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Abstract

I develop a set-theoretic model of unawareness without making any structural assump-
tions on the underlying state space. Unawareness is characterized as a measurability
constraint that results in players’ reasoning about a “coarse” subjective algebra of events.
The model is shown to be essentially equivalent to the product model in Li (2007), in-
dicating that such a measurability constraint can be captured by restrictions on the
dimensions of the state space without loss of generality. I use a variant of the partition
model to examine the case of partial unawareness, where the player is aware of a ques-
tion but unaware of some possible answers to that question, and characterize the player’s
knowledge hierarchies from his subjective perspective.

Keywords : unawareness, partial unawareness, information, information partition, the
state space
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1 Introduction

Alice is planning a trip to Florida. Weather conditions in Florida could be sunny, raining
(without a hurricane), or hurricane. However, having spent all her life in Montana,
Alice is unaware of the possibility of hurricane: she does not know there could be a
hurricane, and she does not know she does not know it. Such unawareness is present
in all aspects of our life. For example, in the business world, firms are often unaware
of new products or technologies their competitors are developing at the moment; in
international relations, nations may be unaware of secret negotiations and pacts between
other nations; in science, typically people are unaware of the next theorem to be proved.
The importance of developing tractable tools to analyze situations involving unawareness
cannot be overestimated.

However, it turns out that the standard state space models are incapable of han-
dling non-trivial unawareness (Dekel, Lipman and Rustichini 1998). Li (?) proposes
a product model that circumvents this problem by modeling information as a pair and
exploiting a product structure on the state space. The idea is as follows. Fixing a set
of relevant questions and a set of answers to each question, the full state space specifies
answers to all of these questions; i.e., it is the Cartesian product of the sets of answers. At
any full state, the players receive information as a pair, including awareness information,
represented by a set of questions, and factual information, represented by a subset of
the full state space just as in the standard models. The players can reason only within
their subjective state spaces that specify answers to those questions included in their
awareness information, naturally modeled by the Cartesian product of the set of answers
to those questions included in the awareness information; and recognize only the fac-
tual information concerning answers to questions of which they are aware, conveniently
modeled by projections of their factual information on their subjective state spaces.

The product model heavily relies on the product structure on the full state space,
especially in the multi-player model. This paper complements the product model by
modeling unawareness without making any structural assumptions. The main idea is,
fixing an arbitrary full state space S, a relevant question can be represented by a partition
over S, where each partition element represents an answer to that question. For example,
to model the situation described at the beginning of this article, let the full state space
be S = {s, r, h}, where s is the state where it is sunny in Florida, and similarly for
r and h. The question “is there a hurricane?” can be represented by the partition
{{s, r} , {h}}, where the partition element {s, r} corresponds to the answer “there is no
hurricane.” Using this formulation, one can model a subjective state space by the join of
the questions of which the player is aware. For example, Alice’s subjective state space,
under her unawareness of the hurricane, can be written as {{s} , {r, h}}, where each
partition element is interpreted as a subjective state. Intuitively, these subjective states
consist of the “atoms” in Alice’s reasoning. Any event that is true in either r or h but not
both is beyond Alice; i.e., her subjective algebra of events consists only of events that can
be written as unions of her subjective states. The subjective factual information is then
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modeled by the union of all subjective states intersecting with the factual information
the player actually receives in each state. For example, suppose Alice receives the factual
information {r}, i.e., “it rains, it is not sunny and there is no hurricane,” but constrained
by her unawareness, she perceives it to be only {r, h}, i.e., “it rains and it is not sunny.”

This formulation, dubbed the partition model, does not require any structural
assumption on the full state space. Unawareness is characterized as a measurability
constraint in this model: the resulting knowledge hierarchy at each full state is equivalent
to the one obtained by removing all knowledge regarding events that are not measurable
with respect to the player’s subjective state space at that state. I show that in a single-
player environment, the partition model is isomorphic to the product model, implying
it is without loss of generality to capture such measurability constraints as restrictions
on the dimensions of a product state space. The essence of this result extends to the
multi-player environment as well.

One particularly interesting case of unawareness is partial unawareness, where
there is a correlation between the answers to questions of which the player is unaware
and the answers to those of which the player is aware. This includes the situation that
can be naturally described as being aware of the question but unaware of some of the
possible answers. For example, Alice is partially unaware of hurricane, because after
all she does ask herself about weather conditions in Florida. This concept is especially
relevant in games: in many real-life strategic situations, although players may be aware
of their opponents, and hence reason about their strategies, they are often unaware of
some actions the opponents can take.

A fundamental asymmetry of partial unawareness is that if one is aware of an event
E, then one is necessarily unaware of its negation from a fully aware outside observer’s
perspective. While Alice is unaware of the event “there is a hurricane” and its negation
“there is no hurricane,” she is aware of an event equivalent to “there is no hurricane,”
i.e., “it is either sunny or raining.” Of course, Alice herself is unaware of this equivalence.
In particular, a message such as “it is not sunny” has different implications for players
with different awareness.

Thus it is interesting to characterize knowledge from the player’s perspective. To
do this, the key step is to have a subjective state space that reflects the player’s view
of the world, from the player’s own perspective. In the above example, Alice considers
only two subjective states: one in which it is sunny, and the other one in which it rains.
While the outside observer sees that Alice has confounded the two scenarios “rain” and
“hurricane,” and hence her subjective state really corresponds to the objective event
{r, h}, from Alice’s perspective, it is simply the state “it rains,” given her perception
that the world consists of only two states, “sunny” and “rainy.” Thus, for Alice, her
subjective state space is simply {s, r}, a subset of the full state space. The subjective
algebra of events thus can be viewed as a relativization of the objective algebra of events.
Using this interpolated model, I characterize an interpolated knowledge hierarchy under
partial unawareness, which provides a language to talk about erroneous knowledge due
to partial unawareness.
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This paper belongs to the quickly expanding literature on the epistemic foundation
of unawareness (Modica and Rustichini 1994, Modica and Rustichini 1999, Li 2008a, Li
2008b, Heifetz, Meier and Schipper 2006, Heifetz, Meier and Schipper 2007a, Galanis
2006, Board and Chung 2007). In particular, Ely (1998) proposes, in the context of an
example, a model where the information structure is represented by a function associating
each state with a set of disjoint subsets of the state space, which essentially plays the
role of the subjective factual information in the partition model.

The paper is organized as follows. Section 2 presents the partition model. Sec-
tion 3 shows that the partition model is equivalent to the product model studied in Li
(2007) and characterizes unawareness as a measurability constraint, which, without loss
of generality, can be captured as a restriction on the dimensions of a product state space.
Section 4 discusses partial unawareness and characterizes players’ subjective interpolated
knowledge hierarchies. Section 5 concludes. Proofs are collected in the Appendix.

2 The Partition Model

2.1 Primitives.

Fix a state space S that is an arbitrary set, with typical elements s, t. An objective event
is a subset of S, denoted by upper-case letters such as E,F . Awareness is modeled by a
partition over S, denoted by lower-case Greek letters such as π, ν. Fixing π, I interpret
each partition element in π, which is an objective event in S, as a subjective state in
the subjective state space of a player with awareness π. Thus, I use awareness level π
and the subjective state space π interchangeably. The full state space embedding full
awareness is identified by the finest partition over the state space and is denoted by S∗:
S∗ = {{s} : s ∈ S}. The trivial state space embedding complete unawareness is identified
by {S}.

There is a natural partial order on the set of partitions over S: given any partitions
π and ν, π is weakly finer than ν, denoted by π D ν, if every element in ν can be written
as the disjoint union of elements in π. Thus D corresponds to the notion of “having
(weakly) more awareness information than.” Let B denote the asymmetric part of the
order.

Definition 1 Given a state space S, a collection of partitions over S, denoted by F , is
a frame for the full state space S∗ if:

1. S∗ = ∨
π∈ F

π;

2. for all ν ∈ F , S∗ B ∨
π∈ F\{ν}

π;

Each partition in a frame can be thought of as representing a question, and each
set in the partition an answer to the question. A frame consists of a minimal set of
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questions one needs to ask in order to differentiate any two states in S. Specifically,
condition 1 says, take any two states in S; they must have different answers to at least
one question in the frame; condition 2 requires there be no “redundant” question: for
each question π, there are at least two states that coincide in their answers to all other
questions except π. For example, let S = {a, b, c, d}, then the following set of partitions
consists of a frame for S∗:

{{{a, b} , {c, d}} , {{a} , {b, c, d}} , {{d} , {a, b, c}}} .

I focus attention on the set of subjective state spaces that can be generated by
the frame. Let F̄ = {Φ(F ′) : F ′ ⊆ F} where Φ is defined by:

Φ(F ′) =

{
∨

π∈ F ′
π if F ′ 6= ∅,

{S} if F ′ = ∅.
(2.1)

Lemma 1 The function Φ is one-to-one and the inverse function is defined by: for any
π ∈ F̄ ,

Φ−1(π) = {ν ∈ F : π D ν} .

Moreover, Φ−1(π) is a frame for π.

The player’s information structure is represented by a pair (W,P ), where:

• the awareness function W : S → F̄ associates each state with a subjective state
space, interpreted as the set of questions of which the player is aware given his
information at s;

• the full possibility correspondence P : S → 2S \ {∅} associates each state with a
nonempty subset of S, interpreted as the factual content of the player’s information
at s.

Since (W,P ) represents the information the player actually receives, it is natural
to focus attention on a partitional information structure:

Definition 2 The pair (W,P ) is rational if

s ∈ P (s) ∀s ∈ S; and s ∈ P (t)⇒ W (t) = W (s), P (t) = P (s). (2.2)

Let I = {1, · · · , n} denote the set of players, and (Wi, Pi) denote player i’s infor-
mation. The primitive of the partition model is a tuple

(S,F ,W,P)

where W = (W1, · · · ,Wn),P = (P1, · · · , Pn).
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For any π ∈ F , and any s, t ∈ S, let π(s) denote the partition element in π that
contains s. Thus W (t)(s) denotes the partition element in W (t) containing s. Slightly
abusing notation, if ν D π and E ∈ ν, then I let π(E) denote the element in π that is a
weak superset of E, i.e. E ⊆ π(E) ∈ π.

At s, i’s reasoning is contained in his subjective state space Wi(s). Constrained
by his awareness, i perceives only subjective factual information for each j ∈ I, described
by the projection of Pj on Wi(s). For example, at s, i considers the subjective states in
{Wi(s)(t) : t ∈ Pi(s)} to be possible. The next condition ensures that every subjective
factual information structure is partitional.

Definition 3 In the partition model, the possibility correspondence P induces a nice
factual partition if P induces an information partition over S, and that for all F ′ ⊆ F ,
and all s, t ∈ S,

⋂
π∈ F ′ π(s) ∩ P (t) 6= ∅, t′ ∈ P (t)⇒

⋂
π∈ F ′ π(t′) ∩ P (s) 6= ∅.

A nice factual partition requires factual information to be decomposable into inde-
pendent information about answers to each question in the frame. Let s′ ∈

⋂
π∈ F ′ π(s)∩

P (t) and t′ ∈
⋂
π∈ F ′ π(t) ∩ P (s). The condition says, if two states (s and s′) coincide

in their answers to those questions in the set F ′, then the player’s factual information
concerning answers to these questions in these two states must coincide.

Lemma 2 Fix a full state space and a frame (S∗,F) and let π ∈ F̄ . Let P satisfy nice
factual partition. Then s ∈ π(t) implies

{π(t′) : t′ ∈ P (t)} = {π(s′) : s′ ∈ P (s)} .

I say that a partition model is nice if Pi induces a nice factual partition for all i ∈ I.
In a nice partition model, at s, i’s subjective possibility correspondence for j, describing
i’s perception of j’s factual information structure and denoted by Pj(·|is) where is is
shorthand for the pair (i, s), is unambiguously defined as the projection of Pj on Wi(s):
for any E ∈ Wi(s),

Pj(E|is) = {Wi(s)(t) : t ∈ Pj(t′), where t′ ∈ E} . (2.3)

Similarly, i reasons about j’s awareness within his own awareness. An extra
complication arises when there is unawareness of uncertainties in awareness information.
At s, i is unaware of the possibility that j could be unaware of the question represented
by π ∈ F , π D Wi(s) if there exist t, u such that t ∈ Wi(s)(u), π D Wj(t), but π 4 Wj(u).
Intuitively, if i is aware of a question and also aware of j, i reasons about j’s awareness
of this question if and only if i is aware of the possibility that j could be unaware of the
question. Thus, it seems natural to assume that whenever i is unaware of j’s unawareness
of a question of which i himself is aware, i takes it for granted that j is aware of it. This
suggests the following definition of i’s subjective awareness function for j, denoted by
Wj(·|is): for any E ∈ Wi(s),

Wj(E|is) = Wi(s) ∧
[
∨
t∈ E

Wj(t)

]
. (2.4)
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Let i’s subjective model at s be denoted by M(is), then,

M(is) ≡ (Wi(s),Φ
−1(Wi(s)),W(·|is),P(·|is))

where W(·|is) = (W1(·|is), · · · ,Wn(·|is)), P(·|is) = (P1(·|is), · · · , Pn(·|is)).
Similarly, one can construct higher-order subjective models that describe i’s per-

ception of j’s perception of the environment, and so on. The next lemma verifies that in
a nice partition model, all first-order subjective models are nice partition models them-
selves.

Lemma 3 Let the partition model (S∗,F ,W,P) be nice. Then for any i ∈ I, s ∈ S, the
subjective model M(is) is nice.

Below I define the subjective model in general inductively. For notational con-
venience, I write W (δ) ≡ Wi(s) where δ denotes (i, s). Let ∆1 denote the collection of
all such pairs, i.e., ∆1 = {(is) : i ∈ I, s ∈ S}. Let subjective models be defined for all
elements in ∆k. The domain for k + 1-th order subjective models is:

∆k+1 =
{
δk + (jE) : δk ∈ ∆k, j ∈ I, E ∈ W (δk)

}
,

where “+” denotes concatenation. Fix δ ∈ ∆k+1, δ = δk + (jE), I denote the subjective
model for δ as

M(δ) ≡ (W (δ),Φ−1(W (δ)),W(·|δ),P(·|δ))

where W (δ) = Wj(E|δk) is defined by the induction hypothesis and the rest of the model
is defined as follows: for any j = I, F ∈ W (δ),

Wj(F |δ) = W (δ) ∧
[

∨
G⊆ F, G∈W (δk)

Wj(G|δk)
]
, (2.5)

Pj(F |δ) =
{
W (δ)(G) : G ∈ Pj(H|δk) where H ∈ W (δk), H ⊆ F

}
. (2.6)

By Lemma 3, all subjective models are nice. Thus, by Lemma 2, formula (2.6) is
well-defined.

2.2 Characterization of knowledge and unawareness.

Let the objective algebra of events in S be denoted by E = 2S.
Given a subjective state space π, consider those events in E that are measurable

with respect to π, i.e., those events that can be written as a disjoint union of partition
elements in π:

A(π) = {E ∈ E : E ∩ F = ∅ or E ∩ F = F for all F ∈ π} .
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Intuitively, A(π) is the set of events of which a player with awareness π is aware. In this
sense, I refer to A(Wi(s)) as i’s subjective algebra of events at s. Let fπ associate each
event with its subjective expression, if possible: for any E ∈ E ,

fπ(E) =

{
{F ∈ π : F ⊆ E} , if E ∈ A(π),

∅, otherwise.
(2.7)

Player i is unaware of an event if and only if it is not a subjective event in his
subjective state space: for any E ∈ E ,

Ui(E) = {s ∈ S : E /∈ A(Wi(s))} . (2.8)

Knowledge is defined analogous to the standard model: i knows E if and only if
E is true in all subjective states i considers possible: for any E ∈ E ,

Ki(E) =
{
s ∈ S : Pi(Wi(s)(s)|is) ⊆ fWi(s)(E)

}
. (2.9)

Note this definition implicitly requires the player to have a version of E in his
subjective state space. In fact, the above definition is equivalent to:

Ki(E) = {s ∈ S : E ∈ A(Wi(s)), Pi(s) ⊆ E} . (2.10)

Higher-order knowledge is obtained by adapting definitions 2.8 and 2.10 to the
corresponding subjective models, recursively. More specifically, the knowledge “i1 knows
i2 knows · · · in knows E” , denoted by Ki1 · · ·Kin(E), is defined as follows:

Ki1 · · ·Kin(E) =
{
s ∈ S : Wi1(s)(s) ⊆ K̃i1

i1s
[K̃i2 · · · K̃in ]i1s(E)

}
; (2.11)

for all m = 2, 3, · · · , and all δ ∈ ∆ ≡ ∪∞k=1∆k,

[K̃i1 · · · K̃im ]δ(E) =
⋃
{F ∈ W (δ) : Wi1(F |δ) ⊆ K̃i1

δ+(i1F )[K̃
i2 · · · K̃im ]δ+(i1F )(E)} (2.12)

where I slightly abuse notation and use
⋃
π to denote the union of all the sets in π.1

Finally, for all j ∈ I, δ ∈ ∆,

K̃j
δ (E) =

⋃{
F ∈ W (δ) : E ∈ A(W (δ)), Pj(F |δ) ⊆ fW (δ)(E)

}
. (2.13)

For interpretation, [K̃i1 · · · K̃im ]δ(E) denotes the knowledge “i1 knows that i2

knows · · · knows in knows E” in the subjective model M(δ).
Similarly, the event “i1 knows i2 knows · · · knows in is unaware of E,” denoted by

Ki1 · · ·Uin(E), can be obtained by replacing all incidents of K̃in in the above definitions
by Ũ in , and adapting 2.8 to the relevant subjective model M(δ):

Ũ j
θ (E) =

⋃
{F ∈ W (δ) : E /∈ A(Wj(F |δ))} . (2.14)

1Here π simply denotes a collection of sets.
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3 Equivalence with the Product Model

3.1 The product model.

Here I briefly review the product model studied in Li (2008a). The primitives of the
model are a tuple (Ω∗,W∗,P∗) where:

• Ω∗ = Π
q∈ Q

Dq×{α}, where Q is an arbitrary index set of questions and Dq is the set

of answers to question q.2 The symbol α represents “cogito ergo sum.”3 A generic
element in Ω∗ is denoted by ω∗.

• The awareness function W ∗
i : Ω∗ → 2Q associates each state with a set of questions

of which i is aware.

• The possibility correspondence P ∗i : Ω∗ → 2Ω∗ \ {∅} associates each state with the
set of states where i receives the same information.

The pair (W ∗, P ∗) is rational if P ∗ induces an information partition over Ω∗, and
for all ω1 ∈ P ∗(ω∗),W ∗(ω∗1) = W ∗(ω∗). I say P ∗ satisfies cylinder factual partition
if there exists a collection of partitions {πq}q∈Q, πq is a partition over Dq, such that
P ∗(ω∗) = Π

q∈Q
πq(ω

∗q) × {α} where πq(ω
∗q) is the partition element in πq containing ω∗q,

the q-th coordinate of ω∗.
The subjective models are defined as follows. The subjective state space is natu-

rally defined to be the product of the sets of answers to the questions of which the player
is aware. More specifically, for any Q′ ⊆ Q, the corresponding subjective state space,
denoted by Ω(Q′), is simply Π

q∈ Q′
Dq × {α}.

Let PΩ denote the projection operator that yields the projection of an event or a
state from a weakly finer space on Ω.4 I define the subjective models inductively. Let
Θ1 = {((ω1, i

1)) : ω1 ∈ Ω∗, i1 ∈ I}. The subjective model player i perceives that a full
state ω∗, denoted by Mp(θ), θ = (ω∗, i) is:

Mp(θ) ≡ (Ω(θ),P(·|θ),W(·|θ)

where:5

Ω(θ) = Ω(Wi(ω
∗)), (3.1)

Pj(ω|θ) = PΩ(θ)P ∗j (ω∗1), where PΩ(θ)(ω∗1) = ω, ∀j, ∀ω ∈ Ω(θ); (3.2)

Wj(ω|θ) = W ∗
i (ω∗) ∩ [ ∪

{ω∗1 : PΩ(θ)(ω∗1)=ω}
W ∗
j (ω∗1)], ∀j, ∀ω ∈ Ω(θ). (3.3)

2Li (2008a) assumes that all questions have binary answers: Dq = {1q, 0q} for all q ∈ Q. The
equivalence of these two formulations is obvious.

3This is simply a device to avoid having an empty set as the subjective state space.
4I say a subjective state space Ω1 is weakly finer than Ω2 if every question specified in Ω2 is also

specified in Ω1.
5The subjective factual information Pj(ω|θ) is well-defined under cylinder factual partition.
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Suppose the subjective model M(θk) is defined for all θk ∈ Θk.

Θk+1 =
{
θ + (ω, j) : θ ∈ Θk, ω ∈ Ω(θk), j ∈ I

}
. (3.4)

Fixing θ = θk + (ω, i) ∈ Θk+1, the relevant subjective model Mp(θ) is defined as
follows:

Ω(θ) = Ω(Wi(ω|θk)), (3.5)

Pj(ω|θ) = PΩ(θ)Pj(ω1|θk), where PΩ(θ)(ω1) = ω, ∀j, ∀ω ∈ Ω(θ); (3.6)

Wj(ω|θ) = Ω(Wi(ω|θk)) ∩ [ ∪
{ω1∈Ω(θk): PΩ(θ)(ω1)=ω}

Wj(ω1|θk)], ∀j, ∀ω ∈ Ω(θ). (3.7)

Let Θ =
⋃∞
k=1 Θk.

Finally, the set of events in the product model is:

Ep =
⋃
Q′⊆Q

[{E ⊆ Ω(Q′) : E 6= ∅} ∪ {∅Q′}] . (3.8)

where ∅Q′ is the empty set confined within the space Ω(Q′).6

Slightly abusing notation, let q also denote the function mapping each event to
the set of questions whose answers are described in the event, i.e., q(E) ⊆ Q is the unique
set of questions such that E ⊆ Ω(q(E)).

The first-order knowledge and unawareness operators are defined as follows: for
any E ∈ Ep,

Up
i (E) = {ω∗ ∈ Ω∗ : W ∗

i (ω∗) + q(E)} ; (3.9)

Kp
i (E) =

{
ω∗ ∈ Ω∗ : W ∗

i (ω∗) ⊇ q(E), P ∗i (ω∗) ⊆ E × Π
q∈ Q\q(E)

Dq

}
. (3.10)

As in the partition model, higher-order interactive knowledge is defined through
subjective models. Let the objective interactive knowledge “i1 knows that i2 knows · · ·
knows in knows E” be denoted by [Ki1 · · ·Kin ]p(E). For ease of notation, let θ = (ω∗, i1).

[Ki1 · · ·Kin ]p(E) =
{
ω∗ ∈ Ω∗ : PΩ(Wi1 (ω∗))(ω∗) ∈ [K̃i1 ]pθ[K̃

i2 · · · K̃in ]pθ(E)
}
, (3.11)

and for all m = 2, 3, · · · , and all θ ∈ Θ,

[K̃i1 · · · K̃im ]pθ(E) =


{ω ∈ Ω(θ) : PΩ(θ+)(ω) ∈ [K̃i1 ]pθ+ [K̃i2 · · · K̃im ]pθ+(E), where θ+ = θ + (ω, i1)},

if q(E) ⊆ W (θ),

∅q(E), otherwise,

(3.12)

6Here’s a more rigorous definition. I introduce a new object ∅Q′ to be a subset of Ω(Q′), and extend
the set operations to this object as follows: for any sets E,F ∈ 2Ω(Q′

), the set inclusion, intersection,
union and complement notions are defined in the usual way, except that for disjoint E and F , E∩F = ∅Q′

instead of ∅; for any E ⊆ Ω(Q′), E 6= ∅, one has ∅Q′ ⊆ E, ∅Q′ ∪ E = E, ∅Q′ ∩ E = ∅Q′ , E \ ∅Q′ = E.

9



where W (θ) is shorthand for the set of questions specified in Ω(θ), i.e., suppose θ =
θ′ + (ω′, l), then W (θ) ≡ Wl(ω

′|θ′).
Finally, for all j, for all θ ∈ Θ,

[K̃j]pθ(E) =


{
ω ∈ Ω(θ) : Wj(ω|θ) ⊇ q(E), Pj(ω|θ) ⊆ E × Π

q∈W (θ)\q(E)
Dq

}
,

if q(E) ⊆ W (θ),

∅q(E), otherwise.

(3.13)

Similarly, the event “i1 knows i2 knows · · · knows in is unaware of E,” denoted by
[Ki1 · · ·Uin ]p(E), is obtained by replacing K̃in by Ũ in in all above definitions and adding:

[Ũ j]pθ(E) =

{
{ω ∈ Ω(θ) : q(E) * Wj(ω|θ)} , if q(E) ⊆ W (θ);

∅q(E), if q(E) * W (θ).
(3.14)

3.2 The equivalence result.

For any event E ∈ Ep, let the map Ψ : Ep ⇒ Ep yield the set of less detailed descriptions
of E, i.e.,

Ψ(E) =

{
F ∈ Ep : F × Π

q∈ DE\DF
Dq = E

}
.

Theorem 4 The partition model and the product model are equivalent. More specifically,

1. Fix a product model (Ω∗,W∗,P∗) where (W ∗
i , P

∗
i ) is rational for all i. Then there

exists a partition model (Ω∗,F ,W,P) where (Wi, Pi) is rational for all i, and for
all E ∈ 2Ω∗ \ {∅},

Ui(E) =
⋂

F∈ Ψ(E)

Up
i (F ), (3.15)

Ki(E) =
⋃

F∈ Ψ(E)

Kp
i (F ). (3.16)

In addition, if P ∗i satisfies cylinder factual partition for all i, then Pi satisfies nice
factual partition, and the above equations can be extended to include all higher-order
knowledge, i.e., for all n, any i1, · · · , in ∈ I and E ∈ 2Ω∗ \ {∅},

[Ki1 · · ·Uin ](E) =
⋃

F∈ Ψ(E)

[Ki1 · · ·Uin ]p(F ), (3.17)

and similarly when Uin in the above formula is replaced by Kin.
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2. Fix a partition model (S,F ,W,P) where (Wi, Pi) is rational for all i. Then there
exists a product model (Ω∗,W∗,P∗) and an injection Γ : S → Ω∗ such that for all
i ∈ I, (W ∗

i , P
∗
i ) is rational on Γ(S); and for any E ∈ Ep,

Up
i (E) ∩ Γ(S) = Γ

 ⋃
ω∈ Π

q∈ q(E)
Dq

Ui(Γ
−1(ω × Π

q∈Q\q(E)
Dq) ∩ S)

 , (3.18)

Kp
i (E) ∩ Γ(S) = Γ

(
Ki(Γ

−1(E × Π
q∈Q\q(E)

Dq) ∩ S))

)
∩ ¬Up

i (E). (3.19)

In addition, if Pi satisfies nice factual partition, then P ∗i satisfies cylinder factual
partition on Γ(s), and the above two equations can be extended to higher-order
knowledge.

This theorem says that one can always paraphrase the product model into the par-
tition model, and vice versa. Intuitively, the frame F in the partition model corresponds
to the sets of answers {Dq}q∈Q in the product model. In the partition model, one fixes
the full state space and represents answers using events, while in the product model, one
starts with questions and answers and defines the full state space from them. They are
really just two sides of the same coin. Depending on specific applications, either model
could be more convenient.

Remark 1. If one restricts attention to own knowledge hierarchies, then the
equivalence of the two models is entirely general: the partition model is reduced to the
tuple (S,W, P ) and the frame is not needed.7 This is because, in the single-agent case,
higher-order reasonings are “local”: what the player perceives himself to know or not
know in a (subjective) state he excludes is irrelevant for his own knowledge hierarchy.
Thus, the assumption that the player perceives the projection of his factual informa-
tion in all subjective states he considers possible suffices to ensure that the single-agent
knowledge hierarchies are well-defined. It is easy to see that this assumption does not
depend on any structural assumptions on the state space, and the product structure is
without loss of generality.

In the multi-agent environment, players’ reasonings about knowledge in a (subjec-
tive) state that they themselves exclude are relevant for interactive knowledge hierarchies,
which makes it necessary to fully specify the subjective models. The problem arises if i
is unaware that j could receive different factual information regarding questions of which
i is aware. In the product model, this uncertainty can be resolved by using the natural
product order to select the relevant factual information. In an arbitrary state space with-
out any structural assumption, such generality cannot be obtained without enriching the

7The restriction on the range of awareness function is not binding: given an arbitrary set of partitions
G, one can always find a frame F such that G ⊆ F̄ .
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information structure further. For simplicity, I assume away this complication in this
paper by requiring P to satisfy the nice factual partition condition, which restricts the
model to situations where there is no unawareness of uncertainties in factual information.

Remark 2. Events are modeled differently in the two models. In the product
model, an event is defined by both its factual content and its description which reflects
the awareness content; while in the partition model, an event is best understood as a
factual description in its coarsest form, i.e., a minimal collection of factual statements
without leaving out any nontrivial facts. Consequently, knowledge and unawareness are
interpreted in slightly different ways in the two models: in the product model, “knowing
E” means knowing E in the exact form it is described; in the partition model, “knowing
E” means knowing the factual content of E in some form of description. Similarly, “being
unaware of E” means being unaware of E as it is described in the product model, while
in the partition model, it means being unaware of all possible descriptions of this event.
Equations (3.15) - (3.16) describe the connections formally. Apparently, either approach
to modeling events can be adopted in either model.

3.3 Common knowledge.

As Li (2008b) shows, introducing unawareness has multiple implications for a set of
players to achieve common knowledge of an event. Intuitively, while the possibility of
unawareness imposes an additional requirement for a player to know an event and hence
makes it harder to achieve common knowledge, being unaware of the opponent’s informa-
tional uncertainties actually makes it easier to achieve common knowledge. Li (2008b)
characterizes common knowledge when where there is no unawareness of informational
uncertainties. Using the equivalence result, I give a characterization of common knowl-
edge in the partition model.

Definition 4 Fix a state space and a frame (S,F). I say Wi satisfies Nice awareness
if: for any π ∈ F , t ∈ π(t′), t /∈ ν(t′) for all ν ∈ F , ν 6= π, s ∈ π(s′), t ∈ Wi(s)(t

′) implies
that t ∈ Wi(s

′)(t′).

Nice awareness requires that one’s awareness of a particular uncertainty depend
only on how this uncertainty is resolved. More specifically, this condition says, if the
player is unaware of a question π at s, and s′ coincides with s in its answer to π, then he
must also be unaware of π at s′. In a multi-player environment, this implies that a player
is never unaware of the possibility that this opponents could be unaware of an event of
which he is aware himself. This condition ensures that all interactive knowledge is true.

Let CK(E) denote the event “E is common knowledge among all players”; that
is, all players know E, all players know all players know E, all players know that all
players know that all players know E, and so on.

12



Theorem 5 In the partition model (S,F ,W,P), if for all i, (Wi, Pi) is rational and
satisfies nice factual partition and nice awareness, then for all E ∈ 2S,

CK(E) =

{
s ∈ S : E ∈ ∩ni=1 ∩

t∈ ∧P(s)
A(Wi(t)),∧P(s) ⊆ E

}
, (3.20)

where ∧P(s) ≡ [P1 ∧ · · ·Pn](s) denotes the partition element containing s in the finest
common coarsening of all information partitions.

3.4 Unawareness as the measurability constraint.

Fix a single-agent partition model (S,F ,W, P ) where (W,P ) is rational. Let K̂n, n =
1, 2, · · · denote the standard knowledge operators associated with the pair (S, P ), i.e.,
for all E ⊆ S,

K̂(E) = {s ∈ S : P (s) ⊆ E} ,
K̂n(E) = K̂(K̂n−1(E)).

Let Kn denote the n-th order single-agent knowledge operator for the partition
model. By the equivalence result and Theorem 1 in Li (2008a), the following holds:

Kn(E) = K̂n(E) ∩ ¬U(E). (3.21)

Notice that if W (s) = S∗ for all s ∈ S, then all subjective models are identical
to the full model (S,W, P ), and all knowledge operators reduce to the standard ones:
Kn(E) = K̂n(E). Therefore, K̂ can be interpreted as the player’s “implicit knowledge,”
knowledge the player could have entertained were he fully aware at every state. In this
sense, formula (3.21) says unawareness is essentially a “measurability” constraint: at each
s ∈ S, only that knowledge in K̂n concerning events in A(W (s)), events that are mea-
surable with respect to the player’s subjective state space, becomes explicitly recognized
by the player.8

This interpretation extends to the multi-player environment.

Proposition 6 In the partition model (S,F ,W,P), suppose for all i, (Wi, Pi) is rational
and satisfies nice factual partition and nice awareness. Then for all i, j ∈ I and E ∈ E,

KiKj(E) = K̂iK̂j(E) ∩Ki¬Uj(E) (3.22)

Finally, let ĈK(E) = {s ∈ S : ∧P(s) ⊆ E} denote the standard common knowl-
edge operator associated with (S,P), interpreted as “implicit common knowledge.” Con-
sider the event:

CA(E) =
n⋂
i=1

 ∞⋂
m=2

⋂
Imi ∈Imi

KA(E|Imi )
⋂
¬Ui(E)

 .
8Fagin and Halpern (1988) were the first to study “implicit knowledge” and “explicit knowledge,”

but they deal with it in an axiomatic model.
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It is straightforward to check that this set characterizes the event “everyone is aware
of E, and everyone knows everyone is aware of E, and so on” (and hence the notation
CA(E)). Thus, equation (3.20) is simply

CK(E) = ĈK(E) ∩ CA(E).

In words, absent an unawareness of informational uncertainties, implicit common knowl-
edge becomes explicit if and only if there is common knowledge that the event is mea-
surable in every player’s subjective state space.

4 Partial unawareness and the interpolation model.

A particularly interesting case of unawareness is partial unawareness. Partial unaware-
ness refers to the situation where there is a correlation between the answers to questions
of which the player is unaware and the answers to those of which the player is aware,
including situations that can be naturally described as being aware of the question but
unaware of some of the possible answers. Intuitively, partial unawareness causes the
player to fail to recognize the logical connections between events of which one is aware,
resulting in erroneous inferences.9 It is particularly relevant in strategic interactions,
where it is natural for a player to be aware of the opponent, but unaware of some actions
the opponent can take.

For example, suppose Alice and Bob play a game. Alice can take actions a1, a2 or
A. Bob is aware that Alice is in the game, but he is aware only of her actions a1 or a2.
Suppose Bob observes whether Alice takes a2. One can model this situation as follows.
Let the state space S = {a1, a2, A}, and the frame F = {{{a2} , {a1, A}} , {{A} , {a1, a2}}}.
In words, the question “what action does Alice take?” is rephrased as two questions,
whether Alice takes action a2 and whether Alice takes action A, and Bob is unaware
of the latter. Thus, Bob’s subjective state space can be represented by the partition
{{a2} , {a1, A}}.

This approach explicitly models how the player confounds unaware states with
states of which he is aware. Hence, the knowledge hierarchy in this model reflects the
“true” knowledge the player has from the perspective of the modeler, the fully aware out-
side observer. For example, suppose Bob is fully aware when Alice plays a2 and unaware
of A otherwise, and consider the following knowledge hierarchy.

W (a1) = W (A) = {{a1, A} , {a2}}, W (a2) = S∗;
P induces the information partition {{a1, A} , {a2}}.

K({a1, A}) = K(¬{a2}) = {a1, A} , K({a1}) = ∅, K({a1, A, a2}) = S;

9See Galanis (2006) for a thorough discussion of modeling unawareness of logical inferences in the
product model.
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U({a1, A, a2}) = ∅, U({a1}) = {a1, A} .

At A, Bob knows {a1, A}, while he does not know {a1}; in fact, he is unaware
of {a1}. Here the set {a1, A} represents the subjective event {{a1, A}} = ¬{{a2}},
interpreted as “Alice does not play a2,” which, from Bob’s perspective, is equivalent to
“Alice plays a1”; while the set {a1} represents the event {{a1}}, interpreted as both
“Alice plays a1” and “Alice plays neither a2 nor A.” Therefore, one can interpret this
knowledge hierarchy as follows: at A, Bob is unaware of the objective content of the
event “Alice plays a1”; he does have in mind a subjective understanding of this event,
in fact, he knows “Alice does not play a2,” which he subjectively interpolates as “Alice
plays a1.”

Similarly, Bob knows {a1, A, a2} in both A and a2, but interpolates it differently.
At A, Bob knows essentially the subjective event {{a1, A} , {a2}}, interpreted as “Alice
may play a2, and she may not,” which, from Bob’s perspective, is equivalent to “Alice
plays a2 or a1”; while at a2, Bob knows {{a1} , {A} , {a2}} in the full state space,
interpreted as “Alice plays a1, A, or a2.” In a sense, Bob subjectively “knows” different
events in the two states, even though from the modeler’s perspective, the factual content
of Bob’s knowledge is really the same: he cannot rule out anything.

It is often more relevant to study the player’s knowledge from the player’s own
perspective, taking into account such erroneous inferences resulting from partial unaware-
ness. After all, it is what Bob subjectively “knows” that matters for his decision-making.
To capture this, I rephrase the partition model to reflect the player’s interpolation of the
situation, by replacing each subjective state, which is an objective event, in the parti-
tion model with the corresponding “interpolated” state the player has in mind. In the
above example, Bob considers only two subjective states: one in which Alice plays a1
and another in which Alice plays a2. In this sense, Bob interpolates his subjective state
space as {a1, a2}, a subset of the state space. Notice the state a1 in state space {a1, a2}
is a different object than the state a1 from the state space {a1, a2, A}, as they have
different negations. Thus, technically, a subjective state could be regarded as a pair,
consisting of a state and the universal event the player has in mind constrained by his
partial unawareness.

For simplicity, suppose the player is either fully aware or partially aware at every
state. Formally, the interpolation model is a tuple (S,W ◦, P ◦), where W ◦ associates
each state with a subset of the state space S, interpreted as the set of states specifying
resolutions of which the player is aware; and P ◦ is the usual possibility correspondence.
I define the subjective information as follows: for any t ∈ W ◦

i (s),

W ◦
j (t|is) = W ◦

i (s) ∩W ◦
j (t); (4.1)

P ◦j (t|is) = W ◦
i (s) ∩ P ◦j (t). (4.2)

Let Σ1 = {(i, s) : i ∈ I, s ∈ S}. For notational ease, write W ◦(σ1) ≡ W ◦
i (s), σ1 =

(i, s). Let subjective models be defined for all elements in Σk. The domain for k + 1-th
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order subjective models is:

Σk+1 =
{
σk + (j, t) : σk ∈ Σk, j ∈ I, t ∈ W (σk)

}
.

Fix σ ∈ Σk+1, σ = σk+(i, s).The corresponding subjective models are (W ◦(σ),W◦(·|σ),P◦(·|σ)),
where W ◦(σ) = W ◦

i (s|σk), and for all j, t ∈ W ◦(σ),

W ◦
j (t|σ) = W ◦(σ) ∩W ◦

j (t|σk);
P ◦j (t|σ) = W ◦(σ) ∩ P ◦j (t|σk).

It is easy to see the above equations are equivalent to: for any σ = ((i1, s1), · · · , (in, sn)),

W ◦
j (t|σ) = W ◦

j (t) ∩W ◦
i1(s1) ∩ · · · ∩W ◦

in(sn);

P ◦j (t|σ) = P ◦j (t) ∩W ◦
i1(s1) ∩ · · · ∩W ◦

in(sn).

Definition 5 Fix an interpolation model (S,W ◦, P ◦). I say (W ◦, P ◦) satisfies interpo-
lated partial unawareness if, for all s ∈ S, P ◦i (s) ∩W ◦

i (s) 6= ∅.

Interpolated partial unawareness says the player always has in mind some possible
scenario(s). This condition can be regarded as a regularity condition: since the player
is aware of the underlying uncertainty, in this case he must consider possible a scenario
specifying “none of the above” and be aware of it by definition.

At s, i can reason only about events in his own subjective state space, i.e.
{E : E ⊆ W ◦

i (s)}, which is a relativization of the objective algebra of events. Fix an
event E ⊆ W ◦

i (s). Notice partial unawareness is necessarily asymmetric: if the player
is aware of E under partial unawareness, then he is necessarily unaware of the objective
negation of E, i.e., S \E. On the other hand, the player is certainly aware of a subjective
negation of E, i.e., W ◦

i (s) \ E. One interesting consequence is that this gives rise to
a genuine communication failure: intuitively, a message “E is not true“ has different
implications for players with different partial awareness.

To capture such subtlety, I separate knowledge of E and knowledge of “not S \E.”
Let K+

i (E) denote i’s “positive knowledge” of E, i.e., “i knows E”; and K−i (E) denote
i’s “negative knowledge” of E, i.e., “i knows ‘not E.’” Similarly, let U+

i (E) represent “i
is unaware of E” and U−i (E) represent “i is unaware of ‘not E.’” In standard models,
i has positive knowledge of E if and only if he has negative knowledge of S \ E, i.e.,
K+
i (E) = K−i (S \ E), so there is no need to have two operators.

Let † = +,−. For any E ∈ E ,

U †i (E) = {s ∈ S : E * W ◦
i (s)} . (4.3)

K+
i (E) = {s ∈ S : [P ◦i (s) ∩W ◦

i (s)] ⊆ E ⊆ W ◦
i (s)} ; (4.4)

K−i (E) = {s ∈ S : [P ◦i (s) ∩W ◦
i (s)] ⊆ [W ◦

i (s) \ E], E ⊆ W ◦
i (s)} . (4.5)
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To keep in line with standard notation and for simplicity, letKiK
†
j (E) = K+

i K
+
j (E),

Ki¬K†j (E) = K−i K
†
j (E) and so on for all higher-order knowledge. For all E ∈ E , I define

KiK
†
j (E) =

{
s ∈ S : s ∈ [K̃i]+is [K̃

j]†is(E)
}
, (4.6)

where [K̃j]†is(E) is obtained by applying definitions (4.4) and (4.5) to the subjective inter-

polation model (W ◦
i (s),W ◦

j (·|is), P ◦j (·|is)). The interactive knowledge KiU
†
j and higher-

order knowledge are defined analogously.
Consider the following properties on the interpolated knowledge hierarchies.

1. s ∈ K+
i (E) ⇔ s ∈ K−i (W ◦

i (s) \ E): One knows E if and only if one knows its
subjective negation is not true;

2. K−i (E) ⊆ S \ E: Negative knowledge of E is always true;

3. if s ∈ K+
i (E), then s /∈ E ⇔ s /∈ W ◦

i (s): Suppose one knows E. Then such
knowledge is false if and only if one is partially unaware of the current state.

Proposition 7 In the interpolation model (S,W◦,P◦), suppose (W ◦
i , P

◦
i ) is rational and

satisfies interpolated partial unawareness. Then i’s interpolated knowledge hierarchy sat-
isfies the above properties.

Property 1 makes sure the positive and negative knowledge are defined appro-
priately. In particular, it says positive knowledge of E is indeed equivalent to negative
knowledge of its subjective negation in the subjective, just as in the standard model.
Properties 2-3 say the interpolated knowledge hierarchy satisfies a weakening of the truth
axiom, which states whenever the player knows E, E must indeed be true.10 The truth
axiom is shown to be equivalent to the requirement that players never exclude the true
state (Bacharach 1985), which becomes problematic when the player is partially unaware
of the true state, and hence necessarily “excludes” it. Property 2 says the truth of one’s
negative knowledge is not affected by partial unawareness, while property 3 says false
positive knowledge occurs precisely when the player is unaware of the true state, and in
which case all his positive knowledge turns out to be false.

The interpolated knowledge hierarchies describe what the players believe they
know. This interpretation is best illustrated by revisiting the previous example:

S = {a1, a2, A};
W ◦(a1) = W ◦(A) = {a1, a2}, W ◦(a2) = S;
P ◦ induces the information partition {{a1, A} , {a2}}.

K+({a1, A}) = ∅, K+({a1}) = K−({a2}) = {a1, A} , K+({a1, A, a2}) = {a2} ;

10The mathematical formula for the truth axiom is K(E) ⊆ E.

17



U+({a1, A, a2}) = {a1, A} , U+({a1}) = ∅.

In contrast to the partition model, where the modeler observes Bob does not really
know the objective event “Alice plays a1” because he is unaware of its implication “Alice
does not play A,” the interpolation model characterizes the knowledge hierarchy from
Bob’s perspective: at A, Bob knows both “Alice plays a1” and “Alice does not play a2,”
while he is unaware of events such as “Alice plays either a1 or A” and “Alice plays a1, A,
or a2.”11

5 Concluding Remarks

Li (2008a, 2008b) and Heifetz et al. (2006) have provided set-theoretic models of un-
awareness, but both rely on structural assumptions on the state space. In this paper,
I construct a model of unawareness in arbitrary state spaces and show it is essentially
equivalent to the product model proposed by Li (2008a, 2008b). The equivalence result
also sheds light on understanding the effects of unawareness in terms of one’s knowledge
hierarchy by connecting the characterization of unawareness in the two models. Finally,
I explore a special case of unawareness, namely, partial unawareness, where players may
make erroneous inferences due to their unawareness, and I show how a variant of the par-
tition model can successfully capture the subtle inference problem in this environment.

6 Appendix

6.1 Proof for Lemma 1.

Proof. To see Φ is one-to-one: take any F1,F2 ∈ 2F ,F1 6= F2. Suppose Φ(F1) = Φ(F2).
Without loss of generality, assume F1 \ F2 6= ∅. It follows [(F \ F1) ∪ F2] is a

proper subset of F . Now,

S∗ = ∨
π∈ F

π

=

[
∨

π∈ F1

π

]
∨

π∈ F\F1

π

=

[
∨

π∈ F2

π

]
∨

π∈ F\F1

π

= ∨
π∈ [(F\F1)∪F2]

π.

11It is instructive to relate the interpolation model to the product model. Let Ω∗ = {0, 1}3, and let
Γ(a1) = (1, 0, 0),Γ(a2) = (0, 1, 0) and Γ(A) = (0, 0, 1). At A, Bob’s subjective factual information is
{(1, 0), (0, 0)}. But then presumably (0, 0) is a contradictory state in the subjective state space {0, 1}2
and hence is crossed out, leading to the interpolation {(1, 0)}. In some sense, the partial unawareness
problem is precisely reflected in the failure of recognizing that (0, 0) is in fact a legitimate state.
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which contradicts F being a frame.
To see g−1(π) = {ν ∈ F : π D ν}: it obviously holds for π = S; for π 6= {S},

notice the definition of g yields G ⊆ {ν ∈ F : π D ν}, the other direction of set inclusion
follows from the observation that if π D ν, then π ∨ ν = π. That Φ−1(π) is a frame for
π is obvious. �

6.2 Proof for Lemma 2.

Proof. Let E ∈ {π(t′) : t′ ∈ P (t)}. That is, E = π(t′) for some t′ ∈ P (t).
Since P induces an information partition, we have t ∈ P (t′).
On the other hand, t′ ∈ π(t) ⇒ t ∈ π(t′), thus, t ∈ P (r) ∩ π(t′). By nice factual

partition, P (t′) ∩ π(r) 6= ∅. Let r′ ∈ P (t′) ∩ π(r). Then r′ ∈ P (t′) means π(r′) is an
element in the set at the right-hand side, but r′ ∈ π(r) means π(r′) = π(r) = E. This
proves E ∈ {π(r) : r ∈ P (t′)}. The other direction is entirely symmetric, and hence the
result. �

6.3 Proof for Lemma 3.

Proof. We need to prove (Wj(·|is), Pj(·|is)) is rational and Pj(·|is) satisfies nice factual
partition with respect to (Wi(s),Φ

−1(Wi(s))).

1. First I show that for all E,F ∈ Wi(s), F ∈ Pj(E|is)⇒ Pj(F |is) = Pj(E|is).
Pick t0 ∈ E. By Lemma 2,

Pj(E|is) = {Wi(s)(t) : t ∈ Pj(t0)} .

Thus there exists t1 ∈ Pj(t0) such that F = Wi(s)(t1). Since (Wj, Pj) is rational,
Pj(t1) = Pj(t0).

Since t1 ∈ F , using Lemma 2 again, we have:

Pj(F |is) = {Wi(s)(t) : t ∈ Pj(t1)}
= {Wi(s)(t) : t ∈ Pj(t0)}
= Pj(E|is)

2. Second I show that F ∈ Pj(E|is)⇒ Wj(E|is) = Wj(F |is).
Pick t0 ∈ E. As argued above, there exists t1 ∈ Pj(t0) such that F = Wi(s)(t1), or
t1 ∈ F . By rational awareness, Wj(t0) = Wj(t1), and hence

{Wj(t) : t ∈ E} ⊆ {Wj(t) : t ∈ F} .

19



Since Pj induces an information partition, t0 ∈ Pj(t0) and hence E ∈ Pj(E|is). By
the previous proof, Pj(E|is) = Pj(F |is) and hence E ∈ Pj(F |is). Applying the
arguments in the previous paragraph again, we obtain the other direction of set
inclusion, i.e.,

{Wj(t) : t ∈ E} ⊇ {Wj(t) : t ∈ F} .

Thus we have {Wj(t) : t ∈ E} = {Wj(t) : t ∈ F} , and hence,

Wj(E|is) = Wi(s) ∧
[
∨
t∈E

Wj(t)

]
= Wi(s) ∧

[
∨
t∈F

Wj(t)

]
= Wj(F |is).

3. Finally, I show Pj(·|is) satisfies nice factual partition, that is, for any F ′ ⊆ Φ−1(Wi(s)),

and any E,F ∈ Wi(s), if

{
G ∩

π∈F ′
π(E) : G ∈ Wi(s)

}
∩ Pj(F |is) 6= ∅, then{

G ∩
π∈F ′

π(F ) : G ∈ Wi(s)

}
∩ Pj(E|is) 6= ∅.

Let H ∈
{
G ∩

π∈F ′
π(E) : G ∈ Wi(s)

}
∩ Pj(F |is). Then we have H ⊆ π(E) for all

π ∈ F ′, and there exist t, t0 ∈ S such that t0 ∈ F, t ∈ Pj(t0) and H = Wi(s)(t).

Let s ∈ E. Then H ⊆ π(s) for all π ∈ F ′. Notice t ∈ H ⊆ π(s), thus π(s)∩Pj(t0) 6=
∅ for all π ∈ F ′. By nice factual signal condition, we have ∩

π∈ F ′
π(t0) ∩ Pj(s) 6= ∅.

Pick r ∈ ∩
π∈ F ′

π(t0) ∩ Pj(s). Since F ′ ⊆ Φ−1(Wi(s)), it follows Wi(s)(r) ⊆ π(t0) =

π(F ) for all π ∈ F ′; r ∈ Pj(s), s ∈ E implies Wi(s)(r) ∈ Pj(E|is). It follows that

Wi(s)(r) ∈
{
G ∩

π∈F ′
π(F ) : G ∈ Wi(s)

}
∩ Pj(E|is) and this proves the claim.

�

6.4 Proof for Theorem 4.

6.4.1 Proof for part 1.

1. Construct the partition model.

For any q ∈ Q, let π(q) =

{
a× Π

q′∈ Q,q′ 6=q
Dq′ × {α} : a ∈ Dq

}
denote the partition

over Ω∗ generated by the question q. Intuitively, all states in the set a× Π
q′∈ Q,q′ 6=q

Dq′×{α}
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coincide in their answer to question q, namely a.

Let F = {π(q) : q ∈ Q} denote the collection of partitions generated by all ques-
tions. It is straightforward to see F is a frame for Ω∗.

For any ω∗ ∈ Ω∗, let

W (ω∗) =

{
ω × Π

q∈ Q\W ∗(ω∗)
Dq × {α} : ω ∈ Π

q∈W ∗(ω∗)
Dq

}
, (6.1)

P (ω∗) = P ∗(ω∗). (6.2)

2. Structural equivalence of the information structures.
That if (W ∗, P ∗) is rational, then (W,P ) is rational is obvious.
Suppose P ∗ satisfies cylinder factual partition. Let F ′ ⊆ F . Let s, t ∈ Ω∗ be such

that
⋂
ν∈ F ′ ν(s) ∩ P (t) 6= ∅. We need to show

⋂
ν∈ F ′ ν(t) ∩ P (s) 6= ∅.

By construction, there exists a one-to-one map Λ : Q → F . By cylinder factual
partition, P (t) = P ∗(t) = Π

q∈ Q
πq(t

q) where πq is a partition over Dq. Let a ∈
⋂
ν∈ F ′ ν(s)∩

P (t). We have:

a ∈ P (t) ⇒ aq ∈ πq(tq);
a ∈

⋂
ν∈ F ′

ν(s) ⇒ aq = sq for all q ∈ Λ−1(F ′).

It follows tq ∈ πq(aq) = πq(s
q) for all q ∈ Λ−1(F ′). But then we have:

Π
q∈ Λ−1(F ′)

{tq} × Π
q∈Q\Λ−1(F ′)

πq(s
q) ⊆ Π

q∈ Q
πq(s

q) = P ∗(s) = P (s),

But since
Π

q∈ Λ−1(F ′)
{tq} × Π

q∈Q\Λ−1(F ′)
πq(s

q) ⊆
⋂
ν∈ F ′

ν(t),

we conclude
⋂
ν∈ F ′ ν(t) ∩ P (s) 6= ∅.

3. The equivalence of own knowledge hierarchies.

1. U(E) =
⋂

F∈ Ψ(E)

Up(F ).

Let ω∗ ∈ U(E), and F ∈ Ψ(E), need to show ω∗ ∈ Up(F ).

ω∗ ∈ U(E) ⇒ E /∈ A(W (ω∗)),

⇒ there exists some G ∈ W (ω∗), ω∗1, ω
∗
2 ∈ G such that

ω∗1 ∈ E,ω∗2 /∈ E.
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But by (6.1), G = ω × Π
q∈ Q\W ∗(ω∗)

Dq for some ω ∈ Π
q∈W ∗(ω∗)

Dq, thus ω∗1, ω
∗
2 must

differ on the set Dq for some q ∈ Q \W ∗(ω∗). Now,

F ∈ Ψ(E) ⇒ FΩ∗ = F × Π
q∈ Q\q(F )

Dq = E,

⇒ j ∈ q(F ),

⇒ q(F ) * W ∗(ω∗),

⇒ ω∗ ∈ Up(F ).

For the other direction, let ω∗ ∈
⋂

F∈ Ψ(E)

Up(F ), need to show ω∗ ∈ U(E).

Suppose not. Then E ∈ A(W (ω∗)), that is, E = ∪k∈KEk where K is an arbitrary
index set and Ek ∈ W (ω∗) for all k. By construction, for each k, we can write Ek =
ωk× Π

q∈ Q\W ∗(ω∗)
Dq, where ωk ∈ Π

q∈W ∗(ω∗)
Dq. But then the event G = {ωk : k ∈ K} ∈

Ψ(E) and q(G) ⊆ W ∗(ω∗), which implies ω∗ /∈ Up(G), contradiction.

2. K(E) =
⋃

F∈ Ψ(E)

Kp(F ).

By construction, for any E ∈ A(W (ω∗)), P ∗(ω∗) ⊆ Π
q∈ Q\q(E)

Dq if and only if

P (ω∗) ⊆ E. Now observe U(E) =
⋂

F∈ Ψ(E)

Up(E) implies E ∈ A(W (ω∗)) ⇔ ω∗ /∈

Up(F ) for some F ∈ Ψ(E). The result follows.

4. Equivalence of higher-order interactive knowledge hierarchies.
Fix θ = (ω∗, i). Consider the subjective model Mp(θ) = (Ω(θ),P(·|θ),W(·|θ)) as

defined in (3.1) - (3.3). Alternatively, let δ = (iω∗) and consider the subjective model
M(δ) ≡ (W (δ),Φ−1(W (δ)),W(·|δ),P(·|δ)) as defined by formulae (2.3) and (2.4).

Let β : Ω(θ)→ 2Ω∗ be defined by: β(ω) = ω × Π
q∈ Q\q({ω})

Dq × {α}. The map β is

one-to-one and onto on the set W (δ). It is easy to see that:

1. q ∈ W (θ)⇔ π(q) ∈ Φ−1(W (δ)) and hence q ∈ Wj(ω|θ)⇔ π(q) ∈ Φ−1(Wj(β(ω)|δ))
for all j and all ω ∈ Ω(θ);

2. ω′ ∈ Pj(ω|θ)⇔ β(ω′) ∈ Pj(β(ω)|δ) for all j and all ω ∈ Ω(θ).

Thus, Mp(θ) is isomorphic to M(δ). By the previous result, we have:

fW (δ)([Ũ
j]δ(E)) = β(

⋂
F∈ Ψ(E)

[Ũ j]pθ(F )). (6.3)

Now,
ω∗ ∈ KiUj(E)⇔ Wi(ω

∗)(ω∗) ⊆ [K̃i]δ[Ũ
j]δ(E)
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if and only if
Pi(Wi(ω

∗)(ω∗)|iω∗) ⊆ fW (δ)([Ũ
j]δ(E)).

Using equation (6.3), we have:

Pi(Wi(ω
∗)(ω∗)|iω∗) ⊆ β([Ũ j]pθ(F ))

for all F ∈ Ψ(E). Notice Wi(ω
∗)(ω∗) = β(PΩ(θ)(ω∗)); thus, the above is equivalent to:

Pi(PΩ(θ)(ω∗)|θ) ⊆ [Ũ j]pθ(F )

which, by definition, is true if and only if PΩ(θ)(ω∗) ∈ [K̃i]pθ[Ũ
j]p(F ), if and only if

ω∗ ∈ [KiUj]
p(E).

The proof for the case of KiKj is entirely analogous. The equivalence of higher-
order knowledge follows from the recursive structure of the models. �

6.4.2 Proof for part 2.

1. Construct the product state space.
Given (S∗,F), consider the product set:

Ω∗ = {α} × Π
π∈ F

π. (6.4)

A product state ω∗ ∈ Ω∗ is a #(F) + 1-tuple whose coordinates are subsets of S plus α.
For example, let S = {a, b, c, d} and the frame be given by:

F = {{{a, b} , {c, d}} , {{a} , {b, c, d}} , {{d} , {a, b, c}}} ,

then,

Ω∗ = {α} × {{a, b} , {c, d}} × {{a} , {b, c, d}} × {{d} , {a, b, c}}
= {(α, {a, b} , {a} , {d}), (α, {a, b} , {b, c, d} , {d}), · · · } .

The set F plays the role of {Dq}q∈Q in the product model.
Let the map Γ : S → Ω∗ be defined by

Γ(s) = Π
π∈F

π(s).

Obviously, Γ is an injection.

2. Construct the information structure.
The idea is, on Γ(S), one can simply translate (W,P ) into (W ∗, P ∗) using Γ, i.e.,

for every ω∗ ∈ Γ(S), define

W ∗(ω∗) = {α} ∪ Φ−1(W (Γ−1(ω∗))). (6.5)

P ∗(ω∗) =
{

Γ(t) : t ∈ P (Γ−1(ω∗))
}
. (6.6)
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The complication is that the product structure imposes extra auxiliary states. Thus, we
need to make sure that the information structures defined for these states do not interfere
with knowledge hierarchies in states in Γ(S). This requires some care.

2.1. Suppose (W,P ) is rational. Then for ω∗ /∈ Γ(S), let

W ∗(ω∗) = {α} ; (6.7)

P ∗(ω∗) = {ω∗} . (6.8)

Obviously (W ∗, P ∗) is rational in the product model.

2.2. Let P satisfy nice factual partition. For any π ∈ F , consider the set:

P(π) = {{π(t) : t ∈ P (s)} : s ∈ S} .

By Lemma 2, P(π) is a partition over π. For every ω∗ ∈ Ω∗, let P(π)(ω∗) denote
the partition element in P(π) that contains the π-th coordinate of ω∗. Define:

P ∗(ω∗) = {α} × Π
π∈F
P(π)(ω∗) (6.9)

To check that all subjective models have equivalent information structures: fix
ω∗ ∈ Γ(ω∗). Let ω ∈ Π

π∈W ∗(ω∗)
π. Let Ξ(ω) = [ω × Π

π∈ F\W ∗(ω∗)
π] ∩ Γ(S). This is the

set of states translated from S into the product space that has the projection ω on the
subjective state space W ∗(ω∗). Apparently, either Ξ(ω) = ∅ or Γ−1(Ξ(ω)) ∈ W (Γ−1(ω∗)).
It is straightforward to verify the following:

W ∗(ω|ω∗) =

{
{α} ∪ Φ−1(W (Γ−1(Ξ(ω))|Γ−1(ω∗))) if Ξ(ω) 6= ∅,
{α} otherwise;

(6.10)

P ∗(ω|ω∗) =

{
{Γ(G) : G ∈ P (Γ−1(Ξ(ω))|Γ−1(ω∗))} if Ξ(ω) 6= ∅,
{ω} otherwise;

(6.11)

where slightly abusing notation, I let Γ(G) denote the product subjective state corre-
sponding to the subjective state G in the partition model, i.e., Γ(G) = Π

π∈W ∗(ω∗)
π(t), t ∈

G.

3. Equivalence of knowledge hierarchies.

It suffices to show the equivalence of own knowledge hierarchies. The equivalence
of higher-order knowledge follows from the recursive structure of the subjective models
and the fact that the subjective models are isomorphic, as shown above.
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The set of events in the product model, adapting definition (3.8), is given by:

Ep =
⋃
F ′⊆F

[{
E ⊆ {α} × Π

π∈ F ′
π : E 6= ∅

}
∪ {∅F ′}

]
, (6.12)

where ∅F ′ is interpreted analogously as ∅Q′ .
Fix E ∈ Ep and let FE denote the unique subset of F satisfying E ⊆ Π

π∈ FE
π. Let

Up, Kp be defined as in (3.9) and (3.3) (with obvious adaptation to the new notations,
for example, FE instead of q(E), π instead of Dq etc.).

1. Up(E) ∩ Γ(S) = Γ

 ⋃
ω∈ Π

π∈FE
π

U(Γ−1(ω × Π
π∈F\FE

π) ∩ S)

.

Let ω∗ ∈ Up(E) ∩ Γ(S). Let s0 = Γ−1(ω∗). By definition of Up and W ∗, we have
FE * {α} ∪Φ−1(W (s0)). Thus, there exist ν ∈ FE and t, t′ ∈ S such that t /∈ ν(t′)
but t ∈ W (s0)(t′). Consider the product subjective state ω0 = Π

π∈FE
π(t). We have:

Γ(t) ∈ ω0 × Π
π∈F\FE

π,

Γ(t′) /∈ ω0 × Π
π∈F\FE

π,

and hence Γ−1(ω0 × Π
π∈F\FE

π) ∩ S /∈ A(W (s0)), i.e.

s0 ∈
⋃

ω∈ Π
π∈FE

π

U(Γ−1(ω × Π
π∈F\FE

π) ∩ S),

and hence the “⊆.”

For the other direction, let s0 ∈ U(Γ−1(ω0× Π
π∈F\FE

π)∩S) where ω0 ∈ Π
π∈FE

π. Then

there must exist t, t′ ∈ S such that:

t ∈ W (s0)(t′),

t ∈ Γ−1(ω0 × Π
π∈F\FE

π);

t′ /∈ Γ−1(ω0 × Π
π∈F\FE

π).

It follows there must exist ν ∈ FE \Φ−1(W (s0)) such that t /∈ ν(t′), but this implies
Γ(s0) ∈ Up(E).

2. Kp(E) ∩ Γ(S) = Γ

(
K(Γ−1(E × Π

π∈F\FE
π) ∩ S))

)
∩ ¬Up(E).

25



By the definition of Kp and Up, we have:

Kp(E) =

{
ω∗ ∈ Ω∗ : P ∗(ω∗) ⊆ E × Π

π∈F\FE
π

}
∩ ¬Up(E).

The rest follows from the observation that for all s ∈ S, P ∗(Γ(s))∩Γ(S) = Γ(P (s)).

�

6.5 Proof for Theorem 5.

First, I prove a useful lemma. Let 4 denote set difference operation.

Lemma 8 Fix (S∗,F). Let W satisfy nice awareness. Then for any π ∈ F̄ , s ∈ π(s′)
implies

Φ−1(π) ∩ [Φ−1(W (s))4Φ−1(W (s′))] = ∅.

Proof. Suppose not. Let ν ∈ Φ−1(π) ∩ [Φ−1(W (s))4Φ−1(W (s′))]. Without loss of
generality, suppose ν /∈ Φ−1(W (s′)).

Since ν ∈ F , by Lemma 1, there exist t, t′ such that t /∈ ν(t′) and t ∈ γ(t′) for all
γ ∈ F , γ 6= ν. It follows that t /∈ π(t′), t /∈ W (s)(t′) but t ∈ W (s′)(t′), contradicting nice
awareness. �

Proof for the theorem. Define the product set Ω∗ as in equation (6.4), and define the
factual information P ∗ on the product set as in formulae (6.9) and (5.8). Define the
awareness information W ∗ on the product set as follows: for any ω∗ ∈ Ω∗,

W ∗(ω∗) =

{
{α} ∪ Φ−1(W (Γ−1(ω∗0))) if ∃ ω∗0 ∈ Γ(S) s.t. ω∗ ∈ P ∗(ω∗0),

{α} otherwise.
(6.13)

It is easy to see the definition extends (6.5). By construction, (W ∗, P ∗) is rational.
By Lemma 8, (W ∗, P ∗) is strongly rational in the product model. The result follows from
Theorem 9 in Li (?) and Theorem 4.

�

6.6 Proof for Proposition 6.

Proof. First I prove “⊆.” By Lemmas 3 and 8, all subjective models have rational
information structures. For any s ∈ S, applying the equivalence result and Theorem 1 in
Li (?) to the subjective model (Wi(s),Φ

−1(Wi(s)),Wj(·|is), Pj(·|is)), we have Kj(E|is) ⊆
¬Uj(E|is), and hence KiKj(E) ⊆ Ki¬Uj(E).

Now let s ∈ KiKj(E), we need to show s ∈ K̂iK̂j(E), i.e., Pi(s) ⊆ {t ∈ S : Pj(t) ⊆ E}.
Let t ∈ Pi(s). Since s ∈ KiKj(E), we have Wi(s)(t) ∈ Kj(E|is), i.e., Pj(Wi(s)(t)|is) ⊆
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fWi(s)(E). By Lemma 2, Pj(Wi(s)(t)|is) = {Wi(s)(s
′) : s′ ∈ Pj(t)}, which implies Pj(t) ⊆

E and hence KiKj(E) ⊆ K̂iK̂j(E).

Next, I prove “⊇.” Suppose not. Then there exists s ∈ K̂iK̂j(E)∩Ki¬Uj(E) but
s /∈ KiKj(E).

It is immediate that since s ∈ Ki¬Uj(E), i is aware of E, i.e., E ∈ A(Wi(s)).
Thus, there must exist G ∈ Pi(Wi(s)(s)|is) such that G /∈ Kj(E|is). But again since
s ∈ Ki¬Uj(E), E ∈ A(Wj(G|is). Thus, we must have Pj(G|is) * fWi(s)(E). Since
G ∈ Pi(Wi(s)(s)|is), we have G = Wi(s)(t0) for some t0 ∈ Pi(s). By Lemma 2,
Pj(G|is) = {Wi(s)(t) : t ∈ Pj(t0)}. But then there must exist t1 ∈ Pj(t0) such that
Wi(s)(t1) /∈ fWi(s)(E), that is, Wi(s)(t1)∩E = ∅. It follows t1 /∈ E, and hence Pj(t0) * E,

contradicting s ∈ K̂iK̂j(E). �

6.7 Proof for Proposition 7.

Proof. Fix E ∈ E .
Property 1 easily follows from the definition.
To see K−i (E) ⊆ S \ E: observe P ◦i (s) ∩ (S \W ◦

i (s)) ⊆ S \W ◦
i (s), and hence for

any s ∈ K−i (E), we have:

[P ◦i (s) ∩W ◦
i (s)] ⊆ [W ◦

i (s) \ E]

⇒ [P ◦i (s) ∩W ◦
i (s)] ∪ [P ◦i (s) ∩ (S \W ◦

i (s))] ⊆ [W ◦
i (s) \ E] ∪ [S \W ◦

i (s)]

⇒ P ◦i (s) ⊆ S \ E.

The conclusion follows from s ∈ P ◦i (s).
To see s ∈ K◦i (E)\E ⇒ s /∈ W ◦

i (s): since s ∈ K◦i (E), we have [P ◦i (s)∩W ◦
i (s)] ⊆ E,

but since s /∈ E, it follows s /∈ P ◦i (s) ∩W ◦
i (s). But then since s ∈ P ◦i (s), we must have

s /∈ W ◦(s);
To see s ∈ K◦i (E), s /∈ W ◦

i (s) ⇒ s /∈ E: observe that s ∈ K◦i (E) implies
E ⊆ W ◦

i (s), but then since s /∈ W ◦
i (s), it follows s /∈ E. �
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