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Abstract
Many important strategic problems are characterized by repeated interactions among

agents. There is a large literature in game theory and economics illustrating how considera-
tions of future interactions can provide incentives for cooperation that would not be possible
in one-shot interactions. Much of the work in repeated games assumes public monitoring:
players observe precisely the same thing at each stage of the game. It is well-understood
that even slight deviations from public monitoring increase dramatically the difficulty the
problems players face in coordinating their actions. Repeated games with private monitor-
ing incorporate differences in what players observe at each stage. Equilibria in repeated
games with private monitoring, however, often seem unrealistic; the equilibrium strategies
may be highly complex and very sensitive to the fine details of the stochastic relationship
between players’ actions and observations. Furthermore, there is no realistic story about
how players might arrive at their equilibrium strategies.

We propose an alternative approach to understanding how people cooperate. Each
player is endowed with a mental system that processes information: a mental system consists
of a number of psychological states and a transition function between states that depends
on observations made. In this world, a strategy is just a function from states to actions.
Our framework has the following desirable properties: (i) players restrict attention to a
relatively small set of simple strategies. (ii) the number of strategies that players compare
is small enough that players might ultimately learn which perform well.

We find that some mental systems allow agents to cooperate under a broad set of
parameters, while others are not conducive to cooperation.

1. Introduction

Cooperation is ubiquitous in long-term interactions: we share driving responsibilities with our
friends, we offer help to relatives when they are moving and we write joint papers with our
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colleagues. The particular circumstances of an agent’s interactions vary widely across the variety
of our long-term relationships but the mechanics of cooperation are usually quite simple. When
called upon, we do what the relationship requires, typically at some cost. We tend to be upset
if our partner seems not to be doing his part and our willingness to cooperate diminishes. We
may be forgiving for a time but stop cooperating if we become convinced the relationship is one-
sided. We sometimes make overtures to renew the relationship when opportunities arise, hoping
to rejuvenate cooperation. Incentives to cooperate stem from a concern that the relationship
would temporarily break down, while incentives to be less cooperative when the relationship
feels one-sided stem from the fear of being taken advantage of by a non-cooperative partner.
These rules of thumb seem to be conducive to cooperation under a broad range of circum-

stances, including those in which we get only a noisy private signal about our partner’s efforts
in the relationship. We are interested in the following questions and in providing a framework
to address them. Do there exist rules of thumb that perform well — in the sense that despite
agents’ search for individual gains, players are able to cooperate when there are gains from doing
so — under a large variety of circumstances (payoffs, signal structures)? What rules of thumb
perform better than others?
The literature on repeated games that has addressed the issue of cooperation aims at an-

swering the dual question: For given parameters of a particular game (payoffs, signal structures),
what are the set of stable rules of behavior (i.e. equilibrium rules from which neither player
would want to deviate). Analysis that begins with a specific game will likely not provide an
answer to the question of what rules perform well in a large variety of circumstances.
The theory of repeated games has provided important insights about repeated interactions

but is unsatisfactory in several regards. When signals are private, the quest for “stable” rules of
behavior (or equilibria) has sometimes produced complex strategies that are finely tuned to the
parameters of the game (payoffs, signal structure).1 If the parameters of the game are changed
slightly the rule fails to remain stable.2

Additionally, there is no realistic story of how players would arrive at the proposed equilib-
rium strategies. It seems extremely implausible that players could compute appropriate strate-
gies through introspection. Furthermore, equilibrium strategies in repeated games with private
signals typically rely on my knowing not only the distribution of signals I receive conditional on
the other player’s actions, but also the distribution of his signals given my actions, something I
never observe. Even if one entertains the possibility that players compute equilibrium strategies
through introspection there is the question of how the players might know these signal distri-
butions. One might posit that players could “learn” the equilibrium strategies, but there are
(at least) two difficulties. First, if players are to learn how to behave in repeated situations this
should be incorporated into the modelling of the problem. Second, the set of strategies is huge
and it is difficult to see how a player might learn which strategies work well.3

We propose an alternative approach to understanding how people cooperate. Players restrict
attention to a relatively small set of simple strategies. We are ultimately interested in the actual

1See, e.g., Piccione (2002) and Ely and Valimaki (2002).
2 In other words, equilibria are not strict.
3 In the repeated game literature, allowing for public communication is often seen as a remedy to the problems

caused by the fact that signals are private (see Compte (1998) and Kandori and Matsushima (1998)). However,
while communication simplifies the analysis, all the comments above apply. In particular, when signals are
conditionally independent, providing incentives to communicate truthfully requires that players be indifferent
between the various messages they send.
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set of strategies players restrict attention to, but as a first step our goal is to find sets of strategies
that have the following desirable properties: (i) the number of strategies in the set should be
small enough that players might ultimately learn which perform well; (ii) the strategies should
be simple in an intuitive sense; (iii) the sets should allow agents to cooperate under broad
circumstances.
One can think of the choice of actions as arising in a hierarchical behavior system in which

the top level (the set of strategies the player considers) describes the ways in which a person
might play in a broad set of games. The second level of the hierarchical system is activated when
an individual is faced with a specific game. At this point, the player chooses from the set of
strategies determined at the top level. While the set of strategies considered remains unchanged
as the “fine details” of the games vary, the choice from that set may.
The goal is a realistic description of cooperation when people are strategic. The games we

play vary and our knowledge of the structure of the game may be limited. We need to adjust
play through experimentation to learn which strategies perform well. Restrictions on the set of
strategies allow players to identify best responses easily, and eventually adjust play as a function
of the particular parameters of the game they are currently playing.

1.1. Strategy restrictions

The restrictions on the strategies available to players are a crucial element of our approach. We
are not interested in arbitrary restrictions, but rather, on restrictions that might arise naturally.
An individual’s action in any period is generally assumed to be a function of the history to that
point. Here, we restrict strategies to be functions of the informational state a player is in and
limit the number of informational states available to a player. This restricts a player to behaving
the same way for all histories of the game that lead to the same informational state.4

We think of the set of informational states not to be a choice variable, but rather a natural
limitation of mental processing. We might feel cheated if we have put effort into a relationship
and get signals that the other is not reciprocating. We can think of those histories in which one
feels cheated as leading to a mental state (U)pset, and those histories in which one doesn’t feel
cheated as leading to a mental state (N)ormal. A mental system is the set of mental states one
can be in along with a transition function that describes what combinations of initial mental
state, actions and signals in a period lead to specific updated mental states. We will assume
in most of what we do that the transition function does not depend on the fine details of the
game — the payoffs and the monitoring structure — but in principle it might. For example, in
circumstances in which it is extremely costly for my partner to put in effort, I may not become
upset if he does not seem to be doing so. However, a fundamental aspect of the transition
function is that the individual does not have control over it.
While the mental system may be the same across a variety of games, how one responds to

being upset may be situational, that is, may depend on the particular game one is involved in, as
well as on the behavior of the other player. If the cost of cooperation is very small, one might be
hesitant to defect in state U and risk breaking a relationship that is generally cooperative, but not
hesitate when the cost is large; whether in state U or state N, the individual may either cooperate

4For many problems restricting a player to a finite number of informational states is natural. If there is a finite
number of signals a player can receive following the play of a game in any period, and if players have bounded
recall, the assumption that an individual has a finite number of informational states is without loss of generality.
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or defect. Thus, while a player’s available strategies depend only on that player’s mental process
- hence not necessarily on the fine details of the payoffs and informational structure of the game
— the strategy he chooses will typically be sensitive to the specifics of the game at hand.
Our view is that there are limits to peoples’ cognitive abilities, and evolution and cultural

indoctrination determine an individual’s mental system consisting of the states he can be in
and the transition function that moves him from one state to another. Children experience
a large number of diverse interactions, and how they interpret those experiences are affected
by their parents and others they are (or have been) in contact with. A parent may tell his
child that the failure of a partner to have reciprocated in an exchange is not a big deal and
should be ignored, or the parent can tell the child that such selfish behavior is reprehensible and
inexcusable. Repeated similar instances shape how the child interprets events of a particular
type. Even in the absence of direct parental intervention, observing parental reactions to such
problems shape the child’s interpretations.5

2. Model

Gift exchange.
There are two players who exchange gifts each period. Each has two possible actions available,

{D,C}. Action D is not costly and can be thought of as no effort having been made in choosing
a gift. In this case the gift will not necessarily be well perceived. Action C is costly, and
should be interpreted as making substantial effort in choosing a gift; the gift is very likely to be
well-received in this case. The expected payoffs to the players are as follows:

C D
C 1, 1 −L, 1 + L
D 1 + L,−L 0, 0

L corresponds to the cost of effort in choosing the “thoughtful” gift: you save L when no effort
is made in choosing the gift.
Signal structure.
We assume that there are two possible private signals that player i might receive, yi ∈ Yi =

{0, 1}, where a signal corresponds to how well player i perceives the gift he received. We assume
that if one doesn’t put in effort in choosing a gift, then most likely, the person receiving the gift
will not think highly of the gift. We will refer to y = 0 as a “bad” signal and y = 1 as “good”.
Formally,

p = Pr{yi = 0 | aj = D} = Pr{yi = 1 | aj = C}
We will assume that p > 1/2 and for most of the main text analysis we consider the case

where p is close to 1.
In addition to this private signal, we assume that at the start of each period, players receive

a public signal z ∈ Z = {0, 1}, and we let

q = Pr{z = 1}.

We discuss the role of the signal z below.
5 It is quite possible that there is a conflict between the two; parents may want to indoctrinate their children

to be different from themselves.
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2.1. Strategies

As discussed above, players’ behavior in any period will depend on the previous play of the game,
but in a more restricted way than in general. There is a finite set of possible informational states,
Si, that player i can be in, where a given informational state is a set of histories. Informational
states capture the bounds on players’ memories of the precise details of past play. For example,
a player who has gotten one bad signal in the past twenty periods should not be assumed to
remember this occurred in period sixteen or period seventeen. For simplicity, we assume that in
the current example the players can be in one of two states U (pset) or N (ormal). The names are
chosen to convey that at any time player i is called upon to play an action, he knows the mood
he is in, which is a function of the history of (own) play and signals, but does not condition his
action on finer details of the history.6 One can interpret the restriction to strategies that are
constant across the histories that lead to a particular informational state as being a limit on the
player’s memory or simply as a rule of thumb the player uses. Si is exogenously given, not a
choice. Player i’s set of pure strategies is

Σi = {σi, σi : Si −→ Ai}.
The particular state in Si that player i is in at a given time depends on the previous play

of the game. The transition function for player i is a function that determines the state player
i will be in at the beginning of period t as a function of his state in period t− 1, his choice of
action in period t − 1, and the outcome of that period — the signals yi and z. As is the set of
states for player i, the transition function is exogenous. A player who has made an effort in his
choice of gift but receives a bad signal may find it impossible not to be upset, that is, be in state
U .
We assume the transition function for the example, which we will refer to as the leading

example below, is as in the figure below.

N U

y  = 0, z = 0i 

z = 1
Figure 1: Transition

This figure shows which combinations of actions and signals will cause the player to move from
one state to the other. If player i is in state N , he remains in that state unless he receives signals

6For expository ease we assume that an individual’s payoffs depend on outcomes, but not on the state he is
in. The names that we use for the states suggests that the state itself could well be payoff relevant: whatever
outcome arises, I will be less happy with that outcome if I’m upset. Our framework can easily accommodate
state-dependence, and the qualitative nature of our conceptual points would be unchanged if we did so. We
discuss this further in the discussion section below.
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y = 0 and z = 0, in which case he transits to state U . If i is in state U , he remains in that state
until he receives signal z = 1, at which point he transits to state N regardless of the signal y.7

To summarize, a player is endowed with amental system that consists of a set of informational
states the player can be in and a transition function that describes what triggers moves from
one state to another. Our interest is in finding stable patterns of behavior. Our structure
requires that players’ strategies are stationary: they do not depend on the period. This rules
out strategies of the sort “Play D in prime number periods and play C otherwise”, consistent
with our focus on rules of thumb that prescribe behavior as a function of the information close
to hand at the time choices are made.
Our candidate behavior for the players will be as follows. For player i,

σi(N) = C

σi(U) = D.

That is, player i plays C as long as he receives a gift that seems thoughtful, that is yi = 1, or
when z = 1. He plays D otherwise. Intuitively, player 1 triggers a “punishment phase” when
he saw y1 = 0, that is, when he didn’t find the gift given to him appropriate. This punishment
phase ends only when signal z = 1 is received.
The public signal z gives the possibility of “resetting” to relationship to a cooperative mode.

If the signal z is ignored and the mental process is defined by

N U

y  = 0, z = 0i 

Figure 2: No “resetting”

then eventually, because signals are noisy, with probability 1 the players will get to state U
under the proposed strategy and this will be absorbing: there would be nothing to change
their behavior. The signal z allows for possible recoordination back to state N (and possibly
cooperation).

In our leading example, players stop being upset for exogenous reasons. Alternatively, in a
two-state mental system the players could move from state U back to state N after seeing a
good signal: you stop being upset as soon as you receive a nice gift.
Formally, players may be either in state N or in state U , but are endowed with the following

transition function.
7For this particular example, transitions depend only on the signals observed, and not on the individual’s

action. But in general it might also depend on the individual’s action.
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N U

y  = 0i 

y  = 1i 

Figure 3: Forgiving transition

A player endowed with this alternative mental process, who would cooperate in N and defect
in U , would be following a TIT for TAT strategy.

2.2. An illustrative experiment

Before continuing with the formal description of our model, it is useful to give a real-world
example to illustrate our idea of a mental system. Cohen et al. ran several experiments in
which participants (students at the University of Michigan) were insulted by a confederate who
would bump into the participant and call him an “asshole”. The experiment was designed to
test the hypothesis that participants raised in the north reacted differently to the insult than did
participants raised in the south. From the point of view of our model, what is most interesting
is that the insult triggered a physical response in participants from the south. Southerners were
upset by the insult, as shown by cortisol levels, and more physiologically primed for aggression,
as shown by a rise in testosterone. We would interpret this as a transition from one mental state
to another, evidenced by the physiological changes. This transition is plausibly not a choice on
the participant’s part, but involuntary. The change in mental state that is a consequence of
the insult was followed by a change in behavior: southerners were more likely to respond in an
aggressive manner following the insult than were northerners.
The physiological reaction to an insult — what we would think of as a transition from one state

to another — seems not to be “hard-wired”: physiological reactions to insults were substantially
lower for northern students than for southern students. Indeed, the point of the Cohen et al.
paper is to argue that there is a southern “culture of honor” that is inculcated in small boys
from an early age. This culture emphasizes the importance of honor and the defense of it in
the face of insults. This illustrates the view of our model expressed above that the transition
function in our model can be thought of as culturally determined, but fixed from the point of
view of an individual at the time decisions are taken.

2.3. Ergodic distributions and strategy valuation

For any pair of players’ strategies there will be an ergodic distribution over the pairs of actions
played. While in general the ergodic distribution may depend on the initial conditions, we restrict
attention to transition functions for which the distribution is unique. The ergodic distribution
gives the probability distribution over payoffs in the stage game, and we take the payoff to the
players to be the expected value of their payoffs given this distribution.
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Formally, define a state profile s as a pair of states (s1, s2). Each strategy profile σ induces
transition probabilities over state profiles: by assumption each state profile s induces an action
profile σ(s), which in turn generates a probability distribution over signals, and hence, given
the transition functions Ti, over next period states. We denote by Qσ the transition matrix
associated with σ, and by φσ the ergodic distribution over states induced by σ. That is, φσ(s)
corresponds to the (long run) probability that players are in state s.8

We associate with each strategy profile σ the value induced by the ergodic distribution.
This corresponds to computing discounted expected payoffs, and taking the discount to 1.9 We
denote by v(σ) this value (vector). Thus,

v(σ) =
X
s

g(σ(s))φσ(s)

where g(σ(s)) is the payoff vector induced by the strategy profile σ for state profile s.

Equilibrium.

Definition: We say that a profile σ ∈ Σ is an equilibrium if for any player i and any strategy
σ0i ∈ Σi,

vi(σ
0
i, σ−i) ≤ vi(σ).

This is a weaker notion of equilibrium than traditionally used in repeated games because of
the restriction on the set of strategies to be mappings from Si to Ai.10 Also note that σi as
defined should not be viewed as a strategy of the repeated game.11

We consider next the ergodic distribution induced by our candidate equilibrium strategy σ
for p close to 1 and examine in turn possible deviations from that strategy. The transition over
state profiles induced by σ is illustrated in figure 4.

8Formally, Qσ(s0, s) is the probability that next state profile is s0 when the current state is s, and the vector
φσ solves φσ(s

0) = sQσ(s0, s) φσ(s).
9When discounting is not close to one, then a more complex valuation function must be defined: when σ is

being played, and player i evaluates strategy σ0i as compared to σi, the transitory phase from φσ to φσ0i,σ−i
matters. Note however that the equilibria we will derive are strict equilibria, to they would remain equilibria
under this alternative definition for discount factors sufficiently close to 1.
10We restrict attention to pure strategies. However, our definitions can be easily generalized to accomodate

mixed actions, by re-defining the set Ai appropriately, and having it include mixed actions. However, the spirit of
our approach is that players should adjust play from experience, by checking from time to time the performance
of alternative strategies. So if mixed actions are to be allowed, only few of them, rather than the whole set of
mixed actions, should in our view be considered.
11A strategy of the repeated game is a mapping from histories to actions. The strategy σi, along with the

mental system (Si, Ti) would induce a repeated game strategy, once the initial state is specified.
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N,N

N,U

U,N

U,U

(1-q)p(1-p)

q

q

q

Cooperative
phase

Punishment phase

Figure 4: Transition over state profiles under σ.

When players follow our candidate equilibrium strategy, they alternate between cooperation and
punishment phases. The probability of switching from cooperation to a punishment phase is
π = (1− q)(1− p2) (since switching occurs when either player receives a bad signal and z = 0).
The probability of switching from punishment to cooperation is q. Hence cooperative phases
last on average 1/π periods, while punishment phases last on average 1/q periods.12

When player i plays D at both N and U , player j continues to alternate between phases of
cooperation and defection. This is illustrated in figure 5.

N U
(1-q)p

q

j cooperates j defects

Figure 5: i defects always

Player i gets a higher payoff in cooperation phases; however, those phases are now much shorter,
as his opponent switches to state U with probability (1− q)p. For p close to 1, a defection at N
almost certainly generates a bad signal, which triggers a punishment phase of expected length
1/q with probability 1− q, hence an expected cost

∆ =
1− q

q

corresponding to a per-period decrease in payoff of 1 for an expected number of period equal to
∆.
12This is because punishment lasts 1 + T periods with probability q(1− q)T , and because

1 +
T

Tq(1− q)T = 1/q.
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Deviation is deterred if
L < ∆. (2.1)

When player i plays C at both N and U , he avoids triggering some punishment phases,
illustrated in figure 6.

N,N

N,U

U,N

U,U

(1-q)p(1-p)

q

q

q

Cooperative
phase

Punishment phase

N,N

N,U

U,N

U,U
q

q

Cooperative
phase

Punishment phase

Figure 6: i cooperates always

However, he remains cooperative while player j is in a punishment phase. So L must be high
enough for this option to be unattractive. More precisely, conditional on both players being
in state N , there are events where only player i receives a bad signal, and events where only
player j receives a bad signal.13 Under the first event, player i initially gets 1 instead of 1 + L,
however he avoids the punishment phase, hence he makes a net gain of ∆−L. Under the second
event, nothing changes in the first period (because player i is still in state N), but he then gets
−L instead of 0 as long as the punishment phase continues,14 hence an expected cost equal to
L(1q − 1) = L∆. Since these two events have equal probability, playing C at N and U is not a

13There are also events where both receive bad signal, but when p is close to 1, these are very unlikely events,
and we can ignore them here. However, they would affect the computation in the general case where p is not
close to 1.
14This is because when p is close to 1, player i switches to U with probabilty close to 1, hence he would have

started playing D under the candidate equilibrium profile, while here, he does not.
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profitable deviation if

1

2
(∆− L) +

1

2
(−L∆) < 0, that is

L >
∆

1 +∆
.

To summarize, for p close to 1, there is a range of parameters (q, L) for which the proposed
strategy is an equilibrium strategy.15 This range of parameters is such that ∆

1+∆ < L < ∆,
where ∆ = 1/q− 1. It is easy to check that outside this range, the only equilibrium entails both
players defecting at both states.
Similar analysis can be performed for other values of p. The following figure delineates, for

q set to 0.3, the set of parameters (p, L) for which σ is an equilibrium:

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

p

L

Figure 7: p− L combinations that allow cooperation

3. Discussion of example

This example illustrates how cooperation can be achieved when strategies are constrained. Be-
fore going on, it is useful to compare this approach with the standard approach and discuss why
cooperation is difficult when strategies are not constrained. We will then show that there are
other two-state mental processes that seem reasonable and yet are inconsistent with cooperation.
Following that, we discuss richer mental processes.

15 It is easy to check that playing D at N and C at U gives a lower value than always playing D.
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3.1. Comparison with standard approach

In the example, the strategies “play C when in N and play D when in U” are in equilibrium:
they are best responses to each other under the restriction that players use strategies in Σi that
condition actions on states. These strategies however would not be best responses to each other
without restrictions. Consider for example the first period following a punishment phase (players
have just seen signal z = 1 and have consequently just returned to state N). Suppose player
1 receives a bad signal. Player 1 then transits to state U , and the equilibrium strategy in the
example calls for him to play D, sending the play into the punishment phase again. However,
at this first period after z = 1, player 2 was in state N as well, and most likely will remain in
state N in the next period. So player 1 would be better off not triggering a punishment.
One might hope to get a standard “unconstrained” equilibrium by a simple modification

of our equilibrium strategy profile, allowing players to condition play on longer histories, and,
for example, on whether they are just returning to N or not. In this way, a player could
ignore signals in the first period following a return to state N . However, the best response to
someone who behaves in that way is to play D in the first period following a return to state N .
Equilibrium play in this first period following z = 1 would thus have to involve mixed strategies,
and later play would have to be finely tuned to the history of signals received subsequently. For
example, a signal received in the first period following a return to N would have to be interpreted
differently than a signal received in later periods, in a way that takes into account the fact that
the opponent reacts differently to signals received shortly after a return to a cooperative phase
than to signals received later. Thus, one cannot modify the strategies in our example in a simple
way to effect a standard unconstrained equilibrium.
One difficulty in the search for strategies that support cooperation when strategies are not

constrained (i.e., the standard approach) is precisely the possibility that beliefs are sensitive to
the histories of signals received, and possibly the entire history of signals received. In general,
there is then no natural way for players to be in one of a small number of states of mind in
an equilibrium of the repeated game: distinct beliefs over the opponent’s continuation play are
likely to generate distinct best responses, hence, according to our interpretation, distinct states
of mind. But since the number of distinct beliefs typically grows over time, so does the number
of states of mind.16

In contrast, our approach takes information states and the transition across states as exoge-
nous. In other words, we take as given the way players aggregate past information about play,
that is, how they pool past histories. The strategic issue thus reduces to determining how one
should play at each informational state, that is, choosing a mapping σi from states to actions,
a much simpler task. In particular, our analysis is not based on a player forming beliefs about
his opponent’s future play, and maximizing given those beliefs. Rather, we just compute the
long-run value associated with any possible deviation, and this long-run value does not depend
on current beliefs.17

16 See however the discussion of Mailath and Morris (2002), Phelan and Skrzypacz (2006) and Kandori and
Obara (2007) in the related literature Section below. See also the literature on belief-free equilibria (e.g., Piccione
(2002) and Ely and Valimaki (2002).
17One can define rational beliefs for a player at a given informational state si, for a given profile σ, by

considering the ergodic distribution over state profile φσ(s1, s2) and by computing the conditional probabilities
Prφσ{sj | si}. Such a belief corresponds to the average of the beliefs given the possible histories leading to state
si (the average taken with respect to the ergodic induced by σ).
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3.2. Another two-state mental process

We compare our leading example to the forgiving transition described earlier, whereby a good
signal makes a player switch back to the normal state.

N U

y  = 0i 

y  = 1i 

Figure 3: Forgiving transition

With such a mental process, for almost all values of p the only equilibrium entails both players
defecting in both states.

Proposition: If p 6= 1 − 1
2(1+L) , and if each players’ mental process is as defined

above, then the only equilibrium entails defecting in both states.

We provide a proof of this proposition in the appendix.
To fix ideas, we consider the case where p is close to 1 and check that it cannot be an

equilibrium that both players follow the strategy σ that plays C in N and D in U . If both
players follow σ, then by symmetry, the induced ergodic distribution will put identical weight
on (NN) and (UU): the dynamic system has equal chances of exiting from (NN) as it has of
exiting from (UU). As a result, players payoff will be bounded away from 1.
Consider now the case where player 1 deviates and plays the strategy σC that plays C at all

states. There will be events where player 2 will switch to U and defect. However, since player 1
continues to cooperate, player 2 will soon switch back to N and cooperate. As a consequence, if
player 1 plays σC , his payoff will remain arbitrarily close to 1. Hence it cannot be an equilibrium
that both players play σ.

3.3. Adding more mental states

Players in our example had two possible mental states and two possible (pure) actions, which
limited them to four pure strategies. This clearly limits them both in the existence of strategies
that might lead to cooperation and in the possible profitable deviations. Adding a state can
allow for more flexible reaction to signals that might permit cooperation which would have been
impossible with only two states. For example, when signals are not very informative and q
is small, the prescribed strategies in the example may not be an equilibrium. When there is

Note however that while beliefs can be defined, we don’t have in mind that players would know the mental
process and strategy of the other player and use that knowledge to compute a belief. Beliefs should just be
viewed as conditional probabilities, that is, as a way to understand correlations across each player’s state, under
a given strategy profile.
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substantial probability that I received a bad signal when the other player chose C, I might
prefer not to trigger a punishment phase that could last for a long time. Hence the combination
of relatively inaccurate signals of the opponent’s action and low probability of escaping the
punishment regime may preclude an equilibrium in which the two cooperate.
Adding a state can allow cooperation that would be impossible with only two states for some

parameters. Suppose there is a stateM in addition to the states N and U , and define transitions
as follows:

N M

U

C, y  = 0, z = 0
or D, z = 0z = 1

y  = 0, z = 0i 

C, y  = 0, z = 0
or z = 1
i 

i 

Figure 8: “Slow” transition to state U

The interpretation of this is that if a player in state N gets a bad signal, he transits to state
M, rather than state U as in the leading example. If the first signal a player in state M gets is
bad, he transits to state U , and if it is positive, he returns back to state N as though the bad
signal that sent him to M never occurred. Players remain in state U whatever action is played
or private signal received, until signal z = 1 occurs. Signal z = 1 always sends players back to
state N. The additional state, along with the amended transition function, allows for strategies
that punish an opponent if there is some evidence he is not cooperating, but the evidence that
triggers punishment can be either a single bad signal (e.g., the strategy plays C in N only, which
we denote by σ̄), or two consecutive bad signals (e.g., the strategy plays C in N and M , and D
in U , which we denote by η). Computations as above show that the strategy profile (η, η) that
entails both players cooperating in states N and M and punishing in state U is an equilibrium
for some parameters for which cooperation is impossible with two states. The following figure
illustrates this. We have set the value q to 0.3. For the set of parameters (p, L) in the shaded
area, (η, η) is an equilibrium profile. For the parameters (p, L) between the top and bottom
curved lines, (σ, σ) was an equilibrium profile in our simple two state case.
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Figure 9: values of (p, L) for which (η, η) is an equilibrium when q = 0.3.

We make several comments about this example.
1. Intuitively, the additional state has two effects. Under η, it allows for longer cooperation

phases by reducing the probability that the relationship transits to a punishment phase (such
transitions are inevitable even when players cooperate), and it allows players to be more cautious
about deciding that their opponent has switched to U by waiting for two consecutive negative
signals. This has two effects on incentives. It makes defecting in N more attractive because it
takes two consecutive bad signals to make the other player switch to U . It also makes cooperating
in U less attractive, because when a player eventually switches to U , it is very likely that the
other player is already in U , hence incentives to play D in U are stronger. This is illustrated in
Figure 9: compared to the two-state case, the p−L region where cooperation is possible (under
(η, η)) shifts downward.
2. Allowing for a stochastic transition function is an alternative modification of the mental

system in our leading example that could accomplish the two effects above. In the example, a
player transits from state N to state U if he observes a bad signal (and z = 0). Suppose the
transition function is changed so that a player transits from state N to state U with probability
1 − μ after seeing a bad signal. This will make transition to U less likely, hence incentives to
play D at N stronger. However, when a player finds himself in state U, it is more likely that
his opponent is in state U as well, hence players will have stronger incentives to play D at U .
Thus, for some parameters, this enables cooperation when it would not have been possible with
the deterministic transition function in the example.

3. In addition to making cooperation possible for parameters under which it was impossible
with only two states, a third state can increase the value of cooperation for parameters even
if cooperation was possible with two states (i.e. v(η, η) > v(σ, σ), as the punishment state is
triggered less often.

4. Adding a state is not unambiguously good, however. As mentioned above, an additional
state allows not only for more complex strategies to achieve cooperation, but more complex
strategies for deviating as well. Despite the fact that both (σ, σ) and (σ̄, σ̄) generate the same
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behavior (under both profiles, once a player observes a bad signal, he continues to defect until
a signal z = 1 arises), there are parameters for which (σ, σ) is an equilibrium, but (σ̄, σ̄) is not.
For (σ̄, σ̄) to be an equilibrium, players must have an incentive to play D in M . This entails
a strictly tighter constraint because playing C at M is less costly than playing C at U : in the
event the opponent is already in U , the player is likely to get a negative signal and switch from
M to U next period. For p close to 1 for example, the cost of playing C inM will be for only one
period rather than for the duration of the punishment phase. Formally, the incentive constraint
becomes:

1

2
(∆− L) +

1

2
(1− q)(−L) ≥ 0.

Rearranging terms, we have

L ≥ ∆

2− q
=

1− q

q(2− q)
,

a condition that is always more restrictive than L ≥ ∆
1+∆ = 1 − q. Figure 10 shows how

the incentive condition changes for other values of p. (The p and L combinations for which
cooperation was possible in the two-state case is again the region between the top and bottom
curved lines.)
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Figure 10: values of (p, L) for which (σ̄, σ̄) is an equilibrium when q = 0.3.

3.4. Available strategies and One-shot deviations

We discussed above that if there were no restrictions on strategies, a player would like to deviate
from the equilibrium strategy in the example by not playing D if he received a bad signal the
first period after he returned to state N . Players in our framework are restricted to choosing
the action they will play when in state N and the action they will play in state U . This restricts
the set of strategies available, including the deviations available to them.
Our approach puts limits on the strategies available to players in various ways. First, as in

standard Bayesian models, a player’s state pools many histories of the game, and he is restricted
to behave in the same way every time he finds himself in a particular state. For example, a
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player in our main example can choose to play C rather than D when he is in state U , but he
cannot play C for some subset of the histories that lead to state U and play D for other histories
that lead to U . If players are to behave differently for different subsets of histories, they must
have different mental states that allow them to distinguish the sets. In the previous subsection,
state M plays precisely that role. With this additional state, the player has available a strategy
that allows him to play C after a bad signal (instead of going to state U and playing D), and
condition future play on the realization of next period’s signal, i.e., reverting to state N after
a good signal, or switching to state U after a second bad signal. For any expanded mental
system, however, there will always be strategies for which deviations from that strategy cannot
be accomplished within that system.
Second, some deviations are not available because current actions have consequences on the

player’s continuation state of mind. In the previous subsection, if a player play D in state M ,
he moves to state U . He cannot decide, upon seeing the signal yi, whether he wants to continue
to behave as though he were still in state N . He will be in state U regardless because in this
example, a defection triggers a switch to state U . In other words, as in models with imperfect
recall, after playing D in M , the player will be in state U and does not distinguish whether he
is in U because he received two consecutive bad signals or because he played D in M .
Because of these restrictions, we may find equilibria for which there would be a profitable

one-shot deviation; the player may simply not have available a strategy that would mimic the
standard one-shot deviation.
Conversely, one might expect that a version of the one-shot deviation principle would hold

in our framework: if it does not pay for me to deviate one time when I am in state U (and play
C once), then it should not be the case that it is profitable for me to deviate each time I am
in state U. This is not the case however. Returning to our main example, suppose that I am in
state U and I consider deviating from my strategy one time only and playing C. Returning to
my equilibrium strategy after this involves my playing D while in U . At best, this will lead to
a delay in entering the punishment phase by one period. On the other hand, if I play C each
time I am in U I avoid completely triggering the punishment phase any time only I receive a
bad signal. Formally, deviating one time at U (and playing C) is not profitable when

Prσ(sj = U | si = U)(−L) + Prσ(sj = N | si = U)(q(−L) + (1− q)(1)) < 0

or equivalently,18 when
L >

q

q2 + 2(1− q)
(1− q).

This condition is less stringent than the equilibrium condition we found earlier.
Comments.
1. If a player has a profitable one-shot deviation in some state, he will have a profitable mixed

strategy deviation. Indeed, choosing the action that would be a profitable one-shot deviation
18Note that when p is close to 1,

φσ(UU) = (1− q)[φσ(UN) + φσ(NU) + φσ(UU)],

which implies, since φσ(UN) = φσ(NU) by symmetry,

Prσ(sj = U | si = U)

Prσ(sj = N | si = U)
=

φσ(UU)

φσ(NU)
=
2(1− q)

q
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with small probability each time he is in that state will give a gain to the player (without
the cost entailed in playing that action with probability one each time the player is in that
state). If we did not restrict to pure strategies, or if we allowed players to play differently with
small probability, we would derive stronger constraints, and in equilibrium, there would be no
profitable one-shot deviations.
2. In our framework, one could define an alternative notion of a one-shot deviation whereby

a player could decide to change state once (from U to N, say, and continue behaving as if he
were now in state N). Such deviations could be profitable, depending on whether it would be
profitable for a player to add a small amount of noise to a particular transition.

4. Robustness

The example was kept simple in a number of ways to make clear how cooperation could be
achieved when strategies are restricted. Some of the simplifications are not particularly realistic,
but can be relaxed without affecting the basic point that cooperation is possible even when
agents get private signals if strategies are restricted. We discuss next several such extensions
and modifications of the basic model.
These extensions are not meant only as a robustness check though. As mentioned in the

introduction, our goal is a realistic description of cooperation when people are strategic and the
structure of the games they play varies. In the face of the variety of the games we play, players’
mental processes should be viewed as the linchpin of cooperation. The extensions below are
meant to capture the scope of a given mental process.

4.1. Sequential gift exchange

In our main example players moved simultaneously, choosing the effort levels in gifts for the
other. Simultaneous choice is often an unrealistic assumption. If you and I are to cooperate in
our research efforts, we send drafts of our papers to each other. You send me a paper that you
have written, and I make comments on it, and then send a paper to you for your comments.
Our effort levels — and consequently the signals received — are chosen sequentially rather than
simultaneously.
Our assumption of simultaneous play is for pedagogical reasons, and allowing play to be

sequential rather than simultaneous does not substantially alter our analysis. To fix ideas,
assume that in each stage player 1 moves first, then player 2, with signal z occurring at the
end of the stage as before. We again examine the case where p is close to 1, and assume that
players are endowed with the same mental process as before, and characterize the conditions
under which that process continues to enable cooperation.
As before, if I choose D in state N , you are likely to receive a bad signal, resulting in your

being in state U , and triggering a punishment phase; if I choose C in state U , I avoid triggering
a punishment phase in the event you are still in state N , however I incur a loss in the event you
are in state U . Thus, this case is very similar to the simultaneous play case.
There are differences however: play is sequential, so when player 1 plays D, player 2 most

likely receives a bad signal, and she may thus react immediately (i.e. within the same period)
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to player 1’s defection. As a result, incentive conditions are altered (for player 1).19

Indeed since player 2 reacts within the same period to player 1’s defection,20 player 1 gets 0
if he plays D at both N and U . So incentives to play C at N are trivially satisfied for player
1. In contrast, and precisely because player 1 does not gain as much as before from defecting,
incentives to play D at U are more difficult to satisfy. Conditional on the state being (N,N),
consider the events leading to player 1 being in state U . Either player 2 receives a bad signal
(then switches to U and plays D, so that with probability p player 1 transits to U as well),
or player 2 receives a good signal but subsequently player 1 receives a bad signal. Both these
events have the same probability. Under the first event, player 1 loses (−L) for the duration of
the punishment phase if he plays C in U . Under the second event, player 1 avoids triggering a
punishment phase by playing C in U , and saves ∆ (rather than ∆−L). So player 1’s incentive
constraint becomes:

1

2
(∆) +

1

2
(−L∆) < 0,

hence:
L > 1.

4.2. Heterogeneous stage games.

The previous subsection pointed out that our analysis is robust to some perturbations in how a
repeated interaction is modeled. It is customary to model such relationships with a repetition of
a simultaneous stage game, while in fact, the relationship may involve a sequence of transactions
in which a single player has a choice. In general, we would like the insights of our analysis to
be robust to changes in the fine details of how we model the phenomenon in question. The
standard repeated game model abstracts from details in ways that can be important other than
the timing issue. The standard model assumes that a given stage game is played repeatedly.
Specifically, it is assumed that the payoffs in play are identical and, if there is imperfect monitor-
ing, the monitoring structure is identical as well. This is a caricature of the typical relationship
that we want to understand. Cooperation between two people living together is a prototypical
relationship that we might wish to understand. One person may have prepared dinner when the
other was not feeling well yesterday, the other may do the laundry today while the other watches
a favorite television program, and the first may grocery shop tomorrow while the second sleeps
late. The payoffs in each of the transactions can differ, as may the details of the monitoring
structure. Rather than a repeated game, there is a sequence of transactions the two face, and
it is implausible that the payoffs and the monitoring structure for all games in the sequence are
identical. We will outline how our approach can be extended to such general settings. One of
our central points is that our basic mental system, properly extended, may allow for cooperative
behavior under broad circumstances.
Consider two people who are faced with a general finite action game that they play repeatedly

and who discount the payoffs they receive. The interesting case is that in which there is a pair

19 Incentives are not altered for player 2. Note that players 1 and 2 are not in a symmetric position because
switching back to state N (after signal z = 1) may only occur after player 2 moves.
20This is because p is assumed to be close to 1.
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of actions, s∗1, s
∗
2, for the stage game that, if played, give each player a higher payoff than in any

pure strategy Nash equilibrium in the stage game. The players would then prefer to cooperate
and play action pair s∗1, s

∗
2 to play a stage game Nash equilibrium. Suppose, however, that there

is a monitoring problem as in our examples above, making cooperation difficult; in particular,
suppose that, as before, players get a signal of their partner’s action that is highly accurate, but
not perfect. Suppose there is a norm that specifies how each player is to act in the stage game,
that is, that specifies a pair of actions s∗1 and s∗2 that are to be played in the stage game. One
can then map this problem into the example that we analyzed above as follows. The mental
system is as before:

N U

y  = 0, z = 0i 

z = 1
Figure 11: Transition

Player i’s strategy is to play s∗i in state N and s̄i in state U , where (s̄1, s̄2) is a Nash equilibrium
of the stage game. The signal y now corresponds to a player receiving a signal about whether
or not his partner has played the action prescribed by the norm, and as before, z is a public
signal through which the players may recoordinate to cooperation. Signal yi = 0 is a signal to i
that j has not played s∗j as prescribed by the norm, while yi = 1 is a signal that he has. For the
case in which the payoffs from cooperating by playing (s∗1, s

∗
2) Pareto dominate playing the Nash

equilibrium (s̄1, s̄2), the structure of the problem is essentially the same as our leading example.
Whether cooperation, in the form of following a specific norm, will be an equilibrium will depend
on the specific payoffs in the game at hand. Player i will consider playing something other than
s∗1 in state N and playing something other than s̄i in state U , and whether the play prescribed
by the norm is an equilibrium will depend on the magnitude of the gain from deviating when
the opponent is cooperating and the magnitude of the loss when playing the Nash equilibrium
(s̄1, s̄2) relative to cooperation.
One can extend this way of modeling cooperation when there is a given game that is repeat-

edly played to a pair that repeatedly interacts in a variety of games. Suppose there is a finite
set Ξ of games that may be played, and denote by h the stochastic process over games. For each
game ξ ∈ Ξ there is a set of actions Aξ

i for each player i, a payoff function gξ, and a monitoring
structure (Y ξ, qξ).21 When player i is in game ξ there is a set of “bad” signals Y ξ

i,0 that will
cause i to transit from state N to state U (unless z = 1).
A generalized norm of behavior prescribes a way to play in each game that arises. A strategy

σi for player i then specifies a rule aξi ∈ {D
ξ
i , C

ξ
i } for each possible state si ∈ {U,N}; Cξ

i

corresponds to playing the prescribed cooperative action for game ξ, and Dξ
i corresponds to

i’s playing his part of the stage game Nash equilibrium of the game ξ. From the modeler’s

21For ease of exposition, we assume below that each game ξ has a unique Nash equilibrium.
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perspective, the dynamic system is at any date in some state (s, ξ), where s = (s1, s2), and
(σ, h) generates transitions over these states. We denote by φσ,h(s, ξ) the ergodic distribution
over states induced by (σ, h). As before, we define the value associated to a strategy profile σ
as:

v(σ) =
X
s,ξ

gξ(σ(s))φσ,h(s, ξ).

Equilibrium conditions can then be defined as before.

The above discussion takes transitions to be exogenous. A natural extension would be to
define transitions in such a general setting so that a transition to the upset state occurs only
if the likelihood ratio of cooperation versus defection is sufficiently small (given the signal).
Formally, one could set a threshold β that determines which signals are bad:

Y ξ
i,0 = {yi,

Pr{yi | Cξ
i ,D

ξ
j )

Pr{yi | Cξ
i , C

ξ
j )
≥ β}.

Thus, if a player is currently facing an interaction in which the signal about the partner’s action
is not very informative, an otherwise negative signal might not move him to the upset state.

4.3. Heterogeneous agents

We assumed that agents were identical, that is, that the cost and benefit of favors was the same
and their “monitoring technologies” were the same. As is the standard assumption that the
games in each period are the same, the assumption that the players are identical is unrealistic.
It is clear that the basic qualitative analysis remains unchanged if players have different costs
and benefits of favors, provided that for each player, the cost and benefit fall within the limits
described in the main example. Of course, large differences in costs and benefits across players
will be problematic, as the limits described would not be satisfied for both players.
Differences in the players’ signal technologies can also be problematic. Suppose, for example

that player 1 receives a moderately accurate signal about 2’s action, while 2 receives an almost
perfect signal about 1’s action. The strategies in the example that supported cooperation will
not be equilibrium strategies with this change in signal technology. In the example when the
signal accuracies of the two players are the same, player 1 had an incentive to play D in U
because when player 1 received a bad signal, the following two events are equally likely. Event
1: Player 2 was in state N , had played C and 1 received an incorrect signal; Event 2: Player 2
had previously received an incorrect signal and was in state U and played D. So when player 1
chooses C in state U , half of the time, he avoids triggering a punishment phase, but half of the
time, he bears the cost of remaining cooperative against an upset player. But with the altered
signal technologies in which player 2 receives an almost perfect signal, player 1 switches to U
most likely because he (player 1) has received an incorrect signal, so by choosing C in state U ,
player 1 mostly avoids triggering a punishment phase. Player 1’s best response is thus to play
C rather than D in state U , hence the strategies are not an equilibrium when player 2 gets an
almost perfect signal.
It isn’t necessary that player 2 receive an almost perfect signal for the strategies in the

example to fail to be equilibria. If player 2’s signal is significantly more accurate than player 1’s
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signal, player 1 may still find that by playing C in U , he is much more likely to avoid triggering
punishment phases rather than bearing the cost of being cooperative against an Upset player
2. The accuracies of the players’ signals do not have to be exactly the same for the strategies
described in the example to be equilibrium, but there is a limit on how different they can be.

4.4. Many players

Many of the insights of the two-person gift exchange problem carry over to larger groups. Sup-
pose that there are K players, where K is even, and in each period, half of the population is
randomly matched with the other half. As in the two-person case analyzed above, we assume
that players may either be in state U or N , switching to state U after a bad signal, and switch-
ing back to state N after the realization z = 1. We examine the conditions under which our
candidate strategy profile (cooperate at N and defect at U) is an equilibrium.
Under our candidate strategy profile, players will alternate between cooperation phases (in

which all players are in state N), and punishment phases (in which some players are in state
U). The probability of switching from cooperation to a punishment phase is π = (1−q)(1−pK)
(since switching occurs when one player receives a bad signal and z = 0). The probability of
switching from punishment to cooperation is q as before.
Given K, if p is sufficiently close to 1, then as before, the cooperation phase will be much

longer than punishment phase (in expectation). There are two main differences with the previous
case, though. First, when a punishment phase starts, it takes some time before all players switch
to state U . Hence a player who plays D may continue to meet many players in state N . This
makes the incentives to play C at N weaker. Second, when a player in state N gets a bad signal,
that player understands that there is only a 1/K chance that he was the first player to get a
bad signal. It is only in the case that he was the first player to get a bad signal that playing C
averts the punishment phase, hence the incentive constraint to play D at U will easier to satisfy.
If player i deviates to playing D at both states, this will propagate through future random

matches to the whole population. The length of the punishment phase is random: until the
public signal z = 1. If a punishment phase lasts t periods,22 call Qt the expected number of
“uninfected” players (that is, those who have not yet seen a bad signal) that player i will meet
during that punishment phase, and define

Q =
X
t

Qt(1− q)tq.

Q corresponds to the average number of uninfected players that player i meets in a punishment
phase, taking into account the fact that the length of the punishment phase is random.
As one would expect, there is a bound on how large the gain from deviating and playing D

in N, and that bound depends on Q23

L <
∆−Q

(1 +Q)
,

and a constraint on how small the gain can be to ensure that it is optimal to play D in U

22This event has probability (1− q)tq.
23The details of the calculations are left to the appendix.
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L >
∆−Q

1 +Q+ (K − 1)π∆ .

The main difference from the two person leading example is that there, when player i deviated
by playing D in N , the other player would immediately switch to state U with probability close
to 1. Here, it takes some time before players switch to U, hence Q > 0. Nevertheless, there is a
bound on the time it takes for bad signals to propagate through the whole population. Because
bad signals will propagate exponentially in the population, Qt ≤ min(t, Q̄) where Q̄ is of the
order logK.
We see from these inequalities how the feasibility of cooperation in this society changes as the

group gets large. The constraint that a player should play C when in state N becomes harder
to satisfy (holding p and q fixed). (When K gets very large, a player has little chance to meet
infected players before the end of the punishment phase, hence Q gets close to

P
t t(1−q)tq = ∆).

This is intuitive; the larger the group, the longer will be the expected time that I will
continue to match with uninfected players who play C when matched with me. The other
inequality however, that a player should play D when in state U , becomes easier to satisfy. This
is also intuitive: it is less likely that a player in a large group who receives a bad signal is the
first to do so.

5. When z is not public: Resetting the relationship to cooperation

In many situations, there may be no public signal that can facilitate the coordination back to
cooperation. How can players then coordinate a move back to cooperation? We examine in turn
the case where z is “almost public”, and then the case where each player receive signals zi that
are independently distributed, demonstrating how recoordination can occur despite the absence
of public signal.

5.1. “Almost public” signal z

Because of the noisiness in the private signals the players get, the relationship will periodically
fall into disrepair with neither exerting effort in choosing a gift. Without some way to “reset”
the relationship this would be an absorbing state with no further cooperation. The public signal
z allows the players to recoordinate and start cooperation afresh. The limits on the probability
of the public (or nearly public) signal are intuitive: if q is too low, players may prefer not to
punish when they get a signal that the other has not put in effort, and if q is too high the
punishment phase will not be sufficiently painful to deter deviation.24

It isn’t essential, however, that the signal be precisely public. If the parameters (p, q, L) are
such that incentives are strict, then by continuity, incentives will continue to be satisfied if each
player receives a private signal zi ∈ Zi = {0, 1} with the property that Pr(zi = 1) = q and
Pr(z1 = z2) close enough to 1. As we show below however, the correlation between signals in
this information structure cannot be too weak if cooperation is to be possible.

24A richer mental system can allow for cooperation even when the probability of the public signal is too large
or too small for the two state mental system in the example. We discuss this below.
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5.2. Independent signals z1, z2

We explore next the case of independent signals, and show that when p is close to 1, cooperation
cannot be sustained in equilibrium.25

Formally, we consider the mental process as before with the qualification that Ti is now
defined over Zi rather than Z. We investigate whether and when the strategy σ that plays C
in N and D in U is an equilibrium.

N U

y  = 0,           i 

z  =  1i 

z  =  1i 

Figure 12: Independent “resetting”

Proposition: Fix the mental system as above. For any fixed q ∈ (0, 1), for p close enough to 1,
the strategy profile where each player cooperates in N and defects in U cannot be an equilibrium.
Assume p is close to 1. Under σ, cooperation phases last 1

2(1−p)(1−q) on average (because
each player has a chance (1 − p)(1 − q) of switching to U in each period), and punishment
phases last 1

q2 (since only in events where both players get signal z = 1 at the same date that
recoordination on cooperation is possible).26 So for p close enough to 1, the value to following
the proposed strategy profile is 1.
Compared to the case where z is public, the incentives to play C at N are unchanged: if

player 1 plays D at both states, his opponent will be cooperative once every 1/q periods on
average, hence the condition

L < 1/q − 1 (5.1)

still applies.
Incentives to defect at U however are much harder to provide. As before, by cooperating at

U , player 1 ensures that a punishment phase is not triggered in the event state profile is UN .
But there is another beneficial effect. In the event state profile UU occurs, the punishment phase
that follows will last only 1/q periods (as simultaneous transition to N is no longer required).
So player 1 will only have incentives to defect at U if:

1

2
L(1/q) > 1/q2,

25Although we do not include the computations here, it can be shown that the result holds for all values of
p ∈ ( 1

2
, 1).

26Omitting terms comparable to (1 − p), this is true whether the current state profile is (U,U), (U,N) or
(N,U).
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or equivalently
L > 2/q,

a condition which is incompatible with inequality (5.1).
Thus strategy σ cannot be an equilibrium: the length of punishment phases is substantially

reduced when playing C at U , which makes playing C at U an attractive option.

5.3. Resetting without a public signal

In many situations, there may be no public signal that can facilitate the coordination back to
cooperation. How can players then coordinate a move back to cooperation? One possibility is
that rather than having players trying simultaneously switch back to cooperation, one player can
be designated a leader in the relationship, and make a gift (i.e., cooperate) as a signal that he
understands that the relationship has broken down and needs to be restarted. Such a possibility
cannot be achieved under the simple mental process we have examined so far, but a slightly
more sophisticated mental process can achieve this, as we illustrate below.
We will consider again the case that p is close to 1, and for this example we restrict attention

to q small. We assume that each player receives a private signal zi ∈ {0, 1} in each period, with
the property that the signals are independently distributed and Pr(zi = 1) = q.
States and transitions.
We assume that each player i may be in one of three states: U , N , or G for player 1, and U,

N or W for player 2. The transition functions that we consider are shown below.

N U

G

y   =  0, z  = 01  

N U

W

y   =  0, z   = 02 

y  = 12 

Player 1 Player 2

z   =  11  z   =  12  

1  2 

Figure 13: Transition functions with independent signals

These transitions specify that when a player is in state N , a bad signal always triggers a switch
to state U . Once in state U , players 1 and 2 independently transit respectively to state G or
W (with probability q in each period). Once in state G, player 1 transits to state N regardless
of what signal he receives, while, once in state W , player 2 switches back to state N only if he
receives a good signal y2 = 1.
Strategies:
As before, we consider strategies that condition only a player’s state:

Σ1 = {σ1, σ1 : S1 −→ A1} and Σ2 = {σ2, σ2 : S2 −→ A2}.
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Our candidate equilibrium strategy pair will be as follows. For player 1,

σ1(N) = C, σ1(U) = D and σ1(G) = C

and for player 2,
σ2(N) = C, σ2(U) = D,σ2(W ) = D

Intuitively, when the state profile is (N,N), both players cooperate until one player receives a
bad signal and triggers a punishment phase. Once a punishment phase starts, two events may
occur: Either player 2 moves to state W before player 1 moves to G (or at least no later than
one period after player 2 does). In that case, the most likely event is that players will coordinate
back to (N,N) (with probability close to 1).27 Alternatively, player 1 moves to state G more
than one period before player 2 moves to state W . In that case, the most likely event is that
players switch to (N,W ) or (N,U), hence coordination back to (N,N) will take longer.
Calculations similar to those above (left to the appendix) show that when p is close to 1,

cooperation can be sustained for the q and L combinations in the shaded region in figure 14
below.
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Figure 14: Values of q and L for which cooperation is possible (for p close to 1).

6. Further discussion

6.1. Learning to cooperate.

One of our aims is to lay out an approach to modeling repeated relationships in which players
might learn how to cooperate. We describe here in more detail how they might achieve that.
Our model of behavior has two levels: the mental process, which restricts the set of strategies

that a player might be using, and the strategy actually used, which is a mapping from mental
27This is because once in state profile (G,W ), player 1 plays C and moves to N , while player 2 receives (with

probability close to 1) signal y2 = 1, hence also moves to N .
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states to actions. Our view is that mental processes, if not fixed, undergo changes at a slow
pace while alternative strategies are sampled relatively often.28

Taking fixed the mental process (the possibility that mental processes evolve will be discussed
shortly), we thus have in mind that players follow an experimental rule of thumb, whereby
each starts with a particular strategy, and with small probability, randomly and independently
samples alternative strategies to assess which perform best.29

We can distinguish two cases. First, players may currently be following strategies that are
not in equilibrium, in which case experimentation will soon lead one of them to change strat-
egy. Second, they are currently following strategies that are in equilibrium, and likely continue
playing these strategies unless noise in evaluating performance, or simultaneous occurrence of
experimentation, causes a player to switch strategies. These observations suggest that players
will spend most of their time in an equilibrium of the game, jumping from one equilibrium to
another depending on how noisy performance evaluation is.
Applied to our game, this implies that (i) for given parameters p, L and q that fall outside the

region where (σ, σ) is an equilibrium, players will spend most of the time playing the strategy
σD that plays D in both N and U , and that (ii) for given parameters p, L, q that fall inside the
region where (σ, σ) is an equilibrium, players will spend most of the time alternating between
(σ, σ) and (σD, σD). This is a fairly standard model of experimentation for static games, and
the prediction is consistent with that obtained in models such as Kandori, Mailath, and Rob
(1993), with the qualification that there is no a priori reason to think that noise in evaluation
would be small.
Our model is one of repeated games, but the simplification in the strategy space induced

by a player’s mental system allows us to analyze it as if it were a static game, and to obtain
predictions as to whether players might learn to cooperate. It is unrealistic to assume that a
player would be able to experiment with all the repeated game strategies (defined in the standard
sense), and a mental system can be viewed as a way to guide the players as to which strategies
he might sample.
From an outsider’s perspective, these constraints can be interpreted as a partial commitment,

that is, a commitment to experiment only within a subset of the entire set of the strategies of the
repeated game. The mental system puts some constraints on the feasible partial commitment,
and our analysis shows that some partial commitments may allow for cooperation.

6.2. Evolution of mental system.

We have taken the mental system — the states and transition function — to be exogenously given.
We did, however, suggest that one might think of these as having been formed by environmental
factors. In the long run, evolution might influence both the set of mental states that are possible
and the transition function. While beyond the scope of this paper, it would be interesting to
understand how evolution shapes mental systems. We have pointed out above that it is not

28Note that we do not have in mind that players know everything about the structure of the interaction and
the other player’s mental process or strategy. Rather, we have in mind that, among the few strategies that are
available to them, they try them and learn which works best for them. No knowledge of the structure of the
game or of the parameters is required for this.
29When experimentation occurs, it should last long enough so that players get an accurate idea of what

strategies perform well, and the probability of starting to experiment should be small enough that there is
sufficient time to profit from the identification of good strategies.
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the case that evolution should necessarily favor more complicated mental systems; adding more
states to a mental system that allows cooperation might make cooperation then impossible.
To illustrate this, and to assess evolutionary pressures away from the mental process in our

leading example, we evaluate how a mutant, endowed with the process that has slow transition to
the upset state, would fare against the mental process in our leading example. Using the notation
of Section 3, there are two possible candidate equilibria: (σ, σ̄), whereby each player defects after
a single negative signal, and (σ, η), whereby the mutant defects after two consecutive bad signals
(player 2 is the mutant). In the first case, the conditions for which cooperation is possible are
identical to those shown in Figure 10 (because σ and σ̄ generate the same behavior). In the
second case, player 1 has a greater incentive to defect in N because it requires two negative
signals for player 2 to switch to defect. Player 1 also has a greater incentive to cooperate in U :
because it is more likely that player 1 switches to U first, there is a greater incentive for player 1
to avoid triggering a punishment, hence to play C in U . The consequence is that these incentive
constraints may be incompatible, and hence, no parameters for which (σ, η) is an equilibrium.
This is illustrated in Figure 15 for the case q = 0.3. The upper curve is the lower bound on
L for which player 1 has an incentive to play D at U for any p. The lower curve is the upper
bound on L for which player 1 has an incentive to play C at N for any p.
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Figure 15: Incentive constraints for player 1 when (σ, η) is played
Overall, the mutant thus performs strictly worse than the regular player: because only (σ, σ̄)
can be an equilibrium, his equilibrium payoff is no different than if he was a regular player
when cooperation is achieved, but there are fewer (p,L) instances in which cooperation can be
supported.
While evolution might shape the mental systems one would expect to see in the long run,

cultural transmission would logically be a way mental systems are shaped in the short run. We
have illustrated the notion of mental systems with our leading example in which there is a single
transition function of interest, but it is easy to see that it might be the case that there are
several transition functions that allow cooperation in at least some circumstances. Models such
as this might be useful in understanding why behaviors that are innocuous in some cultures
trigger stronger reactions in others.
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6.3. Extensions of the model

1. Our model has no explicit communication. We discussed how resetting might be accomplished
without a public signal in section 5.3. Player 1 was exogenously designated as the leader in the
relationship, and one can interpret the decision to play C in stateG as an implicit communication
that the relationship should restart. There, communication was noisy (because the other player
does not receive a nice gift with probability one) and costly (it costs L, and L cannot be too
small if cooperation is to be achieved).
One could mimic the implicit communication in this example with explicit communication

by allowing player 1 to send a message at the end of each period, and by defining the transition
induced by the message, if sent, on both players’ mental states. We mention two examples of how
one might define such transitions and how communication affects the possibility of cooperation.
Following the logic of the example in Section 5.3, we could assume that player 1 always sends

a message when he is in state G, and if in state W , player 2 will transit from state W to state
N after receiving a message. The discussion of that example suggests that communication can
help here only if sending the message is sufficiently costly.
As a second example of how one could add the possibility of player 1 being able to explicitly

send a message, consider the two state mental system without any resetting illustrated in Figure
2. Suppose that the transition function is such that when player 1 sends a message, player 2
will switch states; that is, the message makes a Normal player 2 Upset, and an Upset player 2
Normal. Communication here might be helpful even if there is no exogenous cost to sending
the message since sending a message while in the normal state involves an endogenous cost: if
player 2 is in N , sending a message will result in her being Upset next period.

2. There is no utility attached to mental states in our model; the states U and N are no
more than collections of histories. It is straightforward to extend our model to the case in which
utility is attached to states, or to particular transitions between states (going from upset to
normal, for example). Strategies that constitute a strict equilibrium in our model would remain
an equilibrium for small values attached to utilities in particular states or movements among
states, but large values might affect the possibilities of cooperation. Suppose that in our main
example, there is a negative utility attached to being in state U (relative to being in state N).
When player 1 is then in state N , deviating will be more costly than in the case we analyzed.
Consequently, there will be a larger set of parameters for which players will not choose the
strategy of playing D in both states. What if player 1 plays C in both states? It is easy to see
that doing so will not decrease the proportion of time that 1 is in state U . Player 1 is playing
C when the pair of is (N,N) or (N,U), so we need only check the pairs (U,N) and (U,U).
But in both cases, 1 is already in state U and will remain in that state until z = 1. Hence,
playing C will neither decrease the chance of transiting from state N to U , nor will it quicken
his departure from U . Summarizing, modifying the example so that there is a decrease in utility
when a player is in state N (or suffers a decrease in utility when he transits from N to U) can
only increase the set of parameters for which the cooperative strategies are an equilibrium.

3. One interpretation of mental states is that they are driven by emotions. A natural
example of such a mental state is Guilt (G). If our leading example is altered so that signals
are public, player i will know when player j did not like the gift, and player i might feel Guilty
— an additional mental state (G). If transitions to G from U or N never occur and transitions
between U and N are as before (hence never take the other’s signal into account), our analysis is
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unchanged: our equilibrium would remain an equilibrium. However, if transitions to the state do
G occur, then other outcomes may be sustainable as equilibria (equilibria similar to the public
equilibria, for example).
More generally, our approach suggests thinking first of mental states, then of transitions

that seem reasonable given the mental states, and ultimately of a class of games for which the
corresponding mental system is useful.
4. Transitions over mental states have been defined as a function of a signal about how the

game is played. If mental states are interpreted as emotional states, one can think of a player as
receiving a signal of his opponent’s mental state, and that his own mental state as being affected
by this. For example, if one perceives that the other is Upset, then one might feel Guilty (or
maybe not). Of course, this transition to the guilty state may trigger a subsequent change in
the opponent’s state, and so on. This suggests an extension where the actual signal structure
depends not only on actions, as in standard repeated games, but also on the way histories are
mapped into mental states.

6.4. Experiments

Our aim has been to set out a model that allows cooperation in ongoing relationships via behavior
that can be represented by realistic strategies. The goal is to provide a broader conceptual
framework than standard repeated games permit. While our goal was primarily conceptual, the
model may suggest experiments. If people are allowed to play a repeated game with private
monitoring similar to the one we analyze, in principle one could examine the actions people play
and see whether they can be reasonably be structured as our model suggests. That is, one can
ask what histories trigger a deviation from cooperation, whether those histories can be classified
as a mental state, and whether the same histories continue to structure behavior as parameters
of the game vary.
There have been experiments that investigate how players behave in repeated prisoner’s

dilemma games with uncertainty of different kinds. In general, cooperation is less likely when
actions are “noisy”, that is, there is randomness in what players observe about what their op-
ponents have done30, and when the participants receive random payoffs. However, in these
experiments, while players may not see exactly what their opponent has done, they know pre-
cisely what signals the opponent has seen. There has been relatively little work done on what
we have argued is the realistic setting in which players do not observe perfectly the actions
taken by their opponents. Miller (1996) has run tournaments in which strategies for playing
repeated prisoner’s dilemma games with uncertainty are pitted against each other, with more
successful strategies “multiplying” more rapidly than less successful strategies. The form of the
uncertainty that Miller considers is essentially as in our model. The action played in any period
is seen with some noise by the opponent. Miller compares the strategies that succeed in this
tournament when there is no noise in the observation of the opponent’s action and when the sig-
nals are 99% accurate and 95% accurate. While there are differences in this particular exercise
and our model,31 it is interesting to note two things. First, the successful strategies that emerge
are simpler than they might have been in the sense that they use fewer states than they might.
In other words, there seems to be some “optimal” number of states in the sense that strategies

30See, e.g., Bendor et al. (1999) and Sainty (1999).
31Miller considers finitely repeated games and allows transition functions to vary, for example.
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that used more states did strictly worse. The second interesting thing about Miller’s results is
that when the error rate in the signals of what an opponent has done increases from 1% to 5%,
the number of states used by the most successful strategies decreases. While we don’t take this
as compelling evidence for our general point of view, it is consistent with our framework.

6.5. Related literature

Although we have emphasized the difficulty in supporting cooperation when signals are private,
there are monitoring structures for which cooperation is relatively easy to sustain. These are
case when each player can be sure — or almost sure — of his opponent’s state of mind. Mailath
and Morris (2002) analyze repeated games in which players get imperfect information about past
play. Consider first games in which players get a public signal, that is, a signal that both see.
Cooperation may be possible here, because if players choose pure strategies, they know exactly
their opponents’ state of mind: the public signals and the actions prescribed by the equilibrium
strategies will be common knowledge. Mailath and Morris then consider a perturbation of this
information structure whereby each player gets the public signal with a small amount of noise.
They focus on the case that players’ signals are almost public: for any signal a player receives, the
probability that other players have received the same signal is close to one. Mailath and Morris
show that if players’ strategies depend only on a finite number of past signals, the introduction
of the small amount of noise into the players’ signals about past play doesn’t matter; strategies
that comprise an equilibrium when there is no discrepancy in what players observe remain
equilibrium strategies when players’ signals are almost public.32

This result provides sufficient conditions under which cooperation can be possible even when
players receive private signals, but those conditions are quite stringent. In particular, when
signals are almost public, I can predict very accurately what other players will next do. This is
in sharp contrast to our example. First, the signals that players get are not helpful in predicting
the signal received by the other player, and second, however accurate signals are there are times
(in state U for example) when a player may not be able to accurately predict what his opponent
will do.33

It has long been understood that some Nash equilibria are sufficiently complicated that it
is implausible that players will be able to identify the strategies and play them. One approach
to taking complexity of strategies into account is to assume players use finite automata to
implement their strategies. A finite automaton consists of a finite number of states and a
transition function, as in our model. The complexity of a player’s strategy is defined to be the
minimal size of a machine that can implement that strategy.34 We differ from this literature
in several respects. First, the literature using automata to implement strategies has players
choosing both the transition function and the mapping from states to actions, taking fixed only
the number of states available given the automaton’s size. In contrast, we take players’ transition
functions as fixed with players’ choices being only the mapping from states to actions. Second,
32Phelan and Skrzypacz (2006) ask a related question. They consider strategies that depend on a finite number

of states, but unlike Mailath and Morris, conditioning on past actions is allowed. Then, for any given monitoring
structure, by looking at the set of beliefs generated after any history, they provide a general method for evaluating
whether the candidate strategy is an equilibrium. See also Kandori and Obara (2007) for a related treatment.
33This is because even as p gets close to 1, the probability Pr(s2 = U | s1 = U) = φσ(UU)/(φσ(UU)+φσ(UN))

remains bounded away from 0 and 1. (See also footnote 18.)
34 See, e.g., Ben-Porath (1986) and Abreu and Rubinstein (1988).

31



to our knowledge, this literature does not consider games with private monitoring. Third, the
earlier literature used automata primarily as a tool to capture complexity; our modeling strategy
takes more seriously mental systems as being a plausible, if crude, model of the process by which
players may interact. There has also been work in single-person decision making problems that
is analogous to the papers using automata to capture complexity costs.35 While we take agents’
transition functions as fixed, the focus of this literature is on characterizing the optimal transition
rule.
In our model a player must choose an action at a given date that depends only on which

of the finite number of states that he is in at that time. The number of realized histories goes
to infinity so a state is an information set that over time contains a large set of histories, and
a player might prefer to choose different actions at different histories that led to a given state
if he could distinguish the histories. This structure is analogous to the “absent-minded driver
problem”36 in which a driver who wishes to exit a limited access highway “at the second exit”
must decide what to do when he arrives at an exit but cannot recall whether he has already
passed an exit.
The model we study reduces to a stochastic game of a particular kind in which each player

has his own state variable, and each player observes only his own state.37 Most of the literature
in stochastic games assumes that in each period, there is a state that is known to both players,38

while our interest is in the case that players do not know their partner’s state. In addition, our
interest is primarily in understanding the conditions under which cooperation is possible for
specific classes of games.
Kandori (1992) and Okuno-Fujiwara and Postlewaite (1995) analyze the possibility of coop-

eration when players are repeated randomly matched to play a prisoner’s dilemma game with
limited information about previous play. Those papers demonstrate that cooperation can be
supported with limited information, but the nature of the limited information is different from
that in this paper. In particular, there is no uncertainty about the action that an individual has
taken in a given interaction unlike in our model.
Abdulkadiroglu and Bagwell (2007) analyze a two-person favor exchange model in which in

each period one or the other, or neither, of the agents may be able to do a costly favor for the
other agent.39 When in a given period an agent has the opportunity to do a favor, this fact will
be known to him but not to the potential recipient of the favor. If a favor is done, it is publicly
observed by both agents. It is assumed that the benefit to the recipient of a favor is greater than
the cost of doing the favor, it is efficient that all possible favors be done. It is straightforward
to see that there is an incentive problem in inducing an agent to do a costly favor when his
opponent will not know that such a favor was possible however. Abdulkadiroglu and Bagwell
analyze the equilibria in this problem and demonstrate how relatively simple strategies can
support significant cooperation. This problem differs from ours in the nature of the asymmetry of
information. In the problem Abdulkadiroglu and Bagwell analyze, agents do not know precisely
the game they face in any period. If an agent cannot do a favor for his opponent, he does

35See Wilson (2004) and Cover and Hellman (1970) for such models of single-person decision problems and
Monte (2007) for a strategic treatment of such models.
36 See, e.g., Piccione and Rubinstein (1997).
37We thank Eilon Solan for this observation.
38However, see Altman et. al. (2005).
39Mobius (2001) and Hauser and Hopenhayn (2005) analyze similar models.
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not know whether or not his opponent can do a favor for him. But when an agent chooses
to do a favor, both agents observe this with no uncertainty. In contrast, in our model agents
know precisely the game in any period, but get an imperfect signal of the action taken by
their opponent. It is this latter imperfection that makes coordination and cooperation in our
framework so difficult.

7. Appendix

No cooperation under the forgiving transition.
Consider first the case where player 2 follows the strategy σ that plays C in N and D in U .

If player 1 adopts the same strategy, then by symmetry, the induced ergodic distribution puts
identical weight on (NN) and (UU) on one hand, and on (NU) and (UN) on the other hand.
(Intuitively, the dynamic system has equal chances of exiting from (NN) as it has of exiting
from (UU).)

φσ,σ(NN) = φσ,σ(UU) and φσ,σ(NU) = φσ,σ(UN) (7.1)

The value to player 1 from following that strategy is thus

v(σ, σ) = φσ,σ(NN) + (1 + L)φσ,σ(UN)− Lφσ,σ(NU)

= φσ,σ(NN) + φσ,σ(UN) =
1

2
(φσ,σ(NN) + φσ,σ(UN) + φσ,σ(NU) + φσ,σ(UU))

=
1

2
.

Now if player 1 cooperates in both states (σC), player 2 will switch back and forth between states
N and U , spending a fraction p of the time in state N . The value to player 1 from following
that strategy is thus:

v(σC , σ) = p+ (1− p)(−L)
and it exceeds 1/2 if

p > 1− 1

2(1 + L)
.

If player 1 defects in both states (σD), player 2 will again switch back and forth between states
N and U , but now spending a fraction 1− p of the time in state N . The value to player 1 from
following that strategy is thus:

v(σD, σ) = (1− p)(1 + L)

which exceeds 1/2 as soon as p < 1− 1
2(1+L) .

Finally, if player 1 follows the strategy bσ that plays D in N and C in U , then, as above,
the dynamic system has equal chances of exiting from (NN) as it has of exiting from (UU).
Therefore, equalities (7.1) hold for the profile (bσ, σ), and the value to player 1 from following bσ
thus remains equal to 1/2. It follows that unless p = 1− 1

2(1+L) , the strategy profiles (σ, σ) and
(bσ, σ) cannot be equilibria. Similar considerations show that the strategy profile (bσ, bσ) cannot
be an equilibrium. As a result, only strategy profiles that are constant across states may be in
equilibrium, hence the only equilibrium entails defecting in both states.
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Cooperation with many players
Incentive to play C at N : If player i deviates to playing D at both states, this will propagate

through future random matches to the whole population. The length of the punishment phase
is random: until the public signal z = 1. If a punishment phase lasts t periods,40 call Qt the
expected number of “uninfected” players (that is, those who have not yet seen a bad signal)
that player i will meet during that punishment phase, and define

Q =
X
t

Qt(1− q)tq.

Q corresponds to the average number of uninfected players that player i meets in a punishment
phase, taking into account the fact that the length of the punishment phase is random. The
constraint for a player to have an incentive not to play D in state N is then

(1 + L)(1 +Q) <
X
t

t(1− q)tq =
1

q
,

or equivalently,
∆ > L+Q(1 + L),

hence

L <
∆−Q

(1 +Q)
.

There is also the constraint that player i should play D in state U . When player i plays
C at both N and U , he avoids triggering some punishment phases. Offsetting this, however,
he remains cooperative in punishment phases. Conditional on both players being in state N ,
consider the events where only one player receives a bad signal. In the event that player i
receives the bad signal, player i avoids triggering a false alarm (and saves ∆− L −Q(1 + L)).
However, in the event that some player j 6= i received the bad signal, a punishment phase starts.
Let π denote the probability that i becomes “infected” before a signal z = 1 arises (if ∆ is
large compared to Q, then π is close to 1). In that event, player i loses L in each period of the
punishment phase (i.e. until a signal z = 1 occurs).41 Thus it will be optimal for a player to
play D after first seeing a bad signal if

1

K
(∆− L−Q(1 + L))) + (1− 1

K
)π(−∆L) < 0,

or equivalently42

L >
∆−Q

1 +Q+ (K − 1)π∆ .

40This event has probability (1− q)tq.
41We omit here the fact that by playing C, a player slows down infection and consequently may face “unin-

fected” players for a longer period of time. This term is negligible when K is large: it is of the order of at most
(logK)/K. Intuitively, the effect is smaller than the effect of randomly switching one player each period from
state U to state N . In that case, infection would still spread to the whole population, but it would take slightly
longer, and be comparable to log(K + logK) rather than logK.
42Note that 1

1+(K−1)π corresponds to the probability that player i is the first to switch to U , given that he
switches to U .
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Resetting without a public signal
We show here the calculations of the set of q − L combinations that are consistent with

cooperation when p is close to 1. We illustrate the main transitions for the state pairs for the
case where p is close to 1 and q is small, but not too small:

0 < 1− p¿ q ¿ 1.

U,U

U,W

G,U

(q)

(q)

N,N
N,U

U,N
N,U

G,W
(q)

(1-p) (~1)

(1-p)

(~1)

(~1)
(~1)

Figure 16: Transition of mental state pairs

As mentioned above, we restrict attention in this example to this case; for the more general case
where q is larger, tedious computations are required. We only report graphically the set of q−L
combinations for which the proposed strategy profile is an equilibrium (as shown in Figure 14).
Analysis:
When players follow the proposed strategy profile, they alternate between long phases of

cooperation (of length 1/π with π = 2(1 − p)), and relatively short punishment phases (of
approximate length 2/q).
Incentives for player 1 at U . Under the proposed equilibrium strategy profile, the expected

loss that player 1 incurs (compared to being in the cooperative phase) until coordination back
to cooperation occurs is approximately 2/q.43

43The exact cost is larger because there are a few periods in which player 1 cooperates while player 2 still
defects. A better approximation of the cost is 2/q + 1

2
+ 3(1 + L). To see this, compute, conditional on being

in (U,U), the expected loss that player 1 incurs (compared to being in the cooperative phase) until coordination
back to cooperation occurs. We denote by ∆ that loss. We have:

∆ = 1 + q[2(1 + L) +∆] + q[1/q + 1 + L] + (1− 2q)∆

or equivalently:

∆ =
2

q
+ 3(1 + L)

Because there is equal chance of going to UU through NU or UN , the expected loss from a punishment phase is:

1

2
(1 + L) +

1

2
(−L) +∆ =

1

2
+∆
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When player 1 cooperates at U , he avoids triggering a punishment phase in the event (U,N),
so the occurrences of punishment phases are reduced by 1/2. In addition, punishment phases
are shorter, as coordination back to cooperation occurs as soon as player 2 transits to W (hence
punishment length is reduced to 1/q), however they are more costly per period of punishment,
as player 1 loses an additional L in each period (compared to the case where he would play D).
The condition is thus:

2

q
<
1

2
(
1

q
)(1 + L)

or equivalently:
L > 3.

Incentives of player 2 at N : Defection generates short period of cooperation (cooperation
lasts 2 periods), during which player 2 gains an additional payoff of L, and long periods of
punishment (that last 1/q periods) during which player 2 looses 1. Hence the condition

2L <
1

q
.

We omit the verifications of the other incentives, which are easier to check and automatically
satisfied. QED
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