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Abstract

We study a two-stage choice problem, where alternatives are allocations between the
decision maker (DM) and a passive recipient. The recipient observes choice behavior in
stage two, while stage one choice is unobserved. Choosing sel�shly in stage two, in the
face of a fairer available alternative, may in�ict shame on DM. DM has preferences over
sets of alternatives that represent period two choices. We axiomatize a representation
that identi�es DM�s sel�sh ranking, her norm of fairness and shame. Altruism is the
most prominent motive that can explain non-sel�sh choice. We identify a condition
under which shame to be sel�sh can mimic altruism, when only stage-two choice is
observed by the experimenter. An additional condition implies that the norm of fairness
can be characterized as the Nash solution of a bargaining game induced by the second-
stage choice problem. The representation is generalized to allow for �nitely many
recipients and applied to a simple strategic situation, a game of trust.
JEL Classi�cations: C78, D63, D64, D80, D81

1. Introduction

1.1. Motivation

The notions of fairness and altruism have attracted the attention of economists in di¤erent

contexts. The relevance of these motives to decision making is both intuitively convincing

and well documented. For example in a classic �dictator game,�where one person gets to

anonymously divide, say, $10 between herself and a partner, people tend not to take the

whole amount for themselves, but to give a sum of between $0 and $5 to the other player.

They act as if they are trading o¤ a concern for fairness or for the other person�s incremental

�We thank Roland Benabou and Wolfgang Pesendorfer for their invaluable support. We are also grateful
to Eric Maskin, Stephen Morris, Charles Roddie and Tymon Tatur for helpful suggestions. This paper was
written in part while the authors were graduate prize fellows at the University Center for Human Values,
Princeton University. Financial support from the NSF under grant SES-0550540 is gratefully acknowledged.

yDepartment of Economics, University of Pennsylvania, ddill@sas.upenn.edu
Department of Economics, Duke University, p.sadowski@duke.edu
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wealth and a concern for their own.1 Thus, preferences for fairness as well as preferences

for altruism have been suggested and considered (for example Fehr and Schmidt [1999],

Anderoni and Miller [2002], and Charness and Rabin [2002]).

Recent experiments, however, show that this interpretation may be rash: Dana, Cain

and Dawes (2006) study a variant of the same dictator game, where the dictator is given the

option to exit the game before the recipient learns it is being played. If she opts out, she is

given a speci�ed amount of money and the recipient gets nothing, as the game has not taken

place. It turns out that about a third of the participants choose to leave the game when

o¤ered $9 for themselves and $0 for the recipient. Write this allocation as ($9, $0). Such

behavior contradicts altruistic concern regarding the recipient�s payo¤, because then the

allocation ($9, $1) should be strictly preferred. It also contradicts purely sel�sh preferences,

as ($10, $0) would be preferred to ($9, $0). Instead, people seem to su¤er from behaving

egoistically in a choice situation where they could dictate a fairer allocation. Hence, if they

can avoid getting into such a situation, they happily do so. Real-life scenarios with this

character could be:

� donating to a charity over the phone but wishing not to have been home when the call
came,

� crossing the road to avoid meeting a beggar.

Our explanation of this type of behavior is the following: Whether a person�s actions

are observed or not plays a crucial role in determining her behavior. We term "shame"

the motive that distinguishes choice behavior when observed from choice behavior when not

observed. In our model, individuals are sel�sh when not observed. Thus, concern for another

person�s payo¤ is motivated not by altruism, but by avoiding the feeling of shame that comes

from behaving sel�shly when observed.2 The interpretation is that, if people are observed,

they feel shame when they do not choose the fairest available alternative.3

We axiomatically formalize the notion of shame and its interaction with sel�shness as

described above. To this end, we consider games like the one conceived by Dana et al (2006)

as a two-stage choice problem. In the �rst stage, the decision maker (DM) chooses a �menu,�

a set of payo¤-allocations between herself and the anonymous recipient. This choice is not

observed by the recipient. In the second stage, she makes a potentially anonymous choice

from the alternatives on this menu, where the recipient observes the chosen alternative in full

1See for example Camerer (2003).
2To distinguish shame from guilt, note that guilt is typically understood to involve regret, even in private,

while, according to Buss (1980), "shame is essentially public; if no one else knows, there is no basis for shame.
[...] Thus, shame does not lead to self-control in private." We adopt the interpretation that even observation
of a sel�sh behavior without identi�cation of its purveyor can cause shame.

3In a parallel work, Neilson (2006-b) entertains a very similar notion of shame. The questions and the
methodology of the two works are di¤erent. Section 6 comments in more detail.
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knowledge of the menu.4 DM has well-de�ned preferences over sets of alternatives (menus).

Our interpretation of shame as the motivating emotion allows considerations of fairness to

impact preferences only through their e¤ect on second-stage choices, where the presence

of a fairer option reduces the attractiveness of an allocation. The underlying normative

notion of fairness is central to our model, because assumptions on the norm of fairness

are indirect assumptions on DM�s preferences. Assuming a particular norm of fairness is

di¢ cult, descriptively as well as normatively. Instead, we impose what we consider minimal

normative constraints on fairness.

Our representation results establish a correspondence between DM�s norm of fairness

and her choice behavior. On the one hand, this illustrates how those minimal constraints on

fairness impact choice. On the other hand, the particular norm of fairness used by DM can

be elicited from her choice behavior.

1.2. Illustration of Results

Denote a typical menu as A = f(a1; a2) ; (b1; b2) ; :::g, where the �rst and second components
in each alternative are, respectively, the private payo¤ for DM and for the recipient. We

impose axioms on DM�s preferences over menus that allow us to establish a sequence of

representation theorems. To illustrate our results, consider a special case of those represen-

tations:

U (A) = max
(a1;a2)2A

[u (a1) + �' (a1; a2)]� � max
(b1;b2)2A

[' (b1; b2)] ,

where u and ' are increasing in all arguments. u is a utility function over private payo¤s

and ' (a1; a2) is interpreted as the fairness of the allocation (a1; a2).

Alternatively, if we denote by a� and b� the two maximizers above, it can be written as:

U (A) = u (a�1)| {z }
value of private payo¤

� � (' (b�1; b
�
2)� ' (a�1; a

�
2))| {z }

shame

.

This representation captures the tension between the impulse to maximize private payo¤

and the desire to minimize shame from not choosing the fairest alternative within a set. It

evaluates a menu by the highest utility an allocation on the menu gets, where this utility

depends on the menu itself. The utility function that is used to evaluate allocations is

additive and has two distinct components. The �rst component, u (a1), gives the value of a

4If the exit option is chosen in the aforementioned experiment by Dana et al, as in our setup, the recipient
does not observe that there was a dictator, who could have chosen another allocation. In their experiment,
the recipient is further unaware that another person was involved at all. It would be interesting to see how
informing the recipient that some other person had received $9 would change the experimental �ndings. This
would correspond to our setup.
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degenerate menu (a singleton set) that contains the allocation under consideration. When

evaluating degenerate menus, which leave DM with a trivial choice under observation, we

assume her to be sel�sh: she prefers one allocation to another if and only if the former gives

her a greater private payo¤, independent of the recipient�s payo¤. The second component is

�shame.�It represents the cost DM incurs when selecting (a1; a2) in the face of the fairest

available alternative, (b�1; b
�
2).

As shame is evoked whenever this fairest available alternative is not chosen, we can

relate choice to a second binary relation "fairer than," which represents DM�s private norm

of fairness. We assume that DM�s private norm of fairness induces a Fairness Ranking of

all alternatives, which is represented by ' (a1; a2). We further assume that DM�s norm of

fairness satis�es Solvability, implying that the fairness ranking is never satiated in one player�s

payo¤, and the Pareto criterion in payo¤s, implying that ' is increasing in all arguments.

In the special case considered here, the shame from choosing (a1; a2) in stage two is

� (' (b�1; b
�
2)� ' (a1; a2)). Hence, even alternatives that are not chosen may matter for the

value of a set, and larger sets are not necessarily better. To see this, consider the representa-

tion above with u (a1) = a1, � = 1
2
and ' (a1; a2) = a1a2. Compare the sets f(10; 1) ; (4; 3)g,

f(10; 1)g and f(4; 3)g. Evaluating these sets we �nd U f(10; 1) ; (4; 3)g = 9, U f(10; 1)g = 10
and U f(4; 3)g = 4. To permit such a ranking, we assume a version of Left Betweenness,

which allows smaller sets to be preferred over larger sets. Left Betweenness weakens the

Set Betweenness assumption �rst introduced by Gul and Pesendorfer (2001), henceforth

GP. Theorem 1 establishes that our weakest representation, which captures the intuition

discussed thus far, is equivalent to the collection of all the above assumptions.

Sel�shness leaves no room for altruism. Suppose, however, that only the second stage

of the procedure is observed (for example, because DM, as in the classic dictator game,

never gets to choose between menus). In this case, our representations might conform with

DM behaving as if she had direct interest in the recipient�s welfare and had to trade o¤ this

altruistic motive with concerns about her private payo¤. We argue that it is hard to reconcile

such an interpretation with observing any choice reversal in stage two. Thus, when observing

stage two in isolation, shame can mimic altruism only if the induced choice ranking is set

independent. Theorem 2 establishes that, given the assumptions made so far, an additional

separability assumption on preferences over sets, Consistency, is equivalent to the existence

of such a ranking. In the special case of our representation considered above, the induced

choice behavior satis�es Consistency. To see this, regroup the terms as follows:

U (A) = max
(a1;a2)2A

[u (a1) + �' (a1; a2)]| {z }
second stage choice criterion

� � max
(b1;b2)2A

[' (b1; b2)]| {z }
e¤ect of fairest alterative

.
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We further specify the norm of fairness by assuming that the private payo¤s to the two

players have Independent Fairness Contributions: The fairness contribution of raising one

player�s payo¤ can not depend on the level of the other player�s payo¤. The idea is that

interpersonal utility comparisons are infeasible. With this additional assumption, Theorem

3 establishes that there are two utility functions, v1 and v2, evaluated in the payo¤ to DM

and the recipient respectively, such that the value of their product represents the fairness

ranking, ' (a1; a2) = v1 (a1) v2 (a2). Thus, the fairest alternative within a set of alternatives

can be characterized as the Nash Bargaining Solution (NBS) of an associated game. Because

the utility functions used to generate this game are private, so is the norm.5 We argue that

when based on true sel�sh utilities, the NBS is a convincing fairness criterion in our context.

Those utilities, however, may not be publicly known, especially in anonymous choice situ-

ations, and therefore, DM may not be able to base her evaluation on true sel�sh utilities.

Nevertheless, one can assess the descriptive appeal of the representation by asking whether

the utilities comprising the norm at least resemble sel�sh utilities.

Example: Let u (a1) = a1, ' (a1; a2) = v1 (a1) v2 (a2) = a1a2 and � = 1
2
. This implies

that sel�sh utility u is risk neutral and unbounded, and that the utilities v, which are used

to generate the fairness ranking, coincide with u. Shame is half the di¤erence between

the Nash-product of the fairest and the chosen alternatives. Reconsider the experiment

by Dana et al (2006) mentioned above, with the added constraint that only integer val-

ues are possible allocations. The set A = f(10; 0) (9; 1) (8; 2) ; :::; (0; 10)g then corresponds
to the dictator game. It induces the imaginary bargaining game with possible utility-

allocations f(10; 0) (9; 1) (8; 2) ; :::; (0; 10) ; (0; 0)g, where the imaginary disagreement point
is lim

(x;y)!0

�
v�11 (x) ; v�12 (y)

�
= (0; 0). According to the NBS, (5; 5) would be the outcome of

the bargaining game. Its fairness is 5�5 = 25. To trade o¤shame with sel�shness, DM chooses
the alternative that maximizes the sum of private utility and fairness, a1 + a1a2, which is

(6; 4). Its fairness is 6 �4 = 24 and the shame incurred by choosing it is 1
2
. Hence U (A) = 5:5.

From the singleton set B = f(9; 0)g, which corresponds to the exit option in the experiment,
the choice is trivial and U (B) = 9. This example illustrates both the tension DM is ex-

posed to when choosing from a large set and the reason why she might prefer a smaller menu.

The organization of the paper is as follows: Section 2 presents the basic model and a

representation that captures the concepts of fairness and shame. Section 3 isolates a choice

criterion from the choice situation. Section 4 further speci�es the fairness ranking. Section

5Therefore, the fairness ranking could also be represented by a di¤erent functional, based on di¤erent
utilities.
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5 extends the representation to �nitely many other players and suggests an application to a

simple strategic situation, a game of trust. Section 6 concludes by pointing out connections

to existing literature.

2. The Model

LetK be the set of all �nite subsets of R2+.6 Any element A 2 K is a �nite set of alternatives.

A typical alternative a = (a1; a2) is interpreted as a payo¤pair, where a1 is the private payo¤

for DM and a2 is the private payo¤ allocated to the (potentially anonymous) other player,

the recipient. Endow K with the topology generated by the Hausdor¤ metric, which is

de�ned for any pair of non-empty sets, A;B 2 K, by:

dh (A;B) := max

�
max
a2A

min
b2B

d (a;b) ;max
b2B

min
a2A

d (a;b)

�
,

where d : R2+ ! R+ is the standard Euclidian distance.
Let � be a continuous preference relation (weak order) over K. We write A � B if DM

strictly prefers A to B. The associate weak preference, � and the indi¤erence relation, �
are de�ned in the usual way.

The choice of a menu A 2 K is not observed by the recipient, while the choice from any

menu is. We call the impact this observation has on choice "shame." Of course various other

regarding preferences that are not impacted by observation could be present as well. We

do not account for those, as our aim is not to describe a range of possible attitudes toward

others, but to derive a tractable representation according to which DM distinguishes the two

stages in an intuitive way.

The �rst axiom speci�es DM�s preferences over singleton sets.

P1 (Sel�shness) fag � fbg if and only if a1 > b1.

A singleton set fag is a degenerate menu that contains only one feasible allocation,
(a1; a2). It leaves DM with a trivial choice to be made when being observed in the second

stage. Therefore, the ranking over singleton sets can be thought of as the ranking over

allocations that are imposed on DM. We contend that there is no room for shame in this

situation; choosing between two singleton sets reveals DM�s �true�preferences over allocation

outcomes. The axiom states that DM is not concerned about the payo¤ to the second player

when evaluating such sets; she compares any pair of alternatives based solely on the �rst

6With R+ we denote the positive reals including 0. R++ denotes the positive reals without 0.
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component, her private payo¤. If, for example, DM had an altruistic concern for fairness

in the dictator game previously described, she would strictly prefer the menu f(9; 1)g to
f(9; 0)g. P1 rules out such altruistic concerns. Negative emotions regarding the other player,
such as spite or envy, are ruled out as well.

The next axiom captures the idea that shame is a mental cost, which is invoked by un-

chosen alternatives.

P2 (Strong Left Betweenness) If A � B, then A � A [ B. Further, if A � B

and 9C such that A [ C � A [B [ C, then A � A [B.

We assume that adding unchosen alternatives to a set can only increase shame. Therefore,

no alternative is more appealing when chosen from A [ B, than when chosen from one of

the smaller sets, A or B. Hence, A � B implies A � A [ B.7 Furthermore, if additional
alternatives add to the shame incurred by the original choice from a menu A[C, then they
must also add to the shame incurred by any choice from the smaller menu A. Thus, if there

is C such that A [ C � A [B [ C and if A � B, then A � A [B.
Shame, which is the only motive DM knows beyond sel�shness, must refer to some per-

sonal norm that determines what the appropriate choice should have been. In our interpreta-

tion, this norm is to choose one of the fairest available allocations. Interpreting "fairness" as

a property of an allocation, which is independent of the menu it is on, we consider a binary

relation �f over R2+ as a second primitive.

De�nition: If b �f a, we say that DM considers b to be fairer than a.

Some of the axioms below are imposed on �f rather than on � and are labeled by F

instead of P . The underlying notion of fairness is at the heart of those assumptions.8 To

make them descriptively intuitive, we emphasize their normative appeal, implying that DM

will want her norm of fairness to satisfy them. Making these assumptions directly on �f is
natural. The relation �f is not directly observable, but the next axiom relates it to observ-

able choice behavior. One contribution of our work is that the implications of F -axioms on

� are most easily understood from the representation.

7This is the "Left Betweenness" axiom. It appears in Dekel, Lipman and Rustichini (2005) and is a
weakening of "Set Betweenness" as �rst posed in GP.

8In everyday language, "fair" is sometimes used to capture various di¤erent notions. According to the
Merriam-Webster Collegiate Dictionary (Tenth Edition, 2001) "Fair implies an elimination of one�s own
feelings, prejudices, and desires so as to achieve a proper balance of con�icting interests." This is the de�nition
of "fair" we base our arguments on.
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P3 (Shame) If 9A 2 K with a 2 A, such that A � A [ fbg, then b �f a.9

A � A [ fbg implies that b adds to the shame incurred by the original choice in A. The
interpretation is that DM is concerned about not choosing one of the fairest available alter-

natives. Thus, b must be fairer than any alternative in A, in particular b �f a.

De�nition: We say that DM is susceptible to shame if there exists A and B with A � A[B.

F1 (Fairness Ranking) �f is an anti-symmetric and negatively transitive binary rela-
tion.

Our discussion rests on the assumption that DM can rank alternatives according to

their fairness. In R2+ and with increasing utility from self-payo¤s, this assumption is not

unreasonably restrictive.10

Combined with P3, F1 implies that only one alternative in each menu, the fairest, is

responsible for shame.

F2 (Pareto) If a � b > 0 and a 6= b, then a �f b.

According to this axiom, absolute, as opposed to relative, well-being matters; the Pareto

criterion excludes notions such as "strict inequality aversion." The resulting concept of fair-

ness must have some concern for e¢ ciency. In the case where there truly is no potential for

redistribution, we believe that people �nd the Pareto criterion a reasonable requirement for

one allocation to be fairer than another.11

9The notion of "fairer than" is analogous to the de�nition of "more tempting than" in Gul and Pesendorfer
(2005).
10If, instead, there were a globally most prefered self-payo¤, this assumption would rule out very reasonable

preference rankings.
11In many contexts, people would disagree with the statement that the allocation (1million; 6) is fairer than

(5; 5). On the basis of the de�nition in footnote 10, however, we claim that the opposition to (1million; 6)
as a fair allocation can only be based on the implicit premise that there must be some mechanism to divide
the gains more evenly (Such a mechanism would imply the availability of a third option, which would render
both of the above allocations unfair.) In an explicit choice situation this premise cannot be sustained. The
Pareto property has indeed been advocated in the philosophical literature on fairness. Rawls (1971), for
example, proposes the idea of "original position," a mental exercise whereby a group of rational people must
establish a principle of fairness (e.g. when distributing income) without knowing beforehand where on the
resulting pecking order they will end up themselves. Requiring that the allocation satisy Pareto makes much
sense in such an environment.
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F3 (Solvability) If (a1; 0) �f (b1; b2) then 9x such that (a1; x) �f (b1; b2). Analogously, if
(0; a2) �f (b1; b2) then 9y such that (y; a2) �f (b1; b2).

Ignoring the quali�er, the axiom states that in order to make two allocations deemed

equally fair, any variation in the level of one person�s payo¤ can always be compensated by

appropriate variation in the level of the other person�s payo¤. This requires �f never to be
satiated in any person�s payo¤. Relying on F2, the quali�ers take into account that monetary

payo¤s are bounded below by 0. For example, F3 implies that there is a sum x, such that

(x; 1) �f (10; 10). This assumption captures the insight that any fairness ranking with a
concern for e¢ ciency must go beyond the Pareto principle and trade o¤, in some manner,

payo¤s across individuals.

As � is continuous, �f is continuous in all alternatives for which P3 relates � to �f .
F1 � F3 imply that this is the case on R+ � R++.12 Assuming that �f is continuous even
in alternatives for which P3 does not relate � to �f has obviously no implication for choice.
For ease of exposition, we assume in all what follows that �f is continuous on all of R2+.

Theorem 1 If DM is susceptible to shame, then � and �f satisfy P1�P3 and F1�F3 re-
spectively, if and only if there exist continuous and strictly increasing functions u : R+ ! R ,
' : R2+ ! R and a continuous function g : R2+�'

�
R2+
�
! R, weakly increasing in its second

argument and satisfying: g (a; x) R 0 whenever ' (a) Q x, such that the function U : K ! R

de�ned as U (A) = max
a2A

�
u (a1)� g

�
a;max

b2A
' (b)

��
represents � and ' represents �f .

If DM is not susceptible to shame, g � 0.

All detailed proofs are in the appendix. We now highlight the important steps. As both

� and �f are continuous binary relations, they can be represented by continuous functions
U : K ! R and ' : R2+ ! R respectively. ' is an increasing function as implied by

Pareto (F2). The combination of Strong Left Betweenness (P2), Shame (P3) and Fairness

Ranking (F1) implies GP�s Set Betweenness (SB) property: A � B implies A � A[B � B.

GP demonstrate that imposing SB on preferences over sets makes every set indi¤erent to a

certain subset of it, which includes at most two elements (Lemma 2 in their paper). Hence

we con�ne our attention to a subset of our domain that includes all sets with cardinality no

greater than 2. Sel�shness (P1) and P3 imply that a set fa;bg is strictly inferior to fag if
and only if a1 > b1 and b �f a. We can then strengthen GP�s Lemma 2 and state that any
set is indi¤erent to some two-element set that includes one of the fairest allocations in the
12�f is relevant for choice in alternative b, if and only if there is c with c �fb and c1 > b1, which requires

c2 < b2. Thus b2 > 0 is necessary for the construction of c.

9



original (larger) set. Using Solvability (F3) we show the continuity of the second component,

the function g, in the representation.

The representation in Theorem 1 highlights the basic trade-o¤ between private payo¤

and shame as the only concepts DM may care about. There are at most two essential

alternatives within a set, to be interpreted as the "chosen" and the "fairest" alternative, a

and b respectively. For the latter, its fairness, ' (b), is a su¢ cient statistic for its impact on

the set�s value. DM su¤ers from shame, measured by g (a; ' (b)), whenever ' (a) < ' (b),

where ' (a) is the fairness of the chosen alternative. The representation captures the idea of

shame being an emotional cost that emerges whenever the fairest available allocation is not

chosen. Its magnitude may depend on the fairness of the chosen allocation.

The main contribution of Theorem 1 is that it determines when DM�s fairness ranking,

�f , can be elicited from choice behavior: all functions in the representation are continuous

and hence, for a;b 2 R+ � R++ and b �f a, there is c such that U (fa; cg) > U (fa;b; cg),
implying ' (b) > ' (a). As the function ' is continuous, it is uniquely determined by choice

behavior on its entire domain, R2+, if the axioms P1 � P3 and F1 � F3 hold.

Note that the properties of the function g and the max operator inside imply that the

second term is always a cost (non-positive). The other max operator implies that DM�s

payo¤ will never lie below b1, which is her payo¤ as suggested by the fairest allocation.

Thus, any deviations by DM from choosing the fairest allocation will be in her own favor.

These observations justify labeling said cost as "shame."

From the representation, it is easy to see that the induced choice correspondence,

C (A) :=

�
argmax
a2A

�
u (a1)� g

�
a;max

b2A
' (b)

���
may be context dependent in the sense that a higher degree of shame may a¤ect choice. In

other words, if we de�ne a binary relation "better choice than," �c, by a �c b if 9B with

b 2 B, such that B [ fag � B, then this binary relation need not be acyclic. This feature

may be plausible when shame is taken into account. In the next section we spell out the

implications of enforcing a context-independent criterion for choice.

3. A Second-Stage Choice Ranking

In many situations, only second-stage choice may be observable. For example, the standard

dictator game corresponds only to second-stage choice in our setup. Typical behavior in

various versions of this game, where subjects tend to give part of the endowment to the

recipient, is often interpreted as motivated by an altruistic motive. We interpret altruism

10



to imply that the recipient�s welfare is a good, just as sel�shness implies that DM�s private

payo¤ is a good.13 If DM had those two motives, she would have to make a trade-o¤ between

them. As in the case of two generic goods, very basic assumptions would lead to a context-

independent choice ranking of alternatives. As we point out at the end of section 2, we can

de�ne a binary relation "better choice than," �c, by a �c b if 9B with b 2 B, such that

B [fag � B. This binary relation need not be acyclic: Di¤erent choice problems, A and B,

may lead to di¤erent second-stage rankings of a and b, for a;b 2 A\B. If no cycles occur,
second-stage behavior might look as if it were generated by, for instance, a trade-o¤ between

sel�shness and altruism, even though observation of stage-one choice would rule this out. If,

on the other hand, cycles are observed in stage-two choice, simple altruistic motives cannot

be solely responsible for behavior that is not purely sel�sh. In this section we identify a

condition on preferences that makes DM�s second-stage choice independent of the choice set.

This implies �nding a function  : R2+ ! R that assigns a value to each a 2 A, such that a
is a choice from A only if  (a) �  (b) for all b 2 A.

De�nition: X := f(a;b) : fag � fa;bg � fbgg is the set of all pairs of alternatives gen-
erating strict Set Betweenness.

For any set of two allocations fa;bg, we interpret the preference ordering fag � fa;bg �
fbg as an indication of a discrepancy between what DM chooses (a) and the alternative she

deems to be the fairest (b), which causes her choice to bear shame. This shame, however, is

not enough to make her choose b.

Combined with F1, Shame (P3) implies that choice between sets depends on the fairness

of the fairest alternative in the set. The next axiom relates choice to the fairness of the

chosen alternative as well: The fairer DM�s choice, the less shame she feels.

P4 (Fairer is Better) If for fag � fa0g we have f(a;b) ; (a0;b)g � X and a �f a0,
then fa;bg � fa0;bg.

Axiom P4 implies that only the fairness of the chosen alternative matters for its impact

on shame.

Given P1 � P4 and F1 � F3, an additional separability assumption is equivalent to sepa-

rable shame, and thus to a set-independent choice ranking.

13This interpretation is based on the following de�nition of altruism (Merriam-Webster Collegiate Dictio-
nary [Tenth Edition, 2001] ): "Unsel�sh regard for or devotion to the welfare of others." We understand this
de�nition as ruling out any considerations that condition on available but unchosen alternatives.
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P5 (Consistency) If

f(a;b) ; (a;d) ; (a0;b0) ; (a0;d0) ; (c;b) ; (c0;b0) ; (c;d) ; (c0;d0)g � X,

then fa;bg � fa0;b0g and fa;dg � fa0;d0g imply fc;bg � fc0;b0g , fc;dg � fc0;d0g.

We make no claim about the normative or descriptive appeal of this assumption. Instead,

we view it as an empirical criterion: If the condition is not met, observation of stage-two

choice should su¢ ce to distinguish altruism from shame as the motive behind DM�s other-

regarding behavior. The axiom requires independence between the impact of the chosen and

the fairest alternative on the set ranking;

f(a;b) ; (a;d) ; (a0;b0) ; (a0;d0) ; (c;b) ; (c0;b0) ; (c;d) ; (c0;d0)g � X

implies that from each of the sets fa;bg ; fa;dg ; fa0;b0g ; fa0;d0g ; fc;bg ; fc0;b0g ; fc;dg and
fc0;d0g, the alternative listed �rst is chosen in the second stage despite the availability of a
fairer alternative, which is listed second. Assume, without loss of generality that fag � fa0g.
Suppose there are two pairs of fairer and less attractive alternatives, b;b0 and d;d0, such

that for each of them pairing their members with a and a0, respectively, gives rise to indif-

ference. In the context of Theorem 1, this implies that both pairs induce the same shame

di¤erential, which exactly cancels the sel�sh preference of fag over fa0g: fa;bg � fa0;b0g
and fa;dg � fa0;d0g. Then, the axiom states that pairing the members of b;b0 or d;d0 with
any other chosen alternatives c and c0, respectively, must also lead to the same di¤erential

in shame. In particular, fc;bg � fc0;b0g implies fc;dg � fc0;d0g. Again, the validity of
this technical assumption in a given context is an empirical question.

Theorem 2 If DM is susceptible to shame, then � and �f satisfy P1�P5 and F1�F3 re-
spectively, if and only if there exist continuous and strictly increasing functions u : R+ ! R
and ' : R2+ ! R, such that the function U : K ! R de�ned as

U (A) = max
a2A

[u (a1) + ' (a1; a2)]�max
b2A

[' (b1; b2)]

represents � and ' represents �f .

The proof constructs a path in the (a1; a2)-plane such that the fairness ' (a) increases

along this path. Then, on two neighboring indi¤erence curves in the (a; ' (b))-space, ' (b)
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increases, as a varies along the path. Relying on P5, these indi¤erence curves allow us to

rescale ' (b) to make the representation of � quasi-linear.14 Separability is then immediate.
Since the proof of Theorem 2 is a special case of the proof of Theorem 4, we only go through

the more general case in detail in the appendix.

The representation isolates a choice criterion that is independent of the choice problem:

DM�s behavior is governed by maximizing

u (a1) + ' (a1; a2) .

The value of the set is reduced by

max
b2A

' (b1; b2) ,

a term that depends solely on the fairest alternative in the set. Grouping the terms di¤erently

reveals the trade-o¤between self-payo¤, u (a1), and the shame involved with choosing a from

the set A:

max
b2A

[' (b1; b2)� ' (a1; a2)] � 0:

Note that now shame takes an additively separable form, depends only on the fairness of

both alternatives, and is increasing in the fairness of the fairest and decreasing in that of

the chosen alternative. If P1 � P4 and F1 � F3 hold, then, according to Theorem 2, P5 is

equivalent to having a set-independent choice ranking.

4. Specifying a Fairness Ranking

In this section we impose one more axiom on �f to further characterize the fairness ranking.
It asserts that the fairness contribution of one person�s marginal payo¤ cannot depend on

the initial payo¤ levels.

F4 (Independent Fairness Contributions) If (a1; a2) �f (b1; b2) and (a01; a2) �f (a1; b2)
�f (b1; b02), then (a01; b2) �f (a1; b02).

The axiom is illustrated in �gure 1. If a1 = a01 or b2 = b02, this axiom is implied by F1, F2
and the continuity of �f . For a1 6= a01 and b2 6= b02, the statement is more subtle. Consider

�rst a stronger assumption:

F 04 (Strong Independent Fairness Contributions) (a1; a2) �f (b1; b2) and (a01; a2) �f
(b1; b

0
2) imply (a

0
1; b2) �f (a1; b02).

14A more elaborate discussion on this technique appears after Theorem 3.
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Figure 1: Independent Fairness Contributions.

The fairness contribution of one person�s marginal payo¤ cannot depend on the initial

payo¤ level of the other person: It is unclear to DM how much an increase in monetary

payo¤ means to the recipient, because even if the (marginal) utility of the recipient were

known to DM, she could not compare it to her own, as interpersonal utility comparisons

are infeasible. The quali�er in F 04 establishes that DM considers the fairness contribution of

changing her own payo¤ from a1 to a01 given the allocation (a1; a2) to be the same as that of

changing the recipient�s payo¤ from b2 to b02 given (b1; b2). F
0
4 then states that starting from

the allocation (a1; b2), changing a1 to a01 should again be as favorable in terms of fairness as

changing b2 to b02. This is the essence of Independent Fairness Contributions. The stronger

quali�er (b1; b02) �f (a1; b2) �f (a01; a2) in F4 weakens the axiom. For example, the fairness
ranking (a1; a2) �f (b1; b2) if and only if min (a1; a2) > min (b1; b2) is permissible under F4,
but not under F 04.

15

Theorem 3 �f satis�es F1 � F4, if and only if there are continuous, increasing and un-

bounded functions v1; v2 : R+ ! R++, such that ' (a) = v1 (a1) v2 (a2) represents �f .

Luce and Tukey (1964) prove the necessity and su¢ ciency of Solvability and the Cor-

responding Trade-o¤s Condition (the label they use for F4 ) to admit an additive repre-

sentation. To show how a proof works, we repeatedly use axiom F4 to establish that if

15F4 is refered to as the Hexagon condition or the Corresponding Trade-o¤s Condition (Keeney and Rai¤a
[1976]), F 04 as the Thomsen condition. With F2 and F3, F 04 is implied by F4. See Karni and Safra (1998)
for a proof.
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(a1; a2) �f (a01; a02) and (a1;ea2) �f (a01;ea02), then (ea1; a2) �f (ea01; a02) , (ea1;ea2) �f (ea01;ea02).
With this knowledge, we can create a monotone increasing mapping a2 !  (a2) that trans-

forms the original indi¤erence map to be quasi-linear with respect to the �rst coordinate in

the (a1;  (a2)) plane. Keeney and Rai¤a (1976) refer to the procedure we employ as the

lock-step procedure. Quasi-linearity implies that there is an increasing continuous function

� : R+ ! R, such that ' (a) := � (a1) +  (a2) represents �f . De�ne v1 (a1) := exp (� (a1))
and v2 (a2) := exp ( (a2)). Then v1; v2 : R+ ! R++ are increasing and continuous and if we
rede�ne ' (a) := v1 (a1) v2 (a2), it represents �f .
This representation suggests an appealing interpretation of the fairness ranking DM is

concerned about: She behaves as if she had in mind two increasing and unbounded utility

functions, one for herself16 and one for the recipient. By mapping the alternatives within

each set into the associated utility space, any choice set induces a �nite bargaining game

where only the disagreement point is unspeci�ed. DM then identi�es the fairest alternative

within a set as if she also had in mind a disagreement point, that makes this alternative the

Nash Bargaining Solution17 of the game.18 Moreover, the fairness of all alternatives can be

ranked according to the same functional, namely the Nash product.

Remember that F3 requires trading o¤ marginal payo¤s. The tension of having to trade

o¤marginal payo¤s without being able to compare their welfare contribution (F4) is common

in a range of social-choice problems.19 Our axioms are weak in the sense that they do not

constrain DM in this trade-o¤, as long as she takes into account that the fairness contribution

of increasing one person�s payo¤ should not depend on the other�s payo¤. The power of

Theorem 3 is that it bases a representation on these weak assumptions. The downside is

that the form of this representation is not unique, as the utilities v1 and v2 are not observable

independent of the norm of fairness. For example, there is another pair of increasing utility

functions such that DM is concerned about their sum, that is, she acknowledges e¢ ciency

as the only fairness criterion.

To underline the appeal of the Nash product as a descriptive representation of fairness,20

16This utility function need not agree with her true utility for personal payo¤s, u. The interpretation is
that DM is concerned about the recipient�s perception of her choice. The recipient, however, may not know
DM�s true utility, especially under anonymity.
17See Nash (1950).
18The imaginary disagreement point is determined by lim

(x;y)!0

�
v�11 (x) ; v�12 (y)

�
. It could be some �nite

and weakly positive pair of utility payo¤s. In particular it could be (0; 0), which corresponds to DM imagining
that players walk away in the case that no agreement is reached. It could also be negative. This corresponds
to DM imagining that players have an extra incentive to �nd an agreement: there is a cost to disagreement.
19For a review, see Hammond (1990).
20Even though u and v1 do not have to agree, our interpretation might be more convincing when they

resemble each other empirically. In particular it is more appealing if DM�s actual utility from self-payo¤ u
is unbounded.
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we now point out how DM might reason within the constraints of the axioms:

We justi�ed the Pareto criterion, F2, as a plausible axiom for the fairness ranking. As

argued above, concern for fairness requires the acknowledgment of some form of interper-

sonal comparability of preferences�intensity. If utilities were known cardinally, symmetry in

terms of utility payo¤s is the other criterion we would expect the ranking to satisfy.21 In our

context, this implies independence of the role people play, dictator or recipient. However,

utilities are inherently ordinal, rendering such a comparison infeasible. At best we can, if

we assume people to have cardinal utilities that re�ect their attitudes toward risk, deter-

mine marginal utilities up to scaling. Mariotti (1997), for example, considers a context in

which �interpersonal comparisons of utility are meaningful; that is, there exists an (unknown)

rescaling of each person�s utility which makes utilities interpersonally comparable." At the

same time, however, "interpersonal comparisons of utility are not feasible." Assume there is

a correct interpersonal utility scaling, but DM cannot determine it. Can she guarantee that

for this unknown scaling both symmetry and Pareto are satis�ed? They would have to be

satis�ed for all potential scalings. Mariotti establishes that the NBS is the only criterion

with this property.

Even more appealing is an interpretation of the NBS as the fairest allocation that is

related to Gauthier�s (1986) principle of "moral by agreement": Trying to assess what is

fair, but �nding herself unable to compare utilities across individuals, DM might refer to the

prediction of a symmetric mechanism for generating allocations. In particular, DMmight ask

what would be the allocation if both she and the recipient were to bargain over the division

of the surplus. To answer this question, she does not need to assume the intensities of the

two preferences. This is a procedural interpretation that is not built on the axioms: DM is

not ashamed of payo¤s, but of using her stronger position in distributing the gains. It is,

then, the intuitive and possibly descriptive appeal of the NBS in many bargaining situations

that makes it normatively appealing to DM in our context.22 Theorem 3 establishes the

behavioral equivalence of this interpretation and our axioms.

The Pareto and the Solvability axioms, F2 and F3 respectively, rule out fairness rankings

with (x; 0) �f (0; y) for all x, y. In particular the Nash product with linear utility functions
v1, v2 is ruled out as a criterion for fairness. Such orderings could easily be accommodated by

posing Pareto and Solvability only on R2++. As a consequence, ' would be strictly increasing
only on R2++ and v1, v2 would only have to be weakly positive, v1; v2 : R+ ! R+.23 These
21This reasoning leads Rawls (1971) to suggest Pareto and Symmetry as the two criteria a decision maker

under a veil of ignorance should respect.
22The descriptive value of the NBS has been tested empirically. For a discussion see Davis and Holt (1993)

pages 247-55. Further, multiple seemingly natural implementations of it have been proposed (Nash [1953] ,
Osborne and Rubinstein [1994]).
23As can be seen in the proof of Theorem 2, this would imply the possibility of (�1;�1) as an imaginary
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weaker axioms would still rule out the Maximin as a criterion for fairness.

Remark: Any concern DM has about fairness originates from being observed. Consequently,

DM should expect a potentially anonymous observer to share her notion of what is fair: Her

private norm of fairness, which we observe indirectly, should re�ect her concern about not

violating a social norm. If the observed choice situation is anonymous, DM does not know

the recipient�s identity and is aware that the recipient does not know hers. Therefore, the

ranking cannot depend on either identity. Combining this with the idea that fairness of an

allocation should not depend on the role a person plays, whether dictator or recipient, one

might want to impose symmetry of the fairness ranking in terms of direct payo¤s.

F5 (Symmetry) (a1; a2) �f (a2; a1).

Adding this assumption constrains v1 (a) = v2 (a) in the representation of Theorem 3.

The numerical example given in the introduction features the combination of Theorem 2 and

Theorem 3, where all functions involved are the identity. For brevity, we will not repeat it

here.

5. Extensions

5.1. Multiple Recipients

The underlying idea is that DM (without loss of generality individual 1) is concerned about

N � 1 > 2 other individuals, whose payo¤s depend on her choice. In analogy to section 2,
let K be the set of all �nite subsets of RN+ . Any element A 2 K is a �nite set of alternatives.

A typical alternative a = (a1; a2; :::; aN) is interpreted as a payo¤ vector, where an is the

payo¤ allocated to individual n. We write, for example, (am; an; a�m;n) as the alternative

with payo¤ am to individual m, payo¤ an to individual n and a�m;n 2 RN�2+ lists all other

individuals�payo¤s in order. We endow K with the topology generated by the Hausdor¤

metric.

Let � be a continuous preference relation over K. Most of the axioms we impose on �
in section 2 can be readily applied to � on this new domain. We de�ne �f in analogy to
the previous de�nition. Instead of F3 we write

FN3 (Weak Solvability) If (an;0) �f b then for all m 6= n, there exists am such that

(am; an;0) �f b.

disagreement point, which corresponds to DM imagining that players have to �nd an agreement (in�nite
cost of disagreement).
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The axiom states that it is always possible to equate the fairness of an allocation with

payo¤ to only one individual to that of an initially fairer allocation by giving appropriate

payo¤s to any second individual. This property requires the fairness ranking never to be

satiated in any individual payo¤.

De�nition: The pair of possible payo¤s to individuals m and n is Preferentially Indepen-

dent with respect to its Complement (P.I.C.), if the fairness ranking in the (am; an)-space is

independent of a�m;n.

FN4 (Pairwise Preferential Independence) For all m;n 2 f1; ::; Ng, the pair of possible
payo¤s to individuals m and n is P.I.C.

Similarly to F4, this axiom must hold if the contribution of one person�s marginal private
payo¤ to the fairness of an allocation cannot depend on another person�s private payo¤ level.

Theorem 4 Assume N � 3 and that DM is susceptible to shame.

(i) � and �f satisfy P1 � P5 and F1; F2 and FN3 respectively, if and only if there exist con-

tinuous and strictly increasing functions u : R+ ! R and ' : RN+ ! R such that the function
U : K ! R de�ned as U (A) = max

a2A
[u (a1) + ' (a1; a2; :::; an)]�max

b2A
[' (b1; b2; :::; bn)] repre-

sents � and ' represents �f .
(ii) �f also satis�es FN4 if and only if there exist continuous and strictly increasing functions

v1; ::; vN : R+ ! R++, where v1; ::; vN are unbounded such that ' (a) =
NQ
i1

vi (ai) :

Theorem 4 is analogous to Theorem 2. For the proof, note that the analogue of Theorem

1 can be established by substituting a�1 for a2 in the theorem and in the proof, where now

' : RN+ ! R. To establish the analogue of Theorem 3, namely that there are N increas-

ing unbounded functions v1; ::; vN , such that the fairness ranking �f can be represented by

' (a) =
NQ
i1

vi (ai) if and only if it satis�es F1; F2; FN3 and FN4 , we �rst state a stronger version

of FN3 :

FN 03 (Solvability) If (an; a�n) �f b then for all m 6= n, there exists am such that

(am; an; a�m;n) �f b:

We observe that Continuity, F1, F2 and FN3 imply Solvability. To see this, assume
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(an; a�n) �f b. By F2, (an;0) �f (an; a�n) and hence (using F1) (an;0) �f b. By FN3 ,
there exists eam such that (eam; an;0) �f b. By F2 again, (eam; an; z) �f b for all z 2 RN�2+ .

Therefore, by Continuity, there must be am 2 R+ for which (am; an; a�m;n) �f b. We can
then apply:

Theorem (Luce and Tukey [1964]) Pairwise Preferential Independence and Solvabil-
ity imply the existence of an additive representation of �f .

The proof of this theorem can be found in Kranz et al (1971). We illustrate the idea for

the case N = 3 by showing that FN4 implies F4 for (without loss of generality) the pair of

individuals 1 and 2, independent of the payo¤ to individual 3:

For any (a01; a
0
2; a

0
3) and any a

1
1, de�ne a

1
2 and a

1
3 such that�

a11; a
0
2; a

0
3

�
�f

�
a01; a

1
2; a

0
3

�
�f

�
a01; a

0
2; a

1
3

�
.

Applying FN4 twice implies that

�
a11; a

1
2; a

0
3

�
�f

�
a11; a

0
2; a

1
3

�
�f

�
a01; a

1
2; a

1
3

�
.

For any a21, de�ne a
2
2 and a

2
3 such that�

a21; a
0
2; a

0
3

�
�f

�
a01; a

2
2; a

0
3

�
�f

�
a01; a

0
2; a

2
3

�
�f

�
a11; a

1
2; a

0
3

�
.

We have to show that (a21; a
1
2; a3) �f (a11; a22; a3) for any value of a3: (a21; a02; a03) �f (a11; a02; a13),

so by FN4 also (a21; a
1
2; a

0
3) �f (a11; a12; a13). Similarly (a01 ; a22; a03) �f (a01 ; a12; a13), so by FN4 also

(a11 ; a
2
2; a

0
3) �f (a11 ; a12; a13). Using transitivity, (a21; a12; a03) �f (a11; a22; a03) and by FN4 this is

independent of a03. Hence (a
2
1; a

1
2; a3) �f (a11; a22; a3) for any value of a3.

The existence of utility functions according to which �f is represented by the Nash
product follows, as before, where additivity is implied by Luce and Tukey�s theorem. We

gave the intuition for the remainder of the proof of Theorem 4 after stating Theorem 2.

5.2. A Game of Trust

Consider the game of trust, which is depicted in Figure 2 and is a variant of a game suggested

by Tadelis (2008): In the �rst stage, player 1 can either trust (T ) or not trust (N). Action

N ends the game and leads to payo¤ n for both player 1 and 2. Write this outcome as

(n; n). If trusted, player 2 can either cooperate (C) or defect (D). Action D generates the

outcome (0; d) with certainty. Action C leads to the cooperative outcome
�
c
p
; c�(1�p)d

p

�
only
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with probability p, and to the uncooperative outcome (0; d) otherwise, where d > c > n > 0.

Figure 2: A game of trust with uncertain outcomes.

Player 1 is not susceptible to shame, but player 2 is. Suppose both players are risk neutral

and satisfy the expected utility axioms, so that lotteries are evaluated by their expected

value. In this case, player 1�s options can be written as the two menus N = f(n; n)g and
T = f(c; c) ; (0; d)g.
Unlike the setting considered so far, in which DM chooses an allocation in two stages,

the game of trust is a strategic situation: player 1 chooses a menu from which player 2 will

choose in the second stage. If instead player 2 chooses over menus in an unobserved �rst

stage, we assume that he evaluates menus according to a variant of our representation,

U (A) = max
a2A

[a2 + �ea1ea2]� �max
b2A

[b1b2]

where ea is player 1�s expectation of the allocation a generated by player 2�s choice. As we
point out in the discussion of Theorem 2, this suggests that player 2�s choice from menu

A is governed by maximizing the term a1 + �ea1ea2. Player 1, on the other hand, evaluates
allocation a according to her payo¤, a1.

We consider two cases: In the observed case, player 1 observes player 2�s action whereas

in the unobserved case, player 1 only observes the outcome of the game. In what follows we

restrict the strategy space of each player to pure strategies. The next proposition character-
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izes the (pure strategies) equilibria of this game.24

Proposition:
i) In the observed case, the unique equilibrium is T;C, if d�c

�c2
< 1. If d�c

�c2
> 1 it is N;D,

and if d�c
�c2

= 1 both equilibria exist.

ii) In the unobserved case, there are no equilibria if d�c
�c2

< p. If d�c
�c2

� p the unique equilib-

rium is N;D:

Proof:
i) In the observed case, trusted player 2 can either choose C, which carries no shame and

generates direct utility c, or he can choose D, which carries shame �c2 and generates direct

utility d. Hence player 2 cooperates if c > d � �c2, is indi¤erent between cooperating and

defecting if c = d � �c2 and defects if c < d � �c2. Anticipating this, player 1 chooses T if

c > d� �c2 and N if c < d� �c2. If c = d� �c2, there are two equilibria, T;C and N;D.

ii) Consider the two possible equilibria of the unobserved case. Suppose player 2 was required

to play C in equilibrium. Then, player 1 expects to see either the outcome (c; c) or (0; d),

so neither outcome makes her think that player 2 deviated. Since the expected outcomeea = (c; c) is not a¤ected by player 2�s action, it is pro�table for player 2 to deviate and play
D, generating a higher direct utility (d instead of c) without increasing shame. Therefore,

there is no equilibrium where player 2 chooses C. Suppose then that player 2 is required

to play D in equilibrium. In that case, player 1 expects to see the outcome (0; d) for sure,

and ea = (0; d). Playing D, therefore, generates direct utility d and carries shame �c2. If,

however, player 1 observes (c; c), then this can only be explained by player 2 having deviated

from D to C,25 and accordingly ea = (c; c).26 If player 2 plays C he receives direct utility c

and with probability p there is no shame, while with probability (1� p) shame is still �c2.

Hence, player 2 is willing to play D in equilibrium, if and only if d � �c2 � c � (1� p) �c2

or d�c
�c2

� p. In that case player 1 anticipates player 2 to play D and chooses N .�

The interesting case is where d�c
�c2

2 [p; 1). Player 1�s equilibrium behavior is to trust

24It follows immediately from the arguments given in the proof of the proposition that there are no mixed
strategy equilibria for this game. Restricting the strategy spaces to pure strategies only serves the purpose
of determining out-of-equibrium beliefs, as is needed for part (ii) of the proposition and further explained in
the next footnote.
25This is true only because we exclude mixed strategies from the players� strategy spaces. Otherwise,

(c; c) could be explained by a continuum of mixed strategies and we would have to specify out-of-equilibrium
beliefs.
26More precisely, ea is player 2�s belief about player 1�s perception of his action. Whether or not player 1

actually updates her beliefs in this manner is irrelevant.
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(T ), if and only if he can observe player 2�s action. This can be explained by player 1�s

correct anticipation of shame as a motivating force, leading player 2 to cooperate only under

observation. Emotions like altruism or guilt, which do not depend on observation, can not

explain this behavior.

6. Related Literature

Other-regarding preferences have been considered extensively in economic literature. In

particular, inequality aversion as studied by Fehr and Schmidt (1999) is based on an objective

function with a similar structure to the representation of second-stage choice in Theorem 3.27

Both works attach a cost to any deviation from choosing the fairest alternative. In Fehr and

Schmidt�s work, the fairest allocation need not be feasible and is independent of the choice

situation. In our work, the fairest allocation is always a feasible choice and it is identi�ed

through the axioms. This dependence of the fairest allocation on the choice situation allows

us to distinguish observed from unobserved choice.

The idea that there may be a discrepancy between DM�s preference to behave �pro-

socially�and her desire to be viewed as behaving pro-socially is not new to economic litera-

ture. For a model thereof, see Benabou and Tirole (2006).

Neilson�s (2006-b) work is motivated by the same experimental evidence as ours. He

also considers menus of allocations as objects of choice. Neilson does not axiomatize a

representation result, but points out how choices among menus should relate to choices from

menus, if shame were the relevant motive. He relates the two aspects of shame that also

underlie the Set Betweenness property in our work; DM might prefer a smaller menu over a

larger menu either because avoiding shame compels her to be generous when choosing from

the larger menu, or because being sel�sh when choosing from the larger menu bears the cost

of shame.

The structure of our representation resembles the representation of preferences with self-

control under temptation, as axiomatized in GP. GP study preferences over sets of lotteries

and show that their axioms lead to a representation of the following form:

UGP (A) = max
a2A

�
uGP (a) + vGP (a)

	
�max

b2A

�
vGP (b)

	
with uGP and vGP both linear in the probabilities and where A is now a set of lotteries. In

their context, uGP represents the "commitment"- and vGP the "temptation"-ranking. While

the two works yield representations with a similar structure, their domains - and therefore
27Neilson (2006-a) axiomatizes a reference-dependent preference, that can be interpreted in terms of Fehr

and Schmidt�s objective function.
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the axioms - are di¤erent. In particular, the objects in GP�s work are sets of lotteries. They

impose the independence axiom and indi¤erence to the timing of the resolution of uncertainty.

This allows them to identify the representation above that consists of two functions that are

linear in the probabilities. Each of these functions is an expected utility functional. The

objects in our work, in contrast, are sets of allocations and there is no uncertainty. The

natural way to introduce uncertainty to our model is to treat our representation as the

utility function, which should be used to calculate the expected utility of lotteries over

sets. Therefore, DM would typically not be indi¤erent to the timing of the resolution of

uncertainty.28 However, one of GP�s axioms is the Set Betweenness axiom, A < B ) A <
A [ B < B. We show that our axioms Strong Left Betweenness (P2), Shame (P3) and

Fairness Ranking (F1) imply Set Betweenness. Hence, GP�s Lemma 2 can be employed,

allowing us to con�ne attention to sets with only two elements.

Our model is positive in nature, but it is interesting to contrast moral or normative

elements in its interpretation with those in the context of the temptation literature: In a

work related to GP, Dekel, Lipman and Rustichini (2005) write: �...by �temptation�we mean

that the agent has some view of what is normatively correct, what she should do, but has

other, con�icting desires which must be reconciled with the normative view in some fashion.�

According to this interpretation, the commitment ranking is given a normative value. In our

work, shame is based on deviating from some fairness norm that tells DM what she should

do. This norm con�icts with DM�s sel�sh commitment ranking.

Empirically, the assumption that only two elements of a choice set matter for the magni-

tude of shame (the fairest available alternative and the chosen alternative) is clearly simpli-

fying: Oberholzer-Gee and Eichenberger (2004) observe that dictators choose to make much

smaller transfers when their choice set includes an unattractive lottery. In other words, the

availability of an unattractive allocation seems to lessen the incentive to share.

Lastly, it is necessary to qualify our leading example: The experimental evidence on the

e¤ect of (anonymous) observation on the level of giving in dictator games is by no means

conclusive. Behavior tends to depend crucially on surroundings, like the social proximity of

the group of subjects and the phrasing of the instructions, as, for example, Bolton, Katok

and Zwick (1994); Burnham (2003); and Haley and Fessler (2005) record. On the one hand,

there is more evidence in favor of our interpretation: In a follow-up to the experiment cited

in the introduction, Dana et al (2006) verify that dictators do not exit the game if second-

stage choice is also unobserved. Similarly, Pillutla and Murningham (1995) �nd evidence

that people�s giving behavior under anonymity depends on the information given to the

observing recipient. In experiments related to our leading example, Lazear, Malmendier and

28In section 5.2 we account for uncertainty, which can be translated into uncertainty over sets.
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Weber (2005) as well as Broberg, Ellingsen and Johannesson (2008) even predict and �nd

that the most generous dictators are keenest to avoid an environment where they could share

with an observing recipient.29 Broberg et al further elicit the price subjects are willing to

pay in order to exit the dictator game, �nding that the mean exit reservation price equals

82% of the dictator game endowment. Further, for the game of trust that inspired the one

we consider in section 5.2., Tadelis (2008) experimentally veri�es a probabilistic version of

our prediction: when moving from a game with no observation to a game with observation,

the likelihood of cooperation by player 2 increases and the likelihood of trust by player 1

increases. On the other hand, our interpretation is in contrast to evidence collected by Koch

and Normann (2005), who claim that altruistic behavior persists at an almost unchanged

level when observability is credibly reduced. Similarly, Johannesson and Persson (2000) �nd

that incomplete anonymity - not observability - is what keeps people from being sel�sh.

Ultimately, experiments aimed at eliciting a norm share the same problem: Since people use

di¤erent (and potentially contradictory) norms in di¤erent contexts, it is unclear whether

the laboratory environment triggers a di¤erent set of norms than would other situations:

Frohlich, Oppenheimer and Moore (2000) point out that money might become a measure of

success rather than a direct asset in the competition-like laboratory environment, such that

the norm might be "do well" rather than "do not be sel�sh."30 More theoretically, Miller

(1999) suggests that the phrasing of instructions might determine which norm is invoked.

For example, the reason that Koch and Normann do not �nd an e¤ect of observability might

be that their thorough explanation of anonymity induces a change in the regime of norms,

in e¤ect telling people "be rational," which might be interpreted as "be sel�sh." Then being

observed might have no e¤ect on people who, under di¤erent circumstances, might have been

ashamed to be sel�sh.

7. Appendix

7.1. Proof of Theorem 1

Let U : K ! R be a continuous function that represents �. De�ne u (a1) � U (f(a1; 0)g). By
P1, u (a1) = U (f(a1; a2)g) independent of a2, with u (a1) continuous and strictly increasing.
Let ' : R2+ ! R be a continuous function that represents �f .By F2, ' is also strictly

increasing.

29This nicely underlines our interpretation of "shame" as a motive.
30Surely the opposite is also conceivable: Subjects might be particularly keen to be sel�ess when the

experimentor observes their behavior. This example is just ment to draw attention to the di¢ culties faced
by experimenters in the context of norms.
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Claim 1.1 (Right Betweenness): A � B ) A [B � B.

Proof: There are two cases to consider:
Case 1) 8a 2 A; 9b 2 B such that b �f a. Let A =

�
a1; a2:::; aN

	
and C0 = B. De�ne

Cn = Cn�1 [ fang for n = 1; 2; ::; N . According to F1, there exists b 2 B such that an �f b.
By P3, Cn�1 � Cn. By negative transitivity of �, C0 � CN or A [B � B.

Case 2) 9a 2 A such that a �f b; 8b 2 B. Let B =
�
b1;b2:::;bM

	
. De�ne C0 = A and

Cm = Cm�1 [ fbmg for m = 1; 2; ::;M . By P3, 8C such that a 2 C, C � C [ fbmg. Hence,
Cm�1 � Cm. By negative transitivity of �, C0 � CM or A[B � A � B, hence A[B � B.k

Combining Claim 1.1 with P2 guarantees Set Betweenness (SB): A � B ) A � A[B �
B. Having established Set Betweenness, we can apply GP Lemma 2, which states that any

set is indi¤erent to a speci�c two-element subset of it.

Lemma 1.1 (GP Lemma 2): If � satis�es SB, then for any �nite set A, there exist a;b 2 A
such that A � fa;bg, (a;b) solves max

a02A
min
b02A

U (fa0;b0g) and (b; a) solves min
b02A

max
a02A

U (fa0;b0g).

De�ne f : R2+ � R2+ ! R such that f (a;b) = u (a1)� eU (a;b), where eU : R2+ � R2+ ! R is
a function satisfying:

U (fa;bg) = max
a02fa;bg

min
b02fa;bg

eU (a0;b0) = min
b02fa;bg

max
a02fa;bg

eU (a0;b0) :31
By de�nition we have f (a; a) = 0 for every a 2 R2+. Note as well that

fag � fa;bg ) f (a;b) > 0,

as otherwise we would have:

U (fa;bg) = max
�
u (a1)�max

�
f(a;a)=0
f(a;b)

	
u (b1)�max

�
f(b;a)
f(b;b)=0

	� � u (a1)�max
�
f (a; a) = 0

f (a;b)

�
= U (fag) .

For a decision maker who is not susceptible to shame, U (fa;bg) = max fu (a1) ; u (b1)g.
Hence setting f (a;b) � 0 is consistent with her preferences. The following claims help us
to further identify f for a decision maker who is susceptible to shame.

31Note that max
a2A

min
b2A

U (fa;bg) = max
a2A

min
b2A

�
max

a02fa;bg
min

b02fa;bg
eU �a0;b0�� = max

a2A
min
b2A

eU (a;b).
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Claim 1.2: (i) [' (a) < ' (b) and a1 > b1], fag � fa;bg
(ii) [' (a) < ' (b) and a1 � b1]) fag � fa;bg
(iii) [' (a) = ' (b) and a1 > b1]) fag � fa;bg � fbg.

Proof: (i) If ' (b) > ' (a) then there exists A such that a 2 A and A � A [ fbg. As
a1 > b1 , fag � fbg, by P2 fag � fa;bg. Conversely if fag � fa;bg, then b �f a and
hence ' (a) < ' (b). Further from SB and P1, a1 > b1.

(ii) If a1 � b1 then by SB fbg � fa;bg. Since ' (b) > ' (a), there is no B such that

b 2 B and B � B [ fag, hence fbg � fa;bg.
(iii) By P1 fag � fbg and SB fag � fa;bg. As ' (a) = ' (b), using (i) we have

fag � fa;bg.k

Let (a� (A) ;b� (A)) be the solution of

max
a02A

min
b02A

U (fa0;b0g)

so (b� (A) ; a� (A)) solves min
b02A

max
a02A

U (fa0;b0g).

Claim 1.3: There exists b 2 argmax
a02A

' (a0) such that A � fa0;bg for some a0 2 A and

b� (A) = b.

Proof: Assume not, then there exist a; c such that A � fa; cg, (a; c) = (a� (A) ;b� (A)).

Therefore,

fa;bg � fa; cg � fa;b; cg � A328b 2 argmax
a02A

' (a0)

and hence c �f b, which is a contradiction.k

For the remainder of the proof, let If (') := fb0 : ' (b0) = 'g. That is, If (' (b)) is the
�f equivalence class of b. De�ne

Y (a; ') = fb0 2 If (') : fag � fa;b0g � fb0gg

We make the following four observations:

(1) fag � fa;bg � fbg, fag � fa; cg and b �f c imply fa; cg � fa;bg.
(2) fag � fa;bg � fbg, fag � fa; cg � fcg and b �f c imply fa; cg � fa;bg.

32Note that if (a; c) ((c;a)) solves the maximin- (minimax-) problem over A, it clearly solves this problem
over the subset fa;b; cg for all b 2 An fa; cg.
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(3) b 2 Y (a; ') , b0 �f b and fbg � fb0g imply b0 2 Y (a; ').
(4) If fag � fa;bg � fbg , fb0g � fbg and b0 2 If (' (b)), then either fa;b0g � fa;bg �

fb0g or fa;b0g � fb0g � fa;bg.
To verify these observations, suppose �rst that (1) did not hold. Then fa;bg � fa; cg and

fa;bg � fbg, hence by SB fa;bg � fa;b; cg and therefore c �f b, which is a contradiction.
If (2) did not hold, we would get a contradiction to b �f c immediately. Next suppose that
(3) did not hold. Then fag � fa;bg � fbg � fb0g � fa;b0g. Note that by SB fbg � fb;b0g
and, applying SB again , fbg � fa;b;b0g. But then fa;bg � fa;b;b0g, contradicting
b0 �f b. To verify (4), assume fa;b0g � fb0g. Then by Claim 1.2 (i) fag � fa;b0g � fb0g
and then by observation (2) fa;b0g � fa;bg. If on the other hand fa;b0g � fb0g, then
if fa;bg � fa;b0g, fa;bg � fbg and SB imply fa;bg � fa;b;b0g, a contradiction to b0

2 If (' (b)). Note that by Claim 1.3 we cannot have fb0g � fa;b0g.k

Next we claim that ' (b) is a su¢ cient statistic for the impact of b on a two element set.

Claim 1.4: There exits a function eU satisfying the condition speci�ed above such that

' (b) > ' (a) implies f (a;b) = g (a; ' (b)), where g : R2+ � R ! R is weakly increasing in
its second argument.

Proof: Such eU exists, if and only if f (a;b) = g (a; ' (b)) is consistent with � . Therefore
it is enough to consider the constraints � puts on f . Given a and b, look at all c such that
' (b) > ' (c). We should show that f (a;b) � f (a; c).

First note that if ' (b) � ' (a) � ' (c), then f (a;b) � 0 � f (a; c) is consistent with �.
If ' (a) � ' (b) > ' (c), then 0 � f (a;b) � f (a; c) is consistent with �. If a1 = 0, then
f (a;b) � f (a; c) � 0 is consistent with �. Therefore, con�ne attention to the case where
a1 > 0 and ' (b) > ' (c) > ' (a).

By Claim 1.2 (i), F2 and F3, there exists b0 2 If (' (b)) such that fag � fa;b0g. Thus,
there are two cases to consider:

1) Y (a; ' (b)) 6= ;.
2) Y (a; ' (b)) = ;.
Case 1) Suppose Y (a; ' (b)) 6= ;. De�ne f (a;b) := f (a;b0) for some b0 2 Y (a; ' (b))

(note that by observation (2) f (a;b0) = f (a;b00) 8b0;b00 2 Y (a; ' (b)) and using ob-

servations (3) and (4), this de�nition is consistent with �.) If Y (a; ' (c)) 6= ; then
by observation (1) fa; cg � fa;bg and hence f (a;b) � f (a; c). If Y (a; ' (c)) = ;
then 8c0 2 If (c), fa; c0g � fc0g. By F2 and continuity of �f , there exists c0 2 If (c)

with c01 < b01 for some b
0 2 Y (a; ' (b)). Then by Claim 1.1, P1 and observation (1)

27



fag � fa; c0g � fa;bg � fbg � fcg, so c0 2 Y (a; ' (c)). Contradiction.
Case 2) Suppose Y (a; ' (b)) = ;. De�ne f (a;b) := u (a1) � u (0). If Y (a; ' (c)) 6= ;,

then f (a; c) < u (a1) = f (a;b). If Y (a; ' (c)) = ; then f (a; c) = u (a1) = f (a;b).k

Let S := f(a; ') : Y (a; ') 6= ;g. Note that S is an open set.

Claim 1.5: There is g (a; '), which is continuous.

Proof : If Y (a; ') 6= ;, then g (a; ') = u (a1) � U (fa;bg) for some b 2 Y (a; '), and

is clearly continuous. If Y (a; ') = ;, then ' � ' (a) implies g (a; ') � 0, while ' > ' (a)

implies g (a; ') � u (a1) � u (0). De�ne a switch point (ba; b') to be a boundary point of S
such that there exists bb 2 R2+ with '�bb� = b'. For b' = ' (ba) de�ne g (ba; b') := 0 and forb' > ' (ba) de�ne g (ba; b') := u (ba1)� u (0).

Consider a sequence f(an; 'n)g ! (ba; b') in S. Pick a sequence fbn0g with bn0 2
Y (an; 'n)8n. De�ne fbn1g =

n
min

h
1
n
; bn01 ;

bb1io. De�ne bn2 to be a solution to ' (bn1 ; bn2 ) = 'n.

By F2 and F3 , bn2 is well de�ned. Note that by observation (3) b
n = (bn1 ; b

n
2 ) 2 Y (an; 'n).

Lastly, let bbn1 � bn1 and bbn2 be the solution to '�bbn1 ;bbn2� = b'. We have U (fan;bng) =
u (an1 ) � g (an; 'n). If in the switch point b' = ' (ba), then U �nba; bbno� = u (ba1). By conti-
nuity, U (fan;bng)� U

�nba; bbno� !
n!1

0, hence

lim
n!1

g (an; 'n) = lim
n!1

[u (an1 )� u (ba1)] = u (ba1)� u (ba1) = 0 = g (ba; b') :
If in the switch point b' > ' (ba), then U

�nba; bbno� = u
�bbn1� = u (bn1 ). By the same

continuity argument

lim
n!1

g (an; 'n) = lim
n!1

[u (an1 )� u (bn1 )] = u (ba1)� u (0) = g (ba; b') :
For ' < ' (a) let g (a; ') < 0. This satis�es the constraint on f . So g can be continuous

in both arguments and increasing in ' and such that for any sequence f(an; 'n)g in S, with
f(an; 'n)g ! (ba; b') , we have lim

n!1
g (an; 'n) = 0.k

That the representation satis�es the axioms is easy to verify. This completes the proof

of Theorem 1.33�
33If F2 and F3 were only posed on R2++ as suggested in section 3, we would have to choose bb1 > 0 and

bn1 > 0 to use these axioms. This is possible for any switch point other than (ba; b') = (0; ' (0)), for which
continuity can be established easily.
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7.2. Proof of Theorem 2

Theorem 2 and Theorem 4 (i) are analogous, where Theorem 2 covers the case N = 2, while

Theorem 4 (i) covers the case N � 3. We prove Theorem 4 (i) below by �rst establishing

that the analogous version of Theorem 1 holds. From there on the proof of Theorem 2 is

identical to the proof of Theorem 4 (i), with a2 substituted for a�1.

7.3. Proof of Theorem 3

Luce and Tukey [1964] prove the necessity and su¢ ciency of Solvability (which is implied

by Negative Transitivity, Weak Solvability, Pareto and Continuity (apply corollary 1 in the

text to the case N=2)) and the Corresponding Trade-o¤s Condition (the label they use for

F4 ) to admit an additive representation.34 To see how a proof works, consider the Lock-Step

Procedure,35 as illustrated by Figure 3:

By F2, �f indi¤erence curves are downward sloping and continuous. Fix (a01; a02) and
a12 > a02. Recursively construct a �ight of stairs between the indi¤erence curves through

(a01; a
0
2) and (a

0
1; a

1
2).

In the direction of increasing a2 (and hence decreasing a1) :

an1 solves (a
n
1 ; a

n
2 ) �f (a01; a02) . F3 guarantees that a solution exists whenever

(0; an2 ) �f (a01; a02). If (0; an2 ) �f (a01; a02), the �ight of stairs terminates.
an+12 solves

�
an1 ; a

n+1
2

�
�f (a01; a12). A solution exists by F3, as (an1 ; 0) �f (a01; a12) by F2.

In the direction of decreasing a2 (and increasing a1):

a�n1 solves
�
a�n1 ; a�n+12

�
�f (a01; a12). A solution exists by F3, as

�
0; a�n+12

�
�f (a01; a12) by

F2.

a�n2 solves
�
a�n1 ; a�n2

�
�f (a01; a02). F3 guarantees that a solution exists whenever�

a�n1 ; 0
�
�f (a01; a02). If

�
a�n1 ; 0

�
�f (a01; a02), the �ight of stairs terminates.

By construction
�
an+11 ; an+22

�
�f

�
an1 ; a

n+1
2

�
and then by F4,�

an1 ; a
n+2
2

�
�f

�
an�11 ; an+12

�
. Thus we have constructed a discrete set of points on another

indi¤erence curve from the initial two curves. Repeating this procedure we can �ll R2+ with
countable sets of points on countably many indi¤erence curves.

Now consider a particular indi¤erence curve that lies between two members of this

set, as illustrated in Figure 4: De�ne
�
a
1
2
1 ; a

1
2
2

�
implicitly by

�
a
1
2
1 ; a

1
2

�
�f

�
a01; a

1
2
2

�
and�

a
1
2
1 ; a

1
2
2

�
�f (a01; a02). Construct a �ight of stairs between the indi¤erence curves through�

a01; a
1
2
2

�
and through (a01; a

0
2) as described above. Then we have in direction of decreasing

34Their theorem is stated in section 5.1 of the text.
35See Keeney and Rai¤a (1976).
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Figure 3: Lock-Step Procedure, Constructing a �ight of stairs.

a2:
�
a
n+1
2

1 ; a
n+1
2

2

�
�f

�
a
n
2
1 ; a

n
2
2

�
and

�
a
n�1
2

1 ; a
n
2
2

�
�f

�
a
n+1
2

1 ; a
n+2
2

2

�
: Therefore, by construction�

a
n
2
1 ; a

n+1
2

2

�
�f

�
a
n+1
2

1 ; a
n+2
2

2

�
and then by F4,

�
a
n�1
2

1 ; a
n+1
2

2

�
�f

�
a
n
2
1 ; a

n+2
2

2

�
.

Proceed analogously in the direction of increasing a2.

This demonstrates that if the vertical distance, measured in second component�s units,

between the indi¤erence curves through (a01; a
0
2) and (a

0
1; a

1
2) in a

n
1 is the same as between those

through (a01; a
1
2) and (a

0
1; a

2
2) in a

n�1
1 , then it is also the same between those through (a01; a

0
2)

and
�
a01; a

1
2
2

�
in a

n
2
1 and between those through

�
a01; a

1
2
2

�
and (a01; a

1
2) in a

n�1
2

1 . Repeating this

procedure we can generate a dense set of points on indi¤erence curves that are dense in R2+.
Then continuity of �f allows us to complete the entire map. Hence, if (a1; a2) �f (a01; a02)
and (a1;ea2) �f (a01;ea02), then (ea1; a2) �f (ea01; a02), (ea1;ea2) �f (ea01;ea02).
As a result, we can create a mapping a2 !  (a2) that transforms the original indi¤erence

map to be quasi-linear (vertically parallel indi¤erence curves). The algorithm, which is

formally described below, involves proceeding in in�nitesimal steps and equalizing the step

heights .

Set  (1) := 0. To determine  (a2) for a2 > 1, pick an arbitrary a1 and let a01 solve

(a1; a2) �f (a01; 1 + �), where � will be in�nitesimal for the integration.36 This solution

exists by F3. Then for every a�2 2 (1; a2]:37

Let a�1 solve (a
�
1; a

�
2) �f (a01; 1 + �).

36As established above, the result of this mapping will be independent of the choice of a1.
37The existence of solutions in the two cases below is guaranteed by the same reasoning as in the above

discussion.
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Figure 4: Lock-Step Procedure, Completing the indi¤erence map.

Let a��1 solve (a��1 ; a
�
2 +�) �f (a01; 1 + �).

Let a02 solve (a
�
1; a

0
2) �f (a01; 1).

Let da02 solve (a
��
1 ; a

0
2 + da02) �f (a01; 1).

Note that by F2, a02 < a�2 and a
0
2 + da02 < a�2 +�.

De�ne implicitly d (a�2) := e (a02 + da02)�  (a02), where

e (a) := �  (a) for a � a�2
 (a�2) + a� a�2 for a > a�2

and then

 (a2) :=  (1) +

a2Z
1

d (a�2) =

a2Z
1

d (a�2) :

Analogously determine  (a2) for a2 < 1: Pick an arbitrary a01 and let a1 solve (a1; a2) �f
(a01; 1). Then for every a

�
2 2 [a2; 1):

Let a�1 solve (a
�
1; a

�
2) �f (a01; 1).

Let a��1 solve (a��1 ; a
�
2 ��) �f (a01; 1).

Let a02 solve (a
�
1; a

0
2) �f (a01; 1 + �).

Let da02 solve (a
��
1 ; a

0
2 � da02) �f (a01; 1 + �).

Note that a02 < a�2 and a
0
2 + da02 < a�2 +� by F2.
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De�ne implicitly d (a�2) :=  (a02)� e (a02 � da02), where

e (a) := �  (a) for a � a�2
 (a�2)� a+ a�2 for a < a�2

and

 (a2) :=  (1) +

a2Z
1

d (a�2) = �
1Z

a2

d (a�2) < 0:

Then  : R+ ! R, is a continuous and increasing function. The �f indi¤erence curves are
quasi-linear with respect to  (a2), so there is an increasing continuous function � : R+ ! R,
such that � (a1) +  (a2) generates the same indi¤erence map. Hence re-de�ning

' (a) := � (a1) +  (a2)

represents �f . De�ne

v1 (a1) := exp (� (a1)) and v2 (a2) := exp ( (a2)) :

Then v1; v2 : R+ ! R++ are increasing and continuous and if we re-de�ne, yet again,

' (a) := v1 (a1) v2 (a2), it represents �f . By F3, the functions v1; v2 must be unbounded.
That the representation satis�es the axioms is easy to verify.�

7.4. Proof of Theorem 4

(i) The analogue of Theorem 1 can be established by substituting a�1 for a2 in the theorem

and in the proof, where now ' : RN+ ! R.
Let ' be a representation of �f . Let ' := sup

a2RN+
' (a) and ' := inf

a2RN+
' (a), if they are well

de�ned. Otherwise, take ' =1 and ' = �1.
As before, let S := f(a0; '0) : Y (a0; '0) 6= ;g. By FN3 and the representation analogous to

Theorem 1, u (a1)� u (0) > g (a; ') for (a; ') 2 S.
Let �S be a binary relation on S de�ned by (a; ') �S (ea; e') , fa;bg �

nea; ebo 8b 2
Y (a; ') and 8eb 2 Y �a; eb�.

De�ne US : RN+ �
�
'; '

�
! R such that US (a; ') := U (a;b) for some b 2 Y (a; '). By

Theorem 1, �S is a weak order that can be represented by US. Note that the Consistency
axiom (P5) is relevant precisely on this domain. For (a; ') =2 S de�ne

US (a; ') :=

�
0 for ' (a) < '

u (a1) for ' (a) � '
.
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Claim 4.1: US is continuous in all arguments.

Proof: Since the utility function is continuous on S, and because outside of S the function
was chosen to be either a constant (hence continuous) or a continuous function, the only

candidates for discontinuity are points on the boundary of S. There are two cases:

Case 1) ' (a) > ': Take (a; ') 2 bdr (S). Since (a; ') is a boundary point, it must be that
' (a) = '. Now let fan; 'ng be a sequence in S which converges to (a; '). By the de�nition
of S, Us

��
an1 ; a

n
�1
�
; 'n

�
= u (an1 )�g

��
an1 ; a

n
�1
�
; 'n

�
. Because preferences are continuous and

using the properties of g from Theorem 1, we have lim
n!1

u (an1 )� g
��
an1 ; a

n
�1
�
; 'n

�
= u (a1) as

required.

Case 2) ' (a) < ': Take (a; ') 2 bdr (S). Again, let fan; 'ng be an arbitrary sequence
in S which converges to (a; '). By the de�nition of S,

Us
��
an1 ; a

n
�1
�
; 'n

�
= u (an1 )� g

��
an1 ; a

n
�1
�
; 'n

�
> inf

b
fu (b1) : ' (b) = 'n and b1 < an1g .

Since � is continuous, we have

lim
n!1

u (an1 )� g
��
an1 ; a

n
�1
�
; 'n

�
= u (a1)� g ((a1; a�1) ; ') �

inf
b
fu (b1) : ' (b) = ' and b1 < a1g = u (0) .

where the last equality is implied by FN3 . As (a; ') =2 S, we claim that

u (a1) � g ((a1; a�1) ; ') � inf
b
fu (b1) : ' (b) = ' and fbg � fa;bgg = u (0). If not, then

u (a1)� g ((a1; a�1) ; ') = u (c1) > u (0). But for any c with c1 > 0, using FN3 , we could �nd

c0 with c01 < c1 and ' (c0) = ' (c). Using Theorem 1, this would imply that (a; ') 2 S, which
is a contradiction. Combining we have lim

n!1
u (an1 )� g

��
an1 ; a

n
�1
�
; 'n

�
= u (0), as required.k

De�nition: For (a; ') 2 S, de�ne IS (a; ') := f(a0; '0) : (a0; '0) �S (a; ')g � S. That

is, IS (a; ') is the �S equivalence class of (a;').

Let a�1 : R2+ �
�
'; '

�
! R+ be the solution to

u (a�1 (a; ')) = u (a1)� g (a; ') = US (a; ') .

a�1 is the "�rst component equivalent" functional on S.
38 Since u (a1) > u (a1) � g (a; ') >

38Formally, 8x 2 RN�1+ , f(a�1 (a; ') ;x)g � fa;bg ;8b 2 Y (a; ')
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u (0) and �S is continuous, a�1 is well de�ned and we have (a; ') �S (ea; e') , a�1 (a; ') >

a�1 (ea; e').
Claim 4.2: The shame g (a; ') is strictly increasing in '.

Proof: Assume to the contrary that there is '0 > ' and (a; '0) �S (a; ') for some a.
Then for '0 > '00 > '000 > ' we must have (a; '00) �S (a; '000) as shame is weakly in-
creasing in '. Now pick a0 such that (a0; ') �S (a0; '0) and (a0; ') ; (a0; '0) 2 S. This is

possible by continuity of US, since for a00 such that ' (a00) = ' the de�nition of US yields

US (a
00; ') > US (a

00; '0). Then by P5, (a0; '000) �S (a0; '00), a contradiction to shame being
weakly increasing in '.k

Claim 4.3: For all (a; ') and e' 2 (' (a1;0) ; ') there exists ea such that (ea; e') 2 IS (a; ').
Proof: De�ne '� implicitly by Us ((a1;0) ; '

�) = Us (a; '). This is possible by the In-

termediate Value Theorem, as Us ((a1;0) ; ' (a1;0)) = u (a1) > Us (a; ') > Us ((a1; 0) ; '),

where the last inequality is due to P4 and Claim 4.2. There are two cases to consider:

Case 1) e' � '�: Then Us ((a1;0) ; e') � Us (a; ') according to the monotonicity of

shame. By FN3 there is a2 (e') that solves ' (a1; a2 (e') ;0) = e'. Then Us ((a1; a2 (e') ;0) ; e') �
Us (a; ') and by the Intermediate Value Theorem there is ea2 (e') 2 [0; a2 (e')) such that

Us ((a1;ea2 (e') ;0) ; e') = Us (a; ') :

Case 2) e' < '�: Then

Us ((a
�
1 (a; ') ;0) ; e') � Us (a; ') � Us ((a1;0) ; e') .

By the Intermediate Value Theorem there is ea1 (e') 2 [a�1 (a; ') ; a1] such that
Us ((ea1 (e') ;0) ; e') = Us (a; ') :k

Combining the two cases we see that e' parametrizes a path
ea(a;') (e') := � (ea1 (e') ;0) for e' < '�

(a1;ea2 (e') ;0) for e' � '�

of allocations. According to Claim 4.2 ' (a) must be strictly increasing along this path. This
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implies ea(a;') (e') is strictly increasing in its �rst component for e' < '� and in its second

component for e' � '�.

Now we construct a �S indi¤erence class close to the original one:

Claim 4.4: For ea(a;') (e') as de�ned above, '̂+ d'(a;') (e') that solves�ea(a;') (e') ; '̂+ d'(a;') (e')� 2 IS (a; '+ d')

is increasing in e'.
Proof: Assume e'0 > e'. There are two cases to consider:
Case 1) e'0 > '�: Then ea1(a;') �e'0� = a1, ea1(a;') (e') � a1 and ea2(a;') �e'0� > ea2(a;') (e').

P4 implies �ea(a;') (e') ; '̂+ d'(a;') (e')� �S �ea(a;') �e'0� ; '̂+ d'(a;') (e')� :
Case 2) e'0 � '�: Then ea2(a;') �e'0� = ea2(a;') (e') = 0 and ea1(a;') �e'0� > ea1(a;') (e').

As �S is increasing in a1,�ea(a;') (e') ; '̂+ d'(a;') (e')� �S �ea(a;') �e'0� ; '̂+ d'(a;') (e')� .
As shame increases in ', we must have '̂+ d'(a;')

�e'0� > '̂+ d'(a;') (e') in both cases.k
Now we de�ne a re-scaling ' 7!  (') in order to transform the original indi¤erence map

of US (a; ') to be quasi-linear. We proceed similarly to the proof of Theorem 3. Choose '0 2�
'; '

�
and de�ne  ('0) := 1. Further set  ('0 + d') := 1 + d, where d' is in�nitesimal.

To de�ne  (') for ' 6= '0, pick a such that '�(a;') < '0. As '�(a;') < ', this implies

'�(a;') < min ['; '
0]. Choose a0 such that (a0; '0) 2 IS (a; '). We will look at the increasing

graphs e' and '̂+ d'(a;') (e') as de�ned above. Consider two cases for applying the Lock-Step
Procedure:

Case 1) ' > '0: De�ne a climbing �ight of stairs between the graphs e' and e'+de'(a;') (e')
recursively: Let 'n+1 solve

�ea(a;') ('n) ; 'n+1� �S (a0; '0 + d'). The solution exists by the

construction of ea(a;') ('n).
Case 2) ' < '0: De�ne a descending �ight of stairs between the graphs e' and e' +

de'(a;') (e') recursively: Let '�n�1 solve �ea(a;') ('�n�1) ; '�n� �S (a0; '0 + d').

Then  (e') can be determined analogously to the proof of Theorem 2 by equalizing all

step-heights to d' and integrating. Due to P5 this de�nition is independent of the choice of

a0.
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Now the indi¤erence map of US (a; ') is quasi linear in  ('), where  : R++ ! R is

strictly increasing and continuous. Further remember that US (a; ') is strictly decreasing in

'. Therefore, there exists H : RN+ ! R, such that H (a)�  (') represents �S on S.
De�ne uS (a1) := H (a)� lim

'!'(a)
 ('). Because of P1,

U (fa;bg) :=

8><>:
uS (a1) if fag � fa;bg � fbg

H (a)�  (' (b)) if fag � fa;bg � fbg
uS (b1) if fag � fa;bg � fbg

represents � con�ned to the collection of all two element sets. Therefore, H (a) � uS (a1) +

 (' (a)) must hold. Hence

U (A) = max
a2A

[us (a1) +  (' (a))]�max
b2A

[ (' (b))]

represents � on K, where ' represents �f , and us and  are strictly increasing. Since '
represents �f , so does  ('). Hence, there is a representation ' of �f , such that  is the
identity and

U (A) = max
a2A

[us (a1) + ' (a)]�max
b2A

[' (b)]

represents � on K.
(ii) To establish the analogue of Theorem 3, namely that there are N increasing un-

bounded functions v1; ::; vN , such that the fairness ranking �f can be represented by ' (a) =
v1 (a1) � ::: � vN (an), if and only if it satis�es F1; F2; FN3 and FN4 we apply the Theorem

of Luce and Tukey, just as in the proof of Theorem 3. It establishes the existence of an

additive representation �1 (a1) + ::: + �N (aN) of �f . De�ne vn (an) := exp (�n (an)) for all
n 2 f1; ::; Ng. Then v1; ::; vN : R+ ! R++ are increasing and continuous and if we re-de�ne
' (a) := v1 (a1) � ::: � vN (aN), it represents �f . By FN3 , the functions v1; ::; vN must be

unbounded.

That the representations satisfy the axioms is easy to verify.�
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