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ABSTRACT

In this paper we address the following question: To what extent is the hypothesis

that voters vote “ideologically” (i.e., they always vote for the candidate who is

ideologically “closest” to them) testable or falsifiable? We show that using data

only on how individuals vote in a single election, the hypothesis that voters vote

ideologically is irrefutable, regardless of the number of candidates competing in

the election. On the other hand, using data on how the same individuals vote

in multiple elections, the hypothesis that voters vote ideologically is potentially

falsifiable, and we provide general conditions under which the hypothesis can be

tested.
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1 Introduction

Voting is a cornerstone of democracy and voters’ decisions in elections and referenda are

fundamental inputs in the political process that shapes the policies adopted by democratic

societies. Hence, understanding observed patterns of voting represents an important step

in the understanding of democratic institutions. Moreover, from a theoretical standpoint,

voters are a fundamental primitive of political economy models. Different assumptions about

their behavior have important consequences on the implications of these models and, more

generally, on the equilibrium interpretation of the behavior of politicians, parties and gov-

ernments they may induce.1

The spatial theory of voting, originally formulated by Downs (1957) and Black (1958)

and later extended by Davis, Hinich and Ordershook (1970), Enelow and Hinich (1984) and

Hinich and Munger (1994), among others, is a staple of political economy.2 This theory

postulates that each individual has a most preferred policy or “bliss point” and evaluates

alternative policies or candidates in an election according to how “close” they are to her

ideal. More precisely, consider a situation where at some date a group of voters is facing

some contested elections (i.e., there is at least one election and two or more candidates in

each election). Suppose that each voter has political views (i.e., their bliss point) that can

be represented by a position in some common, multi-dimensional ideological (metric) space,

and each candidate can also be represented by a position in the same ideological space.

According to the spatial framework, in each election, each voter will cast her vote in favor

of the candidate whose position is closest to her bliss point (given the positions of all the

candidates in the election). If this is the case, we say that voters vote ideologically.3

An important question thus is whether in reality voters do vote ideologically based on

their political views, or whether other factors (like for example instrumental considerations,

or their assessment of candidates’ personal characteristics) determine the way individuals

1See, e.g., the survey by Merlo (2006) for a general overview of the implications of alternative theories of

voting in political economy.

2See, e.g., Hinich and Munger (1997).

3In this paper, we ignore the issue of abstention. For recent surveys of alternative theories of voter turnout

see, e.g., Dhillon and Peralta (2002) and Merlo (2006).
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vote. Clearly, this is an empirical question. Given the definition of ideological voting, it

follows immediately that if the positions of all voters and candidates as well as the voting

decisions of all voters were observable, we could then directly assess whether or not the

behavior of each voter in any election is consistent with ideological voting. However, this is

generally not the case. While there exist surveys containing information on how the same

individuals vote in a number of simultaneous elections (e.g., the American National Election

Study, the Canadian National Election Study and the British Election Survey), and data

sets containing measures of the positions of politicians in the ideological space based on their

observed behavior in a variety of public offices (e.g., Poole and Rosenthal (1997) and Hix,

Nouri and Roland (2006)), the ideological positions of voters are not directly observable.4

The relevant empirical question thus becomes: To what extent is the hypothesis that voters

vote ideologically testable or falsifiable (in a Popperian sense)?5 In other words, which kind

of data on candidates’ positions and individuals’ voting behavior would allow a researcher

to potentially falsify and hence possibly reject the hypothesis that voters vote ideologically?

This is the question we address in this paper.

The first result of our analysis is that using data only on how individuals vote in a single

isolated election, the hypothesis that voters vote ideologically is irrefutable, regardless of

the number of candidates competing in the election. Given any configuration of distinct

candidates’ positions, any observed vote is consistent with a voter voting ideologically for

some voter’s ideological position. This result holds for any number of dimensions of the

ideological space.

Second, we show that using data on how the same individuals vote in multiple simul-

taneous elections it is possible in principle to determine whether or not the behavior of

4Note that in order to directly assess whether the behavior of voters is consistent with ideological voting

one would need a consistent set of observations on the ideological positions of all voters and candidates in

the same metric space. Hence, measures of citizens’ self-reported ideological placements that are contained

in some surveys (like, for example, the variable contained in the American National Election Studies, where

voters are asked to place themselves on a 7-point liberal-conservative scale), cannot be used for this purpose,

since, for instance, different people may interpret the scale differently.

5See, e.g., Popper (1935).
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voters is consistent with ideological voting. In other words, the hypothesis that voters vote

ideologically in multiple elections is potentially falsifiable, and we provide conditions under

which the hypothesis can be tested. We show that in general environments where individ-

ual voting decisions and candidates’ positions are observable but voters’ positions are not,

the hypothesis that individuals vote ideologically in multiple elections with any number of

candidates is falsifiable if the number of elections is greater than the number of dimensions

of the ideological space. Given any configuration of distinct candidates’ positions in two or

more simultaneous elections, there always exists at least a voting profile (that is, a vector

of votes by the same individual in all elections) that is not consistent with a voter voting

ideologically in these elections based on any voter’s ideological position.

Finally, we characterize the maximum number of voting profiles that are consistent with

ideological voting as a function of the number of elections, the number of candidates in each

election, and the number of dimensions of the ideological space. All our results are formally

stated in Section 2. In Section 3, we consider several extensions of the basic theoretical

framework and analyze the robustness of our results on the falsifiability of the ideological

voting hypothesis. In Section 4, we then consider an application (voting in U.S. national

elections) and illustrate how existing data can be used to quantify the extent to which,

in environments where the hypothesis is falsifiable, the observed behavior of voters is not

consistent with ideological voting.

Before turning attention to our analysis, some remarks are in order. The general approach

we follow is based on a standard revealed preference argument according to which individual

choices are the result of an optimization problem. Hence, at a general level, our work is

related to the literature on revealed preferences which tries to determine the restrictions

that observed behavior imposes on the structure of preferences, or alternatively the type

of behavior which would represent a violation of basic tenets of the theory of choice. This

literature is quite vast. It originated in the context of consumer theory with the work of

Samuelson (1938, 1948), and was later developed by, among others, Houthakker (1950),

Afriat (1967) and Varian (1982). Their goal is to find necessary and sufficient conditions for

the observed consumer choice data to be the result of the maximization of some well-behaved

utility function subject to a budget constraint. Afriat (1967) characterizes several equivalent
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conditions for the existence of a utility function that rationalizes a finite set of demand

points and provides an algorithm to compute whether such utility function exists. Varian

(1982) shows the equivalence between the Afriat conditions and the generalized axiom of

revealed preferences (GARP), which provides much simpler conditions to verify existence.

In more general settings, Arrow (1959) and Sen (1971) extend the notion of rationalizability

to general choice sets with finitely many alternatives. A recent literature in decision theory

has also addressed the issue of rationalizability of patterns of choices that may violate the

Weak Axiom of Revealed Preferences (WARP).6

Our work is also related to the literature on characteristics models pioneered by Gorman

(1956) and Lancaster (1966). According to these models goods can be described by a finite set

of characteristics and consumers with monotonic preferences over these characteristics must

choose between goods given their budget. The framework we consider can be interpreted as

a characteristics model in that candidates (like goods) are characterized by a combination of

characteristics (their positions on several ideological dimensions), and voters have preferences

over these characteristics. Unlike the consumers in characteristics models, however, the

voters in our framework have satiated preferences and, rather than having a standard budget

set, in any election can only choose a candidate among a finite number of alternatives.

While characteristics models have also been formulated in the context of a discrete choice

framework (see, e.g., McFadden (1973, 1981), Berry, Levinsohn and Pakes (1995), and Berry

and Pakes (2007)), the main focus of this literature has been the estimation of these models

(and in particular the issue of recovering the consumers’ marginal valuations of product

attributes). Recently, Blow, Browning, and Crawford (2008) provide necessary and sufficient

conditions under which data on consumers’ behavior are non-parametrically consistent with

the characteristics model. As explained above, the emphasis of our work is on the issue

of falsifiability. In this respect, our paper is most closely related to the work of Chiappori

and Donni (2006) who analyze the empirical content of Nash bargaining and derive sufficient

conditions on the auxiliary assumptions of the model under which Nash bargaining generates

testable predictions.

6See, e.g., Eliaz and Ok (2006) and Manzini and Mariotti (2007).
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2 Baseline model

Consider a situation where a population of voters N is facing m ≥ 1 simultaneous elec-

tions. Consistent with the spatial theory of voting, there is a common ideological space, Y ,

which is taken to be the k-dimensional Euclidean space (i.e., Y = Rk, k ≥ 1). For any elec-

tion e ∈ {1, ...,m}, let qe = |Je| ∈ {2, ..., q} denote the number of candidates competing in

the election, where Je is the set of candidates. Each candidate j ∈ {∪me=1Je} is characterized

by a distinct position in the ideological space, yj ∈ Y , which is known to the voters.7

Each voter i ∈ N has an ideological position (or bliss point) yi ∈ Y , and her preferences

are characterized by indifference sets that are spheres in the k-dimensional Euclidean space

(or k-spheres), centered around her bliss point.8 It follows that voter i’s preferences over

candidates in election e can be summarized by the utility function

U i
e (je) = uie

¡
d
¡
yi, yje

¢¢
, (1)

where uie (·) is a decreasing function which may differ across voters and elections and d (·, ·) ≥

0 denotes the Euclidean distance (i.e., for any two points x, z ∈ Rk, d (x, z) =

s
kP

r=1

(xr − zr)
2).

Other than monotonicity, we impose no additional restrictions on the uie (·) functions, which

are therefore left unspecified. Given these preferences, a voter i (strictly) prefers candidate

je to candidate ce in election e if d (yi, yje) < d(yi, yce).

For each voter i ∈ N , let vi = (vi1, ..., v
i
m) ∈ V m denote her voting profile, where vie ∈ Je

denotes her voting choice in election e = 1, ...,m, and V m is the set of all possible distinct

voting profiles in the m elections. Hence, i’s voting profile contains the list of candidates

she votes for in the m elections (one for each election). Let v ∈ V m denote a generic voting

profile and note that the number of possible distinct voting profiles in the m elections is

|V m| = Πm
e=1qe.

9

7In Section 3, we consider an environment where voters are uncertain about the candidates’ positions.

8In one dimension, the restriction implies that each voter’s utility function is single-peaked and symmetric.

In Section 3, we consider more general specifications of preferences where the voters’ indifference sets are

ellipsoids in the k-dimensional Euclidean space. When k ≥ 2, such preferences allow for the possibility that
voters may evaluate different ideological dimensions using different weights.

9For example, if there are two elections, 1 and 2, with candidates a1 and b1 competing in election 1,
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Definition 1: Voter i votes ideologically in election e if she votes for the candidate whose

position is closest to her bliss point (i.e., d (yi, yje) < d(yi, yce) for all ce ∈ Je, ce 6= je ∈ Je,

implies that vie = je). Voter i votes ideologically if she votes ideologically in all elections

e = 1, ...,m.

We are interested in determining the conditions under which the hypothesis that voters

vote ideologically is falsifiable. In other words, the main goal of our analysis is to characterize

which type of data a researcher would need to potentially falsify this hypothesis. Clearly,

given individual-level data on voters’ behavior, if a researcher could observe the positions of

electoral candidates as well as the voters’ preferences, the hypothesis that each voter votes

ideologically in each election would be falsifiable. This situation, however, is unrealistic,

since for all practical purposes there do not exist data containing all this information. Hence,

suppose instead that a researcher has access only to limited information, and consider the

best case scenario where the researcher observes the way some individuals vote in each of

m simultaneous elections and the positions of all the candidates in these elections but does

not know the voters’ preferences. Is the hypothesis that voters vote ideologically falsifiable

given such data?

To address this question, we begin by defining the notions of consistency of a voting

profile with ideological voting and of falsifiability of the ideological voting hypothesis that

we use throughout our analysis.

Definition 2: A voting profile v ∈ V m is consistent with ideological voting if there exists

some subset of the ideological space, Y v ⊆ Y = Rk, such that if a voter i’s ideological position

is in that subset ( yi ∈ Y v) and i votes ideologically, then her voting profile vi is equal to v.

If it exists, then Y v is the ideological support of the voting profile v.

Definition 3: The hypothesis that voters vote ideologically is falsifiable if there exists at

least a voting profile v ∈ V m that is not consistent with ideological voting.

Using the terminology of the revealed preference literature we described in the Introduc-

tion, Definition 2 is equivalent to say that a voting profile v is rationalizable by ideological

and candidates a2 and b2 competing in election 2, the set of the four possible voting profiles is V 2 =

{(a1, a2) , (a1, b2) , (b1, a1) , (b1, b2)}.
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voting if and only if we can find an ideological support for v. Following Popper, the notion

of falsifiability we adopt is the logical possibility that an hypothesis can be shown false by

an observation. Hence, as long as there exists a voting profile that is feasible, and thus could

be observed in the data, but is not consistent with ideological voting, the hypothesis that

voters vote ideologically can, in principle, be falsified.

In the analysis that follows, we first consider the case of two-candidate elections, and

then investigate the general case of elections with any number of candidates. Two-candidate

elections have a prominent role in political economy, since they are the norm in two-party

political systems like, for example, the U.S. Furthermore, the analysis of two-candidate

elections allows us to obtain some stronger results and at the same time it helps to clarify

some of the issues that arise in the more complex environments with multiple candidates.

2.1 Two-candidate elections

Consider the case where there are m ≥ 1 simultaneous two-candidate elections (i.e.,

qe = 2 for all e = 1, ...,m). For each election e ∈ {1, ...,m}, let yje , yce ∈ Y = Rk, yje 6= yce,

denote the ideological positions of the two candidates je, ce ∈ Je in the election, and let

He =
©
y ∈ Y : d (y, yje) = d(y, yce)

ª
be the set of points in the ideological space Y that are

equidistant from the candidates’ positions.

Since d (·, ·) is the Euclidean distance, it follows that for each election e there exists a

non-zero vector λe = (λe1, ..., λ
e
k) ∈ Rk and a scalar μe ∈ R such that

He = {y ∈ Y : λey0 = μe} , e = 1, ...,m, (2)

where y0 denotes the transpose of y = (y1, ..., yk).10 Hence, each election e = 1, ...,m implies

a hyperplane He in Rk which partitions the ideological space Y into two regions (or half

spaces),

Y je = {y ∈ Y : λey0 < μe}

and

Y ce = {y ∈ Y : λey0 > μe} ,
10Note that λe and μe only depend on yje and yce .
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where Y je (Y ce) is the set of ideological positions that are closer to the position of candidate

je (ce) than to the position of the other candidate, or equivalently, is the ideological support

of voting for candidate je (ce) in election e.11

It follows that the collection of them hyperplanes implied by them elections, {H1, ...,Hm},

partitions the ideological space Y into rm ≤ 2m convex regions, where each region is the ide-

ological support of a distinct voting profile v ∈ V m. Since in the case of two-candidate

elections the number of possible distinct voting profiles is |V m| = 2m, it follows that the

hypothesis that voters vote ideologically in two-candidate elections is falsifiable if and only

if rm < 2m.

We can now state our first set of results.12

Proposition 1: In two-candidate elections, the hypothesis that voters vote ideologically is

falsifiable if the number of elections m is strictly larger than the number of dimensions of

the ideological space k. Otherwise, the hypothesis is generically not falsifiable.

Corollary 1: The hypothesis that voters vote ideologically in a single election with two

candidates is not falsifiable regardless of the number of dimensions of the ideological space

(i.e., for all k ≥ 1).

Since each hyperplane He only depends on the positions of the candidates in election e

and these positions are observable, we can calculate whether or not each voting profile is

consistent with ideological voting. Hence, the conditions for falsifiability of the ideological

voting hypothesis in Proposition 1 and Corollary 1 apply to each individual voter.

In order to illustrate the result that in two-candidate elections the hypothesis that voters

vote ideologically is falsifiable only if the number of elections is larger than the number

of dimensions of the ideological space, consider an example in the two-dimensional space,

Y = R2. In this case, each election implies a line that partitions the plane into two regions

and generically the lines implied by any two elections must intersect.13

11Note that Y je ∩ Y ce = ∅ and Y je ∪ Y ce ∪He = Y .

12All proofs are contained in the Appendix. The proof of Corollary 1 follows directly from the proof of

Proposition 1 and is therefore omitted.

13While there exist configurations of candidates’ positions such that these lines would be parallel (a case

that would occur, for example, if the pair of candidates’ positions in one election is a linear transformation
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Figure 1 depicts a situation where there are three elections e = 1, 2, 3, the set of candidates

in each election is Je = {ae, be}, and the candidates’ ideological positions yae and ybe are

such that the region to the left of each line He is closer to the position of ae than to that of

be for each election e. Several observations emerge from this figure. If we consider any single

election e ∈ {1, 2, 3} in isolation (i.e., m = 1), then it is obvious that each voting profile

v ∈ {ae, be} is consistent with ideological voting (since the two half planes determined by

He are the ideological supports of ae and be, respectively). This is also true if we consider

any pair of elections e, f ∈ {1, 2, 3}, e 6= f , (i.e., m = 2), since He and Hf partition the

ideological space in four regions that represent the ideological supports of each of the four

possible voting profiles (ae, af), (ae, bf), (be, af), and (be, bf). However, when we consider the

three elections all together (i.e., m = 3), we see that H1, H2 and H3 partition the ideological

space in only seven regions, while there are eight possible voting profiles. In this example,

there do not exist ideological positions such that the voting profile (a1, b2, a3) is consistent

with ideological voting (that is, there does not exist an ideological support for (a1, b2, a3)).

It is should also be clear from the example that increasing the number of elections, while

keeping the number of ideological dimensions constant, would increase the number of voting

profiles that are inconsistent with ideological voting and, hence, the theoretical possibility of

refuting the theory. The following proposition characterizes the upper bound on the number

of voting profiles that are consistent with ideological voting (i.e., the number of regions rm)

as a function of the number of elections m and the number of dimensions of the ideological

space k.14

Proposition 2: In two-candidate elections, the maximum number of voting profiles that are

consistent with ideological voting depends on the number of elections m and on the number

of the pair of candidates’ positions in another election), this case is non generic.

14The issue we are considering corresponds to the problem of counting the number of regions in arrange-

ments of hyperplanes in k-dimensional Euclidean space. This problem has been extensively studied in

computational and combinatorial geometry (see, e.g., Orlik and Terao (1992)), and Proposition 2 follows

from a general result that was first proved by Buck (1943).
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of dimension of the ideological space k and is equal to

ρ(m,k) =
kX
t=0

µ
m

t

¶
. (3)

Note that if the number of elections m is smaller than or equal to the number of dimen-

sions of the ideological space k, Proposition 2 implies that

ρ(m,k) =
mX
t=0

µ
m

t

¶
= 2m

and this bound is generically attained (Proposition 1). If, on the other hand, m > k, then for

example in a two-dimensional ideological space with three, four, and five elections, we have

that ρ(3, 2) = 7, ρ(4, 2) = 11, and ρ(5, 2) = 16, respectively. This implies that when there are

three elections at most 7 out of the 8 possible voting profiles are consistent with ideological

voting; when there are four elections at most 11 out of the 16 possible voting profiles are

consistent with ideological voting; and when there are five elections the maximum number

of voting profiles that are consistent with ideological voting is 16 out of 32 possible profiles.

2.2 Multi-candidate elections

Consider now the general case where the number of candidates may vary across elections

and any election may have more than two candidates (i.e., qe ∈ {2, ..., q}, e = 1, ...,m). For

each election e ∈ {1, ...,m}, and position yje ∈ Y = Rk of a generic candidate je ∈ Je in the

election, let Y je = {y ∈ Y : d (y, yje) < d(y, yce),∀ce ∈ Je, ce 6= je} be the set of points in

the ideological space Y that are closer to yje than to the position of any other candidate in

the election.

Since d (·, ·) is the Euclidean distance, it follows that for each pair of candidates in election

e, je, ce ∈ Je, the set of points in the ideological space Y that are equidistant from yje and

yce is a hyperplane Hje,ce , which partitions the ideological space Y into two regions (or half

spaces), Y je
ce
and Y ce

je
= Y \{Y je

ce
∪Hje,ce}, where Y je

ce
is the set of ideological positions that

are closer to the position of candidate je than to the position of candidate ce and vice versa

for the set Y ce
je . Hence, for each candidate je ∈ Je, Y je is the intersection of the half spaces

determined by the qe − 1 hyperplanes {Hje,ce}ce∈Je\je (i.e., Y je = ∩ce∈Je\jeY je
ce
). Note that
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for all candidates je ∈ Je and all elections e ∈ {1, ...,m}, Y je is non empty and convex.15

Hence, each election e ∈ {1, ...,m} implies a partition T e of the ideological space Y into

qe convex regions, {Y je}je∈Je , where each region Y je is the ideological support of voting

for candidate je in election e.16 For each election e ∈ {1, ...,m}, the set T e = {Y je}je∈Je

defines what in computational and combinatorial geometry is called a Voronoi tessellation

of Rk and each region Y je, je ∈ Je, is a k-dimensional Voronoi polyhedron.17 Figure 2

illustrates an example of the Voronoi tessellation that corresponds to an election with 5

candidates, {a, b, c, d, e}, with positions {ya, yb, yc, yd, ye} in the two-dimensional ideological

space Y = R2, and introduces some useful terms.

It follows that the collection of them tessellations implied by them elections, {T 1, ..., Tm},

partitions the ideological space Y into rm ≤ Πm
e=1qe convex regions, where each region is the

ideological support of a distinct voting profile v ∈ V m. Since in the general case where

the number of candidates may vary across elections the number of possible, distinct voting

profiles is |V m| = Πm
e=1qe, it follows that the hypothesis that voters vote ideologically is

falsifiable if and only if rm < Πm
e=1qe.

We can now state our second set of results.

Proposition 3: The hypothesis that voters vote ideologically in a single election with any

number of candidates is not falsifiable regardless of the number of dimensions of the ideological

space (i.e., for all k ≥ 1).

Proposition 3 generalizes Corollary 1. In order to illustrate the result consider the fol-

lowing example in the two-dimensional space, Y = R2. Figure 3 depicts a situation where

there is a single election e = 1, and the set of candidates in the election is J1 = {a1, b1, c1}.

Given the candidates’ ideological positions, ya1, yb1 , and yc1 , for each j1 ∈ J1, Y j1 is the

ideological support of voting for candidate j1 in the election. Hence, it follows immediately

that each voting profile v ∈ V 1 = {a1, b1, c1} is consistent with ideological voting. In fact, it

should be clear that this result holds for any number of candidates, any distinct candidates’

15Also, note that Y je only depends on
¡
y1e , ..., yqe

¢
.

16Note that Y je ∩ Y ce = ∅ for all je, ce ∈ Je, je 6= ce, and ∪je∈Je{Y je ∪ce∈Je\je H
je
ce
} = Y .

17For a comprehensive treatment of Voronoi tessellations and their properties, see, e.g., Okabe et al. (2000).
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positions, and any number of dimensions of the ideological space.

Proposition 4: In elections with any number of candidates, the hypothesis that voters vote

ideologically is falsifiable if the number of elections m is larger than the number of dimensions

of the ideological space k.

Note that each tesselation T e only depends on the positions of the candidates in election

e, which are observable. This implies that we can calculate whether or not each voting

profile is consistent with ideological voting. Hence, as with Proposition 1, the condition for

falsifiability in Proposition 4 applies to each individual voter.

Since the hypothesis that voters vote ideologically is always falsifiable when the number

of elections is greater than the number of dimensions of the ideological space, regardless of

the number of candidates in each election, Proposition 4 extends the result of the first part of

Proposition 1. However, for the case where 1 < m ≤ k, while the hypothesis is generically not

falsifiable when each election has two candidates, when there are more than two candidates

in at least one election, this is no longer the case. In fact, there exist configurations of

candidates’ positions, {yj}j∈{∪me=1Je}, such that the hypothesis that voters vote ideologically

is falsifiable, and configurations such that the hypothesis is not falsifiable.

In order to illustrate this result consider the following example in the two-dimensional

space, Y = R2. Suppose that in addition to election 1 depicted in Figure 3, there is a second

election with two candidates (i.e., e ∈ {1, 2}, q1 = 3 and q2 = 2). The set of candidates in

election 2 is J2 = {a2, b2}, and the candidates’ ideological positions are such that for each

j2 ∈ J2, Y j2 is the ideological support of voting for candidate j2 in election 2. Figures 4 and

5 depict two possible situations that correspond to different configurations of the positions

of the two candidates in election 2. As we can see from Figure 4, of the six possible voting

profiles in elections 1 and 2, (a1, a2), (a1, b2), (b1, a2), (b1, b2), (c1, a2), and (c1, b2), only five

have an ideological support in Y . In this example, there do not exist ideological positions

such that the voting profile (a1, b2) is consistent with ideological voting (that is, there does

not exist an ideological support for (a1, b2)). However, this is not the case in Figure 5,

where there exists an ideological support for each of the six possible voting profiles in the

two elections. Each one of the two cases illustrated in Figures 4 and 5 is robust to small

perturbations of the candidates’ positions, and is therefore generic. Similar examples can
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be constructed for any combination of the number of candidates in two or more elections as

long as there is at least one election with more than two candidates.

When the ideological space is either one- or two-dimensional (i.e., k ≤ 2), we can also

characterize the upper bound on the number of voting profiles that are consistent with

ideological voting (i.e., the number of regions rm), as a function of the number of elections

m and the number of candidates in each election, q1, ..., qm.18

Proposition 5: In elections with any number of candidates, the maximum number of voting

profiles that are consistent with ideological voting depends on the number of candidates in

each election; if the ideological space is uni-dimensional, it is equal to

τ 1(q1, ..., qm) = 1 +
mX
e=1

(qe − 1) ; (4)

if the ideological space is two-dimensional, it is equal to

τ 2(q1, ..., qm) = 1 +
mX
e=1

"
(qe − 1)

Ã
1 +

mX
f=e+1

(qf − 1)
!#

. (5)

Note that if there is only one election, τ 1(q1) = τ 2(q1) = q1, and if there are two elections,

τ 1(q1, q2) = q1+ q2− 1 < τ 2(q1, q2) = q1q2. Furthermore, when there are more than two elec-

tions, τ 1(q1, ..., qm) < τ 2(q1, ..., qm) < Πm
e=1qe, and the number of voting profiles that are not

consistent with ideological voting increases both with the number of elections and with the

number of candidates in an election. For example, if the ideological space is two-dimensional,

then if there are three elections and three candidates in each election, τ 2(3, 3, 3) = 19 (i.e.,

at most 19 out of the 27 possible voting profiles are consistent with ideological voting); if

there are four elections each with three candidates, τ2(3, 3, 3, 3) = 33 (i.e., at most 33 out of

the 81 possible voting profiles are consistent with ideological voting); and if there are three

elections, two of which have three candidates and one with four candidates, τ2(3, 3, 4) = 24

(i.e., at most 24 out of 36 possible voting profiles are consistent with ideological voting).19

18The issue we are considering corresponds to the problem of counting the number of regions in arrange-

ments of Voronoi tessellations in k-dimensional Euclidean space. This problem has not yet been studied in

computational and combinatorial geometry, and there are no known results in the literature.

19As in the case of two-candidate elections, given the configuration of candidates’ positions, we can also

determine which profiles are not consistent with ideological voting.
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3 Extensions

In this section, we consider several extensions of the basic framework of Section 2 and

analyze the robustness of our results on the falsifiability of the ideological voting hypoth-

esis. We begin by generalizing the specification of voters’ preferences. We then consider

an environment where electoral candidates also differ with respect to (non-spatial) personal

characteristics that are valued by the voters, and one where voters are uncertain about the

candidates’ positions.

3.1 Voters’ preferences

The utility specification in the baseline model (equation (1)) assumes that voters evaluate

the relative distance of candidates’ positions from their bliss point according to the (simple)

Euclidean distance. This implies that all the dimensions of the ideological space are equally

important (or salient) in all elections for all voters. A more general specification is that the

preferences of a generic voter i over candidates in election e are summarized by the utility

function

U i
e (je) = uie

³
dW

i
e
¡
yi, yje

¢´
, (6)

where uie (·) is a decreasing function which may differ across voters and elections, and

dW
i
e (·, ·) ≥ 0 denotes the weighted Euclidean distance with weighting matrix W i

e which

may also differ across voters and elections (i.e., for any two points x, z ∈ Rk, dW (x, z) =p
(x− z)0W (x− z), where W is a k × k, symmetric and positive definite matrix).20 Ac-

cording to the spatial theory of voting, the main diagonal elements of the weighting matrix

W i
e (salience terms) measure the relative importance of the ideological dimensions to voter i

in election e, while the off-diagonal elements (interaction terms) describe the way in which i

makes trade-offs between them (see, e.g., Hinich and Munger (1997)). As before, we impose

no additional restrictions on the uie (·) functions, which are therefore left unspecified.

Given these preferences (that are characterized by indifference sets that are ellipsoids in

the k-dimensional Euclidean space, centered around the bliss point yi), a voter i (strictly)

prefers candidate je to candidate ce in election e if dW
i
e (yi, yje) < dW

i
e(yi, yce). Hence, i

20If the weighting matrix is equal to the identity matrix (i.e., W = I), the weighted Euclidean distance

reduces to the (simple) Euclidean distance.
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votes ideologically in election e if she votes for the candidate whose position is closest to

her bliss point according to the distance dW
e
i (i.e., dW

e
i (yi, yje) < dW

e
i (yi, yce) for all ce ∈ Je,

ce 6= je ∈ Je, implies that vie = je).

For each election e ∈ {1, ...,m} with any number of candidates qe ∈ {2, ..., q}, and for

any weighting matrix W , let

Y je (W ) = {y ∈ Y : dW
¡
y, yje

¢
< dW (y, yce),∀ce ∈ Je, ce 6= je} (7)

be the set of points in the ideological space Y that are closer to yje than to the position of

any other candidate in the election according to the distance dW . Given the definition of dW ,

similar to the case of the simple Euclidean distance considered in Section 2 above, it follows

that for any given weighting matrix W , for each pair of candidates in election e, je, ce ∈ Je,

there exists a non-zero vector λje,ce (W ) =
³
λje,ce1 (W ) , ..., λje,cek (W )

´
∈ Rk and a scalar

μje,ce (W ) ∈ R such that the set of points in the ideological space Y that are equidistant from

yje and yce according to dW is a hyperplane Hje,ce (W ) =
©
y ∈ Y : λje,ce (W ) y0 = μje,ce (W )

ª
.

This hyperplane partitions the ideological space Y into two regions (or half spaces), Y je
ce
(W )

and Y ce
je
(W ) = Y \{Y je

ce
(W ) ∪Hje,ce (W )}, where Y je

ce
(W ) is the set of ideological positions

that are closer to the position of candidate je than to the position of candidate ce according

to dW (vice versa for Y ce
je
(W )). Hence, for each candidate je ∈ Je, for any given weighting

matrixW , Y je (W ) is an intersection of the half spaces determined by the qe−1 hyperplanes

{Hje,ce (W )}ce∈Je\je (i.e., Y je (W ) = ∩ce∈Je\jeY je
ce
(W )), which is non empty and convex.

Hence, for any W , each election e ∈ {1, ...,m} implies a Voronoi tessellation T e (W ) of the

ideological space Y into qe convex regions, {Y je (W )}je∈Je, where each region Y je (W ) is the

ideological support of voting for candidate je in election e based on the distance dW .

It follows that if the weighting matrices W i
e ’s are allowed to differ across elections and

across voters in an unrestricted fashion, the hypothesis that voters vote ideologically is

falsifiable only if these matrices are known for all voters and all elections. In fact, if a

researcher observes the W e
i ’s, then Propositions 1-5 still apply. The only difference in the

analysis is that from the point of view of the researcher (who still does not observe the

voters’ ideological positions yi’s), for each election, each voter is described by a different

Voronoi tessellation. If, on the other hand, the weighting matricesW i
e ’s are not known (as it
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is reasonable to assume since they are part of the voters’ preferences), then the hypothesis

that voters vote ideologically is not falsifiable, since it is always possible to find a weighting

matrix for each election and a voter’s ideological position such that any voting profile is

consistent with ideological voting.

There exist, however, restrictions on the weighting matricesW i
e ’s such that the ideological

voting hypothesis is still falsifiable even when these matrices are not known. In particular,

if the weighting matrices are allowed to differ across voters but are constant across elections

(i.e., W i
e = W i for all e = 1, ...,m), then Propositions 1-5 still apply. In fact, whether or

not an ideological support exists for any given voting profile is based on the solution of a

system of linear inequalities (see the proofs of Propositions 1-5 in the Appendix). Hence, if

all the inequalities are multiplied by the same positive definite matrix the result about the

existence or non existence of an ideological support for any voting profile remains the same

and is therefore independent of the weighting matrix.

To illustrate this point, consider a generic voter with weighting matrix W . Since W

is a symmetric, positive definite matrix, using the Cholesky decomposition we have that

W = LL0, where L is a lower triangular matrix with strictly positive diagonal elements.

Hence, given the definition in (7), the ideological support for voting for a generic candidate

je in election e based on the distance dW is equal to

Y je (W ) =

½
y ∈ Y :

q
(y − yje)W (y − yje)0 <

q
(y − yce)W (y − yce)0,∀ce ∈ Je, ce 6= je

¾
=

n
y ∈ Y :

¡
y − yje

¢
LL0

¡
y − yje

¢0
<
¡
y − yce

¢
LL0

¡
y − yce

¢0
,∀ce ∈ Je, ce 6= je

o
=

n
y ∈ Y :

¡
yL− yjeL

¢ ¡
yL− yjeL

¢0
<
¡
yL− yceL

¢ ¡
yL− yceL

¢0
,∀ce ∈ Je, ce 6= je

o
.

If we let ey = yL, we have that the ideological support for voting for a generic candidate je

in election e in the transformed space is

eY je =
ney ∈ eY : ¡ey − eyje¢ ¡ey − eyje¢0 < ¡ey − eyce¢ ¡ey − eyce¢0 ,∀ce ∈ Je, ce 6= je

o
=

ney ∈ eY : d ¡ey, eyje¢ < d(ey, eyce),∀ce ∈ Je, ce 6= je
o
,

where d is the (simple) Euclidean distance.21 Since the weighting matrix for a voter is

the same in all the elections, the same linear transformation applies to all the Voronoi

21Note that since L is a lower triangular matrix, eY = Y = Rk.

16



tessellations that correspond to them elections faced by the same voter. Furthermore, for any

pair of candidates je and jf in two different elections e and f , whether Y je (W )∩Y jf (W ) = ∅

or Y je (W )∩Y jf (W ) 6= ∅ does not depend on W .22 It follows that the analysis of Section 2

extends directly to the case where the preferences over candidates in election e of a generic

voter i are described by the utility function U i
e (je) = uie

³
dW

i
(yi, yje)

´
and the individual-

specific weighting matrices W i’s are not known.

Another restriction on the weighting matricesW i
e ’s, which allows us to obtain some useful

(though weaker) results on the falsifiability of the ideological voting hypothesis when these

matrices are not known, is to impose that they are constant across voters although they may

differ across elections (i.e., W i
e = We for all i ∈ N). It should be clear from our previous

discussion that most of the analysis of Section 2 also applies to this case. For any given

We, each election implies a Voronoi tessellation T (We) and if the number of elections m is

larger than the number of dimensions of the ideological space k then for any set of weighting

matrices {W1, ...,Wm} the collection of the m tessellations, {T 1 (W1) , ..., T
m (Wm)}, always

partitions the ideological space Y into fewer regions than the number of distinct voting

profiles. However, if the weighting matrices {W1, ...,Wm} are not known we can no longer

determine which profiles do not have a sincere support, since, unlike in the previous case,

these profiles now depend on the weighting matrices.

To illustrate this point, consider the following example inR2. Figures 6 depicts a situation

where there are three elections e = 1, 2, 3, the set of candidates in each election is Je =

{ae, be}, and W1 = W2 = W3 = I. Figure 7 depicts the same situation except that W1 =⎡⎣ 10 0

0 1

⎤⎦. As we can see from these figures, in both cases H1 (W1), H2 (W2) and H3 (W3)

partition the ideological space in only seven regions, while there are eight possible distinct

voting profiles. However, while in Figure 6 there does not exist an ideological support for

(a1, b2, a3), in Figure 7 the voting profile for which there does not exist an ideological support

22If it exists, the intersection of polyhedral convex sets is also a polyhedral convex set. Theorem 19.3 in

Rockafellar (1970, p. 174) states that for any linear transformation A from Rn to Rm, AC is a polyhedral

convex set in Rm for each polyhedral convex set C in Rn, and A−1D is a polyhedral convex set in Rn for

each polyhedral convex set D in Rm.
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is (b1, a2, b3).

It follows that for the case where the preferences over candidates in election e of a generic

voter i are described by the utility function U i
e (je) = uie

¡
dWe (yi, yje)

¢
and the election-

specific weighting matrices We’s are not known Propositions 2, 3 and 5 still hold. However,

since in this environment we can only determine the maximum number of voting profiles that

are consistent with ideological voting, but not which profiles are inconsistent with ideological

voting, the hypothesis that each individual voter votes ideologically is not falsifiable. Instead,

the only hypothesis that can be potentially falsified is that all voters vote ideologically, and

the following results (which are weaker versions of Propositions 1 and 4) apply.23

Proposition 6: In two-candidate elections, the hypothesis that all voters vote ideologically

is falsifiable if the number of elections m is larger than the number of dimensions of the

ideological space k. If m ≤ k, the hypothesis is generically not falsifiable.

Proposition 7: In elections with any number of candidates, the hypothesis that all voters

vote ideologically is falsifiable if the number of elections m is larger than the number of

dimensions of the ideological space k.

Note that simply observing more distinct voting profiles in the data than the maximum

number of voting profiles that are consistent with ideological voting would prove the hypoth-

esis that all voters vote ideologically false, but would give us no indication of which voting

behavior is inconsistent with ideological voting or of the number of voters whose behavior is

inconsistent with ideological voting.

3.2 Candidates’ characteristics

Another important extension of our framework is to consider the possibility that electoral

candidates differ not only with respect to their positions in the ideological space, but also

with respect to (non-spatial) personal characteristics, such as “valence” or “charisma” which

are valued equally by all voters. In particular, suppose that each candidate j ∈ {∪me=1Je}

is characterized by a distinct position in the ideological space, yj ∈ Y , and by a valence

23The proofs of Propositions 6 and 7 are straightforward and are therefore omitted. Note that here we are

implicitly considering a situation where the data on voters’ behavior contain at least as many observations

as the number of possible distinct voting profiles. Otherwise, the hypothesis cannot be falsified.
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parameter, θj ∈ R, which are known to the voters, and that the preferences of a generic

voter i over candidates in election e are summarized by the utility function

U i
e (je) = −

¡
d
¡
yi, yje

¢¢2
+ θje. (8)

This linear-quadratic specification is widely used in the political economy literature (see,

e.g., Enelow and Hinich (1984)).

According to these preferences, the set of points in the ideological space such that a

voter with ideological position in this set is indifferent between voting for a candidate with

position yje and valence θje or voting for a candidate with position yce and valence θce is

still a hyperplane which partitions the ideological space into two regions.24 All voters with

ideological positions in one region strictly prefer to vote for one candidate, and all voters

with ideological positions in the other region strictly prefer to vote for the other candidate.

This implies that the geometric representation of elections based on Voronoi tessellations

which we used throughout our analysis also applies for the preferences given in (8).25 It

follows that Propositions 1-5 also extend to this case, in the sense that they provide general

conditions for the falsifiability of the hypothesis that individuals “vote their preferences” as

specified in (8), for each individual voter. This conclusion clearly hinges on the availability

of data on candidates’ valence. If, on the other hand, the researcher does not observe the

valence parameters θj’s for all j ∈ {∪me=1Je}, the situation is analogous to the one in Section

3.1 where the weighting matrices in the voters’ preferences differ across elections but not

across voters, and the researcher does not know them. In this case, Propositions 2, 3, 5, 6

and 7 still hold, again in the sense that they provide general conditions for the falsifiability

of the hypothesis that all individuals “vote their preferences” as specified in (8).

The analysis can also be extended to an environment where voters are uncertain about

the candidates’ positions. Suppose that in each election e = 1, ...,m, the voters’ (common)

24Note that this result does not hold for other decreasing functions of the weighted Euclidean distance, since

for general uie (·) functions the indifference condition between any pair of candidates would not characterize
a hyperplane in the ideological space.

25The literature on spatial tessellations refers to Voronoi tessellations under this alternative metric as

“power diagrams” (see, e.g., Okabe et al. (2000, p. 128)).
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perception of any candidate je’s position, je ∈ Je, on the rth ideological dimension, r =

1, ..., k, is byje
r
= yjer +ε

je
r , where y

je
r is the true position and ε

je
r is an estimation (or perception)

error with mean zero and variance (σjer )
2, and the preferences of a generic voter i over

candidates in election e are summarized by the utility function

U i
e (je) = −

¡
d
¡
yi, yje

¢¢2
. (9)

This environment has often been studied in the voting literature (see, e.g., Alvarez (1998)).

In this framework, voter i casts her ballot in election e in favor of the candidate associated

with the highest expected utility, where the expected utility of voting for candidate je is

equal to

E[U i
e (je) |byje ] = −E

"
kX

r=1

¡byje
r
− εjer − yir

¢2 |byje# = − kX
r=1

¡byje
r
− yir

¢2 − kX
r=1

(σjer )
2

= −
¡
d
¡
yi, byje¢¢2 + ρje,

where ρje = −
Pk

r=1(σ
je
r )

2 is analogous to a negative valence parameter. It follows that if

the ρje’s differ across the candidates in election e (i.e., the estimates of the positions of some

candidates are more precise than those of others), then the analysis is identical to the one of

the previous case where voters know the true candidates’ positions and candidates also differ

with respect to their valence. If, on the other hand, the distribution of perception errors is

the same for all the candidates in the same election (i.e., ρje = ρe for all je ∈ Je), then this

environment is equivalent to the baseline, and all the results of Section 2 apply directly.

4 An application: evidence from U.S. national elections

In the previous two sections, we have characterized general conditions under which the

hypothesis that voters vote ideologically is in principle falsifiable. In this section, we provide

an application of the theoretical framework, and illustrate how we can use existing data to

assess empirically the extent to which, in environments where the hypothesis is falsifiable,

the observed behavior of voters is not consistent with ideological voting.

Our goal is to analyze an individual-level data set on how a sample of individuals vote

in a number of simultaneous elections, determine whether the behavior of each individual is

consistent with ideological voting, and obtain an estimate of the lower bound of the fraction
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of voters who do not vote ideologically. Hence, in our illustrative application we assume that

the preferences over candidates in election e of a generic voter i are described by the utility

function U i
e (je) = uie

³
dW

i
(yi, yje)

´
, and without further loss of generality let W i = I for all

voters.

We focus on national elections in the United States between 1970 and 2000. It is impor-

tant to stress, however, that the same analysis can also be replicated for other countries, or

other types of elections, or other time periods for which there are available data. Since, as

shown in Section 2, this empirical analysis is meaningful only if we have access to data on

how individuals vote in multiple elections, we consider the situation faced by U.S. voters in a

presidential election year (henceforth, an election year), where presidential and congressional

elections occur simultaneously.26 In any election year, U.S. voters elect the President and, at

the same time, each voter faces an election that determines the representative of his or her

district in the House of Representatives.27 Some voters also face a Senate election in their

state.28 Each election is typically contested by two candidates belonging to the Democratic

and the Republican party, respectively.29

Since the set of candidates competing for a seat in the House of Representatives is different

26In the United States, citizens are called to participate in national elections to elect the President and

the members of Congress. While congressional elections occur every two years, the time between presidential

elections is four years. We refer to an election year where both presidential and congressional elections occur

simultaneously as a presidential election year.

27Citizens who reside in the District of Columbia do not elect a House representative but only a congres-

sional delegate.

28Senate elections are staggered, and in any given election year, there are elections to the U.S. Senate in

approximately one third of the states. In addition, many voters also face other local elections and referenda.

Since data on how individuals vote in these elections is typically not available, we do not consider them here.

29In some elections a single candidate runs uncontested. Occasionally, a third, independent candidate

also runs. However, data on the positions of independent candidates are not available and it is not clear

how to assign an ideological position to a third party’s candidate. In fact, the procedure we describe below

to deal with missing positions of Democratic or Republican candidates cannot be used in this case due to

the extremely limited number of candidates who are elected to Congress from third parties. In addition,

the presence of such candidates, although feasible, would complicate the calculations. Given the illustrative

nature of the exercise, we therefore restrict attention to Democratic and Republican candidates only.
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in each congressional district, our unit of analysis is the district. In a generic election year t,

a voter i residing in district h ∈ {1, ..., 435} and state s ∈ {1, ..., 50} faces a House election.

Let Jh
t denote the set of candidates competing in the House election in congressional district

h at time t. Like all other voters in the nation, voter i also faces a presidential election, and

let Jp
t denote the set of presidential candidates at time t. If a Senate seat is up for election

in state s at time t, then voter i also faces a Senate election, where the set of candidates is

Js
t . Hence, in any given district h = 1, ..., 435 in state s = 1, ..., 50, a voter i is facing either

two or three simultaneous elections, and vi =
¡
vip, v

i
h

¢
or vi =

¡
vip, v

i
h, v

i
s

¢
denotes i’s voting

profile, where vie ∈ Je
t indicates how voter i votes in election e = p, h, s.30 For example, a

voter facing three elections may vote for the Democratic candidate in each of the elections, or

vote for the Democratic presidential candidate and the Republican candidates in the House

and Senate elections, and so on.

The data we use for our empirical analysis come from two sources. The first source is the

American National Election Studies (NES), which for each election year contains individual

voting decisions in presidential and congressional elections of a nationally representative

sample of the voting age population. In addition, the NES contains information on the

congressional district where each individual resides, the identity of the Democratic and the

Republican candidate competing for election in his or her congressional district, and, in the

event that a Senate election is also occurring in his or her state, the identity of the candidates

competing in the Senate race.31

The second source of data is the Poole and Rosenthal NOMINATE Common Space

Scores. Using data on roll call voting by each member of Congress and support to roll

call votes by each President, Poole and Rosenthal developed a methodology to estimate the

30Recall that here we are ignoring abstention, and only consider the way in which voters vote. For a recent

study of the empirical implications of alternative models of voter turnout, see, e.g., Coate and Conlin (2004).

In Degan and Merlo (2007), we structurally estimate a model of participation and voting in U.S. national

elections.

31The NES is available on-line at http://www.umich.edu/~nes. For thorough discussions of potential

limitations of the survey data in the NES see, e.g., Anderson and Silver (1986) and Wright (1993). Note,

however, that the NES represents the best and most widely used source of individual-level data on electoral

participation and voting in the U.S.
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positions of all politicians who ever served either as Presidents or members of Congress, in a

common two-dimensional ideological space (see, e.g., Poole (1998) and Poole and Rosenthal

(1997, 2001)). These estimates, which are comparable across politicians and across time, are

contained in their NOMINATE Common Space Scores data set.32

We restrict attention to the period 1970-2000, and consider seven election years: 1972,

1976, 1980, 1984, 1988, 1996, and 2000.33 For each year, Table 1 contains the number of

observations in the NES sample of individuals who reported how they voted in the presi-

dential and House elections, as well as in the sub-sample of individuals who were also facing

a senatorial election in their state, and reported how they voted in the presidential, House,

and Senate elections.34

For each of the seven years we consider, we match each voter in the NES sample with

the positions of the presidential candidates, as well as (when available) the positions of the

House candidates running in his or her congressional district and the positions of the Senate

candidates running in his or her state, if applicable. Consistent with the general environment

described in Section 2, we assume that the voters know the positions of all candidates in

all the elections they face. These positions, however, may or may not be observable to

the econometrician. The NOMINATE datasets, for example, only contain estimates of the

positions of politicians who have been elected to Congress. Hence, the positions we observe

are those of all the incumbents and of the challengers who where either in Congress at some

previous date or were eventually elected to Congress by 2006 (the last year for which the

NOMINATE Scores are available).

32This data set is also available on-line at http://voteview.com. For a discussion of potential limitations of

the methodology proposed by Poole and Rosenthal see, e.g., Heckman and Snyder (1997). For a comparison

of alternative estimation procedures see Clinton, Jackman and Rivers (2004). Note, however, that none of

the other procedures has been used to generate a comprehensive data set similar to the one by Poole and

Rosenthal.

33The NES data for the election year 1992 contains a mistake in the variable that identifies the con-

gressional district of residence of the individuals in the sample (see ftp://ftp.nes.isr.umich.edu/ftp/nes/

studypages/1992prepost/int1992.txt). Hence, it cannot be used for the purpose of our analysis.

34Obviously, we only consider congressional elections that are contested, and observations for which the

voters’ district and state of residence are not missing.
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For all presidential candidates, and all congressional candidates for whom we have an

entry in the Poole and Rosenthal data set, we assume that their position is given by their

NOMINATE score.35 To determine the positions of all other congressional candidates for

whom a NOMINATE score is not available we need to introduce further assumptions. The

procedure we use is similar in spirit to the one used by Blow, Browning, and Crawford (2008)

in the context of the estimation of a characteristics model. When faced with the problem

of assigning a value for unobserved prices, they chose to treat missing prices as unknown

parameters and search for values so that the constructed data satisfy the conditions of

the model. While in their setting there is no a priori restriction on prices apart from non-

negativity, in the application we consider we believe it is appropriate to let the possible

values taken by the policy positions of candidates in Congress to differ by Chamber, party

and region. Therefore, we assume that the position of a Democratic (Republican) candidate

for the House (Senate) is restricted to be one of the NOMINATE scores of Democratic

(Republican) members of the House (Senate) in the same election year, in the U.S. region

where the candidate is competing.36

For the cases where we observe the positions of all the candidates competing in the

elections faced by the voters residing in a district, we can directly assess whether each

observed individual voting profile in those districts is consistent with ideological voting. For

each case where we do not observe the position(s) of some candidate(s) competing in the

elections faced by the voters residing in a district, we use the following procedure. If the

35Note that Michael Dukakis, the Democratic presidential candidate in 1988, who at the time was the

governor of Massachusetts, is the only presidential candidate during the period we consider for whom there

is no entry in the Poole and Rosenthal data set. Following Gaines and Segal (1988), we approximate Dukakis’

position in the ideological space with that of the Democratic Massachusetts senator in 1988 (Ted Kennedy).

36We consider four different regions: Northeast, South, Midwest and West. Alternative ways of construct-

ing the empirical distributions are also possible. Note, however, that it would be unfeasible to characterize a

separate empirical distribution for each party in each state (let alone district) in each year, since the number

of representatives or senators of either party in each state in any given year is too small. Alternatively, since

the first dimension of the NOMINATE score is the liberal-conservative scale we could have only imposed

that in any given election the Democratic candidate has a position on the first dimension of the ideological

space to the left of the Republican.
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district belongs to a state without a Senate election or with a Senate election in which

both candidates positions are observed, we take as measure of the missing position of the

House candidate the “best” position. That is, among all the admissible positions for the

candidate we take the one that leads to the highest number of profiles that are consistent

with ideological voting. If the district belongs to a state with a Senate election where we do

not observe the position of one of the candidates in that election, say candidate js, we repeat

the above procedure for all the districts in state s, for each possible value of candidate js’s

position yjs. We then take as measure of yjs the position that leads to the highest number of

voting profiles that are consistent with ideological voting in the districts belonging to that

state. Hence, our procedure provides an estimate of the lower bound of the fraction of voters

whose observed voting behavior is not consistent with ideological voting.37

In order to perform these calculations, we need to specify the number of elections m

we consider, and the number of dimensions of the ideological space k (where it has to be

the case that m > k). We begin by ignoring Senate elections, and evaluate the extent

to which the observed voting behavior of all individuals in the NES samples who voted in

the presidential and House elections is consistent with ideological voting when we restrict

attention to a unidimensional liberal-conservative ideological space.38 We then take into

consideration that while some voters only face the presidential and a House election, some

voters also face a Senate election, and evaluate the extent to which the observed behavior of

voters in presidential and congressional (House or House and Senate) elections is consistent

with ideological voting, while still maintaining the assumption of a unidimensional ideological

space. Finally, we restrict attention to the sub-samples of individuals in the NES who voted

in three elections (presidential, House, and Senate), and perform our calculations for the

37An alternative procedure would be to assume that a candidate’s position is a draw from the empirical

distribution of positions of legislators of the same party, for the same office, for the same year and region.

In that case, one would have to calculate the probability that a voting pattern is consistent with ideological

voting by integrating over the relevant distribution of positions of the candidate.

38In particular, we only consider the first dimension of the Poole and Rosenthal NOMINATE scores. Note

that according to Poole and Rosenthal (1997; p.5), “from the late 1970s onward, roll call voting became

largely a matter of positioning on a single, liberal-conservative dimension.”
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case where the ideological space is two-dimensional.39 Table 2 contains our results, where

each column corresponds to one of the three scenarios.

As we can see from the first column in Table 2, ideological voting is consistent with most

of the individual-level observations on voting behavior in presidential and House elections

in the data. Its worst “failure” amounts to the inability of accounting for 5.1% of the

observations in 1980. Overall, by combining all the samples in the seven election years we

consider, we have that only 3.3% of the observed individual voting profiles are not consistent

with ideological voting.40

Columns 2 and 3 in Table 2 help us to assess the robustness of these findings with respect

to the choice of the number of elections and the number of dimensions of the ideological space.

From the analysis in Section 2, we know that given the number of dimensions of the ideolog-

ical space, an increase in the number of elections increases the number of voting profiles that

cannot be rationalized by a voter voting ideologically in these elections. This increases the

extent to which the hypothesis that voters vote ideologically may fail to explain the data.

Consistent with this result, we find that increasing the number of elections while maintaining

the dimensionality of the ideological space fixed, worsens the empirical performance of the

ideological-voting hypothesis (Column 2). Nevertheless, under the maintained assumption

that the ideological space is unidimensional, over 92% of the observed individual voting pro-

files in presidential and congressional (House or House and Senate) elections between 1970

and 2000 are still consistent with ideological voting. Moreover, in a two-dimensional ideo-

logical space, the hypothesis that voters vote ideologically in presidential and congressional

(House and Senate) elections only fails to account for less than 1% of the observations in

39Recall that the hypothesis that voters vote sincerely in presidential and House elections only is not

falsifiable if k = 2.

40Note that “errors” of this magnitude would be within the margin of tolerance if one were to allow for

sampling (or measurement) error. One potential source of measurement error in the data, for example, is

that individuals in the NES samples may be assigned to the wrong congressional district (a possibility that

arises whenever the location where an individual is interviewed does not correspond to his or her permanent

residence). Another source of measurement error consists of treating the NOMINATE scores (which are

point estimates of legislators’ positions) as the true positions. When standard errors of these estimates are

available, it would be possible to bootstrap standard errors associated with the results reported in Table 2.
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each of the seven election years we consider (Column 3). All the caveats we pointed out

before not withstanding, we conclude that the observed behavior of voters in U.S. national

elections can be interpreted as being mostly consistent with ideological voting.

5 Concluding Remarks

Do people vote based on ideological considerations? In this paper, we have provided

general conditions under which the hypothesis that voters vote ideologically can be falsified.

A key result of our analysis is that, when voters’ ideological positions are not observed,

falsifiability of the ideological-voting hypothesis hinges on the availability of data on how

individuals vote in multiple elections. Furthermore, the number of elections has to be greater

than the number of dimensions of the ideological space. Given the dimensionality of the

ideological space, the larger the number of elections, the larger the number of voting profiles

that are not consistent with a voter voting ideologically in these elections. Hence, the larger

the number of elections for which there are data on how individuals vote in each election,

the higher the possibility of “rejecting” the ideological voting hypothesis.

To conclude, it should be stressed that, as noted for example by Sproumont (2000) and

Hausman (1992), some sort of stability of preferences is necessary for the analysis of the

empirical content of any theory, which requires fixed preferences over changing choices. In

our context, such stability amounts to assuming that voters’ bliss points are constant across

elections.
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Appendix

Proof of Proposition 1: Let qe = 2 for all e ∈ {1, ...,m}. We first show that for all k ≥ 1

and m ≥ 1, if Y = Rk and m ≤ k, then generically rm = 2
m. The reason why the result

is true is that if m ≤ k then the intersection of the m hyperplanes H1, ...,Hm defined in

(2) is generically non-empty. Hence, each hyperplane He, e ∈ {1, ...,m}, partitions each of

the 2m−1 regions in Rk given by the intersections of the half spaces determined by the other

m− 1 hyperplanes in two.

Formally, the hyperplanes H1, ...,Hm in Rk define a system of m linear equations in k

variables

Λy0 = μ, (10)

where

Λ =

⎡⎢⎢⎢⎣
λ11 · · · λ1k
...

...

λm1 · · · λmk

⎤⎥⎥⎥⎦ ,
and

μ =

⎡⎢⎢⎢⎣
μ1
...

μm

⎤⎥⎥⎥⎦ .
Since generically the vectors λe = (λe1, ..., λ

e
k), e = 1, ...,m, are linearly independent, the rank

of Λ is equal to m. Hence, for m ≤ k a solution to the system of linear equations (10) exists

and the dimension of the space of solutions is k−m. In particular, when m = k the unique

solution to (10) is a point in Rk where all the hyperplanes H1, ...,Hk intersect.

Next, we show that for all k ≥ 1, if Y = Rk and m > k, then rm < 2m. Given the m

hyperplanes H1, ...,Hm defined in (2), consider an arbitrary collection containing k of these

hyperplanes. From the previous part of the proof we know that generically a collection of

k hyperplanes partitions Rk into 2k regions. Since each hyperplane can at most partition

each region in two, in order to prove that rm < 2m it is enough to show that adding another

hyperplane to the collection can never partition Rk into 2k+1 regions. In other words, an

additional hyperplane cannot partition all of the 2k regions given by the intersections of the

half spaces determined by k other hyperplanes.
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Without loss of generality, consider the collection of k hyperplanes, H1, ...,Hk. Let

y∗ ∈ Rk denote the intersection of H1, ..., Hk, that is

y∗0 = Λ−1k μk

is the unique solution to

Λky
0 = μk,

where

Λk =

⎡⎢⎢⎢⎣
λ11 · · · λ1k
...

...

λk1 · · · λkk

⎤⎥⎥⎥⎦ ,
and

μk =

⎡⎢⎢⎢⎣
μ1
...

μk

⎤⎥⎥⎥⎦ .
Consider the linear transformation

x0 = Λky
0 − μk (11)

that maps Y into X (where Y = Rk and X = Rk). This transformation maps each hy-

perplane Hj in Y , j = 1, ..., k, into the jth coordinate of X, and y∗ into the origin of X.

Furthermore, it maps each hyperplane Hh in Y , h = k + 1, ...,m, into a hyperplane Zh in

X, Zh =
©
x ∈ X : βhx0 = γh

ª
, where βh = λhΛ−1k and γh = μh − λhΛ−1k μk. Without loss

of generality, suppose that βk+1 > 0 and γk+1 > 0. Then, for all x < 0, βk+1x0 < γk+1,

which implies that the hyperplane Zk+1 does not partition the negative orthant of X. This

implies that the hyperplane Hk+1 does not partition the region in Y that corresponds to the

negative orthant of X under the linear transformation (11). It follows that for any collection

of k < m hyperplanes, there always exists at least a region in Y given by some intersection

of the half spaces determined by these hyperplanes that is not partitioned by some other

hyperplane. ¥
Proof of Proposition 2: Proposition 2 follows from a general result in combinatorial geom-

etry on the maximum number of regions in arrangements of hyperplanes in k-dimensional
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Euclidean space. The proof we report here is an adaptation of a proof by Edelsbrunner

(1987; pp. 8-10).

Let H = {H1, ..., Hm} denote the collection of the m hyperplanes defined in (2), which

defines a partition of Rk into connected objects of dimensions 0 through k, called an arrange-

ment A (H) of H. We use the term vertex to denote a 0-dimensional object in A (H) (that

is, a point generated by the intersection of k hyperplanes), and refer to an l-dimensional

object in A (H), 1 ≤ l ≤ k, as an l-region. We are interested in characterizing the maximum

number of k-regions in an arrangement A (H), ρ(m,k).

For m ≤ k the first part of the proof of Proposition 1 implies that

ρ(m,k) = 2m =
mX
t=0

µ
m

t

¶
=

kX
t=0

µ
m

t

¶
.

Hence, we only need to prove the case m > k. The proof is by induction on the number of

dimensions of the ideological space, k. The assertion is trivial in one dimension, where m

points–that is, 0-dimensional hyperplanes–partition R into at most m+ 1 intervals–that

is, 1-regions (where the “at most” qualifier follows from the fact that although the positions

of all candidates are distinct, the mid-points between any pairs of candidates, one pair in

each election, may coincide). Thus, assume that the assertion holds for all dimensions less

than k.

Any k hyperplanes intersect in at most one point in Rk (and generically in exactly one

point). Hence, A (H) contains dw
e ≤

¡
m
k

¢
vertices. Consider a new hyperplane

h (s) =
©
y ∈ Rk : y1 = s

ª
that sweeps through A (H) as the parameter s varies from −∞ to +∞. Without loss of

generality assume that no hyperplane in H is vertical and that no two vertices in A (H)

share the same y1-coordinate. Let s1 < s2 < · · · < sdwe be the y1-coordinates of the dw
e

vertices in A (H). We say that vertex i, i = 1, ..., dw
e
, lies behind h (s) if si < s, and that a

k-region lies behind h (s) if the y1-coordinates of all the points in the region are less than s.

Let As (H) denote the intersection of A (H) with h (s). Hence, As (H) is an arrangement

of m hyperplanes in Rk−1, which by induction hypothesis contains at most ρ(m,k − 1)
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(k − 1)-regions, where

ρ(m,k − 1) =
k−1X
t=0

µ
m

t

¶
.

Furthermore, each (k − 1)-region in As (H) is contained in a unique k-region of A (H).

To complete the proof we count the number of k-regions in A (H) that either lie behind

or intersect the hyperplane h (s) as it sweeps through A (H) (that is, as s varies from −∞ to

+∞). Clearly, when s = −∞, no k-region lies behind h (s), when s1 < s < s2 one k-region

lies behind h (s), and as h (s) passes each other vertex in A (H), one more k-region lies

behind h (s). During the entire sweep, h (s) passes dw
e
vertices, which implies that at most¡

m
k

¢
k-regions lie behind h (s), and for s > sdwe the remaining k-regions in A (H) intersect

h (s). It follows that

ρ(m, k) =

µ
m

k

¶
+

k−1X
t=0

µ
m

t

¶
=

kX
t=0

µ
m

t

¶
. ¥

Proof of Proposition 3: The proof follows directly from the observation that for a generic

election e, the set Y je (we) for each candidate je ∈ Je is a Voronoi polyhedron, which is

always non empty. Hence, an election partitions Y into qe convex regions, where each region

is the ideological support of the vote for a different candidate in the election. ¥
Proof of Proposition 4: Since qe ≥ 2 for all e = 1, ...,m, consider an arbitrary pair of

candidates in each election. Given this subset of 2m candidates, Proposition 1 implies that

if m > k, there must exist at least one combination of m candidates, one for each election,

such that the voting profile corresponding to that combination of candidates is not consistent

with ideological voting. This establishes the result. ¥
Proof of Proposition 5: For the case where k = 1, the derivation of τ 1(q1, ..., qm) is

straightforward and follows directly from the observation that each election e = 1, ...,m,

with qe ∈ {2, ..., q} candidates implies (qe − 1) points that partition the line into qe regions.

Hence, starting from the case of no elections, where the number of regions in R is 1, adding

each election e = 1, ...,m one at the time increases the number of regions by at most (qe − 1).

Now consider the case where k = 2. Then each election e ∈ {1, ...,m} defines a Voronoi

diagram in the plane with qe regions. Note that, given any collection of Voronoi diagrams

that partitions the plane into Q regions, if we superimpose an additional diagram with qj
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regions, the total number of regions becomes Q + (qj − 1) + n, where n is the number of

intersection points of the edges of the additional Voronoi diagram with the edges of the other

diagrams.

Let the union of the edges of the Voronoi diagram defined by election e be denoted by Ue,

e = 1, ...,m. Then for each pair of elections, e, f ∈ {1, ...,m}, e 6= f , the cardinality n of the

intersection of Ue and Uf is at most (qe − 1)(qf − 1). To see that this is the case, note that

the number of regions in the superimposition of the two Voronoi diagrams is at most qeqf .

But, as noted above, it is also equal to qe+(qf − 1)+n. It follows that n ≤ (qe− 1)(qf − 1).

Starting with the Voronoi diagram defined by election e = 1, superimposing the remaining

m− 1 Voronoi diagrams defined by elections 2, ...,m one at the time, we obtain a number of

regions rm that is at most

q1 + (q2 − 1) + (q2 − 1) (q1 − 1) + (q3 − 1) + (q3 − 1) (q1 − 1 + q2 − 1)

+ · · ·+ (qm − 1) + (qm − 1) (q1 − 1 + · · ·+ qm−1 − 1)

or, equivalently,

1 +
mX
e=1

"
(qe − 1)

Ã
1 +

mX
f=e+1

(qf − 1)
!#

. ¥
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FIGURE 1: Three 2-candidate elections in a two-dimensional ideological space 
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FIGURE 2: The Voronoi tessellation corresponding to a 5-candidate election 
in a two-dimensional ideological space.  
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FIGURE 3: A 3-candidate election in a two-dimensional ideological space  
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FIGURE 4: An example of a 3-candidate election and a 2-candidate election 
in a two-dimensional ideological space where the hypothesis that voters vote 
ideologically is falsifiable   
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FIGURE 5: An example of a 3-candidate election and a 2-candidate election 
in a two-dimensional ideological space where the hypothesis that voters vote 
ideologically is not falsifiable   
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FIGURE 6: Three 2-candidate elections in a two-dimensional ideological space 
with weighting matrices W1

 = W2 = W3
 = I 
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FIGURE 7: The same three 2-candidate elections as in Figure 6 in a two-
dimensional ideological space with weighting matrices W1

 = [10 1]’.*I and 
W2 = W3

 = I 
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TABLE 1: Number of observations 
 

Year 
Number of voters in 

presidential and 
House elections 

Number of voters in 
presidential, House 
and Senate elections 

1972 1121   515 
1976   968   561 
1980   641   440 
1984 1046   575 
1988   797   590 
1996   885   490 
2000   782   565 

Overall 6240 3736 
 
 
 
 
 
 
 

TABLE 2: Percentage of observations consistent with ideological voting 
 

Year 

Voters in presidential 
and House elections 

(unidimensional space)
 

Voters in presidential and 
House, or presidential, House 

and Senate elections 
(unidimensional space) 

Voters in presidential, 
House and Senate 

elections 
(two-dimensional space)

1972 96.5% 91.4%   99.2% 
1976 96.2% 91.0%   99.6% 
1980 94.9% 90.7%   99.5% 
1984 96.5% 92.3%   99.8% 
1988 98.4% 92.1%   99.7% 
1996 96.2% 92.7% 100.0% 
2000 98.1% 95.6%   99.8% 

Overall 96.7% 92.2%   99.7% 
 
 
  
 




