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Abstract

This paper extends Li (2008b) to the multi-agent environment, where players
reason about each other’s awareness as well as knowledge, subject to their own aware-
ness constraints. I characterize the interactive knowledge hierarchies under unawareness,
which significantly differ from those in the standard information partition model by al-
lowing for false interactive knowledge. Aumann’s classic characterization of common
knowledge does not immediately apply in this environment, even if there is “common
awareness” of the event involved. An alternative characterization of common knowledge
is provided.
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1 Introduction

A person is unaware of an event E if he does not know E, and he does not know that
he does not know E, and so on. Li (2008b) proposes a product model that generalizes
Aumann’s information partition model to accommodate non-trivial unawareness. This
paper extends Li (2008b) to the multi-agent environment, where players reason about
each other’s awareness as well as knowledge, subject to their own awareness constraints.
In particular, player i could be unaware that player j might be unaware of an event E,
of which i is aware himself. It seems plausible to assume, in this case, i would take it for
granted that j reasons about E. I characterize interactive knowledge hierarchies where
a player has false interactive knowledge if and only if the player is unaware of others’
unawareness.1

The concept of common knowledge has been playing an important role in game-
theoretic analysis. An event E is common knowledge if everybody knows E, and every-
body knows everybody knows E, and so on. To analyze any strategic situation where
unawareness is involved, it is critical to understand how the presence of unawareness af-
fects common knowledge among players. Intuitively, introducing the possibility of being
unaware of an event obviously makes it harder for players to arrive at common knowledge.
On the other hand, the presence of unawareness may also reduce higher-order uncertain-
ties among players. In general, Aumann’s classic characterization of common knowledge
in the standard information partition model plus an additional clause that captures
“‘common knowledge’ of awareness of E” are sufficient to deliver common knowledge
but not necessary. In particular, at the presence of unawareness, Aumann’s classic for-
mula is not necessary for common knowledge: it is possible for players to have common
knowledge of an event under unawareness, even if they would only have mutual knowl-
edge had all been fully aware. However, once one rules out unawareness of uncertainties
in information structures, the additional “common knowledge of awareness” clause does
characterize all implications of unawareness when it comes to common knowledge.

2 The Primitives

I consider a set of questions Q∗ that summarizes all relevant uncertainties in the envi-
ronment. Without loss of generality, for each question q ∈ Q∗, let there be two possible
answers, denoted by 1q and 0q. The full state space describing all possible scenarios is
denoted by Q∗ and is defined by:

Q∗ = Πq∈Q∗ {1q, 0q} × {Δ}
where Δ stands for “cogito ergo sum.” Let N = {1, · · · , n} be the set of players. Player
i’s information structure is represented by a pair (W ∗

i , P ∗
i ), where W ∗

i maps each full state

1Li (2008a) models unawareness in both the single-agent environment and the multi-agent environ-
ment without imposing the product structure.
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to a subset of Q∗, and P ∗
i maps each full state to a subset of Q∗. The interpretation is,

at ω∗, player i is aware of questions in the set W ∗
i (ω∗) and P ∗

i (ω∗) contains all full states
that are indistinguishable from ω∗ for i. Thus W ∗

i represents i’s awareness information
structure and is called the full awareness function, and P ∗

i represents i’s factual infor-
mation structure is called the full possibility correspondence.2 Let W∗ = (W ∗

1 , · · · , W ∗
n)

and P∗ = (P ∗
1 , · · · , P ∗

n) denote the vector of awareness functions and full possibility
correspondences.

Analogous to the single-agent case, at each full state, an agent i ∈ N has a multi-
agent subjective model that describes his perception of the world, including everyone’s
information structure. Comparing to the single-agent case, there are two complications
when multiple agents are involved. First, now subjective knowledge at counterfactual
states, i.e. (subjective) states i excludes, matters for higher-order interactive knowledge,
because in i’s subjective model, another player, say, j, may find them possible. This
requires i’s subjective possibility correspondence to be defined on the entire subjective
space, not just subjective states i considers possible as in the single-agent case.3 The
second complication arises from interactive reasoning about each other’s awareness: to
allow for i’s reasoning about j’s awareness, i’s subjective model has to be extended to
include i’s perception of j’s awareness information at every subjective state as well as j’s
factual information. In other words, i’s subjective model needs to be a product model
itself, equipped with not only a subjective possibility correspondence but also a subjective
awareness function.

3 Deriving Subjective Models

3.1 Subjective possibility correspondence.

Fix ω∗ ∈ Ω∗, i, j ∈ N . Let i’s subjective state space at ω∗ be denoted by Ω(iω∗). The
symbol iω∗ is to be understood as the pair (ω∗, i). Let Pj(·|iω∗) denote j’s possibility
correspondence in i’s subjective model at ω∗. That is, at ω∗, i perceives j’s possibility
set at ω ∈ Ω(iω∗) to be Pj(ω|iω∗). It seems the natural definition for Pj(·|iω∗) would be
the projection of j’s factual information specified in the full model on i’s subjective state
space. However, this leaves an indeterminacy for counterfactual states. More specifically,
the indeterminacy occurs when there are ω∗

1, ω
∗
2 ∈ Ω∗ such that, (1), PΩ(iω∗)(P ∗

i (ω∗
1)) �=

PΩ(iω∗)(P ∗
i (ω∗

2)), i.e., in ω∗
1 and ω∗

2, j receives different factual information regarding
questions of which i is aware at ω∗; and (2) they are both projected to ω ∈ Ω(iω∗) \
PΩ(iω∗)(P ∗

j (ω∗)), i.e., i excludes ω at ω∗, while is unaware of the distinction between ω∗
1

2See Li (2008b) for more discussions.
3For instance, in Example 1, at (1r, 0p, Δ), Charlie excludes the subjective state (0r, Δ). His (subjec-

tive) factual information at (0r, Δ) is irrelevant to his own knowledge hierarchy at (1r, 0p, Δ). However,
suppose there is another player Dorothy, who cannot tell whether it rains; then Charlie’s subjective
knowledge and hence his subjective factual information at (0r, Δ) matters for his interactive knowledge
hierarchy at (1r, 0p, Δ), such as his knowledge about Dorothy’s knowledge about his own knowledge.
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and ω∗
2. In other words, the indeterminacy occurs when i is unaware of uncertainties in

j’s factual information at counterfactual states.
I resolve this indeterminacy by using the product structure to select, for each ω∗

and each i, a particular factual information set. Formally, for each pair (ω∗, i), I define
a “label” which consists of the answers to questions of which i is unaware at ω∗:

u(iω∗) = PΩ(Q∗\W ∗
i (ω∗))(ω∗).

Slightly abusing notation, I let ω×u(iω∗) denote the full state whose projection on Ω(iω∗)
is ω, and whose answers to questions of which i is unaware coincide with ω∗. That is,
ω × u(iω∗) is the full state ω∗

1 such that PΩ(iω∗)(ω∗
1) = ω and PΩ(Q∗\W ∗

i (ω∗))(ω∗
1) = u(iω∗).

I define:

Pj(ω|iω∗) =

{
PΩ(iω∗)P ∗

j (ω∗) for ω ∈ PΩ(iω∗)P ∗
j (ω∗),

PΩ(iω∗)P ∗
j (ω × u(iω∗)) otherwise.

(3.1)

This definition says that at ω∗, the subjective factual information structure is the
projection of the factual information sets at those full states selected using the “label”
u(iω∗).4,5

Definition (3.1) does not impose real restrictions on the model, as one can always
introduce “auxiliary” questions to manipulate the order of full states. Figure 1 illustrates
this idea. Boxes represent factual information, and the intersecting ovals represent the
awareness information. Consider the full model depicted in the unshaded area on the
left. The agent’s subjective models are depicted in the shaded area. In particular, at
(1a, 0b, Δ), definition (3.1) yields a non-partitional factual information structure in the
agent’s subjective model. Alternatively, one may wish to model the situation in which
the agent has the information partition {{(1a, Δ)} , {0a, Δ}} in the subjective model at
(1a, 0b, Δ). This can be achieved by adding an auxiliary question c to reorder the full
states, so the “label” picks up the desired factual information sets, as shown in the graph
on the right.

3.1.1 Subjective awareness function.

Let Wj(·|iω∗) denote j’s awareness function in i’s subjective model at ω∗. That is, at ω∗,
i perceives j’s awareness information at ω ∈ Ω(iω∗) to be Wj(ω|iω∗). Of course, i can

4The label yields “consistent” selection of factual information sets. Suppose W ∗
i (ω∗) ⊇ W ∗

k (ω∗), then
the following is true:

{ω × u(iω∗) : ω ∈ Ω(iω∗)} ⊇ {ω × u(kω∗) : ω ∈ Ω(kω∗)} .

It follows that, take any subjective state ωk ∈ Ω(kω∗) \ PΩ(kω∗ )(P ∗
j (ω∗)), i.e. ωk is excluded by j’s

factual information at ω∗, then there must exist a ωi ∈ Ω(iω∗)\PΩ(iω∗ )(P ∗
j (ω∗)) such that ωk ×u(kω∗) =

ωi × u(iω∗).
5The use of the label makes crucial use of the product structure. Thus, although the product structure

in the single-agent model is without loss of generality, it is not in the general case of the multi-agent
model.
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(0a,1b,�)(1a,1b,�)
{a}

(1a, �) (0a, �)
II

(1a,0b,�) (0a,0b,�){a}

(1a, �) (0a, �)
I

(0a,1b,1c,�)(1a,1b,1c,�)
{a}

(1a, �) (0a, �)
II

(1a,0b,1c,�) (0a,0b,1c,�){a}

(1a, �) (0a, �)
I

(0a,1b,0c,�)(1a,1b,0c,�) {a}

(1a,0b,0c,�) (0a,0b,0c,�){a} {a}

Figure 1: Subjective possibility correspondence.

only reason about j’s awareness within i’s own awareness. Thus, for any ω ∈ Ω(iω∗), a
natural definition for Wj(ω|iω∗) is to take the intersection of W ∗

i (ω∗) and W ∗
j (ω∗

1|iω∗) for
some ω∗

1 ∈ Ω∗ that is projected to ω. But as before, there seems to be an indeterminacy
if there are two full states ω∗

1, ω
∗
2, both projected to ω ∈ Ω(iω∗), such that

W ∗
i (ω∗) ∩ [W ∗

j (ω∗
1) � W ∗

j (ω∗
2)] �= ∅,

where � denotes the symmetric difference of two sets. Intuitively, in this case, for any
q ∈ W ∗

i (ω∗)∩ [W ∗
j (ω∗

1) � W ∗
j (ω∗

2)], i is unaware that j could be unaware of question q, of
which i is aware himself. In other words, i is unaware of uncertainties in j’s awareness
information structure. However, unlike the case of unawareness of uncertainties in the
factual information structure, it seems here the only plausible scenario is that i should
take it for granted that j reasons about q. After all, i considers q a relevant question and
j a relevant player, if he is unaware that j could be unaware of q, then how could he not
reason about j’s reasoning about q? This prompts the following definition:

Wj(ω|iω∗) = W ∗
i (ω∗) ∩ [ ∪

{ω∗
1 : P

Ωi(ω
∗)(ω∗

1)=ω}
W ∗

j (ω∗
1)]. (3.2)

Let W(·|iω∗) = (W1(·|iω∗), · · · , Wn(·|iω∗)) and P(·|iω∗) = (P1(·|iω∗), · · · , Pn(·|iω∗)).
For ease of notation, let θ1 = (ω∗, i), and write Ω(θ1) ≡ Ω(iω∗). Then i’s subjective model
at ω∗ is:

(Ω(θ1),W(·|θ1),P(·|θ)).
Let it be denoted by M(θ1). Intuitively, this is the “full” model from i’s own perspective.
The second-order subjective models that describes i’s perception of every player’s per-
ception of the world can be constructed by applying (3.1) and (3.2) to M(θ1) for every
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subjective state ω ∈ Ω(θ1) and every player j ∈ N , and so on for higher-order subjective
models.

Formally, first let Θ1 = {((ω1, i
1)) : ω1 ∈ Ω∗, i1 ∈ N}. Suppose the subjective

model M(θk) is defined for all θk ∈ Θk, k = 1, · · · , n − 1. Fixing θk ∈ Θk, let θl, l ≤ k
denote the tuple that consists of the first l elements of θk. That is, suppose θk =
((ω1, i

1), · · · , (ωk, i
k)), then θl = ((ω1, i

1), · · · , (ωl, i
l)), l ≤ k. Of course, θl ∈ Θl. Let +

denote concatenation. I define the n-th order subjective models inductively as follows.
First, the set of relevant n-th order reasoning sequences is:

Θn =
{
θ + (ω, j) : θ ∈ Θn−1, ω ∈ Ω(θ), j ∈ N

}
. (3.3)

For ease of notation, I write P (θk) ≡ Pik(ωk|θk−1) and W (θk) ≡ Wik(ωk|θk−1), k =
1, · · · , n. Then for every θn ∈ Θn, the relevant higher-order subjective state space is:

Ω(θn) = Π
q∈ W (θn)

{1q, 0q} × {Δ} . (3.4)

Now for all ω ∈ Ω(θn) and any j ∈ N ,

Wj(ω|θn) = W (θn) ∩ [ ∪
{ω′∈Ω(θn−1): PΩ(θn)(ω′)=ω}

Wj(ω
′|θn−1)], (3.5)

Pj(ω|θn) =

{
PΩ(θn)Pj(θ

n) for ω ∈ PΩ(θn)Pj(θ
n),

PΩ(θn)Pj(ω × u(θn)|θn−1) otherwise,
(3.6)

where u(θn) = PΩ(W (θn−1)\W (θn))(ωn). Notice ω × u(θn) is the subjective state in Ω(θn−1)
where the uncertainties of which in is aware are resolved as in ω and the uncertainties of
which in is unaware are resolved according to the “label” u(θn).

The tuple M(θn) = (Ω(θn),W(·|θn),P(·|θn)) describes i1’s perception at ω1 of
i2’s perception at ω2 of · · · of in’s subjective model at ωn. Since players can only reason
within their own awareness, their subjective models of different orders are “nested”: for
any n and any θn ∈ Θn, W (θk) ⊆ W (θk−1) for all k = 1, · · · , n.

The tuple (Ω∗,W∗,P∗) along with definitions (3.4)-(3.6) describes the full multi-
agent product model. A full state in Ω∗ completely resolves all uncertainties in the
environment, including what each player is aware of, what they believe others are aware
of, and so on. Thus a full state generalizes the concept of a state in standard state-space
models.

3.1.2 Richness and product factual partition conditions.

I am most interested in situations where all subjective models have rational information
structures. However, that information structures are rational in the full model does
not guarantee all information structures are rational in subjective models. Hence, some
additional conditions are needed.
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(1a,1b,�) (0a,1b,�)

(0a,0b,�)(1a,0b,�)

{b}

{a} {b}

{a}

Figure 2: A full state space that is not rich.

In Figure 2, the solid lines represent Alice’s information structure and the dash
lines represent Bob’s information structure. Both information structures are rational.
At (1a, 1b, Δ), Alice is unaware of question a, and unaware that she is unaware of a,
while at (1a, 0b, Δ), she is not only aware of a, but also aware that she would be unaware
of a had 0a been true.6 Moreover, Alice’s factual information regarding a also differs
depending on the answer to question b. Thus, question b plays multiple roles: it resolves
uncertainties in Alice’s awareness of a, Alice’s awareness of possible unawareness of a, and
Alice’s factual information about a. As a consequence, Bob cannot be unaware of Alice’s
possible unawareness of a when 1a is true without also perceiving Alice to be aware that
she would be unaware of a had 0a been true, and Bob must perceive Alice’s subjective
factual information set to be {(1a, Δ), (0a, Δ)} at states (1a, 1b, Δ) and (0a, 1b, Δ). But
then it follows Alice’s information structure is irrational in Bob’s subjective model.

The problem is, the full state space in Figure 2 simply does not have enough
“dimensions” to accommodate higher-order interactive reasonings to their full extent.
Thus I require different orders of unawareness to be coded using different questions in
situations like this.

Definition 1 The product model (Ω∗,W∗,P∗) is rich if, for all i ∈ N and Ω ∈ S,
PΩ(ω∗

1) = PΩ(ω∗
3), ω

∗
2 ∈ P ∗

i (ω∗
1), q ∈ q(Ω) ∩ [W ∗

i (ω∗
3) \W ∗

i (ω∗
1)] imply there exists some ω∗

4

such that PΩ(ω∗
2) = PΩ(ω∗

4) and q ∈ W ∗
i (ω∗

4).

In the context of the above example, the richness condition requires the full state
space to contain states in which 1a is true and Alice is aware of a, but unaware that she
would be unaware of a had 0a been true. Let Θ = ∪∞

n=1Θ
n. The following result shows

that the richness condition ensures all subjective models have “partitional” awareness
information when the full information structures are rational:

6At (1a, 0b, Δ), Alice’s subjective model has two subjective states, (1a, Δ), in which she is aware of
a, and (0a, Δ), in which she is unaware of a.
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Lemma 1 Let the product model (Ω∗,W∗,P∗) be rich and rational. Then for any θ ∈ Θ
and any j ∈ N , ω′ ∈ Pj(ω|θ) implies Wj(ω

′|θ) = Wj(ω|θ).
It follows that all players know their own subjective models, and all players know

all players know their own subjective models, and so on. In this sense, there is “common
knowledge” of subjective models among all players who are aware of them, which general-
izes the case in the standard model that information structures are “common knowledge”
among all players.7

Corollary 2 Suppose the product model (Ω∗,W∗,P∗) is rich and rational. Then for
any θ = ((ω1, i

1), · · · , (ωn, i
n)) ∈ Θ, the tuple θ′ = ((ω1, i

1), · · · , (ωn, i
n), (ω, in)) where

ω ∈ Pin(PΩ(θ)(ωn)|θ) is an element in Θ, and the two subjective models are identical:

M(θ′) = M(θ).

Next, I consider a condition that ensures factual information in all possible sub-
jective models is partitional.

Definition 2 The possibility correspondence P ∗ : Ω∗ → 2Ω∗ \ {∅} satisfies product
factual partition if it induces an information partition over Ω∗, and that for all ω∗ ∈ Ω∗,
P ∗(ω∗) can be written as a product set. That is, for every ω∗,

P ∗(ω∗) =
{
ω∗

0 ∈ Ω∗ : P{1q,0q}(ω∗
0) ∈ πq

ω∗(P{1q ,0q}(ω∗)), ∀q ∈ Q∗} ,

where πq
ω∗ is a partition over the set {1q, 0q} and πq

ω∗(ω) is the partition element containing
ω, for ω = 1q, 0q.

This condition says all factual information consists of independent pieces of in-
formation regarding the answers to each question. It rules out information sets such as
{(1a, 1b, Δ), (0a, 1b, Δ), (0a, 0b, Δ)} in Figure 1, and hence ensures that for every sub-
jective state space, the “label” selects factual information sets that are projected to a
partition.

Lemma 3 Fix a product model (Ω∗,W∗,P∗). If P ∗
j satisfies product factual partition,

then for all θ ∈ Θ, Pj(·|θ) induces an information partition over Ω(θ).

4 Interactive knowledge hierarchy.

Analogous to the single-agent case, the objective interactive knowledge hierarchy is de-
rived by tracking the “true” subjective states in the subjective interactive knowledge

7See, for example, Aumann (1987) and Brandenburger and Dekel (1993).
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hierarchy in the corresponding subjective models. The complication is, since the multi-
agent subjective models are product models themselves, knowledge in them may need to
be further derived from yet higher-order subjective models.

For example, the objective event “i knows j knows E,” denoted by KiKj(E),
is obtained by tracking the corresponding subjective version of this knowledge in i’s
subjective model. In particular, the event “j knows E” should also be the subjective
version in i’s subjective model, and is obtained by tracking j’s subjective knowledge “I
know E” in the second-order subjective model describing i’s perception of j’s perception.
Let K̃j

iω∗ (E) denote the event “j knows E” in i’s subjective model.

K̃j
iω∗ (E) =

{
ω ∈ Ωi(ω

∗) : Pj(ω|iω∗) ⊆ EΩi(ω∗), Wj(ω|iω∗) ⊇ q(E)
}

if q(E) ⊆ W ∗
i (ω∗) and K̃j

iω∗ (E) = ∅E otherwise.
The objective interactive knowledge, analogous to the objective knowledge, is

defined by:

KiKj(E) =
{

ω∗ ∈ Ω∗ : PΩi(ω
∗)(ω∗) ∈ K̃i

iω∗K̃
j
iω∗ (E)

}
.

Similarly, the objective event “i knows j is unaware of E,” denoted by KiUj(E),
is defined by:

KiUj(E) =
{
ω∗ ∈ Ω∗ : PΩi(ω∗)(ω∗) ∈ K̃i

ω∗Ũ
j
iω∗ (E)

}
,

where Ũ j
iω∗ (E) is the event “j is unaware of E” in i’s subjective model at ω∗, and is

defined by:
Ũ j

iω∗ (E) = {ω ∈ Ωi(ω
∗) : q(E) � Wj(ω|iω∗)}

if q(E) ⊆ W ∗
i (ω∗) is set to be ∅E otherwise.

Extending the above to the general case, the objective interactive knowledge “i1

knows that i2 knows · · · knows in knows E,” denoted by Ki1 · · ·Kin(E), is obtained by
recursively computing the relevant knowledge in the corresponding subjective models.

Ki1 · · ·Kin(E) =
{
ω∗ ∈ Ω∗ : PΩi1 (ω∗)(ω∗) ∈ K̃i1

i1
ω∗ [K̃

i2 · · · K̃in ]i1
ω∗ (E)

}
, (4.1)

and for all m = 2, 3, · · · , and all θ ∈ Θ,

[K̃i1 · · · K̃im ]θ(E) =

⎧⎨
⎩

{ω ∈ Ω(θ) : PΩi1 (ω|θ)(ω) ∈
K̃i1

θ+(ω,i1)[K̃
i2 · · · K̃im ]θ+(ω,i1)(E)}, if q(E) ⊆ W (θ),

∅E, if q(E) � W (θ),

(4.2)

and finally, for all j ∈ N , θ ∈ Θ,

K̃j
θ(E) =

{ {
ω ∈ Ω(θ) : Pj(ω|θ) ⊆ EΩ(θ), Wj(ω|θ) ⊇ q(E)

}
, if q(E) ⊆ W (θ),

∅E, if q(E) � W (θ).
(4.3)

Here, [K̃i1 · · · K̃im ]θ(E) denotes the knowledge “i1 knows that i2 knows · · · knows
in knows E” in the subjective model M(θ). It is worth pointing out that the difference
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between subjective knowledge and objective knowledge is subtle in the multi-agent model.
For example, the knowledge [K̃i2 · · · K̃in ]i1

ω∗ (E) is subjective with respect to the full

model, in the sense that it is the event “i2 knows · · · knows in knows E” from i’s
perspective at ω∗. On the other hand, it is objective within i’s own subjective model at
ω∗, as it takes into account all players’ unawareness at each (subjective) state in Ω(iω∗),
given i’s own awareness at ω∗. The subjective perspective of this knowledge is reflected
in the second line of (4.2), while the objective perspective is reflected in the the first line
of (4.2), which is simply formula (4.1) adapted to the subjective model M(θ).

Similarly, the event “i1 knows i2 knows · · · knows in is unaware of E,” denoted by
Ki1 · · ·Uin(E), can be obtained by replacing all incidents of K̃in in the above definitions
by Ũ in , and using the single-agent characterization result proved in Li (2008b) adapted
to the subjective model M(θ):

Ũ j
θ (E) =

{ {ω ∈ Ω(θ) : q(E) ⊆ W (θ), q(E) � Wj(ω|θ)} , if q(E) ⊆ W (θ);
∅E, if q(E) � W (θ).

(4.4)

The following theorem characterizes the properties of interactive knowledge hi-
erarchies in the product model when all subjective models have rational information
structures.

Theorem 4 Let the product model (Ω∗,W∗,P∗) be rich and rational, and P ∗
i satisfy

product factual partition for all i. Then for any E ∈ Ep,

IK1 ik = ik−1 for some 1 < k ≤ n ⇒ Ki1 · · ·Kin(E) = Ki1 · · ·Kik−1Kik+1Kin(E);

IK2 KiUj(E) =
⋂∞

n=1 Ki(¬K)n
j (E);

IK3 KiKj(E) ⊆ Kj(E) ∪ [Uj(E) ∩ Ki¬Uj(E)].

IK1 says every agent knows his own knowledge, and everybody knows that ev-
erybody knows his own knowledge, and so on. IK2 says i knows j is unaware of E if and
only if i knows the knowledge of E is lacking from j’s knowledge hierarchy at all levels.

IK3 says two things: first, interactive knowledge could be “false,” in the sense
that it could be the case that i “knows” j knows E while j actually does not know E;
second, the only situation in which this could happen is one in which j is in fact unaware
of E, while i is unaware that j is unaware of E. For example, suppose Holmes is unaware
that Watson is unaware of the possibility of no intruder, then, knowing there was no
intruder, Holmes “knows” Watson knows there was no intruder, too, due to the public
nature of their factual information.8 It is also possible for i to be aware that j may be
unaware of E while being unaware that k could be unaware of E.

8The presence of false interactive knowledge is not inconsistent with the axiom of knowledge, which
still holds in every subjective model. Whenever i knows j knows E, j indeed knows E in i’s subjective
model. The false knowledge is a consequence of an incorrect model, which arises whenever there is
unawareness of unawareness.
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5 Common knowledge.

An event E is common knowledge if everybody knows it, everybody knows everybody
knows it, and so on. Formally, fix i ∈ N , let Ii = ∪∞

m=2 {(i, i2, · · · , im) : i2, · · · , im ∈ N}
and let a typical element in this set be denoted by Ii. For notational ease, take I =
(i1, · · · , im), I write KI(E) ≡ Ki1 · · ·Kim(E). Then the event “E is common knowledge
among all players in N” is simply:

CK(E) ≡
n⋂

i=1

⋂
Ii∈Ii

KIi
(E). (5.1)

Common knowledge plays a critical role in economic analysis, especially in game-
theoretic models. For example, it is the key assumption in various “no-trade” type
results.9 The formal analysis of common knowledge in the economics literature greatly
benefits from Aumann’s classic characterization of this concept (Aumann 1976): In the
standard model (Ω∗,P∗), for any E ⊆ Ω∗,

CK(E) =
{
ω∗ ∈ Ω∗ : ∧n

j=1P
∗
j (ω∗) ⊆ E

}
, (5.2)

where ∧n
j=1P

∗
j denotes the meet of the information partition generated by the agents’

possibility correspondences, and ∧n
j=1P

∗
j (ω∗) is the partition element containing ω∗ in

the meet.
My goal is to characterize common knowledge in the presence of interactive un-

awareness. Formula (5.2), with EΩ∗ replacing E, is obviously too weak. A natural candi-
date in the environment with unawareness seems to be the following formula containing
a “common awareness of E” clause in addition to (5.2):

CK(E) =

{
ω∗ ∈ Ω∗ : q(E) ⊆ ∩n

j=1 ∩
ω∗

1∈ ∧n
j=1P ∗

j (ω∗)
W ∗

j (ω∗
1), ∧n

j=1P
∗
j (ω∗) ⊆ EΩ∗

}
(5.3)

Indeed, the following theorem says CK(E) implies E is common knowledge.

Theorem 5 In the product model (Ω∗,W∗,P∗), if P ∗
i satisfies product factual partition

for all i ∈ N , then for all E ∈ Ep,

CK(E) ⊆ CK(E).

However, (5.3) turns out to be hardly necessary. Consider the following two ex-
amples. First, recall the hearing problem example. Suppose there is a second player
Dorothy, who is unaware that Charlie has a hearing problem, and her full information

9See Geanakoplos (1992) for more discussion on the role of common knowledge in the economics
literature.
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partition is {{(1r, 1p, Δ), (1r, 0p, Δ)} , {(0r, 1p, Δ), (0r, 0p, Δ)}}. It is easy to check that
at (1r, 0p, Δ), both Dorothy and Charlie know it rains and know that both know it rains,
and so on. In this case, common knowledge is achieved without satisfying the right-hand
side of even (5.2):10 At (1r, 0p, Δ), Dorothy’s full factual information does not exclude
(1r, 1p, Δ), where Charlie does not know it rains.

(1a,1b,�) (0a,1b,�)

(0a,0b,�)(1a,0b,�)

{a}

{b}

{a}

(1a, �) (0a, �)

{a}

{b}

{a,b}Bob
Alice

Figure 3: Common knowledge.

For the second example, consider the product model illustrated in the unshaded
area of Figure 3. Alice’s information structure is depicted in solid lines, while Bob’s
information structure is depicted in dash lines. At (1a, 1b, Δ), both Bob and Alice are
only aware of question a, their first-order subjective models coincide and it is illustrated
in the shaded area.11 It is easy to check that the event {1a} is common knowledge at
(1a, 1b, Δ). However, (1a, 1b, Δ) /∈ CK({1a}), as the “common knowledge of awareness”
clause in (5.3) is violated: at (1a, 1b, Δ), Bob’s factual information does not exclude
(1a, 0b, Δ), in which Alice is unaware of question a.

In both cases, unawareness makes it easier for players to arrive at common knowl-
edge by reducing higher-order uncertainties in information structures. Had Dorothy been
fully aware at (1r, 0p, Δ), her uncertainty about Bob’s factual information would have
prevented her from knowing Bob knows it rains and hence “it rains” cannot be common
knowledge. Similarly, had Bob been fully aware at (1a, 1b, Δ), his uncertainty about
Alice’s awareness information would have prevented him from knowing Alice knows the
answer to question a is “yes” and hence {1a} cannot be common knowledge.12 These
observations yield a tight upper bound for common knowledge, that is, mutual knowledge
of E among players:

CK(E) ⊆ {ω∗ : P ∗
i (ω∗) ⊆ EΩ∗ , W ∗

i (ω∗) ⊇ q(E) ∀i} .

10In other words, in an environment with unawareness, an event can be common knowledge without
containing a self-evident event for all players.

11The subjective awareness information in all subjective states is {a}, which I omit in the picture for
simplicity.

12Consider the full state (0a, 1b, Δ) and the event {0a} in Figure 3.
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In light of the above, to obtain a characterization of common knowledge at the
presence of unawareness, I focus attention on cases where there is no unawareness of
uncertainties in information structures.

Definition 3 The full possibility correspondence P ∗ satisfies cylinder factual parti-
tion if it induces an information partition over Ω∗, and that for all ω∗ ∈ Ω∗, P ∗(ω∗) is
a cylinder event. That is, for every ω∗ ∈ Ω∗,

P ∗(ω∗) =
{
ω∗

0 ∈ Ω∗ : P{1q ,0q}(ω∗
0) ∈ πq(P{1q ,0q}(ω∗)), ∀q ∈ Q∗} ,

where πq is a partition over {1q, 0q}.
Cylinder factual partition strengthens product factual partition by requiring the

decomposition of factual information regarding the answers to each question to be inde-
pendent of the full states. Under this condition, in all full states projected to the same
subjective state, the factual information sets have the same projection in that subjective
state space. Thus, this condition rules out unawareness of uncertainties in the factual
information structure.13

Definition 4 The awareness function W ∗ satisfies nice awareness if, fixing ω∗
1, ω

∗
2 ∈

Ω∗, suppose q ∈ Q∗ satisfies P{1q ,0q}(ω∗
1) = P{1q,0q}(ω∗

2), then

q /∈ [W ∗(ω∗
1) � W ∗(ω∗

2)].

Nice awareness says, if two full states coincide in their answers to a question q,
then the agent is either aware of q in both states or unaware of q in both states. This
condition rules out unawareness of uncertainties in the awareness information structure:
in all full states projected to the same subjective state, the agent’s awareness information
never differs on the set of questions specified in that subjective state space. Thus, i is
never unaware that j could be unaware of a question of which i is aware himself. It is also
worth noting that the richness condition is vacuous when the nice awareness condition is
satisfied.

Definition 5 The pair (W∗,P∗) is strongly rational if (W ∗
i , P ∗

i ) is rational and sat-
isfies cylinder factual partition and nice awareness conditions for all i ∈ N .

The next theorem confirms that indeed, as long as there is no unawareness of
uncertainties in information structures, formula (5.3) characterizes common knowledge.

Theorem 6 Let (Ω∗,W∗,P∗) be strongly rational. Then for all E ∈ Ep,

CK(E) = CK(E).

13Under this condition, the “label” in the definition of the subjective possibility correspondence is vac-
uous. Thus, to model situations where all players are aware of all uncertainties in the factual information
structure, the product structure is again without loss of generality. Li (2008a) has more details.
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Remark. Consider the full state (1a, 0b, Δ) in Figure 3. At this state, Bob’s subjective
model is identical to the one illustrated in the shaded area, in which {1a} is common
knowledge at the subjective state (1a, Δ) by Aumann’s characterization. Thus, from
Bob’s perspective, {1a} is common knowledge between himself and Alice. Intuitively, at
(1a, 0b, Δ), Bob is unaware that Alice is unaware of question a, and hence has “false”
knowledge of Alice’s knowledge as discussed in property IK3, leading to the “false”
common knowledge from his perspective. This is a novel feature in the environment with
interactive unawareness.

Consider definition (5.2). Notice that ω∗ ∈ ∩
Ii∈Ii

KIi
(E) if and only if

PΩi(ω
∗)(ω∗) ∈

n⋂
j=1

⋂
Ij∈Ij

[K̃Ij

]iω∗ (E).

But the latter says precisely E is common knowledge in i’s subjective knowledge hierarchy
at ω∗. In this sense, the event ∩

Ii∈Ii

KIi
(E) can be interpreted as i’s subjective common

knowledge of E. Let it be denoted by CKi(E). Then definition (5.1) can be rewritten as:

CK(E) = ∩n
i=1CKi(E).

That is, an event E is common knowledge if and only if it is every player’s subjective
common knowledge. In the standard information partition model, this formula is vacuous
by the truth axiom: an event is common knowledge if and only if any player knows it
is common knowledge. The fact that with interactive unawareness, there could be a
discrepancy between common knowledge and subjective common knowledge seems to
raise intriguing issues, as ultimately it is subjective common knowledge that matters in
individual decision-making.

6 Appendix.

6.1 Proof of Lemma 1.

Proof. Fix i, j ∈ N and ω∗ ∈ Ω∗. It suffices to show the claim is true for θ = (ω∗, i), and
that the subjective model M(θ) is rich.

First, fix ω ∈ Ωi(ω
∗), and let ω′ ∈ Pj(ω|iω∗). Need to show Wj(ω

′|iω∗) =
Wj(ω|iω∗). By (3.1), there exist two full states ω∗

1, ω
∗
2 such that PΩi(ω∗)(ω∗

1) = ω,
PΩi(ω∗)(ω∗

2) = ω′, and ω∗
2 ∈ P ∗

j (ω∗
1).

Suppose q ∈ Wj(ω|iω∗). Recall that Wj(ω|iω∗) = W ∗
i (ω∗)∩[ ∪

{ω∗
0 :PΩi(ω

∗)(ω∗
0 )=ω}

W ∗
j (ω∗

0)].

There are two cases to consider.

1. q ∈ W ∗
i (ω∗) ∩ W ∗

j (ω∗
1). Then since (W ∗

j , P ∗
j ) is rational, W ∗

j (ω∗
1) = W ∗

j (ω∗
2) and

hence q ∈ W ∗
i (ω∗) ∩ W ∗

j (ω∗
2). It follows that q ∈ Wj(ω

′|iω∗);
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2. q ∈ W ∗
i (ω∗) ∩ [W ∗

j (ω∗
3) \ W ∗

j (ω∗
1)], where ω∗

3 is projected to ω on Ωi(ω
∗), i.e.

PΩi(ω
∗)(ω∗

3) = ω. But then by richness, there exists ω∗
4 such that PΩi(ω

∗)(ω∗
4) =

PΩi(ω∗)(ω∗
2) = ω′ and q ∈ W ∗

j (ω∗
4). Again it follows that q ∈ Wj(ω

′|iω∗).

This proves Wj(ω|iω∗) ⊆ Wj(ω
′|iω∗). The other direction is completely symmetric.

Next, I show the subjective model M(θ) is rich. Fix Ω ∈ S that is weakly coarser
than Ωi(ω

∗). Let ωk, k = 1, 2, 3 be such that PΩ(ω1) = PΩ(ω3), ω2 ∈ Pj(ω1|iω∗). Suppose
q ∈ q(Ω) ∩ [Wj(ω3|iω∗) \ Wj(ω1|iω∗)]. Need to show there exists some ω4 ∈ Ωi(ω

∗) such
that PΩ(ω2) = PΩ(ω4) and q ∈ Wj(ω4|iω∗).

Since ω2 ∈ Pj(ω1|iω∗), there exist ω∗
2, ω

∗
1 such that PΩi(ω∗)(ω∗

2) = ω2, PΩi(ω∗)(ω∗
1) =

ω1, and ω∗
2 ∈ P ∗

j (ω∗
1). Since q ∈ Wj(ω3|iω∗), there must exist ω∗

3 such that PΩi(ω∗)(ω∗
3) = ω3

and q ∈ W ∗
j (ω∗

3). On the other hand, q /∈ q(Ω) ∩ Wj(ω1|iω∗), q(Ω) ⊆ W ∗
i (ω∗) imply

q /∈ Wj(ω1|iω∗), which in turn implies that for all ω∗
0 such that PΩi(ω

∗)(ω∗
0) = ω1, we must

have q /∈ W ∗
j (ω∗). It follows that, q /∈ W ∗

j (ω∗
1). Thus q ∈ q(Ω) ∩ [W ∗

j (ω∗
3) \ W ∗

j (ω∗
1)]

while ω∗
2 ∈ P ∗

j (ω∗
1). By richness, there exists ω∗

4 ∈ Ω∗ such that PΩ(ω∗
4) = PΩ(ω2), and

q ∈ W ∗
j (ω∗

4). Let ω4 = PΩi(ω∗)(ω∗
4). Then we have q ∈ Wj(ω4|iω∗), as desired. �

6.2 Proof of Corollary 2.

Proof. Let θ = ((ω1, i
1), · · · , (ωn, in)) ∈ Θ, and θ′ = ((ω1, i

1), · · · , (ωn, i
n), (ω, in))

where ω ∈ Pin(PΩ(θ)(ωn)|θ). Need to show Ω(θ) = Ω(θ′), and for all j ∈ N, ω′ ∈ Ω(θ),
(Wj(ω

′|θ), Pj(ω
′|θ)) = (Wj(ω

′|θ′), Pj(ω
′|θ′)).

To see Ω(θ) = Ω(θ′): since ω ∈ Pin(PΩ(θ)(ωn)|θ), by Lemma 1, Win(ω|θ) =
Win(PΩ(θ)(ωn)|θ). Let θn−1 denote the tuple consisting of the first n − 1 elements in
θ, that is, θn−1 = ((ω1, i

1), · · · , (ωn−1, i
n−1)), we have:

W (θ′) = Win(ω|θ)
= Win(PΩ(θ)(ωn)|θ)
= Win(ωn|θn−1) ∩ [ ∪

{ω′∈Ω(θn−1):PΩ(θ)(ω′)=PΩ(θ)(ωn)}
Win(ω′|θn−1)]

= Win(ωn|θn−1)

= W (θ).

Therefore, Ω(θ) = Π
q∈W (θ)

{1q, 0q} × {Δ} = Π
q∈W (θ′)

{1q, 0q} × {Δ} = Ω(θ′).

Now fixing j ∈ N and ω′ ∈ Ω(θ′), we have:

Wj(ω
′|θ′) = W (θ′) ∩ [ ∪

ω′′∈Ω(θ):PΩ(θ′)(ω′′)=ω′
Wj(ω

′′|θ)]
= W (θ) ∩ Wj(ω

′|θ)
= Wj(ω

′|θ);
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Next, for the subjective possibility correspondence:

Pj(ω
′|θ′) =

{
PΩ(θ′)Pj(ω|θ) for ω′ ∈ PΩ(θ′)Pj(ω|θ),
PΩ(θ′)Pj(ω

′ × u(θ′)|θ) otherwise.

But note Pj(·|θ) ⊆ Ω(θ) = Ω(θ′), and W (θ) = W (θ′) implies ω′ × u(θ′) =
PΩ(W (θ)\W (θ′))(ω) = ω′, therefore we have:

Pj(ω
′|θ′) =

{
Pj(ω|θ) for ω′ ∈ Pj(ω|θ),
Pj(ω

′|θ) otherwise.

But this simply says Pj(ω
′|θ′) = Pj(ω

′|θ). �

6.3 Proof of Lemma 7.

Lemma 7 Fix a product model (Ω∗,W∗,P∗). If P ∗
j satisfies product factual partition,

then for all θ ∈ Θ, Pj(·|θ) induces an information partition over Ω(θ).

Proof. Let θ = (ω∗, i), it suffices to show Pj(·|θ) satisfies product factual partition. For
any ω ∈ Ωi(ω

∗),

Pj(ω|iω∗) =

{
PΩi(ω∗)P ∗

j (ω∗) for ω ∈ PΩi(ω∗)P ∗
j (ω∗),

PΩi(ω
∗)P ∗

j (ω × ui(ω
∗)) otherwise.

Now suppose ω ∈ PΩi(ω∗)P ∗
j (ω∗). Since P ∗

j is an information partition, ω∗ ∈
P ∗

j (ω∗); since P ∗
j is a product set, ω×ui(ω

∗) ∈ P ∗
j (ω∗). Therefore P ∗

j (ω×ui(ω
∗)) = P ∗

j (ω∗)
since P ∗

j is a partition. But this means for all ω ∈ Ωi(ω
∗), we have

Pj(ω|iω∗) = PΩi(ω∗)P ∗
j (ω × ui(ω

∗))

= PΩi(ω
∗)

{
ω∗

0 ∈ Ω∗ : P{1q,0q}(ω∗
0) ∈ (πj)

q
ω∗(P{1q,0q}(ω × ui(ω

∗)))
}

=
{
ω0 ∈ Ωi(ω

∗) : P{1q ,0q}(ω0) ∈ (πj)
q
ω∗(P{1q,0q}(ω0)), ∀q ∈ W ∗

i (ω∗)
}

,

which proves the claim. �

6.4 Proof of Theorem 4.

Proof of IK1. Fix k, n ∈ N such that 1 < k ≤ n, and i1, · · · , in ∈ Nn such that
ik = ik−1. Need to show Ki1 · · ·Kin(E) = Ki1 · · ·Kik−1Kik+1Kin(E). For simplicity, let
ik = ik−1 = i. By the definition of interactive knowledge (equations (4.1) - (4.3)), need
to show for any θ = ((ω1, i

1), (ω2, i
2), · · · , (ωk−2, i

k−2)) ∈ Θk−2, the following holds:

[K̃iK̃iK̃ik+1 · · · K̃n]θ(E) = [K̃iK̃ik+1 · · · K̃n]θ(E). (6.1)
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Let ω ∈ [K̃iK̃iK̃ik+1 · · · K̃n]θ(E). By definition (4.2), we have

PΩi(ω|θ)(ω) ∈ K̃i
θ+(ω,i)[K̃

iK̃ik+1 · · · K̃in ]θ+(ω,i)(E).

Let θ′ = θ + (ω, i), and let s(θ′) ≡ PΩ(θ′)(ω), by definition (4.3), we have:

Pi(s(θ
′)|θ′) ⊆ [K̃iK̃ik+1 · · · K̃in ]θ′(E).

Since Pi(·|θ′) induces an information partition over Ω(θ′) (Lemma 7), s(θ′) ∈
Pi(s(θ

′)|θ′), and hence:

s(θ′) ∈ [K̃iK̃ik+1 · · · K̃in ]θ′(E);

=
{
ω′ ∈ Ω(θ′) : PΩi(ω′|θ′)(ω′) ∈ K̃i

θ′+(ω′,i)[K̃
ik+1 · · · K̃in ]θ′+(ω′,i)(E)

}
.

It follows

PΩi(s(θ′)|θ′)(s(θ′)) ∈ K̃i
θ′+(s(θ′),i)[K̃

ik+1 · · · K̃in ]θ′+(s(θ′),i)(E). (6.2)

Using Corollary 2, we have M(θ′) = M(θ′+(s(θ′), i)), and hence equation (6.2) is simply:

s(θ′) ∈ K̃i
θ′ [K̃

ik+1 · · · K̃in]θ′(E),

which implies ω ∈ [K̃iK̃ik+1 · · · K̃n]θ(E).

For the other direction, let ω ∈ [K̃iK̃ik+1 · · · K̃n]θ(E).
To show ω ∈ [K̃ iK̃iK̃ik+1 · · · K̃n]θ(E), we need to show

PΩi(ω|θ)(ω) ∈ K̃i
θ+(ω,i)[K̃

iK̃ik+1 · · · K̃n]θ+(ω,i)(E),

which is equivalent to the following (definition (4.3)): let θ′ = θ + (ω, i), and s(θ′) =
PΩ(θ′(ω),

Pi(s(θ
′)|θ′) ⊆ [K̃iK̃ik+1 · · · K̃in ]θ′(E), (6.3)

Wi(s(θ
′)|θ′) ⊇ q(E). (6.4)

Now since ω ∈ [K̃ iK̃ik+1 · · · K̃n]θ(E), by definition, we have

s(θ′) ∈ K̃i
θ′ [K̃

ik+1 · · · K̃in]θ′(E),

and hence:

Pi(s(θ
′)|θ′) ⊆ [K̃ik+1 · · · K̃in]θ′(E), (6.5)

Wi(s(θ
′)|θ′) ⊇ q(E). (6.6)
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Thus we only need to prove equation (6.3). Let ω′ ∈ Pi(s(θ
′)|θ′). The goal is to

show ω′ ∈ [K̃iK̃ik+1 · · · K̃in ]θ′(E), which amounts to proving:

Pi(s(θ
′′)|θ′′) ⊆ [K̃ik+1 · · · K̃in]θ′′(E), (6.7)

Wi(s(θ
′′)|θ′′) ⊇ q(E), (6.8)

where θ′′ = θ′ + (ω′, i) and s(θ′′) = PΩ(θ′′)(ω′).
By Corollary 2, M(θ′′) = M(θ′). Thus Ω(θ′′) = Ω(θ′), which means s(θ′′) = ω′,

and the above two equations reduce to:

Pi(ω
′|θ′) ⊆ [K̃ik+1 · · · K̃in ]θ′(E), (6.9)

Wi(ω
′|θ′) ⊇ q(E), (6.10)

By Lemma 1, Wi(ω
′|θ′) = Wi(s(θ

′)|θ′); and by Lemma 7, Pi(ω
′|θ′) = Pi(s(θ

′)|θ′).
Thus equations (6.9) - (6.10) follow from equations (6.5) - (6.6). �

Proof of IK2. Fix ω∗ ∈ Ω∗. Notice Ũ j
iω∗ and [K̃j ]niω∗ are simply the single-agent knowledge

operator defined in (??) and the objective knowledge operator defined in (??) adapted
to the subjective model M(iω∗). By Lemmas 1 and 7, (Wj(·|iω∗), Pj(·|iω∗)) is rational,
and hence Lemma ?? applies to M(iω∗). It follows Ũ j

iω∗ (E) = [(¬K̃)j ]niω∗ (E) for all n,
and hence the result. �

Proof of IK3. Let ω∗ ∈ KiKj(E). Then q(E) ⊆ W ∗
i (ω∗) and PΩi(ω

∗)(ω∗) ≡ si(ω
∗) ∈

K̃i
iω∗K̃

j
iω∗ (E).

It is easy to see that K̃j
iω∗ (E) ⊆ ¬Ũ j

iω∗ (E), thus si(ω
∗) ∈ K̃i

iω∗ Ũ
j
iω∗ (E), which

implies ω∗ ∈ KiUj(E).
On the other hand, si(ω

∗) ∈ K̃i
iω∗K̃

j
iω∗ (E) implies si(ω

∗) ∈ K̃j
iω∗ (E), which is

equivalent to the following:

Pj(si(ω
∗)|iω∗) ⊆ EΩi(ω∗), (6.11)

Wj(si(ω
∗)|iω∗) ⊇ q(E). (6.12)

By (3.1), Pj(si(ω
∗)|iω∗) = PΩi(ω

∗)P ∗
j (ω∗), and hence (6.11) implies P ∗

j (ω∗) ⊆ EΩ∗ .
Then if q(E) ⊆ W ∗

j (ω∗) then ω∗ ∈ Kj(E); and if q(E) � W ∗
j (ω∗) then ω∗ ∈ Uj(E). �

6.5 Proof of Theorem 5.

For any θ ∈ Θ, and any ω ∈ Ω(θ), let R(ω|θ) = ∧n
j=1Pj(ω|θ) denote the set of reachable

states from ω.

Lemma 8 Fix a product model (Ω∗,W∗,P∗) where P ∗
i satisfies product factual partition

for all i ∈ N . Then for any E ∈ Ep, ω∗ ∈ CK(E) implies that for any n and any
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θn = ((ω1, i
1), · · · , (ωn, in)) ∈ Θn such that ω1 = ω∗, and for all m = 2, · · · , n, ωm ∈

Pim−1(PΩ(θm−1)(ωm−1)|θm−1), where θm denotes the string consisting of first m elements
in θn for all m ≤ n, the following holds:

R(PΩ(θn)(ωn)|θn) ⊆ EΩ(θ), (6.13)

∩
j∈N

∩
ω∈R(PΩ(θn)(ωn)|θ)

Wj(ω|θn) ⊇ q(E). (6.14)

Proof. It suffices to prove the case for θ = (ω∗, i) for any i ∈ N , and the rest follows from
an induction argument on the length of θ. For notational ease, let si(ω

∗) ≡ PΩi(ω
∗)(ω∗).

Since ω∗ ∈ CK(E), W ∗
i (ω∗) ⊇ q(E) and hence EΩi(ω∗) is well-defined.

For all j, Pj(si(ω
∗)|iω∗) = PΩi(ω∗)P ∗

j (ω∗), thus,

R(si(ω
∗)|iω∗) = ∧n

j=1P
Ωi(ω

∗)Pj(si(ω
∗)|iω∗)

= ∧n
j=1P

Ωi(ω
∗)P ∗

j (ω∗)

⊆ PΩi(ω∗) ∧n
j=1 P ∗

j (ω∗)

⊆ EΩi(ω∗).

Let ω ∈ R(si(ω
∗)|i∗ω). By definition, there exists ω∗

1 ∈ ∧n
j=1P

∗
j (ω∗) such that

PΩi(ω∗)(ω∗
1) = ω. By hypothesis, q(E) ⊆ W ∗

j (ω∗
1) for all j. Therefore,

Wj(ω|iω∗) = W ∗
i (ω∗) ∩ [ ∪

{ω∗
2 :PΩi(ω

∗)(ω∗
2 )=ω}

W ∗
j (ω∗

2)]

⊇ W ∗
i (ω∗) ∩ W ∗

j (ω∗
1)

⊇ q(E).

�

Proof of Theorem 5. Let ω∗ ∈ CK(E), and fix a set of players i1, · · · , in ∈ N . It suffices
to show:

ω∗ ∈ Ki1Ki2 · · ·Kin(E). (6.15)

Now fix a reasoning string θn−1 = ((ω1, i
1), · · · , (ωn−1, i

n−1)) such that ω1 = ω∗,
and for all m = 2, 3, · · · , n − 1, ωm ∈ Pim−1(PΩ(θm−1)(ωm−1)|θm−1), where θm denotes the
string consisting of first m elements in θn for all m ≤ n − 1.

Let ω̄ = PΩ(θn−1)(ωn−1) and ω ∈ Pin−1(ω̄|θn−1) ⊆ R(ω̄|θn−1). By Lemma 8,

R(ω̄|θn−1) ⊆ EΩ(θn−1).

Win(ω|θn−1) ⊇ q(E).

Since Pin(ω|θ) ⊆ R(ω̄|θn−1), it follows that ω ∈ K̃in

θn−1(E).
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Now this is true for all ω ∈ Pin−1(ω̄|θn−1). Thus we have:

Pin−1(ω̄|θn−1)) ⊆ K̃in

θn−1(E),

thus, ω̄ ∈ K̃in−1

θn−1K̃in

θn−1(E), which in turn yields:

ωn−1 ∈ [K̃in−1

θn−2K̃in

θn−2 ]θn−2(E).

(Note that since subjective awareness information is nested with respect to the order
of reasoning, Win(ω|θn−1) ⊇ q(E) ensures all the awareness clauses are satisfied in the
definition of higher-order subjective knowledge.)

Repeat the above for all θ = θn−2+(ω, in−1), where ω ∈ Pin−2(PΩ(θn−2)(ωn−2)|θn−2).
Then we have:

Pin−2(PΩ(θn−2)(ωn−2)|θn−2) ⊆ [K̃in−1

K̃in ]θn−2(E),

which yields
PΩ(θn−2)(ωn−2) ∈ K̃in−2

θn−2 [K̃in−1

K̃in ]θn−2(E),

and hence
ωn−2 ∈ [K̃in−2

K̃in−1

K̃in ]θn−3(E).

Similarly, applying the above reasoning for every θm, m ≤ n−1 yields the theorem.
�

6.6 Proof of Theorem 6.

Proof. Only need to prove necessity, i.e. CK(E) ⊆ CK(E). I show both clauses in the
definition of CK(E) are necessary.

Let ω∗
1 /∈ CK(E).

Case 1: Suppose there exists ω̄∗ ∈ ∧n
j=1P

∗
j (ω∗

1) such that ω̄∗ /∈ EΩ∗ . Suppose ω̄∗ is
reachable from ω∗

1 as follows:

ω̄∗ ∈ P ∗
in(ω∗

n),

ω∗
n ∈ P ∗

in−1(ω∗
n−1),

· · ·
ω∗

2 ∈ P ∗
i1(ω

∗
1).

Let θ1 = (ω∗
1, i

1), and for m = 2, · · · , n, let θm = θm−1 + (PΩ(θm−1)(ω∗
m), im).

If W (θm) � q(E) for some m < n, then [K̃im+1 · · · K̃in]θm(E) = ∅E and hence ω∗ /∈
Ki · · ·Kin(E). So suppose W (θn) ⊇ q(E).

Extending the proof of Lemma 7, we see that for any ω ∈ Ωi(ω
∗),

Pj(ω|iω∗) = PΩi(ω∗)P ∗
j (ω∗

1),
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where ω∗
1 is such that PΩ(ω∗)(ω∗

1) = ω. In particular, this implies

∧n
j=1P

Ωi(ω
∗)P ∗

j (ω∗) = PΩi(ω
∗) ∧n

j=1 P ∗
j (ω∗).

It follows that PΩ(θn)(ω̄∗) /∈ EΩ(θn), which implies P ∗
in(PΩ(θn)(ω∗

n)|θn) � EΩ(θn), and

hence PΩ(θn−1)(ω∗
n) /∈ K̃in

θn−1(E). Applying this argument recursively for all θm, m < n
yields ω∗

1 /∈ Ki1 · · ·Kin(E).

Case 2: suppose there exists ω̄∗ ∈ ∧n
j=1P

∗
j (ω∗) such that q(E) � W ∗

j (ω̄∗) for some j ∈ N .
Suppose ω̄∗ �= ω∗

1. (Otherwise ω∗
1 /∈ Kj(E) and the theorem is proved.) Let ω̄∗ be

reachable from ω∗
1 through ik, ω∗

k, k = 1, · · · , n as in case 1. Define θm, m = 1, 2, · · · , n
as above.

By nice awareness, for any Ω ∈ S and ω ∈ Ω, we have

q(Ω) ∩ [W ∗
j (ω∗

1) � W ∗
j (ω∗

2)] = ∅, ∀j ∈ N, ∀ω∗
1, ω

∗
2 such that PΩ(ω∗

1) = PΩ(ω∗
1).

Thus we have: for all m = 1, 2, · · · , n − 1,

W (θm+1) = Wim+1(PΩ(θm)(ω∗
m+1)|θm)

= W (θm) ∩ [ ∩
{ω∈Ωθm−1 :PΩ(θm)(ω)=PΩ(θm)(ω∗

m+1)}
W ∗

im+1(ω)],

where
{
ω ∈ Ωθm−1

: PΩ(θm)(ω) = PΩ(θm)(ω∗
m+1)

}
is the set of states in Ω(θm−1) that has

the same projection as Ω∗
m+1 in Ω(θm). It follows W (θm+1) = W (θm)∩Wim+1(ω∗

m). Now
W (θ1) = Wi1(ω

∗
1), thus we have:

W (θn) = ∩n
k=1W

∗
ik(ω

∗
k).

But then:

Wj(P
Ω(θn)(ω̄∗)|θn) � q(E)

⇒ PΩ(θn)(ω̄∗) /∈ K̃j
θn(E)

⇒ PΩ(θn)(ω∗
n) /∈ K̃in

θnK̃j
θn(E)

⇒ PΩ(θn−1)(ω∗
n) /∈ [K̃inK̃j ]θn−1(E),

and so on for all orders of subjective knowledge. It follows that ω∗
1 /∈ Ki1 · · ·KinKj(E).

�
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