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Abstract

This paper studies inference in a continuous time game where an agent’s decision to quit an activity depends on

the participation of other players. In equilibrium, similar actions can be explained not only by direct influences but

also by correlated factors. Our model can be seen as a simultaneous duration model with multiple decision makers

and interdependent durations. We study the problem of determining the existence and uniqueness of equilibrium

stopping strategies in this setting. This paper provides results and conditions for the detection of these endogenous

effects. First, we show that the presence of such effects is a necessary and sufficient condition for simultaneous

exits. This allows us to set up a nonparametric test for the presence of such influences which is robust to multiple

equilibria. Second, we provide conditions under which parameters in the game are identified. Finally, we apply the

model to data on desertion in the Union Army during the American Civil War and find evidence of endogenous

influences.
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1. Introduction

In this paper we set up a continuous time model to describe a multi-person decision problem of

timing coordination. Individual strategies are exit (or entry) times to a certain activity such as

when to join a social welfare program, desert from an army or emigrate to a different region. After

characterizing the equilibrium for such a situation, we assess the empirical implications of the

model in the presence of direct strategic effects of a player’s action on other agents’ choices. The

main finding is that such endogenous effects are necessary and sufficient for simultaneous exits

with positive probability in the proposed environment. This has consequences for the statistical

treatment of such settings and for inference. We also show that in this model the number of play-

ers impacts observed (equilibrium) outcomes only in the presence of endogenous effects. We then

devise a test for the existence of endogenous effects taking into account the fact that time is not

observed continuously but at discrete intervals. The paper subsequently analyzes circumstances

under which parameters of interest are identified. Finally, we illustrate the application of these

tools with an analysis of desertion in the Union Army during the American Civil War.

It is difficult to explain why agents behave similarly when they do so. Individuals may

act similarly in response to correlated shocks or genuinely in reaction to each other’s actions —

a legitimate endogenous effect.1 We analyze a situation in which agents take a binary action and

choose the timing for such an action. Crucially, correlated behavior may arise through correlated

effects or through a direct impact on others.

One reason to properly account for endogenous effects is that they might have different

implications for policy than correlated effects. Endogenous effects may create “social multipliers”

and blow up the effect of other factors determining behavior.2 This may significantly alter the

choice of treatments in policy-relevant situations like crime reduction, welfare program partici-

pation or immigration. Imagine, for instance, a situation in which agents choose when to join a

certain welfare program. A person’s timing may be determined by common factors or directly

by the timing of other agents’ decisions (or both). If the participation of one’s reference group

— the endogenous effect — is a sufficiently strong determinant for an agent’s choice, one could

concentrate efforts on a subgroup of the community and hope to affect the remaining members

as the focus group joins the targeted activity. If on the other hand the main driver is common

shocks that provoke participation, a policy-maker may prefer to identify and directly act on such

defining variables.

1Manski (1993) provided a clear categorization for the possible causes of similarities in behavior and coined

the expression “reflection problem” to characterize the difficulties in separating endogenous and other social and

correlated effects.
2For a recent exposition on this issue, see Glaeser and Scheinkman (2002).
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Manski (1993) notes that the identification of endogenous social effects in a static context is

difficult. Nevertheless, the introduction of dynamics allows for identification if group actions influ-

ence individuals with a lag. In this paper, even though the distinction between contemporaneous

and adjacent periods in a continuous time environment becomes negligible as the two coalesce,

the endogenous effects can still be identified since the relevant payoff variables are assumed to

evolve smoothly (according to a diffusion process). Hence this article identifies a particular class

of environments for which the identification question can be solved. The adequacy of our as-

sumptions will depend on the particular empirical application at hand. In particular, the diffusive

behavior of state variables is an important consideration. Examples of empirical analyses (with a

focus on individual decision making) where state variables are traditionally modeled via diffusion

processes can be found, for instance, in Dixit and Pindyck (1994) and include applications such

as investment in offshore oil reserves and participation in securities markets. Building intuition

for continuous time settings as limits of discrete time environments, Merton (1990) (Chapter 2)

provides conditions under which per period discrete time innovations produce continuous sample

paths in continuous time.3 In fact, traditional discrete time dynamic discrete choice models with

normal preference shocks would in the limit (as frequency increases) produce diffusive utility pro-

cesses (e.g., the works surveyed in Eckstein and Wolpin (1989)). Consequently, at high enough

frequency those models are well approximated by continuous time models where the state variable

of interest — the utility process — evolves continuously and the adequacy of the discrete time

analog would imply the appropriateness of our model. It is important to bear in mind though that

our methodology provides no “silver bullet” and its suitability should be determined in accordance

with the application.

In a timing framework, statistical inference typically involves survival analysis or duration

models. Whereas standard statistical duration models could be employed to identify the existence

of hazard dependence among agents (as indeed is done in Costa and Kahn (2003) and Sirakaya

(2001) and suggested in Brock and Durlauf (2001)), it is still unclear whether such effects are

primarily due to endogenous influences or to correlated unobservables. In contrast, our model

clearly separates both channels and lays out the circumstances under which each of these sources

is individually identifiable. Another issue that arises in the particular setting we study — timing

problems — is that endogenous effects generate simultaneous actions with positive probability in

continuous time. This is an outcome that does not occur in standard duration models. Failure to

properly account for such phenomena may bias estimation and misguide inference.4

3In Merton’s characterization, continuous sample paths arise even when certain types of “rare events” are

allowed.
4See, for instance, van den Berg, Lindeboom, and Ridder (1994).
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Applications for the above tools comprise all those circumstances that focus on timing

coordination and would involve “duration”-type models with multiple agents. One may cite, for

instance, participation in a social welfare program, stock market participation (Hong, Kubik, and

Stein (2004)), migration (Orrenius (1999)) and even crime recidivism (see, for instance, the em-

pirical investigation by Sirakaya (2001), where social interactions are found to meaningfully affect

recidivism among individuals on probation).

This paper contributes to the econometric literature on social interactions. At the same

time, it borrows standard tools used in the finance and investment literatures. We review the

relevant literature in the following subsection.

1.1. Literature Review

In this paper we provide a model for timing coordination. Early references to such situations can

be found for instance in Schelling (1960), which discusses the timing of mob formation. Our paper

also relates to the threshold models of collective behavior in Granovetter (1978), for which “the

costs and benefits to the actor of making one or the other choice depend in part on how many oth-

ers make which choice.” Although that paper focuses on the binary nature of the actions taken, a

timing element exists in many of the examples gathered (diffusion of innovations, strikes, leaving

social occasions, migration and riot formation). We formalize these ideas using tools of continuous

time probability models in which individuals choose an optimal timing strategy to quit (or join)

a certain activity. Our theoretical model is also connected to the one developed in Mamer (1987)

for a discrete time setting and in a different framework.5 As a result, our model is in the family

of stochastic differential games — continuous time situations in which the history is summarized

by a certain state-variable. This literature is more concerned with zero-sum games, whereas we

focus on situations involving coordination elements. Our theoretical model can also be related to

the continuous time game presented in Hopenhayn and Squintani (2004). In their case the payoff

flows evolve discontinuously, whereas in our case the utility flow is continuous with probability

one. This distinction diminishes the role of beliefs with respect to the opponent players in our

case and turns out to be an important simplifying element in our analysis. As is outlined later in

the paper, the continuity of payoff flows is also a crucial identifying assumption once we focus on

the empirical content of the model.

In simple contexts it is usually difficult to separate endogenous effects from other social

forces (Manski (1993)). This difficulty explains our search for structure in the context under

analysis. We consider a continuous time model in which utility evolves smoothly. The continuous

5In his paper this author is mostly concerned with research and development investment applications in which

firms have complementary decisions.
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time assumption will be appropriate in circumstances where agents (are allowed to) revise their

decisions frequently and observations (by the econometrician) are not coarse. The continuity of

sample paths imposes structure on the stochastic shocks in the environment. As stressed earlier,

both requirements may or may not be empirically valid approximations. When applicable, they

allow us to identify endogenous effects from other correlated effects. Strategic interactions also

pose an additional problem that may hinder identification and estimation: that of multiple equi-

libria.

We use the tools of continuous time optimal stopping problems that appear in the invest-

ment and finance literatures (see Dixit and Pindyck (1994)). Whereas studies in this literature do

address the interaction of many agents, what distinguishes our model is a clear separation between

endogenous and correlated effects.

Our paper is also related to the empirical literature on “duration-type” situations with many

interacting agents. One example is Sirakaya (2001), in which the author investigates duration de-

pendence in the timing of crime recidivism. Brock and Durlauf (2001) cite other applications, such

as the timing of out-of-wedlock births or first sexual experience. Still, the studies indicated there

do not look at the endogenous effect but focus instead on contextual neighborhood variables. In

their analysis of group homogeneity and desertion, Costa and Kahn (2003) discuss the possibility

of a contagion effect and try to account for it by introducing the fraction of deserters in a military

company as a regressor (p. 538). Although this is indicative of endogenous interactions, without a

structural representation it is still not clear whether this is due to endogenous or correlated effects.

The structure of the paper is as follows. In the next section we present the general model

and establish the existence of equilibrium. Section 3 discusses and characterizes a particular specifi-

cation for the model and sets the scene for Section 4, in which we discuss the empirical implications

of the model. In Section 5 we illustrate the previous discussion with a dataset comprising Union

Army recruits during the American Civil War. We obtain evidence that there were endogenous

effects involved in the decision to desert the army and estimate the model by simulation methods.

The final section concludes.

2. The Model

As a mathematical model of the world, consider a probability space (Ω,F ,P) in which a given

state ω ∈ Ω is chosen according to a probability law P. There are I agents who take part in a

certain activity (we will loosely use I to denote the set of agents and its cardinality). A gain

function (ui : R × [0, T ] → R) captures the utility an individual derives as he or she exits the

activity. If an agent i ∈ I leaves at a time τ i ∈ [0, T ](T ∈ R++, where R++ = (0,∞]), he or
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she collects a reward of ui(x
i
τ i , τ

i) where xit is an individual-specific state variable (e.g., wealth,

utility-relevant inputs) and xiτ i is this variable evaluated at the chosen τ i. The stopping strategies

are represented by τi : Ω→ [0, T ], a (possibly infinite) stopping time with respect to an individual

filtration Fi = (F it )t∈[0,T ]
6 representing agent i’s flow of information. Although this information

flow arises endogenously in the game, we assume throughout that the individual filtration satisfies

the usual conditions.7 We allow the individual information histories to differ across individuals.

These individual information sequences will be the basis for an agent’s strategy, since the filtration

Fi = (F it )t∈[0,T ] incorporates the assumptions imposed on what each agent knows or not as time

evolves. Later on we assume that each agent observes his or her own state variable xit and whether

or not other agents in the game have stopped (but not their individual state variables).

We assume that the individual state variable evolves as a process (adapted to the Fi =

(F it )t∈[0,T ] filtration) that may depend directly on the participation of the remaining individuals

in the group. This direct influence represents the endogenous effects in our model. Let θit be the

fraction of the population (excluding agent i) that has left before time t: θit =
∑I

s=1,s6=i I{τs<t}/(I−
1) (with I{A} as the indicator function for the event A ⊂ Ω). This process will be determined

endogenously as individuals choose the stopping times. Throughout we assume that θit ∈ F it : one

knows how many players have stopped up to (but excluding) the current instant. Each individual

state variable xit is assumed Markovian and is allowed to differ across individuals. The structure

for the multi-person problem (payoffs, players, strategy spaces and information assumptions) is as

follows.

Definition 1 (Synchronization Game) A Synchronization Game is defined as a tuple 〈I, (Ω,F ,F,P,
(ui)i∈I , (x

i)i∈I , (Ti)i∈I〉 where I is the set of agents; (Ω,F ,F,P), a filtered probability space; ui :

R × R+ → R, an individual gain (utility) function; xi, an individual adapted process having as

state space R+; and Ti, a set of stopping strategies τ : Ω→ [0, T ].

Each person i faces the following (individual) optimal stopping problem (where τ generically

denotes a stopping time with respect to (F it )t∈[0,T ]): Vi(xi) = supτ∈Ti Exi [ui(xτ , τ)]

P(xit ∈ Γ|F is), Markovian.

s.t. θit =
∑I

s=1,s6=i I{τs<t}/(I − 1)

xi0 = xi

(1)

6A random variable τ : Ω → [0, T ] is a stopping time with respect to (Ft)t∈[0,T ] if, for each t ∈ [0, T ], {ω :

τ(ω) ≤ t} ∈ Ft. Intuitively they represent stopping strategies that rely solely on past information.
7The filtration is right-continuous and F0 contains all P-negligible sets in F .
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In the above definition, Exi [ui(x
i
τ , τ)] =

∫
Ω

P(dω)ui(x
i
τ(ω)(ω), τ(ω)) with initial condition given by

xi. We assume that ui(x∞(ω),∞) = lim supt∈[0,T ] ui(xt(ω), t). The state variable follows:

dxit = αi(xit, θ
i
t, t)dt+ σi(xit, θ

i
t, t)dW

i
t , xi0 ∼ F i

0 (2)

whereW i
t is a Wiener process and the drift and dispersion coefficients are positive Borel-measurable

functions. The initial distribution F i
0 is furthermore independent of the Brownian motion W i

t .

There are no restrictions on the contemporaneous correlation between the Wiener processes, which

account for the correlated effects.

Notice that the state variable has continuous sample paths (P-a.s.). This allows us to treat

individual beliefs about the position of a counterpart’s state variable conveniently (in contrast,

for instance, to the work by Hopenhayn and Squintani (2004), where sample paths present dis-

continuities). Since the stochastic utility processes evolve continuously, the probability that a

given individual reaches a stopping region between t and t+ ε conditional on not having stopped

before t vanishes as ε→ 0. Consequently, where a counterpart’s state variable is located becomes

immaterial to the decisions taken within the next infinitesimal period. When empirically suitable,

the model leads to the identification of endogenous effects that may otherwise be difficult to pin

down (see the discussion in Manski (1993), for example). This is important because the effect of

alternative counterfactual interventions such as those briefly alluded to in the introduction may

be significantly affected by the presence or absence of endogenous effects.

The following conditions ensure that, given a profile of stopping times for each player, this

stochastic differential equation has a (strong) solution:

Assumption 1 (Lipschitz and Growth Conditions) The coefficients

αi(x, θ, t) and σi(x, θ, t) satisfy the global Lipschitz and linear growth conditions:

‖αi(x, θ, t)− αi(y, θ, t)‖+ ‖σi(x, θ, t)− σi(y, θ, t)‖ ≤ K‖x− y‖ (3)

‖αi(x, θ, t)‖2 + ‖σi(x, θ, t)‖2 ≤ K2(1 + ‖x‖2) (4)

for every t ∈ [0, T ], x, y ∈ R, θ ∈ [0, 1] and i ∈ I, where K is a positive constant.

Notice that θit =
∑I

s=1,s6=i I{τs<t}/(I−1) is adapted since θ is the aggregation of indicator functions

of events such as {τ < t}, where τ is an optional time with respect to the individual filtration.

Given the Borel-measurability conditions on the drift and dispersion coefficients, this guarantees

that, for fixed x, (t, ω) 7→ αi(x, θit(ω), t) and σi(x, θit(ω), t) are adapted. The above assumptions

guarantee the existence of a strong solution for the stochastic differential equation (2). A sketch

for the proof is presented in the Appendix.
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2.1. Existence of Equilibrium

The solution concept we seek for this group situation is that of mutual best responses: a standard

Nash Equilibrium point. The equilibrium strategies are then a vector of I stopping times such that

each individual stopping time is optimal given the stopping rules adopted by the other agents.8

Denoting by τ = (τi)i∈I a stopping time profile, let Ui(τ) = Exi [ui(xτi , τi)] subject to the above

transition laws and initial conditions and evaluated at the strategy profile τ . We also adopt the

convention of using τ−i as shorthand notation for (τs)s∈I−{i}. To proceed with the analysis of

equilibrium, we make the following assumptions:

Assumption 2 (Exponential Discounting) Let ui(x, t) = e−γitgi(x), γi > 0, gi : R+ → R,∀i ∈
I. We refer to gi(·) as the reward function.

Assumption 3 (Reward Function) The individual reward functions gi(·),∀i ∈ I are such that:

(Monotonicity) gi(·) is increasing; (Convexity) gi(·) is convex; E[supt∈[0,T ] |e−γitgi(xit)|] < ∞;

(Twice Differentiability) gi(·) is twice differentiable; and (Bounded Derivative) the derivative g′(·)
is bounded.

Assumption 4 (Bound on Volatility) For each t < ∞ and feasible profile of stopping strate-

gies, the dispersion coefficient is assumed to satisfy:

E[

∫ t

0

(e−ρsσ(xs, θs, s))
2ds] <∞.

Assumption 5 (Complementarity) The drift and the dispersion coefficients are assumed to be

decreasing on their second argument: ∂θα(·, ·, ·) ≤ 0 and ∂θσ(·, ·, ·) ≤ 0.

The Exponential Discounting Assumption (2) simplifies the manipulation and is standard. The

set of assumptions regarding the reward functions, (3), encompasses monotonicity and convexity,

which are not very controversial either (convexity is not necessary if σ does not depend on θ, for

instance); a boundedness condition, employed to assert the existence of a solution for the optimal

stopping problem, and technical assumptions that facilitate the application of existing results in the

comparison of solutions for stochastic differential equations. The Bound on Volatility Assumption

(4) implies that changes in the profile of stopping decisions affect the objective function only

through the drift of the discounted gain function. Finally, the Complementarity Assumption

8Since the strategies depend on information generated by the state variables and these are Markovian and since

optimization follows Bellman’s principle of optimality in dynamic programming — whatever the initial state and

decisions are, the remaining decisions must be optimal with regard to the state resulting from the first decision —

these are also Markov perfect equilibria.
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(5) expresses the idea that higher participation makes the activity more attractive as well as

increases the volatility of the returns. This assumption means that one agent’s action is a strategic

complement to the others’ actions. We are now ready to state the following result (the proof is

available upon request; all the other proofs are given in the appendix):9

Theorem 1 (Existence) Under Assumptions 1-5, the Synchronization Game has a nonempty

set of equilibrium points and this set possesses a maximal element.

Under such general conditions, little can be said regarding uniqueness and other properties.

In the next section we make further assumptions on the structure of the game.

3. A Coordination Game

We now specialize the model to extend the analysis. Consider initially a game where agents

contemplate the possibility of exit. As before, a state variable x represents the latent utility a

player collects when abandoning a certain activity. At exit, he or she pays a cost C. The strategy

is then a rule dictating his or her exit decision using the available information at the time. Given

a discount rate γ, the objective for the agent is to maximize Ex[e−γt(xt − C)].

At an initial stage consider the individual problem where the state variable x follows:

dxt =

{
αxtdt+ σxtdWt if t ≤ ν

(α−∆α)xtdt+ σxtdWt if t > ν

where ∆α ≥ 0 and ν is an exogenously given random time. We assume that the individual observes

Wt and whether or not the random time occurred up to (but excluding) time t: Ft = σ(xs, Iν<s, s ≤
t). The initial condition is drawn from an independent distribution F0 as in equation (2). The

break point for the drift here is exogenously given. At a later stage we will endogenize this stopping

time to make it dependent on the decision by the other participants. For there to be a well-defined

solution to this problem, we assume that γ > α. If γ is too low, a patient agent will postpone the

switching decision indefinitely and stopping times may not be finite (see, for instance, Dixit and

Pindyck (1994), p. 138).

Let x be the process corresponding to ν(ω) = ∞,∀ω ∈ Ω (i.e. a geometric Brownian

motion with coefficients αx and σx) and x be the process corresponding to ν(ω) = 0, ∀ω ∈ Ω

(i.e. a geometric Brownian motion with coefficients (α − ∆α)x and σx). We can use dynamic

programming to show that the optimal stopping times for these two processes depend on z =

9Mamer (1987) obtains the existence of equilibria in a similar (but more restrictive) game in discrete time

through similar techniques.
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z(α, σ, C, γ) and z = z(α−∆α, σ, C, γ), where

z(α, σ, C, γ) =
β(α, σ, γ)

β(α, σ, γ)− 1
C (5)

and

β(α, σ, γ) = 1/2− α/σ2 +

√[
α/σ2 − 1/2

]2

+ 2γ/σ2 > 1

(see Dixit and Pindyck (1994), pp. 140-144). The agent will stop the process as soon as it hits z.

For convenience, we omit the parameter dependence of z in the remainder of the section.

Given a random time ν, we propose the stopping rule characterized by the following con-

tinuation region:

{x ≤ z ≡ z(α, σ, C, γ; ∆α, t, other parameters)} if t ≤ ν

{x ≤ z} if t > ν
(6)

where the threshold levels z are determined from value matching and smooth pasting considerations

in the optimal stopping problem (see the proof for Proposition 1). The “other parameters” refer

to parameters related to the hazard rate associated with ν (as perceived by the agent). If ν arrives

at a constant hazard rate λ, for instance, the threshold is constant in time and depends on the

arrival rate λ and the decay in the drift ∆α. Once ν arrives, the process starts afresh and one is

better by adopting the lower threshold rule. This rule is easily extended to processes with multiple

breaks at increasing stopping times. It delivers a stopping strategy by which the agent switches

progressively to lower threshold levels as the drift breaks take place. We thus state the result for

the more general case:

Proposition 1 Assume that γ > α and let log xt = αt − ∆α
∑n

k=1(t − νk)It≥νk − σ2

2
t + σWt

where ∆α ≥ 0, α, σ > 0, t ∈ R+, n ∈ N,W is a standard Brownian motion and {νk}k=1,...,n is an

increasing sequence of stopping times. The optimal continuation region for the stopping problem

is given by

{x ≤ zk−1} if t ≤ νk, k = 1, . . . , n

{x ≤ zn} if t > νn

for some threshold levels zk ≡ zk(t) with zk(t) > zk+1(t), ∀t k ∈ {1, . . . , n− 1} and zn ≡ z.

Consider now a game with two agents indexed by i = 1, 2. They contemplate an exit decision that

will cost them Ci, i = 1, 2. In return, they collect a value xi, i = 1, 2 but now the latent utility

process for one agent is negatively affected once the other agent decides to leave the activity. In

10



analogy to the previous individual setup, the information structure for the game assumes that each

player observes his or her own state variable process and whether or not the other agents stopped

or not up to but excluding the current instant (but not the value of other agents’ individual state

variables). In particular,

dxit =

{
αixitdt+ σixitdW

i
t if t ≤ τj

(αi −∆αi)xitdt+ σixitdW
i
t if t > τj

where i, j = 1, 2, i 6= j and τ j is the stopping time adopted by the other agent in the game

and, as above, γ > αi. The contemporaneous correlation between the Brownian motions is left

unconstrained and ∆αi measures the external effect of the other agent’s decision on i. As pointed

out previously, this reveals the two major aspects of group behavior under consideration in this

study: correlated and endogenous social effects. Individuals might behave similarly in response

to associated (unobservable) shocks, which are reflected in the possibility that the increments of

W i
t and W j

t are correlated. This represents the correlated effects. On the other hand, agents

may be directly affected by other agents’ actions as well. This would appear as a decrease in the

profitability prospects an agent derives by remaining in the game. This is the endogenous effect.

Our parameterization assumes that individual switching costs are constant. This is in line

with standard models in the investment literature. Another plausible configuration would allow

this cost to depend on the number of individuals in the group I. If exit costs Ci are modeled as

continuously evolving state variables (see, for example, Dixit and Pindyck (1994), p. 207) whose

drifts are affected by the number of agents who choose to exit, the model is basically akin to

the one presented here and x could actually be interpreted as the evolution of a utility process

net of exit costs.10 Our results would be essentially unchanged but with x reinterpreted in this

way. Insofar as agents care about net utility for decision making, not the utility and exit costs

separately, the detection of endogenous effects would not be affected. The implication of multiplier

effects for the take-up of social programs such as those discussed in the Introduction would still

occur.

The previous analysis establishes that each agent will use the “high drift” optimal stopping

rule characterized by the (moving) threshold zi ≡ zi(t) while τ j ≥ t. As soon as τj < t, she

switches to the “low drift” stopping rule characterized by the threshold zi. In this case though,

we need to handle the fact that τ j is not exogenously given but determined within the game. It

is illustrative to portray this interaction graphically.

Figure 1 displays the X1×X2 space where the evolution of the vector-valued process (x1, x2)

10Allowing costs to jump with the number of individuals who exit would introduce discontinuities in the state

process and raise concerns previously alluded to.
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is represented. Since ∆αi > 0, i = 1, 2, we should have zi(t) > zi, i = 1, 2. Agents start out under

threshold zi(t). If the other agent stops, the threshold level drops to zi. In Figure 1, for instance,

the process fluctuates in the rectangle (0, z1) × (0, z2) and reaches the barrier z1 causing agent 1

to stop. Once this happens, agent 2’s threshold drops to z2, which, once reached, provokes agent

2 to stop.

FIGURE 1 HERE

A more interesting situation is depicted in Figure 2. Here, the vector process sample path

attains the upper threshold for agent 1 at x2 ≥ z2. The second agent’s threshold moves down

immediately and both stop simultaneously. So, if an agent’s latent utility process is above the

subsequently lower threshold when the other one drops out, there will be clustering and they

move out concomitantly. This is an interesting feature of the game that is not present in standard

statistical models that would handle timing situations such as this: the positive probability for

simultaneous events even when time is observed continuously. If not properly accounted for, this

can bias results toward erroneous conclusions. 11

FIGURE 2 HERE

One concern in the analysis of this interaction is how beliefs about the state of one’s op-

ponent should affect his or her actions. If an individual knows only whether or not the opponent

has quit, how should he or she take into consideration the risk of being preempted? Should the

player take the presence of the opponent for granted and delay the decision to quit or must he

believe that the other agent is about to quit the game and hence leave the activity immediately?

Such considerations point to the importance of beliefs in these environments and are a relevant

consideration in Hopenhayn and Squintani (2004), for instance. In the present case, such calcula-

tions are of lesser importance since the state variables evolve continuously. This implies that the

likelihood that an agent reaches a stopping region between now (t) and an ε unit of time in the

future (t + ε) vanishes as ε → 0. Consequently, the beliefs about the location of the opponents’

state variables are of second order to the decisions taken within the next infinitesimal period by a

given agent.

The intuition above carries over with more than two agents. Assume as before that an exit

costs an agent Ci, i ∈ I in return for xi, i ∈ I. The latent utility process is given by:

log xit = αit−∆αi
∑
j:j 6=i

(t− τ j)It>τ j/(I − 1)− σi2

2
t+ σiW i

t , i ∈ I

11Van den Berg, Lindeboom and Ridder (1994), for instance, point to a negative duration dependence bias in

estimates if simultaneity is left unaccounted for.
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where τ j is the stopping time adopted by the agent j. The external effect of other agents on i is

∆αi > 0 and is considered to be homogeneous across agents, i.e. the amount by which the drift

αi decreases with each stopping decision is the same regardless of who deserts.

A few other definitions are convenient:

zim : z(αi, σi, Ci, γi,m,∆αi, t) where i,m ∈ I
Sm : {(x1, x2, . . . , xI) ∈ RI

+ : ∃i such that xi ≥ zim} where m ∈ I
τ0 : 0 (meaning τ0(ω) = 0,∀ω)

A0 : II (identity matrix of order I)

τm : inf{t > τm−1 : Am−1xt ∈ Am−1SI+1−1′Am−11} where Am−1SI+1−1′Am−11

denotes the set formed by operating the matrix Am−1 on each

element of SI+1−1′Am−11,1 is an I × 1 vector of ones and m ∈ I
Am : [amkl]I×I where amkl = Ixiτm<zim if k = l = i and amkl = 0 otherwise and m ∈ I

The stopping times defined above are essentially hitting times. The thresholds zim are defined by

the value matching and smooth fit conditions (see the proof of Proposition 2 for details).

The game starts out with no defection and agents hold the highest barrier zi1(t) as the initial

exit rule. The first exit occurs at τ1, the hitting time for the stopping region S1. As the process

reaches this set, one or more agents quit. This also shifts the thresholds down as the stopping

region moves to S2. To track the players who drop out at τ1 we use the matrix A1, a diagonal

matrix with ones for those agents who did not drop out at τ1 and zeros, otherwise. Analogously for

further stopping rounds, defections occur at the stopping times τ· and 1′A·1 records the number

of agents that have not stopped after that stage. This goes on until all agents have stopped. The

following proposition summarizes our result:

Proposition 2 The profile (τ ∗i )i∈I represents a vector of equilibrium strategies for the exit game

with I agents:

τ ∗i =
I∑

k=1

(Πk−1
j=1Ixiτj<zij)Ixiτk≥zikτk

This proposition states that the hitting times constructed previously may be used to rep-

resent an equilibrium for this game. For the reasons discussed in the next subsection, this is the

equilibrium we focus on in this paper.

3.1. On Multiple Equilibria and Equilibrium Selection

The above equilibrium is the only equilibrium that is robust to positive delays in information

about the exit of others. As we drive this delay to zero, this is as if each agent observed his or her

13



own state variable process and whether other agents stopped up until but excluding the current

instant t: stopping decisions are observed with an “infinitesimal” delay.

Most of the equilibria considered in the previous discussion rely on a strong degree of

synchronization among agents. If nevertheless one agent’s exit is perceived with a delay, dropping

out may not elicit other players’ exit. The profitability of remaining in the game, represented by

the drift coefficient, would be unchanged. Then, exit would only be optimal on the equilibrium

portrayed in the previous subsection. This “synchronization risk” is inherent in many similar

situations (see Abreu and Brunnermeier (1997), Brunnermeier and Morgan (2004) and Morris

(1995)) and equilibria that survive such synchronization issues are naturally more compelling. To

formalize this intuition, consider the case of two players (I = 2) and a vector-valued random

variable (εi)i∈I representing the agents’ perception delay. Let an individual’s perceived utility be

given by:

dxit =

{
αixitdt+ σixitdW

i
t if t ≤ ν

(αi −∆αi)xitdt+ σixitdW
i
t if t > ν

where i, j = 1, 2, i 6= j and ν = τ j + εi is the stopping time adopted by the other agent in the

game with an εi delay and, as before, γ > αi. The following statement then holds:

Proposition 3 Assume that P({εi > 0}) = 1, i = 1, 2 and P({ε1 = ε2}) = 0. Also, let

S(t) = {(x1, x2) : ∃i such that xi ≥ zi(t)}

and τS = inf{t > 0 : (x1
t , x

2
t ) ∈ S(t)} denote the hitting time for this set. The stopping strategies

below represent the unique equilibrium profile for this game:

τ ∗i = τSIxiτS=zi + inf{t > τS + εi : xit > zi}IxiτS 6=zi , i = 1, 2.

As εi
P−→ 0, the above strategies converge to the strategy depicted in Proposition 2. For this

reason, we restrict our attention to the unique equilibrium that is robust to such perturbations

and corresponds to the one displayed in the last subsection.

Other information structures would nonetheless be susceptible to multiple equilibria,12

though the occurrence of joint exit with positive probability is robust to the existence of multiple

equilibria and the issue of equilibrium selection. Given this, some of our results in this and the

subsequent section are robust even to the existence of multiple equilibria. Next we discuss the

empirical implications of the model.

12A discussion of this can be found in a longer version of the paper available on the author’s website.
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4. Empirical Implications

In this section we investigate the empirical implications of the model. The unit of observation is a

game13 and N such units are recorded in a sample. We restrict attention to the unique equilibrium

depicted in the previous section, which is robust to perturbations in the timing at which agents

become aware of the actions of other players.

Our analysis of the model has so far allowed for asymmetry in individual parameters so

that for instance ∆α and σ may be indexed by individual, i. To discuss its empirical relevance, we

impose additional assumptions, and we consider a symmetric version of the game where ∆α, σ, C

and ρ are homogeneous across players and α may differ insofar as it depends on individual specific

covariates, but is otherwise identical across individuals.14 Each agent’s latent utility hence follows:

log xit = αit−∆α
∑
j:j 6=i

(t− τ j) It>τ j
I − 1

− σ2

2
t+ σW i

t + log xi0, i ∈ I

where τ j is the stopping time adopted by player j. The cross-variation process for the Brownian

motions is given by 〈W i,W j〉t = ρt, i 6= j and the initial condition x0 = (xi0)i∈I follows a probability

law F i
0. It is assumed throughout that |ρ| < 1.

The individual initial drift coefficient is potentially a function of an l-dimensional vector

of individual covariates wi(1×l), which is independent of the Brownian motion. More specifically,

αi = α(wi). To benefit readability, we suppress the argument and denote the drift by αi. Let Fw

denote the distribution of w = (wi)i∈I . In what follows all of the statements are conditional on

w = (wi)i∈I . The parameter ∆α measures the external effect of the other agents decisions on i

and introduces endogenous social effects. The coefficient ρ represents correlated social effects. In

addition to the above parameters, each agent pays a cost C to leave and discounts the future at

the exponential rate γ. Finally, zi, i ∈ I denotes the threshold presented in the previous section.

4.1. Characterization

The next proposition states that (under continuous time observability) simultaneous departures

occur only in the presence of endogenous effects.15

Proposition 4 P[τ i = τ j, i 6= j, i, j ∈ I] > 0 if and only if there are endogenous effects (∆α > 0).

13In our empirical application a game is a military company. In other applications, it would be a household or a

geographic market or some other arena of interaction for the agents under analysis.
14This does not necessarily mean that the asymmetric game is not identified. If the parameters depend on i, we

conjecture that the model is not identified unless one can for example sample the same players repeatedly.
15This proposition does not depend on the fact that ∆αi = ∆α,∀i. It nonetheless relies on the assumption that

∆αi > 0, ∀i.
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Intuitively, because of the diffusive nature of the utility process correlated disturbances oc-

cur in a much smoother manner if compared to the impact of an agent’s exit, which is immediately

assimilated via a decrease in the growth rate of x and a revision of the stopping rule. This is a

useful feature of this model and holds in many empirical situations in which the model applies.

Moreover, this empirical implication does not rely on the uniqueness of the equilibrium. Notice

that in traditional econometric models for duration analysis the probability of simultaneous exit

is zero and such incompatibility may provoke biased estimates and contaminate conclusions.

This result relies on the continuity of the sample paths for the stipulated process. If discon-

tinuities are allowed, this may not hold any longer.16 The problem would nonetheless be lessened

if one knew the timing of such shocks since clustering in other moments is then seen as evidence

in favor of endogenous effects.

Another implication is that the number of players should affect equilibrium stopping out-

comes only in the presence of endogenous effects. This is stated in the next proposition.

Proposition 5 If the number of players I affects the marginal distribution of equilibrium stopping

times in the game, then there are endogenous effects (∆α > 0).

Notice that the direction in which the equilibrium stopping times are affected is not clear.

On the one hand, more players will cause each one’s exit to have a smaller impact on an agent’s

latent utility process; on the other hand, exits will tend to occur earlier. Also, as mentioned

earlier, if costs are also allowed to depend on group size, the proposition above should be framed

in terms of utility processes net of costs.

4.2. Nonparametric Test for Endogenous Interactions

If time were recorded continuously, Proposition 4 would suggest that observing simultaneous exits

would be enough to detect endogenous effects. When time is marked at discrete intervals, though,

exit times would be lumped together regardless of the existence of endogenous influences. In this

subsection we explore the possibility of testing for the existence of social interactions, taking into

consideration that time is not sampled continuously.

Let n = 1, . . . , N index independent realizations of the game and denote by In the number

of players in realization n. Time is observed at discrete intervals of stepsize ∆N . Given a dis-

cretization {t0, t1, . . . } such that ti+1 − ti = ∆N ,∀i, we denote the probability of a simultaneous

exit by any pair of players

P∆N
({ simultaneous exit }) = p(∆N)

16One way to introduce such discontinuities is to insert an exogenous jump component dQi in equation (2). In

this case, beliefs would play a more significant role.
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and allow the discretization to depend on the sample size.

Imagine that there are no endogenous interactions. In this case, for a small enough dis-

cretization, doubling the observation interval would roughly double the probability of recording

exits as simultaneous. If these endogenous effects are present, since even at continuous time sam-

pling there would still be clustering, doubling the discretization does not increase the probability

of joint exit by as much. In the limit, if all exits are indeed simultaneous in continuous time,

varying the grid of observation would have no effect on the probability of observing simultaneous

dropouts. We use this intuition to develop a test for the null hypothesis of no endogenous effect

through variation in the interval of observation.

In our model, when there are no endogenous effects, the function p(·) is differentiable with

p′(·) > 0. Also p(0) = 0 when there are no endogenous effects; whereas p(0) > 0, otherwise.

Denote by

yn,∆N
=

(
In
2

)−1 ∑
{i,j}∈πn

I{τ i∆N=τ j∆N
},

where πn is the set of all player pairs in game n and τ i∆N
is the exit time observed when the

discretization grid size is ∆N . If the game has only two players, yn,∆N
records whether there was

simultaneous exit under a discretization of size ∆N . It can be established that E(yn,∆N
) = p(∆N).

For In = 2, var(yn,∆N
) = p(∆N)(1−p(∆N)). For the general case, we denote var(yn,∆N

) = v(∆N).

It is easily seen that p(0) > 0 ⇒ v(0) > 0 and p(0) = 0 ⇒ v(0) = 0. Given the observation of N

i.i.d. copies of such games, consider yN,∆N
= N−1

∑N
n=1 yn,∆N

. Then:

Theorem 2 Assume

1. p(·) is differentiable and p′+(0) > 0 if p(0) = 0;

2. ∆N,i = aiN
−ε, i = 1, 2, 3 with a1 < a2, a3(a2 6= a3), and 1/3 < ε < 1;

3. The games observed are i.i.d..

Then, under the (null) hypothesis that there are no endogenous effects (H0 : p(0) = 0),

√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− a2

a1

− ξ

(
y∆N,3

y∆N,1

− a3

a1

)]
L−→ N (0, 1) (7)

where

σN =
[ξp(∆N,3)− p(∆N,2)

p(∆N,1)2

1

p(∆N,1)
− ξ

p(∆N,1)

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3




ξp(∆N,3)−p(∆N,2)

p(∆N,1)2

1
p(∆N,1)

− ξ
p(∆N,1)
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and

ξ =
a2(a2 − a1)

a3(a3 − a1)

whereas if there are endogenous effects (p(0) > 0), the statistic in (7) is not bounded in probability.

Above, p′+(·) denotes the right-derivative of function p(·). The smaller and the closer ∆N,1

and ∆N,2 are, the higher the precision for the ratio is.17 Also, in estimating the asymptotic

variance, one could use as consistent estimators the sample counterparts:

̂p(∆N,j) = y∆N,j
j = 1, 2

and the sample variance covariance matrix across the games.

The above result allows us to test the null hypothesis that there are no endogenous effects

(H0 : p(0) = 0) and no clustering results in continuous time when observations are recorded

discretely with the suggested statistic. As a corollary for the theorem, the test will be consistent.

Its performance may nevertheless be affected (especially in small samples) by other parameters

such as the correlation coefficient ρ.

Since it relies on Proposition 4, the above result is also robust to the existence of multiple

equilibria (as long as the equilibrium played is the same across the games sampled). In the next

subsections we explore some representation and identifiability properties under the assumption

that the equilibrium played is the one characterized in the previous section.

4.3. Identification

One question that arises naturally is the possibility of disentangling correlated and endogenous

effects in the data. The econometrician observes the equilibrium exit strategies (τ1, . . . , τI) for a

certain number of realizations of the game. Let τ denote some outcome variables observed by the

researcher and w, some observable covariates. A parameter ψ (of arbitrary finite dimension) lies

in a certain set Ψ and governs the probability distribution P (·|w;ψ) of the outcome variables.

The following defines identification.

Definition 2 (Identification) The parameter ψ ∈ Ψ is identified relative to ψ̂ if (ψ̂ /∈ Ψ) or

(P (·|w;ψ) = P (·|w; ψ̂), Fw-a.e. ⇒ ψ = ψ̂).

17As it relies on Assumption 2, the power of the test may be affected by the coarseness of the data in a non-

negligible manner. This is an issue as well for related techniques in continuous time finance and in the empirical

game estimation literature. Our empirical application employs data at a daily frequency, which is appropriate for

the phenomenon investigated.
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The first stand on identifiability for the model above is a negative one: the full parameter

vector is not identified. To see this, notice that with no social interactions or correlated effects

(∆α = 0 and ρ = 0), the individual Brownian motions are independent and each agent’s latent

utility process evolves as a geometric Brownian motion with drift αi, diffusion coefficient σ and

initial position xi. As a consequence, the exit times τ ∗i are independent (possibly defective) inverse

Gaussian random variables (see Chhikara and Folks (1989)). This distribution is characterized by

two parameters for which the mean and harmonic mean are maximum likelihood estimators and

minimal sufficient statistics. Since we would still have more than two parameters (α, σ, C, γ), the

model remains unidentified.

Under certain circumstances, though, some positive assertions about the parametric iden-

tification for this model can be made even when ρ,∆α 6= 0. Identifiability may be achieved if one

is able to introduce “enough variability” through the use of covariates. Recall that we assumed

αi = α(wi), where wi is a set of covariates. These covariates may encompass individual-specific

characteristics, such as income or assets, as well as publicly known information, which would

be a common covariate to all agents, or observable group characteristics (which would account

for contextual effects in Manski’s categorization). Let g(t;ψ,w) denote the probability density

function for the first desertion time under the parameters ψ = (α,∆α, σ, ρ, γ, C) and conditioned

on the observable covariates w. The following statement establishes sufficient conditions for the

identification of ψ. It basically states that relative identification is achieved if, by perturbing the

covariates, one perturbs the Kullback-Leibler information criterion.18

Theorem 3 Let wi contain at least one continuous random covariate, α(·) be C1 with respect to

such variable and, for some i and some continuous covariate l,

∂wil

∫
log
[g(t;ψ,w)

g(t; ψ̂,w)

]
g(t;ψ,w)dt 6= 0 (8)

then ψ is identified relative to ψ̂.

To check condition (8) one should obtain the density g(·). To illustrate the above theorem,

consider a very simple example in which g(·) is an inverse Gaussian probability density function.

In particular,

g(t; a, v) =
a√
2πt3

exp

(
−(a− vt)2

2t

)
.

18Another potential avenue for identification would be through the results presented in McManus (1992). With a

sufficiently high number of players (corresponding to endogenous variables) relative to the parameters of the model,

the structure can be seen to be (generically) identified.
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As pointed out in the preceding discussion, this will be the probability density function for stopping

times in our model when there are no social effects and hence ∆α = ρ = 0. In this scenario,

v = α(wi)/σ − σ/2 and a = log(z/x0)/σ, with z as in equation (5). For two sets of parameters

(a, v) and (â, v̂). After some algebra, the Kullback-Leibler criterion for this g(·) is seen to be:∫
log
[g(t; a, v)

g(t; â, v̂)

]
g(t; a, v)dt = log

a

â
− 1

2
+
â2

2

(
v

a
+

1

a2

)
− v̂

(
â− v̂a

2v

)
The derivative of this expression with respect to wi can be obtained and evaluated for different

pairs of parameters in order to verify the sufficient condition in the theorem. For example, if

α(wi) = 0 and α̂(wi) = α̂wi(α̂ 6= 0), after some algebra we obtain that this derivative is:

α̂wi

σ̂2(β̂(wi)− 0.5 + α̂wi/σ̂2)(β̂(wi)− 1)

(
vâ

a
+

â

a2
− 1

â
− v̂(wi)

)
− α̂wi

σ̂

(
â(wi)−

av̂(wi)

v

)
where β̂ is the expression in (3) (using as parameters α̂wi, σ̂, γ̂) and we highlight the fact that β̂, v̂

and â all depend on wi. For a given set of parameters the above can be evaluated. For instance,

if C = Ĉ = 0.1, x0 = x̂0 = 1, γ = γ̂ = 0.05, σ = σ̂ = 0.1 and wi = 1, the expression is greater

than 25. As previously noted, α̂ = 0.04 and α = 0. These two parameter vectors are relatively

identified provided the support of wi includes 1. It should then be noted that given two parameter

vectors the above expression (or a similar one for α 6= 0) will be solved only for certain values

of wi and provided its support is rich enough, a nonzero value for this derivative can easily be

obtained for a large set of wi values and one can use this to ascertain more encompassing global

identification results.

In general, one possible route to obtain g(·) is to use the close association between the theory

of stochastic processes and the study of differential equations. Assuming that the equilibrium

played is the one selected in the previous section, the equilibrium strategies can then be expressed

as hitting times to certain sets and it is possible to characterize the survivor function for the first

hitting time G(·) through the associated partial differential equations (and g(·) = −dG(·)/dt).
When ∆α = 0 (but ρ is left unrestricted) and there are only two players, G(·) is (see Theorem

3.5.2 in Rebholz (1994) or He, Keierstead, and Rebholz (1998), Remark 2.2(ii)):

G(t) = P(τ ∗1 ∧ τ ∗2 ≥ t) = ea1 log(z1/x1)+a2 log(z2/x2)+btf(r′, θ′, t) (9)

where

f(r′, θ′, t) =
2

λ′t

∞∑
n=1

sin(
nπθ′

λ′
)e−

r′2
2t

∫ λ′

0

sin(
nπθ

λ′
)gn(θ)dθ
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with

gn(θ) =

∫ ∞
0

re−
r2

2t e−b1r cos(θ−λ)−b2r sin(θ−λ)Inπ
λ

(
rr′

t
)dr

and

tanλ′ = −
√

1−ρ2

ρ

λ = λ′ − π
2

r′ = 1√
1−ρ2

( log(z1/x1)2−2ρ log(z1/x1) log(z2/x2)+log(z2/x2)2

σ2 )
1
2

θ′ = log(z1/x1)
σr′

a1 = (α1−σ2/2)−ρ(α2−σ2/2)
(1−ρ2)σ2

a2 = (α2−σ2/2)−ρ(α1−σ2/2)
(1−ρ2)σ2

b = σ2

2
(a2

1 + 2ρa1a2 + a2
2)− (α1 − σ2/2)a1 − (α2 − σ2/2)a2

b1 = (a1 + a2ρ)σ

b2 = a2σ
√

1− ρ2

with zi ≡ z(αi, σ, C, γ) and where Iv is the modified Bessel function. Iyengar (1985), which also

derives an expression for the above function, hints that the above is generalizable for higher di-

mensions in our specific situation. The density and the Kullback-Leibler criterion can be obtained

from the above expression for the evaluation of the condition in the theorem for different parameter

values.19

5. Empirical Illustration: Desertion in the Union Army

Using a dataset comprising detailed individual records for soldiers of the Union Army in the

American Civil War, we now intend to illustrate the previous discussion on stopping decisions

and timing coordination. Desertion is the event we are interested in. Historians estimate that

desertion afflicted a bit less than 10% of the Union troops (circa 200,000 soldiers).

Whereas one could think of the decision to desert as an isolated one, historical studies and

anecdotal evidence support the existence of endogenous effects. Evidence of simultaneous desertion

(on both sides) is pervasive in Lonn (1928): “Usually the recorded statements of specific instances

of desertion whether from Union or Confederate reports, show the slipping-away of individuals or

of small groups, varying from five to sixteen or twenty.” (pp. 152-3) The author goes on to point

out instances where Union soldiers would desert by the hundreds at the same time.

From these facts, it is valid to infer that a soldier’s decision to desert probably had a

19 In a proposition available upon request we present the partial differential equation associated with the survivor

function for more general cases. We conjecture that, even in the presence of discontinuities in the state processes,

a similar result may be attained relying on partial differential equations for the characterization of equilibrium exit

distributions.
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direct impact on the behavior of others in his company. If no one deserts, the social sanctions

attached to exit tend to be high; if there is mass exit, such sanctions tend to be minimized and

the effectiveness of the military company, tends to decrease. Furthermore, such decisions entailed

costs — the probability of being caught and facing a military court.20 These two aspects are

in accordance with the model we investigated previously. Another feature of these data that is

particularly helpful is the fact that recruits tended to be with a company from its inception and

hence there was very little flow of soldiers into or out of the unit.

5.1. Data and Preliminary Analysis

The data used consist of 35,567 recruits in the Union Army during the American Civil War. This

dataset was collected by the Center for Population Economics at the University of Chicago un-

der the auspices of the National Institute of Health (P01 AG10120). It is publicly available at

http://www.cpe.uchicago.edu. The men are distributed across 303 military companies from all

states in the Union with the exception of Rhode Island. These companies were randomly drawn

using a one-stage cluster sampling procedure, and all recruits for each selected company, except

for commissioned officers, black recruits, and some other branches of military service, were entered

into the sample. These soldiers represent 1.27% of the total military contingent in the Union and

a significant portion of the 1,696 infantry regiments in that army. According to the Center for

Population Economics they seem to be representative of the contemporary white male population

who served in the Union Army.

A number of variables is available for each recruit. These include dates of enlistment,

muster-in, and discharge as well as information on promotion, AWOL (absent without leave),

desertion, and furlough.21 More detailed military information from the recruit records is available

and is complemented by background information and post-war history originally from the census.

We focus on the main military variables.

According to Lonn (1928), desertion was markedly higher among foreigners, substitutes and

“bounty-jumpers.” Substitutes and “bounty-jumpers” appeared as the government started induc-

20Even though the Military Code in effect at the beginning of the war mandated sanctions as harsh as the death

penalty, such punishments required the approval of the President or (later during the war) the commanding general.

According to Costa and Kahn (2003), out of an estimated 200,000 deserters, 80,000 were caught, of which only 147

were executed. Especially in the early years, punishments were notoriously mild, consisting of dismissal with loss

of pay and, toward the end, imprisonment for the duration of the war.
21Desertion and other military events were recorded by the company officers. Some mis-measurement of desertion

is to be expected, and we ignore this possibility. Records are nonetheless reported to have become more accurate

toward the end of the war, especially after the institution of the office of provost marshall general in September

1862 (see Lonn (1928)).
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ing enlistment through enrollment bounties — which created the figure of the “bounty-jumper”,

who would enlist, collect the reward and desert just to repeat the scheme in another state or

county — and the possibility for draftees to hire substitutes. In the data it is possible to iden-

tify foreigners and substitutes. To assess the effect of “bounty-jumpers” on desertion, we try the

bounty amount paid to each recruit as a proxy variable.22 Other variables are also included, such

as marital status, age and height as well as dummy variables for state and year of enlistment. The

ideal dataset would contain continuous time records for desertion. Here, an event is marked with

daily precision23 and time to desertion is measured from the earliest muster-in date for recruits in

a given company.24

One of the implications of our model is that company size will affect the equilibrium exit

strategies only in the presence of endogenous effects (see the discussion of Proposition 5 nonethe-

less). Table 1 presents evidence for this. The regressions investigate the effect of certain variables

on the mean (log of the) time to desertion at the individual level.25 Company size is a significant

and robust determinant for the timing of desertion. In addition, we tried other specifications with

different combinations of independent variables. The company size variable remains significant

in all of those. Anecdotal evidence and history texts point to a very unsystematic enlistment

process, typically held at the local level by community leaders, which provides some justification

for assuming that the effect of company size does not represent an omitted factor other than the

numbers in the group.

TABLE 1 HERE

To further investigate the presence of endogenous effects in our data, we compute the

statistics in Theorem 2 for various discretization levels. Even though the proposed test could

suffer from the arbitrary choice of these parameters, all of them yield results that reject the null

hypothesis of no endogenous effects, as displayed in Table 2 below. The results are for desertions

that did not occur during battles, lest these represent common shocks that discontinuously affect

the utility flow. The conclusions are unchanged if one includes desertions that occurred during

battles.

22The bounty amount was not adjusted for inflation, but whenever it was used year dummies were also present

which would capture nationwide inflation levels.
23Some deserters did not have precise dates and were thus discarded.
24Non-parametric estimation of the hazard rate suggests negative duration dependence at earlier dates and mildly

positive to no duration dependence later in the soldier’s army life.
25The regressions can be related to an accelerated failure time model for the time to desertion. Similar versions

were also run at the company level with essentially the same conclusions.
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TABLE 2 HERE

In the next subsection we proceed with the analysis by structurally estimating the model

considered in the paper.

5.2. Estimation

In this subsection we use a simulated minimum distance estimator for the relevant parameters in

the model proposed in Section 3. We normalize the discount rate (γ = 5% per year),26 the exit

cost (C = 1) and the initial condition (x0 = 0.1). The normalizations are necessary as we do

not use covariates in this exercise and identification would be jeopardized without any restriction.

The four parameters estimated are α, ρ, σ and ∆α. Intuitively the first three are pinned down

by the distribution of first exit, which is essentially the minimum of correlated Inverse Gaussian

random variables. In the case of two players, this distribution is given by (??) which is a nonlinear

function of these three parameters. The parameter ∆α on the other hand controls the probability

of simultaneous exits and can be solved for once the other parameters are obtained. Our estimator

ψ̂ then minimizes the following distance:

‖GN(ψ)‖ = ‖N−1

N∑
n=1

m(τn)− (NR)−1

NR∑
r=1

m(τr(ψ))‖

where m : R+ −→ Rk and the second sum is taken over the simulated observations generated under

parameter ψ. The stopping times recorded are only those prior to a certain horizon T , which in

the context stands for the individual term of service in the army. We use R = 1. To simulate the

phenomenon, we have to discretize the sample paths in the simulations. The discretization error in

the simulations can be ignored in large samples for our estimation as long as the discretization grids

are o(
√
N), which we guarantee via an Euler scheme (see Glasserman (2004)). Consistency and

asymptotic normality are then a straightforward application of the results in Pakes and Pollard

(1989). One important condition for this application is that ∆α > 0. We assume that to be

reasonable, given the test statistics obtained in Table 2.

An important simplification is that we assume the thresholds to be constant: zk = z(α −
∆α(k−1)/(I−1), σ, γ, C).27 The moments matched were mean, harmonic mean, average number

of desertions in each desertion episode and percentage of soldiers leaving before two years.28 In the

26For comparison, commercial paper rates in United States during the war fluctuated between 4% and 8% (NBER

Macrohistory Database).
27Similar approximations can be found on the treatment of finite horizon options and seem to work satisfactorily.

Examples are Huang, Subrahmanyam, and Yu (1996) and Ju (1998).
28Very similar results were obtained if one of the percentages was substituted for the average number of deserters

at each desertion episode.
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absence of endogenous or correlated effects, the mean and harmonic mean are MLE and sufficient

statistics for the inverse Gaussian distribution. The other two moments are used as ∆α and ρ

affect the clustering and speed at which individuals drop out in the group. The following table

displays the results and normalizations used in the estimation:

TABLE 3 HERE

The parameters are precisely estimated. The results indicate a substantial endogenous effect.

Using as parameters for this distribution the point estimates above, one obtains a probability of

13.90% for leaving the game before 150 days in the absence of endogenous effects (∆α = 0). If

on the other hand one-fourth of the company deserts immediately after the beginning of the war

for instance, the endogenous effect coefficient estimate implies a probability of leaving the army

before 150 days of 31.78%.29

6. Conclusion

The problem studied here is of great importance in many settings. Decisions about participation

in a social welfare program, bank runs, migration, marriage and divorce are only a few of the

possibilities. Disentangling endogenous and correlated effects is thus fundamental not only to illu-

minate economic research but also to enlighten policy. The setup delineated in this paper allows

us to better understand the nature of endogenous and correlated effects. Whereas this problem is

unfeasible in simpler settings (see Manski (1993)), the separation is not clear in other approaches

that deal with similar situations (as in Brock and Durlauf (2001)).

For the environment considered in this paper, we have learned that endogenous interactions

may be an important component in multi-person timing situations. They can generate simultane-

ous actions with positive probability and thus interfere with the usual statistical inference through

standard duration models. A few characterizations were possible, and a test for the presence of

endogenous influences was delivered. Finally, structural estimation points to a significant effect

on the outcome of our particular example.

29We have also estimated the model imposing termination exogenously through death. The results are not much

different.
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Appendix: Proofs

Sketch of Proof for the Existence of a Strong Solution

The proof that there exists a strong solution for equation 2 follows from a slight modification of

the proof provided in Karatzas and Shreve (1991), p. 289. The key is to note that the itera-

tive construction of a solution follows through if we replace b(s, x) and σ(s, x) by b(s, x, ω) and

σ(s, x, ω) in the definition of X(k). If, for fixed x, (s, ω) 7→ b(s, x, ω) and (s, ω) 7→ σ(s, x, ω) are

adapted processes, the resulting process is still adapted. The remainder of the proof is identical.

(See also Port and Stone (1991), Theorem V.7)

Proof of Proposition 1

Let the breaks in the drift arrive randomly at the stopping times νk with corresponding arrival

rates λk(t;ω). In other words, let k ∈ {0, 1, . . . , n} describe the regime in which the drift coefficient

is α − k∆α and the hazard rate at t for moving from state k to state k + 1 is given by λk(t, ω).

Since 0 = ν0 ≤ ν1 ≤ · · · ≤ νk, λk(t;ω) = 0 if t < νk−1(ω). The value function for this problem is

then given by:

J(x, k, t) = sup
τ≥t

E[eγτ (xτ − C)|xt = x, kt = k]

where kt ∈ {0, 1, . . . , n} marks the regime one is at. Heuristically one has the following Bellman

equation:

J(x, k, t) = max
{
x− C, (1 + γdt)−1{λk(t)dtE[J(x+ dx, k + 1, t)|x] +

(1− λk(t)dt)E[J(x+ dx, k, t)|x]}
}
, k ≤ n− 1

and J(x, n, t) = J(x), which is the value function for the optimal stopping problem when the

log-linear diffusion has the lowest drift. In the continuation region, the second argument in the

right-hand expression is the largest of the two and it can be seen that the value function satisfies:

(γ + λk(t))J(x, k, t) ≥ AkJ(x, k, t) + Jt(x, k, t) + λk(t)J(x, k + 1, t).

where Ak is the infinitesimal generator for a log-linear diffusion with drift coefficient α − k∆α.

The left-hand side indicates the loss from waiting one infinitesimal instant, whereas the right-hand

side stands for the benefit of waiting one infinitesimal instant — the expected appreciation in the

value function. This expression holds in the continuation region and the typical

J(zk(t), k, t) = zk(t)− C, ∀t (value matching)

Jx(zk(t), k, t) = 1, ∀t (smooth fit)

26



implicitly define the thresholds zk.

More rigorously,30 let J : R++ × {1, . . . , n} × R+ → R be twice differentiable on its first

argument with an absolutely continuous first derivative such that:

1. J(x, k, t) ≥ x− C;

2. −γJ(x, k, t) +AkJ(x, k, t) + Jt(x, k, t) + λk(t)(J(x, k + 1, t) − J(x, k, t)) ≤ 0, with equality

if J(x, k, t) > x− C;

3. ∀s <∞,E[
∫∞

0
e−γtJx(xt, kt, t)x

2
tdt] <∞

Let Sk = {(x, t) : J(x, k, t) ≤ x − C} be the stopping region when the regime is k and consider

τ ∗ = inf{t : xt ∈ Skt}. Then

J(x, k, t) = sup
τ≥t

E[e−γτ (xτ − C)|xt = x, kt = k]

and τ ∗ attains the supremum.

To see this, consider a stopping time τ and let τm = τ ∧m. Then (2), (3) and Dynkin’s

formula (Rogers and Williams (1994), pp. 252-4) deliver that

J(x, k, t) ≥ E[e−γτmJ(xτm , kτm , τm)|xt = x, kt = k].

Using (1):

J(x, k, t) ≥ E[e−γτm(xτm − C)|xt = x, kt = k].

By Fatou’s Lemma, lim infm E[e−γτm(xτm − C)|xt = x, kt = k] ≥ E[e−γτ (xτ − C)|xt = x, kt = k]

and we have that

J(x, k, t) ≥ E[e−γτ (xτ − C)|xt = x, kt = k].

for an arbitrary stopping time τ . Using (2) and (3) plus Dynkin’s formula one can then obtain

that τ ∗ attains the supremum. The value matching and smooth pasting conditions are then

consequences of J being C1. As explained earlier, these two conditions implicitly define the

thresholds zk(t).

That zk(t) > zk+1(t),∀t can be seen in the following manner. Let xt(x, k) be the process

initialized at the level x and regime k. Since the drifts in successive states are strictly smaller, a

comparison result such as the one in Karatzas and Shreve (1991), Proposition V.2.18, or Port and

Stone (1991), Theorem V.54, can be established to show that:

e−γt(xt(x, k)− C) > e−γt(xt(x, k + 1)− C), ∀t P-a.s.

30The reasoning is in the spirit of similar arguments in Kobila (1993) and Scheinkman and Zariphopoulou (2001).
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This should be enough to imply that the maximum attainable value is decreasing in k:

J(x, k, t) > J(x, k + 1, t), ∀t.

Consequently,

J(zk(t), k, t) > J(zk(t), k + 1, t), ∀t.

So, stopping at regime k implies stopping at regime k + 1, whereas the opposite does not hold.

This suffices to argue that

zk(t) > zk+1(t), ∀t k ∈ {1, . . . , n− 1}. �

Proof of Proposition 2

Step 1: (Optimal policy characterization) As in Proposition 1, the value function characterizes

the thresholds. Notice, though, that at any instant t the probability that another individual’s

latent utility process hits the stopping region in the next infinitesimal instant, given that it has not

occurred so far, is negligible, since this process is a diffusion. As time goes by, though, the likelihood

that such an event occurs increases toward one and the value of staying should decrease accordingly.

So, we require the function in the limit to agree with the value function in the next regime, which

ultimately brings it to the lowest drift regime. Let J i(x, k, t) = supτ≥t E[eγτ (xiτ−Ci)|xit = x, kit = k]

be the value function for individual i ∈ I. Following the steps in Proposition 1, one can see that

1. J i(x, k, t) ≥ x− Ci;

2. −γJ i(x, k, t) +AikJ i(x, k, t) + J it (x, k, t) ≤ 0, with equality if J i(x, k, t) > x− Ci;

3. limt→∞ J
i(x, k, t) = J i(x).

where J i(x) is the value function for the optimal stopping problem with the lowest drift log-linear

diffusion.

As in Proposition 1, we have the value matching and smooth pasting conditions determining

the relevant thresholds:

J i(zim(t),m, t) = zim(t)− Ci, ∀t (value matching)

J ix(z
i
m(t),m, t) = 1, ∀t (smooth fit)

As before zim(t) > zim+1(t), ∀t m ∈ {1, . . . , n− 1}.
Step 2: (Stopping times are an increasing sequence) Notice that, by definition, τ0 ≤ τ1 ≤ · · · ≤ τI

and consequently form an increasing sequence of stopping times.

Step 3: (At each stage at least one agent stops) ∀k ∈ I,∃j : τ ∗j = τk. Take a stopping time τk.

There are two possibilities, represented by two disjoint subsets of Ω, say Ω1 and Ω2:
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1. Ω1. The vector process Ak−1xt hits Ak−1SI+1−1′Ak−11 where (∃i ∈ I : xi ≥ zik and ∀j 6=
i, xj < zjk+1). In this case, τ ∗i (ω) = τk(ω) (provided i hasn’t stopped yet), ∀ω ∈ Ω1.

2. Ω2. The above does not happen. In this case, ∃j : zjk+1 ≤ xjτk (provided j hasn’t stopped

yet). In this case it can be seen that τk+1 = τk. Then, xjτk = xjτk+1
≥ zjk+1 and this implies

that τ ∗j (ω) = τk+1(ω) = τk(ω), ∀ω ∈ Ω2.

This means that, at each stopping time τk, the drift of xi drops by ∆αi/(I − 1).

Step 4: (τ ∗i is optimal) Apply Proposition 1. �

Proof of Proposition 3

Step 1: (The strategy profile is an equilibrium) Set ν = τ ∗j in Proposition 2. Consider τ i = inf{t :

xt > zi(t)}, where zi(t) is obtained as in Proposition 2. Agent i should use τ i on {τ i < τ ∗j } and

inf{t > τ ∗j : xit > zi} on the complementary set.

Now notice that:

xiτS = zi(t)⇒ τ i = τS

When the vector process hits S on the subset where xi = zi(t), the hitting times for the vector pro-

cess to reach S and for the component process to hit zi(t) coincide. Since τ ∗j ≥ τS by construction,

we should also conclude that:

{xiτS = zi(t)} ⊂ {τ i ≤ τ ∗j }

Agent i should then use τ i (which coincides with τS on this set).

On the other hand,

xiτS 6= zi(t)⇒

{
τ i > τS

(xjτS > zj ⇒ τ ∗j = τS)
⇒ τ i > τ ∗j

So, we are in the complementary set, in which it is sensible to use inf{t > τ ∗j : xit > zi} = inf{t >
τS : xit > zi}.
Step 2: (The equilibrium is unique) To see that this is the unique equilibrium, notice that

1. This is the unique equilibrium in which x1
τ∗1∧τ∗2

= z1(t) or x2
τ∗1∧τ∗2

= z2(t). In other words, any

equilibrium profile of stopping strategies will have at least one stopper in the first round of

exits at his or her threshold;

2. If there is another equilibrium, it should then involve first stoppers quitting at points lower

than their initial thresholds. If only one agent drops, this can be shown to be suboptimal

according to the reasoning of Proposition 2. If both stop at the same time and since P({ε1 =

ε2}) = 0, there is an incentive for one of the agents to deviate and wait. �
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Proof of Proposition 4

Let S = {(x, t) ∈ RI
++ × R+ : ∃i such that xi ≥ zi1 = z(αi, σi, Ci, γi,∆αi, t)} and τS = inf{t >

0 : xt ∈ S}. Since the sample paths are continuous P-almost surely, by Theorem 2.6.5 in Port

and Stone (1978) the distribution of (xτS , τS) will be concentrated on ∂S. Also, it is true that

P(τS <∞) > 0.

(Sufficiency) If there are endogenous effects, zi1(t) > zi2(t),∀t i ∈ I. There will be simulta-

neous exit whenever zi1 ≥ xiτS ≥ zi2, for some i ∈ I. This has positive probability as long as

zi1(τS) > zi2(τS), i ∈ I. To see this, first notice that the latent utilities process can be represented

as the following diffusion process with killing time at τS :

dxit = αixitdt+
∑
j∈I

σ̃ijdB
j
t , i = 1, . . . , I

where Bt is an I-dimensional Brownian motion (with independent components) and σ̃I×I = [σ̃ij].

Let ∂SH = {(x, t) ∈ ∂S : zi1(t) ≥ xi ≥ zi2}. By Corollary II.2.11.2 in Gihman and Skorohod (1972)

(p. 308), one gets that P[(xτS , τS) ∈ ∂SH ] = u(x, t) is an A-harmonic function in C = Sc. In other

words,

Au(x) + ut(x, t) = 0 in C
u(x, t) = 1 if (x, t) ∈ ∂SH
u(x, t) = 0 if (x, t) ∈ ∂S\∂SH

where

Af =
∑
i∈I

αixi
∂f

∂xi
+

1

2

∑
i,j∈I
i6=j

(σ̃σ̃′)ijxixj
∂2f

∂xi∂xj
.

is the infinitesimal generator associated with the above diffusion. By the Minimum Principle

for elliptic operators (see Proposition 4.1.3 in Port and Stone (1978)), if u attains a minimum

(which in this case would be zero) on C, it is constant on C. This would in turn imply that

∀(x, t) ∈ C, u(x) = P[(xτS , τS) ∈ ∂SH |x0 = x] = 0. But by Proposition 2.3.6 in Port and Stone

(1978), one can deduce that u(x, t) = P[(xτS , τS) ∈ ∂SH |x0 = x] 6= 0.

(Necessity) If there are no endogenous effects, one agent’s drift is never affected by the exit

of other agents. Each agent’s decision is given by τ ∗i = inf{t ∈ R+ : xit > zi = z(αi, σi, Ci, γi)}.
There will be clustering only if τ ∗i = τ ∗j , i 6= j. The state-variable vector can be represented as

above until the killing time τS . Then, there will be clustering only if xt hits S at the point (zi)i∈I .

But in I ≥ 2 dimensions any one-point set A is polar with respect to a Brownian motion, i.e.,

30



P[τA < ∞] = 0 where τA is the hitting time for A (Proposition 2.2.5 in Port and Stone (1978)).

So, P[τ ∗i = τ ∗j , i 6= j] = 0. �

Proof of Proposition 5

If there are no endogenous effects, the equilibrium strategies are characterized by the thresholds

z(α, σ, γ, C). The marginal distribution for these are then (possibly defective) Inverse Gaussian

distributions, so that P(τ ≤ t|τ <∞;x0, z, α, σ, I) is given by:

Φ

(
log( z

x0
)− |α− σ2

2
|t

σ
√
t

)
− e

2|α−σ
2

2 |(log( zx0
))

σ2 Φ

(
− log( z

x0
)− |α− σ2

2
|t

σ
√
t

)
and

P(τ <∞) =

 1 if α− σ2/2 > 0

exp
(
−2 log(z/x0)|α−σ2/2|

σ2

)
otherwise

(see Whitmore (2006)). Notice that the expression does not depend on I and this completes the

proof. �

Proof of Theorem 2

We start out by proving the conditions for Lyapunov’s Central Limit Theorem for an arbitrary

combination of yn,∆N,1
and yn,∆N,2

.

Step 1: (Lyapunov’s CLT) First, notice that, ∀δ > 0 and (α1, α2, α3) ∈ R3,

E[|
∑
i=1,2,3

αiyn,∆N,i
|2+δ] ≤ 3maxi=1,2,3(|αi|)E[| max

i=1,2,3
(yn,∆N,i

)|2+δ]

≤ 3maxi=1,2,3(|αi|)E[ max
i=1,2,3

(yn,∆N,i
)] <∞

Let

ζ(∆N,1,∆N,2,∆N,3) =
[
α1 α2 α3

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3



α1

α2

α3


and observe that, provided (α1, α2, α3) 6= (0, 0, 0), ζ(0, 0, 0) = 0 ⇔ p(0) = 0 (since p(0) = 0 ⇔
v(0) = 0). Consider then

Ln,N =

∑
i=1,2,3 αi(yn,∆N,i

− p(∆N,i))√
Nζ(∆N,1,∆N,2,∆N,3)

.

For Lyapunov’s Condition to be satisfied one needs to be able to state that

lim
N

N∑
n=1

E|Ln,N |2+δ = 0
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for some δ > 0. That this is the case can be seen because

∑N
n=1 E|Ln,N |2+δ =

A︷ ︸︸ ︷
N1−(1+δ/2)(1−κ)

B︷ ︸︸ ︷
(Nκζ(∆N,1,∆N,2,∆N,3))−(1+δ/2)×

×E[|
∑
i=1,2,3

αi(yn,∆N,i
− p(∆N,i))|2+δ]︸ ︷︷ ︸

C

We set κ = ε if p(0) = 0 (Assumption 1 holds) and κ = 0, otherwise.

For C, observe that

C ≤
∑

i=1,2,3[E[|αiyn,∆N,i
|]2+δ + (αip(∆N,i))

2+δ] ≤
∑

i=1,2,3[α2+δ
i + (αip(∆N,i))

2+δ]
N−→

−→ (1 + p(0)2+δ)
∑

i=1,2,3 α
2+δ
i .

With respect to B, imposing κ = 0 and assuming that p(0) > 0, one has

ζ(∆N,1,∆N,2,∆N,3)
N−→ ζ(0, 0, 0) > 0.

In case p(0) = 0, notice that ζ(·, ·, ·) is a function of p(·). This being differentiable, by the Mean

Value Theorem one has

Nκζ(∆N,1,∆N,2,∆N,3) = Nκ ×
(
ζ(0, 0, 0) + ∂ζ(∆̂N,1, ∆̂N,2, ∆̂N,3)′


∆N,1

∆N,2

∆N,3

)

where 0 ≤ ∆̂N,k ≤ ∆N,k, k = 1, 2, 3 and ∂ζ(·, ·, ·) is the gradient vector for ζ(·, ·, ·). We draw

attention to the fact that limN ∂kζ(∆̂N,1, ∆̂N,2, ∆̂N,3)×∆k,N > 0, k = 1, 2, 3. This is because

∆−1ζ(∆, 0, 0) = ∆−1α2
1var(yn,∆) = ∆−1α2

1var

((
In
2

)−1 ∑
{i,j}∈πn

I{τ i∆=τ j∆}

)
=

= ∆−1α2
1

(In
2

)−1

var
(
I{τ i∆=τ j∆}

)
+ 2

(
In
2

)−2 ∑
{i,j},{k,l}∈πn

cov
(
I{τ i∆=τ j∆}

, I{τk∆=τ l∆}

) ≥
≥ ∆−1α2

1

(
In
2

)−1[
p(∆)(1− p(∆))− 2p(∆)2

]
∆→0−→ α2

1

(
In
2

)−1

p′+(0) > 0

where the inequality follows because cov
(
I{τ i∆=τ j∆}

, I{τk∆=τ l∆}

)
= E

(
I{τ i∆=τ j∆}

I{τk∆=τ l∆}

)
− p(∆)2 ≥

−p(∆)2. The statement follows by analogy for the second and third arguments in ζ(·, ·, ·). In this

case,

N εζ(∆N,1,∆N,2,∆N,3) = N ε

∂ζ(∆̂N,1, ∆̂N,2, ∆̂N,3)′


∆N,1

∆N,2

∆N,3


 N−→

∑
i=1,2,3

ai∂
+
i ζ(0, 0, 0) > 0
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where ai, i = 1, 2, 3 are positive constants by Assumption 2. This suffices to show that B converges

to a finite value.

If p(0) > 0, A = N−δ/2 −→ 0. When p(0) = 0, we can drive A to zero by choosing δ > 0

so that

δ > 2((1− ε)−1 − 1) > 0.

Hence, Lyapunov’s Condition

lim
N

N∑
n=1

E|Ln,N |2+δ = 0

holds. The Central Limit Theorem then asserts that

√
N

∑
i=1,2,3 αi(y∆N,i

− p(∆N,i))√
ζ(∆N,1,∆N,2,∆N,3)

L−→ N (0, 1).

Since (α1, α2) is arbitrary, the Cramér-Wold device implies

√
Nvar


yn,∆N,3

yn,∆N,2

yn,∆N,1


− 1

2



y∆N,3

y∆N,2

y∆N,1

−

p(∆N,3)

p(∆N,2)

p(∆N,1)


 L−→ N (0, I3)

Step 2: (Delta Method) By the uniform delta method, one obtains that

√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− p(∆N,2)

p(∆N,1)
− ξ

(
y∆N,3

y∆N,1

− p(∆N,3)

p(∆N,1)

)]
L−→ N (0, 1)

where

σN =
[ξp(∆N,3)− p(∆N,2)

p(∆N,1)2

1

p(∆N,1)
− ξ

p(∆N,1)

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3




ξp(∆N,3)−p(∆N,2)

p(∆N,1)2

1
p(∆N,1)

− ξ
p(∆N,1)


and

ξ =
a2(a2 − a1)

a3(a3 − a1)
.

Notice that
p(∆N,k)

p(∆N,1)
=
p(0) + ∆N,kp

′(0) + 1
2
∆2
N,kp

′′(0) +O(∆3
N,k)

p(0) + ∆N,1p′(0) + 1
2
∆2
N,1p

′′(0) +O(∆3
N,1)
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and, if p(0) = 0, one obtains that

p(∆N,k)

p(∆N,1)
− ak
a1

=
∆N,kp

′(0) + 1
2
∆2
N,kp

′′(0) +O(∆3
N,k)

∆N,1p′(0) + 1
2
∆2
N,1p

′′(0) +O(∆3
N,1)
− ak
a1

=

=
ak + p′′(0)a2

kN
−ε +O(N−2ε)

a1 + p′′(0)a2
1N
−ε +O(N−2ε)

− ak
a1

=
p′′(0)aka1(ak − a1)N−ε +O(N−2ε)

a1[a1 + p′′(0)a2
1N
−ε +O(N−2ε)]

=

=
p′′(0)aka1(ak − a1)N−ε

a2
1[1 + p′′(0)a1N−ε +O(N−2ε)]

+O(N−2ε)
(by Taylor’s Expansion)

=

=
p′′(0)aka1(ak − a1)N−ε

a2
1

× [1− p′′(0)a1N
−ε +O(N−2ε)] +O(N−2ε) =

=
p′′(0)aka1(ak − a1)N−ε

a2
1

+O(N−2ε).

This delivers

y∆N,2

y∆N,1

− p(∆N,2)

p(∆N,1)
− ξ

(
y∆N,3

y∆N,1

− p(∆N,3)

p(∆N,1)

)
=

y∆N,2

y∆N,1

− a2

a1
− ξ

(
y∆N,3

y∆N,1

− a3

a1

)
+O(N−2ε).

Noticing that
√
Nσ

− 1
2

N = O(N
1+ε

2 ) gives us that

√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− a2

a1

− ξ

(
y∆N,3

y∆N,1

− a3

a1

)]
L−→ N (0, 1)

as long as ε > 1/3. If p(0) > 0, it is possible to see that the statistic diverges using similar

arguments. �

Proof of Theorem 3

Step 1: Consider the expected log-likelihood function conditioned on w:

KL(ψ, ψ̂,w) =

∫
log[g(t; ψ̂,w)]g(t;ψ,w)dt

From the properties of the Kullback-Leibler information criterion (or relative entropy) for two

probability distributions, it is obtained that ψ̂ maximizes the expected log-likelihood if and only

if g(t; ψ̂,w) = g(t;ψ,w) (see Schervish (1995), Proposition 2.92). In particular, ψ̂ = ψ is one such

maximizer.

Step 2: Take Ψ = {ψ, ψ̂}. Also, let wi = (wci , w
d
i ) where wci denotes the continuous random

covariates and wdi , those with a discrete component. We now verify the conditions in Theorem 1

in Araújo and Mas-Colell (1978). For each fixed value in the support of (wdi )i∈I :

1. Ψ is trivially Lindelöf since it is compact.31

31We could allow for Ψ to be a subset of RK . R2K is Lindelöf since it is separable and metrizable and thus,

second countable (see Aliprantis and Border (1999), Theorem 3.1). This implies that it is Lindelöf (see Aliprantis

and Border (1999), p. 45).
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2. The Kullback-Leibler information criterion is continuous on the parameters and w. To

obtain this result, notice that

g(;̇ψ) = −dG
dt

(;̇ψ)

and

G(t;ψ) = P(τ > t;ψ) = E[I{sups≤t x
i
s(ψ)−z(t;ψ)>0 for some i}] = E[φ((xs)

t
s=0)|x0 = x]

The derivative of this last expression with respect to the parameters is well defined and can

be obtained through Malliavin calculus (see Proposition 3.1 in Fournié, Lasry, Lebuchoux,

Lions, and Touzi (1999) for the drift, for example). The assumption that α(·) is a continuous

function on the covariates achieves the result.

3. The derivative exists and is continuous since we assume that α(·) is of class C1 with respect

to the continuous random variables.

4. Pick any product measure ν equivalent to the measure represented by the CDF Fwc . Since

the latter is assumed to be continuous, its measure is absolutely continuous with respect

to the Lebesgue measure and ν is also absolutely continuous with respect to the Lebesgue

measure.

5. The Sondermann Condition in Araújo and Mas-Colell (1978) holds by assumption.

By Theorem 1 in Araújo and Mas-Colell (1978), there is at most one maximizer for the expected

log-likelihood function Fwc-a.e. for each element in the support of wd and we know that ψ

maximizes it. The statement is easily extended Fw-a.e. since the support of wd is countable and

the union of countable events with null measure — there being more than one maximizer — has

zero measure. �
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Figure 1: Sequential Stopping

Figure 2: Simultaneous Stopping
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Table 1: Individual Regressions

Dependent variable: log(Days Until Desertion)

Coef. Std. Error t P> |t| Coef. Std. Error t P> |t|
Company Size 0.002 0.0006 3.43 0 0.0019 0.0006 3.08 0.00

Bounty Paid 0.0015 0.0006 2.36 0.02

Foreigner -0.2144 0.0504 -4.25 0.00

Substitute 0.1874 0.0996 1.88 0.06

Age -0.0095 0.0033 -2.86 0.00

Height 0.0256 0.0095 2.7 0.01

State Controls: Yes Yes

Year Controls: Yes Yes

Number of obs = 3337 3237

R-squared = 0.2983 0.3076

† Standard errors are robust standard errors.

Table 2: Test (Non-Battle Desertions)(
y∆2

y∆1

− ∆2

∆1

)
− ξ
(
y∆3

y∆1

− ∆3

∆1

)
∆2/∆1 ∆3/∆1 y∆1

y∆2
y∆3

Test Statistic

2 3 0.002289 0.002693 0.002859 -6.25

2 5 0.002289 0.002693 0.003358 -11.31

2 10 0.002289 0.002693 0.004210 -13.18

3 4 0.002289 0.002859 0.003216 -13.05

3 5 0.002289 0.002859 0.003358 -16.99

3 10 0.002289 0.002859 0.004210 -20.95

† ∆1 = 1 day. All 303 companies were used.

Table 3: Model Estimation

α̂ ∆̂α σ̂ ρ̂

0.0438 0.0050 5.8610 0.1008

(0.0113) (0.0000) (0.0219) (0.0040)

(per year) (per year) (per year)

† Initial position = 0.1. Exit cost = 1. Discount
rate = 5% per year.
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