficient prices.

Accordingly, in this section “efficient price” means “strong form efficient price”.

Suppose there is a single change in the strong form efficient price at a known time from a

publicly known level, for example at the beginning of the day,13 which lasts T periods. This

allows studying the effect of one strong form efficient price change in isolation.

We first calculate the correlations between strong form efficient returns

∆p∗t = ∆p∗κT =

{

σεκT ∀κ ∈ Z

0 ∀κ /∈ Z
(23)

13With “day” we mean the average time between two changes in the strong form efficient price, which
could be several days, or, more likely, just a few hours. Engle and Patton (2004) and Owens and Steigerwald
(2005), for example, find evidence of multiple information arrivals during a calendar day.
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and the corresponding noise14

∆ut = ∆pt − ∆p∗t = ∆˜̃pt + stqt − st−1qt−1 − ∆p∗t . (24)

3.1 The General Multi-period Case

In the period of a change in the strong form efficient price the expectation about this price

changes by15

∆˜̃p0 = ˜̃p0 − ˜̃p−1 − µ0

= σε−T −
T
∑

t=2

λ−tq−t, (25)

and in all other periods by

∆˜̃pt = λt−1qt−1. (26)

From (24) we get for t = κT

∆u0 = σ(ε−T − ε0) + s0q0 − s−1q−1 −
T
∑

t=2

λ−tq−t (27)

and ∀t 6= κT

∆ut = λt−1qt−1 + stqt − st−1qt−1, (28)

where the first term reflects information-revealing trades, and the second and third term

reflect the bid/ask bounce.

This immediately leads to the contemporaneous cross-covariance

Cov(∆p∗t , ∆ut) =
σ

T
(s0E(q0ε0) − σ) . (29)

For cross-covariance at higher displacements τ ∈ [1; T − 1] we get

Cov(∆p∗t−τ , ∆ut) =
σ

T
((λτ−1 − sτ−1)E(qτ−1ε0) + sτE(qτε0)) , (30)

14The drift, µt, is time-varying. Because it is publicly available information, it plays no role in our cross-
correlation analysis. In contrast, qt is driven by unobserved private information and is a key determinant of
the cross-correlation patterns.

15As a shorthand notation we use px ≡ pκT+x ∀κ, x ∈ Z.
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for cross-covariance at displacement T

Cov(∆p∗t−T , ∆ut) =
σ

T

(

σ − sT−1E(qT−1ε0) −
T−2
∑

i=0

λiE(qiε0)

)

, (31)

and for all higher order displacements τ > T

Cov(∆p∗t−τ , ∆ut) = 0. (32)

Expressions for the variance terms V ar(∆p∗t ) and V ar(∆ut) are given in appendix B.

The general expressions for the cross-correlations are complicated enough to make their

discussion here unattractive, but we will use them on numerous occasions throughout this

paper.

As indicated earlier, for any displacement τ ceteris paribus the term E(qτε0) is the

smaller, the more uninformed trades take place. This term enters the expression for the

contemporaneous cross-covariance (29) linearly and enters the denominator of the cross-

correlation under a square root. Therefore, the contemporaneous cross-correlation is the

smaller, the less informed traders are active. In absence of any informed traders, the market

microstructure is reduced to a bid/ask bounce, as in Roll (1984). In this case, shown in

the first row of Table 1, the contemporaneous cross-correlation (29) is negative, the cross-

correlations at displacement T is positive and all other cross-correlations are zero.

If the spread is zero,16 the contemporaneous cross-correlation is negative as well, but the

cross-correlations at displacements up to T − 1 are positive.

In general, however, the sign of the cross-correlations depends on the behavior of the

market maker and traders. We now turn to models that allow us to introduce these explicitly.

3.2 Special Multi-period Cases

Because the market maker loses in every trade with an informed trader, he has an incen-

tive to find out the strong form efficient price. He learns about the informed traders’ private

information by setting prices and observing the resulting trades. As he “learns by experimen-

tation”17 over time, the value of private information of the informed trader slowly vanishes.

Although there are many possible interactions of strategic actions by market participants,

we will see that rational behavior ensures that they all share the same cross-correlation sign

16A sequence of only bid prices (or only ask prices) is equivalent to st = 0 ∀t.
17Aghion et al. (1991), Aghion et al. (1993)
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pattern and differ only in the absolute value of the cross-correlation.

The market maker does not observe p∗t directly, but only signals which allow him to

narrow down the range of the current p∗t level. He observes in particular the response of

traders to his previous price quote and uses this signal to revise his quote. Because the

strong form efficient price, p∗t , by assumption does not change after the initial jump for T

periods, the market maker can use the entire sequence of signals to learn p∗t over time. His

optimization task is to quote prices that minimize his losses by learning about p∗t as quickly

as possible.

With δ 6= 0 the recursive problem (17) is hard to solve, and in particular there are

in general no closed form policy functions pbid
t and pask

t . Therefore we follow the market

microstructure literature by discussing interesting polar cases, which can be solved because

f(p∗t ) is degenerate. We assume in this section that market makers are risk neutral (n = 1)

and limit our discussion to the mid price in order to study the learning effect in isolation.

3.2.1 Perfect Signal, No Strategic Traders

The market maker’s learning speed depends on the reliability of the signal. Let us start

with a situation where the signal is known to be free of noise and strategic manipulation by

market participants. To learn as much as possible the market maker minimizes the length

of the interval in which p∗t may be located. In the special case of a constant spread during

the interval between two latent price changes he solves (18) with n = 1

V (p, p, F ) = max
pmid

[

−
∫ pmid−s

p

(pmid − s − p∗)f(p∗)dp∗

+ δV
(

p, pmid − s, F |pmid−s
p

)

(

F
(

pmid − s
)

− F
(

p
))

+ δV (pmid − s, pmid + s, F |pmid+s
pmid−s

)
(

F (pmid + s) − F (pmid − s)
)

+ δV
(

pmid + s, p, F |p
pmid+s

)

(

F (p) − F
(

pmid + s
))

−
∫ p

pmid+s

(p∗ − pmid − s)f(p∗)dp∗
]

. (33)

Assuming that the spread s is sufficiently small, then from (29) the contemporaneous

cross-correlation is negative, because in this case pt shows barely any instantaneous reaction

to ∆p∗t .
18 Because further by assumption p∗t does not change for several periods (∆p∗κt = 0

18ρ0 is negative, but strictly larger than negative one. This obtains, because pt responds every period to
noisy signals about p∗0, which increases the noise variance.
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∀κ /∈ Z) and learning takes several periods, the contemporaneous cross-correlation is larger

in absolute value than cross-correlations at nonzero displacements. Likewise, by (30) the

sign of cross-correlation at displacement one and higher is positive, because the more the

market maker learns, the closer pt gets to p∗t , and the more noise shrinks to zero. Aghion

et al. (1991) provide a thorough discussion of the market maker’s learning problem.19 If,

further, the adverse selection coefficient λ in all periods is sufficiently small as well, by (31)

the cross-correlation at displacement T is positive. We summarize these qualitative results

in the second row of Table 1.

[Table 1 about here.]

3.2.2 Noisy Signal

The models so far did not account for signal uncertainty and strategic behavior. Here we

do so. Consider first a market in which the market maker observes only a noisy signal of

whether p∗t has changed, but in which traders do not behave strategically yet. The market

maker then has to learn both about the quality of the signal and about the latent price.

Glosten and Milgrom (1985) describe a market maker who does not know whether he is

trading with an informed or an uninformed trader and thus cannot tell whether his signal,

the direction of trade qt, contains any valuable information. For example, the market maker

cannot tell whether a “buy” originates from an informed trader, in which case it would

indicate an increase in the strong form efficient price, or whether it is just a random trade

of an uninformed trader. Thus, this noisy “buy” increases the likelihood of an increase in

the strong form efficient price less than a “buy” in the “perfect signal” environment of the

previous paragraph.

Glosten and Milgrom (1985) show that if learning is costless, the expectations of market

makers and traders converge as the number of trades increases.20 Because of the uncertainty

of whether a trade reflects the private information of the informed traders or not, the market

maker adjusts only partially to the price indicated by any signal. Therefore, whereas the

cross-correlations have the same sign as under signal certainty summarized in the second

row of Table 1, all absolute values are dampened toward zero.

Easley and O’Hara (1992) additionally consider the information conveyed by periods of

no trading in a model where the strong form efficient price is not a martingale. Their model

19See also appendix C for a simple example.
20But see Aghion et al. (1991) for situations in which learning stops before reaching p∗. In that case the

cross-correlations cut off at some τ < T .
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is more abstract, but has the advantage that this pattern can be derived explicitly. Suppose

at the beginning of the trading day watchful traders observe with probability α the new

strong form efficient price, p∗t , thereby becoming informed traders. This price is “low” (p)

with probability δ and “high” (p) otherwise. The two possible latent price levels, p and p,

and their probability δ are publicly known, but the actual realization of p∗t is not.

The direction-of-trade signal, qt, is thereby uncertain in two ways in this model. Not only

does the market maker not know if a specific trade originates from informed traders, thereby

being informative; the market maker does not even know if there are any informed traders.

He learns by updating in a Bayesian manner his belief about the probabilities that nobody

observed a signal, that some traders observed a high p∗t , and that some observed a low p∗t ,

using his information set of all previous quotes and trades, Ωt. Even non-trading intervals

contain information about p∗t , because they lower the probability that watchful traders have

observed the strong form efficient price at the beginning of the trading day and therefore

lower the probability of informed trading, too.21

The case of signal certainty discussed at the beginning of this subsection is trivial in

this model: Signal certainty implies the absence of any uninformed traders. Because p∗t can

assume only one of two price levels, the first trade reveals the true strong form efficient price.

Until the first trade occurs, the expected efficient price is δp + (1 − δ)p.

Turning to signal uncertainty, suppose first that informed traders trade at every profitable

situation.22 The contemporaneous cross-correlation in this case is for large T 23

Corr(∆p∗t , ∆ut) = −
(

K1 + O
(

2−T
)) (p − p)2

T
< 0, (34)

where K1 = K1(α, δ) and O is the Landau symbol for T → ∞. At nonzero displacements

the cross-correlation can be written for large τ as

Corr(∆p∗t−τ , ∆ut) =

(

1

2

)τ
(

K2 + O
(

2−τ
)) (p − p)2

T
> 0, (35)

where K2 = K2(α, δ).

For sufficiently large T the contemporaneous cross-correlation converges to a negative

constant, and all cross-correlations at nonzero displacements converge to a positive constant.

21A variation of this setup is the model of Diamond and Verrecchia (1987), where short selling constraints
cause periods of no trading to be a noisy signal of a low latent price.

22This corresponds to proposition 7 in Easley and O’Hara (1992).
23For a derivation of these expressions see appendix D.
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Keeping T fixed, the cross-correlation converges geometrically to zero at rate 1/2 in τ .

A similar result holds for the general case, where informed traders are allowed to let a

profitable trade slip away. Easley and O’Hara (1992) show that transaction prices converge

to the strong form efficient price in clock time at exponential rates for large τ .24 Denote

βτ,{p} the belief at time t + τ that a high efficient price has been observed, βτ,{p} the belief

that a low efficient price has been observed and βτ,{} the belief that nobody has observed

any signal, all conditional on Ωt ∪ {qt}. τ sufficiently large allows invoking a law of large

numbers for the observations included in the market maker believes. The market maker sets

under perfect competition

pbid
τ − p = βτ,{p}(1 − βτ,{})p + βτ,{p}(1 − βτ,{})p + βτ,{}

p + p

2
− p

=

(

βτ,{p} +
βτ,{}

2

)

(

p − p
)

. (36)

For the case that watchful traders observe a low strong form efficient price, Easley and

O’Hara (1992) show that βτ,{p} = exp(−r1τ) and βτ,{} = exp(−r2τ) for some r1, r2 > 0.

Hence for large τ the bid price pbid
t converges to p almost surely at the exponential rate

r = min(r1, r2) in clock time.

pbid
t

a.s.→ p. (37)

An analogous result applies to the convergence of the ask price to p.

If periods without trade are permitted, the result strictly applies only to calendar time

sampling. Tick time sampling misses the no-trade periods, which reveal information to the

market maker, too. During trading days in which no trader has observed the strong form

efficient price there are more no-trade periods than during trading days in which some have.

On such a day the convergence rate is higher, because tick time sampling drops periods

without a trade, but still exponential, because information per trade shrinks at a constant

proportion.

The following proposition summarizes the cross-correlations in Easley and O’Hara (1992)-

type models. The calculation of cross-correlations considers only the dominant exponential

learning pattern, and ignores all terms which disappear at a faster rate as τ gets large.

Proposition 2 (Cross-correlations in Easley-O’Hara model)

24This corresponds to proposition 6 in Easley and O’Hara (1992).
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The contemporaneous cross-correlation in the Easley and O’Hara (1992) model is

Corr (∆p∗t , ∆ut) = −1 + e−r(T−1)

2
√

K
< 0, (38)

and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(

∆p∗t−τ , ∆ut

)

=
er − 1

2
√

K
e−rτ > 0, ∀τ ∈ [1, T − 1] (39)

Corr
(

∆p∗t−T , ∆ut

)

=
e−r(T−1)

2
√

K
> 0, (40)

where K = K(r, T ).

Proof: See appendix D.

Unsurprisingly because of the assumption of risk neutrality, the contemporaneous corre-

lation is negative, and approaches its minimum for small r and small T . Furthermore, for

τ ∈ [1, T − 1],

Corr
(

∆p∗t−τ , ∆ut

)

=

(

1

er

)τ−1

Corr
(

∆p∗t−1, ∆ut

)

. (41)

That is, the cross-correlation decays geometrically to zero until τ = T . In the first row of

Figure 1 we graph this cross-correlation function. We show the cross-correlation pattern for

a convergence rate of r = 0.5 in the upper left panel, and for a convergence rate of r = 2 in

the upper right panel.

[Figure 1 about here.]

3.2.3 Strategic Traders

Because the market maker cannot distinguish informed trades from uninformed ones, in-

formed traders can act strategically. The aim of strategic behavior of informed traders is to

make the signals about p∗t conveyed by their orders as noisy as possible, while still executing

the desired trades. By mimicing uninformed traders they keep the market maker unaware

of new information, i.e. unaware of the change in p∗t . Because the market maker observes

order flow imbalances and uses them to detect informed trading, the informed traders stretch

their orders over a long time period such that detecting any significantly abnormal trading

pattern becomes difficult. The market maker will, of course, notice the imbalance in trades

over time. By sequentially updating his belief about p∗t based on the history of trades he
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still learns about p∗t , but, because of the strategic behavior of traders, at the slowest possible

rate.

Markets of this type have been described in Kyle (1985) and Easley and O’Hara (1987). In

the following we discuss the cross-correlation function implied by the Kyle (1985) model. The

strategic behavior described by Kyle (1985) requires that exactly one trader is informed, or

that all informed traders build a monopoly and coordinate trading. Here, the market maker

does not maximize a particular objective function, he merely ensures market efficiency, i.e.

sets the market price such that it equals the expected strong form efficient price, ˜̃pt, given

the observed aggregate trading volume from informed and uninformed traders. The only

optimizer in this model is the (risk neutral) informed trader who optimally spreads his orders

over the day to minimize the (unfavorable) price reaction of the market maker. Thereby he

maximizes his expected total daily profit using his private information and taking the price

setting rule ∆pt(Ωt) of the market makers as given. Effectively, the informed trader trades

most when the sensitivity of prices to trading quantity is small.

Kyle (1985) assumes a linear reaction function of the market maker, which implies λt = λ

∀t ∈ [1, T ], and a linear reaction function for the informed trader, which implies qt = q

∀t ∈ [0, T − 1]. Under these assumptions he shows that in expectation the market price

approaches the latent price linearly, not exponentially as in the previous subsection. The

reason for this difference is that the market maker in Easley and O’Hara (1992) updates

his believes in a Bayesian manner, whereas in Kyle (1985) the market maker’s actions are

constrained to market clearing. The other key feature of this model is that by the end of the

trading day – just before p∗t would be revealed – the market price reflects all information.

From the continuous auction equilibrium in Kyle (1985) the price change at time t is

d˜̃p(t) =
p∗ − ˜̃p(t)

T − t
dt + σdz, t ∈ [0, T ]. (42)

dz is white noise with dz ∼ N(0, 1) and reflects the price impact of uninformed traders. This

stochastic differential equation has the solution

˜̃p(t) =
t

T
p∗ +

T − t

T
˜̃p(0) + (T − t)

∫ t

0

σ

T − s
dBs, (43)

where dBs ≡ dz.25 The increments of the expected price over a discrete interval of time

25The third term reflects uninformed trading. It has an expected value of zero, and the impact of this
random component increases during the early trading day and decreases lateron – its contribution to ˜̃p(t) is
therefore hump-shaped over time.
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follow therefore

∆˜̃pτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − s
dBs −

∫ τ−1

0

σ

T − s
dBs. (44)

The following proposition presents the cross-correlations for the Kyle (1985) model.26

Proposition 3 (Cross-correlations in Kyle model)

The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t , ∆ut) = −
√

T

T 2 + 1
, (45)

the cross-correlations at displacements τ ∈ [1; T ] are

Corr
(

∆p∗t−τ , ∆ut

)

=

√

1

T (T 2 + 1)
, (46)

and all higher order cross-correlations are zero.

Proof: See appendix E.

The cross-covariance at nonzero displacements is positive because of market maker learn-

ing. It is constant because of the strategic behavior of traders, which spread new information

equally over time. This maximizes the time it takes the market maker to include the entire

strong form efficient price change in his quotes. The more periods, the more pronounced is

the negative contemporaneous cross-correlation, and the smaller are the cross-correlations

at nonzero displacements.

We plot the cross-correlation function given by Proposition 3 in the second row of Figure

1. We show the cross-correlation function under modestly frequent changes in the latent price

(T = 5) in the left panel, and for more frequent changes (T = 2) in the right panel. Table 1

compares standard multiperiod market microstructure models. In contrast to markets with

nonstrategic traders, which display decaying lagged cross-correlations (row 3), markets with

strategic traders display constant lagged cross-correlations (row 4).

26These cross-correlations, and cross-correlations for a similar model in our framework, are given in ap-
pendix E.
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3.3 One-period Case

In this section we consider the extreme case of markets in which p∗t automatically becomes

public information at the end of each period, i.e. ct = p∗t−1 − p̃t−1 and T = 1. p∗t−1 is

thus known when the market maker decides on pt, and ˜̃pt = p∗t − σεt. The free distribution

of information removes any incentive for informed traders to behave strategically. They

therefore react immediately, which implies E(qt−τεt) = 0 ∀τ 6= 0 and trades are serially

uncorrelated, i.e. E(qt|qt−1) = 0. For the market maker all periods are identical, and

therefore the spread and reaction parameters are both constant over time, i.e. st = s and

λt = λ ∀t.

3.3.1 General Property

Because T = 1 the market maker’s recursive problem (17) collapses to a sequence of sin-

gle period (δ = 0) problems. This by itself pins down the shape of the cross-correlation

function. By (32) all cross-correlations at displacements larger than one are zero. Because

E(∆p∗t−τ∆p∗t ) = 0 ∀τ ≥ 1 we can write

Corr(∆p∗t−τ , ∆ut) = −Corr(∆p∗t−τ , ∆p∗t ) + Corr(∆p∗t−τ , ∆pt)

= Corr(∆p∗t−τ , ∆pt), (47)

∀τ ≥ 1. Because p∗t−1 is known at the beginning of time t, the market price in period t

is p∗t−1 adjusted by the market maker’s reaction, R(·), to his information Ω̃t about p∗t , i.e.

pt = p∗t−1 + µt + R(Ω̃t). Because Ω̃t in a one-period model is unrelated to past changes in

the strong form efficient price, (47) becomes for displacement τ = 1

Corr(∆p∗t−1, ∆pt)

= −Corr(∆p∗t−1, ∆ut−1) + Corr(∆p∗t−1, pt − pt−2 − p∗t−1 + p∗t−2)

= −Corr(∆p∗t , ∆ut) + Corr(∆p∗t−1, p
∗
t−1 + R(Ω̃t) − p∗t−1)

= −Corr(∆p∗t , ∆ut). (48)

From (47) and (48) we conclude that in models of one-period private information the cross-

correlation at displacement one has the opposite sign and same absolute value as the contem-

poraneous cross-correlation. In order to pin down the contemporaneous cross-correlation,

we now turn to specific models.
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3.3.2 No Market Maker Information

We start with our baseline assumption that the market maker at time t has no information

whatsoever about ∆p∗t . Plugging T = 1, st = s, and λt = λ into the general multiperiod

results derived in appendix B gives

Proposition 4 (Strong form cross-correlation, one period model)

Corr(∆p∗t , ∆ut) =
1√
2

sE (qtεt) − σ
√

s2 + σ2 − 2sσE(qtεt)
, (49)

Proof: We have

∆p∗t = σεt, (50)

∆ut = s(qt − qt−1) − σ(εt − εt−1) (51)

and

V ar(∆p∗t ) = σ2, (52)

V ar(∆ut) = 2s2 + 2σ2 − 4sσE(qtεt). (53)

This implies for the cross-covariance

Cov(∆p∗t , ∆ut) = E (σεt (sqt − sqt−1 − σεt + σεt−1))

= sσE (qtεt) − σ2, (54)

where we have used E(εt|qt−1) = 0 and E(εt|εt−1) = 0. Using (52), (53), and (54) we

immediately obtain (49). Q.E.D.

As the following Proposition 5 shows, the cross-correlation (49) can be bounded from

above and below.

Proposition 5 (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t , ∆ut) ≤ 0. (55)

Proof: Negativity can be seen as follows. For uninformed traders, which trade randomly

(E(qt|εt) = 0), we have sE(qu
t εt) = 0. In contrast, informed traders buy (qt = +1) only
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when σεt > s and sell (qt = −1) only when σεt < −s. Thus in a market of only informed

traders σqi
tεt > s ≥ 0 ∀t. Therefore we can write

1 = E(qi 2
t ε2

t ) > E
( s

σ
qi
tεt

)

> E

(

s2

σ2

)

> 0, (56)

so in particular σ > sE(qi
tεt) > 0. Combining informed and uninformed trades we have

σ ≥ sE(qtεt) > 0, (57)

which implies that the contemporaneous cross-correlation (49) is negative.

Further, (49) is bounded from below by −1/
√

2, which we prove by contradiction. Sup-

pose this was not the case, then from (49)

sE (qtεt) − σ < −
√

s2 + σ2 − 2sσE(qtεt). (58)

Squaring both sides and simplifying gives the condition

[E (qtεt)]
2 > 1, (59)

but by Jensen’s inequality

[E (qtεt)]
2 ≤ E

(

q2
t ε

2
t

)

= 1, (60)

which contradicts (59). Q.E.D.

Note that the lower bound holds with equality for mid prices (s = 0).27 The contem-

poraneous cross-correlation is therefore less pronounced for transaction prices than for mid

prices. The contemporaneous cross-correlation for mid prices is negative, because pmid
t does

not react at all to the change in the strong form efficient price in the same period.28 It differs

from negative unity because market prices move in adjustment to the strong form efficient

return one period earlier.

We summarize these results in the upper two rows of Table 2. Compared to the multi-

period case (T > 1) the absolute value of the cross-correlation at lag one is large, because

all information is revealed. Cross-correlations at any displacement beyond one, in contrast,

are all zero.

27s = 0 must also hold by Assumption 3, if the market consisted of uninformed traders only.
28This is an instance of the price stickiness that Bandi and Russell (2006b) show to generate “mechanically”

a negative contemporaneous cross-correlation.
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[Table 2 about here.]

3.3.3 Incomplete Market Maker Information

In the previous subsection the market maker set prices without any information about the

strong form efficient return in period t. Now suppose that the market maker observes a signal

about the sign of ∆p∗t , namely {sgn(εt)} ∈ Ωt, before setting his price pmid
t . This enables him

to change pmid
t before any informed trader reacts to the strong form efficient price change.

With the signal {sgn(εt)} the market maker updates his prior belief p∗t ∼ (p∗t−1 + µt, σ
2)

summarized by the distribution f̆(
∆p∗

t

σ
). The updated distribution f(·) differs from f̆(p∗t ) in

that it is truncated from below or above at p∗t = p∗t−1 + µ when sgn(εt) > 0 or sgn(εt) < 0,

respectively.29 Figure 2 illustrates what the posterior distribution looks like after observing

the signal {sgn(εt) = +1}: If the prior is a normal distribution, the posterior is given by the

half normal in the upper left panel. If the prior is a tent distribution, the posterior is given

by the triangular distribution in the lower left panel.

After observing this signal and the outcomes of period t−1, in particular p∗t−1, the market

maker quotes a bid and an ask price for the following period, taking the spread s as given:

pt = p∗t−1 + µt + sqt + R({sgn(εt)}). (61)

Because the market maker can adjust the mid price in response to the extra information

{sgn(εt)}, (61) augments (5) by the market maker response function R(·). R(·) depends in

particular on the market maker’s risk aversion, n.30

An approximation31 to the problem of choosing pmid
t ≡ p(n) based on loss function (15)

29We assume that the market makers’ beliefs make proper use of the available information, in particular
that f(·) is consistent with Assumption 1.

30The extra information of the market maker disconnects the direction of trade from the direction of the
change in the strong form efficient price. If the informed trade, then it must be that p∗t > pask

t or that
p∗t < pbid

t . When R(·) = 0, as in the previous sections, the sign of the innovation, εt, pins down the trading
direction. For example, εt > 0 implies p∗t > pask

t in periods of informed trading. In this subsection, once the
market maker observes {sgn(εt)}, his mid price quote, pmid

t , takes the expected change in p∗t into account.
Because his expectation of p∗t could both be too high or too low, the sign of εt does not pin down the trading
direction in periods of informed trading. (As before, uninformed trades occur no matter what p∗t , pask

t and
pbid

t are.)
31This approximation is exact for s = 0 or, more generally, for

∫ p(n)

p(n)−s

(p(n) − p∗)
n

f(p∗)dp∗ +

∫ p(n)+s

p(n)

(p∗ − p(n))
n

f(p∗)dp∗ = 0.

25



is

p(n) = argmax
x∈[p,p]

−
∫ x

p

(x − p∗)n f(p∗)dp∗ −
∫ p

x

(p∗ − x)n f(p∗)dp∗. (62)

For any density f(·) which has all moments we can apply Leibnitz’s rule and obtain the

first order condition

∫ p(n)

p

(p(n) − p∗)n−1 f(p∗)dp∗ −
∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗ = 0. (63)

For some values of n, explicit solutions to (63) are available, which we list in Proposition

6.32

Proposition 6 (Optimal Mid Price)

p(1) = Median(p∗t ) (64)

p(2) = E(p∗t ) (65)

p(∞) = Midsupport(p∗t ). (66)

Proof: The first two equations are the well-known result that the median is the best predic-

tor under linear (absolute) loss, whereas the mean is the best predictor under squared loss.

The third equation follows from rewriting (63) as a metric

lim
n→∞

(

∫ p(n)

p

(p(n) − p∗)n−1 f(p∗)dp∗

)1/(n−1)

= lim
n→∞

(
∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗
)1/(n−1)

, (67)

which after taking the limit degenerates to the sup norm

sup
p∗∈[p,p(∞)]

(p(∞) − p∗) = sup
p∗∈[p(∞),p]

(p∗ − p(∞)) . (68)

Hence

p(∞) =
p + p

2
. (69)

32We assume n ≥ 1 throughout, because this implies realistic market maker preferences. However, (62)
can be solved for any n ≥ 0. In particular, p(0) is the mode of f(·) when s = 0, or the highest density
(connected) region when s > 0. For n /∈ {1, 2,∞} no explicit solution exists, and for n > 25 even obtaining
numerical solutions creates difficulty for non-trivial distribution functions f(·).
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Thus, by monotonicity (69) solves (63) for n → ∞. Q.E.D.

For distributions with finite support p(∞) is a finite number. Otherwise, it is positive or

negative infinity for one-sided distributions or does not exist for distributions with positive

density over the entire real line. For the halfnormal distribution shown in Figure 2, for

example, we get p(∞) = +∞.

[Figure 2 about here.]

As risk aversion, n, grows, p(n) moves monotonically from the median of f(·) to the

midpoint of the support of f(·).33 The upper right panel of Figure 2 illustrates this for right-

skewed distributions f(·) with infinite support such as the halfnormal distribution. p(n)

increases in n, starting from the median for n = 1, monotonically without bound. If f(·) has

finite support, p(n) increases from the median monotonically toward an asymptote p(∞).

Analogously, for left-skewed distributions with infinite support, p(n) decreases in n from

the median monotonically without bound, and with finite support toward an asymptote

p(∞). The asymptote is clearly visible in the lower right panel of Figure 2, in which we plot

p(n) for the triangular distribution defined on [0, 1] shown in the lower left panel of the same

figure. We use these observations in the proof of the following proposition:

Proposition 7 (Cross-correlation under market maker information)

If Ωt = {sgn(εt), p
∗
t−1} and Assumption 1 holds, then the optimal E (|R({sgn(εt)})|)

strictly increases in risk aversion, n ≥ 1, without bound. If, further, the distribution of

innovations f̆ induces beliefs with support [p, p] satisfying condition (72), then ∃n0 > 1 such

that ∀n > n0 it holds that Corr(∆p∗t , ∆ut) > 0.

Proof: Define R ≡ R({sgn(εt)}) ≡
∣

∣pt − (p∗t−1 + µt + sqt)
∣

∣. After ∆p∗t = σεt > 0 we

have R > 0 and so ∆pt = −pt−1 + p∗t−1 + sqt + R, and after ∆p∗t < 0 we have ∆pt =

−pt−1 + p∗t−1 + sqt − R. Therefore

E (∆ptεt) =
1

2
E
((

−pt−1 + p∗t−1 + sqt + R
)

εt |εt > 0
)

+
1

2
E
((

−pt−1 + p∗t−1 + sqt − R
)

εt |εt < 0
)

=
1

2
E ((sqt + R)εt |εt > 0) +

1

2
E ((sqt − R)εt |εt < 0)

= RE (|εt|) + sE (qtεt) . (70)

33See appendix F for a proof.
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Plugging (70) with E (∆pt∆p∗t ) = σE (∆ptεt) into (19) implies that the contemporaneous

cross-covariance is positive if and only if

R >
σ − sE (qtεt)

E (|εt|)
. (71)

From Proposition 6 for any p(n) ∈
[

Median(p);
p+p

2

]

there is a risk aversion level n such

that market makers will – after observing the signal {sgn(εt)} – quote this price as pmid
t .

Therefore, for all distributions f(·) which satisfy

p + p

2
>

V arf̆ (∆p∗t )

Ef̆ (|∆p∗t |)
=

σ

E(|εt|)
(72)

a sufficiently large n leads to a market maker response which by (13) satisfies (71). Q.E.D.

Condition (72) holds, for example, for F̆ being the normal distribution, but not for a tent

distribution, which corresponds to the post-signal triangular distribution discussed earlier.

Comparing these results in the third row of Table 2 with the other model setups, it

appears that even though the contemporaneous cross-correlation can be positive for high

risk aversion levels, the usual case is that it is negative. For the halfnormal distribution in

the upper left panel of Figure 2, for example, we need a rather high risk aversion of n ≥ 8.

Clearly though, changes in risk aversion of the market maker have a fundamental impact on

the cross-correlation. Hansen and Lunde (2006) note as their “Fact IV” that “the properties

of the noise have changed over time.” Since they base this observation on a comparison of

year 2000 with year 2004 it is possible that the underlying cause is a change in risk aversion.

The link between properties of noise and risk aversion offers itself as a way to estimate the

time path of risk aversion from the market price cross-correlation patterns. In stable periods

with low risk aversion the contemporaneous cross-correlation is negative, but as uncertainty

shoots up, contemporaneous cross-correlation shoots up with it. In periods of crisis this can

lead to the extreme case of an inverted cross-correlation pattern that we have described in

this section. The negative contemporaneous cross-correlation in Hansen and Lunde (2006)

indicates that during their sample period the risk aversion of market makers was rather low.

Note that in this section from the point of view of the market maker all periods are ex

ante identical. Every period the market maker gets the same type of new information (p∗t−1,

and either sgn(εt) = 1, or sgn(εt) = −1), thus st is the same in every period. Only a small

change in the model allows for time variation in spreads (Demsetz 1968). Based on our

assumptions the information event {sgn(εt) = 0} occurs with zero probability. If – contrary
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to the maintained assumptions – we assign nonzero probability mass to this event and keep

V ar(εt) = 1 by moving probability mass to the tails of the distribution, then observing

this signal {sgn(εt) = 0} ensures the market maker of no informed trading in this period.

Therefore, the competitive spread in this period is zero. A subsequent sgn(εt) = ±1 then not

only triggers a shift in pmid
t , but also an increase in spread. Because of the higher probability

mass on a large strong form efficient return, a smaller risk aversion than before suffices to

generate a positive contemporaneous cross-correlation.

3.4 Frequent Price Changes

So far in this section we discussed models, where the old strong form efficient price becomes

public information at the beginning of the trading day before any new shift in the strong

form efficient price. In general, however, the efficient price may change again before the

old efficient price becomes fully publicly known. In this case the old p∗t−1 still contains

information about the new p∗t . As p∗t−1 is not precisely known itself, the entire history of

prices contains information about p∗t .

Suppose that at any point in time the T most recent changes in the strong form efficient

price are private information. The noise and its variance are then larger than before at any

point in time. The signal {sgn(pt − p∗t )} is now different from the signal {sgn(εt)}. Under

the former signal and with Corr(p∗t , ∆p∗t−τ ) > 0, for τ > 0 the information set Ωt contains

information about p∗t−τ not contained in Ωt−1. By (21) the signs of the cross-correlations at

nonzero displacements remain unchanged even if p∗t changes frequently. But the more often

p∗t changes during [t, t − τ ], the closer to zero is the cross-correlation Corr(p∗t , ∆p∗t−τ ), the less

informative is the signal in t about ∆p∗t−τ , and thus the closer to zero is the cross-correlation

between strong form efficient returns and noise. For both signals the contemporaneous cross-

correlation is dampened toward zero, because the signal {sgn(pt−p∗t )} mixes up information

on ∆p∗t with information on ∆p∗t−τ , and the signal {sgn(εt)} is related only to a small

component of ∆ut. Overall, slowly decaying private information keeps the cross-correlation

sign pattern unchanged, but dampens the absolute values toward zero.

In summary we have shown that many market properties leave their mark on the cross-

correlation pattern: The displacement beyond which correlation is zero gives an indication

of the frequency of information events. The larger the correlation is in absolute value terms

the fewer unformed trades occur in the market. If contemporaneous strong form cross-

correlation is high and positive, then market makers are very risk averse and have access

to extra information. If the cross-correlations at nonzero displacements decay quickly, then
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market makers learn fast. If they do not decay at all, then informed traders act strategically.

4 Semi-strong form Correlation

Now we base the cross-correlation calculation on the semi-strong form efficient price, p̃t.

Equivalently we could interpret this setup as an endogenous latent price process, determined

by an exogenous trading process qt, with qt ∈ {−1, +1}, because the strong-form efficient

price remains unobserved and enters the model only via the informed trades. This setup is

closely related to the generalized Roll (1984) bid/ask model in Hasbrouck (2007).

4.1 The General Multi-period Case

In the period of a change in the strong form efficient price, in which also when the previous

strong form efficient price becomes public information, the semi-strong form efficient return

is34

∆p̃0 = λ0q0 + c0

= λ0q0 + σε−T −
T
∑

t=1

λ−tq−t, (73)

where the first term reflects the market maker’s guess about the new strong form efficient

return based on a trade, the second term internalizes the new information about the previous

return, and as a countermove the sum undoes the now obsolete guesses about the previous

return. In all other periods the semi-strong form efficient price changes by

∆p̃t = λtqt. (74)

From (10) we get for ∀t

∆ut = −λtqt + λt−1qt−1 + stqt − st−1qt−1, (75)

where the first two terms reflect information-revealing trades, and the second two terms

reflect the bid/ask bounce.

Using Assumption 2 this immediately leads to an expression for the contemporaneous

34We use again the shorthand notation p0 ≡ pκT ∀κ ∈ Z, and likewise p−x ≡ pκT−x ∀κ, x ∈ Z.
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covariance

Cov(∆p̃t, ∆ut) =
1

T

{

−λ2
0 + s0λ0 + σλ−1E(q−1ε−T ) − σs−1E(q−1ε−T )

−
−T
∑

i=−1

(λ−1 − s−1) λiCov(qiq−1)

+
T−1
∑

i=1

(

−λ2
i + λiλi−1E(qiqi−1) + siλi − si−1λiE(qiqi−1)

)

}

, (76)

for covariance at higher displacements τ ∈ [1, T − 1]

Cov(∆p̃t−τ , ∆ut) =
1

T
{−λ0λτE(q0qτ ) + λ0λτ−1E(q0qτ−1) + λ0sτE(q0qτ )

− λ0sτ−1E(q0qτ−1) + λT−τ (λT−1 − sT−1) E(qT−τqT−1)

+
T−1
∑

i=τ+1

[λi−τ (−λi + si)E(qi−τqi) + λi−τ (λi−1 − si−1)E(qi−τqi−1)]

}

, (77)

for covariance at displacement T

Cov(∆p̃t−T , ∆ut) =
1

T
λ0 (λT−1 − sT−1) E(q0qT−1), (78)

and for all higher order displacements τ > T

Cov(∆p̃t−τ , ∆ut) = 0. (79)

Under semi-strong market efficiency (st = λt ∀t) the cross-correlation function is zero

for all displacements. The special cases we discuss in the following subsection therefore all

assume lack of even this weak form of market efficiency.

4.2 Special Multi-period Cases

The cross-correlations for semi-strong form efficient prices stem from a gap between the

spread, st, and the adverse selection parameter, λt. Such a gap can result from processing

costs (st > λt), from legal restrictions (st < λt), or merely from suboptimal behavior of

the market maker. Noisy signals or strategic behavior do not affect the semi-strong cross-

correlations – all what matters is that the market maker’s knowledge passes into market

prices one-to-one.

31



In Easley and O’Hara (1992), for example, prices are semi-strong form efficient by defi-

nition, and therefore the semi-strong form cross-correlation function is zero always.

The Kyle (1985) model assumptions λt = λ and st = s ∀t give with (77)

Cov(∆p̃t−τ , ∆ut) =
λ(λ − s)

T

{

E(qT−τqT−1) +
T−1
∑

i=τ

[E(qi−τqi−1) − E(qi−τqi)]

}

. (80)

If λ = 0, then this cross-correlation is flat at zero. Likewise, if qt = q, it is flat at λ(λ−s)
T

. More

generally, because E(qiqj) > E(qi−τqj) > 0 ∀i ≤ j, ∀τ > 0, the cross-correlation decreases in

τ .

4.3 One-period Case

The simpler case of markets in which all information is revealed after one period, i.e.

∆p̃t = λ(qt − qt−1) + σεt−1 (81)

offers itself again for illustration of these cross-correlation effects. In the one period case the

semi-strong form efficient prices follow a martingale, but unlike their strong form counterpart

the semi-strong form efficient returns do not follow a martingale difference sequence.35 We

will see in the following proposition that in contrast to the strong form correlations, the

absolute value of semi-strong form cross-correlation at displacement zero and one usually

differs.

Proposition 8 (Semi-strong form cross-correlation, one period model)

The contemporaneous cross-correlation is

Corr(∆p̃t, ∆ut) =
2λ − σE(qtεt)

√

σ2 − 2σλE(qtεt) + 2λ2

sgn(s − λ)√
2

. (82)

The cross-correlation at displacement one equals

Corr(∆p̃t−1, ∆ut) =
−λ

√

σ2 − 2σλE(qtεt) + 2λ2

sgn(s − λ)√
2

. (83)

All cross-correlations at higher displacements are zero.

35In multiperiod models strong form efficient prices follow a martingale, but semi-strong form efficient
prices do not.
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Proof: The expressions for the cross-correlations follow directly from their multiperiod

counterparts. See (76), (78), and appendix G.

Bounds on the contemporaneous cross-correlation can be obtained by assuming a specific

market marker loss function and then solving for the market maker’s optimal λ. Suppose

the market maker has a quadratic loss function, then

λopt = argmin
λ

E
[

(p̃t − p∗t )
2
]

, (84)

which becomes

λopt = argmin
λ

λ2 − 2σλE (qtεt) , (85)

and therefore λopt = σE (qtεt) > 0. At λopt we have

Corr(∆p̃t, ∆ut) = E(qtεt)
sgn(s − λopt)√

2
, (86)

Corr(∆p̃t−1, ∆ut) = −E(qtεt)
sgn(s − λopt)√

2
, (87)

and by (13)

|Corr(∆p̃t, ∆ut)| = |Corr(∆p̃t−1, ∆ut)| ≤
1√
2
. (88)

Both the bounds and the equality of absolute contemporaneous and lagged cross-correlations

do not hold in general, but only for a quadratic market maker loss function.

Proposition 8 shows that the size of the spread matters only relative to the adverse

selection parameter. The cross-correlation at displacement one, for example, is negative if

and only if the spread exceeds the adverse selection cost. s > λ is reasonable, because the

spread must cover the order processing cost. It also entails, however, that the average trader

in expectation incurs a loss with every transaction. Hasbrouck (2007) justifies this with the

liquidity needs of traders. The sign of contemporaneous cross-correlation is ambiguous in

general. As in Diebold (2006), for s sufficiently large (and λ > σ
2
E(qtεt)) the model predicts

a cross-correlation pattern that is exactly the opposite of the empirical pattern in Hansen

and Lunde (2006). We illustrate this in the last row of Figure 1, which on the left shows the

cross-correlation function for a small spread (0 ≤ s < λ), and on the right for a sufficiently

wide spread (s > λ > 0). If sufficiently many lags are included, the Hansen and Lunde

estimator is unbiased for the strong form efficient price defined as in (1) and (2), but by

construction not for its semi-strong form counterpart.
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Under high risk aversion the spread can become very large without violating the market

maker’s zero-profit condition. By the same reasoning as in section 3.3.3, there exists a

minimal risk aversion level n0 such that all n > n0 generate a spread s > λ. Thus when

λ > σ
2
E(qtεt) there exists n0 such that all n > n0 generate a positive contemporaneous cross-

correlation and a negative cross-correlation at displacement one. Note that unlike in section

3.3.3 positive contemporaneous cross-correlation obtains even though the market maker does

not observe a signal. We summarize the results in the lower four rows of Table 2.

In summary, positive contemporaneous cross-correlations occur for (1) strong form effi-

cient prices under sufficiently high risk aversion if a signal is observed, and (2) semi-strong

form efficient prices for large spreads. Various market arrangements and sampling speeds

can dampen the contemporaneous cross-correlation to zero, but the negative sign maintains

except in the two aforementioned cases. Bandi and Russell (2006b) and Diebold (2006)

rightly wonder whether a negative cross-correlation is inevitable. In contrast to Hansen and

Lunde (2006), Bandi and Russell (2008) find no “obvious evidence of a significant, negative

correlation.” These seemingly contradictory results might stem from the inability of purely

statistical estimators to clearly distinguish strong form from semi-strong form efficient prices.

Without controlling for market features, which the realized volatility literature so far largely

ignores, the estimate may pick up any of the two prices. As we have seen, a positive cross-

correlation is of course possible, but a negative cross-correlation appears most realistic for

strong form efficient prices.

5 Additional Discussion of Econometric Issues

We have already drawn econometric implications insofar as we have shown that market

microstructure models predict rich cross-correlation patterns between latent prices and mi-

crostructure noise, which have yet to be investigated empirically. Here we go farther,

sketching some specific aspects of such empirics, including the relationship between theory-

based and data-based (sample) cross-correlation functions, as well as strategies for using

microstructural information to obtain improved volatility estimators.

5.1 Effects of Sampling Frequency

We have thus far focused on sampling at the rate corresponding exactly to the market maker’s

reaction time. Sampling at faster or slower rates will affect the shape of cross-correlation

functions. This has immediate implications for the shape of empirically estimated (sample)
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cross-correlation functions, because the reaction speed of the market maker is generally

unknown, so that econometric sampling may proceed at faster or slower rates.

Consider first the effects of sampling “too quickly.” If, for example, we sample m times

during an interval of no changes in both latent and market prices, then we record each latent

return / noise pair m times. The cross-correlation function is then a step function, but it still

has the overall shape obtained at slower sampling speeds. For example, the cross-correlations

up to displacement m−1 all share the sign of the contemporaneous cross-correlation. A cross-

correlation at displacement one with the same sign as the contemporaneous cross-correlation

implies overly fast sampling (because all models predict a sign change in cross-correlations

between displacement zero and displacement one).

[Table 3 about here.]

Alternatively, consider a market maker who updates pt infrequently, for example changing

pt only every second period. After a latent price change at t = 0, he updates his quotes for

the first time at t = 2, and then, observing the trades in between, again at t = 4, t = 6,

and so forth. The noise pattern is therefore −∆p∗t , 0, ∆p2, 0, ∆p4, . . . Trading activity during

the two interim periods provides more information than during only one period, but because

the quote in the interim period is fixed, the two interim periods provide less additional

information than if the price were updated in every period. Whereas the variance of ∆p∗t

is unchanged, the (unconditional) variance of noise shrinks to somewhat more than half the

variance that obtains when the market maker updates pt every period. The cross-correlation

function therefore oscillates.

Now consider the effects of sampling too slowly. Suppose, for example, that in the one-

period model of section 4.3 we sample only every n-th tick. Let pt,i, i = 1, . . . , n − 1 be the

unsampled market prices of the omitted ticks, and p̃t,i the corresponding semi-strong form

efficient prices. Then (81) is replaced by

∆ˆ̃pt =
n
∑

i=1

∆p̃t,i = λ(qt − qt−1) + σ

n
∑

i=1

εt−1,i, (89)

whereas the noise term (75) remains unchanged. Hence, Cov(∆ˆ̃pt, ∆ût) and V ar(∆ût) also

remain unchanged. The variance of semi-strong form efficient returns, however, increases to

V ar(∆ˆ̃pt) = 2λ2 + nσ2 − 2λσE(qtεt). Thus

∣

∣

∣
Corr(∆ˆ̃pt, ∆ût)

∣

∣

∣
=

∣

∣

∣

∣

∣

2λ − σE(qtεt)√
2
√

nσ2 − 2λσE(qtεt) + 2λ2

∣

∣

∣

∣

∣

< |Corr(∆p̃t, ∆ut)| , (90)
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so that increasing the sampling interval averages the initial market price underreaction with

later price readjustments, thereby dampening the entire cross-correlation pattern toward

zero. The most informative cross-correlations are therefore obtained by sampling every

tick. Hansen and Lunde (2006) find a negative contemporaneous cross-correlation between

returns and noise, which diminishes as more ticks are combined into one market price sample.

This can stem either from the averaging effect just described, or from cross-correlations at

nonzero displacements working in the opposite direction. This ambiguity could be sorted

out by evaluating the entire cross-correlation function, which shows the importance of not

limiting noise analysis to the contemporaneous cross-correlation.

In summary, the sampling frequency does not change the sign pattern of cross-correlations,

but can severely impact its absolute values, as summarized in Table 3. At low sampling rates

the cross-correlations become empirically indistinguishable from zero, which can be useful

when analysis is being done on the assumption of independent noise. At higher sampling

frequencies the cross-correlation structure of the noise needs to be addressed, and in the next

section we suggest how to do so in parsimonious fashion by exploiting market microstructure

theory.

5.2 Implications for Volatility Estimation I: Imposing Restrictions

from Microstructure Theory

In the introduction we highlighted the key issue of estimation of integrated volatility using

high-frequency data, the potential problems of the first-generation estimator (simple realized

volatility) in the presence of MSN, and subsequent attempts to “correct” for MSN.

In an important development, Hansen and Lunde (2006) suggest making realized volatil-

ity robust to serial correlation via HAC estimation methods, which are asymptotically justi-

fied under very general conditions. That asymptotic generality is, however, not necessarily

helpful in finite samples. Indeed the frequently unsatisfactory finite-sample performance of

nonparametric HAC estimators leads Bandi and Russell (2006a) to suggest sophisticated

alternative statistical approaches.

Here we suggest a different approach that specializes the estimator in accordance with

the implications of market microstructure theory. As we have seen, dynamic market mi-

crostructure models imply that noise decays geometrically over time after displacement one,

with two polar cases of immediate decay (as in section 3.3) and no decay (as in section 3.2.3).

That knowledge could be used to construct improved volatility estimators that impose the

restrictions implied by market microstructure theory.
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Suppose ∆pt follows an MA(∞) process in the innovations for the latent price,

∆pt = α0σεt + α1σ
∞
∑

τ=1

ατ
2εt−τ . (91)

This form of ∆pt accommodates very persistent cross-correlations, similar to the idea behind

the sequence of examples in Oomen (2006). We can decompose latent returns into market

returns and noise

∆p∗t = ∆pt + (1 − α0) σεt − α1σ

∞
∑

τ=1

ατ
2εt−τ = σεt. (92)

Using this, we have a simple formula for the integrated volatility (IV ) of latent returns,

IV = E
[

(∆p∗t )
2
]

= E
[

(∆pt − ∆ut)
2] = E(∆p2

t )+ (1+α0)(1−α0)IV −α2
1

∞
∑

τ=1

α2τ
2 IV. (93)

Solving for IV, using
∑∞

τ=1 α2τ
2 =

α2
2

1−α2
2
, and simplifying yields

IV =
1 − α2

2

α2
0(1 − α2

2) + α2
1α

2
2

· E(∆p2
t ). (94)

Standard RV is consistent for E(∆p2
t ); hence a consistent estimator for IV is

ˆIV =
1 − α̂2

2

α̂2
0(1 − α̂2

2) + α̂2
1α̂

2
2

· RV, (95)

where α̂0, α̂1 and α̂2 are consistent estimators. Such estimators are easily obtained, for

example, in a GMM framework using three moments.

The result is even simpler in a learning model with T = ∞ and frequent latent price

changes, in which case we have

∆pt ≈ 0 · σεt +
∞
∑

τ=1

(

−e−rτ + e−r(τ−1)
)

σεt−τ = σ (er − 1)
∞
∑

τ=1

e−rτεt−τ . (96)

The integrated variance can then be consistently estimated by

ˆIV =
1 − e−2r̂

1 − 2e−r̂ + e−2r̂
· RV, (97)
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which requires a consistent estimator of only one parameter, the rate of learning r.

The expression for the integrated variance (97) offers a structural interpretation to es-

timates of noise and integrated variance, such as the results reported in Table 3 of Hansen

and Lunde (2006). The Easley and O’Hara (1992) model predicts that the noise decreases

as the learning rate of the market maker increases. Slow learning implies a very persistent

cross-correlation between noise and latent returns, and hence persistent autocorrelation of

noise, so that fluctuations in noise tend to dominate the integrated variance.

Figure 3 provides some perspective. It is based on the noise-to-integrated-variance ratios

reported by Hansen and Lunde (2006), which are (unfortunately) derived under the assump-

tion of independent noise. The ratio of noise to integrated variance shrinks with the number

of price-changing quotes per day. If the number of times that the market maker changes

his price quote during a trading day is indicative of his speed of learning, then MSN indeed

decreases as the learning rate of the market maker increases. Thus, even though these ratios

may not be directly applicable, they seem to support the multiperiod learning model.

Furthermore, the recent decline in noise-induced bias of realized volatility (Hansen and

Lunde’s fact III) suggests that the learning rate r has increased. Meddahi’s (2002) finding

that the standard deviation of the bias is large relative to the integrated variance suggests

that the learning rate itself may have fluctuated considerably around its increasing trend.

[Figure 3 about here.]

5.3 Implications for Volatility Estimation II: Structural vs. Non-

structural Volatility Estimators

In this section we emphasize that the more the econometrician knows about the price process

of relevance, the more the noise correction can be tailored to it by exploiting microstructure

theory. This is important, because the price process of interest may differ across users of

volatility estimates (e.g., many users are likely to be interested in price processes different

from (1) and (2)), which has implications for appropriate volatility estimation. For example,

the volatility of strong form efficient returns is

E(∆p∗2t ) =
σ2

T
, (98)

38



which differs both conceptually and numerically from the volatility of semi-strong form

efficient returns

E(∆p̃2
t ) =

1

T







σ2 +
T−1
∑

i=0

λ2
i + E





( −T
∑

i=−1

λiqi

)2


− 2σ
−T
∑

i=−1

λiE(qiε−T )







. (99)

Consider, for example, the case of T = 1. Immediately, the strong form volatility (98) is

σ2 and the semi-strong volatility (99) simplifies to

E(∆p̃2
t ) = σ2 + 2λ − 2σE(qtεt) 6= σ2. (100)

Now, the RV estimator promoted by Hansen and Lunde (2006) is

RV 1tick
AC1

= ∆p2
t + ∆pt−1∆pt + ∆pt∆pt+1, (101)

which for T = 1 is

E
(

RV 1tick
AC1

)

= E ((sqt − sqt−1 + σεt−1) × (σ(εt + εt−1 + εt−2) + sqt+1 − sqt−2))

= σ2. (102)

Hence RV 1tick
AC1

is unbiased for σ2, and in general biased with ambiguous direction relative to

V ar(∆p̃2
t ), because by construction a noise robust estimator wit h lag window T correctly

removes any microstructure and other correlation effects. For this estimator to work, the

latent price process of interest must follow a martingale difference sequence (MDS). Even

though semi-strong form prices with T = 1 form a martingale, their returns are not an MDS.

They are serially correlated and inevitably RV 1tick
AC1

is biased relative to V ar(∆p̃2
t ). We have

modeled the strong form efficient price in this paper as an MDS, and indeed this latent price

series is of interest on its own. We doubt, however, that this is the unique latent price of

interest in volatility estimation. Efficient prices from an informed trader’s perspective could

themselves be seen as the result of a learning process about the state of the economy,36 which

implies that the p∗t of interest is often not an MDS, but instead has the properties that we

have derived in this paper for the semi-strong form efficient price p̃t.

Suppose, for example, that the strong form efficient prices are themselves the result of

36Also, they might be the result of learning about information of other market participants, as in Foster
and Viswanathan (1996).
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learning of informed traders about fundamentals, ηt, which follow a random walk. Then

∆p∗t = σ
T
∑

τ=1

(

−e−r1τ + e−r1(τ−1)
)

ηt−τ . (103)

Let market prices follow the usual process of market maker learning, for example

∆pt =
T
∑

τ=1

(

−e−r2τ + e−r2(τ−1)
)

∆p∗t−τ . (104)

Then RV 1tick
ACT

is the variance of the fundamental, not the variance of the strong form efficient

price. Obviously, a purely statistical noise correction cannot distinguish between cross-

correlation caused by fundamentals and cross-correlation caused by MSN. This is where

market microstructure theory can contribute new insights to realized volatility estimation.

By providing distinctive but flexible relationships between noise and latent returns, we can

decompose the agnostic statistical noise estimate into its various components – in the previ-

ous example into MSN and fundamental correlation in the strong form efficient price. Our

example uses a MA(2T ) process with only two free coefficients, but the large sample sizes

typical with high frequency data can accommodate much richer specifications. Empirical

work in market microstructure tends to favor extreme parametrizations, ranging from the

very parsimonious as in Glosten and Harris (1988)-type regressions, to the profligate as in

Hasbrouck (1996)-type vector autoregressions. For the purpose of RV noise correction the

most useful parametrizations may be intermediate – imposing a general correlation pattern

but avoiding highly situation-specific assumptions.

6 Concluding Remarks

The recent realized volatility literature provides statistical insights into microstructure noise

(MSN) and its effects. In this paper we have provided complementary economic insights,

treating MSN not simply as a nuisance, but rather as the result of financial economic deci-

sions, which we seek to understand.37 In that regard, we derived the predictions of economic

theory regarding correlation between two types of latent price and MSN; we characterized

and contrasted the entire cross-correlation functions corresponding to a variety of market

37For an interesting related perspective, see Engle and Sun (2007). Their approach and environment
(conditional duration modeling), however, are very different from ours.
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environments, with a variety of results.

Some results are generic. In particular, cross-correlations between strong form efficient

price and MSN at displacements greater than zero have sign opposite to that of the contem-

poraneous correlation.

Some results are not generic but nevertheless quite robust to model choice. In particular,

all models predict negative contemporaneous correlation between latent price and MSN, so

long as the risk aversion of market makers is not too high.

Finally, some results are highly model-specific. In particular, the cross-correlation pat-

terns and absolute magnitudes depend critically on the frequency of latent price changes, the

presence of bid/ask bounce, the timing of information and actions, and the market maker’s

degree of risk aversion.

We hope that the results of this paper will help us to use data to discipline theory, and

theory do discipline data. In particular, we have argued that data-based cross-correlation

patterns between latent price and MSN help determine (if not definitively resolve) the com-

parative merits of various economic microstructure models, and conversely, that our theo-

retical cross-correlation results may lead to improved volatility estimators.

Looking to the future, we envision some novel uses and extensions of our results. For

example, the rate of decay of cross-correlations might be used to assess the extent to which

strategic traders are active in the market, and the sign and size of the contemporaneous corre-

lation might be used to assess the degree of market maker risk aversion. Indeed market maker

risk aversion might be time-varying, with associated time-varying cross-correlation structure

between latent price and MSN. During crises, for example, market makers may be more

risk averse, as borrowing and hedging possibilities are reduced. If so, the “normal pattern”

of negative contemporaneous cross-correlation and positive higher-order cross-correlations

might switch to a “crisis pattern” of positive contemporaneous cross-correlation and nega-

tive higher-order cross-correlations. Such possibilities await future empirical exploration.
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Table 1: Strong form Efficient Cross-correlations in Multi-period Models

p∗t mar- signal traders ρ0 ρτ ρT ρτ

tingale strategic τ ∈ [1, T − 1] τ > T

yes none n.a. ρ0 < 0 0 −ρ0 0

yes
certain/
noisy

no ρ0 < 0 |ρτ−1| > ρτ > 0 ρT > 0 0

no noisy no −1+e−r(T−1)

2
√

K(r,T )

−e−rτ+e−r(τ−1)

2
√

K(r,T )

e−r(T−1)

2
√

K(r,T )
0

yes noisy yes −
√

T
T 2+1

√

1
T (T 2+1)

√

1
T (T 2+1)

0

The table reports ρτ = Corr(∆p∗t−τ ,∆ut) in multiperiod models (T > 1) under risk neutrality (n = 1).
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Table 2: Cross-correlations in One-period Models

efficient spread loss ρ0 ρ1 ρτ

price function τ > 1

strong 0 any − 1√
2

1√
2

0

strong ≥ 0 any − 1√
2
≤ ρ0 < 0 −ρ0 0

strong ≥ 0
high n +
extra info

ρ0 > 0 −ρ0 0

semi-strong ≥ 0 quadratic − 1√
2
≤ ρ0 ≤ 1√

2
−ρ0 0

semi-strong ∈ [0, λ[ any ambiguous ρ1 > 0 0
semi-strong λ any 0 0 0
semi-strong ≥ λ any ambiguous ρ1 < 0 0

The upper half of this table reports ρτ = Corr(∆p∗t−τ ,∆ut) under no extra market maker information

Ω̃t = {}, and in row 3 under extra market maker information Ω̃t = {sgn(εt)}. The lower half of this table
reports ρτ = Corr(∆p̃t−τ ,∆ut).
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Table 3: Cross-correlation Patterns at Various Sampling Frequencies

sampling rate cross-correlation function note
τ = 0 1 2 3 4 5

optimal ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

> latent price frequency ρ0 ρ0 ρ1 ρ1 ρ2 ρ2

> market maker update freq. ρMM
0 0 ρMM

1 0 ρMM
2 0 ρMM

i > ρi ∀i
< latent price frequency ρSL

0 ρSL
1 ρSL

2 ρSL
3 ρSL

4 ρSL
5 ρSL

i < ρi ∀i
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Figure 1: Cross-correlation Functions of Strong form Efficient Price

(a) Noisy Signal (r=0.5, T=5) (b) Noisy Signal (r=2, T=5)

(c) Strategic Traders (T=5) (d) Strategic Traders (T=2)

(e) Low Risk Aversion (T=1) (f) High Risk Aversion (T=1)

The graphs show the cross-correlation functions ρ(τ) of the strong form efficient price. The top row shows
the typical cross-correlation pattern for an Easley-O’Hara (1992)-type model (K = 1, T = 5) under learning
rate r = 0.5 in the left panel, and under faster learning (r = 2) in the right panel. The second row shows
the cross-correlation pattern in a Kyle (1985)-type setup, under frequent changes in the strong form efficient
price (T = 5) in the left panel, and under more frequent changes (T = 2) in the right panel. The left panel in
the last row shows the typical cross-correlation pattern of strong form efficient prices in a one period model
with modest risk aversion, and the right panel with higher risk aversion. The graphs in the last row apply
as well to semi-strong form efficient prices. In this case, the left panel shows the cross-correlation under a
relatively small spread (0 ≤ s < λ), and the right panel for a typical spread (s > λ > 0).
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Figure 2: Optimal Predictor p(n) Under a Half-normal and a Triangular Distribution

(a) Half normal distribution
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(b) Optimal predictor for half normal distribution
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(c) Triangular distribution
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(d) Optimal predictor for triangular distribution
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The left panels show two possible expectations of the market maker about the strong form efficient price
after observing sgn(εt) = +1. The upper left panel shows the normal distribution case. It shows the density

after observing the signal, which is the upper halfnormal distribution f(p∗t ) = 2ϕ
(

p∗

t
−p∗

t−1
−µ

σ

)

, plotted with

p∗t−1 + µ = 0 and σ2 = 1. The lower left panel shows the tent distribution case. It shows the density after

observing the signal, which is the density of the right-skewed triangular distribution f(p∗t ) =
2(p−p∗

t
)

(p−p∗

t−1
−µ)2

with support [p∗t−1 + µ, p] plotted with p∗t−1 + µ = 0 and p = p∗t−1 + µ + σ/
√

3 = 1.
The right panels show the corresponding optimal predictors, p(n), as a function of risk aversion n. The

dotted line marks E(∆p∗t ), the dashed line marks
V ar(∆p∗

t
)

E(|∆p∗

t
|) .

In particular, in the lower right panel, the solid line is the solution to

p(n) = argmax
x∈[p,p]

−
∫ x

p

(x − p∗)
n

f(p∗)dp∗ −
∫ p

x

(p∗ − x)
n

f(p∗)dp∗.

Evaluated at p = 0 and p = 1 for the triangular distribution on [0, 1], this reduces to

p(n) = argmax
x∈[0,1]

−
∫ x

0

2(1 − p∗)(x − p∗)ndp∗ −
∫ 1

x

2(1 − p∗)(p∗ − x)ndp∗,

which has the solutions p(1) = Median(p∗t ) = 0.29, p(2) = E(p∗t ) = 0.33, lim
n→∞

p(n) = 0.5.
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Figure 3: Relationship between Noise-to-Integrated-Variance Ratio and Quotes per Day

The vertical axis measures the noise to signal ratio as 100 times noise divided by integrated variance under
the assumption of independent noise. The horizontal axis is the number of quotes per day with a price
change. Data is for the year 2000 for 30 stocks listed on NYSE and NASDAQ. Data are from Hansen and
Lunde (2006), Tables 1 and 3. The solid line is a fitted power trend line.
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A Model-free Cross-correlations

The unconditional expectations of noise and latent price changes are zero (E(∆ut) = 0,

E(∆p∗t ) = σE(εt) = 0), and therefore the contemporaneous cross-covariance between strong

form efficient returns and noise is

Cov(∆p∗t , ∆ut) = E(∆p∗t (∆pt(Ωt, Ωt−1) − ∆p∗t ))

= E(∆pt(Ωt, Ωt−1)∆p∗t ) − E(∆p∗2t )

= E(∆pt(Ωt, Ωt−1)∆p∗t ) − V ar(∆p∗t ). (105)

By the definition of the correlation, this immediately implies the first part of Proposition 1.

The result for semi-strong form efficient prices is analogous, because E(p̃t) = 0.

Similarly, the cross-covariance at nonzero displacements between latent returns τ ≥ 1

periods ago and noise is

Cov(∆p∗t−τ , ∆ut) = E(∆p∗t−τ (∆pt − ∆p∗t ))

= E(∆p∗t−τ∆pt) − E(∆p∗t−τ∆p∗t ). (106)

The result for semi-strong form efficient prices is analogous, and both together imply the

second part of Proposition 1. For strong form efficient prices we can simplify (106) further

to

Cov(∆p∗t−τ , ∆ut) = E(∆p∗t−τ∆pt)

= σE(εt−τ∆pt). (107)

B Strong form Cross-correlations

In the multi-period setup of section 3.1 the strong form efficient price has the unconditional

variance

V ar(∆p∗t ) =
1

T
V ar(σε0) =

σ2

T
(108)

and the corresponding noise has an unconditional variance of

V ar(∆ut) =
1

T

T−1
∑

i=0

V ar(∆ui)
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=
1

T

{

2σ2 +
T−1
∑

i=0

(

s2
i + s2

i−1

)

− 2σsT−1E(qT−1ε0) − 2σ
T−2
∑

i=0

λiE(qiε0)

− 2σs0E(q0ε0) + 2sT−1

T−2
∑

i=0

λiE(qiqT−1) + E





(

T−2
∑

i=0

λiqi

)2




+
T−1
∑

i=1

(

λ2
i−1 + 2si(λi−1 − si−1)E(qi−1qi) − 2si−1λi−1

)

}

. (109)

Using (29) the contemporaneous cross-correlation is

Corr(∆p∗t , ∆ut) =
s0(E(q0ε0) − σ)
√

T V ar(∆ut)
. (110)

All other cross-correlations can be obtained analogously using (30) to (32).

For T = 1, spread and adverse selection parameter are constants, i.e. st = s and λt = λ

∀t, and the variance term radically simplifies.

V ar(∆ut) = 2(σ2 + s2) − 4sσE(qtεt). (111)

Thus

Corr(∆p∗t , ∆ut) =
sE(qtεt) − σ√

2
√

σ2 + s2 − 2sσE(qtεt)
. (112)

C Example of Optimal Learning

Assuming no discounting (δ = 1), risk neutrality (n = 1), zero spread (st = 0) the general

recursive problem (18) simplifies to

V (p, p) = max
p

[

−
∫ p

p

(p − p∗)f(p∗)dp∗

+ V (p, p)F (p) + V (p, p) (1 − F (p)) −
∫ p

p

(p∗ − p)f(p∗)dp∗
]

. (113)

To simplify the problem further, we assume as in the example in Aghion et al. (1991) that

f(·) is uniform. Then, the location of the interval [p, p] does not matter, but only the length
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of it, m = p − p, is relevant. (113) becomes

V (m) = max
α

− 1

m

1

2
(αm)2 + V (m)α

− 1

m

1

2
((1 − α)m)2 + V (m)(1 − α)

= max
α

V (m) − m

2

(

α2 + 1 − 2α + α2
)

= max
α

V (m) − m

(

α2 − α +
1

2

)

. (114)

From the first order condition we find the maximum

α = 1/2, (115)

thus optimal learning is achieved by repeated bisections.

This result is driven by uniformity, which ensures that Assumption 1 holds in every

period, in particular that f(·) in (113) is always symmetric. Thereby, the term in brackets in

(113) is symmetric around the symmetry point of f(·) as well, and the optimal pmid equals

the median, and the midpoint of the support of f(·). For non-uniform f(·) the solution path

over time is specific to the shape of f(·) and has to be determined numerically.

D Cross-correlations under a Noisy Signal

In this appendix we derive the cross-correlation properties of the Easley and O’Hara (1992)

model. The notation is as in Easley and O’Hara (1992): α is the probability of an information

event, δ is the probability of a low signal, and µ denotes the probability of an informed trade

if a profit opportunity appears. We start with solving for the cross-correlations in a market

in which the informed traders always trade if a profit opportunity appears. Easley and

O’Hara (1992) discuss this case (µ = 1) in their proposition 7. By our assumption that

uninformed traders trade always in periods of no informed trading we have εB = εS = 1,

and because uninformed traders buy and sell with equal probability γ = 1/2. Strong form

efficient returns and noise in the case p∗t = p are

∆p∗0 =











0 if p∗t−1 = p

p − p if p∗t−1 = p

δ(p − p) if p∗t−1 = δp + (1 − δ)p

(116)
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and for t 6= κT

∆p∗t = 0. (117)

Note that in contrast to all other models we discuss, the strong form efficient price process

in Easley and O’Hara (1992) is not a martingale. Its variance is

V ar(∆p∗t ) =
(p − p)2

T
K3 (118)

where K3 = K3(α, δ).

The noise in the period of a change in the strong form efficient price is

∆u0 = ∆p0 − ∆p∗0

=
−(1 − α)δ(p − p)

2α(1 − δ) + 1 − α
+
(

p − p
)

×















(1−α)δ
α(1−δ)2T +1−α

w. prob. α(1 − δ)
(1−α)(1−δ)
αδ2T +1−α

w. prob. αδ
1
2

[

α(1−δ)δ
α(1−δ)2T +1−α

+ αδ(1−δ)
αδ2T +1−α

]

w. prob. 1 − α

and otherwise for t 6= κT

∆ut =
α(1 − α)δ(1 − δ)(p − p)

[α(1 − δ)2t+1 + 1 − α]
[

α(1 − δ) + (1 − α)
(

1
2

)t
] > 0. (119)

The noise variance is

V ar(∆ut) =
(p − p)2

T
O(1). (120)

Aggregating over p∗t = p and p∗t = p, the general contemporaneous cross-covariance

becomes

Cov(∆p∗t , ∆ut) =
1

T
E (∆p∗0∆u0)

=
p − p

T

{

α(1 − δ)
[

αδE
(

∆u
pp

0

)

+ (1 − α)E
(

δ∆upp
0

)

]

+ αδ
[

−α(1 − δ)E
(

∆u
pp

0

)

− (1 − α)E
(

(1 − δ)∆u
pp

0

)

]

+ (1 − α)
[

−α(1 − δ)E
(

δ∆upp
0

)

+ αδE
(

(1 − δ)∆u
pp

0

)]}

= −α(1 − α)δ(1 − δ)
(p − p)2

T

[

δ

2α(1 − δ) + 1 − α
+

1 − δ

2αδ + 1 − α

+
1 − δ

2T αδ + 1 − α
+

δ

2T α(1 − δ) + 1 − α

]

< 0, (121)
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or in condensed form

Cov(∆p∗t , ∆ut) = −
[

K4 + O
(

2−T
)] (p − p)2

T
< 0, (122)

where K4 = K4(α, δ).

At nonzero displacements τ ∈ [1; T − 1] the cross-covariance is

Cov(∆p∗t−τ , ∆ut) =
1

T
E (∆p∗0∆uτ )

=
p − p

T

{

α(1 − δ)
[

αδE
(

∆up
τ

)

+ (1 − α)E
(

δ∆up
τ

)]

+ αδ
[

−α(1 − δ)E
(

∆u
p
τ

)

− (1 − α)E
(

(1 − δ)∆u
p
τ

)]

+ (1 − α) [−α(1 − δ)E (δ∆up
τ ) + αδE ((1 − δ)∆up

τ )]}

= α2(1 − α)δ2(1 − δ)2
(p − p)2

T

(

1

2

)τ

×
{

1
[

2α(1 − δ) + (1 − α)
(

1
2

)τ] [
α(1 − δ) + (1 − α)

(

1
2

)τ]

+
1

[

2αδ + (1 − α)
(

1
2

)τ] [
αδ + (1 − α)

(

1
2

)τ]

}

> 0, (123)

or in condensed form

Cov(∆p∗t−τ , ∆ut) =

(

1

2

)τ
[

K5 + O
(

2−τ
)] (p − p)2

T
> 0, (124)

where K5 = K5(α, δ). Comparing this with the variance terms (118) and (120) we see

that although the cross-covariances (121) and (123) approach zero as T becomes large, the

contemporaneous cross-correlation converges for fixed τ to a negative constant, and all cross-

correlations at nonzero displacements converge to a positive constant. Keeping T fixed, the

cross-correlation converges geometrically to zero at rate 1/2 in τ .

We now turn to the general case, in which the informed traders trade only with a prob-

ability µ > 0 if a profit opportunity appears. Easley and O’Hara (1992) discuss this in

their proposition 6. The expressions for the cross-correlation in the general case are quite

complex. Because our focus is on the correlation pattern, we discuss here a very stylized

version of this general case, which allows us to derive again an explicit expression for the

cross-correlations.

Suppose the strong form efficient price process switches between two states of equal
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probability

p∗t =

{

p with probability 1/2

p with probability 1/2
. (125)

Therefore,

∆p∗0 =











p − p with probability 1/4

0 with probability 1/2

p − p with probability 1/4

(126)

with the properties

E((∆p∗t )
2) =

1

T

[

(p − p)2

4
+

(p − p)2

4

]

=
(p − p)2

2T
≡ σ2

T
, (127)

E(∆p∗t ∆pt) = 0, (128)

E(∆p∗t−τ∆p∗t ) = 0. (129)

Using the result from Easley and O’Hara (1992) that transaction prices converge to the

strong form efficient price at an exponential rate we get

∆p0 =
p − p

2

(

e−r(T−1) − 1
)

sgn

(

p∗−T −
p + p

2

)

(130)

∆pτ =
p − p

2

(

e−r(τ−1) − e−rτ
)

sgn

(

p0 −
p + p

2

)

(131)

∆u0 =
p − p

2

(

e−r(T−1) − 1
)

sgn

(

p∗−T −
p + p

2

)

− ∆p∗0 (132)

∆uτ =
p − p

2

(

e−r(τ−1) − e−rτ
)

sgn

(

p0 −
p + p

2

)

(133)

The contemporaneous cross-covariance (τ = 0) is

Cov (∆p∗t , ∆ut) =
1

T
E (∆p∗0∆u0)

= − σ2

2T

[

1 + e−r(T−1)
]

. (134)

The second term inside the brackets is an artifact of p∗t not following a martingale. In

the period of the efficient price change it is optimal for the market maker to set pt to the

unconditional mean of p∗t , thereby offsetting the effect of all previous learning, which the

efficient price change rendered obsolete.
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The cross-covariance for τ ∈ [1; T − 1] is

Cov
(

∆p∗t−τ , ∆ut

)

=
1

T
E (∆p∗0∆uτ )

=
σ2

2T

(

−e−rτ + e−r(τ−1)
)

, (135)

and for τ = T we have

Cov
(

∆p∗t−T , ∆ut

)

=
1

T
E
(

∆p∗−T ∆u0

)

=
σ2

2T
e−r(T−1). (136)

The variance of the noise is

V ar(∆ut) =
1

T

[

(p − p)2

T

(

e−r(T−1) − 1
)2

+ σ2 + 2
(p − p)2

4

(

e−r(T−1) − 1
)

+
T−1
∑

τ=1

(p − p)2

4

(

−e−rτ + e−r(τ−1)
)2

]

=
σ2

T

[

1

2
e−2r(T−1) +

1

2
+

1

2
(−er + 1)2 (e−2r)T−1 − 1

e−2r − 1

]

. (137)

Denoting the term in brackets by K = K(r, T ) we get for the contemporaneous cross-

correlation

Corr (∆p∗t , ∆ut) = −1 + e−r(T−1)

2
√

K
, (138)

for the cross-correlation at displacements τ ∈ [1; T − 1]

Corr
(

∆p∗t−τ , ∆ut

)

=
−e−rτ + e−r(τ−1)

2
√

K
, (139)

and for the cross-correlation at displacement T

Corr
(

∆p∗t−T , ∆ut

)

=
e−r(T−1)

2
√

K
. (140)

E Cross-correlations with Strategic Traders

In this appendix we derive cross-correlations for the model of Kyle (1985). In order to present

a closed form solution we use continuous time, t ∈ [0, T ], but note that Kyle (1985) discussed
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the discrete time case as well. The discussion is based on the assumption of Kyle (1985)

that the reaction functions for quantity demanded and prices are linear, i.e. that λt = λ,

and st = s. Nonlinear solutions might nevertheless exist as well.

We assume semi-strong market efficiency, and so s = λ. We get from (29)

Cov (∆p∗t , ∆ut) = −σ

T
(λE(qε0) − σ) < 0. (141)

From (30) the cross-covariance function at nonzero displacements

Cov
(

∆p∗t−τ , ∆ut

)

=
σ

T
λE(qε0) > 0 (142)

is constant ∀t ∈ [1, T − 1], and zero ∀t ≥ T .

More specifically, we derive based on (44) for the noise (assuming zero spread)

∆u0 =
∆p∗−T

T
−
∫ T−1

0

σ

T − s
dBs − ∆p∗0 (143)

and for τ ∈ [1, T − 1]

∆uτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − s
dBs −

∫ τ−1

0

σ

T − s
dBs. (144)

The variance of the noise is therefore

V ar(∆ut) =
1

T

[

E(∆u2
0) +

T−1
∑

t=1

E(∆u2
t )

]

=
σ2

T

[

T + 1

T
+

T − 1

T
+

(T − 1)2

T

]

=
σ2

T 2

(

T 2 + 1
)

. (145)

The covariances are simply, at displacement zero

Cov(∆p∗t , ∆ut) =
1

T
Cov(∆p∗0,−∆p∗0) =

−σ2

T
, (146)

and at higher order displacements

Cov(∆p∗t−τ , ∆ut) =
1

T
Cov(∆p∗0,

∆p∗0
T

) =
σ2

T 2
, (147)
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which leads directly to the cross-correlations given by Proposition 3.

In the remainder of this section we describe for comparison a Kyle-type setup within our

discrete time framework. Linear information revelation in our framework implies λt = σ
T

ε0

qt
=

σ
T
|ε0|. Discretizing (44), i.e. integrating over a time interval of unit length, and dropping

the zero-mean diffusion term we get

∆˜̃pτ =
1

T
(p∗ − ˜̃p(0)) =

1

T
∆p∗0. (148)

Therefore for τ ∈ [1; T−1] we have ∆pt =
∆p∗0
T

, and for τ = T we get ∆pT =
∆p∗0
T

+λT qT−λ0q0.

From (27)

∆u0 = σ(ε−T − ε0) + s0q0 − s−1q−1 − s−1q−1(T − 1)

= σε0
1 − T

T
, (149)

and from (28)

∆ut = sqt =
σε0

T
. (150)

Further,

E((∆p∗t )
2) =

σ2

T
(151)

E(∆p∗t ∆pt) =
σ2

T 2
(152)

E(∆p∗0∆pT ) = 0. (153)

The contemporaneous cross-covariance (τ = 0) is therefore

Cov (∆p∗t , ∆ut) =
1

T
Cov

(

σε0, σε0
1 − T

T

)

=
σ2

T

1 − T

T
, (154)

and the cross-covariance at nonzero displacements τ ∈ [1; T − 1] is

Cov
(

∆p∗t−τ , ∆ut

)

=
1

T
Cov

(

σε0, σε0
1

T

)

=
σ2

T 2
. (155)

The variance of the noise is

V ar(∆ut) =
1

T
E(∆u2

0) +
T − 1

T
E(∆u2

t )
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= σ2 (T − 1)2

T 3
+ σ2(T − 1)

1

T 3

=
T − 1

T 2
σ2. (156)

Therefore the contemporaneous cross-correlation is

Corr (∆p∗t , ∆ut) =
−σ2

T

(

1 − 1
T

)

√

σ2

T

√

σ2

T

(

1 − 1
T

)

= −
√

1 − 1

T
. (157)

The cross-correlation at nonzero displacements is for τ ∈ [1; T − 1]

Corr
(

∆p∗t−τ , ∆ut

)

=
σ2

T 2
√

σ2

T

√

σ2

T

(

1 − 1
T

)

=
1

√

T (T − 1)
<

1√
2
, (158)

and zero for τ ≥ T .

F Effect of Risk Aversion on Optimal Price

In this appendix we show that high risk aversion pushes the optimal price toward the mid-

point of the support. In other words, if f(·) is without loss of generality right-skewed, then

p(n) is increasing in n, ∀n ≥ 1. First, note that p(n), p(n) ∈ [p, p], is continuous. If p or p

are infinite, we replace these bounds with a function of n, thereby making the domain of p

compact. As f(·) and all components of the integral are continuous functions, the theorem

of the maximum gives continuity of p(n).

Next, to evaluate how the optimal price p(n) responds to changes in risk aversion n, take

the total differential of (63) and rearrange to obtain

dp(n)

dn
=

1

n − 1
×











−
p(n)
∫

p

(p(n) − p∗)n−1 ln (p(n) − p∗) f(p∗)dp∗

+

p
∫

p(n)

(p∗ − p(n))n−1 ln (p∗ − p(n)) f(p∗)dp∗











/











p(n)
∫

p

(p(n) − p∗)n−2 f(p∗)dp∗ +

p
∫

p(n)

(p∗ − p(n))n−2 f(p∗)dp∗











. (159)
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In the following argument we use that f(·) is monotone and assume without loss of

generality that f(·) is monotonically decreasing. This means f(·) is right-skewed on
[

p, p
]

,

which occurs if the market maker has some information that the strong form efficient price

has increased. Under this assumption (159) is positive. To see this, note first that both terms

in the denominator are positive. To economize notation we replace p ≡ p(n), d ≡ p(n) − p

and x ≡ p∗. The numerator can be broken up into three parts:

−
p
∫

p

(p − x)n−1 ln (p − x) f(x)dx +

p
∫

p

(x − p)n−1 ln (x − p) f(x)dx

= −
p−1
∫

p−d

(p − x)n−1 ln (p − x) f(x)dx +

p+d
∫

p+1

(x − p)n−1 ln (x − p) f(x)dx

−
p
∫

p−1

(p − x)n−1 ln (p − x) f(x)dx +

p+1
∫

p

(x − p)n−1 ln (x − p) f(x)dx

+

p
∫

p+d

(x − p)n−1 ln (x − p) f(x)dx. (160)

The first term, which exists only for d > 1, gives

−
p−1
∫

p−d

(p − x)n−1 ln (p − x) f(x)dx +

p+d
∫

p+1

(x − p)n−1 ln (x − p) f(x)dx

= −
p+d
∫

p+1

(x − p)n−1 ln (x − p) f(2p − x)dx

+

p+d
∫

p+1

(x − p)n−1 ln (x − p) f(x)dx

=

p+d
∫

p+1

(x − p)n−1 ln (x − p) [−f(2p − x) + f(x)] dx

≥
p+d
∫

p+1

(x − p)n−1 ln (d) [−f(2p − x) + f(x)] dx
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= −
p−1
∫

p−d

(p − x)n−1 ln (d) f(x)dx +

p+d
∫

p+1

(x − p)n−1 ln (d) f(x)dx. (161)

The second term is for d ≥ 1

−
p
∫

p−1

(p − x)n−1 ln (p − x) f(x)dx +

p+1
∫

p

(x − p)n−1 ln (x − p) f(x)dx

= −
p+1
∫

p

(x − p)n−1 ln (x − p) f(2p − x)dx

+

p+1
∫

p

(x − p)n−1 ln (x − p) f(x)dx

=

p+1
∫

p

(x − p)n−1 ln (x − p) [f(x) − f(2p − x)] dx ≥ 0. (162)

For d < 1 the last inequality of the calculations for the second term be replaced by

p+1
∫

p

(x − p)n−1 ln (x − p) [f(x) − f(2p − x)] dx

≥
p+d
∫

p

(x − p)n−1 [f(x) − f(2p − x)] dx ln (d) ≥ 0. (163)

And for the last term we can write

−
p
∫

p+d

(x − p)n−1 ln (x − p) f(x)dx > −
p
∫

p+d

(x − p)n−1 ln (d) f(x)dx. (164)

Using (161), (162) and (164), (160) becomes

(160) >



−
p−1
∫

p−d

(p − x)n−1 f(x)dx +

p
∫

p+1

(x − p)n−1 f(x)dx



 ln(d)
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>



−
p−1
∫

p−d

(p − x)n−1 f(x)dx −
p
∫

p−1

(p − x)n−1 f(x)dx

+

p+1
∫

p

(x − p)n−1 f(x)dx +

p
∫

p+1

(x − p)n−1 f(x)dx



 ln(d)

=



−
p
∫

p−d

(p − x)n−1 f(x)dx +

p
∫

p

(x − p)n−1 f(x)dx



 ln(d)

= 0, (165)

where the inequality follows from the monotonicity of f(·), and the last equality follows from

the first order condition (63).

Likewise, for d < 1 we have

(160) >



−
p
∫

p−d

(p − x)n−1 f(x)dx +

p
∫

p

(x − p)n−1 f(x)dx



 ln(d)

= 0. (166)

Therefore the numerator is positive and

dp(n)

dn
> 0 (167)

for right-skewed distributions. Combining this with the fact that p(1) = Median(p∗) and

p(∞) = Midsupport(p∗) we conclude that p(n) monotonically increases from the median to

the midpoint of the support of the efficient price distribution f(·), if f(·) is right-skewed.

Analogously, for left-skewed f(·), p(n) monotonically decreases from the median to the mid-

point of the support.
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G Semi-strong form Cross-correlations

In the multi-period setup of section 4.1 the semi-strong form efficient price has the uncondi-

tional variance

V ar(∆p̃t) =
1

T







σ2 +
T−1
∑

i=0

λ2
i + E





( −T
∑

i=−1

λiqi

)2


− 2σ
−T
∑

i=−1

λiE(qiε−T )







(168)

and the corresponding noise has an unconditional variance of

V ar(∆ut) =
1

T

T−1
∑

t=0

V ar(∆ut)

=
1

T

{

T−1
∑

i=0

[

(λi − si)
2 + (λi−1 − si−1)

2
]

− 2
T−1
∑

i=1

E(qtqt−1)(λi − si)(λi−1 − si−1)

}

. (169)

The contemporaneous cross-correlation is

Corr(∆p̃t, ∆ut) =
Cov(∆p̃t, ∆ut)

√

V ar(∆p̃t)V ar(∆ut)
. (170)

where Cov(∆p̃t, ∆ut) is given by (76). All other cross-correlation can be obtained analo-

gously.

For T = 1, spread and adverse selection parameter are constants, i.e. st = s and λt = λ

∀t, and the variance terms (168) and (169) simplify radically to

V ar(∆p̃t) = σ2 − 2σλE(qtεt) + 2λ2, (171)

V ar(∆ut) = 2(s − λ)2, (172)

where we have used that qt is serially uncorrelated. Thus for T = 1

Corr(∆p̃t, ∆ut) =
2λ − σE(qtεt)

√

σ2 − 2σλE(qtεt) + 2λ2

sgn(s − λ)√
2

, (173)
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and

Corr(∆p̃t−1, ∆ut) =
−λ

√

σ2 − 2σλE(qtεt) + 2λ2

sgn(s − λ)√
2

. (174)

H Zero Profit Condition under Perfect Competition

If the market maker in a one period model can quote bid and ask prices independently, or

equivalently pmid and s, he can condition on qt and therefore on sgn(∆p∗t ). For the ask price

his optimization problem is

pask
n = argmax

x∈[p,p]
−
∫ p

x

(p∗ − x)n f(p∗)dp∗, (175)

which is maximized at pask
n = ∞, because absent any competition the market maker has no

incentive to do any loss-bringing trades with informed traders. But competition with other

market makers drives profit down to zero. Assuming that the zero profit condition must

hold in expectation for each buy and each sell independently, the spread 2s from (15), (16)

and (17) is determined by

−
∫ p

pask

(

p∗ − pask
)n

f(p∗)dp∗ + π(s) = 0. (176)

Clearly, as in section 3.3.3 as n → ∞ the ask price pask grows as well, without bound if f(·)
has unbounded support. The expression for the bid price is analogous; the bid price falls

with n.

In the following example we show that s is uniquely determined as a competitive outcome.

For simplicity, we assume risk neutrality n = 1. Under perfect competition the zero profit

condition requires the market maker’s losses in trades with informed traders to exactly offset

the spread earned from trades with uninformed traders. An increase in the spread benefits

the market maker in two ways: it increases his spread income from uninformed traders and

reduces his losses to the informed traders. This can be written as

−
∫ pbid

−∞

(

p∗ − pbid
)

f(p∗)dp∗ −
∫ ∞

pask

(

pask − p∗
)

f(p∗)dp∗

=

(

∫ pask

pbid

f(p∗)dp∗

)

pask − pbid

2
. (177)
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Using the symmetry of the expected density f(p∗) around pmid, (177) becomes a problem of

setting pmid and s.

−
∫ pmid−s

−∞

(

p∗ − pmid + s
)

f(p∗)dp∗ =

(

∫ pmid

pmid−s

f(p∗)dp∗

)

s. (178)

Then, with F denoting the cumulative density function of f (whose expected value is

assumed to exist)

−
(

E(p∗)
∣

∣

∣

pmid−s
−∞ · F (pmid − s) − (pmid − s)F (pmid − s)

)

=
(

F (pmid) − F (pmid − s)
)

s, (179)

where E(p∗) |p−∞ denotes the expectation of p∗ over the distribution f(p∗) restricted to the

interval [−∞, p]. pmid is given by the optimal learning rule. (179) is one equation in the one

unknown, s.

pmid − E(p∗)
∣

∣

∣

pmid−s
−∞ =

sF (pmid)

F (pmid − s)
(180)

The left-hand side (LHS) is monotonically increasing in s from some positive number to

positive infinity. The right-hand side (RHS) is monotonically increasing in s, from 0 to

positive infinity. It can be shown that the RHS increases faster than the LHS and that

this difference in slope does not go to zero as s becomes larger. Differentiating (178) using

Leibnitz’s rule, we get

−
(

pmid − s − pmid + s
)

f(pmid − s)

(−1

2

)

−
∫ pmid−s

−∞

1

2
f(p∗)dp∗

< −f(pmid − s)

(−1

2

)

s +
1

2

(

∫ pmid

pmid−s

f(p∗)dp∗

)

(181)

and

−1

2
F (pmid − s) <

s

2
f(pmid − s) +

1

2

(

F (pmid) − F (pmid − s)
)

.

Therefore

0 < sf(pmid − s) + F (pmid), (182)

which holds always by definition. This shows two things: Firstly, the RHS in (178) is

increasing faster than the LHS. And secondly, the difference in slope is always at least
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F (pmid) > 0. Hence we have proven that there is a single crossing and s is determined

uniquely.

If the LHS in (180) is very small because the support of the distribution became very

small by learning, then s must be small as well. Hence, as market makers learn, the spread

s in the market shrinks. If some market maker learned slower than his peers, he would make

losses at least until the next change in p∗.
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