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Abstract

Experimental evidence suggests that individuals are more risk averse when they
perceive risk gradually. We address these �ndings by studying a decision maker (DM)
who has recursive preferences over compound lotteries and who cares about the way
uncertainty is resolved over time. DM has preferences for one-shot resolution of un-
certainty (PORU) if he always prefers any compound lottery to be resolved in a single
stage. We establish an equivalence between dynamic PORU and static preferences
that are identi�ed with the behavior observed in Allais-type experiments. The im-
plications of this equivalence on preferences over information systems are examined.
We de�ne the gradual resolution premium and demonstrate its magnifying e¤ect when
combined with the usual risk premium. In an intertemporal context, PORU captures
"loss aversion with narrow framing".

1. Introduction

Experimental evidence suggests that individuals are more risk averse when they perceive

risk that is gradually resolved over time. In an experiment with college students, Gneezy

and Potters [1997] found that subjects invest less in risky assets if they evaluate �nancial

outcomes more frequently. Haigh and List [2005] replicated the study of Gneezy and Potters

with professional traders and found an even stronger e¤ect. These two studies allow for

�exibility in adjusting investment according to how often the subjects evaluate the returns.

�I am grateful to Faruk Gul and Wolfgang Pesendorfer for their invaluable advice during the development
of the paper. I am particularly indebted to my main Ph.D advisor, Wolfgang Pesendorfer, for his continuous
support and guidance. I thank Roland Benabou, Eric Maskin, Stephen Morris and Klaus Nehring for their
helpful discussions and comments. I have also bene�ted from suggestions made by Shiri Artstein-Avidan,
Amir Bennatan, Bo�az Klartag, Charles Roddie and Kareen Rozen. Special thanks to Anne-Marie Alexander
for all her help and encouragement. This paper is based on the �rst chapter of my doctoral dissertation at
Princeton University.
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Bellemare, Krause, Kröger, and Zhang [2005] found that even when all subjects have the

same investment �exibility, variations in the frequency of information feedback alone a¤ects

investment behavior systematically. All their subjects had to commit in advance to a �xed

equal amount of investment for three subsequent periods. Group A was told that they would

get periodic statements (i.e. would be informed about the outcome of the gamble after every

draw), whereas group B knew that they would hear only the �nal yields of their investment.

The average investment in group A was signi�cantly lower than in group B. The authors

conclude that "information feedback should be the variable of interest for researchers and

actors in �nancial markets alike." Such interdependence between the way individuals observe

the resolution of uncertainty and the amount of risk they are willing to take is not compatible

with the standard model of decision making under risk, which is a theory of choice among

probability distributions over �nal outcomes.1

In this paper, we make the assumption that the value of a lottery depends not only

on its uncertainty, but also on the way this uncertainty is resolved over time. Using this

assumption, we provide a choice theoretic framework that can address the experimental

evidence above, while pinpointing the required deviations from the standard model. We

exploit the structure of the model to identify the link between the temporal aspect of risk

aversion, a static attitude towards risk, and intrinsic preferences for information.

In order to facilitate exposition, we mainly consider a decision maker (DM) whose pref-

erences are de�ned over the set of two-stage lotteries, namely lotteries over lotteries over

outcomes. Following Segal [1990], we replace the reduction of compound lotteries axiom (an

axiom that imposes indi¤erence between compound lotteries and their reduced single-stage

counterparts) with the following two assumptions: time neutrality, which says that DM does

not care about the time in which the uncertainty is resolved as long as resolution happens

in a single stage, and recursivity, which says that the ranking of second-stage lotteries is

una¤ected by the �rst stage. Under these assumptions, any two-stage lottery is subjectively

transformed into a simpler, one-stage lottery. In particular, there is a single preference re-

lation de�ned over the set of one-stage lotteries that fully determines preferences over the

richer domain of two-stage lotteries.

As a �rst step to link behavior in both domains, we introduce and formally de�ne the

following two properties: the �rst is dynamic while the second is static.

� Preferences for one-shot resolution of Uncertainty (PORU). DM has PORU if he always
prefers any two-stage lottery to be resolved in a single stage. PORU implies an aversion

1All lotteries discussed in this paper are objective, that is, the probabilities are known. Knight [1921]
proposed distinguishing between "risk" and "uncertainty" according to whether the probabilities are given
to us objectively or not. Despite this distinction, we will interchangeably use both notions to express the
same thing.
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to receiving partial information. This notion formalizes an idea �rst raised by Palacios-

Huerta [1999] (to be further discussed in the literature review section). Such preferences

capture the idea that "the frequency at which the outcomes of a random process are

evaluated" is a relevant economic variable.

� Negative certainty independence (NCI). NCI states that if DM prefers lottery p to the

(degenerate) lottery that yields the prize x for certain, then this ranking is not reversed

when we mix both options with any common third lottery q. This axiom is similar, but

it is less demanding than Kahneman and Tversky�s [1979] "Certainty e¤ect" hypothesis,

since it does not imply that people weight probabilities non-linearly. NCI imposes

weak restrictions on preferences, just enough to explain commonly observed behavior

in Allais-type experiments.

Theorem 1, our main result, establishes a tight connection between the two behavioral

properties just described; NCI is a su¢ cient condition to PORU, and within the class of

betweenness-satisfying preferences (Dekel [1986]), it is also necessary.

On the one hand, numerous replications of the Allais paradox in the last �fty years prove

NCI to be one of the most prominently observed preference patterns. On the other hand,

empirical and experimental studies involving dynamic choices and experimental studies on

preference for uncertainty resolution are still rather rare. The disproportional amount of

evidence in favor of each property strengthens the importance of theorem 1, since it provides

new theoretical predictions for dynamic behavior, based on robust (static) empirical evidence.

Within the betweenness class, axiom NCI has its own static implications. First, it is

equivalent to the following geometrical condition that is imposed on the map of indi¤erence

curves in every unit probability triangle (a diagram that represents the set of all lotteries

over three �xed prizes):

� Steepest middle slope property: for every triple x3 > x2 > x1, the indi¤erence curve

that passes through the origin (the lottery that yields x2 for certain) is the steepest.

Since this geometrical condition is relatively easy to verify, it proves to be an applicable

tool. Second, in theorem 2 we show that NCI is incompatible with the assumption that pref-

erences are at least twice di¤erentiable. When coupled with such a smoothness assumption,

NCI turns out to be equivalent to the vNM-independence axiom.

In an extended model, we allow DM to take (just before the second-stage lottery is acted

out, but after the realization of the �rst-stage lottery) intermediate actions that might a¤ect

his ultimate payo¤. The primitive in such a model is a preference relation over information
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systems, which is induced from preferences over compound lotteries. An immediate conse-

quence of Blackwell�s [1953] seminal result is that in the standard expected utility class, DM

always prefers to have perfect information before making the decision, which allows him to

choose the optimal action corresponding to the resulting state. Safra and Sulganik [1995] left

open the question of whether there are other preference relations for which, when applied

recursively, a perfect information system is always the most valuable. We show that this

property is equivalent to PORU. As a corollary, axiom NCI fully characterizes, within the

betweenness class, such preferences for information.

The idea that individuals prefer one-shot resolution of uncertainty can be quanti�ed. The

gradual resolution premium of any compound lottery is the amount that DM would pay to

replace that lottery by its single-stage counterpart. Similarly to the regular risk premium

(the amount that DM would pay to replace one-stage lottery by its expected value), the

gradual resolution premium is measured in monetary terms. The signs of these two variables

need not agree, that is, positive risk premium does not imply and is not implied by positive

gradual resolution premium. In the case where DM is both risk averse and displays PORU,

however, these two forces magnify each other. We use this observation to explain why

people often purchase dynamic insurance contracts, such as periodic insurance for electrical

appliances and cellular phones, at much more than the actuarially fair rates.

The gradual resolution premium can be very signi�cant, in the sense that if the resolution

process is "long" enough, it might imply an extreme degree of risk aversion. To illustrate

this, we �rst extend our results to preferences over arbitrary n-stage lotteries. We interpret

the parameter n as the "resolution sensitivity" of an individual. It describes the frequency

with which an individual updates information in a �xed time interval. Qualitatively, the

results remain intact; DM who has preferences for one-shot resolution of uncertainty prefers

to replace each (compound) sub-lottery with its single-stage counterpart. We then look at

preferences of the disappointment aversion class (Gul [1991]). Such preferences satisfy NCI,

and therefore, in a dynamic context, PORU. We show that for any one-stage lottery, there

exists a multi-stage lottery (with the same probability distribution over the terminal prizes)

whose value approximately equals the value of getting the worst prize for sure. While refer-

ring to the problem of repeated investment, Gollier [2001] states that "the central theoretical

question of the link between the structure of the utility function and the horizon-riskiness re-

lationship remained unsolved." The result above shows that preferences that display PORU

may lead to excessively conservative investment strategies.
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1.1. Related literature

Palacios-Huerta [1999] was the �rst to raise the idea that the form of the timing of resolution

of uncertainty might be an important economic variable. By working out an example, he

demonstrates that DM with Gul�s [1991] disappointment aversion preferences will be averse

to the sequential resolution of uncertainty, or, in the language of this paper, will be displaying

PORU. He also discusses a lot of potential applications. Ang, Bekaert and Liu [2005] use

recursive disappointment aversion preferences to study a dynamic portfolio choice designed

to maximize �nal wealth. The general theory we suggest provides an insightful way to

understand exactly which attribute of Gul�s preferences accounts for the resulting behavior.

It also makes a clear distinction between two notions of disappointment: The common static

notion of disappointment, as it appears in the literature, and the dynamic version implied

by PORU (see section 3).

Loss aversion with narrow framing (also known as "myopic loss aversion") is a combina-

tion of two motives: loss aversion (Kahneman and Tversky [1979]), that is, people�s tendency

to be more sensitive to losses than to gains, and narrow framing (Kahneman and Tversky

[1984]), that is, a dynamic aggregation rule that argues that when making a series of choices,

individuals "bracket" them by making each choice in isolation. Benartzi and Thaler [1995]

were the �rst to use this approach to suggest explanations for several economic �anomalies�,

such as the equity premium puzzle (Mehra and Prescott [1985]). Barberis and Huang [2005]

and Barberis, Huang and Thaler [2006] generalize Benartzi and Thaler�s work by assuming

that DM derives utility directly from the outcome of a gamble over and above its contribution

to total wealth.

The model presented here can be used to address similar phenomena. The combination of

the folding-back procedure and a speci�c form of non-smooth atemporal preferences implies

that individuals behave as if they intertemporally perform narrow framing. The gradual

resolution premium quanti�es this e¤ect. The two approaches are conceptually di¤erent: Loss

aversion with narrow framing brings to the forefront the idea that individuals evaluate any

new gamble separately from its cumulative contribution to total wealth, while we maintain

the assumption that terminal wealth matters, and identify narrow framing as a subjective

temporal e¤ect. In addition, we set aside the question of why individuals are sensitive to

the way uncertainty is resolved (i.e. why they narrow frame), and construct a model that

reveals the (context independent) behavioral implications of such considerations.

Rabin [2000] and Safra and Segal [2006] use calibration results to criticize a broad class

of models of decision making under risk. They point out that modest risk aversion over small

stakes gambles necessarily implies absurd levels of risk aversion over large stakes gambles.

Our model resists these critiques. If most uncertainty resolves gradually, then it cannot
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be compounded into a single lottery. Our model implies �rst order risk aversion over each

realized gamble, and therefore neither Rabin�s nor Safra and Segal�s arguments apply.

In this paper, we study time�s e¤ect on preferences by distinguishing between "one-shot"

and "gradual" resolution of uncertainty. A di¤erent, but complementary, approach is to

study intrinsic preferences for "early" or "late" resolution of uncertainty. This research

agenda was initiated by Kreps and Porteus [1978], and later extended by Epstein and Zin

[1989] and Epstein and Chew [1989] among others. Grant, Kajii and Polak [1998, 2000]

connect preferences for the timing of resolution of uncertainty to intrinsic preferences for

information. We believe that both aspects of intrinsic time preferences play a role in most

real life situations. For example, an anxious student might prefer to know as soon as possible

his �nal grade in an exam, but still prefers to wait (impatiently) rather than to get the grade

of each question separately. The motivation to impose time neutrality is to demonstrate the

role of the "one-shot" versus "gradual" e¤ect, which has been neglected in the literature to

date.

The remainder of the paper is organized as follows: we start section 2 by establishing our

basic framework, after which we introduce the main behavioral properties of the paper and

state our main characterization result. In section 3, we elaborate on the static implications

of our model and provide examples. Section 4 �rst extends our results to preferences over

compound lotteries with an arbitrarily �nite number of stages. We then de�ne the gradual

resolution premium and illustrate its e¤ect. In section 5, we relate our approach to the

notion of loss aversion with narrow framing. Section 6 comments on the implications of our

model on preferences over information systems. Section 7 is devoted to an application of our

model to the area of investment under uncertainty. We present our concluding remarks in

section 8. Most proofs are relegated to the appendix.

2. The model

2.1. Groundwork

Consider an interval [w; b] = X � R of monetary prizes. Let L (X), or simply L1, be
the set of all simple lotteries (lotteries with a �nite number of outcomes) over X. Typical

elements of L1 are denoted by p, q and r. If p, q 2 L1 and � 2 (0; 1), then the mixture
�p + (1� �) q 2 L1 is the lottery that yields each x with probability �px + (1� �) qx. We
denote by �x the lottery that gives the prize x with certainty.

Denote by L (L (X)), or simply by L2, the set of all simple lotteries over L1. A typical
element of L2 is Q =



�1; q

1; :::;�l; q
l
�
with �j > 0;

Pl
j=1 �j = 1 and q

j 2 L1, j = 1; 2; :::; l.

6



We call elements of L2 two-stage lotteries. We think of each Q 2 L2 as a dynamic two-stage
process where, in the �rst stage, a lottery qj is chosen with probability �j, and, in the second

stage, a prize is obtained according to qj.

Two special subsets of L2 are � = fh1; qi j q2 L1g and � = fh�xi ; �xii
m
i=1 ; xi 2 Xg. All

lotteries in � and � are fully resolved in a single stage; in every member of �, no uncertainty

is resolved in the �rst stage, whereas the uncertainty of every lottery in � is fully resolved

in the �rst stage. Note that both � and � are isomorphic to L1.
Let V denote the set of all continuous and strictly monotone preference relations over

(sets isomorphic to) L1, with a generic element �1. Each �12V is represented by some

continuous function V : L1 ! R.2

Given V , the certainty equivalent of lottery p is a prize cV (p) satisfying p �1 �cV (p),
where �1 is the indi¤erence relation induced from �1. By continuity and monotonicity,
cV : L1 ! X is well de�ned.

Let � be a preference relation over L2. Let �� and �� be the restriction of � to � and
� respectively. We assume throughout the paper that both �� and �� are in V. On � we
impose the following axioms:

A1 (time neutrality): 8q2 L1, h1; qi � hqxi ; �xii
m
i=1

A2 (recursivity):



�1; q

1; ::;�i; q
i; ::;�l; q

l
�
�


�1; q

1; ::;�i; eqi; ::;�l; ql�() 

1; qi

�
�


1; eqi�

By postulating A1, we assume that DM does not care about the time in which the un-

certainty is resolved as long as it happens in a single stage. A2 assumes that preferences

are recursive. It states that preferences over two-stage lotteries respect the preference rela-

tion over single-stage lotteries, in the sense that two compound lotteries that di¤er only in

the outcome of a single branch are compared exactly as these di¤erent outcomes would be

compared separately.

2(i) A preference relation � on a set Z is a complete and transitive binary relation on Z.
(ii) A real valued function V represents the preference relation � on a set Z if for all z1; z2 2 Z,

z1 � z2 , V (z1) � V (z2)
(iii) Continuity is in the topology of weak convergence.
(iv) Monotonicity is with respect to the relation of �rst-order stochastic dominance.
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Proposition (Segal [1990]): � satis�es A1 and A2 i¤ it can be represented by a con-

tinuous function W : L2 �! R of the following form:

W
�

�1; q

1; :::;�l; q
l
��
= V

�
�1�cV (q1) + :::+ �l�cV (ql)

�
Note that under A1 and A2, the preference relation �1= ��=�� fully determines �.

The decision maker evaluates two-stage lotteries by �rst calculating the certainty equivalent

of every second-stage lottery using the preferences represented by V , and then calculating

(using V again) the �rst-stage value by treating the certainty equivalents of the former stage

as the relevant prizes. As only the function V matters, we drop its index from the certainty

equivalents in the remainder of the paper. Furthermore, we slightly abuse notation by writing

V (Q), instead of W (Q), for the value of the two-stage lottery Q. Lastly, since under the

above assumptions V (p) = V (h1; pi) = V (hqxi ; �xii
m
i=1) for all p 2 L1, we simply write V (p)

for this common value.

2.2. Main properties

We now introduce and motivate our two main behavioral assumptions. The �rst is dynamic,

whereas the second is static.

2.2.1. Preference for one-shot resolution of uncertainty

We model an individual, DM, whose concept of uncertainty is multi-stage and who cares

about the way uncertainty is resolved over time. In this section, we de�ne consistent prefer-

ences to have all uncertainty resolved in "one-shot" rather than "gradually" or vice versa.

Fix p2 L1 and denote its support by S (p), that is, S (p) = fx jpx > 0g. Let

P (p) :=
n

�i; p

i
�K
i=1
2 L2

���K 2 N and 8x2 S (p) = [
i
S (pi) , px =

PK
i=1 �ip

i
x

o
:

P (p) is the set of all two-stage lotteries that induce the same probability distribution over
�nal outcomes as p does. For example, if p is a lottery that gives the prize x1 with prob-

ability 0:3 and the prize x2 with the remaining probability, then the two-stage lottery

Q = h0:6; q; 0:4; ri, where q gives both prizes with equal probability and r yields x2 for
sure, is in P (p). Let

PO (p) := fQ jQ2 P (p) \ (� [�)g =
n
h1; pi ; hpx; �xix2S(p)

o
PO (p) contains all elements of P (p) that are resolved in a single stage.
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De�nition: � displays preference for one-shot resolution of uncertainty (PORU) if 8p 2 L1

and 8Q 2P (p), R 2PO (p) implies R � Q. If, subject to the same quali�ers, R 2PO (p)
implies Q � R, then � displays preference for gradual resolution of uncertainty (PGRU).

PORU implies an aversion to receiving partial information. If uncertainty is not fully

resolved in the �rst stage, DM prefers to remain fully unaware till the �nal resolution is

available. PGRU implies the opposite. As we will argue in later sections, these notions

render "the frequency at which the outcomes of a random process are evaluated" a relevant

economic variable.

2.2.2. The Allais paradox and axiom NCI

In a generic Allais-type questionnaire,3 subjects choose between A and B, where A = �300
and B = 0:8�400 + 0:2�0. They also choose between C and D, where C = 0:25�300 + 0:75�0
and D = 0:2�400 + 0:8�0. The majority of subjects tend to systematically violate expected

utility by choosing the pair A and D.

Since Allais�s [1953] original work, numerous versions of his questionnaire have appeared,

most of which contain one lottery that does not involve any risk. Kahneman and Tversky

use the term "certainty e¤ect" to explain the commonly observed behavior. Their idea is

that individuals tend to put more weight on certain events in comparison with very likely,

yet uncertain, events. Although verbally it might appear to be intuitive reasoning, it is be-

haviorally translated into a nonlinear probability-weighting function, � : [0; 1]! [0; 1], that

individuals are assumed to use when evaluating risky prospects. In particular, this function

has a steep slope near �or even a discontinuity point at�0 and 1. As we remark below, this

implication has its own limitations. We thus suggest a direct behavioral property that is

motivated by similar insights, but is less restrictive. Consider the following axiom on �1:

Negative Certainty Independence (NCI ):4 8p; q; �x 2 L1 and � 2 [0; 1], p �1 �x implies
�p+ (1� �)q �1 ��x + (1� �)q.

The axiom states that if the sure outcome x is not enough to compensate DM for the

risky prospect p, then mixing it with any other lottery, thus eliminating its certainty appeal,

will not result in the mixture of x being more attractive than the corresponding mixture

3Also known as "common-ratio e¤ect with a certain prize."
4We use the word "negative" since this axiom can, equivalently, be stated as: 8p; q; �x 2 L1 and � 2 [0; 1),

�x �1 p implies ��x+(1��)q �1 �p+(1��)q. Here �1is the asymmetric part of �1, and �1 is its negation.
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of p. The implication of this axiom on responses in Allais questionnaire above is: If you

choose B, then you must choose D. This prediction is empirically rarely violated (see for

example "pattern 2" in Conlisk [1989]). As stated above, the intuition behind NCI is that

the sure outcome loses relatively more (or gains relatively less) than any other lottery from

the mixture with the other lottery, q, but it does not imply any probabilistic distortion. This

becomes relevant in experiments like those of Conlisk [1989], who studies the robustness of

Allais-type behavior to small perturbations of the questionnaire which remove boundary ef-

fects. Although violations in that case were no longer systematic, a nonlinear probability

function, as suggested above, predicts that this increase in consistency would be the result

of fewer subjects choosing (the slightly perturbed) A over B, and not because more subjects

choose (the slightly perturbed) C over D. In fact, the latter occurred, which is consistent

with NCI.

Proposition 1: Under A1 and A2, if �1 satisfy NCI, then � display PORU

Proof : We need to show that an arbitrary two-stage lottery,


�1; q

1; :::;�l; q
l
�
, is never

preferred to its single-stage counterpart,
D
1;
Pl

i=1 �iq
i
E
. Using A1 and A2 we have:



�1; q

1; :::;�l; q
l
� (A2)� D

�1; �c(q1); :::;�l; �c(ql)

E
(A1)�

D
1;
Pl

i=1 �i�c(qi)

E
And by repeatedly applying NCI,

Pl
i=1 �i�c(qi) = �1�c(q1) + (1� �1)

�P
i6=1

�i
(1� �1)

�c(qi)

�
(NCI)
�1

�1q
1 + (1� �1)

�P
i6=1

�i
(1� �1)

�c(qi)

�
=

�2�c(q2) + (1� �2)
�

�1
(1� �2)

q1 +
P

i6=1;2
�i

(1� �2)
�c(qi)

�
(NCI)
�1

�1q
1 + �2q

2 +
P

i6=1;2 �i�c(qi) = ::::: =

�l�c(ql) + (1� �l)
�P

i6=l
�j

(1� �l)
qi
�

(NCI)
�1

Pl
i=1 �iq

i

Therefore,


�1; q

1; :::;�l; q
l
�
�
D
1;
Pl

i=1 �i�c(qi)

E
�
D
1;
Pl

i=1 �iq
i
E
�

The idea behind proposition 1 is simple: the second step of the folding-back procedure

involves mixing all certainty equivalents of the corresponding second-stage lotteries. Apply-

ing NCI repeatedly implies that each certainty equivalent su¤ers from the mixture at least
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as much as the original lottery that it replaces would.

Proposition 1 states that NCI is a su¢ cient condition for PORU. To show necessity, we

need to impose more structure. For the rest of the section, we con�ne our attention to a

class of preferences �12V that satisfy the betweenness axiom.

A3 (single-stage betweenness) 8 p; q 2 L1 and � 2 [0; 1], p �1 q implies p �1 �p +
(1� �) q �1 q

A3 is a weakened form of the vNM-independence axiom. It implies neutrality toward

randomization among equally-good prizes/lotteries. It yields the following representation:

Proposition (Dekel [1986]): �12V satis�es A3 i¤ there exists a local utility function

u : X � [0; 1] ! [0; 1], which is continuous in both arguments, strictly increasing in the

�rst argument and satis�es u (w; v) = 0 and u (b; v) = 1 for all v2 [0; 1], such that for all
p 2 L1, V (p) is de�ned implicitly by:

V (p) =
P

x2X u (x; V (p)) px

NCI in the probability triangle
The betweenness axiom (A3), along with monotonicity, implies that indi¤erence curves in

any unit probability triangle are positively sloped straight lines. To demonstrate this result

using the representation theorem, note that for any lottery p over a given triple x3 > x2 > x1,

V (p) = p1u(x1; V (p))+(1�p1�p3)u(x2; V (p))+p3u(x3; V (p)). The slope of any indi¤erence
curve in the corresponding two-dimensional space, � := f(p1; p3) j p1; p3 � 0; p1 + p3 � 1g
is:

� (V jx3; x2; x1 ) =
u(x2; v)� u(x1; v)
u(x3; v)� u(x2; v)

which is positive and independent of the vector of probabilities. By de�nition, the slope

represents the marginal rate of substitution between p3 and p1, and as explained by Machina

[1982], changes in the slope express local changes in attitude towards risk: the greater the

slope, the more risk averse DM is.

De�nition: �1 has the steepest middle slope property if for every triple x3 > x2 > x1

and for all v 2 (V (�x1) ; V (�x3)),

� (V (�x2) jx3; x2; x1 ) � � (V jx3; x2; x1 )
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that is to say, this property holds if for every three prizes x3 > x2 > x1, the indi¤erence

curve through �x2 is the steepest.

Observe that NCI implies the steepest middle slope property. To see this, let IV(�x2) :=

fp0 2 � : p0 �1 �x2g and let � := � (V (�x2) jx3; x2; x1 ). Take any lottery p 2 IV(�x2). For any
� 2 [0; 1] and q 2 �, both �p+ (1� �)q and ��x + (1� �)q are in � (a convex set) and by

the triangle proportional sides theorem, the slope of the line segment that connects them is

�. But NCI requires that �p+ (1� �)q �1 ��x + (1� �)q and since indi¤erence curves are
upward sloping, the indi¤erence curve that passes through �p+ (1� �)q must have a slope
no greater than �. Since � and q were arbitrary, the result follows.

2.3. Characterization

De�nition : �2 is betweenness-recursive if it satis�es A1�A2 and its restrictions to V
satisfy A3.

Theorem 1: For any betweenness-recursive preferences, the following three statements are
equivalent:

(i) � displays PORU.

(ii) �1 satis�es NCI.

(iii) �1 has the steepest middle slope property.

A characterization of PGRU is analogously obtained by reversing the weakly preferred sign

in NCI, and replacing steepest with �attest in (iii) .

The detailed proof is in the appendix. The main step in it is to establish, using certain

properties of preferences from the betweenness class, that PORU is equivalent to the following

condition:

C1 :

�X
x2S(p)

u (x; v) px � u (c (p) ; v)
�
> 0 8p 2 L1 and 8v 2 V

�
L1
�

where V (L1) := fV j9p 2 L1 with v = V (p)g.5 We interpret C1 by exploiting the main idea
behind the construction of the local utility function, u (x; v). As explained by Dekel [1986],

5The speci�c normalization V
�
L1
�
= [0; 1] is inessential for this result.
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and demonstrated in �gure 1, one can think of u (x; v) as a collection of functions that are

derived in the following way: Fix an indi¤erence hyperplane with a value v (denoted by Iv
in �gure 1a) and construct a collection of parallel hyperplanes relative to it. This collection

can be taken to represent some expected utility preferences with an associated Bernoulli

function uv (x). For every lottery p, we can then calculate V (p; v) := Ep [uv (x)], its expected

utility relative to the value v (�gure 1b). Repeat this construction for every value of v

(which is bounded above and below, since X is bounded) to get the collection of functions

fuv (x)gv2V(L1) that are equal to u (x; v). C1 then implies that DM becomes the most risk

averse at the true lottery value. That is, if relative to V (p), the true utility level, DM is

just indi¤erent between p and the certain prize c(p), then relative to any other value v,

he (weakly) prefers the lottery. The graphical illustration of C1 in the probability triangle

is precisely item (iii) in the theorem (�gure 1c), whereas item (ii) is its direct behavioral

interpretation. The proof is completed by ensuring su¢ ciency of item (iii) to C1 and using

proposition 1.

Figure 1: 1a: Fixing an indi¤erence curve of level v. 1b: Constructing the local utility

function uv (x). 1c: Putting them together, Ep [u (x; V (p))] = u (x2; V (p)), but

Ep [u (x; v)] > u (x2; v) for v 6= V (p).
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Theorem 1 ties together three notions that are de�ned on di¤erent domains: PORU is a

dynamic property, NCI is a static property, and the third item is a geometrical condition,

which applies to single-stage lotteries with at most three prizes in their support. The core of

the theorem is the equivalence of PORU and NCI, which suggests that being prone to Allais-

type behavior and being averse to the gradual resolution of uncertainty are synonymous.

This assertion justi�es the proposed division of the space of two-stage lotteries into the

one-shot and gradually resolved lotteries. On the one hand, numerous replications of the

Allais paradox in the last �fty years prove that the availability of a certain prize in the

choice set is important and a¤ects behavior in a systematic way. Moreover, we have no

�rm evidence of a consistent attitude towards lotteries, all of which lie in the interior of

a probability triangle. On the other hand, empirical and experimental studies involving

dynamic choices and experimental studies on preference for uncertainty resolution are still

rather rare. Theorem 1 thus provides new theoretical predictions for dynamic behavior,

based on robust (static) empirical evidence.

The applicability of the steepest middle slope property stems from its simplicity. In

order to detect violation of PORU, one need not construct the (potentially complicated)

exact choice problem. Rather, it is su¢ cient to introspect the slopes of one-dimensional

indi¤erence curves. This, in turn, is a relatively simple task, at least once a local utility

function is given.

3. Static implications

3.1. NCI and di¤erentiability

In most economic applications, it is assumed that individuals�preferences, and therefore the

utility functions that represent them, are not only continuous, but also at least twice di¤er-

entiable.6 The following result demonstrates that among the betweenness class, smoothness

and NCI are inconsistent, in the sense that coupling them leads us back to expected utility.

Theorem 2: Suppose u(x; v) is at least twice di¤erentiable with respect to both its argu-
ments, and that all derivatives are continuous and bounded. Then preferences satisfy NCI if

and only if they are expected utility.

Expected utility preferences are characterized by the independence axiom that implies

NCI. To show the other direction, we �x v and denote by x (v) the unique x satisfying

v = u(x; v). Combining the geometrical characterization (theorem 1 item (iii)) of NCI with

6Debreu [1972] provides, for any k > 0, a formal de�nitions of kth- order di¤erentiable preferences.
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di¤erentiability implies that for any x > x (v) > w, the derivative with respect to v of

the slope of an indi¤erence curve on the corresponding probability triangle must vanish at

v. We use the fact that this statement is true for any x > x (v) and that v is arbitrary

to get a di¤erential equation with a solution on f(x; v) jv < u(x; v)g given by u(x; v) =
h1 (v) g1 (x) + f 1 (v), and h1 (v) > 0. We perform a similar exercise for x < x (v) < b

to uncover that on the other region, f(x; v) jv < u(x; v)g, u(x; v) = h2 (v) g2 (x) + f 2 (v),

and h2 (v) > 0. Continuity and di¤erentiability then imply that the functional form is

equal in both regions, therefore for all x, u(x; v) = h (v) g (x) + f (v) ; and h (v) > 0. The

uniqueness theorem for betweenness representations establishes the result.

3.2. Examples

Expected utility preferences are a trivial example of preferences that in a dynamic context

satisfy PORU; DM with such preferences is just indi¤erent to the way uncertainty is resolved.

The following is an important class of preferences for which, when applied recursively, PORU

is a meaningful concept:

Preferences that satisfy the mixed-fan hypothesis. This set consists of all prefer-
ences whose indi¤erence curves, in any unit probability triangle, have the following pattern:

Moving northwest, they �rst get steeper ("fanning out") in the lower-right sub triangle (the

less-preferred region), and then get �atter ("fanning in") in the upper-left sub triangle (the

more-preferred region). Before giving examples from this class, we �rst state su¢ cient re-

strictions on the local utility function to satisfy the mixed-fan hypothesis.7

Denote by L (x) := fp 2 L1 : �x %1 pg the lower contour set of x 2 X.

Su¢ cient conditions for mixed fan: If u (x; v) is a local utility function of the form

u (x; v)� v =
(
u1 (x; v) V �1 (v) 2 L (x)
u2 (x; v) V �1 (v) =2 L (x)

with the following restrictions:

(1) @
@x

@
@v
u1 (x; v) 6 0;

(2) @
@x

@
@v
u2 (x; v) 6 0; and

(3) inf
x

@
@v
u1 (x; v) > sup

x

@
@v
u2 (x; v)

then preferences satisfy the mixed-fan hypothesis.

7Neilson [1992] provides su¢ cient conditions for smooth (in the sense of theorem 2) betweenness pref-
erences to satisfy the mixed-fan hypothesis. The additional requirement, that the switch between "fanning
out" and "fanning in" always occurs at the indi¤erence curve that passes through the origin (the lottery
that yields the middle prize for certain), renders those conditions empty, as is evident from theorem 2.
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Chew [1989] axiomatizes semi-implicit weighted utility. The local utility function he

considers is

u (x; v)� v =
(
w (x) (x� v) x > v

w (x) (x� v) x 6 v

with w (x) > 0, w (x) > 0, w0 (x) > 0, w0 (x) > 0. To ensure that these preferences satisfy
the mixed-fan hypothesis, we add the restriction that inf

x
w (x) > sup

x
w (x).

Gul [1991] proposes a theory of disappointment aversion. He derives the local utility

function

u (x; v) =

(
�(x)+�v
1+�

� (x) > v

� (x) � (x) 6 v

with � > 0 and � : X ! R increasing.
Gul�s notion of disappointment aversion amounts to dividing the support of each lottery

into two groups, the elated outcomes and the disappointed outcomes, and giving the disap-

pointed outcomes a uniformly greater weight when calculating the expected utility of the

lottery.8 For these preferences, the sign of �, the coe¢ cient of disappointment aversion, un-

ambiguously determines whether preferences satisfy PORU or PGRU (see Artstein-Avidan

and Dillenberger [2006]).

PORU can be interpreted as dynamic disappointment aversion. As suggested by Palacios-

Huerta [1999], one may argue that being exposed to the resolution process bears the risk of

perceiving intermediate outcomes as disappointing or elating, and if DM is more sensitive to

disappointments, he would prefer to know only the �nal result. The term "disappointment

aversion preferences" usually refers to Gul�s static model. Our dynamic notion of disappoint-

ment aversion is translated into a strong restriction on indi¤erence maps across probability

triangles. Although Gul�s model satis�es both, it is a boundary case. To emphasize the

distinction between these two notions, we provide examples of other betweenness-satisfying

preferences that were suggested as one-parameter generalizations of Gul�s static model but,

nevertheless, dynamically violate PORU. As implied by theorem 1, to track down violations

of PORU, it is enough to show that neither of the preferences below satisfy the steepest

middle slope property.9

8Although Gul�s preferences imply probability transformation, this transformation is done endogenously.
It is the value of each elated prize, and not its probability, which is explicitly down-weighted.

9Gul�s preferences are one parameter (�) richer than expected utility preferences. The economic inter-
pretation of � in a dynamic context is not evident. Indeed, one of Gul�s axioms (axiom 4 in his paper) is
necessary to identify �, but is unrelated to NCI. It is imposed in order to rule out further deviations from
the expected utility model.
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Nehring [2005] suggests preferences which are represented by an implicit utility function

of the following form:

u (x; v)� v =
(
(� (x)� � (v))� x > v

�� (� (v)� � (x))� x 6 v

with �; � > 0. Gul�s model corresponds to the case of � = 1, and disappointment aversion

implies � > 1.

Nehring interprets u (x; v) � v as relative utilities (outcomes are evaluated psychologi-
cally relative to a certain reference point) and � (x) as absolute utilities. He shows that such

a class is uniquely characterized by the "bi-linearity" property: There exists a monotonic

and continuous function � : [0; 1] ! [0; 1] and a mapping � : X ! R, such that prefer-
ences restricted to binary lotteries are represented by the function V (p�x + (1� p) �y) =
� (p)� (x) + (1� � (p))� (y), for x > y.
Unless � = 1 (and � > 1), no member of this class of preferences satis�es NCI.
Routledge and Zin [2004] provide a di¤erent one-parameter extension of Gul�s model,

enabling the identi�cation of outcomes as disappointing only when they lie su¢ ciently below

the (implicit) certainty equivalent. They derive the representation:

� (c (p)) =
X

xi
p (xi)� (xi)� �

X
xi6�c(p)

p (xi) [� (�c (p))� � (xi)]

with � 6 1. Note that in Gul�s model � = 1 (where � = 0 corresponds to expected utility).
Unless � = 1, these preferences also do not satisfy NCI.

4. Gradual resolution premium

For further purposes, we �rst extend our results to �nite-stage lotteries.

4.1. Extension to n-stage lotteries

Fix n2 N and denote the space of �nite n-stage lotteries by Ln. We interpret the parameter
n as the "resolution sensitivity" of an individual. It describes the frequency with which an

individual updates information in a �xed time interval, which is a characteristic of prefer-

ences. The extension of our setting to Ln is the following (a formal description is given
in the appendix): Occupied with a continuous and increasing function V : L1 ! R, DM
evaluates any n-stage lottery by folding back the probability tree and applying the same V

in each stage. Preferences for one-shot resolution of uncertainty implies that DM prefers

to replace each (compound) sub-lottery with its single-stage counterpart. The equivalence
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between PORU and NCI remains intact. In what follows, we will continue simplifying nota-

tion by writing V (Q) for the value of any multi-stage lottery Q. We sometimes write Qn to

emphasize that we consider an n-stage lottery.

4.2. De�nitions

Denote by e(p) the expectation of a lottery p 2 L1, that is, e(p) =
P

x xpx. Let G (p; x) :=P
z>x pz. We say that lottery p second-order stochastically dominates lottery q, and denote

it by p sosd q, if for all t < K,
Pt

k=0 [G (p; xk+1)�G (q; xk+1)] [xk+1 � xk] > 0, where x0 <
x1 < ::: < xK and fx0; x1; :::; xKg = S (p) [ S (q). DM is risk averse if 8p; q 2 L1 with
e(p) =e(q), p sosd q implies p �1 q.
For any p 2 L1, the risk premium of p, denoted by rp (p), is the number satisfying

�e(p)�rp(p) �1 p. rp(p) is the amount that DM would pay to replace p with its expected value.

By de�nition, rp (p) > 0 whenever DM is risk averse.10

De�nition: Fix p 2 L1. For any Q 2P (p), the gradual resolution premium of Q, de-

noted by grp(Q), is the number satisfying


1; �c(p)�grp(Q)

�
� Q.

grp(Q) is the amount that DM would pay to replace Q with its single-stage counterpart.

By de�nition, PORU implies grp(Q) > 0. Since c (p) =e(p)�rp(p), we can, equivalently,
de�ne grp(Q) as the number satisfying



1; �e(p)�rp(p)�grp(Q)

�
� Q.11

Observe that the signs of the two variables above, rp (p) and grp (Q), need not agree. In

other words, (global) risk aversion does not imply, and is not implied by, PORU. Indeed,

Gul�s symmetric disappointment aversion preferences (see section 3) are risk averse if and

only if � > 0 and � : X ! R is concave (Gul�s [1991] theorem 3). However, for su¢ ciently

small � > 0 and su¢ ciently convex �, one can �nd a lottery p with rp (p) < 0, whereas � > 0
is su¢ cient for grp (Q) > 0 for any Q 2P (p). On the other hand, if �0 (v) > 0 and � (v) > 1
for all v,12 then the local utility function

u (x; v) =

(
x x > v

v � � (v) (v � x) x 6 v
10Weak risk aversion is de�ned as follows: For all p, �e(p) � p. This de�nition is not appropriate once we

consider preferences that are not expected utility. The de�nition of the risk premium, on the other hand, is
independent of the preferences considered.
11Similarly to the risk premium, the complete resolution premium is measured in monetary units. For

this reason, these two premiums are di¤erent from the timing premium for early resolution, as suggested by
Chew and Epstein [1989], which is measured in terms of probabilities.
12The condition that � (v) is non-decreasing is both necessary and su¢ cient for u (; ) to be a local utility

function. See Nehring [2005].
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has the property that u (�; v) is concave for all v. Therefore, DM is globally risk averse

(Dekel�s [1986] property 2), and hence rp (p) > 0 8p 2 L1. However, these preferences do
not satisfy NCI,13 meaning that there exists a lottery p and Q 2P (p) for which grp (Q) < 0.

4.3. The magnifying e¤ect

In the case where DM is both risk averse and has PORU, these two forces, as re�ected in

the two premiums previously de�ned, magnify each other. Understanding this, insurance

companies, when o¤ering dynamic insurance contracts, can require much greater premiums

than the actuarially fair ones and still be sure of consumers�participation. This can explain

why people often buy periodic insurance for moderately priced objects, such as electrical

appliances and cellular phones, at much more than the actuarially fair rates. 14

To illustrate, consider the following insurance problem: An individual with Gul�s pref-

erences, with a linear � and a positive coe¢ cient of disappointment aversion �, owns an

appliance (e.g. a cellular phone) that he is about to use for n periods. The individual

gets utility 1 in any period the appliance is used and 0 otherwise. In each period, there is

an exogenous probability (1� p) that the appliance will not work (it might be broken, fail
to get reception, etc.). The individual can buy a periodic insurance, which guarantees the

availability of the appliance, for a price z 2 (1� p; 1). Therefore, if he buys insurance for
some period, he gets a certain utility of (1� z), and otherwise he faces the lottery in which
with a probability p he gets 1, and with the remaining probability he gets 0. For simplicity,

assume that the price of a replacement appliance is 0, so that the individual either still has

it from the last period or gets a new one for free in the beginning of any period.

Let bp be the probability distribution over �nal outcomes (without insurance). Denote
by X the total number of periods in which the appliance works. Since X is a binomial

random variable, Pr (X = k) =
�
n
k

�
pk (1� p)n�k, for k = 0; :::; n. Applying Gul�s formula,

one obtains:

V�;n (bp) = Pn
k=h+1

�
n
k

�
pk (1� p)n�k k + (1 + �)

Ph
k=0

�
n
k

�
pk (1� p)n�k k

1 + �
Ph

k=0

�
n
k

�
pk (1� p)n�k

13Look at the slope of an indi¤erence curve for values x3 > v > x2 > x1. We have: � (V jx3; x2; x1 ) =
�(v)(x2�x1)

x3�v+�(v)(v�x2) . In this region, the slope is increasing in v if x3 >
�(v)(�(v)�1)

�0(v) + v. For a given v, we can
always choose arbitrarily large x3 that satis�es the condition, and construct, by varying the probabilities, a
lottery whose value is equal to v. Apply this argument in the limit where v = x2 to violate condition (iii)
of theorem 1.
14A popular example is given by Tim Harford ("The Undercover Economist", Financial Times, May 13,

2006): "There is plenty of overpriced insurance around. A popular cell phone retailer will insure your $90
phone for $1.70 a week� nearly $90 a year. The fair price of the insurance is probably closer to $9 a year
than $90."
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where h (p; �; n) is the unique natural number such that all prizes greater than it are elated

and all those smaller than it are disappointed.

Let Q be the corresponding gradual (n-stage) lottery as perceived by DM. Its value is:

V�;n (Q) :=
1

(1 + � (1� p))n
Pn

k=0

�
n

k

�
pk (1� p)n�k (1 + �)n�k k

Using standard backward induction arguments, it can be shown that DM will buy insur-

ance for all periods if � > z�(1�p)
(1�z)(1�p) > 0. In that case, z < 1�

V�;n(Q)

n
. Nevertheless, if � is

not too high,15 we have 1�p < 1� V�;n(bp)
n

< z, meaning that DM would not buy insurance at

all if he could avoid being aware of the gradual resolution of uncertainty.16 This observation

explains why and how the attractiveness of a lottery depends not only on the uncertainty

embedded in it, but also on the way this uncertainty is resolved over time.

Since V�;n (bp) decreases with �, rp (� jp; n) := np�V�;n (bp) is a strictly increasing function
of �. The behavior of the gradual resolution premium, grp (� jp; n) := V�;n (bp)� V�;n (Q) is
more subtle. We have the following result:

Proposition 2: In the insurance problem described above:

(i) Strict PORU in the interior: grp (� jp; n) > 0 8� 2 (0;1)
(ii) Weak PORU in the extreme: grp (0 jp; n) = 0 and lim

�!1
grp (� jp; n) = 0

(iii) Single-peakness: There exists �� (p; n) <1 such that either 0 < � < �0 < �� or

�� < �0 < � implies

grp (� jp; n) < grp (�0 jp; n) < grp (�� jp; n)

See �gure 2.

Recall that in Gul�s model, the sign of the parameter � unambiguously determines

whether preferences display PORU or PGRU. In its original context, greater � implies

greater disappointment aversion (as well as greater risk aversion). Since we argued that

PORU can be interpreted as dynamic disappointment aversion, it might seem intuitive to

expect the gradual resolution premium to be an increasing function of �. This intuition

is wrong and, in fact, item (ii) remains valid independent of the decision problem under

consideration. In order to see this, note that grp(� jp; n) is de�ned as the di¤erence of two
functions, both strictly decreasing with �. When � = 0, DM cares only about the expected

value of the lottery. When � is su¢ ciently large, all prizes but 0 become elated, and hence

the value of p converges to 0. Correspondingly, the value of the gradual lottery converges to

15The condition is: 1 + � < min
n

pn

pn+n(1�p)�1 ;
pnz

(1�z)(1�pn)�p(1�pn�1)�1

o
:

16Nayyar [2004] termed such a situation an "insurance trap". Note that DM still acts rationally given that
without insurance he is forced to be exposed to Qn rather than to p.
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Κ0,Κ0+1β

grp(β  p,n)

β Κ0+1,Κ0+2 n1,nβ∗ β
β

Figure 2: grp(� jp; n). �k;k+1 is the value of � where h (� jp; n) decreases from (n� k) to
(n� (k + 1)). grp(� jp; n) is non-di¤erentiable in each such �k;k+1. k0 is the smallest natural
number that solves: max

k0>n(1�p)
n�k0
n

the value of the worst sub-lottery that by itself approaches 0. Since item (i) reinforces the

result of theorem 1 and states that grp(� jp; n) is actually strictly positive on the positive
reals, and since grp(� jp; n) is a continuous function, there must exist a �nite �, denoted ��

in �gure 2, in which grp(� jp; n) is maximized. Item (iii) sheds further light on the behavior
of moderate disappointment-averse individuals. It suggests that �� (p; n) is unique, and that

grp(� jp; n) is single-peaked. Behaviorally speaking, a moderately disappointment-averse
individual is more inclined to pay a higher premium, whereas individuals, who are either

approximately disappointment-indi¤erent or very disappointment-averse, would not pay a

substantial premium.

The analysis of the insurance problem suggests that, given n, extreme values of � neu-

tralize the magnifying e¤ect of the gradual resolution premium. In general, this premium

can be very signi�cant. By varying the parameter n, we change the frequency at which

DM updates information. Our next result shows that high frequency of information updates

might in�ict an extreme cost on DM; a particular splitting of a lottery drives down its value

to the value of the worst prize in its support.

Proposition 3: Consider disappointment aversion preferences with some � : X ! R
and � > 0. For any " > 0, and for any lottery p =

Pm
j=1 pj�xj , there exists T <1 and a

multi-stage lottery QT 2 P (p) such that V
�
QT
�
< min� (xj)

xj2supp(p)
+ ".
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Let p be a binary lottery that yields 0 and 1 with equal probabilities. Consider n tosses

of an unbiased coin. De�ne a series of random variables fzigni=1 with zi = 1 if the ith toss is
"heads" and zi = 0 if it is "tails". Let the terminal nodes of the n-stage lottery be:

1 if
Pn

i=1 zi >
n
2

0:5�1 + 0:5�0 if
Pn

i=1 zi =
n
2

0 if
Pn

i=1 zi <
n
2

Note that the value of this n-stage lottery, calculated using recursive disappointment

aversion preferences, is identical to the value calculated using recursive expected utility and

probability 0:5
1+�0:5

< 0:5 for "heads" in each period. Applying the weak law of large numbers,

Pr
�Pn

i=1 zi <
n

2

�
! 1

and therefore, for n large enough, the value approaches � (0). We use a similar construction

to establish that this result holds true for any lottery.

Ignoring the dynamic aspect of risk aversion might be misleading. We have already

argued that a substantial fraction of many insurance premiums we observe in daily life can

be attributed to the gradual resolution premium. Proposition 3 proves that this e¤ect is

quantitatively important, if the parameter n is su¢ ciently large.

5. PORU, "loss aversion with narrow framing" and the �nal-wealth

hypothesis

Loss aversion with narrow framing (also known as "myopic loss aversion") is a combination

of two motives: loss aversion (Kahneman and Tversky [1979]), that is, people�s tendency to

be more sensitive to losses than to gains, and a dynamic aggregation rule, narrow framing

(Kahneman and Tversky [1984]), that argues that when making a series of choices, indi-

viduals "bracket" them by making each choice in isolation. When applied to behavior in

�nancial markets, narrow framing means that individuals tend to evaluate long-term invest-

ments according to their short-term returns. Benartzi and Thaler [1995] were the �rst to

use this approach and suggest explanations for several economic �anomalies�, such as the

equity premium puzzle (Mehra and Prescott [1985]). Barberis and Huang [2005] and Bar-

beris, Huang and Thaler [2006] generalize Benartzi and Thaler�s work by assuming that DM

derives utility directly from the outcome of a gamble over and above its contribution to total

wealth.
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The model presented in this paper can be used to address the same phenomena addressed

with the loss aversion with narrow framing approach. Both models assume time neutrality.

The combination of a speci�c form of non-smooth atemporal preferences and the folding-back

procedure accounts for PORU. In an intertemporal context, these two features are analogous

to loss aversion and narrow framing, respectively. The gradual resolution premium is the cost

an individual incurs from frequently evaluating the outcomes of a dynamic random process.

The loss aversion with narrow framing approach challenges the hypothesis that only �nal

wealth matters. Rabin [2000] and Safra and Segal [2006] give a parallel critique on a broad

class of smooth models of decision making under risk. These authors use calibration results

to argue that modest risk aversion over small stakes gambles necessarily implies absurd levels

of risk aversion over large stakes gambles. Both Safra and Segal [2006] and Barberis Huang

and Thaler [2006] argue that if DM faces some background risk, then a similar problem

persists even if preferences are non-di¤erentiable (i.e. if preferences display �rst-order risk

aversion17); merging new gambles with preexisting ones eliminates the e¤ect of �rst-order

risk aversion.

Our model is consistent with risk aversion over small stakes gambles and only moderate

risk aversion over large stakes gambles even if individuals face background risks. If most

risks resolve gradually, then they cannot be compounded into a single lottery. Our model

then implies �rst order risk aversion over each realized gamble. In other words, the mere

existence of other risks is not enough to apply Rabin-type critique. Such an argument is

only compelling if DM compounds risks that are resolved over a long period.

The conceptual di¤erence between the two approaches is twofold. First, loss aversion with

narrow framing brings to the forefront the idea that individuals evaluate any new gamble

separately from its cumulative contribution to total wealth. Both the reference points relative

to which gains and losses are computed and the way they dynamically adjust are usually

set exogenously.18 We, on the other hand, maintain the assumption that terminal wealth

matters, and identify narrow framing as a preference parameter. The similarity between

"disappointment aversion" and "loss aversion" has already been pointed out in Gul [1991]

and stimulates further comparisons between these two notions. The novel insight provided by

proposition 3 is that the (temporal) e¤ect of narrow framing can be achieved even without

giving up the assumption that utility depends on overall wealth, and that this e¤ect is

quantitatively important. Second, we set aside the question of why individuals are sensitive

17First order risk aversion means that the premium a risk averse DM is willing to pay to avoid an actuarially
fair random variable te� is proportional, for small t, to t. It implies "kinked" indi¤erence curves along the
main diagonal in a states-of-the-world representation (Segal and Spivak [1990]).
18Köszegi and Rabin [2006] o¤er a model in which the reference point is determined endogenously.
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to the way uncertainty is resolved (i.e. why they narrow frame),19 and construct a model

that reveals the (context independent) behavioral implications of such considerations.

6. PORU and the value of information

We now reconsider the case of two-stage lotteries (n = 2). Let us suppose that just before

the second-stage lottery is played, but after the realization of the �rst-stage lottery, DM can

take, in the face of the remaining uncertainty, some action that might a¤ect his ultimate

payo¤. The primitive in such a model is a preference relation over information systems (as we

formally de�ne below), which is induced from preferences over compound lotteries. Assume

throughout this section that preferences over compound lotteries satisfy A1 and A2. An

immediate consequence of Blackwell�s [1953] seminal result is that in the standard expected

utility class, DM always prefers to have perfect information before making the decision, which

allows him to choose the optimal action corresponding to the resulting state. Schlee [1990]

shows that if �1 is of the rank-dependent utility class (Quiggin [1982]), then the value of
perfect information will always be non-negative. This value is computed relative to the value

of having no information at all, and therefore Schlee�s result is salient about the comparison

between getting complete and partial information. Safra and Sulganik [1995] left open the

question of whether there are preference relations, other than expected utility, for which

perfect information is always the most valuable. We show below that such preferences are

fully characterized by PORU. Combining this result with theorem 1 reveals its implication

on betweenness-recursive preferences.

More formally, let S = fs1; : : : ; sNg be some �nite set of states. Each state s 2 S occurs
with probability ps. The outcome of a lottery will depend both on the resulting state and

on an action DM has made. For this we let A = fa1; :::; aMg be a �nite set of actions. Let
u : A� S ! R be a function that gives the outcome u (a; s) if action a 2 A is taken and the
realized state is s 2 S. (This outcome corresponds to the �nal prize x2 X.)
The �rst-stage lottery can be thought of as a randomization over a set J = fj1; :::; jmg

of signals indexed by j (where signal j indicates that pj was selected in the �rst-stage

lottery). Let � : S � J ! [0; 1] be a function such that � (s; j) is the probability of getting

the signal j 2 J when the prevailing state is s 2 S. We naturally require that for all

s 2 S,
P

j2J � (s; j) = 1 (so that when the prevailing state is s, there is some probability

distribution on the signal DM might get). The function � is called an information structure.

19Barberis and Huang [2006] suggest two di¤erent underlying sources of narrow framing. The �rst is based
on a non-consumption utility, such as regret, and the second relates narrow framing to the "accessibility"
of the uncertainty people confront. As these authors mention, each such motive, if taken literally, predicts
di¤erent duration of narrow framing.
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It automatically induces a splitting of the lottery into two stages, where with probability

�j(�) =
P

s02S � (s
0; j) ps0, pj is the second-stage lottery.

A full information structure, I, is a function such that for all s 2 S there exists j (s) 2 J
with Pr (sjj (s)) = �(s;j(s))psP

s02S �(s
0;j(s))ps0

= 1, and for all j 6= j (s) one has Pr (sjj) = 0. In other
words, in the sum above de�ning �j, there is only one summand. The null information

structure, �, is a function such that Pr (sjj) = Pr (s) for all s 2 S and j 2 J .
De�ne a�(s) as the optimal action if you know that the prevailing state is s, that is,

u (a� (s) ; s) := maxa2A u (a; s). Let V p (I) be the value of the lottery that assigns proba-

bility ps to the outcome u(a�(s); s). After a signal j has been given, DM chooses the best

a under the circumstances, namely a that maximizes the value of the lottery that assigns

probability pjs to gain the outcome u(a; s). We let V (p
j�) stand for the value of the jth lottery

maximized over the choice of an action a 2 A. Finally, let V p(�) be the value of the lottery
where the action is taken after receiving signal j, that is, the compound lottery assigning

probability �j(�) =
P

s02S� (s
0; j) ps0 to pj�.

De�nition: � displays preferences for perfect information if for any information struc-

ture � and for any payo¤ function u, V p (I) � V p (�).

Proposition 4: If � satis�es A1 and A2, then the two statements below are equivalent:

(i) � displays PORU

(ii) � displays preferences for perfect information.

Analogously, PGRU holds if and only if for any information structure � and for any

payo¤ function u, V p (�) � V p (�)

Showing that (i) is necessary for (ii) is immediate. For the other direction, we note that

two forces reinforce each other: First, getting full information means that the underlying

lottery is of the "one-shot resolution" type, since uncertainty is completely resolved by ob-

serving the signal. Second, better information enables better planning; using it, a decision

maker with monotonic preferences is sure to take the optimal action in any state. The proof

distinguishes between the two prime motives for getting full information: The former, which

is captured by PORU, is intrinsic, whereas the latter, which is re�ected via the monotonicity

of preferences with respect to outcomes, is instrumental. The result for PGRU is similarly

proven. The null information structure is of the "one-shot resolution" type and it has no
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instrumental value.

Corollary: If � satis�es A1 and A2, then � displays preferences for perfect informa-

tion whenever �1 satis�es NCI.

Proposition 4 is independent of A3. By adding A3 as a premise we get:

Corollary: For any betweenness-recursive preferences, � displays preferences for perfect

information i¤�1 satis�es NCI.

7. Application to investment under uncertainty

The concept of option value was initially demonstrated by Arrow and Fischer [1974], and

later recognized in the works of McDonald and Siegel [1986], Pindyck [1991], and Dixit

and Pindyck [1994]. These authors point out that if an investor has a choice over when to

implement an (irreversible) investment decision, then investing according to the net present

value (NPV) of a project is not adequate; waiting leaves room for new information that DM

might use to make better decisions. In other words, the availability of future signals always

favors delaying the investment.

This result rests on the assumption that decision makers are expected utility maximizers,

and it ceases to hold once we relax that assumption. In particular, PORU suggest another

e¤ect that should be taken into account: The harmful e¤ect of the gradual resolution of

uncertainty, induced by an informative signal, can outweigh the bene�t of getting more

information from this same signal.

To illustrate, consider the following three-period investment problem.20 In the �rst pe-

riod, an investor decides whether or not to invest in a certain machine. The investment

requires an immediate cost of C dollars. If he chooses to invest (option A), he will be able to

produce in both the second and the third period. In the second period, the demand is certain

and the investor is sure to receive variable pro�ts �2 > 0. In the third period, the demand

is uncertain and the pro�ts are determined by the realization of a �nite random variable �3.

Denote by p the probability distribution over the third-period pro�ts �3i , i = 1; ::; n. If the

investor decides not to invest in the �rst period (option B), he may still invest in the second

period. In that case he waives �2, but he is able, before making the investment decision,

to learn the realization of a signal j that is correlated with �3 and comes from a �nite set

J = fj1; :::; jmg. Thus, if he invests in the second period after receiving the signal j, his
20Based on an example given in Gollier [2001]
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third-period�s pro�ts are distributed according to the conditional distribution pj. Let �j be

the unconditional probability of getting the signal j2 J . The discount rate between any two
successive periods is r.

Assume that DM has disappointment aversion preferences with linear � and positive �.

The value of option A, V A, is given by:

V A = �C + 1

1 + r
�2 +

1

(1 + r) 2
V (p)

Let zj := max
�
0;�C + 1

1+r
V (pj)

	
. The value of option B is denoted V B and is the unique

value v that solves:

v =
1

1 + r

P
j:zj>v

zj�j + (1 + �)
P

j:zj�v zj�j

1 + �
P

j:zj�v �j

Let Q = h�j; pjimj=1 be the compound lottery such that for each i, pi =
P

j �jp
j
i . Denote its

value by V (Q). Further let �V := V A � V B. The investor chooses option A if and only if:

�V =
1

(1 + r)2

2666666666666666664

(1 + r)
�
�2 � rC

�| {z }
net present value

�(1 + �)

P
j:V (pj)6min[V (Q);C(1+r)] �j

�
C � V (pj)

(1+r)

�
1 + �

P
j:V (pj)6V (Q) �j| {z }

option value

+ (V (p)� V (Q))| {z }
gradual resolution premium

3777777777777777775

� 0

The �rst component is the regular NPV rule: Invest today if the forgone second-period

pro�ts are larger than the interest gained due to delaying the investment. This would be the

decision criterion in the absence of a signal for the case � = 0, when DM is risk neutral and

simply maximizes the NPV of the investment.

The second component is the �exibility value, or the option value, of delaying the in-

vestment. It re�ects the idea that occupied with more information, DM can refrain from

investing if he learns that the demand is likely to be too low. This term is positive and is

an increasing function of �.

Since Q 2P (p), the last term is the gradual resolution premium, grp (Q): investing

today saves DM the need to be aware of the gradual resolution of uncertainty. This term is

non-negative for � > 0.
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As we mentioned above, if a standard expected utility maximizer prefers to invest in

period two, even under the null-information system, then he clearly does so when the in-

formation system is �ner. However, for strictly positive values of � this is not necessarily

true. For example, suppose � = 1, C = 50, r = 0:1, �2 = 5 and �3i 2 f0; 1000; 2000g. Let
p = 1

3
�0 +

1
3
�1000 +

1
3
�2000, and Q =



�0; 1=3;

1
2
�1000 +

1
2
�2000; 2=3

�
2 P (p). Since �2 = rC, in

the absence of a signal, DM is simply indi¤erent between investing in period 1 and investing

in period 2. The signal is useful in that if the investor learns that the quantity demanded

is zero, he will choose not to invest. Nevertheless, this option value is not su¢ cient to com-

pensate him for the compound lottery he must face in case he chooses to view a signal, and

he strictly prefers option A. Therefore, the NPV rule should be twice adjusted, taking into

account both the second and the third e¤ects.

In the general case, it is not obvious which e¤ect, the option value or PORU, dominates.

Similarly to the assertion in proposition 2, there exists a �nite value �� in which the gradual

resolution premium is maximized.21 This observation implies the following:

(i) There exists �, such that for all � > � the option value is dominant.

(ii) If the option value is dominant at ��, so it is dominant for all � > ��.

(iii) There exists �, such that the option value is dominant for all � 2
�
0; �
�
.

The setting above can be used to distinguish between decision makers with PORU and de-

cision makers who have preferences for early or late resolution of uncertainty. The availability

of an informative signal would induce decision makers with preferences for early resolution

of uncertainty to choose option B. Independently of its instrumental value, a signal leads to

an earlier, yet not complete, resolution of uncertainty. Therefore, the only possible confusion

would be between the behavior of individuals with PORU and individuals who prefer late

resolution of uncertainty. This confusion can be avoided by altering the resolution process

in option A. Suppose that under that option, the uncertainty about period 3 returns would

already have been resolved in period 2. Due to the time neutrality assumption, such a change

has no e¤ect on individuals with PORU. Individuals with preferences for late resolution of

uncertainty, on the other hand, would be worse o¤ under this alternative.

8. Conclusion

Searching for a better understanding of decision-making under risk, and disentangling de-

cision makers� attitude towards risk and time have been two active �elds of research in
21Since lim

�!1
(V (p)� V (Q)) = 0, there exists b� := max

�
�
��(V (p)� V (Q)) j� = �

2

	
and b� <1. Thus

(V (p)� V (Q)) is a continuous function on the compact interval
h
0; b�i, and hence achieves its maximum on

this domain.

28



economics. This paper contributes to both �elds. We study preferences over multi-stage

lotteries and explicitly assume that the way uncertainty is resolved over time matters. Being

exposed to the resolution process bears the risk of perceiving intermediate outcomes as disap-

pointing or elating. Individuals who are more sensitive to disappointment su¤er from getting

partial information and, therefore, strictly prefer ex-ante all uncertainty to be resolved in

a single point in time. Behaviorally, these individuals will display higher risk aversion if

uncertainty is resolved gradually. We formally de�ne such dynamic preferences for one-shot

resolution of uncertainty (PORU), and show that they can be modeled using a single, static

preference relation. Our main result states that to characterize PORU, one needs to impose

on these static preferences a property, negative certainty independence (NCI), which is iden-

ti�ed with Allais-type behavior, the most compelling argument against the independence

axiom. In other words, being prone to Allais-type behavior and being averse to the gradual

resolution of uncertainty are synonymous. This equivalence provides clear predictions for

dynamic preferences, and calls for further experimental testing to be done. Our model also

predicts a speci�c attitude towards information. Although we accommodate situations where

people avoid information that is instrumental to their decision making, perfect information

will never be rejected, and will always be preferred to any other information system.

The frequency with which an individual evaluates lotteries over time is a preference

parameter in our model, and its e¤ect is measured by the gradual resolution premium. The

more often an individual updates information, the more sensitive he is to gradual resolution.

We show that this e¤ect can be quantitatively important, implying extreme degrees of risk

aversion.

If most actual risks that individuals face are resolved gradually over time, then these

risks cannot be compounded into a single lottery and, therefore, the gradual resolution

premium should not be disregarded. Rabin and Thaler [2001] state that "...it is clear that

loss aversion and the tendency to isolate each risky choice must both be key components of a

good descriptive theory of risk attitudes." Our model shows that in an intertemporal context,

both features, and especially the isolation component, can be addressed independently of

studying framing e¤ects.

9. Appendix

9.1. Extension to n-stage lotteries, a formal description

The following is a formal description of any compound lottery, or a probability tree. Let T be

a �nite set of (chance) nodes. Let Bp, "predecessor of", be a partial order on T with x Bp y
if x precedes y. For any node t2 T , let PRE (t) = fx : x Bp tg be the set of predecessors
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of t. For any t; t0 2 T , we say that t is an immediate predecessor of t0, and denote it by
t Bip t0, if t 2 PRE (t0) and @t00 2 PRE (t0) such that t 2 PRE

�
t
00�
. An initial node is any

t 2 T with PRE (t) = ?. A pair (T; Bp) is a tree if it has a single initial node, and if
for all t 2 T , PRE (t) is totally ordered by Bp (so that each node t has no more than one
immediate predecessor).

We say that T is of length n if each complete path in T is of length n. Denote by T k the

set of stage k�s nodes. We have
Sn+1
k=1 T

k = T . A node s is an immediate successor of t i¤

t is an immediate predecessor of s, that is , s Bis t () t Bip s. Let F (t) = fx : x Bis tg.
Let (�t)t2T be a collection of probability distributions, one for each node, over F (t). If

F (z) = ?, we say that z is a terminal node. Denote by T n+1 the set of all terminal nodes.
We identify T n+1 as the set of ultimate prizes. For any k2 f1; 2; :::; ng, we identify t 2 T k

as a compound lottery, starting at time k, of length n+ 1� k. In order to agree with other
notations in the text, we write any such lottery as Qn+1�k (t). Finally, let �l be the set of

lotteries of the following form: For all j 6= l, every t 2 T j is a trivial node (i.e. jF (t)j = 1).
In time l, a certain one-stage lottery is acted out.

Let �n be a complete and transitive binary relation over Ln, on which we impose the
following axioms:

For any l 2 f1; 2; ::; ng, let �lq be the member of �l with the single-stage lottery being q.

A10 : 8q 2 L1 and for all l; l0 2 f1; 2; ::; ng, c �n �l
0
q .

A20 : Fix t� 2 T n. Suppose that for all t 2 T= ft�g, F (t) is the same in both Qn and Qn0. If
Qn yields the lottery q in t� and Qn

0
yields the lottery q0in t�, then Qn �n Qn

0 () �nq �n �nq0.

The implied value of any compound lottery is the following: For any t 2 T n, de�ne

W 1 (Q1 (t)) = V (Q1 (t)), and recursively for k = n� 1; n� 2:::; 1 and for all t 2 T k, let

W n+1�k �Qn+1�k (t)� = V �
�t (s) ; c �Qn+1�(k+1) (s)��s2F (t)�
where c

�
Ql (s)

�
2 X is the certaity equivalent of c

�
Ql (s)

�
Lastly, and using the representation above, we extend the de�nition of PORU to this

richer domain. Let Qn; Qn
0 2 Ln be two compound lotteries that are equal except in one

sub-lottery of length n + 1 � k, k 2 f2; 3; :::; n� 1g that originates from some t� 2 T k.

Formally, for all t 2 T such that t� =2 PRE (t), F (t) is the same in both Qn and Qn0. Denote
the associate (di¤erent) sub-lotteries by Qn+1�kQn (t�) and Qn+1�k

Qn0
(t�), respectively. Let p be
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the lottery that for all s 2 F (t�) gives the prize cV
�
Qn+1�(k+1) (s)

�
with probability �t� (s).

De�ne the set P (p) just as before.

De�nition: �n display PORU if for all Qn; Qn
0 2 Ln and p 2 L1 as described above,

W n+1�k �Qn+1�kQn (t�)
�
= V (p) and W n+1�k �Qn+1�kQn0 (t�)

�
= W (Q2) for some Q2 2 P (p)

imply Qn �n Qn0.

Theorem 1�: under A10;A20;A3, theorem 1 remains intact.

For brevity, we omit the detailed proof. It simply involved a repeated use of A10;A20,

and A3 to transform the problem into the framework of theorem 1.

9.2. Proofs

Proof of theorem 1
De�ne fp (v) =

P
x2S(p) [u (x; v)� v] px. Thus V (p) is the unique solution to fp (v) = 0.

Note that whenever p =
P

i �ip
i we have fp (v) =

P
i �ifpi (v). Since fp (v) = 0 has a unique

solution and for all x 2 (w; b), u (x; V (�w)) > u (w; V (�w)) and u (b; V (�b)) > u (x; V (�b)),

showing that V (p) > V (Q) 8Q 2 P (p) is equivalent to showing that fp(V (Q)) > 0 8Q 2
P (p). To show the latter, we subtract from it 0 =

P
i �ifpi (V (p

i)), which does not change

the expression, and regroup the terms as follows:

fp (V (Q)) =
X

i
�ifpi (V (Q))

=
X

i
�i
�
fpi (V (Q))� fpi

�
V
�
pi
���

=
X

i
�i
X

x2S(pi)

�
(u (x; V (Q))� V (Q))�

�
u
�
x; V

�
pi
��
� V

�
pi
���

pix

=
X

i
�i
X

x2S(pi)

�
u (x; V (Q))� u

�
x; V

�
pi
���

pix +
X

i
�iV

�
pi
�
� V (Q)

=
X

i
�i
X

x2S(pi)
u (x; V (Q)) pix �

X
i
�i
X

x2S(pi)
u
�
x; V

�
pi
��
pix

+
X

i
�iV

�
pi
�
� V (Q)

=
X

i
�i
X

x2S(pi)
u (x; V (Q)) pix �

X
i
�iV

�
pi
�
+
X

i
�iV

�
pi
�
� V (Q)

=
X

i
�i

�X
x2S(pi)

u (x; V (Q)) pix � u
�
c
�
pi
�
; V (Q)

��
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Claim 1:X
i

�i

�X
x2S(pi)

u (x; V (Q)) pix � u
�
c
�
pi
�
; V (Q)

��
> 0 8p and 8Q2 P (p)

i¤

8i;
�X

x2S(pi)
u (x; V (Q)) pix � u

�
c
�
pi
�
; V (Q)

��
> 0 8p and 8Q2 P (p) :

Proof : The "if" part is obvious. For the "only if" part, assume that for some j and for
some v 6= V (pj), u (c (pj) ; v)�

P
x2S(pj) u (x; v) p

j
x > 0. Pick y2 X and �2 (0; 1) such that

V


1;
�
��y + (1� �) �c(pj)

��
= v (by betweenness and continuity, such y and � exist.) Let

Q = h�; �y; (1� �) ; pji (hence V (Q) = v). Finally , let p := ��y + (1� �) pj. Note that
Q2 P (p). By construction we have

fp (v) = (1� �)
�X

x2S(pj)
u (x; v) pjx � u

�
c
�
pj
�
; v
��
< 0

so V (p) < V (Q) :k

Since p was arbitrary, we get the following necessary and su¢ cient condition for PORU:

C1 :

�X
x2S(p)

u (x; v) px � u (c (p) ; v)
�
> 0 8p and 8v 2 V

�
L1
�
:

Claim 2: C1 i¤ for every triple x3 > x2 > x1, the indi¤erence curve through �x2 is the

steepest.

Proof : (only if): Fix x3 > x2 > x1. By continuity, for every such triple there exists a

p 2 (0; 1) such that p�x3 + (1� p)�x1 �1 �x2. Therefore, the vertex (0; 0) that represents the
lottery �x2 and the point (1� p; p) lie on the same indi¤erence curve. This indi¤erence set
is of the original preferences, and hence the value attached to it is V (p�x3 + (1� p)�x1) :=
V (p) = pu (x3; V (p))+ (1� p)u (x1; V (p)) = u (x2; V (p)). By C1, for any other v, if we pass
through (1� p; p) the (arti�cial) indi¤erence curve corresponding to the value v, it must
lie weakly above the curve from the same collection that passes through (0; 0). Since the

betweenness property implies that indi¤erence curves are straight lines (so their slopes are

constant), the result follows.

(if): Take a lottery p with jS (p)j = n � 1 that belongs to an indi¤erence set Iv :=
fp0 :

P
x u (x; v) p

0
x = vg in a (n� 1)-dimensional unit simplex �(n). Assume further that
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for some xv 2 (w; b) with xv =2 S (p), h1; �xvi2 Iv22. By monotonicity and continuity,23 p can
be written as a convex combination �r + (1� �)w, for some � 2 (0; 1) and r; w 2 Iv with
jS (r)j = jS (w)j = n� 2. By the same argument, both r and w can be written, respectively,
as a convex combination of two other lotteries with size of support equal n � 3 and that
belong to Iv. Continue in the same fashion to get an index set J and a collection of lotteries,

fqjgj2J , such that for all j 2 J , jS (qj)j = 2 and qj 2 Iv. Note that by monotonicity, if
y; z 2 S (qj) then either z > xv > y or y > xv > z. By construction, for some �1; :::; �J
with �j > 0 and

P
j �j = 1,

P
j �jq

j = p. Let V (q; v) :=
P

x qxu (x; v). By hypothesis,

V (qj; v0) > u (xv; v0) for all j 2 J and for all v0 2 V (� (n)) and therefore also

V (p; v0) =
X

j
�jV

�
qj; v0

�
=
X

x

X
j
�jq

j
xu (x; v

0)

>
X

j
�ju (xv; v

0) = u (xv; v
0) = u (c (p) ; v0) :k

Claim 3: NCI and C1 are equivalent.

Proof :
C1 !NCI: Assume p �1 �x. Using the observation that for any two lotteries p and

q, V (p) > V (q) is equivalent to fp(V (q)) > 0, we have
P

i pxiu (xi; V (p) > u (x; V (p).

By C1 and monotonicity,
P

i pxiu (xi; v) > u (x; v) for all v, and in particular for v =

V (�p+ (1� �)q).24 Calculating the expected utility of the two lotteries �p + (1 � �)q and
��x+(1��)q relative to the value V (�p+ (1� �)q) and using again the observation above,
establishes the result.

NCI! C1 : Suppose not. Then there exists a lottery p �c(p) withhP
x2S(p) u (x; v) px � u (c (p) ; v)

i
< 0 for some v. Pick y 2 X and � 2 (0; 1) such that

V (�p+ (1� �)�y) = v. We have v < �u (c (p) ; v)+(1��)u (y; v) = V
�
��c(p) + (1� �)�y; v

�
,

or ��c(p) + (1� �)�y �1 �p+ (1� �)�y, contradicting NCI.k

Note that by reversing the inequality in C1 and the weakly-prefer sign in NCI, we derive

the analogous conditions for PGRU.�

22The analysis would be the same, though with messier notations, even if jS(p)j = n, i.e., if x2 S(p).
23These two assumptions guarantee that no indi¤erence set terminates in the relative interior of any

k 6 n� 1 dimensional unit simplex.
24If p � �x, the assertion is evident. Otherwise, we need to �nd p� that is both �rst order stochastically

dominated by p and satis�es p� � �x, and use the monotonicity of u(; v) with respect to its �rst argument.
By continuity such p� exists.
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Proof of theorem 2
Since for expected utility preferences NCI is always satis�ed, it is enough to demonstrate

the result for lotteries with at most 3 prizes in their support.

For x 2 [w; b], denote by V (�x) the unique solution of v = u(x; v). Without loss of

generality, set u(w; v) = 0 and u(b; v) = 1 for all v 2 [0; 1]. Fix v 2 (0; 1). By monotonicity
and continuity there exists x (v) 2 (w; b) such that v = V

�
�x(v)

�
. Take any x > x (v) and

note that � (V jx; x (v) ; w ) =
h

u(x(v);v)
u(x;v)�u(x(v);v)

i
, the slope of the indi¤erence curves on the

space f(pw; px) j pw; px � 0; pw + px � 1g, is continuous and di¤erentiable as a function of v
on [0; V (�x)].

Since v 2 (0; V (�x)), theorem 1 implies that � (V jx; x (v) ; w ) is maximized at v = v. A
necessary condition is:

@

@v

�
u(x (v) ; v)

u(x; v)� u(x (v) ; v)

�
= 0

Or,25 using v = u(x (v) ; v) and denote by ui the partial derivative of u with respect to

its ith argument,

u2 (x (v) ; v) [u(x; v)� v] = [u2(x; v)� u2 (x (v) ; v)] v (1)

Note that by continuity and monotonicity of u(x; v) in its �rst argument, for all x 2
(x (v) ; b) there exists p 2 (0; 1) such that p�w + (1� p) �x �1 �x(v), or u(x; v) (1� p) =
u(x (v) ; v) = v. Therefore, and using again theorem 1, (1) is an identity for x 2 (x (v) ; b),
so we can take the partial derivative of both sides with respect to x and maintain equality.

We get:

u2 (x (v) ; v)u1(x; v) = u21(x; v)v

Since u is strictly increasing in its �rst argument, u1(x; v) > 0 and v > 0. Thus:
u21(x;v)
u1(x;v)

=
u2(x(v);v)

v
= l (v) independent of x, or by changing order of di¤erentiation: @

@v
[lnu1(x; v)] is

independent of x.

Since v was arbitrary, we have the following di¤erential equation on f(x; v) j v < u(x; v)g:

@

@v
[lnu1(x; v)] = l (v)

25second order conditions would be :

u22 (x (v) ; v)

u22 (x; v)
<

v

u (x; v)
(< 1)
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By the fundamental theorem of calculus, the solution of this equation is:

@

@v
[lnu1(x; v)] = l (v)

=) lnu1(x; v) = lnu1(x; 0) +
R v
s=0
l (s) ds

=) u1(x; v) = u1(x; 0) exp
�R v
s=0
l (s) ds

�
=) u(x; v)� u(x (v) ; v) = exp

�R v
s=0
l (s) ds

� Z x

x(v)

u1(t; 0)dt

=) u(x; v)� v = exp
�R v
s=0
l (s) ds

�
(u(x; 0)� u(x (v) ; 0))

Note that the term

exp
�R v
s=0
l (s) ds

�
= exp

�R v
s=0

u2 (x (s) ; s)

s
ds

�
is well de�ned since by the assumption that all derivatives are continuous and bounded and

that u1 > 0, we use L�Hopital�s rule and implicit di¤erentiation to show that the term

lim
s!0

u2 (x (s) ; s)

s
= lim

s!0
u21 (x (s) ; s)x

0 (s) + u21 (x (s) ; s)

= lim
s!0

u21 (x (s) ; s)
1� u2 (x (s) ; s)
u1 (x (s) ; s)

+ u21 (x (s) ; s)

is �nite and hence
�R v

s=0
u2(x(s);s)

s
ds
�
is �nite as well.

To uncover u(x; v) on the region f(x; v) j v > u(x; v)g, �x again some v 2 (0; 1) and

the corresponding x (v) 2 (w; b) (with v = u(x (v) ; v)). Take any x < x (v) and note

that b� (V jb; x (v) ; x) = h
u(x(v);v)�u(x;v)
1�u(x(v);v)

i
, the slope of the indi¤erence curves on the space

f(px; pb) j px; pb � 0; px + pb � 1g, is continuous and di¤erentiable as a function of v on
[V (�x) ; b].

Since v 2 (V (�x) ; b), by using theorem 1 we have:

@

@v

�
u(x (v) ; v)� u(x; v)
1� u(x (v) ; v)

�
= 0

or,

(u2 (x (v) ; v)� u2 (x; v)) [1� v] = �u2(x (v) ; v) [v � u(x; v)] (2)

Using the same argumentation from the former case, (2) holds for all x 2 (w; x (v)), so
we can take the partial derivative of both sides with respect to x and maintain equality. We

get:

�u21 (x; v) [1� v] = u1(x; v)u2(x (v) ; v)
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Since u is strictly increasing in its �rst argument, u1(x; v) > 0 and 1 � v > 0. Thus:
u21(x;v)
u1(x;v)

= �u2(x(v);v)
[1�v] = k (v) independent of x, or by changing order of di¤erentiation:

@
@v
[lnu1(x; v)] is independent of x.

Since v was arbitrary, we have the following di¤erential equation on f(x; v) j v > u(x; v)g:

@

@v
[lnu1(x; v)] = k (v)

Its solution is given by

@

@v
[lnu1(x; v)] = k (v)

=) lnu1(x; 1)� lnu1(x; v) =
R 1
s=v
k (s) ds

=) lnu1(x; v) = lnu1(x; 1)�
R 1
s=v
k (s) ds

=) u1(x; v) = u1(x; 1) exp
�R 1

s=v
k (s) ds

��1
=) u(x; v)� u(x (v) ; v) = exp

�R 1
s=v
k (s) ds

��1 Z x(v)

x

u1(t; 1)dt

=) u(x; v)� v = � [u(x (v) ; 1)� u(x; 1)] exp
�R 1

s=v
k (s) ds

��1
which is again well de�ned since

exp
�R 1

s=v
k (s) ds

�
= exp

�R 1
s=v

� u2 (x (s) ; s)
[1� s] ds

�
and

lim
s!1

� u2 (x (s) ; s)
[1� s] = lim

s!1
u21 (x (s) ; s)x

0 (s) + u21 (x (s) ; s)

= lim
s!1

u21 (x (s) ; s)
1� u2 (x (s) ; s)
u1 (x (s) ; s)

+ u21 (x (s) ; s)

is �nite, and hence the whole integral is �nite.

So far we have:

u(x; v)� v =

8<: [u(x; 0)� u(x (v) ; 0)] exp
�R v

s=0
u2(x(s);s)

s
ds
�

x > x (v)

� [u(x (v) ; 1)� u(x; 1)]
�
exp

�R 1
s=v

� u2(x(s);s)
[1�s] ds

���1
x < x (v)

(3)

We add the following restrictions:
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(i) u(b; v) = 1 for all v 2 [0; 1], which implies:

[1� u(x (v) ; 0)] exp
�R v

s=0

u2 (x (s) ; s)

s
ds

�
= 1� v

(ii) u(w; v) = 0 for all v 2 [0; 1], which implies:

u(x (v) ; 1)

�
exp

�R 1
s=v

� u2 (x (s) ; s)
[1� s] ds

���1
= v

Substituting into (3) to get:

u(x; v)� v =
(
[u(x; 0)� u(x (v) ; 0)] 1�v

[1�u(x(v);0)] x > x (v)

� [u(x (v) ; 1)� u(x; 1)] v
u(x(v);1)

x < x (v)
(4)

We further require:

(iii) Continuity at x = x (v) . This is immediate since

lim
x!�x(v)

(u(x; v)� v) = lim
x!+x(v)

(u(x; v)� v) = 0

(iv) Di¤erentiability at x (v) for all v:

u1(x (v) ; 0)
1� v

[1� u(x (v) ; 0)] = u1(x (v) ; 1)
v

u(x (v) ; 1)

or
u1(x (v) ; 1)

u1(x (v) ; 0)
=
[1� u(x (v) ; v)]
[1� u(x (v) ; 0)]

u(x (v) ; 1)

u(x (v) ; v)
(5)

Let r(x; v) := �u11(x;v)
u1(x;v)

. Given v2 (0; 1), note that

r (x; v) =

(
�u11(x;0)

u1(x;0)
x > x (v)

�u11(x;1)
u1(x;1)

x < x (v)

But since u is continuous and r (x; v) is well de�ned, r (x; v) must be continuous as well.

Therefore, we require:

�u11(x (v) ; 0)
u1(x (v) ; 0)

= �u11(x (v) ; 1)
u1(x (v) ; 1)

and since this is true for any v and the function x (v) is onto, we have for all x 2 (w; b):

�u11(x; 0)
u1(x; 0)

= �u11(x; 1)
u1(x; 1)
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which implies that for some a and b, u(x; 1) = au(x; 0) + b. But u(0; 1) = u(0; 0) = 0 and

u(1; 1) = u(1; 0) = 1, hence, by continuity, b = 0 and a = 1, or u(x; 1) = u(x; 0) := z (x) for

all x 2 [w; b]. Plug into (4) to get:

u(x; v)� v =
(
[z (x)� z (x (v))] 1�v

[1�z(x(v))] x > x (v)

� [z (x (v))� z (x)] v
z(x(v))

x < x (v)
(6)

and into (5) to get:

u1(z (x))

u1(z (x))
= 1 =

[1� v]
[1� z (x (v))]

z (x (v))

v

or
v

z (x (v))
=

[1� v]
[1� z (x (v))] := m (v) (7)

Substituting (7) into (6) we have:

u(x; v)� v = [z (x)� z (x (v))]m (v) (8)

and using the boundary conditions, (i) and (ii), again we �nd that

u(w; v)� v = 0� v = [0� z (x (v))]m (v)

or

v � z (x (v))m (v) = 0 (9)

and

u(b; v)� v = 1� v = [1� z (x (v))]m (v)

or

1 = m (v) + v � z (x (v))m (v) = m (v) (10)

where the second equality is implied by (9). Therefore m (v) = 1 and using (7) and (8) we

have

u(x; v) = z (x)

which implies that the local utility function is independent of v, hence preferences are

expected utility.�

Proof of the su¢ cient conditions for mixed fan
Note that in the two-dimensional probability simplex, an indi¤erence set is de�ned by
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v = px1u(x1; v) + (1 � px1 � px3)u(x2; v) + px3u(x3; v). The slope of an indi¤erence curve
is then given by:@p3

@p1
= u(x2;v)�u(x1;v)

u(x3;v)�u(x2;v) . Using theorem 1, it is evident that the requirementP
u(x; v)px > u(c (p) ; v) is equivalent to having the indi¤erence curve through the (0; 0)

vertex being the steepest. Denote by vi the solution to � (xi; v) � v = 0. By monotonicity,
for any triple x3 > x2 > x1, and for any v2 (v1; v3), V �1 (v)2 L (x3) and V �1 (v) =2 L (x1)
but for the middle prize, x2, both are possible. Let ui denotes the partial derivative of u

with respect to its ith argument. The derivative (with respect to v) at bv of ln
�
dpx3
dpx1

�
is

given by [u2(x2;bv)�u2(x1;bv)]
u(x2;bv)�u(x1;bv) � [u2(x3;bv)�u2(x2;bv)]

u(x3;bv)�u(x2;bv) . By assumptions (1)-(3), if V �1 (bv)2 L (x2), this
term is positive ("fanning out") whereas If V �1 (bv) =2 L (x2), it is negative ("fanning in").
In particular, the indi¤erence curve in the level v = �1 (x2; v) = �

2 (x2; v) is the steepest.�

Proof of proposition 2
Let 4V (� jp; n) :=grp(� jp; n), anb for k = 2; 3; :::; n � 1, denote 4V (� jp; n) with

h (� jp; n) = n� k by 4V (k) (� jp; n). It can be shown that

4V (k) (� jp; n)

= np� (1� p)
� (1� p)k�1

�
��
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
+ pn�k

��
n�2

n�(k+1)
�
� +

�
n�1
n�k
���

+ 1

(1 + � (1� p))
�
�
�Pn�1

j=k�1
�

j
j�(k�1)

�
pj�(k�1)

�
(1� p)k + 1

�
The denominator of 4V (k) (� jp; n) is always positive, whereas the coe¢ cient np� (1� p) is
strictly positive for � > 0. At � = 0 the nominator is equal to 1�

�
n�1
n�k
�
(1� p)k�1 pn�k which

is positive since
�
n�1
n�k
�
(1� p)k�1 pn�k is simply the probability of n�k successes in n�1 trials

of a Bernoulli random variable with parameter p. We then note that the nominator is also

increasing with �. Indeed, this is the case if
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2

n�(k+1)
�
, which is

true since p < 1 and
Pn�(k+1)

j=0

�
j+k�2
j

�
=
�
n�2
n�k�1

�
. Therefore, item (i) is implied. Since � = 0

implies expected utility, the �rst part of item (ii) is immidiate. For the second part of item

(ii), observe that as � increases, the value of the sequential lottery (V (Qn)) is (smoothly)

strictly decreasing and converges to 0, the value of the worst prize in its support. The value

of the one stage lottery (V (bp)) is a¤ected in two ways when � increases: First, given a
threshold h (� jp; n), the value is (smootly) strictly decreasing with �. Second, h (� jp; n)
itself is a decreasing step-function of �. For � large enough, all prizes but 0 are elated and

the value of the lottery is given by
Pn
k=1 (

n
k)pk(1�p)

n�kk

1+�(1�p)n !
�!1

0.

To show the existence of �� (item (iii)), pick �0 > 0 such that grp(�0 jp; n) = � > 0.

Since lim
�!1

grp(� jp; n) = 0, there exists � := max
�
�
��grp (� jp; n) = �

2

	
and � <1. Thus

grp(� jp; n) is a continuous function on the compact interval
�
0; �
�
, and hence achieves its
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maximum on this domain. For single-peakness, we have the following two claims:

Claim 1: 8k = 2; 3; :::; n� 1, 4V (k) (� jp; n) is either strictly increasing or single-peaked on
(0;1).

Proof : By di¤erentiating 4V (k) (� jp; n) with respect to �, one gets:

@

@�
4V (k) (� jp; n)

= np
C�2 +

�
2Apk (1� p)k � 2pn

�
n�2
n�k�1

�
(1� p)k

�
� +

�
(1� p) pk � pn

�
n�1
n�k
�
(1� p)k

�
pk (�� + p� � 1)2

�
B� (�p+ 1)k + 1

�2
Where C is some constant, and A :=

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
.

The roots of @
@�
4V (k) (� jp; n) are the roots of the second-degree polynomial in � that

appears in the nominator.

Evaluated at � = 0, this polynomial is equal to
�
pk � ppk � pn

�
n�1
n�k
�
(1� p)k

�
. Note

that �
pk � ppk � pn

�
n� 1
n� k

�
(1� p)k

�
> 0() 1 >

�
n� 1
n� k

�
pn�k (1� p)k�1

which is true as claimed before.

In addition, the slope of that polynomial at � = 0 is equal to the coe¢ cient of �,

2Apk (1� p)k�2pn
�
n�2
n�k�1

�
(1� p)k, which is positive since

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2
n�k�1

�
.

To summarize, both the slope and the intercept of the polynomial in the nominator are

positive at � = 0. Therefore, if C � 0 then @
@�
4V (k) (� jp; n) has no positive roots, and

otherwise it has exactly one positive root.k
Note that 4V (� jp; n) is a continuous function that is not di¤erentiable in the points

where h (� jp; n) changes. For k = 2; 3; :::; n � 1, let �k;k+1 be the value of � where

h (� jp; n)decreases from (n� k) to (n� (k + 1)). Using the same notations as above, we
claim that at the switch point, the slope of the resolution premium decreases.

Claim 2: lim
�!��k;k+1

@
@�
4V (k) (� jp; n) > lim

�!+�k;k+1

@
@�
4V (k+1) (� jp; n)

Proof: Apart from at � = 0, where 4V (k) (0 jp; n) = 4V (k+1) (0 jp; n) = 0, it can be

shown that the two curves cross at exactly one more point, given by

�k;k+1=
np� (n� k)�Pn�(k+1)

j=0 (n� k � j)
�
j+k�1
j

�
pj
�
(1� p)k+1
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Note that �k;k+1 > 0 i¤ p > n�k
n
. To prove the claim it will be su¢ cient to show that

@
@�
4V (k) (0 jp; n) < @

@�
4V (k+1) (0 jp; n), since this implies that at �k;k+1, 4V (k+1) (� jp; n)

crosses 4V (k) (� jp; n) from above. Now:
@
@�
4V (k) (0 jp; n) = np(p

k�ppk�pn(n�1n�k)(1�p)
k)

pk
and

@
@�
4V (k+1) (0 jp; n) = np(p

k+1�ppk+1�pn( n�1
n�k�1)(1�p)

k+1)
pk+1

so
@

@�
4V (k+1) (0 jp; n ) > @

@�
4V (k) (0 jp; n )

() 1

pk
n (�p+ 1)k pn

�
p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

��
> 0

() p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

�
> 0

() p >

�
n�1

�k+n�1
��

n�1
�k+n

�
+
�

n�1
�k+n�1

� = (n� k)
n

:k

To complete the proof we verify that both claims above are also valid for the two extreme

cases, k = 1 (where only the best prize, n is elation) and k = n (only the worst prize, 0 is

disappointment).

k = 1: Using the same notation as used above we have:

4V (1) (� jp; n) = np�
 
n�2X
j=0

pj

!
(p� 1)2 � + 1

(1 + (1� p) �) (1 + (1� pn) �)

and

@

@�
4V (1) (� jp; n) = n (1� p) (p� pn) (1� ppn) �2 + 2� + 1

(�� + pn� � 1)2 (�� + p� � 1)2
> 0

for all � � 0 so 4V (1) (� jp; n) is strictly increasing with � (claim 1).

For the second claim, similar calculations as above establish that:

@

@�
4V (2) (0 jp; n) > @

@�
4V (1) (0 jp; n)() p >

n� 1
n

so claim 2 follows as well.

k = n:

4V (n) (� jp; n) = np2� (1� p)

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
(1 + � (1� p)) (1 + � (1� p)n)
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Let C =

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
, so:

@

@�
4V (n) (� jp; n) = Cnp2 (p� 1) �2 (1� p)n+1 � 1

(� (�p+ 1)n + 1)2 (�� + p� � 1)2

which is clearly single peaked on (0;1) (claim 1), and, again by similar calculations:

@

@�
4V (n) (0 jp; n) > @

@�
4V (n�1) (0 jp; n)() p >

1

n

which is claim 2.

Combining claim 1 and claim 2 ensures that 4V (� jp; n)is single-peaked on (0;1).�

Proof of proposition 3
We �rst show that the claim is true for any lotteries of the form p�x + (1� p) �y, with

x > y.

Case 1, p = 0:5:

Construct the compund lottery Qn 2 P (0:5�x + 0:5�y) as follows:
In each period Pr ("success") = Pr ("failure") = 0:5.

De�ne:

zi =

(
1 ["success"]

0 ["failure"]
i = 1; 2; 3; ::

The terminal nodes are:

�x if
Pn

i=1 zi >
n
2

0:5�x + 0:5�y if
Pn

i=1 zi =
n
2

�y if
Pn

i=1 zi <
n
2

Claim:
lim
n!1

V (Qn) = V (�y) = � (y)

Proof of claim:We use the fact that Value of the lottery using recursive Gul preferences
and probability 0:5 for "success" in each period is equal to the value of the lottery using

recursive expected utility and probability 0:5
1+�0:5

for "success" in each period.

Since z0is are i.i.d random variables, the weak law of large numbers implies:Pn
i=1 zi
n

p! 0:5

1 + �0:5
< 0:5
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or,

Pr
�Pn

i=1 zi <
n

2

�
! 1

Therefore

V (Qn) = � (x) Pr
�Pn

i=1 zi >
n

2

�
+

0:5� (x) + (1 + �) 0:5� (y)

1 + �0:5
Pr
�Pn

i=1 zi =
n

2

�
+

� (y) Pr
�Pn

i=1 zi <
n

2

�
! � (y)

case 2, p < 0:5:

Take Qn+1 = h2p;Qn; 1� 2p; �yi, with Qn as de�ned above.
case 3, p > 0:5:

Fix " > 0. Using the construction in case 1, obtain QT1 with V
�
QT1
�
2
�
� (y) ; � (y) + "

2

�
.

Re-construct a lottery as above, but replace �y with QT1 in the terminal node. By the same

argument, there exists T2 and V
�
QT1+T2

�
2 (� (y) ; � (y) + "). Note that the underlying

probability of y in QT1+T2 is 0:25. Therefore, by monotonicity, the construction works for

any p < 0:75. Repeat in the same fashion to show that the assertion is true for pk < 3+4k
4+4k

,

k = 1; 2; ::, and note that pk ! 1.k

Now take any �nite lottery
Pm

j=1 pj�xj and order its prizes as x1 < x2 < ::: < xm. Repeat

the construction above for the binary lottery xm�1; xm to make its value arbitrarily close to

� (xm�1). Then mix it appropriately with xm�2 and repeat the argument above. Continue

in this fashion to get a multi-stage lottery over x2; :::; xm with a value arbitrarily close to

� (x2). Conclude by mixing it with x1 and repeat the construction above.�

Proof of proposition 4
It is obvious that (i) is necessary for (ii). To show su¢ ciency, we introduce the interme-

diate lotteries Q and pj, where the compound lottery Q assigns probability �j(�) to pj, and

pj assigns probability pjs to the outcome u (a
� (s) ; s). Clearly, since for each state s and for

any action a we have u (a; s) � u (a� (s) ; s), by monotonicity of the value of a lottery with
respect to the relation of �rst-order stochastic dominance, V (pj�) � V (pj), and hence, by

the same reason, also V p(�) � V (Q).
However, now Q is simply the folding back of the two-stage lottery, which when played

in one-shot is the lottery corresponding to full information structure, I. Thus by (i) we have

that V p(I) � V (Q). Combining the two inequalities establishes the result.
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Similarly, it is obvious that PGRU is necessary for � being the least valuable information

structure. To show su¢ ciency, de�ne V (a; p) as the value of a lottery in which with proba-

bility ps you get the outcome u (a; s). Let a= argmax
a

V (a; p), then V p(�) = V (a; p). Let Q

be a two-stage lottery that assigns probability �j(�) to pj and pj assigns probability pjs to

the outcome u (a; s). By de�nition, V (pj) � V (pj�) for all j, and therefore, by monotonic-
ity, V (Q) � V p(�). However, now Q is simply the folding back of the two-stage lottery,

which when played in one-shot is the lottery corresponding to �.Thus by (i) we have that

V p(�) � V (Q). Combining the two inequalities establishes the result.�
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